Impact of synovial fluid flow on temperature regulation in knee cartilage.
Moghadam, Mohamadreza Nassajian; Abdel-Sayed, Philippe; Camine, Valérie Malfroy; Pioletti, Dominique P
2015-01-21
Several studies have reported an increase of temperature in cartilage submitted to cyclic sinusoidal loading. The temperature increase is in part due to the viscous behavior of this tissue, which partially dissipates the input mechanical energy into heat. While the synovial fluid flow within the intra-articular gap and inside the porous cartilage is supposed to play an important role in the regulation of the cartilage temperature, no specific study has evaluated this aspect. In the present numerical study, a poroelastic model of the knee cartilage is developed to evaluate first the temperature increase in the cartilage due to dissipation and second the impact of the synovial fluid flow in the cartilage heat transfer phenomenon. Our results showed that, the local temperature is effectively increased in knee cartilage due to its viscous behavior. The synovial fluid flow cannot significantly preventing this phenomenon. We explain this result by the low permeability of cartilage and the moderate fluid exchange at the surface of cartilage under deformation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Tao; Wu, Xuewen; Peng, Xiaofei; Zhang, Yanni; Xie, Shaobing; Sun, Hong
2016-11-01
Tympanoplasty using cartilage grafts has a better graft take rate than that using temporalis fascia grafts. There are no significant differences between cartilage grafts and temporalis fascia grafts for hearing outcomes. Contrary to the sliced cartilage sub-group, full-thickness cartilage grafts generate better hearing outcomes than temporalis fascia grafts. Tympanic membrane perforation can cause middle ear relapsing infection and lead to hearing damage. Various techniques have been applied in order to reconstruct the tympanic membrane. Recently, cartilage grafts and temporalis fascia grafts have been widely used for tympanic membrane closure. A systemic review and meta-analysis was carried out based on published retrospective trials that investigated the efficacy of cartilage grafts and temporalis fascia grafts in type 1 tympanoplasty. Both graft take rates and mean AIR-BONE-GAP gains were analyzed. Cochrane Library, PubMed, and Embase were systematically searched. After a scientific investigation, we extracted the relevant data following our selection criteria. Odds ratio (OR) of graft take rates and mean difference (MD) of AIR-BONE-GAP gains were calculated within 95% confidence intervals. Eight eligible articles with 915 patients were reviewed. The pooled OR for graft take rate was 3.11 (95% CI =1.94-5.00; p = 0.43) and the difference between the two groups was significant, which means that the cartilage grafts group got a better graft take rate than the temporalis fascia grafts group. The pooled MD for mean AIR-BONE-GAP gain was 1.92 (95% CI = -0.12-3.95; p < 0.000 01) and the difference was not significant. However, in the full thickness cartilage grafts sub-group, the pooled MD for mean AIR-BONE-GAP gains was 2.56 (95% CI =1.02-4.10; p = 0.14) and the difference was significant, which means that the full thickness cartilage grafts sub-group got a better hearing outcome than the temporalis fascia grafts group. On the contrary, the pooled MD of sliced cartilage grafts sub-group was 0.12 (95% CI = -0.44-0.69; p = 0.61) and there was no significant difference between the sliced cartilage grafts and temporalis fascia group.
Impact of cartilage graft size on success of tympanoplasty.
Abdelhameed, Waleed; Rezk, Ibrahim; Awad, Alhussein
In the last decade, there has been an increasing use of cartilage grafts in the primary repair of tympanic membrane perforations. The major advantages of cartilage are its stiffness and its very low metabolic requirements, which make it particularly suitable for difficult conditions, such as subtotal perforations, adhesive otitis and reoperation. To analyze the impact of different perforation sizes requiring different sizes of cartilage on the anatomical and functional outcome after tympanoplasty. Through this prospective non-controlled, non-randomized study, 50 patients underwent cartilage type 1 tympanoplasty (20 females and 30 males), with a mean age of 19.3±9.8 years. According to size of perforation, patients were subdivided into three groups, Group I had perforation >50% of tympanic membrane area, in Group II patients the perforations were 25-50% of tympanic membrane area, and in Group III the perforations were ≤25% of tympanic membrane. All patients had pre and postoperative Pure Tone Average and Air Bone Gap frequencies (0.5, 1, 2, 4kHz). All patients were followed up at least 12 months after operation. The anatomical success rate among all patients was 92%, all groups showed statistical significant improvement between pre and postoperative air bone gap, no significant correlation between size of cartilage graft and degree of air bone gap improvement was noticed among the three groups. Size of a cartilage graft has no impact on degree of hearing improvement or anatomical success rate after tympanoplasty. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Contact mechanics for poroelastic, fluid-filled media, with application to cartilage.
Persson, B N J
2016-12-21
I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid, randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of contact, and the average interfacial separation, change with time. I present numerical results relevant for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic solid into the (roughness induced) interfacial gap between the solids.
Contact mechanics for poroelastic, fluid-filled media, with application to cartilage
NASA Astrophysics Data System (ADS)
Persson, B. N. J.
2016-12-01
I study a simple contact mechanics model for a poroelastic, fluid-filled solid squeezed against a rigid, randomly rough substrate. I study how the fluid is squeezed out from the interface, and how the area of contact, and the average interfacial separation, change with time. I present numerical results relevant for a human cartilage. I show that for a fluid filled poroelastic solid the probability of cavitation (and the related wear as the cavities implode), and dynamical scraping (defined below and in Hutt and Persson, J. Chem. Phys. 144, 124903 (2016)), may be suppressed by fluid flow from the poroelastic solid into the (roughness induced) interfacial gap between the solids.
An analytical model to predict interstitial lubrication of cartilage in migrating contact areas.
Moore, A C; Burris, D L
2014-01-03
For nearly a century, articular cartilage has been known for its exceptional tribological properties. For nearly as long, there have been research efforts to elucidate the responsible mechanisms for application toward biomimetic bearing applications. It is now widely accepted that interstitial fluid pressurization is the primary mechanism responsible for the unusual lubrication and load bearing properties of cartilage. Although the biomechanics community has developed elegant mathematical theories describing the coupling of solid and fluid (biphasic) mechanics and its role in interstitial lubrication, quantitative gaps in our understanding of cartilage tribology have inhibited our ability to predict how tribological conditions and material properties impact tissue function. This paper presents an analytical model of the interstitial lubrication of biphasic materials under migrating contact conditions. Although finite element and other numerical models of cartilage mechanics exist, they typically neglect the important role of the collagen network and are limited to a specific set of input conditions, which limits general applicability. The simplified approach taken in this work aims to capture the broader underlying physics as a starting point for further model development. In agreement with existing literature, the model indicates that a large Peclet number, Pe, is necessary for effective interstitial lubrication. It also predicts that the tensile modulus must be large relative to the compressive modulus. This explains why hydrogels and other biphasic materials do not provide significant interstitial pressure under high Pe conditions. The model quantitatively agrees with in-situ measurements of interstitial load support and the results have interesting implications for tissue engineering and osteoarthritis problems. This paper suggests that a low tensile modulus (from chondromalacia or local collagen rupture after impact, for example) may disrupt interstitial pressurization, increase shear stresses, and activate a condition of progressive surface damage as a potential precursor of osteoarthritis. © 2013 Elsevier Ltd. All rights reserved.
Klika, Václav; Gaffney, Eamonn A; Chen, Ying-Chun; Brown, Cameron P
2016-09-01
There is a long history of mathematical and computational modelling with the objective of understanding the mechanisms governing cartilage׳s remarkable mechanical performance. Nonetheless, despite sophisticated modelling development, simulations of cartilage have consistently lagged behind structural knowledge and thus the relationship between structure and function in cartilage is not fully understood. However, in the most recent generation of studies, there is an emerging confluence between our structural knowledge and the structure represented in cartilage modelling. This raises the prospect of further refinement in our understanding of cartilage function and also the initiation of an engineering-level understanding for how structural degradation and ageing relates to cartilage dysfunction and pathology, as well as informing the potential design of prospective interventions. Aimed at researchers entering the field of cartilage modelling, we thus review the basic principles of cartilage models, discussing the underlying physics and assumptions in relatively simple settings, whilst presenting the derivation of relatively parsimonious multiphase cartilage models consistent with our discussions. We proceed to consider modern developments that start aligning the structure captured in the models with observed complexities. This emphasises the challenges associated with constitutive relations, boundary conditions, parameter estimation and validation in cartilage modelling programmes. Consequently, we further detail how both experimental interrogations and modelling developments can be utilised to investigate and reduce such difficulties before summarising how cartilage modelling initiatives may improve our understanding of cartilage ageing, pathology and intervention. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.
Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S
2013-10-01
Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.
Parsons, Trish E; Downey, Charlene M; Jirik, Frank R; Hallgrimsson, Benedikt; Jamniczky, Heather A
2015-01-01
Phenotypic integration patterns in the mammalian skull have long been a focus of intense interest as a result of their suspected influence on the trajectory of hominid evolution. Here we test the hypothesis that perturbation of cartilage growth, which directly affects only the chondrocranium during development, will produce coordinated shape changes in the adult calvarium and face regardless of mechanism. Using two murine models of cartilage undergrowth that target two very different mechanisms, we show that strong reduction in cartilage growth produces a short, wide, and more flexed cranial base. This in turn produces a short, wide face in both models. Cranial base and face are already correlated early in ontogeny, and the relationship between these modules gains structure through postnatal growth and development. These results provide further evidence that there exist physical interactions between developing parts of the phenotype that produce variation at a distance from the actual locus upon which a particular selective pressure is acting. Phenotypic changes observed over the course of evolution may not all require adaptationist explanations; rather, it is likely that a substantial portion of observed phenotypic variation over the history of a clade is not directly adaptive but rather a secondary consequence of some local response to selection.
Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.
2013-01-01
Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200
Mechanical Testing of Hydrogels in Cartilage Tissue Engineering: Beyond the Compressive Modulus
Xiao, Yinghua; Friis, Elizabeth A.; Gehrke, Stevin H.
2013-01-01
Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context. PMID:23448091
Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K
2004-09-01
To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.
Schrobback, Karsten; Klein, Travis Jacob
2015-01-01
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell–cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell–cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5′-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell–cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs. PMID:25693425
Schrobback, Karsten; Klein, Travis Jacob; Woodfield, Tim B F
2015-06-01
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.
Kraft, Jeffrey J.; Jeong, Changhoon; Novotny, John E.; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M.; Richardson, Dean W.; Dodge, George R.
2011-01-01
Objective: Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Design: Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture–derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. Results: In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. Conclusions: This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair. PMID:26069584
Kraft, Jeffrey J; Jeong, Changhoon; Novotny, John E; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M; Richardson, Dean W; Dodge, George R
2011-07-01
Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture-derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair.
Computational aspects in mechanical modeling of the articular cartilage tissue.
Mohammadi, Hadi; Mequanint, Kibret; Herzog, Walter
2013-04-01
This review focuses on the modeling of articular cartilage (at the tissue level), chondrocyte mechanobiology (at the cell level) and a combination of both in a multiscale computation scheme. The primary objective is to evaluate the advantages and disadvantages of conventional models implemented to study the mechanics of the articular cartilage tissue and chondrocytes. From monophasic material models as the simplest form to more complicated multiscale theories, these approaches have been frequently used to model articular cartilage and have contributed significantly to modeling joint mechanics, addressing and resolving numerous issues regarding cartilage mechanics and function. It should be noted that attentiveness is important when using different modeling approaches, as the choice of the model limits the applications available. In this review, we discuss the conventional models applicable to some of the mechanical aspects of articular cartilage such as lubrication, swelling pressure and chondrocyte mechanics and address some of the issues associated with the current modeling approaches. We then suggest future pathways for a more realistic modeling strategy as applied for the simulation of the mechanics of the cartilage tissue using multiscale and parallelized finite element method.
Locating articular cartilage in MR images
NASA Astrophysics Data System (ADS)
Folkesson, Jenny; Dam, Erik; Pettersen, Paola; Olsen, Ole F.; Nielsen, Mads; Christiansen, Claus
2005-04-01
Accurate computation of the thickness of the articular cartilage is of great importance when diagnosing and monitoring the progress of joint diseases such as osteoarthritis. A fully automated cartilage assessment method is preferable compared to methods using manual interaction in order to avoid inter- and intra-observer variability. As a first step in the cartilage assessment, we present an automatic method for locating articular cartilage in knee MRI using supervised learning. The next step will be to fit a variable shape model to the cartilage, initiated at the location found using the method presented in this paper. From the model, disease markers will be extracted for the quantitative evaluation of the cartilage. The cartilage is located using an ANN-classifier, where every voxel is classified as cartilage or non-cartilage based on prior knowledge of the cartilage structure. The classifier is tested using leave-one-out-evaluation, and we found the average sensitivity and specificity to be 91.0% and 99.4%, respectively. The center of mass calculated from voxels classified as cartilage are similar to the corresponding values calculated from manual segmentations, which confirms that this method can find a good initial position for a shape model.
[Study on shape and structure of calcified cartilage zone in normal human knee joint].
Wang, Fuyou; Yang, Liu; Duan, Xiaojun; Tan, Hongbo; Dai, Gang
2008-05-01
To explore the shape and structure of calcified cartilage zone and its interface between the non-calcified articular cartilage and subchondral bone plate. The normal human condyles of femur (n=20) were obtained from the tissue bank donated by the residents, 10 males and 10 females, aged 17-45 years. The longitudinal and transverse paraffin sections were prepared by the routine method. The shape and structure of calcified cartilage zone were observed with the Safranin O/fast green and von kossa stain method. The interface conjunction among zones of cartilage was researched by SEM and the 3D structural model was established by serial sections and modeling technique. Articular bone-cartilage safranin O/fast green staining showed that cartilage was stained red and subchondral bone was stained blue. The calcified cartilage zone was located between the tidemark and cement line. Von kossa staining showed that calcified cartilage zone was stained black and sharpness of structure border. Upper interface gomphosised tightly with the non-calcified cartilage by the wave shaped tidemark and lower interface anchored tightly with the subchondral bone by the uneven comb shaped cement line. The non-calcified cartilage zone was interlocked tightly in the manner of "ravine-engomphosis" by the calcified cartilage zone as observed under SEM, and the subchondral bone was anchored tightly in the manner of"comb-anchor" by the in the calcified cartilage zone 3D reconstruction model. The calcified cartilage zone is an important structure in the articular cartilage. The articular cartilage is fixed firmly into subchondral bone plate by the distinctive conjunct interfaces of calcified cartilage zone.
Wilson, Wouter; Isaksson, Hanna; Jurvelin, Jukka S.; Herzog, Walter; Korhonen, Rami K.
2013-01-01
The function of articular cartilage depends on its structure and composition, sensitively impaired in disease (e.g. osteoarthritis, OA). Responses of chondrocytes to tissue loading are modulated by the structure. Altered cell responses as an effect of OA may regulate cartilage mechanotransduction and cell biosynthesis. To be able to evaluate cell responses and factors affecting the onset and progression of OA, local tissue and cell stresses and strains in cartilage need to be characterized. This is extremely challenging with the presently available experimental techniques and therefore computational modeling is required. Modern models of articular cartilage are inhomogeneous and anisotropic, and they include many aspects of the real tissue structure and composition. In this paper, we provide an overview of the computational applications that have been developed for modeling the mechanics of articular cartilage at the tissue and cellular level. We concentrate on the use of fibril-reinforced models of cartilage. Furthermore, we introduce practical considerations for modeling applications, including also experimental tests that can be combined with the modeling approach. At the end, we discuss the prospects for patient-specific models when aiming to use finite element modeling analysis and evaluation of articular cartilage function, cellular responses, failure points, OA progression, and rehabilitation. PMID:23653665
Räsänen, Lasse P; Tanska, Petri; Mononen, Mika E; Lammentausta, Eveliina; Zbýň, Štefan; Venäläinen, Mikko S; Szomolanyi, Pavol; van Donkelaar, Corrinus C; Jurvelin, Jukka S; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K
2016-10-03
The effects of fixed charge density (FCD) and cartilage swelling have not been demonstrated on cartilage mechanics on knee joint level before. In this study, we present how the spatial and local variations of FCD affects the mechanical response of the knee joint cartilage during standing (half of the body weight, 13 minutes) using finite element (FE) modeling. The FCD distribution of tibial cartilage of an asymptomatic subject was determined using sodium ( 23 Na) MRI at 7T and implemented into a 3-D FE-model of the knee joint (Subject-specific model, FCD: 0.18±0.08 mEq/ml). Tissue deformation in the Subject-specific model was validated against experimental, in vivo loading of the joint conducted with a MR-compatible compression device. For comparison, models with homogeneous FCD distribution (homogeneous model) and FCD distribution obtained from literature (literature model) were created. Immediately after application of the load (dynamic response), the variations in FCD had minor effects on cartilage stresses and strains. After 13 minutes of standing, the spatial and local variations in FCD had most influence on axial strains. In the superficial tibial cartilage in the Subject-specific model, axial strains were increased up to +13% due to smaller FCD (mean -11%), as compared to the homogeneous model. Compared to the literature model, those were decreased up to -18% due to greater FCD (mean +7%). The findings demonstrate that the spatial and local FCD variations in cartilage modulates strains in knee joint cartilage. Thereby, the results highlight the mechanical importance of site-specific content of proteoglycans in cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Animal models used for testing hydrogels in cartilage regeneration.
Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei
2018-05-14
Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fortier, Lisa A; Chapman, Hannah S; Pownder, Sarah L; Roller, Brandon L; Cross, Jessica A; Cook, James L; Cole, Brian J
2016-09-01
Microfracture (MFx) remains a dominant treatment strategy for symptomatic articular cartilage defects. Biologic scaffold adjuncts, such as particulated allograft articular cartilage (BioCartilage) combined with platelet-rich plasma (PRP), offer promise in improving clinical outcomes as an adjunct to MFx. To evaluate the safety, biocompatibility, and efficacy of BioCartilage and PRP for cartilage repair in a preclinical equine model of full-thickness articular cartilage loss. Controlled laboratory study. Two 10-mm-diameter full-thickness cartilage defects were created in 5 horses in the trochlear ridge of both knees: one proximal (high load) and another distal (low load). Complete blood counts were performed on each peripheral blood and resultant PRP sample. In each horse, one knee received MFx with BioCartilage + PRP, and the other knee received MFx alone. Horses were euthanized at 13 months. Outcomes were assessed with serial arthroscopy, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and histology. Statistics were performed using a mixed-effects model with response variable contrasts. No complications occurred. PRP generated in all subjects yielded an increase in platelet fold of 3.8 ± 4.7. Leukocyte concentration decreased in PRP samples by an average fold change of 5 ± 0.1. The overall International Cartilage Repair Society repair score in both the proximal and distal defects was significantly higher (better) in the BioCartilage group compared with MFx (proximal BioCartilage: 7.4 ± 0.51, MFx 4.8 ± 0.1, P = .041; distal BioCartilage: 5.6 ± 0.98, MFx 2.6 ± 1.5, P = .022). BioCartilage-treated proximal defects demonstrated improved histologic scores for repair-host integration (BioCartilage, 96 ± 9; MFx, 68 ± 18; P = .02), base integration (BioCartilage, 100 ± 0; MFx, 70 ± 37; P = .04), and formation of collagen type II (BioCartilage, 82 ± 8; MFx, 58 ± 11; P = .05) compared with the positive control. On MRI, T2 relaxation time was significantly shorter (better) in the superficial region of BioCartilage-treated distal defects compared with MFx (P = .05). There were no significant differences between BioCartilage and MFx on micro-CT analysis. BioCartilage with PRP safely improved cartilage repair compared with MFx alone in an equine model of articular cartilage defects up to 13 months after implantation. The 1-year results of BioCartilage + PRP suggest that homologous allograft tissue provides a safe and effective augmentation of traditional MFx. © 2016 The Author(s).
Mononen, Mika E; Jurvelin, Jukka S; Korhonen, Rami K
2015-01-01
Computational models can be used to evaluate the functional properties of knee joints and possible risk locations within joints. Current models with fibril-reinforced cartilage layers do not provide information about realistic human movement during walking. This study aimed to evaluate stresses and strains within a knee joint by implementing load data from a gait cycle in healthy and meniscectomised knee joint models with fibril-reinforced cartilages. A 3D finite element model of a knee joint with cartilages and menisci was created from magnetic resonance images. The gait cycle data from varying joint rotations, translations and axial forces were taken from experimental studies and implemented into the model. Cartilage layers were modelled as a fibril-reinforced poroviscoelastic material with the menisci considered as a transversely isotropic elastic material. In the normal knee joint model, relatively high maximum principal stresses were specifically predicted to occur in the medial condyle of the knee joint during the loading response. Bilateral meniscectomy increased stresses, strains and fluid pressures in cartilage on the lateral side, especially during the first 50% of the stance phase of the gait cycle. During the entire stance phase, the superficial collagen fibrils modulated stresses of cartilage, especially in the medial tibial cartilage. The present computational model with a gait cycle and fibril-reinforced biphasic cartilage revealed time- and location-dependent differences in stresses, strains and fluid pressures occurring in cartilage during walking. The lateral meniscus was observed to have a more significant role in distributing loads across the knee joint than the medial meniscus, suggesting that meniscectomy might initiate a post-traumatic process leading to osteoarthritis at the lateral compartment of the knee joint.
A biomechanical triphasic approach to the transport of nondilute solutions in articular cartilage.
Abazari, Alireza; Elliott, Janet A W; Law, Garson K; McGann, Locksley E; Jomha, Nadr M
2009-12-16
Biomechanical models for biological tissues such as articular cartilage generally contain an ideal, dilute solution assumption. In this article, a biomechanical triphasic model of cartilage is described that includes nondilute treatment of concentrated solutions such as those applied in vitrification of biological tissues. The chemical potential equations of the triphasic model are modified and the transport equations are adjusted for the volume fraction and frictional coefficients of the solutes that are not negligible in such solutions. Four transport parameters, i.e., water permeability, solute permeability, diffusion coefficient of solute in solvent within the cartilage, and the cartilage stiffness modulus, are defined as four degrees of freedom for the model. Water and solute transport in cartilage were simulated using the model and predictions of average concentration increase and cartilage weight were fit to experimental data to obtain the values of the four transport parameters. As far as we know, this is the first study to formulate the solvent and solute transport equations of nondilute solutions in the cartilage matrix. It is shown that the values obtained for the transport parameters are within the ranges reported in the available literature, which confirms the proposed model approach.
A Biomechanical Triphasic Approach to the Transport of Nondilute Solutions in Articular Cartilage
Abazari, Alireza; Elliott, Janet A.W.; Law, Garson K.; McGann, Locksley E.; Jomha, Nadr M.
2009-01-01
Abstract Biomechanical models for biological tissues such as articular cartilage generally contain an ideal, dilute solution assumption. In this article, a biomechanical triphasic model of cartilage is described that includes nondilute treatment of concentrated solutions such as those applied in vitrification of biological tissues. The chemical potential equations of the triphasic model are modified and the transport equations are adjusted for the volume fraction and frictional coefficients of the solutes that are not negligible in such solutions. Four transport parameters, i.e., water permeability, solute permeability, diffusion coefficient of solute in solvent within the cartilage, and the cartilage stiffness modulus, are defined as four degrees of freedom for the model. Water and solute transport in cartilage were simulated using the model and predictions of average concentration increase and cartilage weight were fit to experimental data to obtain the values of the four transport parameters. As far as we know, this is the first study to formulate the solvent and solute transport equations of nondilute solutions in the cartilage matrix. It is shown that the values obtained for the transport parameters are within the ranges reported in the available literature, which confirms the proposed model approach. PMID:20006942
Overview of existing cartilage repair technology.
McNickle, Allison G; Provencher, Matthew T; Cole, Brian J
2008-12-01
Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.
Transport of neutral solute across articular cartilage: the role of zonal diffusivities.
Arbabi, V; Pouran, B; Weinans, H; Zadpoor, A A
2015-07-01
Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute Iodixanol into cartilage was monitored using calibrated microcomputed tomography micro-CT images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.
Richard, F; Villars, M; Thibaud, S
2013-08-01
The viscoelastic behavior of articular cartilage changes with progression of osteoarthritis. The objective of this study is to quantify this progression and to propose a viscoelastic model of articular cartilage taking into account the degree of osteoarthritis that which be easily used in predictive numerical simulations of the hip joint behavior. To quantify the effects of osteoarthritis (OA) on the viscoelastic behavior of human articular cartilage, samples were obtained from the hip arthroplasty due to femoral neck fracture (normal cartilage) or advanced coxarthrosis (OA cartilage). Experimental data were obtained from instrumented indentation tests on unfrozen femoral cartilage collected and studied in the day following the prosthetic hip surgery pose. By using an inverse method coupled with a numerical modeling (FEM) of all experimental data of the indentation tests, the viscoelastic properties of the two states were quantified. Mean values of viscoelastic parameters were significantly lower for OA cartilage than normal (instantaneous and relaxed tension moduli, viscosity coefficient). Based on the results and in the thermodynamic framework, a constitutive viscoelastic model taking into account the degree of osteoarthritis as an internal variable of damage is proposed. The isotropic phenomenological viscoelastic model including degradation provides an accurate prediction of the mechanical response of the normal human cartilage and OA cartilage with advanced coxarthrosis but should be further validated for intermediate degrees of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Forman, Jason L; de Dios, Eduardo del Pozo; Kent, Richard W
2010-12-01
Injury-predictive finite element (FE) models of the chest must reproduce the structural coupling behavior of the costal cartilage accurately. Gross heterogeneities (the perichondrium and calcifications) may cause models developed based on local material properties to erroneously predict the structural behavior of cartilage segments. This study sought to determine the pseudo-elastic effective material properties required to reproduce the structural behavior of the costal cartilage under loading similar to what might occur in a frontal automobile collision. Twenty-eight segments of cadaveric costal cartilage were subjected to cantilever-like, dynamic loading. Three limited-mesh FE models were then developed for each specimen, having element sizes of 10 mm (typical of current whole-body FE models), 3 mm, and 2 mm. The cartilage was represented as a homogeneous, isotropic, linear elastic material. The elastic moduli of the cartilage models were optimized to fit the anterior-posterior (x-axis) force versus displacement responses observed in the experiments. For a subset of specimens, additional model validation tests were performed under a second boundary condition. The pseudo-elastic effective moduli ranged from 4.8 to 49 MPa, with an average and standard deviation of 22 ± 13.6 MPa. The models were limited in their ability to reproduce the lateral (y-axis) force responses observed in the experiments. The prediction of the x-axis and y-axis forces in the second boundary condition varied. Neither the effective moduli nor the model fit were significantly affected (Student's t-test, p < 0.05) by the model mesh density. The average pseudo-elastic effective moduli were significantly (p < 0.05) greater than local costal cartilage modulus values reported in the literature. These results are consistent with the presence of stiffening heterogeneities within the costal cartilage structure. These effective modulus values may provide guidance for the representation of the costal cartilage in whole-body FE models where these heterogeneities cannot be modeled distinctly.
Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing
2018-01-01
Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects. PMID:29666653
Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Liu, Shuyun; Lu, Shibi; Guo, Quanyi
2018-01-01
Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.
Lo Monaco, Melissa; Merckx, Greet; Ratajczak, Jessica; Gervois, Pascal; Hilkens, Petra; Clegg, Peter; Bronckaers, Annelies; Vandeweerd, Jean-Michel; Lambrichts, Ivo
2018-01-01
Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.
Ratajczak, Jessica; Gervois, Pascal; Clegg, Peter; Bronckaers, Annelies; Vandeweerd, Jean-Michel; Lambrichts, Ivo
2018-01-01
Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair. PMID:29535784
Aguilar, Hector N; Battié, Michele C
2017-01-01
Osteoarthritis is a common hip joint disease, involving loss of articular cartilage. The prevalence and prognosis of hip osteoarthritis have been difficult to determine, with various clinical and radiological methods used to derive epidemiological estimates exhibiting significant heterogeneity. MRI-based methods directly visualise hip joint cartilage, and offer potential to more reliably define presence and severity of osteoarthritis, but have been underused. We performed a systematic review of MRI-based estimates of hip articular cartilage in the general population and in patients with established osteoarthritis, using MEDLINE, EMBASE and SCOPUS current to June 2016, with search terms such as ‘hip’, ‘femoral head’, ‘cartilage’, ‘volume’, ‘thickness’, ‘MRI’, etc. Ultimately, 11 studies were found appropriate for inclusion, but they were heterogeneous in osteoarthritis assessment methodology and composition. Overall, the studies consistently demonstrate the reliability and potential clinical utility of MRI-based estimates. However, no longitudinal data or reference values for hip cartilage thickness or volume have been published, limiting the ability of MRI to define or risk-stratify hip osteoarthritis. MRI-based techniques are available to quantify articular cartilage signal, volume, thickness and defects, which could establish the sequence and rate of articular cartilage changes at the hip that yield symptomatic osteoarthritis. However, prevalence and rates of progression of hip osteoarthritis have not been established in any MRI studies in the general population. Future investigations could fill this important knowledge gap using robust MRI methods in population-based cross-sectional and longitudinal studies. PMID:28405471
[The three-dimensional simulation of arytenoid cartilage movement].
Zhang, Jun; Wang, Xuefeng
2011-08-01
Exploring the characteristics of arytenoid cartilage movement. Using Pro/ENGINEER (Pro/E) software, the cricoid cartilage, arytenoid cartilage and vocal cords were simulated to the three-dimensional reconstruction, by analyzing the trajectory of arytenoid cartilage in the joint surface from the cricoid cartilage and arytenoid cartilage composition. The 3D animation simulation showed the normal movement patterns of the vocal cords and the characteristics of vocal cords movement in occasion of arytenoid cartilage dislocation vividly. The three-dimensional model has clinical significance for arytenoid cartilage movement disorders.
Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
Wu, J Z; Herzog, W; Epstein, M
1998-02-01
The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.
Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method.
Xu, Hao; Chen, Shigao; An, Kai-Nan; Luo, Zong-Ping
2017-10-30
Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue shapes, is crucial for elasticity estimating in SWE. However, wave propagation model for cartilage was unclear. This study aimed to establish a wave propagation model for the cartilage-bone structure. We fabricated a cartilage-bone structure, and studied the elasticity measurement and wave propagation by experimental and numerical Lamb wave method (LWM). Results indicated the wave propagation model satisfied the lamb wave theory for two-layered structure. Moreover, a near field region, which affects wave speed measurements and whose occurrence can be prevented if the wave frequency is larger than one critical frequency, was observed. Our findings would provide a theoretical foundation for further application of LWM in elasticity measurement of cartilage in vivo. It can help the application of LWM to the diagnosis of osteoarthritis.
NASA Astrophysics Data System (ADS)
Oshima, Yusuke; Akehi, Mayu; Kiyomatsu, Hiroshi; Miura, Hiromasa
2017-02-01
Osteoarthritis (OA) is very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Cartilage contains mostly type II collagen and proteoglycans, so it is difficult to access the quality and morphology of cartilage tissue in situ by conventional diagnostic tools (X-ray, MRI and echography) directly or indirectly. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. In this study, we generated an animal OA model surgically induced by knee joint instability, and the femurs were harvested at two weeks after the surgery. We performed Raman spectroscopic analysis for the articular cartilage of distal femurs in OA side and unaffected side in each mouse. In the result, there is no gross findings in the surface of the articular cartilage in OA. On the other hand, Raman spectral data of the articular cartilage showed drastic changes in comparison between OA and control side. The major finding of this study is that the relative intensity of phosphate band (960 cm-1) increases in the degenerative cartilage. This may be the result of exposure of subchondral bone due to thinning of the cartilage layer. In conclusion, Raman spectroscopic technique is sufficient to characterize articular cartilage in OA as a pilot study for Raman application in cartilage degeneration and regeneration using animal models and human subjects.
Kar, Saptarshi; Smith, David W.; Gardiner, Bruce S.; Grodzinsky, Alan J.
2016-01-01
Inflammatory cytokines are key drivers of cartilage degradation in post-traumatic osteoarthritis. Cartilage degradation mediated by these inflammatory cytokines has been extensively investigated using in vitro experimental systems. Based on one such study, we have developed a computational model to quantitatively assess the impact of charged small molecules intended to inhibit IL-1 mediated cartilage degradation. We primarily focus on the simplest possible computational model of small molecular interaction with the IL-1 system—direct binding of the small molecule to the active site on the IL-1 molecule itself. We first use the model to explore the uptake and release kinetics of the small molecule inhibitor by cartilage tissue. Our results show that negatively charged small molecules are excluded from the negatively charged cartilage tissue and have uptake kinetics in the order of hours. In contrast, the positively charged small molecules are drawn into the cartilage with uptake and release timescales ranging from hours to days. Using our calibrated computational model, we subsequently explore the effect of small molecule charge and binding constant on the rate of cartilage degradation. The results from this analysis indicate that the small molecules are most effective in inhibiting cartilage degradation if they are either positively charged and/or bind strongly to IL-1α, or both. Furthermore, our results showed that the cartilage structural homeostasis can be restored by the small molecule if administered within six days following initial tissue exposure to IL-1α. We finally extended the scope of the computational model by simulating the competitive inhibition of cartilage degradation by the small molecule. Results from this model show that small molecules are more efficient in inhibiting cartilage degradation by binding directly to IL-1α rather than binding to IL-1α receptors. The results from this study can be used as a template for the design and development of more pharmacologically effective osteoarthritis drugs, and to investigate possible therapeutic options. PMID:27977731
Ex vivo culture platform for assessment of cartilage repair treatment strategies.
Schwab, Andrea; Meeuwsen, Annick; Ehlicke, Franziska; Hansmann, Jan; Mulder, Lars; Smits, Anthal; Walles, Heike; Kock, Linda
2017-01-01
There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors specific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we evaluated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, matrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivo testing.
Räsänen, Lasse P; Tanska, Petri; Zbýň, Štefan; van Donkelaar, Corrinus C; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K
2017-08-16
The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium ( 23 Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparisons of Auricular Cartilage Tissues from Different Species.
Chiu, Loraine L Y; Giardini-Rosa, Renata; Weber, Joanna F; Cushing, Sharon L; Waldman, Stephen D
2017-12-01
Tissue engineering of auricular cartilage has great potential in providing readily available materials for reconstructive surgeries. As the field of tissue engineering moves forward to developing human tissues, there needs to be an interspecies comparison of the native auricular cartilage in order to determine a suitable animal model to assess the performance of engineered auricular cartilage in vivo. Here, we performed interspecies comparisons of auricular cartilage by comparing tissue microstructure, protein localization, biochemical composition, and mechanical properties of auricular cartilage tissues from rat, rabbit, pig, cow, and human. Human, pig, and cow auricular cartilage have smaller lacunae compared to rat and rabbit cartilage ( P < .05). Despite differences in tissue microstructure, human auricular cartilage has similar biochemical composition to both rat and rabbit. Auricular cartilage from pig and cow, alternatively, display significantly higher glycosaminoglycan and collagen contents compared to human, rat, and rabbit ( P < .05). The mechanical properties of human auricular cartilage were comparable to that of all 4 animal species. This is the first study that compares the microstructural, biochemical, and mechanical properties of auricular cartilage from different species. This study showed that different experimental animal models of human auricular cartilage may be suitable in different cases.
Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K
2017-10-01
Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.
Khansai, Manatsanan; Boonmaleerat, Kanchanit; Pothacharoen, Peraphan; Phitak, Thanyaluck; Kongtawelert, Prachya
2016-07-11
Rheumatoid arthritis (RA) is an autoimmune disease associated with chronic inflammatory arthritis. TNF-α and OSM are pro-inflammatory cytokines that play a key role in RA progression. Thus, reducing the effects of both cytokines is practical in order to relieve the progression of the disease. This current study is interested in sesamin, an active compound in sesame seeds. Sesamin has been shown to be a chondroprotective agent in osteoarthritis models. Here, we have evaluated a porcine cartilage explant as a cartilage degradation model related to RA induced by TNF-α and/or OSM in order to investigate the effects of sesamin on TNF-α and OSM in the cartilage degradation model. A porcine cartilage explant was induced with a combination of TNF-α and OSM (test group) or IL-1β and OSM (control group) followed by a co-treatment of sesamin over a long-term period (35 days). After which, the tested explants were analyzed for indications of both the remaining and the degradation aspects using glycosaminoglycan and collagen as an indicator. The combination of TNF-α and OSM promoted cartilage degradation more than either TNF-α or OSM alone and was comparable with the combination of IL-1β and OSM. Sesamin could be offering protection against cartilage degradation by reducing GAGs and collagen turnover in the generated model. Sesamin might be a promising agent as an alternative treatment for RA patients. Furthermore, the generated model revealed itself to be an impressive test model for the analysis of phytochemical substances against the cartilage degradation model for RA. The model could be used to test for the prevention of cartilage degradation in other biological agents induced with TNF-α and OSM as well.
Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A
2016-06-14
Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Halonen, K S; Mononen, M E; Jurvelin, J S; Töyräs, J; Klodowski, A; Kulmala, J-P; Korhonen, R K
2016-07-01
In finite-element (FE) models of the knee joint, patella is often omitted. We investigated the importance of patella and quadriceps forces on the knee joint motion by creating an FE model of the subject's knee. In addition, depthwise strains and stresses in patellar cartilage with different tissue properties were determined. An FE model was created from subject's magnetic resonance images. Knee rotations, moments, and translational forces during gait were recorded in a motion laboratory and used as an input for the model. Three material models were implemented into the patellar cartilage: (1) homogeneous model, (2) inhomogeneous (arcadelike fibrils), and (3) random fibrils at the superficial zone, mimicking early stages of osteoarthritis (OA). Implementation of patella and quadriceps forces into the model substantially reduced the internal-external femoral rotations (versus without patella). The simulated rotations in the model with the patella matched the measured rotations at its best. In the inhomogeneous model, maximum principal stresses increased substantially in the middle zone of the cartilage. The early OA model showed increased compressive strains in the superficial and middle zones of the cartilage and decreased stresses and fibril strains especially in the middle zone. The results suggest that patella and quadriceps forces should be included in moment- and force-driven FE knee joint models. The results indicate that the middle zone has a major role in resisting shear forces in the patellar cartilage. Also, early degenerative changes in the collagen network substantially affect the cartilage depthwise response in the patella during walking.
Cartilage analysis by reflection spectroscopy
NASA Astrophysics Data System (ADS)
Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.
2015-07-01
A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.
Horbert, Victoria; Xin, Long; Foehr, Peter; Brinkmann, Olaf; Bungartz, Matthias; Burgkart, Rainer H; Graeve, T; Kinne, Raimund W
2018-02-01
Objective Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. Methods Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. Results Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. Conclusion Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.
NASA Astrophysics Data System (ADS)
León, Madeleine; Escalante-Ramirez, Boris
2013-11-01
Knee osteoarthritis (OA) is characterized by the morphological degeneration of cartilage. Efficient segmentation of cartilage is important for cartilage damage diagnosis and to support therapeutic responses. We present a method for knee cartilage segmentation in magnetic resonance images (MRI). Our method incorporates the Hermite Transform to obtain a hierarchical decomposition of contours which describe knee cartilage shapes. Then, we compute a statistical model of the contour of interest from a set of training images. Thereby, our Hierarchical Active Shape Model (HASM) captures a large range of shape variability even from a small group of training samples, improving segmentation accuracy. The method was trained with a training set of 16- MRI of knee and tested with leave-one-out method.
Automatic knee cartilage delineation using inheritable segmentation
NASA Astrophysics Data System (ADS)
Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.
2008-03-01
We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.
The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes
Gago-Fuentes, Raquel; Bechberger, John F.; Varela-Eirin, Marta; Varela-Vazquez, Adrian; Acea, Benigno; Fonseca, Eduardo
2016-01-01
Chondrocytes in cartilage and bone cells population express connexin43 (Cx43) and gap junction intercellular communication (GJIC) is essential to synchronize cells for coordinated electrical, mechanical, metabolic and chemical communication in both tissues. Reduced Cx43 connectivity decreases chondrocyte differentiation and defective Cx43 causes skeletal defects. The carboxy terminal domain (CTD) of Cx43 is located in the cytoplasmic side and is key for protein functions. Here we demonstrated that chondrocytes from the CTD-deficient mice, K258stop/Cx43KO and K258stop/K258stop, have reduced GJIC, increased rates of proliferation and reduced expression of collagen type II and proteoglycans. We observed that CTD-truncated mice were significantly smaller in size. Together these results demonstrated that the deletion of the CTD negatively impacts cartilage structure and normal chondrocyte phenotype. These findings suggest that the proteolytic cleavage of the CTD under pathological conditions, such as under the activation of metalloproteinases during tissue injury or inflammation, may account for the deleterious effects of Cx43 in cartilage and bone disorders such as osteoarthritis. PMID:27682878
Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T
2006-02-01
Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone resorption inhibitors as potential disease-modifying pharmaco-therapies.
Fractional calculus model of articular cartilage based on experimental stress-relaxation
NASA Astrophysics Data System (ADS)
Smyth, P. A.; Green, I.
2015-05-01
Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.
The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics
Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J.
2016-01-01
Objective Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. Methods The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. Results In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. Conclusions We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint. PMID:27936066
MRI based knee cartilage assessment
NASA Astrophysics Data System (ADS)
Kroon, Dirk-Jan; Kowalski, Przemyslaw; Tekieli, Wojciech; Reeuwijk, Els; Saris, Daniel; Slump, Cornelis H.
2012-03-01
Osteoarthritis is one of the leading causes of pain and disability worldwide and a major health problem in developed countries due to the gradually aging population. Though the symptoms are easily recognized and described by a patient, it is difficult to assess the level of damage or loss of articular cartilage quantitatively. We present a novel method for fully automated knee cartilage thickness measurement and subsequent assessment of the knee joint. First, the point correspondence between a pre-segmented training bone model is obtained with use of Shape Context based non-rigid surface registration. Then, a single Active Shape Model (ASM) is used to segment both Femur and Tibia bone. The surfaces obtained are processed to extract the Bone-Cartilage Interface (BCI) points, where the proper segmentation of cartilage begins. For this purpose, the cartilage ASM is trained with cartilage edge positions expressed in 1D coordinates at the normals in the BCI points. The whole cartilage model is then constructed from the segmentations obtained in the previous step. An absolute thickness of the segmented cartilage is measured and compared to the mean of all training datasets, giving as a result the relative thickness value. The resulting cartilage structure is visualized and related to the segmented bone. In this way the condition of the cartilage is assessed over the surface. The quality of bone and cartilage segmentation is validated and the Dice's coefficients 0.92 and 0.86 for Femur and Tibia bones and 0.45 and 0.34 for respective cartilages are obtained. The clinical diagnostic relevance of the obtained thickness mapping is being evaluated retrospectively. We hope to validate it prospectively for prediction of clinical outcome the methods require improvements in accuracy and robustness.
Ma, Anlun; Jiang, Li; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang
2013-07-01
Articular cartilage defects are commonly associated with trauma, inflammation and osteoarthritis. Mesenchymal stem cell (MSC)-based therapy is a promising novel approach for repairing articular cartilage. Direct intra-articular injection of uncommitted MSCs does not regenerate high-quality cartilage. This study explored utilization of a new three-dimensional, selected chondrogenic clonal MSC-loaded monkey acellular dermal matrix (MSC-ADM) scaffold to repair damaged cartilage in an experimental model of knee joint cartilage defect in Cynomolgus monkeys. MSCs were characterized for cell size, cell yield, phenotypes, proliferation and chondrogenic differentiation capacity. Chondrogenic differentiation assays were performed at different MSC passages by sulfated glycosaminoglycans (sGAG), collagen, and fluorescence activated cell sorter (FACS) analysis. Selected chondrogenic clonal MSCs were seeded onto ADM scaffold with the sandwich model and MSC-loaded ADM grafts were analyzed by confocal microscopy and scanning electron microscopy. Cartilage defects were treated with normal saline, clonal MSCs and clonal MSC-ADM grafts, respectively. The clinical parameters, and histological and immunohistochemical examinations were evaluated at weeks 8, 16, 24 post-treatment, respectively. Polyclonal and clonal MSCs could differentiate into the chondrogenic lineage after stimulation with suitable chondrogenic factors. They expressed mesenchymal markers and were negative for hematopoietic markers. Articular cartilage defects were considerably improved and repaired by selected chondrogenic clonal MSC-based treatment, particularly, in MSC-ADM-treated group. The histological scores in MSC-ADM-treated group were consistently higher than those of other groups. Our results suggest that selected chondrogenic clonal MSC-loaded ADM grafts could improve the cartilage lesions in Cynomolgus monkey model, which may be applicable for repairing similar human cartilage defects. Copyright © 2013 Elsevier B.V. All rights reserved.
Wahlquist, Joseph A; DelRio, Frank W; Randolph, Mark A; Aziz, Aaron H; Heveran, Chelsea M; Bryant, Stephanie J; Neu, Corey P; Ferguson, Virginia L
2017-12-01
Osteoarthrosis is a debilitating disease affecting millions, yet engineering materials for cartilage regeneration has proven difficult because of the complex microstructure of this tissue. Articular cartilage, like many biological tissues, produces a time-dependent response to mechanical load that is critical to cell's physiological function in part due to solid and fluid phase interactions and property variations across multiple length scales. Recreating the time-dependent strain and fluid flow may be critical for successfully engineering replacement tissues but thus far has largely been neglected. Here, microindentation is used to accomplish three objectives: (1) quantify a material's time-dependent mechanical response, (2) map material properties at a cellular relevant length scale throughout zonal articular cartilage and (3) elucidate the underlying viscoelastic, poroelastic, and nonlinear poroelastic causes of deformation in articular cartilage. Untreated and trypsin-treated cartilage was sectioned perpendicular to the articular surface and indentation was used to evaluate properties throughout zonal cartilage on the cut surface. The experimental results demonstrated that within all cartilage zones, the mechanical response was well represented by a model assuming nonlinear biphasic behavior and did not follow conventional viscoelastic or linear poroelastic models. Additionally, 10% (w/w) agarose was tested and, as anticipated, behaved as a linear poroelastic material. The approach outlined here provides a method, applicable to many tissues and biomaterials, which reveals and quantifies the underlying causes of time-dependent deformation, elucidates key aspects of material structure and function, and that can be used to provide important inputs for computational models and targets for tissue engineering. Elucidating the time-dependent mechanical behavior of cartilage, and other biological materials, is critical to adequately recapitulate native mechanosensory cues for cells. We used microindentation to map the time-dependent properties of untreated and trypsin treated cartilage throughout each cartilage zone. Unlike conventional approaches that combine viscoelastic and poroelastic behaviors into a single framework, we deconvoluted the mechanical response into separate contributions to time-dependent behavior. Poroelastic effects in all cartilage zones dominated the time-dependent behavior of articular cartilage, and a model that incorporates tension-compression nonlinearity best represented cartilage mechanical behavior. These results can be used to assess the success of regeneration and repair approaches, as design targets for tissue engineering, and for development of accurate computational models. Copyright © 2017 Acta Materialia Inc. All rights reserved.
Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone.
Xue, Jixin; Feng, Bei; Zheng, Rui; Lu, Yang; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Yanzhong; Zhang, Wen Jie
2013-04-01
Tissue engineering approach continuously requires for emerging strategies to improve the efficacy in repairing and regeneration of tissue defects. Previously, we developed a sandwich model strategy for cartilage engineering, using the combination of acellular cartilage sheets (ACSs) and chondrocytes. However, the process for the preparation of ACSs is complicated, and it is also difficult to obtain large ACSs. The aim of this study was to engineer cartilage with precise three-dimensional (3-D) structures by applying electrospun fibrous membranes of gelatin/polycaprolactone (GT/PCL). We first prepared the electrospun GT/PCL membranes into rounded shape, and then seeded chondrocytes in the sandwich model. After in vitro and in vivo cultivation, the newly formed cartilage-like tissues were harvested. Macroscopic observations and histological analysis confirmed that the engineering of cartilage using the electrospun GT/PCL membranes was feasible. An ear-shaped cartilage was then constructed in the sandwich model, with the help of an ear-shaped titanium alloy mold. After 2 weeks of culture in vitro and 6 weeks of subcutaneous incubation in vivo, the ear-shaped cartilage largely maintained their original shape, with a shape similarity up to 91.41% of the titanium mold. In addition, the engineered cartilage showed good elasticity and impressive mechanical strength. These results demonstrated that the engineering of 3-D cartilage in a sandwich model using electrospun fibrous membranes was a facile and effective approach, which has the potential to be applied for the engineering of other tissues with complicated 3-D structures. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Assessment of the hearing results in tympanoplasties with the use of palisade-technique].
Wielgosz, Romuald; Mroczkowski, Edward
2006-01-01
The cartilage has been successfuly used in reconstructive ear surgery for more than one hundred years. Histologic study of autografts cartilage (tragal or conchal) showed good long-term preservation of cartilage cells. The aim of this paper is to assess the hearing results in tympanoplasties with the use of cartilage palisade technique. The retrospective analysis concerned 108 operated clinical cases. The cartilage palisade technique was performed in 28 tympanoplasties type I, 47 tympanoplasties type II, 21 tympanoplasties type III with columella and in 2 tympanoplasties type IV. Clinical assessment included otoscopy, test for eustachian tube ventilation, test with tuning fork, audiometry on a range 0,5, 1, 2 kHz and subjective evaluation based on questionaire. The Air Bone Gap (ABG) was noted as follows: < 10 dB among 67,8% of patients and 11-20 dB among 21,4% of patients in tympanoplasty type I. In tympanoplasty type II the ABG was responsively: < 10 dB - 80% patients, 11-20 dB - 10% patients. In the type III of tympanoplasty 40,4% of patients showed ABG < 10 dB and 42,5% of patients 11-20 dB. In the type III with columella we noted 15% patients with ABG < 10 dB and 65% of them with ABG 11-20 dB. The cartilage is a good autograft for reconstruction of the tympanic membrane, middle ear and the auditory wall because of stability and lack of secondary perforations. Long-term results in hearing are also satisfactory.
NASA Astrophysics Data System (ADS)
Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien
2006-03-01
Subdivision surfaces and parameterization are desirable for many algorithms that are commonly used in Medical Image Analysis. However, extracting an accurate surface and parameterization can be difficult for many anatomical objects of interest, due to noisy segmentations and the inherent variability of the object. The thin cartilages of the knee are an example of this, especially after damage is incurred from injuries or conditions like osteoarthritis. As a result, the cartilages can have different topologies or exist in multiple pieces. In this paper we present a topology preserving (genus 0) subdivision-based parametric deformable model that is used to extract the surfaces of the patella and tibial cartilages in the knee. These surfaces have minimal thickness in areas without cartilage. The algorithm inherently incorporates several desirable properties, including: shape based interpolation, sub-division remeshing and parameterization. To illustrate the usefulness of this approach, the surfaces and parameterizations of the patella cartilage are used to generate a 3D statistical shape model.
The bovine patella as a model of early osteoarthritis.
Hargrave-Thomas, E J; Thambyah, A; McGlashan, S R; Broom, N D
2013-12-01
The bovine patella model has been used extensively for studying important structure-function aspects of articular cartilage, including its degeneration. However, the degeneration seen in this model has, to our knowledge, never been adequately compared with human osteoarthritis (OA). In this study, bovine patellae displaying normal to severely degenerate states were compared with human tissue displaying intact cartilage to severe OA. Comparisons of normal and OA features were made with histological scoring, morphometric measurements, and qualitative observations. Differential interference contrast microscopy was used to image early OA changes in the articular cartilage matrix and to investigate whether this method provided comparable quality of visualisation of key structural features with standard histology. The intact bovine cartilage was found to be similar to healthy human cartilage and the degenerate bovine cartilage resembled the human OA tissues with regard to structural disruption, cellularity changes, and staining loss. The extent of degeneration in the bovine tissues matched the mild to moderate range of human OA tissues; however, no bovine samples exhibited late-stage OA. Additionally, in both bovine and human tissues, cartilage degeneration was accompanied by calcified cartilage thickening, tidemark duplication, and the advancement of the cement line by protrusions of bony spicules into the calcified cartilage. This comparison of degeneration in the bovine and human tissues suggests a common pathway for the progression of OA and thus the bovine patella is proposed to be an appropriate model for investigating the structural changes associated with early OA. © 2013 Anatomical Society.
Halonen, K S; Mononen, M E; Jurvelin, J S; Töyräs, J; Salo, J; Korhonen, R K
2014-07-18
Novel conical beam CT-scanners offer high resolution imaging of knee structures with i.a. contrast media, even under weight bearing. With this new technology, we aimed to determine cartilage strains and meniscal movement in a human knee at 0, 1, 5, and 30 min of standing and compare them to the subject-specific 3D finite element (FE) model. The FE model of the volunteer׳s knee, based on the geometry obtained from magnetic resonance images, was created to simulate the creep. The effects of collagen fibril network stiffness, nonfibrillar matrix modulus, permeability and fluid flow boundary conditions on the creep response in cartilage were investigated. In the experiment, 80% of the maximum strain in cartilage developed immediately, after which the cartilage continued to deform slowly until the 30 min time point. Cartilage strains and meniscus movement obtained from the FE model matched adequately with the experimentally measured values. Reducing the fibril network stiffness increased the mean strains substantially, while the creep rate was primarily influenced by an increase in the nonfibrillar matrix modulus. Changing the initial permeability and preventing fluid flow through noncontacting surfaces had a negligible effect on cartilage strains. The present results improve understanding of the mechanisms controlling articular cartilage strains and meniscal movements in a knee joint under physiological static loading. Ultimately a validated model could be used as a noninvasive diagnostic tool to locate cartilage areas at risk for degeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.
The bovine patella as a model of early osteoarthritis
Hargrave-Thomas, E J; Thambyah, A; McGlashan, S R; Broom, N D
2013-01-01
The bovine patella model has been used extensively for studying important structure–function aspects of articular cartilage, including its degeneration. However, the degeneration seen in this model has, to our knowledge, never been adequately compared with human osteoarthritis (OA). In this study, bovine patellae displaying normal to severely degenerate states were compared with human tissue displaying intact cartilage to severe OA. Comparisons of normal and OA features were made with histological scoring, morphometric measurements, and qualitative observations. Differential interference contrast microscopy was used to image early OA changes in the articular cartilage matrix and to investigate whether this method provided comparable quality of visualisation of key structural features with standard histology. The intact bovine cartilage was found to be similar to healthy human cartilage and the degenerate bovine cartilage resembled the human OA tissues with regard to structural disruption, cellularity changes, and staining loss. The extent of degeneration in the bovine tissues matched the mild to moderate range of human OA tissues; however, no bovine samples exhibited late-stage OA. Additionally, in both bovine and human tissues, cartilage degeneration was accompanied by calcified cartilage thickening, tidemark duplication, and the advancement of the cement line by protrusions of bony spicules into the calcified cartilage. This comparison of degeneration in the bovine and human tissues suggests a common pathway for the progression of OA and thus the bovine patella is proposed to be an appropriate model for investigating the structural changes associated with early OA. PMID:24111904
Modeling the transport of cryoprotective agents in articular cartilage for cryopreservation
NASA Astrophysics Data System (ADS)
Torqabeh, Alireza Abazari
Loading vitrifiable concentrations of cryoprotective agents is an important step for cryopreservation of biological tissues by vitrification for research and transplantation purposes. This may be done by immersing the tissue in a cryoprotective agent (CPA) solution, and increasing the concentration, continuously or in multiple steps, and simultaneously decreasing the temperature to decrease the toxicity effects of the cryoprotective agent on the tissue cellular system. During cryoprotective agent loading, osmotic water movement from the tissue to the surrounding solution, and the resultant tissue shrinkage and stress-strain in the tissue matrix as well as on the cellular system can significantly alter the outcome of the cryopreservation protocol. In this thesis, a biomechanical model for articular cartilage is developed to account for the transport of the cryoprotective agent, the nonideal-nondilute properties of the vitrifiable solutions, the osmotic water movement and the resultant tissue shrinkage and stress-strain in the tissue matrix, and the osmotic volume change of the chondrocytes, during cryoprotective agent loading in the cartilage matrix. Four essential transport parameters needed for the model were specified, the values of which were obtained uniquely by fitting the model to experimental data from porcine articular cartilage. Then, it was shown that using real nonuniform initial distributions of water and fixed charges in cartilage, measured separately in this thesis using MRI, in the model can significantly affect the model predictions. The model predictions for dimethyl sulfoxide diffusion in porcine articular cartilage were verified by comparing to spatially and temporally resolved measurements of dimethyl sulfoxide concentration in porcine articular cartilage using a spectral MRI technique, developed for this purpose and novel to the field of cryobiology. It was demonstrated in this thesis that the developed mathematical model provides a novel tool for studying transport phenomena in cartilage during cryopreservation protocols, and can make accurate predictions for the quantities of interest for applications in the cryopreservation of articular cartilage.
Pretzel, David; Linss, Stefanie; Ahrem, Hannes; Endres, Michaela; Kaps, Christian; Klemm, Dieter; Kinne, Raimund W
2013-01-01
Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures. Although TGF-β1 stimulation showed protective effects on matrix integrity, effects on other parameters were limited. The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising biomaterials with/without chondrogenic factors.
Araki, Susumu; Imai, Shinji; Ishigaki, Hirohito; Mimura, Tomohiro; Nishizawa, Kazuya; Ueba, Hiroaki; Kumagai, Kousuke; Kubo, Mitsuhiko; Mori, Kanji; Ogasawara, Kazumasa; Matsusue, Yoshitaka
2015-01-01
Background and purpose Integration of repaired cartilage with surrounding native cartilage is a major challenge for successful tissue-engineering strategies of cartilage repair. We investigated whether incorporation of mesenchymal stem cells (MSCs) into the collagen scaffold improves integration and repair of cartilage defects in a cynomolgus macaque model. Methods Cynomolgus macaque bone marrow-derived MSCs were isolated and incorporated into type-I collagen gel. Full-thickness osteochondral defects (3 mm in diameter, 5 mm in depth) were created in the patellar groove of 36 knees of 18 macaques and were either left untreated (null group, n = 12), had collagen gel alone inserted (gel group, n = 12), or had collagen gel incorporating MSCs inserted (MSC group, n = 12). After 6, 12, and 24 weeks, the cartilage integration and tissue response were evaluated macroscopically and histologically (4 null, 4 gel, and 4 MSC knees at each time point). Results The gel group showed most cartilage-rich reparative tissue covering the defect, owing to formation of excessive cartilage extruding though the insufficient subchondral bone. Despite the fact that a lower amount of new cartilage was produced, the MSC group had better-quality cartilage with regular surface, seamless integration with neighboring naïve cartilage, and reconstruction of trabecular subchondral bone. Interpretation Even with intensive investigation, MSC-based cell therapy has not yet been established in experimental cartilage repair. Our model using cynomolgus macaques had optimized conditions, and the method using MSCs is superior to other experimental settings, allowing the possibility that the procedure might be introduced to future clinical practice. PMID:25175660
Xiphoid Process-Derived Chondrocytes: A Novel Cell Source for Elastic Cartilage Regeneration
Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun
2014-01-01
Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage. PMID:25205841
Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.
2012-01-01
Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577
Qi, Yiying; Du, Yi; Li, Weixu; Dai, Xuesong; Zhao, Tengfei; Yan, Weiqi
2014-06-01
The integration of regenerated cartilage with surrounding native cartilage is a major challenge for the success of cartilage tissue-engineering strategies. The purpose of this study is to investigate whether incorporation of the power of mesenchymal stem cell (MSC) sheet to MSCs-loaded bilayer poly-(lactic-co-glycolic acid) (PLGA) scaffolds can improve the integration and repair of cartilage defects in a rabbit model. Rabbit bone marrow-derived MSCs were cultured and formed cell sheet. Full-thickness cylindrical osteochondral defects (4 mm in diameter, 3 mm in depth) were created in the patellar groove of 18 New Zealand white rabbits and the osteochondral defects were treated with PLGA scaffold (n = 6), PLGA/MSCs (n = 6) or MSC sheet-encapsulated PLGA/MSCs (n = 6). After 6 and 12 weeks, the integration and tissue response were evaluated histologically. The MSC sheet-encapsulated PLGA/MCSs group showed significantly more amounts of hyaline cartilage and higher histological scores than PLGA/MSCs group and PLGA group (P < 0.05). In addition, the MSC sheet-encapsulated PLGA/MCSs group showed the best integration between the repaired cartilage and surrounding normal cartilage and subchondral bone compared to other two groups. The novel method of incorporation of MSC sheet to PLGA/MCSs could enhance the ability of cartilage regeneration and integration between repair cartilage and the surrounding cartilage. Transplantation of autologous MSC sheet combined with traditional strategies or cartilage debris might provide therapeutic opportunities for improving cartilage regeneration and integration in humans.
Bonadio, Marcelo B; Friedman, James M; Sennett, Mackenzie L; Mauck, Robert L; Dodge, George R; Madry, Henning
2017-12-01
This study compares a traditional parapatellar retinaculum-sacrificing arthrotomy to a retinaculum-sparing arthrotomy in a porcine stifle joint as a cartilage repair model. Surgical exposure of the femoral trochlea of ten Yucatan pigs stifle joint was performed using either a traditional medial parapatellar approach with retinaculum incision and luxation of the patella (n = 5) or a minimally invasive (MIS) approach which spared the patellar retinaculum (n = 5). Both classical and MIS approaches provided adequate access to the trochlea, enabling the creation of cartilage defects without difficulties. Four full thickness, 4 mm circular full-thickness cartilage defects were created in each trochlea. There were no intraoperative complications observed in either surgical approach. All pigs were allowed full weight-bearing and full range of motion immediately postoperatively and were euthanized between 2 and 3 weeks. The traditional approach was associated with increased cartilage wear compared to the MIS approach. Two blinded raters performed gross evaluation of the trochlea cartilage surrounding the defects according to the modified ICRS cartilage injury classification. The traditional approach cartilage received a significantly worse score than the MIS approach group from both scorers (3.2 vs 0.8, p = 0.01 and 2.8 vs 0, p = 0.005 respectively). The MIS approach results in less damage to the trochlear cartilage and faster return to load bearing activities. As an arthrotomy approach in the porcine model, MIS is superior to the traditional approach.
Jing, Lizhong; Zhang, Jiying; Leng, Huijie; Guo, Qinwei; Hu, Yuelin
2015-04-01
To demonstrate that iliac crest cartilage may be used to repair articular cartilage defects in the knees of rabbits. Full-thickness cartilage defects were created in the medial femoral condyle on both knees of 36 New Zealand white rabbits. The 72 defects were randomly assigned to be repaired with ipsilateral iliac crest cartilage (Group I), osteochondral tissues removed at defect creation (Group II), or no treatment (negative control, Group III). Animals were killed at 6, 12, and 24 weeks post-operatively. The repaired tissues were harvested for magnetic resonance imaging (MRI), histological studies (haematoxylin and eosin and immunohistochemical staining), and mechanical testing. At 6 weeks, the iliac crest cartilage graft was not yet well integrated with the surrounding articular cartilage, but at 12 weeks, the graft deep zone had partial ossification. By 24 weeks, the hyaline cartilage-like tissue was completely integrated with the surrounding articular cartilage. Osteochondral autografts showed more rapid healing than Group I at 6 weeks and complete healing at 12 weeks. Untreated defects were concave or partly filled with fibrous tissue throughout the study. MRI showed that Group I had slower integration with surrounding normal cartilage compared with Group II. The mechanical properties of Group I were significantly lower than those of Group II at 12 weeks, but this difference was not significant at 24 weeks. Iliac crest cartilage autografts were able to repair knee cartilage defects with hyaline cartilage and showed comparable results with osteochondral autografts in the rabbit model.
Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas
2016-04-01
The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program.
Li, Junyan; Stewart, Todd D.; Jin, Zhongmin; Wilcox, Ruth K.; Fisher, John
2013-01-01
Computational models of the natural hip joint are needed to examine and optimise tissue sparing interventions where the natural cartilage remains part of the bearing surfaces. Although the importance of interstitial fluid pressurisation in the performance of cartilage has long been recognized, few studies have investigated the time dependent interstitial fluid pressurisation in a three dimensional natural hip joint model. The primary aim of this study was to develop a finite element model of the natural hip incorporating the biphasic cartilage layers that was capable of simulating the joint response over a prolonged physiological loading period. An initial set of sensitivity studies were also undertaken to investigate the influence of hip size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the joint. The contact stress, contact area, fluid pressure and fluid support ratio were calculated and cross-compared between models with different parameters to evaluate their influence. It was found that the model predictions for the period soon after loading were sensitive to the hip size, clearance, cartilage aggregate modulus, thickness and hemiarthroplasty, while the time dependent behaviour over 3000 s was influenced by the hip clearance and cartilage aggregate modulus, permeability, thickness and hemiarthroplasty. The modelling methods developed in this study provide a basic platform for biphasic simulation of the whole hip joint onto which more sophisticated material models or other input parameters could be added in the future. PMID:23664238
Subchondral drilling for articular cartilage repair: a systematic review of translational research.
Gao, Liang; Goebel, Lars K H; Orth, Patrick; Cucchiarini, Magali; Madry, Henning
2018-05-03
Articular cartilage defects may initiate osteoarthritis. Subchondral drilling, a widely applied clinical technique to treat small cartilage defects, does not yield cartilage regeneration. Various translational studies aiming to improve the outcome of drilling have been performed, however, a robust systematic analysis of its translational evidence has been still lacking. Here, we performed a systematic review of the outcome of subchondral drilling for knee cartilage repair in translational animal models. A total of 12 relevant publications studying 198 animals were identified, detailed study characteristics were extracted, and methodological quality and risk of bias were analyzed. Subchondral drilling was superior to defects untreated or treated with abrasion arthroplasty for cartilage repair in multiple translational models. Considerable subchondral bone changes were observed, including subchondral bone cysts and intralesional osteophytes. Furthermore, extensive alterations of the subchondral bone microarchitecture appeared in a temporal pattern in small and large animal models, together with specific topographic aspects of repair. Moreover, variable technical aspects directly affected the outcomes of osteochondral repair. The data from this systematic review indicate that subchondral drilling yields improved short-term structural articular cartilage repair compared with spontaneous repair in multiple small and large animal models. These results have important implications for future investigations aimed at an enhanced translation into clinical settings for the treatment of cartilage defects, highlighting the importance of considering specific aspects of modifiable variables such as improvements in the design and reporting of preclinical studies, together with the need to better understand the underlying mechanisms of cartilage repair following subchondral drilling. © 2018. Published by The Company of Biologists Ltd.
Sirtuin 1 Enzymatic Activity Is Required for Cartilage Homeostasis In Vivo in a Mouse Model
Gabay, Odile; Sanchez, Christelle; Dvir-Ginzberg, Mona; Gagarina, Viktoria; Zaal, Kristien J.; Song, Yingjie; He, Xiao Hong; McBurney, Michael W.
2014-01-01
Objective We and others previously demonstrated that sirtuin 1 (SIRT-1) regulates apoptosis and cartilage-specific gene expression in human chondrocytes and mouse models. This study was undertaken to determine if SIRT-1 enzymatic activity plays a protective role in cartilage homeostasis in vivo, by investigating mice with SIRT-1 mutations to characterize their cartilage. Methods Articular cartilage was harvested from the paws and knees of 5- and 6-month-old wild-type (WT) mice and mice homozygous for SIRT-1tm2.1Mcby (SIRT-1y/y), an allele carrying a point mutation that encodes a SIRT-1 protein with no enzymatic activity (y/y mice). Mice ages 2 days old and 6–7 days old were also examined. Mouse joint cartilage was processed for histologic examination or biochemical analyses of chondrocyte cultures. Results We found that articular cartilage tissue sections from y/y mice of up to 6 months of age contained reduced levels of type II collagen, aggrecan, and glycosaminoglycan compared to sections from WT mice. In contrast, protein levels of matrix metalloproteinase 8 (MMP-8), MMP-9, and MMP-13 were elevated in the cartilage of y/y mice. In addition, chondrocyte apoptosis was elevated in SIRT-1 mutant mice as compared to their WT littermates. Consistent with these observations, protein tyrosine phosphatase 1b was elevated in the y/y mice. Conclusion Our in vivo findings in this animal model demonstrate that mice with defective SIRT-1 also have defective cartilage, with elevated rates of cartilage degradation with age. Hence, normal cartilage homeostasis requires enzymatically active SIRT-1 protein. PMID:23124828
Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing
2016-09-27
The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.
Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects
Eichler, Hermann; Orth, Patrick
2017-01-01
Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects. Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes and osteoblasts, and form a repair tissue over time. The additional application of a bone marrow aspirate (BMA) to the procedure of marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of chondrogenesis and a source of growth factors stimulating cartilage repair. Moreover, the BMA clot provides a three-dimensional environment, possibly further supporting chondrogenesis and protecting the subchondral bone from structural alterations. The purpose of this review is to bridge the gap in our understanding between the basic science knowledge on MSCs and BMA and the clinical and technical aspects of marrow stimulation-based cartilage repair by examining available data on the role and mechanisms of MSCs and BMA in osteochondral repair. Implications of findings from both translational and clinical studies using BMA concentrate-enhanced marrow stimulation are discussed. PMID:28607559
Julkunen, Petro; Kiviranta, Panu; Wilson, Wouter; Jurvelin, Jukka S; Korhonen, Rami K
2007-01-01
Load-bearing characteristics of articular cartilage are impaired during tissue degeneration. Quantitative microscopy enables in vitro investigation of cartilage structure but determination of tissue functional properties necessitates experimental mechanical testing. The fibril-reinforced poroviscoelastic (FRPVE) model has been used successfully for estimation of cartilage mechanical properties. The model includes realistic collagen network architecture, as shown by microscopic imaging techniques. The aim of the present study was to investigate the relationships between the cartilage proteoglycan (PG) and collagen content as assessed by quantitative microscopic findings, and model-based mechanical parameters of the tissue. Site-specific variation of the collagen network moduli, PG matrix modulus and permeability was analyzed. Cylindrical cartilage samples (n=22) were harvested from various sites of the bovine knee and shoulder joints. Collagen orientation, as quantitated by polarized light microscopy, was incorporated into the finite-element model. Stepwise stress-relaxation experiments in unconfined compression were conducted for the samples, and sample-specific models were fitted to the experimental data in order to determine values of the model parameters. For comparison, Fourier transform infrared imaging and digital densitometry were used for the determination of collagen and PG content in the same samples, respectively. The initial and strain-dependent fibril network moduli as well as the initial permeability correlated significantly with the tissue collagen content. The equilibrium Young's modulus of the nonfibrillar matrix and the strain dependency of permeability were significantly associated with the tissue PG content. The present study demonstrates that modern quantitative microscopic methods in combination with the FRPVE model are feasible methods to characterize the structure-function relationships of articular cartilage.
Upregulation of miR-98 Inhibits Apoptosis in Cartilage Cells in Osteoarthritis.
Wang, Gui-Long; Wu, Yu-Bo; Liu, Jia-Tian; Li, Cui-Yun
2016-11-01
We aimed to investigate the effects of microRNA-98 (miR-98) on apoptosis in cartilage cells of osteoarthritis (OA) patients. Knee cartilage tissue samples were collected from 31 OA patients, 21 autopsies, and 26 amputation patients due to trauma. The clinicopathological data were recorded. Quantitative real-time polymerase chain reaction was performed to compare the miR-98 expression levels from cartilage cells obtained from the OA and non-OA patients. Clinicopathological characteristics of the patients were also analyzed. Primary chondrocytes were separated from cartilage tissues and transfected with plasmids or siRNA to overexpress or inhibit miR-98. Annexin V-PI double staining and TUNEL assays were used to examine apoptosis in the primary chondrocytes after transfection. Finally, a rat OA model was used to confirm the effects of miR-98 on apoptosis in cartilage cells in vivo. Compared with the normal cartilage tissues, miR-98 expression was reduced in the OA cartilage tissues (p < 0.01). The miR-98 expression levels were also significantly correlated with the OA stage (p < 0.05). In vitro, transfection with the miR-98 inhibitor increased apoptosis in the cartilage cells (p < 0.05), and transfection with a miR-98 mimic inhibited apoptosis in cartilage cells (p < 0.05). In the OA rat model, exogenous injection of the miR-98 mimic inhibited apoptosis in the rat cartilage cells thus alleviating OA. MiR-98 expression is reduced in the cartilage cells of OA patients and the overexpression of miR-98 inhibits cartilage cell apoptosis, while inhibition of microRNA-98 leads to cartilage cell apoptosis. These findings provide a theoretical basis for the development of novel targeted therapies for OA.
Huh, Yun Hyun; Lee, Gyuseok; Lee, Keun-Bae; Koh, Jeong-Tae; Chun, Jang-Soo; Ryu, Je-Hwang
2015-10-29
Pannus formation and resulting cartilage destruction during rheumatoid arthritis (RA) depends on the migration of synoviocytes to cartilage tissue. Here, we focused on the role of hypoxia-inducible factor (HIF)-2α-induced chemokines by chondrocytes in the regulation of fibroblast-like synoviocyte (FLS) migration into the cartilage-pannus interface and cartilage erosion. Collagen-induced arthritis (CIA), K/BxN serum transfer, and tumor necrosis factor-α transgenic mice were used as experimental RA models. Expression patterns of HIF-2α and chemokines were determined via immunostaining, Western blotting and RT-PCR. FLS motility was evaluated using transwell migration and invasion assays. The specific role of HIF-2α was determined via local deletion of HIF-2α in joint tissues or using conditional knockout (KO) mice. Cartilage destruction, synovitis and pannus formation were assessed via histological analysis. HIF-2α and various chemokines were markedly upregulated in degenerating cartilage and pannus of RA joints. HIF-2α induced chemokine expression by chondrocytes in both primary culture and cartilage tissue. HIF-2α -induced chemokines by chondrocytes regulated the migration and invasion of FLS. Local deletion of HIF-2α in joint tissues inhibited pannus formation adjacent to cartilage tissue and cartilage destruction caused by K/BxN serum transfer. Furthermore, conditional knockout of HIF-2α in cartilage blocked pannus formation in adjacent cartilage but not bone tissue, along with inhibition of cartilage erosion caused by K/BxN serum transfer. Our findings suggest that chemokines induced by IL-1β or HIF-2α in chondrocytes regulate pannus expansion by stimulating FLS migration and invasion, leading to cartilage erosion during RA pathogenesis.
The palisade cartilage tympanoplasty technique: a systematic review and meta-analysis.
Jeffery, Caroline C; Shillington, Cameron; Andrews, Colin; Ho, Allan
2017-06-17
Tympanoplasty is a common procedure performed by Otolaryngologists. Many types of autologous grafts have been used with variations of techniques with varying results. This is the first systematic review of the literature and meta-analysis with the aim to evaluate the effectiveness of one of the techniques which is gaining popularity, the palisade cartilage tympanoplasty. PubMed, EMBASE, and Cochrane databases were searched for "palisade", "cartilage", "tympanoplasty", "perforation" and their synonyms. In total, 199 articles reporting results of palisade cartilage tympanoplasty were identified. Five articles satisfied the following inclusion criteria: adult patients, minimum 6 months follow-up, hearing and surgical outcomes reported. Studies with patients undergoing combined mastoidectomy, ossicular chain reconstruction, and/or other middle ear surgery were excluded. Perforation closure, rate of complications, and post-operative pure-tone average change were extracted for pooled analysis. Study failure and complication proportions that were used to generate odds ratios were pooled. Fixed effects and random effects weightings were generated. The resulting pooled odds ratios are reported. Palisade cartilage tympanoplasty has an overall take rate of 96% at beyond 6 months and has similar odds of complications compared to temporalis fascia (OR 0.89, 95% CI 0.62, 1.30). The air-bone gap closure is statistically similar to reported results from temporalis fascia tympanoplasty. Cartilage palisade tympanoplasty offers excellent graft take rates and good postoperative hearing outcomes for perforations of various sizes and for both primary and revision cases. This technique has predictable, long-term results with low complication rates, similar to temporalis fascia tympanoplasty.
Inamdar, Sheetal R; Knight, David P; Terrill, Nicholas J; Karunaratne, Angelo; Cacho-Nerin, Fernando; Knight, Martin M; Gupta, Himadri S
2017-10-24
Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear. Here we measure time-resolved changes in collagen fibril strain, using small-angle X-ray diffraction during compression of bovine and human cartilage explants. We demonstrate the existence of a collagen fibril tensile pre-strain, estimated from the D-period at approximately 1-2%, due to osmotic swelling pressure from the proteoglycan. We reveal a rapid reduction and recovery of this pre-strain which occurs during stress relaxation, approximately 60 s after the onset of peak load. Furthermore, we show that this reduction in pre-strain is linked to disordering in the intrafibrillar molecular packing, alongside changes in the axial overlapping of tropocollagen molecules within the fibril. Tissue degradation in the form of selective proteoglycan removal disrupts both the collagen fibril pre-strain and the transient response during stress relaxation. This study bridges a fundamental gap in the knowledge describing time-dependent changes in collagen pre-strain and molecular organization that occur during physiological loading of articular cartilage. The ultrastructural details of this transient response are likely to transform our understanding of the role of collagen fibril nanomechanics in the biomechanics of cartilage and other hydrated soft tissues.
Pouran, Behdad; Arbabi, Vahid; Weinans, Harrie; Zadpoor, Amir A
2016-11-01
Transport of solutes helps to regulate normal physiology and proper function of cartilage in diarthrodial joints. Multiple studies have shown the effects of characteristic parameters such as concentration of proteoglycans and collagens and the orientation of collagen fibrils on the diffusion process. However, not much quantitative information and accurate models are available to help understand how the characteristics of the fluid surrounding articular cartilage influence the diffusion process. In this study, we used a combination of micro-computed tomography experiments and biphasic-solute finite element models to study the effects of three parameters of the overlying bath on the diffusion of neutral solutes across cartilage zones. Those parameters include bath size, degree of stirring of the bath, and the size and concentration of the stagnant layer that forms at the interface of cartilage and bath. Parametric studies determined the minimum of the finite bath size for which the diffusion behavior reduces to that of an infinite bath. Stirring of the bath proved to remarkably influence neutral solute transport across cartilage zones. The well-stirred condition was achieved only when the ratio of the diffusivity of bath to that of cartilage was greater than ≈1000. While the thickness of the stagnant layer at the cartilage-bath interface did not significantly influence the diffusion behavior, increase in its concentration substantially elevated solute concentration in cartilage. Sufficient stirring attenuated the effects of the stagnant layer. Our findings could be used for efficient design of experimental protocols aimed at understanding the transport of molecules across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki
2014-03-01
In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.
Arbabi, Vahid; Pouran, Behdad; Zadpoor, Amir A; Weinans, Harrie
2017-04-23
Osteoarthritis (OA) is a debilitating disease that is associated with degeneration of articular cartilage and subchondral bone. Degeneration of articular cartilage impairs its load-bearing function substantially as it experiences tremendous chemical degradation, i.e. proteoglycan loss and collagen fibril disruption. One promising way to investigate chemical damage mechanisms during OA is to expose the cartilage specimens to an external solute and monitor the diffusion of the molecules. The degree of cartilage damage (i.e. concentration and configuration of essential macromolecules) is associated with collisional energy loss of external solutes while moving across articular cartilage creates different diffusion characteristics compared to healthy cartilage. In this study, we introduce a protocol, which consists of several steps and is based on previously developed experimental micro-Computed Tomography (micro-CT) and finite element modeling. The transport of charged and uncharged iodinated molecules is first recorded using micro-CT, which is followed by applying biphasic-solute and multiphasic finite element models to obtain diffusion coefficients and fixed charge densities across cartilage zones.
Ng, Kenneth W; Lima, Eric G; Bian, Liming; O'Conor, Christopher J; Jayabalan, Prakash S; Stoker, Aaron M; Kuroki, Keiichi; Cook, Cristi R; Ateshian, Gerard A; Cook, James L; Hung, Clark T
2010-03-01
It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-beta3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects.
A human osteoarthritis osteochondral organ culture model for cartilage tissue engineering.
Yeung, P; Zhang, W; Wang, X N; Yan, C H; Chan, B P
2018-04-01
In vitro human osteoarthritis (OA)-mimicking models enabling pathophysiological studies and evaluation of emerging therapies such as cartilage tissue engineering are of great importance. We describe the development and characterization of a human OA osteochondral organ culture. We also apply this model for evaluation of the phenotype maintenance of a human MSC derived engineered cartilage, as an example of emerging therapeutics, under long term exposure to the OA-mimicking environment. We also test the sensitivity of the model to a series of external factors and a potential disease-modifying agent, in terms of chondrogenic phenotype maintenance of the engineered cartilage, under OA-mimicking environment. Excised joint tissues from total knee replacement surgeries were carved into numerous miniaturized and standardized osteochondral plugs for subsequent OA organ culture. The organ cultures were characterized in detail before being co-cultured with a tissue engineered cartilage. The chondrogenic phenotype of the tissue engineered cartilage co-cultured in long term up to 8 weeks under this OA-mimicking microenvironment was evaluated. Using the same co-culture model, we also screened for a number of biomimetic environmental factors, including oxygen tension, the presence of serum and the application of compression loading. Finally, we studied the effect of a matrix metalloprotease inhibitor, as an example of potential disease-modifying agents, on the co-cultured engineered cartilage. We demonstrate that cells in the OA organ culture were viable while both the typical chondrogenic phenotype and the characteristic OA phenotype were maintained for long period of time. We then demonstrate that upon co-culture with the OA-mimicking organ culture, the engineered cartilage initially exhibited a more fibrocartilage phenotype but progressively reverted back to the chondrogenic phenotype upon long term co-culture up to 8 weeks. The engineered cartilage was also found to be sensitive to all biomimetic environmental factors screened (oxygen tension, serum and compression). Moreover, under the effect of a MMP inhibitor, the chondrogenic phenotype of engineered cartilage was better maintained. We demonstrated the development of a human OA osteochondral organ culture and tested the feasibility and potential of using this model as an in vitro evaluation tool for emerging cartilage therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Label-free characterization of degenerative changes in articular cartilage by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Oshima, Yusuke; Akehi, Mayu; Kiyomatsu, Hiroshi; Miura, Hiromasa
2017-04-01
Osteoarthritis (OA) is very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. We generated an animal OA model surgically induced by knee joint instability and performed Raman spectroscopic analysis for the articular cartilage. In the result, Raman spectral data of the articular cartilage showed drastic changes in comparison between OA and control side. The relative intensity of phosphate band increases in the degenerative cartilage.
Tissue engineering strategies to study cartilage development, degeneration and regeneration.
Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh
2015-04-01
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm. Copyright © 2014 Elsevier B.V. All rights reserved.
Magnetic resonance imaging of hyaline cartilage regeneration in neocartilage graft implantation.
Tan, C F; Ng, K K; Ng, S H; Cheung, Y C
2003-12-01
The purpose of this study was to investigate the regenerative potential of hyaline cartilage in a neocartilage graft implant with the aid of MR cartilage imaging using a rabbit model. Surgical osteochondral defects were created in the femoral condyles of 30 mature New Zealand rabbits. The findings of neocartilage in autologous cartilage grafts packed into osteochondral defects were compared with control group of no implant to the osteochondral defect. The outcome of the implantations was correlated with histologic and MR cartilage imaging findings over a 3-month interval. Neocartilage grafts packed into osteochondral defects showed regeneration of hyaline cartilage at the outer layer of the implant using MR cartilage imaging. Fibrosis of fibrocartilage developed at the outer layer of the autologous cartilage graft together with an inflammatory reaction within the osteochondral defect. This animal study provides evidence of the regenerative ability of hyaline cartilage in neocartilage transplants to repair articular cartilage.
Hong-Seng, Gan; Sayuti, Khairil Amir; Karim, Ahmad Helmy Abdul
2017-01-01
Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images. The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method. Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories. A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15). The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.
Li, Junyan; Stewart, Todd D; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John
2013-06-21
Computational models of the natural hip joint are needed to examine and optimise tissue sparing interventions where the natural cartilage remains part of the bearing surfaces. Although the importance of interstitial fluid pressurisation in the performance of cartilage has long been recognized, few studies have investigated the time dependent interstitial fluid pressurisation in a three dimensional natural hip joint model. The primary aim of this study was to develop a finite element model of the natural hip incorporating the biphasic cartilage layers that was capable of simulating the joint response over a prolonged physiological loading period. An initial set of sensitivity studies were also undertaken to investigate the influence of hip size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the joint. The contact stress, contact area, fluid pressure and fluid support ratio were calculated and cross-compared between models with different parameters to evaluate their influence. It was found that the model predictions for the period soon after loading were sensitive to the hip size, clearance, cartilage aggregate modulus, thickness and hemiarthroplasty, while the time dependent behaviour over 3000s was influenced by the hip clearance and cartilage aggregate modulus, permeability, thickness and hemiarthroplasty. The modelling methods developed in this study provide a basic platform for biphasic simulation of the whole hip joint onto which more sophisticated material models or other input parameters could be added in the future. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Shim, Vickie B; Hunter, Peter J; Pivonka, Peter; Fernandez, Justin W
2011-12-01
The initiation of osteoarthritis (OA) has been linked to the onset and progression of pathologic mechanisms at the cartilage-bone interface. Most importantly, this degenerative disease involves cross-talk between the cartilage and subchondral bone environments, so an informative model should contain the complete complex. In order to evaluate this process, we have developed a multiscale model using the open-source ontologies developed for the Physiome Project with cartilage and bone descriptions at the cellular, micro, and macro levels. In this way, we can effectively model the influence of whole body loadings at the macro level and the influence of bone organization and architecture at the micro level, and have cell level processes that determine bone and cartilage remodeling. Cell information is then passed up the spatial scales to modify micro architecture and provide a macro spatial characterization of cartilage inflammation. We evaluate the framework by linking a common knee injury (anterior cruciate ligament deficiency) to proinflammatory mediators as a possible pathway to initiate OA. This framework provides a "virtual bone-cartilage" tool for evaluating hypotheses, treatment effects, and disease onset to inform and strengthen clinical studies.
A simple in vitro culture system for tracheal cartilage development.
Park, Jinhyung; Zhang, Jennifer J R; Choi, Ruth; Trinh, Irene; Kim, Peter C W
2010-02-01
Semi-circular tracheal cartilage is a critical determinant of maintaining architectural integrity of the respiratory airway. The current effort to understand the morphogenesis of tracheal cartilage is challenged by the lack of appropriate model systems. Here we report an in vitro tracheal cartilage system using embryonic tracheal–lung explants to recapitulate in vivo tracheal cartilage developmental processes. With modifications of a current lung culture protocol, we report a consistent in vitro technique of culturing tracheal cartilage from primitive mouse embryonic foregut for the first time. This tracheal culture system not only induces the formation of tracheal cartilage from the mouse embryonic foregut but also allows for the proper patterning of the developed tracheal cartilage. Furthermore, we show that this culture technique can be applied to culturing other types of cartilage in vertebrae, limbs, and ribs. We believe that this novel application of our in vitro culture system will facilitate the manipulation of cartilage development under various conditions and thus enabling us to advance our current limited knowledge on cartilage biology and development.
Bajpayee, Ambika G.; Wong, Cliff R.; Bawendi, Moungi G.; Frank, Eliot H.; Grodzinsky, Alan J.
2013-01-01
Local drug delivery into cartilage remains a challenge due to its dense extracellular matrix of negatively charged proteoglycans enmeshed within a collagen fibril network. The high negative fixed charge density of cartilage offers the unique opportunity to utilize electrostatic interactions to augment transport, binding and retention of drug carriers. With the goal of developing particle-based drug delivery mechanisms for treating post-traumatic osteoarthritis, our objectives were, first, to determine the size range of a variety of solutes that could penetrate and diffuse through normal cartilage and enzymatically treated cartilage to mimic early stages of OA, and second, to investigate the effects of electrostatic interactions on particle partitioning, uptake and binding within cartilage using the highly positively charged protein, Avidin, as a model. Results showed that solutes having a hydrodynamic diameter ≤ 10 nm can penetrate into the full thickness of cartilage explants while larger sized solutes were trapped in the tissue’s superficial zone. Avidin had a 400-fold higher uptake than its neutral same-sized counterpart, NeutrAvidin, and >90% of the absorbed Avidin remained within cartilage explants for at least 15 days. We report reversible, weak binding (KD ~150 μM) of Avidin to intratissue sites in cartilage. The large effective binding site density (NT ~ 2920 μM) within cartilage matrix facilitates Avidin’s retention, making its structure suitable for particle based drug delivery into cartilage. PMID:24120044
Development of a computational technique to measure cartilage contact area.
Willing, Ryan; Lapner, Michael; Lalone, Emily A; King, Graham J W; Johnson, James A
2014-03-21
Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.
In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration.
Bicho, Diana; Pina, Sandra; Oliveira, J Miguel; Reis, Rui L
2018-01-01
In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.
Muttigi, Manjunatha S; Kim, Byoung Ju; Choi, Bogyu; Yoshie, Arai; Kumar, Hemant; Han, Inbo; Park, Hansoo; Lee, Soo-Hong
2018-03-01
Matrilin-3 is an essential extracellular matrix component present only in cartilaginous tissues. Matrilin-3 exerts chondroprotective effects by regulating an anti-inflammatory function and extracellular matrix components. We hypothesized that the codelivery of matrilin-3 with infrapatellar adipose-tissue-derived mesenchymal stem cells (Ad-MSCs) may enhance articular cartilage regeneration. Matrilin-3 treatment of Ad-MSCs in serum-free media induced collagen II and aggrecan expression, and matrilin-3 in chondrogenic media also enhanced in vitro chondrogenic differentiation. Next, the in vivo effect of matrilin-3 codelivery with Ad-MSCs on cartilage regeneration was assessed in an osteochondral defect model in Sprague Dawley rats: Ad-MSCs and hyaluronic acid were implanted at the defect site with or without matrilin-3 (140, 280, and 700 ng). Safranin O staining revealed that matrilin-3 (140 and 280 ng) treatment significantly improved cartilage regeneration and glycosaminoglycan accumulation. In the animals treated with 140-ng matrilin-3, in particular, the defect site exhibited complete integration with surrounding tissue and a smooth glistening surface. The International Cartilage Repair Society macroscopic and O'Driscoll microscopic scores for regenerated cartilage were furthermore shown to be considerably higher for this group (matrilin-3; 140 ng) compared with the other groups. Furthermore, the defects treated with 140-ng matrilin-3 revealed significant hyaline-like cartilage regeneration in the osteochondral defect model; in contrast, the defects treated with 700-ng matrilin-3 exhibited drastically reduced cartilage regeneration with mixed hyaline-fibrocartilage morphology. Codelivery of matrilin-3 with Ad-MSCs significantly influenced articular cartilage regeneration, supporting the potential use of this tissue-specific protein for a cartilage-targeted stem cell therapy. Copyright © 2017 John Wiley & Sons, Ltd.
Boocock, M; McNair, P; Cicuttini, F; Stuart, A; Sinclair, T
2009-07-01
To investigate the short-term effects of recreational running on the deformation of knee articular cartilage and to examine the relationship between changes in knee cartilage volume and biomechanical modulators of knee joint load. Twenty healthy volunteers participated in a two phase cross-sectional study. Session 1 involved Magnetic Resonance Imaging (MRI) of femoral and tibial cartilage volumes prior to and following a 30 min period of relaxed sitting, which was directly followed by a recreational run of 5000 steps. Subsequently, all participants undertook a laboratory study of their running gait to compare biomechanical derived measures of knee joint loading with changes in cartilage volume. Estimates of knee joint load were determined using a rigid-link segment, dynamic biomechanical model of the lower limbs and a simplified muscle model. Running resulted in significant deformation of the medial (5.3%, P<0.01) and lateral femoral cartilage (4.0%, P<0.05) and lateral aspect of the tibial cartilage (5.7%, P<0.01), with no significant differences between genders. Maximum compression stress was significantly correlated with percentage changes in lateral femoral cartilage volume (r(2)=0.456, P<0.05). No other biomechanical variables correlated with volume changes. Limited evidence was found linking biomechanical measures of knee joint loading and observed short-term deformation of knee articular cartilage volume following running. Further enhancement of knee muscle modelling and analysis of stress distribution across cartilage are needed if we are to fully understand the contribution of biomechanical factors to knee joint loading and the pathogenesis of knee osteoarthritis (OA).
Pawaskar, Sainath Shrikant; Fisher, John; Jin, Zhongmin
2010-03-01
Contact detection in cartilage contact mechanics is an important feature of any analytical or computational modeling investigation when the biphasic nature of cartilage and the corresponding tribology are taken into account. The fluid flow boundary conditions will change based on whether the surface is in contact or not, which will affect the interstitial fluid pressurization. This in turn will increase or decrease the load sustained by the fluid phase, with a direct effect on friction, wear, and lubrication. In laboratory experiments or clinical hemiarthroplasty, when a rigid indenter or metallic prosthesis is used to apply load to the cartilage, there will not be any fluid flow normal to the surface in the contact region due to the impermeable nature of the indenter/prosthesis. In the natural joint, on the other hand, where two cartilage surfaces interact, flow will depend on the pressure difference across the interface. Furthermore, in both these cases, the fluid would flow freely in non-contacting regions. However, it should be pointed out that the contact area is generally unknown in advance in both cases and can only be determined as part of the solution. In the present finite element study, a general and robust algorithm was proposed to decide nodes in contact on the cartilage surface and, accordingly, impose the fluid flow boundary conditions. The algorithm was first tested for a rigid indenter against cartilage model. The algorithm worked well for two-dimensional four-noded and eight-noded axisymmetric element models as well as three-dimensional models. It was then extended to include two cartilages in contact. The results were in excellent agreement with the previous studies reported in the literature.
Maninchedda, Ugo; Lepage, Olivier M.; Gangl, Monika; Hilairet, Sandrine; Remandet, Bernard; Meot, Francoise; Penarier, Geraldine; Segard, Emilie; Cortez, Pierre; Jorgensen, Christian; Steinberg, Régis
2015-01-01
The aim of this work was to develop an equine metacarpophalangeal joint model that induces osteoarthritis that is not primarily mediated by instability or inflammation. The study involved six Standardbred horses. Standardized cartilage surface damage or “grooves” were created arthroscopically on the distal dorsal aspect of the lateral and medial metacarpal condyles of a randomly chosen limb. The contralateral limb was sham operated. After 2 weeks of stall rest, horses were trotted 30 minutes every other day for 8 weeks, then evaluated for lameness and radiographed. Synovial fluid was analyzed for cytology and biomarkers. At 10 weeks post-surgery, horses were euthanized for macroscopic and histologic joint evaluation. Arthroscopic grooving allowed precise and identical damage to the cartilage of all animals. Under the controlled exercise regime, this osteoarthritis groove model displayed significant radiographic, macroscopic, and microscopic degenerative and reactive changes. Histology demonstrated consistent surgically induced grooves limited to non-calcified cartilage and accompanied by secondary adjacent cartilage lesions, chondrocyte necrosis, chondrocyte clusters, cartilage matrix softening, fissuring, mild subchondral bone inflammation, edema, and osteoblastic margination. Synovial fluid biochemistry and cytology demonstrated significantly elevated total protein without an increase in prostaglandin E2, neutrophils, or chondrocytes. This equine metacarpophalangeal groove model demonstrated that standardized non-calcified cartilage damage accompanied by exercise triggered altered osteochondral morphology and cartilage degeneration with minimal or inefficient repair and little inflammatory response. This model, if validated, would allow for assessment of disease processes and the effects of therapy. PMID:25680102
Maninchedda, Ugo; Lepage, Olivier M; Gangl, Monika; Hilairet, Sandrine; Remandet, Bernard; Meot, Francoise; Penarier, Geraldine; Segard, Emilie; Cortez, Pierre; Jorgensen, Christian; Steinberg, Régis
2015-01-01
The aim of this work was to develop an equine metacarpophalangeal joint model that induces osteoarthritis that is not primarily mediated by instability or inflammation. The study involved six Standardbred horses. Standardized cartilage surface damage or "grooves" were created arthroscopically on the distal dorsal aspect of the lateral and medial metacarpal condyles of a randomly chosen limb. The contralateral limb was sham operated. After 2 weeks of stall rest, horses were trotted 30 minutes every other day for 8 weeks, then evaluated for lameness and radiographed. Synovial fluid was analyzed for cytology and biomarkers. At 10 weeks post-surgery, horses were euthanized for macroscopic and histologic joint evaluation. Arthroscopic grooving allowed precise and identical damage to the cartilage of all animals. Under the controlled exercise regime, this osteoarthritis groove model displayed significant radiographic, macroscopic, and microscopic degenerative and reactive changes. Histology demonstrated consistent surgically induced grooves limited to non-calcified cartilage and accompanied by secondary adjacent cartilage lesions, chondrocyte necrosis, chondrocyte clusters, cartilage matrix softening, fissuring, mild subchondral bone inflammation, edema, and osteoblastic margination. Synovial fluid biochemistry and cytology demonstrated significantly elevated total protein without an increase in prostaglandin E2, neutrophils, or chondrocytes. This equine metacarpophalangeal groove model demonstrated that standardized non-calcified cartilage damage accompanied by exercise triggered altered osteochondral morphology and cartilage degeneration with minimal or inefficient repair and little inflammatory response. This model, if validated, would allow for assessment of disease processes and the effects of therapy.
Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images
NASA Astrophysics Data System (ADS)
Rogowska, Jadwiga; Brezinski, Mark E.
2002-02-01
Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.
Platelet-Rich Fibrin Improves the Viability of Diced Cartilage Grafts in a Rabbit Model.
Göral, Ali; Aslan, Cem; Bolat Küçükzeybek, Betül; Işık, Dağhan; Hoşnuter, Mübin; Durgun, Mustafa
2016-04-01
Diced cartilage may be wrapped with synthetic or biological materials before grafting to a recipient site. These materials have unique advantages and disadvantages, and a gold standard is not available. The authors investigated the effects of platelet-rich fibrin (PRF) on the survival of cartilage grafts in a rabbit model. In this experimental study, diced cartilage pieces from the ears of 9 male rabbits were left unwrapped or were wrapped with PRF, oxidized regenerated cellulose, or fascia. Specimens then were placed into subcutaneous pockets prepared on the backs of the rabbits. The animals were sacrificed 2 months after the procedure, and the grafts were excised for macroscopic and histopathologic examination. The cartilage graft wrapped with PRF showed superior viability compared with the cartilage graft wrapped with oxidized regenerated cellulose. No significant differences were found among the other groups. The groups were not significantly different in terms of rates of inflammation, fibrosis, or vascularization. PRF enhances the viability of diced cartilage grafts and should be considered an appropriate biological wrapping material for cartilage grafting. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
A High Throughput Model of Post-Traumatic Osteoarthritis using Engineered Cartilage Tissue Analogs
Mohanraj, Bhavana; Meloni, Gregory R.; Mauck, Robert L.; Dodge, George R.
2014-01-01
(1) Objective A number of in vitro models of post-traumatic osteoarthritis (PTOA) have been developed to study the effect of mechanical overload on the processes that regulate cartilage degeneration. While such frameworks are critical for the identification therapeutic targets, existing technologies are limited in their throughput capacity. Here, we validate a test platform for high-throughput mechanical injury incorporating engineered cartilage. (2) Method We utilized a high throughput mechanical testing platform to apply injurious compression to engineered cartilage and determined their strain and strain rate dependent responses to injury. Next, we validated this response by applying the same injury conditions to cartilage explants. Finally, we conducted a pilot screen of putative PTOA therapeutic compounds. (3) Results Engineered cartilage response to injury was strain dependent, with a 2-fold increase in GAG loss at 75% compared to 50% strain. Extensive cell death was observed adjacent to fissures, with membrane rupture corroborated by marked increases in LDH release. Testing of established PTOA therapeutics showed that pan-caspase inhibitor (ZVF) was effective at reducing cell death, while the amphiphilic polymer (P188) and the free-radical scavenger (NAC) reduced GAG loss as compared to injury alone. (4) Conclusions The injury response in this engineered cartilage model replicated key features of the response from cartilage explants, validating this system for application of physiologically relevant injurious compression. This study establishes a novel tool for the discovery of mechanisms governing cartilage injury, as well as a screening platform for the identification of new molecules for the treatment of PTOA. PMID:24999113
Bilici, Suat; Yiğit, Özgür; Dönmez, Zehra; Huq, Gülben Erdem; Aktaş, Şamil
2015-04-01
The aim of the study is to investigate the histopathologic and cartilage mass changes in hyperbaric oxygen (HBO)-treated auricular cartilage grafts either crushed or fascia wrapped in a rabbit model. This is a prospective, controlled experimental study. Sixteen rabbits were randomly allocated into control (n = 8) and treatment groups (n = 8). Each group was further grouped as crushed cartilage (n = 4) and fascia wrapped crushed cartilage (n = 4). The eight rabbits in the treatment group had HBO once daily for 10 days as total of 10 sessions. The mass of cartilage, cartilage edge layout, structural layout, staining disorders of the chondroid matrix, necrosis, calcification besides bone metaplasia, chronic inflammation in the surrounding tissues, fibrosis, and increased vascularity were evaluated in the hematoxylin and eosin (H&E)-stained sections. Fibrosis in the surrounding tissue and cartilage matrix was evaluated with Masson's trichrome stain. The toluidine blue staining was used to evaluate loss of metachromasia in matrix. The prevalence of glial fibrillary acidic protein (GFAP) staining in chondrocytes was also evaluated. Although the remaining amount of cartilage mass after implantation does not show a significant difference between the control and the study group (p = 0.322, p <0.05).The difference between control and study group in terms of positive staining with GFAP was statistically significant (p = 0.01, p <0.05). Necrosis and loss of matrix metachromasia were significantly low in the study group compared with control group (p = 0.001, p = 0.006, p <0.05). HBO therapy did not have significant effect on the mass of rabbit auricular cartilage graft. HBO therapy significantly reduced loss of metachromasia, necrosis, and GFAP staining in the auricular cartilage grafts of the animal model. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis.
Mayan, Maria D; Gago-Fuentes, Raquel; Carpintero-Fernandez, Paula; Fernandez-Puente, Patricia; Filgueira-Fernandez, Purificacion; Goyanes, Noa; Valiunas, Virginijus; Brink, Peter R; Goldberg, Gary S; Blanco, Francisco J
2015-01-01
This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 µm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and β-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng; Wei, Lei
2018-01-01
Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog ( Ihh ) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes.
A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system
Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng
2018-01-01
Background Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. Purpose The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. Methods LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog (Ihh) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). Results In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. Conclusion This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes. PMID:29440889
A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage.
Kino-Oka, Masahiro; Maeda, Yoshikatsu; Yamamoto, Takeyuki; Sugawara, Katsura; Taya, Masahito
2005-03-01
For repairing articular cartilage defects, innovative techniques based on tissue engineering have been developed and are now entering into the practical stage of clinical application by means of grafting in vitro cultured products. A variety of natural and artificial materials available for scaffolds, which permit chondrocyte cells to aggregate, have been designed for their ability to promote cell growth and differentiation. From the viewpoint of the manufacturing process for tissue-engineered cartilage, the diverse nature of raw materials (seeding cells) and end products (cultured cartilage) oblige us to design a tailor-made process with less reproducibility, which is an obstacle to establishing a production doctrine based on bioengineering knowledge concerning growth kinetics and modeling as well as designs of bioreactors and culture operations for certification of high product quality. In this article, we review the recent advances in the manufacturing of tissue-engineered cartilage. After outlining the manufacturing processes for tissue-engineered cartilage in the first section, the second and third sections, respectively, describe the three-dimensional culture of chondrocytes with Aterocollagen gel and kinetic model consideration as a tool for evaluating this culture process. In the final section, culture strategy is discussed in terms of the combined processes of monolayer growth (ex vivo chondrocyte cell expansion) and three-dimensional growth (construction of cultured cartilage in the gel).
Jiang, Li; Ma, Anlun; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang
2014-11-01
Osteoarthritis (OA) is the most common form of arthritis, in which cartilage is irreversibly degraded, causing severe pain and disability. Current therapeutic strategies cannot repair damaged cartilage. We evaluated the repair potential of selected chondrogenic clonal MSCs (sC-MSCs) by delivering them into the injured cartilage site in a collagenase-induced OA model in Cynomolgus monkeys. In vitro characterization showed that the isolated monkey sC-MSCs and polyclonal MSCs (P-MSCs) expressed mesenchymal stem cell markers and could differentiate into chondrocytes. The articular cartilage lesions in animals were treated with normal saline (NS), autologous P-MSCs and sC-MSCs, respectively, by direct delivery. The clinical parameters, radiographic images, histological and immunohistochemical examinations at weeks 8, 16 and 24 post-treatment demonstrated that the abrasions of articular cartilage were significantly improved and repaired by MSC-based treatment, particularly in the sC-MSC-treated group, which displayed consistently higher histological scores than those of other groups. In summary, treatment with sC-MSCs can effectively improve the healing of cartilage lesions in the Cynomolgus monkey collagenase-induced OA model. Due to the genetic proximity of monkey and human, the therapeutic strategy presented in this study will have broad applications in clinical practice. Copyright © 2013 John Wiley & Sons, Ltd.
Nakamura, Tomomasa; Sekiya, Ichiro; Muneta, Takeshi; Hatsushika, Daisuke; Horie, Masafumi; Tsuji, Kunikazu; Kawarasaki, Tatsuo; Watanabe, Atsuya; Hishikawa, Shuji; Fujimoto, Yasuhiro; Tanaka, Hozumi; Kobayashi, Eiji
2012-03-01
Transplantation of synovial mesenchymal stromal cells (MSCs) may induce repair of cartilage defects. We transplanted synovial MSCs into cartilage defects using a simple method and investigated its usefulness and repair process in a pig model. The chondrogenic potential of the porcine MSCs was compared in vitro. Cartilage defects were created in both knees of seven pigs, and divided into MSCs treated and non-treated control knees. Synovial MSCs were injected into the defect, and the knee was kept immobilized for 10 min before wound closure. To visualize the actual delivery and adhesion of the cells, fluorescence-labeled synovial MSCs from transgenic green fluorescent protein (GFP) pig were injected into the defect in a subgroup of two pigs. In these two animals, the wounds were closed before MSCs were injected and observed for 10 min under arthroscopic control. The defects were analyzed sequentially arthroscopically, histologically and by magnetic resonance imaging (MRI) for 3 months. Synovial MSCs had a higher chondrogenic potential in vitro than the other MSCs examined. Arthroscopic observations showed adhesion of synovial MSCs and membrane formation on the cartilage defects before cartilage repair. Quantification analyses for arthroscopy, histology and MRI revealed a better outcome in the MSC-treated knees than in the non-treated control knees. Leaving a synovial MSC suspension in cartilage defects for 10 min made it possible for cells to adhere in the defect in a porcine cartilage defect model. The cartilage defect was first covered with membrane, then the cartilage matrix emerged after transplantation of synovial MSCs.
Bilateral same-day endoscopic transcanal cartilage tympanoplasty: initial results.
Daneshi, Ahmad; Jahandideh, Hesam; Daneshvar, Ali; Safdarian, Mahdi
Same-day closure of bilateral tympanic membrane perforations is a quick and more comfortable procedure for the patients. However, conventional bilateral same-day tympanoplasty or myringoplasty has been rarely performed because of the theoretical risk of postoperative complications. To evaluate the advantages and outcomes of bilateral simultaneous endoscopic cartilage tympanoplasty in patients with bilateral tympanic membrane perforations. From February 2012 to March 2013, patients with bilateral dry tympanic membrane perforations who had some degree of hearing loss corresponding to the size and location of the perforation entered the study. There was no suspicion to disrupted ossicular chain, mastoid involvement or other middle or inner ear pathology. Endoscopic transcanal cartilage tympanoplasty was done using the underlay (medial) technique. The graft was harvested from cymba cartilage in just one ear with preservation of perichondrium in one side. A 1.5cm×1.5cm cartilage seemed to be enough for tympanoplasty in both sides. Nine patients (4 males and 5 females) with the mean age of 37.9 years underwent bilateral transcanal cartilage tympanoplasty in a same-day surgery. The mean duration of follow up was 15.8 months. There were detected no complications including hearing loss, otorrhea and wound complication with no retraction pocket or displaced graft during follow-up period. The grafts take rate was 94.44% (only one case of unilateral incomplete closure). The mean of air-bone gap overall improved from 13.88dB preoperatively to 9.16dB postoperatively (p<0.05). Bilateral endoscopic transcanal cartilage tympanoplasty can be considered as a safe minimally invasive procedure that can be performed in a same-day surgery. It reduces the costs and operation time and is practical with a low rate of postoperative complications. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics.
Guess, Trent M; Liu, Hongzeng; Bhashyam, Sampath; Thiagarajan, Ganesh
2013-01-01
Combining musculoskeletal simulations with anatomical joint models capable of predicting cartilage contact mechanics would provide a valuable tool for studying the relationships between muscle force and cartilage loading. As a step towards producing multibody musculoskeletal models that include representation of cartilage tissue mechanics, this research developed a subject-specific multibody knee model that represented the tibia plateau cartilage as discrete rigid bodies that interacted with the femur through deformable contacts. Parameters for the compliant contact law were derived using three methods: (1) simplified Hertzian contact theory, (2) simplified elastic foundation contact theory and (3) parameter optimisation from a finite element (FE) solution. The contact parameters and contact friction were evaluated during a simulated walk in a virtual dynamic knee simulator, and the resulting kinematics were compared with measured in vitro kinematics. The effects on predicted contact pressures and cartilage-bone interface shear forces during the simulated walk were also evaluated. The compliant contact stiffness parameters had a statistically significant effect on predicted contact pressures as well as all tibio-femoral motions except flexion-extension. The contact friction was not statistically significant to contact pressures, but was statistically significant to medial-lateral translation and all rotations except flexion-extension. The magnitude of kinematic differences between model formulations was relatively small, but contact pressure predictions were sensitive to model formulation. The developed multibody knee model was computationally efficient and had a computation time 283 times faster than a FE simulation using the same geometries and boundary conditions.
Ding, Jinping; Chen, Bo; Lv, Tao; Liu, Xia; Fu, Xin; Wang, Qian; Yan, Li; Kang, Ning; Cao, Yilin; Xiao, Ran
2016-08-01
: The regeneration of tissue-engineered cartilage in an immunocompetent environment usually fails due to severe inflammation induced by the scaffold and their degradation products. In the present study, we compared the tissue remodeling and the inflammatory responses of engineered cartilage constructed with bone marrow mesenchymal stem cells (BMSCs), chondrocytes, or both and scaffold group in pigs. The cartilage-forming capacity of the constructs in vitro and in vivo was evaluated by histological, biochemical, and biomechanical analyses, and the inflammatory response was investigated by quantitative analysis of foreign body giant cells and macrophages. Our data revealed that BMSC-based engineered cartilage suppressed in vivo inflammation through the alteration of macrophage phenotype, resulting in better tissue survival compared with those regenerated with chondrocytes alone or in combination with BMSCs. To further confirm the macrophage phenotype, an in vitro coculture system established by engineered cartilage and macrophages was studied using immunofluorescence, enzyme-linked immunosorbent assay, and gene expression analysis. The results demonstrated that BMSC-based engineered cartilage promoted M2 polarization of macrophages with anti-inflammatory phenotypes including the upregulation of CD206, increased IL-10 synthesis, decreased IL-1β secretion, and alterations in gene expression indicative of M1 to M2 transition. It was suggested that BMSC-seeded constructs have the potential to ameliorate scaffold-induced inflammation and improve cartilaginous tissue regeneration through M2 polarization of macrophages. Finding a strategy that can prevent scaffold-induced inflammation is of utmost importance for the regeneration of tissue-engineered cartilage in an immunocompetent environment. This study demonstrated that bone marrow mesenchymal stem cell (BMSC)-based engineered cartilage could suppress inflammation by increasing M2 polarization of macrophages, resulting in better tissue survival in a pig model. Additionally, the effect of BMSC-based cartilage on the phenotype conversion of macrophages was further studied through an in vitro coculture system. This study could provide further support for the regeneration of cartilage engineering in immunocompetent animal models and provide new insight into the interaction of tissue-engineered cartilage and macrophages. ©AlphaMed Press.
The effects of exercise on human articular cartilage
Eckstein, F; Hudelmaier, M; Putz, R
2006-01-01
The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass. PMID:16637874
The effects of exercise on human articular cartilage.
Eckstein, F; Hudelmaier, M; Putz, R
2006-04-01
The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass.
Characterization of bovine cartilage by fiber Bragg grating-based stress relaxation measurements
NASA Astrophysics Data System (ADS)
Baier, V.; Marchi, G.; Foehr, P.; Burgkart, R.; Roths, J.
2017-04-01
A fiber-based device for testing mechanical properties of cartilage is presented within this study. The measurement principle is based on stepwise indentation into the tissue and observing of corresponding relaxation of the stress. The indenter tip is constituted of a cleaved optical fiber that includes a fiber Bragg grating which is used as the force sensor. Stress relaxation measurements at 25 different positions on a healthy bovine cartilage sample were performed to assess the behavior of healthy cartilage. For each indentation step a good agreement was found with a viscoelastic model that included two time constants. The model parameters showed low variability and a clear dependence with indentation depth. The parameters can be used as reference values for discriminating healthy and degenerated cartilage.
Ye, Fengbin; Baldursdottir, Stefania; Hvidt, Søren; Jensen, Henrik; Larsen, Susan W; Yaghmur, Anan; Larsen, Claus; Østergaard, Jesper
2016-03-07
In the field of drug delivery to the articular cartilage, it is advantageous to apply artificial tissue models as surrogates of cartilage for investigating drug transport and release properties. In this study, artificial cartilage models consisting of 0.5% (w/v) agarose gel containing 0.5% (w/v) chondroitin sulfate or 0.5% (w/v) hyaluronic acid were developed, and their rheological and morphological properties were characterized. UV imaging was utilized to quantify the transport properties of the following four model compounds in the agarose gel and in the developed artificial cartilage models: H-Ala-β-naphthylamide, H-Lys-Lys-β-naphthylamide, lysozyme, and α-lactalbumin. The obtained results showed that the incorporation of the polyelectrolytes chondroitin sulfate or hyaluronic acid into agarose gel induced a significant reduction in the apparent diffusivities of the cationic model compounds as compared to the pure agarose gel. The decrease in apparent diffusivity of the cationic compounds was not caused by a change in the gel structure since a similar reduction in apparent diffusivity was not observed for the net negatively charged protein α-lactalbumin. The apparent diffusivity of the cationic compounds in the negatively charged hydrogels was highly dependent on the ionic strength, pointing out the importance of electrostatic interactions between the diffusant and the polyelectrolytes. Solution based affinity studies between the model compounds and the two investigated polyelectrolytes further confirmed the electrostatic nature of their interactions. The results obtained from the UV imaging diffusion studies are important for understanding the effect of drug physicochemical properties on the transport in articular cartilage. The extracted information may be useful in the development of hydrogels for in vitro release testing having features resembling the articular cartilage.
Ha, Chul-Won; Park, Yong-Beom; Chung, Jun-Young; Park, Yong-Geun
2015-09-01
The cartilage regeneration potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with a hyaluronic acid (HA) hydrogel composite has shown remarkable results in rat and rabbit models. The purpose of the present study was to confirm the consistent regenerative potential in a pig model using three different cell lines. A full-thickness chondral injury was intentionally created in the trochlear groove of each knee in 6 minipigs. Three weeks later, an osteochondral defect, 5 mm wide by 10 mm deep, was created, followed by an 8-mm-wide and 5-mm-deep reaming. A mixture (1.5 ml) of hUCB-MSCs (0.5×10(7) cells per milliliter) and 4% HA hydrogel composite was then transplanted into the defect on the right knee. Each cell line was used in two minipigs. The osteochondral defect created in the same manner on the left knee was untreated to act as the control. At 12 weeks postoperatively, the pigs were sacrificed, and the degree of subsequent cartilage regeneration was evaluated by gross and histological analysis. The transplanted knee resulted in superior and more complete hyaline cartilage regeneration compared with the control knee. The cellular characteristics (e.g., cellular proliferation and chondrogenic differentiation capacity) of the hUCB-MSCs influenced the degree of cartilage regeneration potential. This evidence of consistent cartilage regeneration using composites of hUCB-MSCs and HA hydrogel in a large animal model could be a stepping stone to a human clinical trial in the future. To date, several studies have investigated the chondrogenic potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs); however, the preclinical studies are still limited in numbers with various results. In parallel, in the past several years, the cartilage regeneration potential of hUCB-MSCs with a hyaluronic acid (HA) hydrogel composite have been investigated and remarkable results in rat and rabbit models have been attained. (These experimental results are currently in preparation for publication.) Before applying the cartilage regeneration technique in a human clinical trial, it seemed necessary to confirm the consistent result in a larger animal model. At 12 weeks postoperatively, the minipigs were sacrificed, and the degree of subsequent cartilage regeneration was evaluated by gross and histological analysis. The transplanted knee resulted in superior and more complete hyaline cartilage regeneration compared with the control knee. This evidence of consistent cartilage regeneration with composites of hUCB-MSCs and HA hydrogel in a large animal model could be a stepping stone to a human clinical trial in the future. ©AlphaMed Press.
Ha, Chul-Won; Chung, Jun-Young; Park, Yong-Geun
2015-01-01
The cartilage regeneration potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with a hyaluronic acid (HA) hydrogel composite has shown remarkable results in rat and rabbit models. The purpose of the present study was to confirm the consistent regenerative potential in a pig model using three different cell lines. A full-thickness chondral injury was intentionally created in the trochlear groove of each knee in 6 minipigs. Three weeks later, an osteochondral defect, 5 mm wide by 10 mm deep, was created, followed by an 8-mm-wide and 5-mm-deep reaming. A mixture (1.5 ml) of hUCB-MSCs (0.5 × 107 cells per milliliter) and 4% HA hydrogel composite was then transplanted into the defect on the right knee. Each cell line was used in two minipigs. The osteochondral defect created in the same manner on the left knee was untreated to act as the control. At 12 weeks postoperatively, the pigs were sacrificed, and the degree of subsequent cartilage regeneration was evaluated by gross and histological analysis. The transplanted knee resulted in superior and more complete hyaline cartilage regeneration compared with the control knee. The cellular characteristics (e.g., cellular proliferation and chondrogenic differentiation capacity) of the hUCB-MSCs influenced the degree of cartilage regeneration potential. This evidence of consistent cartilage regeneration using composites of hUCB-MSCs and HA hydrogel in a large animal model could be a stepping stone to a human clinical trial in the future. Significance To date, several studies have investigated the chondrogenic potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs); however, the preclinical studies are still limited in numbers with various results. In parallel, in the past several years, the cartilage regeneration potential of hUCB-MSCs with a hyaluronic acid (HA) hydrogel composite have been investigated and remarkable results in rat and rabbit models have been attained. (These experimental results are currently in preparation for publication.) Before applying the cartilage regeneration technique in a human clinical trial, it seemed necessary to confirm the consistent result in a larger animal model. At 12 weeks postoperatively, the minipigs were sacrificed, and the degree of subsequent cartilage regeneration was evaluated by gross and histological analysis. The transplanted knee resulted in superior and more complete hyaline cartilage regeneration compared with the control knee. This evidence of consistent cartilage regeneration with composites of hUCB-MSCs and HA hydrogel in a large animal model could be a stepping stone to a human clinical trial in the future. PMID:26240434
Corvelli, Michael; Che, Bernadette; Saeui, Christopher; Singh, Anirudha; Elisseeff, Jennifer
2015-01-01
Hyaluronic acid (HA), a natural biomaterial present in healthy joints but depleted in osteoarthritis (OA), has been employed clinically to provide symptomatic relief of joint pain. Joint movement combined with a reduced joint lubrication in osteoarthritic knees can result in increased wear and tear, chondrocyte apoptosis, and inflammation, leading to cascading cartilage deterioration. Therefore, development of an appropriate cartilage model and evaluation for its friction properties with potential lubricants in different conditions is necessary, which can closely resemble a mechanically induced OA cartilage. Additionally, the comparison of different models with and without endogenous lubricating surface zone proteins, such as PRG4 promotes a well-rounded understanding of cartilage lubrication. In this study, we present our findings on the lubricating effects of HA on different articular cartilage model surfaces in comparison to synovial fluid, a physiological lubricating biomaterial. The mechanical testings data demonstrated that HA reduced average static and kinetic friction coefficient values of the cartilage samples by 75% and 70%, respectively. Furthermore, HA mimicked the friction characteristics of freshly harvested natural synovial fluid throughout all tested and modeled OA conditions with no statistically significant difference. These characteristics led us to exclusively identify HA as an effective boundary layer lubricant in the technology that we develop to treat OA [Singh et al. 2104]. PMID:25858258
Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.
2013-01-01
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175
Angiogenic response in the chick chorioallantoic membrane model to laser-irradiated cartilage
NASA Astrophysics Data System (ADS)
Karamzadeh, Amir M.; Wong, Brian J.; Milner, Thomas E.; Wilson, Marie; Liaw, Lih-Huei L.; Nelson, J. Stuart
1999-06-01
Laser radiation can be used to reshape cartilage grafts via thermally mediated stress relaxation. While several studies have addressed the biophysical changes accompanying reshaping, cartilage viability following laser irradiation has not been extensively investigated. The objective of this study was to determine the extent of angioinvasion of irradiated cartilage explant placed onto the chick chorioallantoic membrane (CAM) model. Angioinvasion of the tissue matrix does not occur in viable cartilage tissue, whereas denatured tissue is readily vasculairzed and/or resorbed in vivo. Porcine septal cartilage specimens were removed from freshly sacrificed animals and divided into three protocols (n=10 each group) consisting of an untreated control, cartilage boiled in saline solution for one hour, and a laser irradiated group (Nd:YAG, λ=1.32 μm, 30.8 W/cm2, irradiation time = 10 sec). Following laser irradiation, tissue specimens were washed in antibiotic solution sand cut into small cubes (~1.5 mm3). The cartilage specimens were placed onto the surface of twenty CAMs, six of which, survived the entire 14 days incubation period. After incubation, the membranes and specimens were fixed in situ with formaldehyde, an then photographed using a dissection microscope. Cartilage specimens were prepared for histologic evaluation and stained with hematoxylin and eosin. Examination with a dissecting microscope showed no obvious vascular invasion of the cartilage or loss of gross tissue integrity in both the control and laser treated groups. In contrast, boiled specimens appeared to be partially or completely resorbed by the surrounding CAM vascular network. These gross findings were also confirmed by histological examination. In summary, our preliminary studies suggest that cartilage specimens treated using the present laser parameters remain resistant to angioinvasion or metabolism by the CAM, whereas boiled tissue undergoes resorption. Clinically, uncontrolled heating may result in total resorption of cartilage with catastrophic sequelae such as infection, necrosis, and total graft resorption. This study underscores the importance of preserving cartilage viability during laser surgical procedures relying on a photothermal mechanism.
Huh, Jeong-Eun; Park, Yeon-Cheol; Seo, Byung-Kwan; Lee, Jae-Dong; Baek, Yong-Hyeon; Choi, Do-Young; Park, Dong-Suk
2013-01-01
We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecan in vivo and was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagen in vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105) cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type II α1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone. PMID:23983790
The Role of Cartilage Stress in Patellofemoral Pain
Besier, Thor F.; Pal, Saikat; Draper, Christine E.; Fredericson, Michael; Gold, Garry E.; Delp, Scott L.; Beaupré, Gary S.
2015-01-01
Purpose Elevated cartilage stress has been identified as a potential mechanism for retropatellar pain; however, there are limited data in the literature to support this mechanism. Females are more likely to develop patellofemoral pain than males, yet the causes of this dimorphism are unclear. We used experimental data and computational modeling to determine whether patients with patellofemoral pain had elevated cartilage stress compared to pain-free controls and test the hypothesis that females exhibit greater cartilage stress than males. Methods We created finite element models of 24 patients with patellofemoral pain (11 males; 13 females) and 16 pain-free controls (8 males; 8 females) to estimate peak patellar cartilage stress (strain energy density) during a stair climb activity. Simulations took into account cartilage morphology from MRI, joint posture from weight-bearing MRI, and muscle forces from an EMG-driven model. Results We found no difference in peak patellar strain energy density between patellofemoral pain (1.9 ± 1.23 J/m3) and control subjects (1.66 ± 0.75 J/m3, p=0.52). Females exhibited greater cartilage stress compared to males (2.2 vs 1.3 J/m3, respectively, p=0.0075), with large quadriceps muscle forces (3.7BW females vs 3.3BW males) and 23% smaller joint contact area (females: 467 ± 59 mm2 vs males: 608 ± 95mm2). Conclusion Patellofemoral pain patients did not display significantly greater patellar cartilage stress compared to pain-free controls; however, there was a great deal of subject variation. Females exhibited greater peak cartilage stress compared to males, which might explain the greater prevalence of patellofemoral pain in females compared to males but other mechanical and biological factors are clearly involved in this complex pathway to pain. PMID:25899103
Mastbergen, Simon C; Jones, Elena; Calder, Stuart J; Lafeber, Floris P J G; McGonagle, Dennis
2016-01-01
Objectives Knee joint distraction (KJD) is a novel, but poorly understood, treatment for osteoarthritis (OA) associated with remarkable ‘spontaneous’ cartilage repair in which resident synovial fluid (SF) multipotential mesenchymal stromal cells (MSCs) may play a role. We hypothesised that SF hyaluronic acid (HA) inhibited the initial interaction between MSCs and cartilage, a key first step to integration, and postulate that KJD environment favoured MSC/cartilage interactions. Methods Attachment of dual-labelled SF-MSCs were assessed in a novel in vitro human cartilage model using OA and rheumatoid arthritic (RA) SF. SF was digested with hyaluronidase (hyase) and its effect on adhesion was observed using confocal microscopy. MRI and microscopy were used to image autologous dual-labelled MSCs in an in vivo canine model of KJD. SF-HA was investigated using gel electrophoresis and densitometry. Results Osteoarthritic-synovial fluid (OA-SF) and purified high molecular weight (MW) HA inhibited SF-MSC adhesion to plastic, while hyase treatment of OA-SF but not RA-SF significantly increased MSC adhesion to cartilage (3.7-fold, p<0.05) These differences were linked to the SF mediated HA-coat which was larger in OA-SF than in RA-SF. OA-SF contained >9 MDa HA and this correlated with increases in adhesion (r=0.880). In the canine KJD model, MSC adhesion to cartilage was evident and also dependent on HA MW. Conclusions These findings highlight an unappreciated role of SF-HA on MSC interactions and provide proof of concept that endogenous SF-MSCs are capable of adhering to cartilage in a favourable biochemical and biomechanical environment in OA distracted joints, offering novel one-stage strategies towards joint repair. PMID:25948596
Multimodal nonlinear optical imaging of cartilage development in mouse model
NASA Astrophysics Data System (ADS)
He, Sicong; Xue, Wenqian; Sun, Qiqi; Li, Xuesong; Huang, Jiandong; Qu, Jianan Y.
2017-02-01
Kinesin-1 is a kind of motor protein responsible for intracellular transportation and has been studied in a variety of tissues. However, its roles in cartilage development are not clear. In this study, a kinesin-1 heavy chain (Kif5b) knockout mouse model is used to study the functions of kinesin-1 in the cartilage development. We developed a multimodal nonlinear optical (NLO) microscope system integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) to investigate the morphological and biomedical characteristics of fresh tibial cartilage from normal and mutant mice at different developmental stages. The combined forward and backward SHG imaging resolved the fine structure of collagen fibrils in the extracellular matrix of cartilage. Meanwhile, the chondrocyte morphology in different zones of cartilage was visualized by label-free SRS and TPEF images. The results show that the fibrillar collagen in the superficial zone of cartilage in postnatal day 10 and 15 (P10 and P15) knockout mice was significantly less than that of control mice. Moreover, we observed distorted morphology and disorganization of columnar arrangement of chondrocytes in the growth plate cartilage of mutant mice. This study reveals the significant roles of kinesin-1 in collagen formation and chondrocyte morphogenesis.
Gene Therapy for Cartilage Repair
Madry, Henning; Orth, Patrick; Cucchiarini, Magali
2011-01-01
The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580
Nishino, T; Chang, F; Ishii, T; Yanai, T; Mishima, H; Ochiai, N
2010-07-01
We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage.
Nakamura, Tomomasa; Sekiya, Ichiro; Muneta, Takeshi; Hatsushika, Daisuke; Horie, Masafumi; Tsuji, Kunikazu; Kawarasaki, Tatsuo; Watanabe, Atsuya; Hishikawa, Shuji; Fujimoto, Yasuhiro; Tanaka, Hozumi; Kobayashi, Eiji
2012-01-01
Background aims Transplantation of synovial mesenchymal stromal cells (MSCs) may induce repair of cartilage defects. We transplanted synovial MSCs into cartilage defects using a simple method and investigated its usefulness and repair process in a pig model. Methods The chondrogenic potential of the porcine MSCs was compared in vitro. Cartilage defects were created in both knees of seven pigs, and divided into MSCs treated and non-treated control knees. Synovial MSCs were injected into the defect, and the knee was kept immobilized for 10 min before wound closure. To visualize the actual delivery and adhesion of the cells, fluorescence-labeled synovial MSCs from transgenic green fluorescent protein (GFP) pig were injected into the defect in a subgroup of two pigs. In these two animals, the wounds were closed before MSCs were injected and observed for 10 min under arthroscopic control. The defects were analyzed sequentially arthroscopically, histologically and by magnetic resonance imaging (MRI) for 3 months. Results Synovial MSCs had a higher chondrogenic potential in vitro than the other MSCs examined. Arthroscopic observations showed adhesion of synovial MSCs and membrane formation on the cartilage defects before cartilage repair. Quantification analyses for arthroscopy, histology and MRI revealed a better outcome in the MSC-treated knees than in the non-treated control knees. Conclusions Leaving a synovial MSC suspension in cartilage defects for 10 min made it possible for cells to adhere in the defect in a porcine cartilage defect model. The cartilage defect was first covered with membrane, then the cartilage matrix emerged after transplantation of synovial MSCs. PMID:22309371
Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage.
Kaucka, Marketa; Zikmund, Tomas; Tesarova, Marketa; Gyllborg, Daniel; Hellander, Andreas; Jaros, Josef; Kaiser, Jozef; Petersen, Julian; Szarowska, Bara; Newton, Phillip T; Dyachuk, Vyacheslav; Li, Lei; Qian, Hong; Johansson, Anne-Sofie; Mishina, Yuji; Currie, Joshua D; Tanaka, Elly M; Erickson, Alek; Dudley, Andrew; Brismar, Hjalmar; Southam, Paul; Coen, Enrico; Chen, Min; Weinstein, Lee S; Hampl, Ales; Arenas, Ernest; Chagin, Andrei S; Fried, Kaj; Adameyko, Igor
2017-04-17
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.
NASA Astrophysics Data System (ADS)
Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian
1998-05-01
We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.
LaPointe, Vanessa L. S.; Verpoorte, Amanda; Stevens, Molly M.
2013-01-01
Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs) into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype. PMID:24312400
Animal models of cartilage repair
Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.
2014-01-01
Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750
On mechanical mechanism of damage evolution in articular cartilage.
Men, Yu-Tao; Jiang, Yan-Long; Chen, Ling; Zhang, Chun-Qiu; Ye, Jin-Duo
2017-09-01
Superficial lesions of cartilage are the direct indication of osteoarthritis. To investigate the mechanical mechanism of cartilage with micro-defect under external loading, a new plain strain numerical model with micro-defect was proposed and damage evolution progression in cartilage over time has been simulated, the parameter were studied including load style, velocity of load and degree of damage. The new model consists of the hierarchical structure of cartilage and depth-dependent arched fibers. The numerical results have shown that not only damage of the cartilage altered the distribution of the stress but also matrix and fiber had distinct roles in affecting cartilage damage, and damage in either matrix or fiber could promote each other. It has been found that the superficial cracks in cartilage spread preferentially along the tangent direction of the fibers. It is the arched distribution form of fibers that affects the crack spread of cartilage, which has been verified by experiment. During the process of damage evolution, its extension direction and velocity varied constantly with the damage degree. The rolling load could cause larger stress and strain than sliding load. Strain values of the matrix initially increased and then decreased gradually with the increase of velocity, and velocity had a greater effect on matrix than fibers. Damage increased steadily before reaching 50%, sharply within 50 to 85%, and smoothly and slowly after 85%. The finding of the paper may help to understand the mechanical mechanism why the cracks in cartilage spread preferentially along the tangent direction of the fibers. Copyright © 2017 Elsevier B.V. All rights reserved.
Kung, L H W; Zaki, S; Ravi, V; Rowley, L; Smith, M M; Bell, K M; Bateman, J F; Little, C B
2017-03-01
The purpose of this study was to determine if serum microRNA (miRNA) signatures were biomarkers of early cartilage degeneration in preclinical mouse models of post-traumatic osteoarthritis (OA) and inflammatory arthritis. Cartilage degeneration was induced in 10-12 week old male C57BL6 mice by destabilization of the medial meniscus (DMM) or intra-articular injection of methylated-bovine-serum-albumin (AIA), with sham-operated or saline-injected control animals (n = 6/treatment/time). Total serum RNA and knee joints were isolated at 1, 4 and 16 weeks post-induction. Cartilage degeneration was scored histologically. Serum miRNA expression profiling was performed using Agilent microarrays and validated by qPCR. DMM-operated and AIA mice had characteristic cartilage degeneration (proteoglycan loss, chondrocyte hypertrophy, structural damage), that increased significantly with time compared with controls, and with distinct temporal differences between arthritis models. However, expression profiling revealed no statistically significant dysregulation of serum miRNAs between AIA vs saline-injected or DMM vs sham-operated control mice at the critical early disease stages. The inability to detect DMM or AIA serum miRNA signatures compared with controls was not due to the insensitivity of the expression profiling approach since significant changes were observed in miRNA expression between the arthritis models and between time points. While distinct patterns of progressive cartilage degradation were induced in the arthritis models, we were unable to identify any serum miRNAs that were significantly dysregulated in early stages of disease compared with controls. This suggests circulating serum miRNAs may not be useful as cartilage biomarkers in distinguishing the early or progressive stages of arthritis cartilage degeneration. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Clutterbuck, Abigail L; Mobasheri, Ali; Shakibaei, Mehdi; Allaway, David; Harris, Pat
2009-08-01
Osteoarthritis (OA) is a degenerative and inflammatory disease of synovial joints that is characterized by the loss of articular cartilage, for which there is increasing interest in natural remedies. Curcumin (diferuloylmethane) is the main polyphenol in the spice turmeric, derived from rhizomes of the plant Curcuma longa. Curcumin has potent chemopreventive properties and has been shown to inhibit nuclear factor kappaB-mediated inflammatory signaling in many cell types, including chondrocytes. In this study, normal articular cartilage was harvested from metacarpophalangeal and metatarsophalangeal joints of eight horses, euthanized for reasons other than research purposes, to establish an explant model mimicking the inflammatory events that occur in OA. Initially, cartilage explants (N= 8) were stimulated with increasing concentrations of the proinflammatory cytokine IL-1beta to select effective doses for inducing cartilage degeneration in the explant model. Separate cartilage explants were then cotreated with IL-1beta at either 10 ng/mL (n= 3) or 25 ng/mL (n= 3) and curcumin (0.1 micromol/L, 0.5 micromol/L, 1 micromol/L, 10 micromol/L, and 100 micromol/L). After 5 days, the percentage of glycosaminoglycan (GAG) release from the explants was assessed using a dimethylmethylene blue colorimetric assay. Curcumin (100 micromol/L) significantly reduced IL-1beta-stimulated GAG release in the explants by an average of 20% at 10 ng/mL and 27% at 25 ng/mL back to unstimulated control levels (P < 0.001). Our results suggest that this explant model effectively simulates the proinflammatory cytokine-mediated release of articular cartilage components seen in OA. Furthermore, the evidence suggests that the inflammatory cartilage explant model is useful for studying the effects of curcumin on inflammatory pathways and gene expression in IL-1beta-stimulated chondrocytes.
Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis.
Latourte, Augustin; Cherifi, Chahrazad; Maillet, Jérémy; Ea, Hang-Korng; Bouaziz, Wafa; Funck-Brentano, Thomas; Cohen-Solal, Martine; Hay, Eric; Richette, Pascal
2017-04-01
To investigate the impact of systemic inhibition of interleukin 6 (IL-6) or signal transducer and activator of transcription (Stat3) in an experimental model of osteoarthritis (OA). Expression of major catabolic and anabolic factors of cartilage was determined in IL-6-treated mouse chondrocytes and cartilage explants. The anti-IL-6-receptor neutralising antibody MR16-1 was used in the destabilisation of the medial meniscus (DMM) mouse model of OA. Stat3 blockade was investigated by the small molecule Stattic ex vivo and in the DMM model. In chondrocytes and cartilage explants, IL-6 treatment reduced proteoglycan content with increased production of matrix metalloproteinase (MMP-3 and MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4 and ADAMTS-5). IL-6 induced Stat3 and extracellular signal-regulated kinase (ERK) 1/2 signalling but not p38, c-Jun N-terminal kinase or Akt. In the DMM model, Stat3 was activated in cartilage, but neither in the synovium nor in the subchondral bone. Systemic blockade of IL-6 by MR16-1 alleviated DMM-induced OA cartilage lesions, impaired the osteophyte formation and the extent of synovitis. In the same model, Stattic had similar beneficial effects on cartilage and osteophyte formation. Stattic, but not an ERK1/2 inhibitor, significantly counteracted the catabolic effects of IL-6 on cartilage explants and suppressed the IL-6-induced chondrocytes apoptosis. IL-6 induces chondrocyte catabolism mainly via Stat3 signalling, a pathway activated in cartilage from joint subjected to DMM. Systemic blockade of IL-6 or STAT-3 can alleviate DMM-induced OA in mice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A
2016-03-21
One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cartilage extracellular matrix as a biomaterial for cartilage regeneration.
Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S
2016-11-01
The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.
Tenascin-C Prevents Articular Cartilage Degeneration in Murine Osteoarthritis Models.
Matsui, Yuriyo; Hasegawa, Masahiro; Iino, Takahiro; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro
2018-01-01
Objective The objective of this study was to determine whether intra-articular injections of tenascin-C (TNC) could prevent cartilage damage in murine models of osteoarthritis (OA). Design Fluorescently labeled TNC was injected into knee joints and its distribution was examined at 1 day, 4 days, 1 week, 2 weeks, and 4 weeks postinjection. To investigate the effects of TNC on cartilage degeneration after surgery to knee joints, articular spaces were filled with 100 μg/mL (group I), 10 μg/mL (group II) of TNC solution, or control (group III). TNC solution of 10 μg/mL was additionally injected twice after 3 weeks (group IV) or weekly after 1 week, 2 weeks, and 3 weeks (group V). Joint tissues were histologically assessed using the Mankin score and the modified Chambers system at 2 to 8 weeks after surgery. Results Exogenous TNC was maintained in the cartilage and synovium for 1 week after administration. Histological scores in groups I and II were better than scores in group III at 4 and 6 weeks, but progressive cartilage damage was seen in all groups 8 weeks postoperatively. Sequential TNC injections (groups IV and V) showed significantly better Mankin score than single injection (group II) at 8 weeks. Conclusion TNC administered exogenously remained in the cartilage of knee joints for 1 week, and could decelerate articular cartilage degeneration in murine models of OA. We also showed that sequential administration of TNC was more effective than a single injection. TNC could be an important molecule for prevention of articular cartilage damage.
NASA Astrophysics Data System (ADS)
Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre
2016-03-01
Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.
A three-dimensional finite element model for biomechanical analysis of the hip.
Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe
2013-11-01
The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.
Chondrocytes provide a model for in-situ confocal microscopy and 3D reconstructions
NASA Astrophysics Data System (ADS)
Hirsch, Michelle S.; Svoboda, Kathy K. H.
1994-04-01
Hyaline cartilage is composed of chondrocytes that reside in lacunae surrounded by extracellular matrix molecules. Microscopic and histochemical features of cartilage have been studied with many techniques. Many of these techniques can be time consuming and may alter natural cartilage characteristics. In addition, the orientation and order of sectioned tissue must be maintained to create 3D reconstructions. We show that confocal laser scanning microscopy may replace traditional methods for studying cartilage.
Repair Mechanism of Osteochondral Defect Promoted by Bioengineered Chondrocyte Sheet
Kamei, Naosuke; Adachi, Nobuo; Hamanishi, Michio; Kamei, Goki; Mahmoud, Elhussein Elbadry; Nakano, Tomohiro; Iwata, Takanori; Yamato, Masayuki; Okano, Teruo; Ochi, Mitsuo
2015-01-01
Cell sheet engineering has developed as a remarkable method for cell transplantation. In the field of cartilage regeneration, several studies previously reported that cartilage defects could be regenerated by transplantation of a chondrocyte sheet using cell sheet engineering. However, it remains unclear how such a thin cell sheet could repair a deep cartilage defect. We, therefore, focused on the mechanism of cartilage repair using cell sheet engineering in this study. Chondrocyte sheets and synovial cell sheets were fabricated using cell sheet engineering, and these allogenic cell sheets were transplanted to cover an osteochondral defect in a rat model. Macroscopic and histological evaluation was performed at 4 and 12 weeks after transplantation. Analysis of the gene expression of each cell sheet and of the regenerated tissue at 1 week after transplantation was performed. In addition, green fluorescent protein (GFP) transgenic rats were used as donors (transplanted chondrocyte sheets) or recipients (osteochondral defect models) to identify the cell origin of regenerated cartilage. Cartilage repair was significantly better in the group implanted with a chondrocyte sheet than in that with a synovial cell sheet. The results of gene expression analysis suggest that the possible factor contributing to cartilage repair might be TGFβ1. Cell tracking experiments using GFP transgenic rats showed that the regenerated cartilage was largely composed of cells derived from the transplanted chondrocyte sheets. PMID:25396711
Human cartilage repair with a photoreactive adhesive-hydrogel composite.
Sharma, Blanka; Fermanian, Sara; Gibson, Matthew; Unterman, Shimon; Herzka, Daniel A; Cascio, Brett; Coburn, Jeannine; Hui, Alexander Y; Marcus, Norman; Gold, Garry E; Elisseeff, Jennifer H
2013-01-09
Surgical options for cartilage resurfacing may be significantly improved by advances and application of biomaterials that direct tissue repair. A poly(ethylene glycol) diacrylate (PEGDA) hydrogel was designed to support cartilage matrix production, with easy surgical application. A model in vitro system demonstrated deposition of cartilage-specific extracellular matrix in the hydrogel biomaterial and stimulation of adjacent cartilage tissue development by mesenchymal stem cells. For translation to the joint environment, a chondroitin sulfate adhesive was applied to covalently bond and adhere the hydrogel to cartilage and bone tissue in articular defects. After preclinical testing in a caprine model, a pilot clinical study was initiated where the biomaterials system was combined with standard microfracture surgery in 15 patients with focal cartilage defects on the medial femoral condyle. Control patients were treated with microfracture alone. Magnetic resonance imaging showed that treated patients achieved significantly higher levels of tissue fill compared to controls. Magnetic resonance spin-spin relaxation times (T(2)) showed decreasing water content and increased tissue organization over time. Treated patients had less pain compared with controls, whereas knee function [International Knee Documentation Committee (IKDC)] scores increased to similar levels between the groups over the 6 months evaluated. No major adverse events were observed over the study period. With further clinical testing, this practical biomaterials strategy has the potential to improve the treatment of articular cartilage defects.
Zhang, Xue-Xi; Yin, Jian-Hua; Mao, Zhi-Hua; Xia, Yang
2015-01-01
Abstract. Fourier transform infrared imaging (FTIRI) combined with chemometrics algorithm has strong potential to obtain complex chemical information from biology tissues. FTIRI and partial least squares-discriminant analysis (PLS-DA) were used to differentiate healthy and osteoarthritic (OA) cartilages for the first time. A PLS model was built on the calibration matrix of spectra that was randomly selected from the FTIRI spectral datasets of healthy and lesioned cartilage. Leave-one-out cross-validation was performed in the PLS model, and the fitting coefficient between actual and predicted categorical values of the calibration matrix reached 0.95. In the calibration and prediction matrices, the successful identifying percentages of healthy and lesioned cartilage spectra were 100% and 90.24%, respectively. These results demonstrated that FTIRI combined with PLS-DA could provide a promising approach for the categorical identification of healthy and OA cartilage specimens. PMID:26057029
Zhang, Xue-Xi; Yin, Jian-Hua; Mao, Zhi-Hua; Xia, Yang
2015-06-01
Fourier transform infrared imaging (FTIRI) combined with chemometrics algorithm has strong potential to obtain complex chemical information from biology tissues. FTIRI and partial least squares-discriminant analysis (PLS-DA) were used to differentiate healthy and osteoarthritic (OA) cartilages for the first time. A PLS model was built on the calibration matrix of spectra that was randomly selected from the FTIRI spectral datasets of healthy and lesioned cartilage. Leave-one-out cross-validation was performed in the PLS model, and the fitting coefficient between actual and predicted categorical values of the calibration matrix reached 0.95. In the calibration and prediction matrices, the successful identifying percentages of healthy and lesioned cartilage spectra were 100% and 90.24%, respectively. These results demonstrated that FTIRI combined with PLS-DA could provide a promising approach for the categorical identification of healthy and OA cartilage specimens.
NASA Astrophysics Data System (ADS)
Korhonen, Rami K.; Saarakkala, Simo; Töyräs, Juha; Laasanen, Mikko S.; Kiviranta, Ilkka; Jurvelin, Jukka S.
2003-06-01
Softening of articular cartilage, mainly attributable to deterioration of superficial collagen network and depletion of proteoglycans, is a sign of incipient osteoarthrosis. Early diagnosis of osteoarthrosis is essential to prevent the further destruction of the tissue. During the past decade, a few arthroscopic instruments have been introduced for the measurement of cartilage stiffness; these can be used to provide a sensitive measure of cartilage status. Ease of use, accuracy and reproducibility of the measurements as well as a low risk of damaging cartilage are the main qualities needed in any clinically applicable instrument. In this study, we have modified a commercially available arthroscopic indentation instrument to better fulfil these requirements when measuring cartilage stiffness in joints with thin cartilage. Our novel configuration was validated by experimental testing as well as by finite element (FE) modelling. Experimental and numerical tests indicated that it would be better to use a smaller reference plate and a lower pressing force (3 N) than those used in the original instrument (7-10 N). The reproducibility (CV = 5.0%) of the in situ indentation measurements was improved over that of the original instrument (CV = 7.6%), and the effect of material thickness on the indentation response was smaller than that obtained with the original instrument. The novel configuration showed a significant linear correlation between the indenter force and the reference dynamic modulus of cartilage in unconfined compression, especially in soft tissue (r = 0.893, p < 0.001, n = 16). FE analyses with a transversely isotropic poroelastic model indicated that the instrument was suitable for detecting the degeneration of superficial cartilage. In summary, the instrument presented in this study allows easy and reproducible measurement of cartilage stiffness, also in thin cartilage, and therefore represents a technical improvement for the early diagnosis of osteoarthrosis during arthroscopy.
Li, Wan-Ju; Chiang, Hongsen; Kuo, Tzong-Fu; Lee, Hsuan-Shu; Jiang, Ching-Chuan; Tuan, Rocky S
2009-01-01
The aim of this study was to evaluate a cell-seeded nanofibrous scaffold for cartilage repair in vivo. We used a biodegradable poly(epsilon-caprolactone) (PCL) nanofibrous scaffold seeded with allogeneic chondrocytes or xenogeneic human mesenchymal stem cells (MSCs), or acellular PCL scaffolds, with no implant as a control to repair iatrogenic, 7 mm full-thickness cartilage defects in a swine model. Six months after implantation, MSC-seeded constructs showed the most complete repair in the defects compared to other groups. Macroscopically, the MSC-seeded constructs regenerated hyaline cartilage-like tissue and restored a smooth cartilage surface, while the chondrocyte-seeded constructs produced mostly fibrocartilage-like tissue with a discontinuous superficial cartilage contour. Incomplete repair containing fibrocartilage or fibrous tissue was found in the acellular constructs and the no-implant control group. Quantitative histological evaluation showed overall higher scores for the chondrocyte- and MSC-seeded constructs than the acellular construct and the no-implant groups. Mechanical testing showed the highest equilibrium compressive stress of 1.5 MPa in the regenerated cartilage produced by the MSC-seeded constructs, compared to 1.2 MPa in the chondrocyte-seeded constructs, 1.0 MPa in the acellular constructs and 0.2 MPa in the no-implant group. No evidence of immune reaction to the allogeneically- and xenogeneically-derived regenerated cartilage was observed, possibly related to the immunosuppressive activities of MSCs, suggesting the feasibility of allogeneic or xenogeneic transplantation of MSCs for cell-based therapy. Taken together, our results showed that biodegradable nanofibrous scaffolds seeded with MSCs effectively repair cartilage defects in vivo, and that the current approach is promising for cartilage repair. 2008 John Wiley & Sons, Ltd
Li, Wan-Ju; Chiang, Hongsen; Kuo, Tzong-Fu; Lee, Hsuan-Shu; Jiang, Ching-Chuan; Tuan, Rocky S.
2013-01-01
The aim of this study was to evaluate a cell-seeded nanofibrous scaffold for cartilage repair in vivo. We used a biodegradable poly(ε-caprolactone) (PCL) nanofibrous scaffold seeded with allogeneic chondrocytes or xenogeneic human mesenchymal stem cells (MSCs), or acellular PCL scaffolds, with no implant as a control to repair iatrogenic, 7 mm full-thickness cartilage defects in a swine model. Six months after implantation, MSC-seeded constructs showed the most complete repair in the defects compared to other groups. Macroscopically, the MSC-seeded constructs regenerated hyaline cartilage-like tissue and restored a smooth cartilage surface, while the chondrocyte-seeded constructs produced mostly fibrocartilage-like tissue with a discontinuous superficial cartilage contour. Incomplete repair containing fibrocartilage or fibrous tissue was found in the acellular constructs and the no-implant control group. Quantitative histological evaluation showed overall higher scores for the chondrocyte- and MSC-seeded constructs than the acellular construct and the no-implant groups. Mechanical testing showed the highest equilibrium compressive stress of 1.5 MPa in the regenerated cartilage produced by the MSC-seeded constructs, compared to 1.2 MPa in the chondrocyte-seeded constructs, 1.0 MPa in the acellular constructs and 0.2 MPa in the no-implant group. No evidence of immune reaction to the allogeneically- and xenogeneically-derived regenerated cartilage was observed, possibly related to the immunosuppressive activities of MSCs, suggesting the feasibility of allogeneic or xenogeneic transplantation of MSCs for cell-based therapy. Taken together, our results showed that biodegradable nanofibrous scaffolds seeded with MSCs effectively repair cartilage defects in vivo, and that the current approach is promising for cartilage repair. PMID:19004029
The Application of Sheet Technology in Cartilage Tissue Engineering.
Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei
2016-04-01
Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.
[Articular cartilage regenerative therapy with synovial mesenchymal stem cells in a pig model].
Nakamura, Tomomasa; Sekiya, Ichiro; Muneta, Takeshi; Kobayashi, Eiji
2013-12-01
Current therapies for cartilage injury remain some issues such as the quality of regenerated cartilage and its invasiveness. We have been trying to develop a low invasive treatment for cartilage regeneration with synovial mesenchymal stem cells (MSCs) . Here we introduce our preclinical study with miniature pigs whose knee joints are similar to those of humans in terms of size and cartilage metabolism. Cartilage defect was created at the weight bearing area of both porcine knee joints. Synovial MSCs were transplanted by delivering a synovial MSC suspension onto the cartilage defect of the one side and the knee was kept immobilized for 10 minutes. Sequential arthroscopic and histological observations showed the contribution of synovial MSCs after transplantation, and a better hyaline cartilaginous-tissue regeneration in the MSC-treated knees than in the non-treated control knees at 12 weeks. Based on this and other preclinical studies, we have started a clinical study for cartilage regeneration with autologous synovial MSCs.
Jellyfish mucin may have potential disease-modifying effects on osteoarthritis
2009-01-01
Background We aimed to study the effects of intra-articular injection of jellyfish mucin (qniumucin) on articular cartilage degeneration in a model of osteoarthritis (OA) created in rabbit knees by resection of the anterior cruciate ligament. Qniumucin was extracted from Aurelia aurita (moon jellyfish) and Stomolophus nomurai (Nomura's jellyfish) and purified by ion exchange chromatography. The OA model used 36 knees in 18 Japanese white rabbits. Purified qniumucin extracts from S. nomurai or A. aurita were used at 1 mg/ml. Rabbits were divided into four groups: a control (C) group injected with saline; a hyaluronic acid (HA)-only group (H group); two qniumucin-only groups (M groups); and two qniumucin + HA groups (MH groups). One milligram of each solution was injected intra-articularly once a week for 5 consecutive weeks, starting from 4 weeks after surgery. Ten weeks after surgery, the articular cartilage was evaluated macroscopically and histologically. Results In the C and M groups, macroscopic cartilage defects extended to the subchondral bone medially and laterally. When the H and both MH groups were compared, only minor cartilage degeneration was observed in groups treated with qniumucin in contrast to the group without qniumucin. Histologically, densely safranin-O-stained cartilage layers were observed in the H and two MH groups, but cartilage was strongly maintained in both MH groups. Conclusion At the concentrations of qniumucin used in this study, injection together with HA inhibited articular cartilage degeneration in this model of OA. PMID:19995451
Imaging of cartilage degeneration progression in vivo using ultrahigh-resolution OCT
NASA Astrophysics Data System (ADS)
Herz, Paul R.; Bourquin, Stephane; Hsiung, Pei-lin; Ko, Tony H.; Schneider, Karl; Fujimoto, James G.; Adams, Samuel, Jr.; Roberts, Mark; Patel, Nirlep; Brezinski, Mark
2003-10-01
Ultrahigh resolution OCT is used to visualize experimentally induced osteoarthritis in a rat knee model. Using a Cr4+:Forsterite laser, ultrahigh image resolutions of 5um are achieved. Progression of osteoarthritic remodeling and cartilage degeneration are quantified. The utility of OCT for the assessment of cartilage integrity is demonstrated.
NASA Astrophysics Data System (ADS)
Shimokura, Ryota; Hosoi, Hiroshi; Nishimura, Tadashi; Iwakura, Takashi; Yamanaka, Toshiaki
2015-01-01
When the aural cartilage is made to vibrate it generates sound directly into the external auditory canal which can be clearly heard. Although the concept of cartilage conduction can be applied to various speech communication and music industrial devices (e.g. smartphones, music players and hearing aids), the conductive performance of such devices has not yet been defined because the calibration methods are different from those currently used for air and bone conduction. Thus, the aim of this study was to simulate the cartilage conduction sound (CCS) using a head and torso simulator (HATS) and a model of aural cartilage (polyurethane resin pipe) and compare the results with experimental ones. Using the HATS, we found the simulated CCS at frequencies above 2 kHz corresponded to the average measured CCS from seven subjects. Using a model of skull bone and aural cartilage, we found that the simulated CCS at frequencies lower than 1.5 kHz agreed with the measured CCS. Therefore, a combination of these two methods can be used to estimate the CCS with high accuracy.
Gaffney, Eamonn A.; Doblaré, Manuel
2014-01-01
Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease characterized by progressive weakness, muscle atrophy, and fasciculation. This fact results in a continuous degeneration and dysfunction of articular soft tissues. Specifically, cartilage is an avascular and nonneural connective tissue that allows smooth motion in diarthrodial joints. Due to the avascular nature of cartilage tissue, cells nutrition and by-product exchange are intermittently occurring during joint motions. Reduced mobility results in a change of proteoglycan density, osmotic pressure, and permeability of the tissue. This work aims to demonstrate the abnormal cartilage deformation in progressive immobilized articular cartilage for ALS patients. For this aim a novel 3D mechano-electrochemical model based on the triphasic theory for charged hydrated soft tissues is developed. ALS patient parameters such as tissue porosity, osmotic coefficient, and fixed anions were incorporated. Considering different mobility reduction of each phase of the disease, results predicted the degree of tissue degeneration and the reduction of its capacity for deformation. The present model can be a useful tool to predict the evolution of joints in ALS patients and the necessity of including specific cartilage protectors, drugs, or maintenance physical activities as part of the symptomatic treatment in amyotrophic lateral sclerosis. PMID:24991537
Computational model for the analysis of cartilage and cartilage tissue constructs
Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.
2013-01-01
We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936
Bardos, Tamas; Farkas, Boglarka; Mezes, Beata; Vancsodi, Jozsef; Kvell, Krisztian; Czompoly, Tamas; Nemeth, Peter; Bellyei, Arpad; Illes, Tamas
2009-11-01
A focal cartilage lesion has limited capacity to heal, and the repair modalities used at present are still unable to provide a universal solution. Pure cartilage graft implantation appears to be a simple option, but it has not been applied widely as cartilage will not reattach easily to the subchondral bone. We used a multiple-incision technique (processed chondrograft) to increase cartilage graft surface. We hypothesized that pure cartilage graft with augmented osteochondral fusion capacity may be used for cartilage repair and we compared this method with other repair techniques. Controlled laboratory study. Full-thickness focal cartilage defects were created on the medial femoral condyle of 9-month-old pigs; defects were repaired using various methods including bone marrow stimulation, autologous chondrocyte implantation, and processed chondrograft. After the repair, at weeks 6 and 24, macroscopic and histologic evaluation was carried out. Compared with other methods, processed chondrograft was found to be similarly effective in cartilage repair. Defects without repair and defects treated with bone marrow stimulation appeared slightly irregular with fibrocartilage filling. Autologous chondrocyte implantation produced hyalinelike cartilage, although its cellular organization was distinguishable from the surrounding articular cartilage. Processed chondrograft demonstrated good osteochondral integration, and the resulting tissue appeared to be hyaline cartilage. The applied cartilage surface processing method allows acceptable osteochondral integration, and the repair tissue appears to have good macroscopic and histologic characteristics. If further studies confirm its efficacy, this technique could be considered for human application in the future.
Myrtol ameliorates cartilage lesions in an osteoarthritis rat model.
Ying, Binbin; Maimaiti, Abudu Kelimujiang; Song, Donghui; Zhu, Songsong
2015-01-01
The aim of this study is to evaluate the effects of myrtol standardized on cartilage lesions in osteoarthritis (OA) rats. Fifty-six healthy Sprague-Dawley rats were randomly divided into sham group (13 rats) and OA model group (43 rats) with interior meniscus excision. Then serum estradiol (E2) and glycosaminoglycan (GAG) content in cartilage tissue were measured by radioimmunoassay and toluidine blue staining, respectively. After that, the model rats were randomly divided into low dose myrtol (LDM) group, middle dose myrtol (MDM) group and high dose myrtol (HDM) group (10 rats in each group) with treatment of 450 mg/kg, 300 mg/kg and 150 mg/kg myrtol, respectively. Then, Mankin scores were used to evaluate lesion extent of knee joint cartilage. Expression of tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), interleukin (IL)-6, Bax and Bcl-2 were investigated using PCR gel electrophoresis method. Mankin cores were lower in sham group and myrtol group than in model group. There were statistically significant differences (P < 0.01) between sham group and model group in expression of TNF-α, TGF-β1, IL-6, Bax and Bcl-2 in the cartilage tissue. Myrtol significantly reduced the expression of TNF-α, IL-6 and Bax, and increased the expression of TGF-β1 and Bcl-2 in myrtol group, comparing with those in model group (P < 0.01). Myrtol could down-regulate the expression of TNF-α, IL-6 and Bax, and up-regulate the expression of TGF-β1 and Bcl-2. Myrtol standardized is a promising drug to ameliorate knee cartilage lesions in the OA rat model.
NASA Astrophysics Data System (ADS)
Marenzana, Massimo; Hagen, Charlotte K.; Das Neves Borges, Patricia; Endrizzi, Marco; Szafraniec, Magdalena B.; Ignatyev, Konstantin; Olivo, Alessandro
2012-12-01
Being able to quantitatively assess articular cartilage in three-dimensions (3D) in small rodent animal models, with a simple laboratory set-up, would prove extremely important for the development of pre-clinical research focusing on cartilage pathologies such as osteoarthritis (OA). These models are becoming essential tools for the development of new drugs for OA, a disease affecting up to 1/3 of the population older than 50 years for which there is no cure except prosthetic surgery. However, due to limitations in imaging technology, high-throughput 3D structural imaging has not been achievable in small rodent models, thereby limiting their translational potential and their efficiency as research tools. We show that a simple laboratory system based on coded-aperture x-ray phase contrast imaging (CAXPCi) can correctly visualize the cartilage layer in slices of an excised rat tibia imaged both in air and in saline solution. Moreover, we show that small, surgically induced lesions are also correctly detected by the CAXPCi system, and we support this finding with histopathology examination. Following these successful proof-of-concept results in rat cartilage, we expect that an upgrade of the system to higher resolutions (currently underway) will enable extending the method to the imaging of mouse cartilage as well. From a technological standpoint, by showing the capability of the system to detect cartilage also in water, we demonstrate phase sensitivity comparable to other lab-based phase methods (e.g. grating interferometry). In conclusion, CAXPCi holds a strong potential for being adopted as a routine laboratory tool for non-destructive, high throughput assessment of 3D structural changes in murine articular cartilage, with a possible impact in the field similar to the revolution that conventional microCT brought into bone research.
Characterization of an Ex vivo Femoral Head Model Assessed by Markers of Bone and Cartilage Turnover
Madsen, Suzi Hoegh; Goettrup, Anne Sofie; Thomsen, Gedske; Christensen, Søren Tvorup; Schultz, Nikolaj; Henriksen, Kim; Bay-Jensen, Anne-Christine; Karsdal, Morten Asser
2011-01-01
Objective: The pathophysiology of osteoarthritis involves the whole joint and is characterized by cartilage degradation and altered subchondral bone turnover. At present, there is a need for biological models that allow investigation of the interactions between the key cellular players in bone/cartilage: osteoblasts, osteoclasts, and chondrocytes. Methods: Femoral heads from 3-, 6-, 9-, and 12-week-old female mice were isolated and cultured for 10 days in serum-free media in the absence or presence of IGF-I (100 nM) (anabolic stimulation) or OSM (10 ng/mL) + TNF-α (20 ng/mL) (catabolic stimulation). Histology on femoral heads before and after culture was performed, and the growth plate size was examined to evaluate the effects on cell metabolism. The conditioned medium was examined for biochemical markers of bone and cartilage degradation/formation. Results: Each age group represented a unique system regarding the interest of bone or cartilage metabolism. Stimulation over 10 days with OSM + TNF-α resulted in depletion of proteoglycans from the cartilage surface in all ages. Furthermore, OSM + TNF-α decreased growth plate size, whereas IGF-I increased the size. Measurements from the conditioned media showed that OSM + TNF-α increased the number of osteoclasts by approximately 80% and induced bone and cartilage degradation by approximately 1200% and approximately 2600%, respectively. Stimulation with IGF-I decreased the osteoclast number and increased cartilage formation by approximately 30%. Conclusion: Biochemical markers and histology together showed that the catabolic stimulation induced degradation and the anabolic stimulation induced formation in the femoral heads. We propose that we have established an explant whole-tissue model for investigating cell-cell interactions, reflecting parts of the processes in the pathogenesis of joint degenerative diseases. PMID:26069585
Comparison of MRI-based estimates of articular cartilage contact area in the tibiofemoral joint.
Henderson, Christopher E; Higginson, Jill S; Barrance, Peter J
2011-01-01
Knee osteoarthritis (OA) detrimentally impacts the lives of millions of older Americans through pain and decreased functional ability. Unfortunately, the pathomechanics and associated deviations from joint homeostasis that OA patients experience are not well understood. Alterations in mechanical stress in the knee joint may play an essential role in OA; however, existing literature in this area is limited. The purpose of this study was to evaluate the ability of an existing magnetic resonance imaging (MRI)-based modeling method to estimate articular cartilage contact area in vivo. Imaging data of both knees were collected on a single subject with no history of knee pathology at three knee flexion angles. Intra-observer reliability and sensitivity studies were also performed to determine the role of operator-influenced elements of the data processing on the results. The method's articular cartilage contact area estimates were compared with existing contact area estimates in the literature. The method demonstrated an intra-observer reliability of 0.95 when assessed using Pearson's correlation coefficient and was found to be most sensitive to changes in the cartilage tracings on the peripheries of the compartment. The articular cartilage contact area estimates at full extension were similar to those reported in the literature. The relationships between tibiofemoral articular cartilage contact area and knee flexion were also qualitatively and quantitatively similar to those previously reported. The MRI-based knee modeling method was found to have high intra-observer reliability, sensitivity to peripheral articular cartilage tracings, and agreeability with previous investigations when using data from a single healthy adult. Future studies will implement this modeling method to investigate the role that mechanical stress may play in progression of knee OA through estimation of articular cartilage contact area.
Cartilage-targeting drug delivery: can electrostatic interactions help?
Bajpayee, Ambika G; Grodzinsky, Alan J
2017-03-01
Current intra-articular drug delivery methods do not guarantee sufficient drug penetration into cartilage tissue to reach cell and matrix targets at the concentrations necessary to elicit the desired biological response. Here, we provide our perspective on the utilization of charge-charge (electrostatic) interactions to enhance drug penetration and transport into cartilage, and to enable sustained binding of drugs within the tissue's highly negatively charged extracellular matrix. By coupling drugs to positively charged nanocarriers that have optimal size and charge, cartilage can be converted from a drug barrier into a drug reservoir for sustained intra-tissue delivery. Alternatively, a wide variety of drugs themselves can be made cartilage-penetrating by functionalizing them with specialized positively charged protein domains. Finally, we emphasize that appropriate animal models, with cartilage thickness similar to that of humans, must be used for the study of drug transport and retention in cartilage.
Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage
Kaucka, Marketa; Zikmund, Tomas; Tesarova, Marketa; Gyllborg, Daniel; Hellander, Andreas; Jaros, Josef; Kaiser, Jozef; Petersen, Julian; Szarowska, Bara; Newton, Phillip T; Dyachuk, Vyacheslav; Li, Lei; Qian, Hong; Johansson, Anne-Sofie; Mishina, Yuji; Currie, Joshua D; Tanaka, Elly M; Erickson, Alek; Dudley, Andrew; Brismar, Hjalmar; Southam, Paul; Coen, Enrico; Chen, Min; Weinstein, Lee S; Hampl, Ales; Arenas, Ernest; Chagin, Andrei S; Fried, Kaj; Adameyko, Igor
2017-01-01
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale. DOI: http://dx.doi.org/10.7554/eLife.25902.001 PMID:28414273
Haider, Mansoor A.; Guilak, Farshid
2009-01-01
Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain. PMID:19851478
Haider, Mansoor A; Guilak, Farshid
2007-06-15
Articular cartilage exhibits viscoelasticity in response to mechanical loading that is well described using biphasic or poroelastic continuum models. To date, boundary element methods (BEMs) have not been employed in modeling biphasic tissue mechanics. A three dimensional direct poroelastic BEM, formulated in the Laplace transform domain, is applied to modeling stress relaxation in cartilage. Macroscopic stress relaxation of a poroelastic cylinder in uni-axial confined compression is simulated and validated against a theoretical solution. Microscopic cell deformation due to poroelastic stress relaxation is also modeled. An extended Laplace inversion method is employed to accurately represent mechanical responses in the time domain.
Jia, Haoruo; Ma, Xiaoyuan; Tong, Wei; Doyran, Basak; Sun, Zeyang; Wang, Luqiang; Zhang, Xianrong; Zhou, Yilu; Badar, Farid; Chandra, Abhishek; Lu, X. Lucas; Xia, Yang; Han, Lin; Enomoto-Iwamoto, Motomi; Qin, Ling
2016-01-01
Osteoarthritis (OA) is the most common joint disease, characterized by progressive destruction of the articular cartilage. The surface of joint cartilage is the first defensive and affected site of OA, but our knowledge of genesis and homeostasis of this superficial zone is scarce. EGFR signaling is important for tissue homeostasis. Immunostaining revealed that its activity is mostly dominant in the superficial layer of healthy cartilage but greatly diminished when OA initiates. To evaluate the role of EGFR signaling in the articular cartilage, we studied a cartilage-specific Egfr-deficient (CKO) mouse model (Col2-Cre EgfrWa5/flox). These mice developed early cartilage degeneration at 6 mo of age. By 2 mo of age, although their gross cartilage morphology appears normal, CKO mice had a drastically reduced number of superficial chondrocytes and decreased lubricant secretion at the surface. Using superficial chondrocyte and cartilage explant cultures, we demonstrated that EGFR signaling is critical for maintaining the number and properties of superficial chondrocytes, promoting chondrogenic proteoglycan 4 (Prg4) expression, and stimulating the lubrication function of the cartilage surface. In addition, EGFR deficiency greatly disorganized collagen fibrils in articular cartilage and strikingly reduced cartilage surface modulus. After surgical induction of OA at 3 mo of age, CKO mice quickly developed the most severe OA phenotype, including a complete loss of cartilage, extremely high surface modulus, subchondral bone plate thickening, and elevated joint pain. Taken together, our studies establish EGFR signaling as an important regulator of the superficial layer during articular cartilage development and OA initiation. PMID:27911782
Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing; Liu, Huanhuan; Ouyang, Hong Wei
2014-10-01
Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. ©AlphaMed Press.
Kim, H-E; Rhee, J; Park, S; Yang, J; Chun, J-S
2017-03-01
In a preliminary study, we found that recently identified catabolic regulators of osteoarthritis (OA), including hypoxia-inducible factor (HIF)-2α and members of the zinc-ZIP8-MTF1 axis, upregulate the E3 ubiquitin ligase, Atrogin-1 (encoded by Fbxo32), in chondrocytes. As the ubiquitination/proteasomal degradation pathways are tightly regulated to modulate the expression of catabolic factors in chondrocytes, we examined the in vivo functions of Atrogin-1 in mouse models of OA. The mRNA and protein levels of Atrogin-1 and other regulators of OA were determined in primary cultured mouse chondrocytes, OA human cartilage, and OA cartilage from wild-type (WT) and Fbxo32-knockout (KO) mice subjected to destabilization of the medial meniscus or intra-articular (IA) injection of adenoviruses expressing HIF-2α (Ad-Epas1), ZIP8 (Ad-Zip8), or Atrogin-1 (Ad-Fbxo32). The effect of Atrogin-1 overexpression on the cartilage of WT mice was examined by IA injection of Ad-Fbxo32. Atrogin-1 mRNA levels in chondrocytes were markedly increased by treatment with interleukin-1β, HIF-2α, and members of the zinc-ZIP8-MTF1 axis. Atrogin-1 protein levels were also increased in OA cartilage from humans and various mouse OA models. However, the forced overexpression of Atrogin-1 in chondrocytes did not modulate the expression of cartilage matrix molecules or matrix-degrading enzymes. Moreover, overexpression of Atrogin-1 in the mouse joint tissues failed to cause OA pathogenesis, and Fbxo32 knockout failed to affect post-traumatic OA cartilage destruction in mice. Although Atrogin-1 is upregulated in OA cartilage, overexpression of Atrogin-1 in the joint tissues or knockout of Fbxo32 does not affect OA cartilage destruction in mice. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Pest, Michael Andrew; Pest, Courtney Alice; Bellini, Melina Rodrigues; Feng, Qingping; Beier, Frank
2015-01-01
Background Osteoarthritis (OA) is a degenerative joint disease with poorly understood etiology and pathobiology. Mitogen activated protein kinases (MAPKs) including ERK and p38 play important roles in the mediation of downstream pathways involved in cartilage degenerative processes. Dual specificity phosphatase 1 (DUSP1) dephosphorylates the threonine/serine and tyrosine sites on ERK and p38, causing deactivation of downstream signalling. In this study we examined the role of DUSP1 in spontaneous OA development at 21 months of age using a genetically modified mouse model deficient in Dusp1 (DUSP1 knockout mouse). Results Utilizing histochemical stains of paraffin embedded knee joint sections in DUSP1 knockout and wild type female and male mice, we showed similar structural progression of cartilage degeneration associated with OA at 21 months of age. A semi-quantitative cartilage degeneration scoring system also demonstrated similar scores in the various aspects of the knee joint articular cartilage in DUSP1 knockout and control mice. Examination of overall articular cartilage thickness in the knee joint demonstrated similar results between DUSP1 knockout and wild type mice. Immunostaining for cartilage neoepitopes DIPEN, TEGE and C1,2C was similar in the cartilage lesion sites and chondrocyte pericellular matrix of both experimental groups. Likewise, immunostaining for phosphoERK and MMP13 showed similar intensity and localization between groups. SOX9 immunostaining demonstrated a decreased number of positive cells in DUSP1 knockout mice, with correspondingly decreased staining intensity. Analysis of animal walking patterns (gait) did not show a discernable difference between groups. Conclusion Loss of DUSP1 does not cause changes in cartilage degeneration and gait in a mouse model of spontaneous OA at 21 months of age. Altered staining was observed in SOX9 immunostaining which may prove promising for future studies examining the role of DUSPs in cartilage and OA, as well as models of post-traumatic OA. PMID:26562438
Baboolal, Thomas G; Mastbergen, Simon C; Jones, Elena; Calder, Stuart J; Lafeber, Floris P J G; McGonagle, Dennis
2016-05-01
Knee joint distraction (KJD) is a novel, but poorly understood, treatment for osteoarthritis (OA) associated with remarkable 'spontaneous' cartilage repair in which resident synovial fluid (SF) multipotential mesenchymal stromal cells (MSCs) may play a role. We hypothesised that SF hyaluronic acid (HA) inhibited the initial interaction between MSCs and cartilage, a key first step to integration, and postulate that KJD environment favoured MSC/cartilage interactions. Attachment of dual-labelled SF-MSCs were assessed in a novel in vitro human cartilage model using OA and rheumatoid arthritic (RA) SF. SF was digested with hyaluronidase (hyase) and its effect on adhesion was observed using confocal microscopy. MRI and microscopy were used to image autologous dual-labelled MSCs in an in vivo canine model of KJD. SF-HA was investigated using gel electrophoresis and densitometry. Osteoarthritic-synovial fluid (OA-SF) and purified high molecular weight (MW) HA inhibited SF-MSC adhesion to plastic, while hyase treatment of OA-SF but not RA-SF significantly increased MSC adhesion to cartilage (3.7-fold, p<0.05) These differences were linked to the SF mediated HA-coat which was larger in OA-SF than in RA-SF. OA-SF contained >9 MDa HA and this correlated with increases in adhesion (r=0.880). In the canine KJD model, MSC adhesion to cartilage was evident and also dependent on HA MW. These findings highlight an unappreciated role of SF-HA on MSC interactions and provide proof of concept that endogenous SF-MSCs are capable of adhering to cartilage in a favourable biochemical and biomechanical environment in OA distracted joints, offering novel one-stage strategies towards joint repair. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Foldager, Casper Bindzus; Toh, Wei Seong; Christensen, Bjørn Borsøe; Lind, Martin; Gomoll, Andreas H.; Spector, Myron
2016-01-01
Objective To identify the collagen type IV (Col4) isoform in articular cartilage and to evaluate the expressions of Col4 and laminin in the pericellular matrix (PCM) in damaged cartilage and during cartilage repair. Design The Col4 isoform was determined in chondrocytes isolated from 6 patients cultured up to 6 days and in 21% O2 or 1% O2, and the gene expression of Col4 α-chains was investigated. The distribution of Col4 and laminin in traumatically damaged cartilage (n = 7) and clinically failed cartilage repair (microfracture, TruFit, autologous chondrocyte implantation; n = 11) were investigated using immunohistochemistry. Normal human cartilage was used as control (n = 8). The distribution during clinical cartilage repair procedures was investigated in a minipig model with 6-month follow-up (untreated chondral, untreated osteochondral, microfracture, autologous chondrocyte implantation; n = 10). Results The Col4 isoform in articular cartilage was characterized as α1α1α2, which is an isoform containing antiangiogenic domains in the NC1-terminals (arresten and canstatin). In normal cartilage, laminin and Col4 was exclusively found in the PCM. High amounts (>50%) of Col4 in the PCM significantly decreased in damaged cartilage (P = 0.004) and clinically failed repair tissue (P < 0.001). Laminin was only found with high expression (>50%) in 4/8 of the normal samples, which was not statistically significantly different from damaged cartilage (P = 0.15) or failed cartilage repair (P = 0.054). Conclusions Col4 in cartilage contain antiangiogenic domains and may play a role in the hypoxic environment in articular cartilage. Col4 and laminin was not found in the PCM of damaged and clinically failed repair. PMID:26958317
Bermueller, Christian; Elsaesser, Alexander F.; Sewing, Judith; Baur, Nina; von Bomhard, Achim; Scheithauer, Marc; Notbohm, Holger; Rotter, Nicole
2013-01-01
Autologous grafts are frequently needed for nasal septum reconstruction. Because they are only available in limited amounts, there is a need for new cartilage replacement strategies. Tissue engineering based on the use of autologous chondrocytes and resorbable matrices might be a suitable option. So far, an optimal material for nasal septum reconstruction has not been identified. The aim of our study was to provide the first evaluation of marine collagen for use in nasal cartilage repair. First, we studied the suitability of marine collagen as a cartilage replacement matrix in the context of in vitro three dimensional cultures by analyzing cell migration, cytotoxicity, and extracellular matrix formation using human and rat nasal septal chondrocytes. Second, we worked toward developing a suitable orthotopic animal model for nasal septum repair, while simultaneously evaluating the biocompatibility of marine collagen. Seeded and unseeded scaffolds were transplanted into nasal septum defects in an orthotopic rat model for 1, 4, and 12 weeks. Explanted scaffolds were histologically and immunohistochemically evaluated. Scaffolds did not induce any cytotoxic reactions in vitro. Chondrocytes were able to adhere to marine collagen and produce cartilaginous matrix proteins, such as collagen type II. Treating septal cartilage defects in vivo with seeded and unseeded scaffolds led to a significant reduction in the number of nasal septum perforations compared to no replacement. In summary, we demonstrated that marine collagen matrices provide excellent properties for cartilage tissue engineering. Marine collagen scaffolds are able to prevent septal perforations in an autologous, orthotopic rat model. This newly described experimental surgical procedure is a suitable way to evaluate new scaffold materials for their applicability in the context of nasal cartilage repair. PMID:23621795
UTE bi-component analysis of T2* relaxation in articular cartilage
Shao, H.; Chang, E.Y.; Pauli, C.; Zanganeh, S.; Bae, W.; Chung, C.B.; Tang, G.; Du, J.
2015-01-01
SUMMARY Objectives To determine T2* relaxation in articular cartilage using ultrashort echo time (UTE) imaging and bi-component analysis, with an emphasis on the deep radial and calcified cartilage. Methods Ten patellar samples were imaged using two-dimensional (2D) UTE and Car-Purcell-Meiboom-Gill (CPMG) sequences. UTE images were fitted with a bi-component model to calculate T2* and relative fractions. CPMG images were fitted with a single-component model to calculate T2. The high signal line above the subchondral bone was regarded as the deep radial and calcified cartilage. Depth and orientation dependence of T2*, fraction and T2 were analyzed with histopathology and polarized light microscopy (PLM), confirming normal regions of articular cartilage. An interleaved multi-echo UTE acquisition scheme was proposed for in vivo applications (n = 5). Results The short T2* values remained relatively constant across the cartilage depth while the long T2* values and long T2* fractions tended to increase from subchondral bone to the superficial cartilage. Long T2*s and T2s showed significant magic angle effect for all layers of cartilage from the medial to lateral facets, while the short T2* values and T2* fractions are insensitive to the magic angle effect. The deep radial and calcified cartilage showed a mean short T2* of 0.80 ± 0.05 ms and short T2* fraction of 39.93 ± 3.05% in vitro, and a mean short T2* of 0.93 ± 0.58 ms and short T2* fraction of 35.03 ± 4.09% in vivo. Conclusion UTE bi-component analysis can characterize the short and long T2* values and fractions across the cartilage depth, including the deep radial and calcified cartilage. The short T2* values and T2* fractions are magic angle insensitive. PMID:26382110
Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis
Li, Xinle; Yang, Jing; Liu, Daquan; Li, Jie; Niu, Kaijun; Feng, Shiqing; Yokota, Hiroki; Zhang, Ping
2016-01-01
Osteoarthritis (OA) is a whole joint disorder that involves cartilage degradation and periarticular bone response. Changes of cartilage and subchondral bone are associated with development and activity of osteoclasts from subchondral bone. Knee loading promotes bone formation, but its effects on OA have not been well investigated. Here, we hypothesized that knee loading regulates subchondral bone remodeling by suppressing osteoclast development, and prevents degradation of cartilage through crosstalk of bone-cartilage in osteoarthritic mice. Surgery-induced mouse model of OA was used. Two weeks application of daily dynamic knee loading significantly reduced OARSI scores and CC/TAC (calcified cartilage to total articular cartilage), but increased SBP (subchondral bone plate) and B.Ar/T.Ar (trabecular bone area to total tissue area). Bone resorption of osteoclasts from subchondral bone and the differentiation of osteoclasts from bone marrow-derived cells were completely suppressed by knee loading. The osteoclast activity was positively correlated with OARSI scores and negatively correlated with SBP and B.Ar/T.Ar. Furthermore, knee loading exerted protective effects by suppressing osteoclastogenesis through Wnt signaling. Overall, osteoclast lineage is the hyper responsiveness of knee loading in osteoarthritic mice. Mechanical stimulation prevents OA-induced cartilage degeneration through crosstalk with subchondral bone. Knee loading might be a new potential therapy for osteoarthritis patients. PMID:27087498
Fernandes, Tiago Lazzaretti; Shimomura, Kazunori; Asperti, Andre; Pinheiro, Carla Cristina Gomes; Caetano, Heloísa Vasconcellos Amaral; Oliveira, Claudia Regina G C M; Nakamura, Norimasa; Hernandez, Arnaldo José; Bueno, Daniela Franco
2018-05-04
Chondral lesion is a pathology with high prevalence, reaching as much as 63% of general population and 36% among athletes. The ability of human Dental Pulp Stem Cells (DPSCs) to differentiate into chondroblasts in vitro suggests that this stem cell type may be useful for tissue bioengineering. However, we have yet to identify a study of large animal models in which DPSCs were used to repair articular cartilage. Therefore, this study aimed to describe a novel treatment for cartilage lesion with DPSCs on a large animal model. Mesenchymal stem cells (MSC) were obtained from deciduous teeth and characterized by flow cytometry. DPSCs were cultured and added to a collagen type I/III biomaterial composite scaffold. Brazilian miniature pig (BR-1) was used. A 6-mm diameter, full-thickness chondral defect was created in each posterior medial condyle. The defects were covered with scaffold alone or scaffold + DPSCs on the contralateral side. Animals were euthanized 6 weeks post-surgery. Cartilage defects were analyzed macroscopically and histology according to modified O'Driscoll scoring system. Flow cytometry confirmed characterization of DPSCs as MSCs. Macroscopic and histological findings suggested that this time period was reasonable for evaluating cartilage repair. To our knowledge, this study provides the first description of an animal model using DPSCs to study the differentiation of hyaline articular cartilage in vivo. The animals tolerated the procedure well and did not show clinical or histological rejection of the DPSCs, reinforcing the feasibility of this descriptive miniature pig model for pre-clinical studies.
Evaluation of cartilage degeneration in a rat model of rotator cuff tear arthropathy
Kramer, Erik J.; Bodendorfer, Blake M.; Laron, Dominique; Wong, Jason; Kim, Hubert T.; Liu, Xuhui; Feeley, Brian T.
2013-01-01
Introduction Rotator cuff tears are the most common injury seen by shoulder surgeons. Many late stage rotator cuff tear patients develop glenohumeral osteoarthritis as a result of torn cuff tendons, termed cuff tear arthropathy. However, the mechanisms of cuff tear arthropathy have not been fully established. It has been hypothesized that a combination of synovial and mechanical factors contribute equally to the development of cuff tear arthropathy. The goal of this study was to assess the utility of this model in investigating cuff-tear arthropathy. Methods We utilized a rat model which accurately reflects rotator cuff muscle degradation after massive rotator cuff tears through either infraspinatus and supraspinatus tenotomy or suprascapular nerve transection. Using a Modified-Mankin Scoring System (MMS), we found significant glenohumeral cartilage damage following both rotator cuff tenotomy and suprascapular nerve transection after only 12 weeks. Results Cartilage degeneration was similar between groups, and was present on both the humeral head and the glenoid. Denervation of the supraspinatus and infraspinatus muscles without opening the joint capsule caused cartilage degeneration similar to that found in the tendon transection group. Conclusions These results suggest that altered mechanical loading after rotator cuff tears is the primary factor in cartilage degeneration after rotator cuff tears. Clinically, understanding the process of cartilage degeneration after rotator cuff injury will help guide treatment decisions in the setting of rotator cuff tears. Level of evidence Basic Science Study, Animal Model PMID:23664745
Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.
Neubert, A; Yang, Z; Engstrom, C; Xia, Y; Strudwick, M W; Chandra, S S; Fripp, J; Crozier, S
2016-10-01
Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone-cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.
Automatic segmentation of the glenohumeral cartilages from magnetic resonance images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neubert, A., E-mail: ales.neubert@csiro.au
Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hipmore » joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). Conclusions: This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.« less
Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong
2017-01-01
Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.
Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Zhu, Yong
2017-01-01
Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage. PMID:28666028
Efficacy of platelet-rich fibrin matrix on viability of diced cartilage grafts in a rabbit model.
Güler, İsmail; Billur, Deniz; Aydin, Sevim; Kocatürk, Sinan
2015-03-01
The objective of this study was to compare the viability of cartilage grafts embedded in platelet-rich fibrin matrix (PRFM) wrapped with no material (bare diced cartilage grafts), oxidized methylcellulose (Surgicel), or acellular dermal tissue (AlloDerm). Experimental study. In this study, six New Zealand rabbits were used. Cartilage grafts including perichondrium were excised from each ear and diced into 2-mm-by 2-mm pieces. There were four comparison groups: 1) group A, diced cartilage (not wrapped with any material); 2) group B, diced cartilage wrapped with AlloDerm; 3) group C, diced cartilage grafts wrapped with Surgicel; and 4) group D, diced cartilage wrapped with PRFM. Four cartilage grafts were implanted under the skin at the back of each rabbit. All rabbits were sacrificed at the end of 10 weeks. The cartilages were stained with hematoxylin-eosin, Masson's Trichrome, and Orcein. After that, they were evaluated for the viability of chondrocytes, collagen content, fibrillar structure of matrix, and changes in peripheral tissues. When the viability of chondrocytes, the content of fiber in matrix, and changes in peripheral tissues were compared, the cartilage embedded in the PRFM group was statistically significantly higher than in the other groups (P < 0.05). We concluded that PRFM has significant advantages in ensuring the chondrocyte viability of diced cartilage grafts. It is also biocompatible, with relatively lesser inflammation and fibrosis. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.
Dabiri, Yaghoub; Li, LePing
2015-06-01
A focal cartilage defect involves tissue loss or rupture. Altered mechanics in the affected joint may play an essential role in the onset and progression of osteoarthritis. The objective of the present study was to determine the compromised load support in the human knee joint during defect progression from the cartilage surface to the cartilage-bone interface. Ten normal and defect cases were simulated with a previously tested 3D finite element model of the knee. The focal defects were considered in both condyles within high load-bearing regions. Fluid pressurization, anisotropic fibril-reinforcement, and depth-dependent mechanical properties were considered for the articular cartilages and menisci. The results showed that a small cartilage defect could cause 25% reduction in the load support of the knee joint due to a reduced capacity of fluid pressurization in the defect cartilage. A partial-thickness defect could cause a fluid pressure decrease or increase in the remaining underlying cartilage depending on the defect depth. A cartilage defect also increased the shear strain at the cartilage-bone interface, which was more significant with a full-thickness defect. The effect of cartilage defect on the fluid pressurization also depended on the defect sites and contact conditions. In conclusion, a focal cartilage defect causes a fluid-pressure dependent load reallocation and a compromised load support in the joint, which depend on the defect depth, site, and contact condition. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lyyra-Laitinen, Tiina; Niinimäki, Mia; Töyräs, Juha; Lindgren, Reijo; Kiviranta, Ilkka; Jurvelin, Jukka S.
1999-10-01
Structural alterations associated with early, mostly reversible, degeneration of articular cartilage induce tissue softening, generally preceding fibrillation and, thus, visible changes of the cartilage surface. We have already developed an indentation instrument for measuring arthroscopic stiffness of cartilage with typical thickness >2 mm. The aim of this study was to extend the applicability of the instrument for the measurement of thin (<2 mm) cartilage stiffness. Variations in cartilage thickness, which will not be known during arthroscopy, can nonetheless affect the indentation measurement, and therefore optimization of the indenter dimensions is necessary. First, we used theoretical and finite element models to compare plane-ended and spherical-ended indenters and, then, altered the dimensions to determine the optimal indenter for thin cartilage measurements. Finally, we experimentally validated the optimized indenter using bovine humeral head cartilage. Reference unconfined compression measurements were carried out with a material testing device. The spherical-ended indenter was more insensitive to the alterations in cartilage thickness (20% versus 39% in the thickness range 1.5-5 mm) than the plane-ended indenter. For thin cartilage, the optimal dimensions for the spherical-ended indenter were 0.5 mm for diameter and 0.1 mm for height. The experimental stiffness measurements with this indenter correlated well with the reference measurements (r = 0.811, n = 31, p<0.0001) in the cartilage thickness range 0.7-1.8 mm. We conclude that the optimized indenter is reliable and well suited for the measurement of thin cartilage stiffness.
Haksever, Mehmet; Akduman, Davut; Solmaz, Fevzi; Gündoğdu, Ercan
2015-04-01
The aim of this study is to compare the inlay butterfly transcanal cartilage tympanoplasty with the conventional underlay tympanoplasty. Operation time, pre- and postoperative hearing levels, successful closure rate of tympanic membrane (take rate) and long-term re-perforation in dry perforated chronic otitis media were evaluated. The study design consists of case series with a chart review. The study settings are tertiary referral center. Of the 72 patients (age range 14-57 years) with dry perforated chronic otitis media, 29 patients underwent inlay butterfly transcanal cartilage tympanoplasty (group 1) and 43 patients underwent conventional underlay tympanoplasty without mastoidectomy (group 2) between January 2010 and June 2012. The outcome measures were the duration of surgery, "take rate" at the 30th postoperative day and the audiometric results at the 45th postoperative day. Long-term re-perforation was evaluated at least postoperative 1 year. The graft take rate was 96.5 % in group 1 and 90.7 % in group 2 at the 30th postoperative day (p > 0.05). Mean air-bone gap was improved from 18.8 ± 8.09 to 11.9 ± 7.12 dB in group 1 and from 21.9 ± 7.32 to 11.6 ± 8.43 dB in group 2. The improvement of air-bone gap in both groups was statistically significant (p < 0.05) but the improvement between the groups was not statistically significant (p > 0.05). The average duration of the surgery was 29.9 ± 5.38 min for inlay tympanoplasty group and 58.9 ± 12.1 min for underlay tympanoplasty group (p < 0.05). Two patients in group 2 had re-perforations after an initial take of the graft in 1-year follow-up period. Inlay butterfly transcanal cartilage tympanoplasty is a good choice in selected cases. Although this technique has the similar take rate and audiological results with conventional underlay tympanoplasty, it is a time-saving procedure.
Mechanical stimulation enhances integration in an in vitro model of cartilage repair.
Theodoropoulos, John S; DeCroos, Amritha J N; Petrera, Massimo; Park, Sam; Kandel, Rita A
2016-06-01
(1) To characterize the effects of mechanical stimulation on the integration of a tissue-engineered construct in terms of histology, biochemistry and biomechanical properties; (2) to identify whether cells of the implant or host tissue were critical to implant integration; and (3) to study cells believed to be involved in lateral integration of tissue-engineered cartilage to host cartilage. We hypothesized that mechanical stimulation would enhance the integration of the repair implant with host cartilage in an in vitro integration model. Articular cartilage was harvested from 6- to 9-month-old bovine metacarpal-phalangeal joints. Constructs composed of tissue-engineered cartilage implanted into host cartilage were placed in spinner bioreactors and maintained on a magnetic stir plate at either 0 (static control) or 90 (experimental) rotations per minute (RPM). The constructs from both the static and spinner bioreactors were harvested after either 2 or 4 weeks of culture and evaluated histologically, biochemically, biomechanically and for gene expression. The extent and strength of integration between tissue-engineered cartilage and native cartilage improved significantly with both time and mechanical stimulation. Integration did not occur if the implant was not viable. The presence of stimulation led to a significant increase in collagen content in the integration zone between host and implant at 2 weeks. The gene profile of cells in the integration zone differs from host cartilage demonstrating an increase in the expression of membrane type 1 matrix metalloproteinase (MT1-MMP), aggrecan and type II collagen. This study shows that the integration of in vitro tissue-engineered implants with host tissue improves with mechanical stimulation. The findings of this study suggests that consideration should be given to implementing early loading (mechanical stimulation) into future in vivo studies investigating the long-term viability and integration of tissue-engineered cartilage for the treatment of cartilage injuries. This could simply be done through the use of continuous passive motion (CPM) in the post-operative period or through a more complex and structured rehabilitation program with a gradual increase in forces across the joint over time.
Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.
Lulich, Steven M; Arsikere, Harish
2015-06-01
This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.
He, Aijuan; Liu, Lina; Luo, Xusong; Liu, Yu; Liu, Yi; Liu, Fangjun; Wang, Xiaoyun; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong
2017-01-13
Functional reconstruction of large osteochondral defects is always a major challenge in articular surgery. Some studies have reported the feasibility of repairing articular osteochondral defects using bone marrow stromal cells (BMSCs) and biodegradable scaffolds. However, no significant breakthroughs have been achieved in clinical translation due to the instability of in vivo cartilage regeneration based on direct cell-scaffold construct implantation. To overcome the disadvantages of direct cell-scaffold construct implantation, the current study proposed an in vitro cartilage regeneration strategy, providing relatively mature cartilage-like tissue with superior mechanical properties. Our strategy involved in vitro cartilage engineering, repair of osteochondral defects, and evaluation of in vivo repair efficacy. The results demonstrated that BMSC engineered cartilage in vitro (BEC-vitro) presented a time-depended maturation process. The implantation of BEC-vitro alone could successfully realize tissue-specific repair of osteochondral defects with both cartilage and subchondral bone. Furthermore, the maturity level of BEC-vitro had significant influence on the repaired results. These results indicated that in vitro cartilage regeneration using BMSCs is a promising strategy for functional reconstruction of osteochondral defect, thus promoting the clinical translation of cartilage regeneration techniques incorporating BMSCs.
Hyaline cartilage degenerates after autologous osteochondral transplantation.
Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S
2004-11-01
Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.
Zhu, Lie; Jiang, Hua; Zhou, Guang-Dong; Wu, Yu-Jia; Luo, Xu-Song
2008-09-01
To explore the feasibility of using a nonreactive, permanent endoskeletal scaffold to create the prothesis in special shape which is covered with tissue-engineered cartilage. Porcine BMSCs and articular chondrocytes were isolated and expanded respectively in vitro. Porcine BMSC of passage 1 in the concentration of 10 x 10(7)/ml were seeded onto a cylinder-shaped PGA (1 mm in thickness)/Medpor (3mm in diameter and 5mm in highness) scaffold as the experimental group. After the cell-scaffold constructs were cultured for 5 days, the primary medium, high-glucose DMEM medium with 10% fetal bovine serum (FBS), was replaced by chondrogenically inductive medium for 4 weeks. BMSCs and chondrocytes of the same concentration were seeded respectively onto the scaffold as the negative control group and the positive control group. After cultured in vitro for 4 weeks, the cell-scaffolds construct were implanted into subcutaneous pockets on the back of nude mice. Four and eight weeks later, the formed cartilage prosthesis were harvested and then evaluated by gross view, histology, immunohistochemistry and glycosamino-glycan (GAG) content. Cells in all groups had fine adhesion to the scaffold and could secrete extracellular matrix. All specimens in experimental group and positive control group formed mature cartilage with collagen II expression.The mature catrtilage wraped HDPE compactly and grown into the gap of HDPE. Mature lacuna structures and metachromatic matrices were also observed in these specimens. GAG contents in experimental group were (5.13 +/- 0.32) mg/g (4 weeks), (5.37 +/- 0.12) mg/g (8 weeks). In contrast, specimens in BMSC group showed mainly fibrous tissue. It indicates that it is feasible to create special shaped tissue-engineering cartilage with the permanent internal support using BMSCs as seed cell.
Mitri, Elisa; Millucci, Lia; Merolle, Lucia; Bernardini, Giulia; Vaccari, Lisa; Gianoncelli, Alessandra; Santucci, Annalisa
2017-05-01
Alkaptonuria (AKU) is an ultra-rare disease associated to the lack of an enzyme involved in tyrosine catabolism. This deficiency results in the accumulation of homogentisic acid (HGA) in the form of ochronotic pigment in joint cartilage, leading to a severe arthropathy. Secondary amyloidosis has been also unequivocally assessed as a comorbidity of AKU arthropathy. Composition of ochronotic pigment and how it is structurally related to amyloid is still unknown. We exploited Synchrotron Radiation Infrared and X-Ray Fluorescence microscopies in combination with conventional bio-assays and analytical tools to characterize chemical composition and morphology of AKU cartilage. We evinced that AKU cartilage is characterized by proteoglycans depletion, increased Sodium levels, accumulation of lipids in the peri-lacunar regions and amyloid formation. We also highlighted an increase of aromatic compounds and oxygen-containing species, depletion in overall Magnesium content (although localized in the peri-lacunar region) and the presence of calcium carbonate fragments in proximity of cartilage lacunae. We highlighted common features between AKU and arthropathy, but also specific signatures of the disease, like presence of amyloids and peculiar calcifications. Our analyses provide a unified picture of AKU cartilage, shedding a new light on the disease and opening new perspectives. Ochronotic pigment is a hallmark of AKU and responsible of tissue degeneration. Conventional bio-assays have not yet clarified its composition and its structural relationship with amyloids. The present work proposes new strategies for filling the aforementioned gap that encompass the integration of new analytical approaches with standardized analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair.
Mouser, Vivian H M; Dautzenberg, Noël M M; Levato, Riccardo; van Rijen, Mattie H P; Dhert, Wouter J A; Malda, Jos; Gawlitta, Debby
2018-01-01
The implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process. To reduce animal experiments, an ex vivo osteochondral plug model was used and evaluated. The role of the delivered and endogenous cells in the repair process was investigated. Full thickness cartilage defects were created in equine osteochondral plugs. Defects were filled with (A) chondrocytes at the bottom of the defect, covered with a cell-free hydrogel, (B) chondrocytes homogeneously encapsulated in a hydrogel, and (C, D) combinations of A and B with different cell densities. Plugs were cultured for up to 57 days, after which the cartilage and repair tissues were characterized and compared to baseline samples. Additionally, at day 21, the origin of cells in the repair tissue was evaluated. Best outcomes were obtained with conditions C and D, which resulted in well-integrated cartilage-like tissue that completely filled the defect, regardless of the initial cell density. A critical role of the spatial chondrocyte distribution in the repair process was observed. Moreover, the osteochondral plugs stimulated cartilage formation in the hydrogels when cultured in the defects. The resulting repair tissue originated from the delivered cells. These findings confirm the potential of the osteochondral plug model for the optimization of the composition of cartilage implants and for studying repair mechanisms.
Miyatake, Kazumasa; Muneta, Takeshi; Ojima, Miyoko; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Tsuji, Kunikazu
2016-05-31
Although osteoarthritis (OA) is a multifactorial disease, little has been reported regarding the cooperative interaction among these factors on cartilage metabolism. Here we examined the synergistic effect of ovariectomy (OVX) and excessive mechanical stress (forced running) on articular cartilage homeostasis in a mouse model resembling a human postmenopausal condition. Mice were randomly divided into four groups, I: Sham, II: OVX, III: Sham and forced running (60 km in 6 weeks), and IV: OVX and forced running. Histological and immunohistochemical analyses were performed to evaluate the degeneration of articular cartilage and synovitis in the knee joint. Morphological changes of subchondral bone were analyzed by micro-CT. Micro-CT analyses showed significant loss of metaphyseal trabecular bone volume/tissue volume (BV/TV) after OVX as described previously. Forced running increased the trabecular BV/TV in all mice. In the epiphyseal region, no visible alteration in bone morphology or osteophyte formation was observed in any of the four groups. Histological analysis revealed that OVX or forced running respectively had subtle effects on cartilage degeneration. However, the combination of OVX and forced running synergistically enhanced synovitis and articular cartilage degeneration. Although morphological changes in chondrocytes were observed during OA initiation, no signs of bone marrow edema were observed in any of the four experimental groups. We report the coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. Since no surgical procedure was performed on the knee joint directly in this model, this model is useful in addressing the molecular pathogenesis of naturally occurring OA.
Laser-assisted cartilage reshaping: in vitro and in vivo animal studies
NASA Astrophysics Data System (ADS)
Wang, Zhi; Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.
1995-05-01
Correction of cartilaginous defects in the head and neck area remains a challenge for the surgeon. This study investigated a new technique for laser-assisted cartilage reshaping. The pulsed 1.44 micrometers Nd:YAG laser was used in vitro and in vivo experiments to irradiate cartilage to change it's shape without carbonization or vaporization of tissue. Two watts of average power in non contact manner was used to irradiate and reshape the cartilage. The extracted reshaped cartilage specimens underwent testing of elastic force with a computer assisted measurement system that recorded the changes in elastic force in the specimens from 1 hr to 11 days post-irradiation. An animal model of defective tracheal cartilage (collapsed tracheal wall) was created, allowed to heal for 6 weeks and then corrected endoscopically with the laser-assisted technique. The results of the in vitro and in vivo investigations demonstrated that it was possible to alter the cartilage and that cartilage would retain its new shape. The clinical significance of the technique is evident and warrants further animal studies and clinical trials.
Müller, Claudia; Marzahn, Ulrike; Kohl, Benjamin; El Sayed, Karym; Lohan, Anke; Meier, Carola; Ertel, Wolfgang; Schulze-Tanzil, Gundula
2013-11-01
Minipigs are widely used as a large animal model for cartilage repair. However, many in vitro studies are based on porcine chondrocytes derived from abundantly available premature hybrid pigs. It remains unclear whether pig line-dependent differences exist which could limit the comparability between in vitro and in vivo results using either hybrid or miniature pig articular chondrocytes. Porcine knee joint femoral cartilage was isolated from 3- to 5-month-old hybrid pigs and Göttingen minipigs. Cartilage from both pig lines was analysed for thickness, zonality, cell content, size and proteoglycan deposition. Cultured articular chondrocytes from both pig lines were investigated for gene and/or protein expression of cartilage-specific proteins such as type II collagen, aggrecan, the chondrogenic transcription factor Sox9, non-specific type I collagen and the cell-matrix receptor β1-integrin. Cartilage was significantly thinner in the miniature pig compared to the hybrid pig, but the differences between the medial and lateral femur condyles did not reach a significant level. Knee joint cartilage zone formation started only in the minipig, whereas cellularity and cell diameters were comparable in both pig lines. Blood vessels could be detected in the hybrid pig but not the minipig cartilage. Sulphated proteoglycan deposition was more pronounced in cartilage zones II-IV of both pig lines. Minipig chondrocytes expressed type II and I collagen, Sox9 and β1-integrin at a higher level than hybrid pig chondrocytes. These distinct line-dependent differences should be considered when using hybrid pig-derived chondrocytes for tissue engineering and Göttingen minipigs as a large animal model.
Ying, Jun; Wang, Pinger; Zhang, Shanxing; Xu, Taotao; Zhang, Lei; Dong, Rui; Xu, Shibing; Tong, Peijian; Wu, Chengliang; Jin, Hongting
2018-01-01
Transforming growth factor-β1 (TGF-β1) is a chondrogenic factor and has been reported to be able to enhance chondrocyte differentiation from bone marrow mesenchymal stem cells (BMSCs). Here we investigate the molecular mechanism through which TGF-β1 chronically promotes the repair of cartilage defect and inhibit chondrocyte hypertrophy. Animal models of full thickness cartilage defects were divided into three groups: model group, BMSCs group (treated with BMSCs/calcium alginate gel) and BMSCs+TGF-β1 group (treated with Lentivirus-TGF-β1-EGFP transduced BMSCs/calcium alginate gel). 4 and 8weeks after treatment, macroscopic observation, histopathological study and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were done to analyze phenotypes of the animals. BMSCs were transduced with Lentivirus-TGF-β1-EGFP in vitro and Western blot analysis was performed. We found that TGF-β1-expressiing BMSCs improved the repair of the cartilage defect. The impaired cartilage contained higher amount of GAG and type II collagen and was integrated to the surrounding normal cartilage and higher content of GAG and type II collagen. The major events include increased expression of type II collagen following Smad2/3 phosphorylation, and inhibition of cartilage hypertrophy by increasing Yes-associated protein-1 (YAP-1) and inhibiting Runx2 and Col10 after the completion of chondrogenic differentiation. We conclude that TGF-β1 is beneficial to chondrogenic differentiation of BMSCs via canonical Smad pathway to promote early-repairing of cartilage defect. Furthermore, TGF-β1 inhibits chondrocyte hypertrophy by decreasing hypertrophy marker gene expression via Hippo signaling. Long-term rational use of TGF-β1 may be an alternative approach in clinic for cartilage repair and regeneration. Copyright © 2017. Published by Elsevier Inc.
Liu, Xiaohua; Jin, Xiaobing; Ma, Peter X
2011-05-01
To repair complexly shaped tissue defects, an injectable cell carrier is desirable to achieve an accurate fit and to minimize surgical intervention. However, the injectable carriers available at present have limitations, and are not used clinically for cartilage regeneration. Here, we report nanofibrous hollow microspheres self-assembled from star-shaped biodegradable polymers as an injectable cell carrier. The nanofibrous hollow microspheres, integrating the extracellular-matrix-mimicking architecture with a highly porous injectable form, were shown to efficiently accommodate cells and enhance cartilage regeneration, compared with control microspheres. The nanofibrous hollow microspheres also supported a significantly larger amount of, and higher-quality, cartilage regeneration than the chondrocytes-alone group in an ectopic implantation model. In a critical-size rabbit osteochondral defect-repair model, the nanofibrous hollow microspheres/chondrocytes group achieved substantially better cartilage repair than the chondrocytes-alone group that simulates the clinically available autologous chondrocyte implantation procedure. These results indicate that the nanofibrous hollow microspheres are an excellent injectable cell carrier for cartilage regeneration.
On the detection of early osteoarthritis by quantitative microscopic imaging
NASA Astrophysics Data System (ADS)
Mittelstaedt, Daniel John
Articular cartilage is a thin layer of connective tissue that protects the ends of bones in diarthroidal joints. Cartilage distributes mechanical forces during daily movement throughout its unique depth-dependent structure. The extracellular matrix (ECM) of cartilage primarily contains water, collagen, and glycosaminoglycan (GAG). The collagen fibers are intertwined with negatively charged GAG and surround the cells (i.e. chondrocytes) in cartilage. Degradation to the ECM reduces the load bearing properties of cartilage which can be initiated by injury (e.g. anterior cruciate ligament (ACL) rupture) or disease (e.g. osteoarthritis (OA)). Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) are noninvasive imaging techniques that are increasingly being used in the clinical detection of cartilage degradation. The aim of the first project in this dissertation was to quantify and compare the depth-dependent GAG concentration from healthy and biochemically degraded humeral ex vivo articular cartilage using quantitative contrast enhanced micro-computed tomography (qCECT) at high resolution. The second project in this dissertation was aimed to measure the topographical and depth-dependent GAG concentration using qCECT and delayed gadolinium enhanced magnetic resonance imaging of cartilage (dGEMRIC) from the medial tibia cartilage three weeks after unilateral ACL transection which is an animal model of OA (i.e. modified Pond-Nuki model). These GAG measurements were correlated with a biochemical method, inductively couple plasma optical emission spectrometry, to compare the degradation on the medial tibia between the OA and contralateral cartilage. The third project in this dissertation used the same cartilage specimens as in project two to investigate the change in T2 due to OA and the effect on T2 from a contrast agent. Furthermore, the change in T2 relaxation was investigated from static unconfined compression with correlations by biomechanical measurements. These studies demonstrate the ability to use two quantitative microscopic imaging techniques, microCT and microMRI, to detect microscopic changes in collagen and GAG from healthy, biochemically degraded, and early OA cartilage. The capability for microscopic imaging to detect alterations at the earliest stages of OA will ultimately improve the understanding of degradation and may help aid in the detection for the prevention of disease and repair of damaged cartilage.
Osteogenic Treatment Initiating a Tissue-Engineered Cartilage Template Hypertrophic Transition.
Fu, J Y; Lim, S Y; He, P F; Fan, C J; Wang, D A
2016-10-01
Hypertrophic chondrocytes play a critical role in endochondral bone formation as well as the progress of osteoarthritis (OA). An in vitro cartilage hypertrophy model can be used as a platform to study complex molecular mechanisms involved in these processes and screen new drugs for OA. To develop an in vitro cartilage hypertrophy model, we treated a tissue-engineered cartilage template, living hyaline cartilaginous graft (LhCG), with osteogenic medium for hypertrophic induction. In addition, endothelial progenitor cells (EPCs) were seeded onto LhCG constructs to mimic vascular invasion. The results showed that osteogenic treatment significantly inhibited the synthesis of endostatin in LhCG constructs and enhanced expression of hypertrophic marker-collagen type X (Col X) and osteogenic markers, as well as calcium deposition in vitro. Upon subcutaneous implantation, osteogenic medium-treated LhCG constructs all stained positive for Col X and showed significant calcium deposition and blood vessel invasion. Col X staining and calcium deposition were most obvious in osteogenic medium-treated only group, while there was no difference between EPC-seeded and non-seeded group. These results demonstrated that osteogenic treatment was of the primary factor to induce hypertrophic transition of LhCG constructs and this model may contribute to the establishment of an in vitro cartilage hypertrophy model.
Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobol, Emil; Baum, Olga; Shekhter, Anatoly
Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage.more » In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-anderror approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.« less
Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing.
Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii
2017-09-01
Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.
Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing
NASA Astrophysics Data System (ADS)
Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii
2017-09-01
Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.
Joint diseases: from connexins to gap junctions.
Donahue, Henry J; Qu, Roy W; Genetos, Damian C
2017-12-19
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Pain, motor and gait assessment of murine osteoarthritis in a cruciate ligament transection model
Ruan, Merry ZC; Patel, Ronak M; Dawson, Brian C; Jiang, Ming-ming; Lee, Brendan HI
2013-01-01
Objective The major complaint of Osteoarthritis (OA) patients is pain. However, due to the nature of clinical studies and the limitation of animal studies, few studies have linked function impairment and behavioral changes in OA animal models to cartilage loss and histopathology. Our objective was to study surrogate markers of functional impairment in relation to cartilage loss and pathological changes in a post-traumatic mouse model of OA. Method We performed a battery of functional analyses in a mouse model of OA generated by cruciate ligament transection (CLT). The changes in functional analyses were linked to histological changes graded by OARSI standards, histological grading of synovitis, and volumetric changes of the articular cartilage and osteophytes quantified by phase contrast micro-CT. Results OA generated by CLT led to decreased time on rotarod, delayed response on hotplate analysis, and altered gait starting from 4 weeks after surgery. Activity in open field analysis did not change at 4, 8, or 12 weeks after CLT. The magnitude of behavioral changes was directly correlated with higher OARSI histological scores of OA, synovitis in the knee joints, cartilage volume loss, and osteophyte formation. Conclusion Our findings link functional analyses to histological grading, synovitis, comprehensive 3-dimensional assessment of cartilage volume and osteophyte formation. This serves as a reference for a mouse model in predicting outcomes of OA treatment. PMID:23973150
Knee cartilage segmentation using active shape models and local binary patterns
NASA Astrophysics Data System (ADS)
González, Germán.; Escalante-Ramírez, Boris
2014-05-01
Segmentation of knee cartilage has been useful for opportune diagnosis and treatment of osteoarthritis (OA). This paper presents a semiautomatic segmentation technique based on Active Shape Models (ASM) combined with Local Binary Patterns (LBP) and its approaches to describe the surrounding texture of femoral cartilage. The proposed technique is tested on a 16-image database of different patients and it is validated through Leave- One-Out method. We compare different segmentation techniques: ASM-LBP, ASM-medianLBP, and ASM proposed by Cootes. The ASM-LBP approaches are tested with different ratios to decide which of them describes the cartilage texture better. The results show that ASM-medianLBP has better performance than ASM-LBP and ASM. Furthermore, we add a routine which improves the robustness versus two principal problems: oversegmentation and initialization.
Zhang, Xudong; Wang, Chuandong; Zhao, Jingyu; Xu, Jiajia; Geng, Yiyun; Dai, Liming; Huang, Yan; Fu, Sai-Chuen; Dai, Kerong; Zhang, Xiaoling
2017-04-06
Osteoarthritis (OA), characterized by insufficient extracellular matrix synthesis and cartilage degeneration, is known as an incurable disease because its pathogenesis is poorly elucidated. Thus far, limited information is available regarding the pathophysiological role of microRNAs (miRNAs) in OA. In this study, we investigated the specific function of miR-146a in OA pathophysiology using mouse OA models. We found that the articular cartilage degeneration of miR-146a knockout (KO) mice was alleviated compared with that of the wild-type (WT) mice in spontaneous and instability-induced OA models. We demonstrate that miR-146a aggravated pro-inflammatory cytokines induced suppressing the expression of cartilage matrix-associated genes. We further identified calcium/calmodulin-dependent protein kinase II delta (Camk2d) and protein phosphatase 3, regulatory subunit B, beta isoform (Ppp3r2, also known as calcineurin B, type II) were essential targets of miR-146a in regulating cartilage homeostasis. Moreover, we found that surgical-induced OA mice treated with a miR-146a inhibitor significantly alleviated the destruction of articular cartilage via targeting Camk2d and Ppp3r2. These results suggested that miR-146a has a crucial role in maintaining cartilage homeostasis. MiR-146a inhibition in chondrocytes can be a potential therapeutic strategy to ameliorate OA.
Taylor, Michael P; Wedel, Mathew J
2013-01-01
The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised.
Taylor, Michael P.; Wedel, Mathew J.
2013-01-01
The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised. PMID:24205163
Wong, Chin-Chean; Chen, Chih-Hwa; Chan, Wing P; Chiu, Li-Hsuan; Ho, Wei-Pin; Hsieh, Fon-Jou; Chen, You-Tzung; Yang, Tsung-Lin
2017-11-01
To avoid complicated procedures requiring in vitro chondrocyte expansion for cartilage repair, the development of a culture-free, 1-stage approach combining platelet-rich fibrin (PRF) and autologous cartilage grafts may be the solution. To develop a feasible 1-step procedure to combine PRF and autologous cartilage grafts for articular chondral defects. Controlled laboratory study Methods: The chemotactic effects of PRF on chondrocytes harvested from the primary culture of rabbit cartilage were evaluated in vitro and ex vivo. The rabbit chondrocytes were cultured with different concentrations of PRF media and evaluated for their cell proliferation, chondrogenic gene expression, cell viability, and extracellular matrix synthesis abilities. For the in vivo study, the chondral defects were created on established animal models of rabbits. The gross anatomy, histology, and objective scores were evaluated to validate the treatment results. PRF improved the chemotaxis, proliferation, and viability of the cultured chondrocytes. The gene expression of the chondrogenic markers, including type II collagen and aggrecan, revealed that PRF induced the chondrogenic differentiation of cultured chondrocytes. PRF increased the formation and deposition of the cartilaginous matrix produced by cultured chondrocytes. The efficacy of PRF on cell viability was comparable with that of fetal bovine serum. In animal disease models, morphologic, histological, and objectively quantitative evaluation demonstrated that PRF combined with cartilage granules was feasible in facilitating chondral repair. PRF enhances the migration, proliferation, viability, and differentiation of chondrocytes, thus showing an appealing capacity for cartilage repair. The data altogether provide evidence to confirm the feasibility of 1-stage, culture-free method of combining PRF and autologous cartilage graft for repairing articular chondral defects. The single-stage, culture-free method of combining PRF and autologous cartilage is useful for repairing articular chondral defects. These advantages benefit clinical translation by simplifying and potentiating the efficacy of autologous cartilage transplantation.
Stewart, Rachel C.; Bansal, Prashant N.; Entezari, Vahid; Lusic, Hrvoje; Nazarian, Rosalynn M.; Snyder, Brian D.
2013-01-01
Purpose: To quantify the affinity of a cationic computed tomography (CT) contrast agent (CA4+) and that of an anionic contrast agent (ioxaglate) to glycosaminoglycans (GAGs) in ex vivo cartilage tissue explants and to characterize the in vivo diffusion kinetics of CA4+ and ioxaglate in a rabbit model. Materials and Methods: All in vivo procedures were approved by the institutional animal care and use committee. The affinities of ioxaglate and CA4+ to GAGs in cartilage (six bovine osteochondral plugs) were quantified by means of a modified binding assay using micro-CT after plug equilibration in serial dilutions of each agent. The contrast agents were administered intraarticularly to the knee joints of five New Zealand white rabbits to determine the in vivo diffusion kinetics and cartilage tissue imaging capabilities. Kinetics of diffusion into the femoral groove cartilage and relative contrast agent uptake into bovine plugs were characterized by means of nonlinear mixed-effects models. Diffusion time constants (τ) were compared by using a Student t test. Results: The uptake of CA4+ in cartilage was consistently over 100% of the reservoir concentration, whereas it was only 59% for ioxaglate. In vivo, the contrast material–enhanced cartilage reached a steady CT attenuation for both CA4+ and ioxaglate, with τ values of 13.8 and 6.5 minutes, respectively (P = .04). The cartilage was easily distinguishable from the surrounding tissues for CA4+ (12 mg of iodine per milliliter); comparatively, the anionic contrast agent provided less favorable imaging results, even when a higher concentration was used (80 mg of iodine per milliliter). Conclusion: The affinity of the cationic contrast agent CA4+ to GAGs enables high-quality imaging and segmentation of ex vivo bovine and rabbit cartilage, as well as in vivo rabbit cartilage. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112246/-/DC1 PMID:23192774
Ha, Chul-Won; Kim, Jin-A; Rhim, Ji-Heon; Park, Yong-Geun; Chung, Jun Young; Lee, Han-Jun
2016-01-01
Background Mesenchymal stem cells (MSCs) are known to have therapeutic potential for cartilage repair. However, the optimal concentration of MSCs for cartilage repair remains unclear. Therefore, we aimed to explore the feasibility of cartilage repair by human umbilical cord blood-derived MSCs (hUCB-MSCs) and to determine the optimal concentrations of the MSCs in a rabbit model. Methods Osteochondral defects were created in the trochlear groove of femur in 55 rabbits. Four experimental groups (11 rabbits/group) were treated by transplanting the composite of hUCB-MSCs and HA with various MSCs concentrations (0.1, 0.5, 1.0, and 1.5 x 107 cells/ml). One control group was left untreated. At 4, 8, and 16 weeks post-transplantation, the degree of cartilage repair was evaluated grossly and histologically. Findings Overall, transplanting hUCB-MSCs and HA hydrogel resulted in cartilage repair tissue with better quality than the control without transplantation (P = 0.015 in 0.1, P = 0.004 in 0.5, P = 0.004 in 1.0, P = 0.132 in 1.5 x 107 cells/ml). Interestingly, high cell concentration of hUCB-MSCs (1.5×107 cells/ml) was inferior to low cell concentrations (0.1, 0.5, and 1.0 x 107 cells/ml) in cartilage repair (P = 0.394,P = 0.041, P = 0.699, respectively). The 0.5 x 107 cells/ml group showed the highest cartilage repair score at 4, 8 and 16 weeks post transplantation, and followed by 0.1x107 cells/ml group or 1.0 x 107 cell/ml group. Conclusions The results of this study suggest that transplantation of the composite of hUCB-MSCs and HA is beneficial for cartilage repair. In addition, this study shows that optimal MSC concentration needs to be determined for better cartilage repair. PMID:27824874
Park, Yong-Beom; Ha, Chul-Won; Kim, Jin-A; Rhim, Ji-Heon; Park, Yong-Geun; Chung, Jun Young; Lee, Han-Jun
2016-01-01
Mesenchymal stem cells (MSCs) are known to have therapeutic potential for cartilage repair. However, the optimal concentration of MSCs for cartilage repair remains unclear. Therefore, we aimed to explore the feasibility of cartilage repair by human umbilical cord blood-derived MSCs (hUCB-MSCs) and to determine the optimal concentrations of the MSCs in a rabbit model. Osteochondral defects were created in the trochlear groove of femur in 55 rabbits. Four experimental groups (11 rabbits/group) were treated by transplanting the composite of hUCB-MSCs and HA with various MSCs concentrations (0.1, 0.5, 1.0, and 1.5 x 107 cells/ml). One control group was left untreated. At 4, 8, and 16 weeks post-transplantation, the degree of cartilage repair was evaluated grossly and histologically. Overall, transplanting hUCB-MSCs and HA hydrogel resulted in cartilage repair tissue with better quality than the control without transplantation (P = 0.015 in 0.1, P = 0.004 in 0.5, P = 0.004 in 1.0, P = 0.132 in 1.5 x 107 cells/ml). Interestingly, high cell concentration of hUCB-MSCs (1.5×107 cells/ml) was inferior to low cell concentrations (0.1, 0.5, and 1.0 x 107 cells/ml) in cartilage repair (P = 0.394,P = 0.041, P = 0.699, respectively). The 0.5 x 107 cells/ml group showed the highest cartilage repair score at 4, 8 and 16 weeks post transplantation, and followed by 0.1x107 cells/ml group or 1.0 x 107 cell/ml group. The results of this study suggest that transplantation of the composite of hUCB-MSCs and HA is beneficial for cartilage repair. In addition, this study shows that optimal MSC concentration needs to be determined for better cartilage repair.
Dündar, Rıza; Soy, Fatih Kemal; Kulduk, Erkan; Muluk, Nuray Bayar; Cingi, Cemal
2014-10-01
The aim of this study was to introduce a new grafting technique in tympanoplasty that involves use of a boomerang-shaped chondroperichondrial graft (BSCPG). The anatomical and functional results were evaluated. A new tympanoplasty with boomerang-shaped chondroperichondrial graft (TwBSCPG) technique was used in 99 chronic otitis media patients with central or marginal perforation of the tympanic membrane and a normal middle ear mucosa. All 99 patients received chondroperichondrial cartilage grafts with a boomerang-shaped cartilage island left at the anterior and inferior parts. Postoperative follow-ups were conducted at months 1, 6, and 12. Preoperative and postoperative audiological examinations were performed and air-bone gaps were calculated according to the pure-tone averages (PTAs) of the patients. In the preoperative period, most (83.8%) air-bone gaps were ≥ 16 dB; after operating using the TwBSCPG technique, the air-bone gaps decreased to 0-10 dB in most patients (77.8%). In the TwBSCPG patients, the mean preoperative air-bone gap was 22.02 ± 6.74 dB SPL. Postoperatively, the mean postoperative air-bone gap was 8.70 ± 5.74 dB SPL. The TwBSCPG technique therefore decreased the postoperative air-bone gap compared to that preoperatively (p = 0.000, z = -8.645). At the 1-month follow-up, there were six graft perforations and one graft retraction. At the 6-month follow-up, there were nine graft perforations and three graft retractions. At 12 months, there were seven graft perforations and four graft retractions. During the first year after the boomerang tympanoplasty surgery, graft lateralization was not detected in any patient. Retractions were grade 1 according to the Sade classification and were localized to the postero-superior quadrant of the tympanic membrane. The TwBSCPG technique has benefits with respect to postoperative anatomical and audiological results. It prevents perforation of the tympanic membrane at the anterior quadrant and avoids graft lateralization due to placement of the graft under the manubrium mallei. Given these benefits, the TwBSCPG technique seems to be a good alternative for grafting in tympanoplasties.
Manzano, Sara; Manzano, Raquel; Doblaré, Manuel; Doweidar, Mohamed Hamdy
2015-01-01
In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage behaviour developed by the authors to simulate the contribution of the main tissue components in its behaviour. The model considers the mechano-electrochemical events as concurrent phenomena in a three-dimensional environment. This model has been extended here to include the effect of repulsion of negative charges attached to proteoglycans. Moreover, we have studied the fluctuation of these charges owning to proteoglycan variations in healthy and pathological articular cartilage. In this sense, standard patterns of healthy and degraded tissue behaviour can be obtained which could be a helpful diagnostic tool. By introducing measured properties of unhealthy cartilage into the computational model, the severity of tissue degeneration can be predicted avoiding complex tissue extraction and subsequent in vitro analysis. In this work, the model has been applied to monitor and analyse cartilage behaviour at different stages of OA and in both short (four, six and eight weeks) and long-term (11 weeks) fully immobilized joints. Simulation results showed marked differences in the corresponding swelling phenomena, in outgoing cation fluxes and in cation distributions. Furthermore, long-term immobilized patients display similar swelling as well as fluxes and distribution of cations to patients in the early stages of OA, thus, preventive treatments are highly recommended to avoid tissue deterioration. PMID:25392400
Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering.
Li, Siwei; Glynne-Jones, Peter; Andriotis, Orestis G; Ching, Kuan Y; Jonnalagadda, Umesh S; Oreffo, Richard O C; Hill, Martyn; Tare, Rahul S
2014-12-07
Cartilage grafts generated using conventional static tissue engineering strategies are characterised by low cell viability, suboptimal hyaline cartilage formation and, critically, inferior mechanical competency, which limit their application for resurfacing articular cartilage defects. To address the limitations of conventional static cartilage bioengineering strategies and generate robust, scaffold-free neocartilage grafts of human articular chondrocytes, the present study utilised custom-built microfluidic perfusion bioreactors with integrated ultrasound standing wave traps. The system employed sweeping acoustic drive frequencies over the range of 890 to 910 kHz and continuous perfusion of the chondrogenic culture medium at a low-shear flow rate to promote the generation of three-dimensional agglomerates of human articular chondrocytes, and enhance cartilage formation by cells of the agglomerates via improved mechanical stimulation and mass transfer rates. Histological examination and assessment of micromechanical properties using indentation-type atomic force microscopy confirmed that the neocartilage grafts were analogous to native hyaline cartilage. Furthermore, in the ex vivo organ culture partial thickness cartilage defect model, implantation of the neocartilage grafts into defects for 16 weeks resulted in the formation of hyaline cartilage-like repair tissue that adhered to the host cartilage and contributed to significant improvements to the tissue architecture within the defects, compared to the empty defects. The study has demonstrated the first successful application of the acoustofluidic perfusion bioreactors to bioengineer scaffold-free neocartilage grafts of human articular chondrocytes that have the potential for subsequent use in second generation autologous chondrocyte implantation procedures for the repair of partial thickness cartilage defects.
Heuijerjans, A; Wilson, W; Ito, K; van Donkelaar, C C
2017-12-01
The size of full-thickness focal cartilage defect is accepted to be predictive of its fate, but at which size threshold treatment is required is unclear. Clarification of the mechanism behind this threshold effect will help determining when treatment is required. The objective was to investigate the effect of defect size on strains in the collagen fibers and the non-fibrillar matrix of surrounding cartilage. These strains may indicate matrix disruption. Tissue deformation into the defect was expected, stretching adjacent superficial collagen fibers, while an osteochondral implant was expected to prevent these deformations. Finite element simulations of cartilage/cartilage contact for intact, 0.5 to 8mm wide defects and 8mm implant cases were performed. Impact, a load increase to 2MPa in 1ms, and creep loading, a constant load of 0.5MPa for 900s, scenarios were simulated. A composition-based material model for articular cartilage was employed. Impact loading caused low strain levels for all models. Creep loading increased deviatoric strains and collagen strains in the surrounding cartilage. Deviatoric strains increased gradually with defect size, but the surface area at which collagen fiber strains exceeded failure thresholds, abruptly increased for small increases of defect size. This was caused by a narrow distribution of collagen fiber strains resulting from the non-linear stiffness of the fibers. We postulate this might be the mechanism behind the existence of a critical defect size. Filling of the defect with an implant reduced deviatoric and collagen fiber strains towards values for intact cartilage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Madry, H; Kaul, G; Zurakowski, D; Vunjak-Novakovic, G; Cucchiarini, M
2013-04-16
Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes overexpressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-overexpressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects.
NASA Astrophysics Data System (ADS)
Protsenko, Dimitry E.; Lim, Amanda; Wu, Edward C.; Manuel, Cyrus; Wong, Brian J. F.
2011-03-01
Electromechanical reshaping (EMR) of cartilage has been suggested as an alternative to the classical surgical techniques of modifying the shape of facial cartilages. The method is based on exposure of mechanically deformed cartilaginous tissue to a low level electric field. Electro-chemical reactions within the tissue lead to reduction of internal stress, and establishment of a new equilibrium shape. The same reactions offset the electric charge balance between collagen and proteoglycan matrix and interstitial fluid responsible for maintenance of cartilage mechanical properties. The objective of this study was to investigate correlation between the electric charge transferred during EMR and equilibrium elastic modulus. We used a finite element model based on the triphasic theory of cartilage mechanical properties to study how electric charges transferred in the electro-chemical reactions in cartilage can change its mechanical responses to step displacements in unconfined compression. The concentrations of the ions, the strain field and the fluid and ion velocities within the specimen subject to an applied mechanical deformation were estimated and apparent elastic modulus (the ratio of the equilibrium axial stress to the axial strain) was calculated as a function of transferred charge. The results from numerical calculations showed that the apparent elastic modulus decreases with increase in electric charge transfer. To compare numerical model with experimental observation we measured elastic modulus of cartilage as a function of electric charge transferred in electric circuit during EMR. Good correlation between experimental and theoretical data suggests that electric charge disbalance is responsible for alteration of cartilage mechanical properties.
Madry, Henning; Kaul, Gunter; Zurakowski, David; Vunjak-Novakovic, Gordana; Cucchiarini, Magali
2015-01-01
Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes over expressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-over expressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects. PMID:23588785
Ferizi, Uran; Rossi, Ignacio; Lee, Youjin; Lendhey, Matin; Teplensky, Jason; Kennedy, Oran D; Kirsch, Thorsten; Bencardino, Jenny; Raya, José G
2017-07-01
We establish a mechanical injury model for articular cartilage to assess the sensitivity of diffusion tensor imaging (DTI) in detecting cartilage damage early in time. Mechanical injury provides a more realistic model of cartilage degradation compared with commonly used enzymatic degradation. Nine cartilage-on-bone samples were obtained from patients undergoing knee replacement. The 3 Tesla DTI (0.18 × 0.18 × 1 mm 3 ) was performed before, 1 week, and 2 weeks after (zero, mild, and severe) injury, with a clinical radial spin-echo DTI (RAISED) sequence used in our hospital. We performed stress-relaxation tests and used a quasilinear-viscoelastic (QLV) model to characterize cartilage mechanical properties. Serial histology sections were dyed with Safranin-O and given an OARSI grade. We then correlated the changes in DTI parameters with the changes in QLV-parameters and OARSI grades. After severe injury the mean diffusivity increased after 1 and 2 weeks, whereas the fractional anisotropy decreased after 2 weeks (P < 0.05). The QLV-parameters and OARSI grades of the severe injury group differed from the baseline with statistical significance. The changes in mean diffusivity across all the samples correlated with the changes in the OARSI grade (r = 0.72) and QLV-parameters (r = -0.75). DTI is sensitive in tracking early changes after mechanical injury, and its changes correlate with changes in biomechanics and histology. Magn Reson Med 78:69-78, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Bai, Zhe; Guo, Xiao-Hui; Tang, Chi; Yue, Si-Tong; Shi, Long; Qiang, Bo
2018-01-01
The study aims to explore the effects of artesunate on insulin-like growth factor-1 (IGF-1), Osteopontin (OPN), and C-telopeptides of type II collagen (CTX-II) in serum, synovial fluid (SF), and cartilage tissues of rats with osteoarthritis (OA). OA models were established. Normal model, artesunate, and Viatril-S groups (20 rats respectively) were set. Enzyme-linked immunosorbent assay, IHC staining, and quantitative real-time polymerase chain reaction were conducted to calculate IGF-1, OPN, and CTX-II levels in serum, SF, and cartilage tissues of rats. The pathological changes in cartilage tissues were evaluated with Mankin score and Hematoxylin-Eosin staining. Compared with the normal group, the model group showed increased IGF-1 level; decreased OPN, CTX-II levels in the serum and SF; and contrary results were seen in the cartilage tissues. A gradual ascending IGF-1 level and descending OPN and CTX-II levels existed in the serum and SF in the artesunate and Viatril-S groups after 2 weeks. The model group showed the most obvious pathological changes and highest Mankin score compared with the other groups. Higher IGF-1 level and lower OPN, CTX-II levels were exhibited in the cartilage tissue in the artesunate and Viatril-S groups but not in the model group. Artesunate and Viatril-S inhibit OA development by elevating IGF-1 level and reducing OPN and CTX-II levels. © 2017 S. Karger AG, Basel.
Junbo, Wang; Sijia, Liu; Hongying, Chen; Lei, Liu; Pu, Wang
2017-06-15
Whole-body vibration(WBV) has been suggested for the prevention of subchondral bone loss of knee osteoarthritis (OA) . This study examined the effects of different frequency of whole-body vibration on subchondral trabecular bone microarchitecture, cartilage degradation and metabolism of the tibia and femoral condyle bone, and joint pain in an anterior cruciate ligament transection (ACLT)-induced knee osteoarthritisrabbit model. Ninety adult rabbits were divided into six groups: all groups received unilateral ACLT; Group 1, ACLT only; Group 2, 5 Hz WBV; Group 3, 10 Hz WBV; Group 4, 20 Hz WBV; Group 5, 30 Hz WBV; and Group 6, 40 Hz WBV. Pain was tested via weight-bearing asymmetry. Subchondral trabecular bone microarchitecture was examined using in vivo micro-computed tomography. Knee joint cartilage was evaluated by gross morphology, histology, and ECM gene expression level (aggrecan and type II collagen [CTX-II]). Serum bone-specific alkaline phosphatase, N-mid OC, cartilage oligometric protein, CPII, type I collagen, PIIANP, G1/G2 aggrecan levels, and urinary CTX-II were analyzed. After 8 weeks of low-magnitude WBV, the lower frequency (10 Hz and 20 Hz) WBV treatment decreased joint pain and cartilage resorption, accelerated cartilage formation, delayed cartilage degradation especially at the 20 Hz regimen. However, the higher frequencies (30 Hz and 40 Hz) had worse effects, with worse limb function and cartilage volume as well as higher histological scores and cartilage resorption. In contrast, both prevented loss of trabeculae and increased bone turnover. No significant change was observed in the 5 Hz WBV group. Our data demonstrate that the lower frequencies (10 Hz and 20 Hz) of low-magnitude WBV increased bone turnover, delayed cartilage degeneration, and caused a significant functional change of the OA-affected limb in ACLT-induced OA rabbit model but did not reverse OA progression after 8 weeks of treatment.
Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E; Lee, Esther J; Seyednejad, Hajar; van den Beucken, Jeroen J J P; Tabata, Yasuhiko; Kasper, F Kurtis; Scott, David W; Wong, Mark E; Jansen, John A; Mikos, Antonios G
2015-12-01
The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.
Steen-Louws, C; Popov-Celeketic, J; Mastbergen, S C; Coeleveld, K; Hack, C E; Eijkelkamp, N; Tryfonidou, M; Spruijt, S; van Roon, J A G; Lafeber, F P J G
2018-05-26
Effective disease-modifying drugs for osteoarthritis (DMOAD) should preferably have chondroprotective, anti-inflammatory, and analgesic activity combined in a single molecule. We developed a fusion protein of IL4 and IL10 (IL4-10 FP), in which the biological activity of both cytokines is preserved. The present study evaluates the chondroprotective, anti-inflammatory, and analgesic activity of IL4-10 FP in in vitro and in vivo models of osteoarthritis. Human osteoarthritic cartilage tissue and synovial tissue were cultured with IL4-10 FP. Cartilage proteoglycan turnover and release of pro-inflammatory, catabolic, and pain mediators by cartilage and synovial tissue were measured. The analgesic effect of intra-articularly injected IL4-10 FP was evaluated in a canine model of osteoarthritis by force-plate analysis. IL4-10 FP increased synthesis (P = 0.018) and decreased release (P = 0.018) of proteoglycans by osteoarthritic cartilage. Release of pro-inflammatory IL6 and IL8 by cartilage and synovial tissue was reduced in the presence of IL4-10 FP (all P < 0.05). The release of MMP3 by osteoarthritic cartilage and synovial tissue was decreased (P = 0.018 and 0.028) whereas TIMP1 production was not significantly changed. Furthermore, IL4-10 FP protected cartilage against destructive properties of synovial tissue mediators shown by the increased cartilage proteoglycan synthesis (P = 0.0235) and reduced proteoglycan release (P = 0.0163). Finally, intra-articular injection of IL4-10 FP improved the deficient joint loading in dogs with experimentally induced osteoarthritis. The results of current preliminary study suggest that IL4-10 FP has DMOAD potentials since it shows chondroprotective and anti-inflammatory effects in vitro, as well as potentially analgesic effect in a canine in vivo model of osteoarthritis. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D
NASA Astrophysics Data System (ADS)
Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.
2009-02-01
We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and reproducible segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multi-object segmentation problems.
Baba, Rikiya; Onodera, Tomohiro; Matsuoka, Masatake; Hontani, Kazutoshi; Joutoku, Zenta; Matsubara, Shinji; Homan, Kentaro; Iwasaki, Norimasa
2018-05-01
The optimal treatment for a medium- or large-sized cartilage lesion is still controversial. Since an ultrapurified alginate (UPAL) gel enhances cartilage repair in animal models, this material is expected to improve the efficacy of the current treatment strategies for cartilage lesions. The bone marrow stimulation technique (BMST) augmented by UPAL gel can induce hyaline-like cartilage repair. Controlled laboratory study. Two cylindrical osteochondral defects were created in the patellar groove of 27 beagle dogs. A total of 108 defects were divided into 3 groups: defects without intervention (control group), defects with the BMST (microfracture group), and defects with the BMST augmented by implantation of UPAL gel (combined group). At 27 weeks postoperatively, macroscopic and histological evaluations, micro-computed tomography assessment, and mechanical testing were performed for each reparative tissue. The defects in the combined group were almost fully covered with translucent reparative tissues, which consisted of hyaline-like cartilage with well-organized collagen structures. The macroscopic score was significantly better in the combined group than in the control group ( P < .05). The histological scores in the combined group were significantly better than those in the control group ( P < .01) and microfracture group ( P < .05). Although the repaired subchondral bone volumes were not influenced by UPAL gel augmentation, the mechanical properties of the combined group were significantly better than those of the microfracture group ( P < .05). The BMST augmented by UPAL gel elicited hyaline-like cartilage repair that had characteristics of rich glycosaminoglycan and matrix immunostained by type II collagen antibody in a canine osteochondral defect model. The present results suggest that the current technique has the potential to be one of the autologous matrix-induced chondrogenesis techniques of the future and to expand the operative indications for the BMST without loss of its technical simplicity. The data support the clinical reality of 1-step minimally invasive cartilage-reparative medicine with UPAL gel without harvesting donor cells.
Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.
Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy
2014-09-01
Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.
LaBerge, M; Audet, J; Drouin, G; Rivard, C H
1993-01-01
The purpose of this project was to study the relationship between the structure of the patellar cartilage and its response to static compressive loading with a closed chondromalacia patellae model. An animal model was used to induce degeneration of the patella that was monitored quantitatively and qualitatively as a function of time. Ten adult mongrel dogs had their left patellofemoral groove replaced by a customized metallic implant covered with a thin film of polyethylene for periods of 3 months (five dogs) and 6 months (five dogs). An indenter was designed to perform mechanical indentation testing on the patellar cartilage in situ. The animals were anesthetized and the response of patellar cartilage to a static compressive load of 4.5 MPa was monitored for 20 min and its relaxation after load removal for 20 min. Indentation tests were performed every 3 months of the implantation period. At the end of the implantation period, the patellae were processed for histology, and sections were stained with Safranin-O indicative of the proteoglycans content. Macroscopically, no apparent degeneration or fibrillation of the patellar surfaces was observed after 3 or 6 months of implantation. However, the patellar surface showed a change in coloration after 6 months. A 17 +/- 3% and 37 +/- 8% deformation of the cartilage were calculated for the 3-month and 6-month specimens, respectively. Histologically, a progressive loss of proteoglycans was observed in the matrix as a function of implantation time. These results indicated that an increase in cartilage compliance is associated with an intrinsic remodeling of the cartilage matrix and that these changes might occur without external signs of degeneration and can be quantified.
Congdon, Kimberly A.; Hammond, Ashley S.; Ravosa, Matthew J.
2012-01-01
SUMMARY Variation in mechanical loading is known to influence chondrogenesis during joint formation. However, the interaction among chondrocyte behavior and variation in activity patterns is incompletely understood, hindering our knowledge of limb ontogeny and function. Here, the role of endurance exercise in the development of articular and physeal cartilage in the humeral head was examined in 14 miniature swine (Sus scrofa domesticus). One group was subjected to graded treadmill running over a period of 17 weeks. A matched sedentary group was confined to individual pens. Hematoxylin and eosin staining was performed for histomorphometry of cartilage zone thickness, chondrocyte count and cell area, with these parameters compared multivariately between exercised and sedentary groups. Comparisons were also made with femora from the same sample, focusing on humerus–femur differences between exercised and sedentary groups, within-cohort comparisons of humerus–femur responses and correlated changes within and across joints. This study shows conflicting support for the chondral modeling theory. The humeral articular cartilage of exercised pigs was thinner than that of sedentary pigs, but their physeal cartilage was thicker. While articular and physeal cartilage demonstrated between-cohort differences, humeral physeal cartilage exhibited load-induced responses of greater magnitude than humeral articular cartilage. Controlling for cohort, the humerus showed increased chondrocyte mitosis and cell area, presumably due to relatively greater loading than the femur. This represents the first known effort to evaluate chondral modeling across multiple joints from the same individuals. Our findings suggest the chondral response to elevated loading is complex, varying within and among joints. This has important implications for understanding joint biomechanics and development. PMID:22496283
Serum Metabonomics of Articular Cartilage Destruction Induced by T-2 Toxin in Wistar Rats.
Zhu, Lei; Zhao, Zhi Jun; Ren, Xiao Bin; Li, Qiang; Ding, Hua; Sun, Zhou; Kao, Qing Jun; Wang, Li Hua
2018-01-01
The molecular pathogenesis of T-2 toxin-induced cartilage destruction has not been fully unraveled yet. The aim of this study was to detect changes in serum metabolites in a rat anomaly model with articular cartilage destruction. Thirty healthy male Wistar rats were fed a diet containing T-2 toxin (300 ng/kg chow) for 3 months. Histopathological changes in femorotibial cartilage were characterized in terms of chondrocyte degeneration/necrosis and superficial cartilage defect, and the endogenous metabolite profile of serum was determined by UPLC/Q-TOF MS. Treated rats showed extensive areas of chondrocyte necrosis and superficial cartilage defect in the articular cartilage. In addition, 8 metabolites were found to change significantly in these rats compared to the control group, including lysoPE (18:0/0:0), lysoPC(14:0), lysoPC[18:4 (6Z,9Z,12Z,15Z)], lysoPC[(16:1(9Z)], lysoPC(16:0), L-valine, hippuric acid, and asparaginyl-glycine. These 8 metabolites associated with cartilage injury are mainly involved in phospholipid and amino acid metabolic pathways. Copyright © 2018 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Ko, Chao-Yin; Ku, Kuan-Lin; Yang, Shu-Rui; Lin, Tsai-Yu; Peng, Sydney; Peng, Yu-Shiang; Cheng, Ming-Huei; Chu, I-Ming
2016-10-01
Chondrocytes (CH) and bone marrow stem cells (BMSCs) are sources that can be used in cartilage tissue engineering. Co-culture of CHs and BMSCs is a promising strategy for promoting chondrogenic differentiation. In this study, articular CHs and BMSCs were encapsulated in PCL-PEG-PCL photocrosslinked hydrogels for 4 weeks. Various ratios of CH:BMSC co-cultures were investigated to identify the optimal ratio for cartilage formation. The results thus obtained revealed that co-culturing CHs and BMSCs in hydrogels provides an appropriate in vitro microenvironment for chondrogenic differentiation and cartilage matrix production. Co-culture with a 1:4 CH:BMSC ratio significantly increased the synthesis of GAGs and collagen. In vivo cartilage regeneration was evaluated using a co-culture system in rabbit models. The co-culture system exhibited a hyaline chondrocyte phenotype with excellent regeneration, resembling the morphology of native cartilage. This finding suggests that the co-culture of these two cell types promotes cartilage regeneration and that the system, including the hydrogel scaffold, has potential in cartilage tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Biomimetic structured surfaces increase primary adhesion capacity of cartilage implants.
Lahner, Matthias; Kalwa, Lukas; Olbring, Roxana; Mohr, Charlotte; Göpfert, Lena; Seidl, Tobias
2015-01-01
In cartilage repair, scaffold-assisted single-step techniques are used to improve the cartilage regeneration. Nevertheless, the fixation of cartilage implants represents a challenge in orthopaedics, particularly in the moist conditions that pertain during arthroscopic surgery. Within the animal kingdom a broad range of species has developed working solutions to intermittent adhesion under challenging conditions. Using a top-down approach we identified promising mechanisms for biomimetic transfer The tree-frog adhesive system served as a test case to analyze the adhesion capacity of a polyglycolic acid (PGA) scaffold with and without a structural modification in a bovine articular cartilage defect model. To this end, PGA implants were modified with a simplified foot-pad structure and evaluated on femoral articular bovine cartilage lesions. Non-structured PGA scaffolds were used as control. Both implants were pressed on 20 mm × 20 mm full-thickness femoral cartilage defects using a dynamometer. The structured scaffolds showed a higher adhesion capacity on the cartilage defect than the non-structured original scaffolds. The results suggest that the adhesion ability can be increased by means of biomimetic structured surfaces without the need of additional chemical treatment and thus significantly facilitate primary fixation procedures.
A Model to Study Articular Cartilage Mechanical and Biological Responses to Sliding Loads.
Schätti, Oliver R; Gallo, Luigi M; Torzilli, Peter A
2016-08-01
In physiological conditions, joint function involves continuously moving contact areas over the tissue surface. Such moving contacts play an important role for the durability of the tissue. It is known that in pathological joints these motion paths and contact mechanics change. Nevertheless, limited information exists on the impact of such physiological and pathophysiological dynamic loads on cartilage mechanics and its subsequent biological response. We designed and validated a mechanical device capable of applying simultaneous compression and sliding forces onto cartilage explants to simulate moving joint contact. Tests with varying axial loads (1-4 kg) and sliding speeds (1-20 mm/s) were performed on mature viable bovine femoral condyles to investigate cartilage mechanobiological responses. High loads and slow sliding speeds resulted in highest cartilage deformations. Contact stress and effective cartilage moduli increased with increasing load and increasing speed. In a pilot study, changes in gene expression of extracellular matrix proteins were correlated with strain, contact stress and dynamic effective modulus. This study describes a mechanical test system to study the cartilage response to reciprocating sliding motion and will be helpful in identifying mechanical and biological mechanisms leading to the initiation and development of cartilage degeneration.
Schmutzer, Michael; Aszodi, Attila
2017-04-01
The loss and degradation of articular cartilage tissue matrix play central roles in the process of osteoarthritis (OA). New models for evaluating cartilage repair/regeneration are thus of great value for transferring various culture systems into clinically relevant situations. The repair process can be better monitored in ex vivo systems than in in vitro cell cultures. I have therefore established an ex vivo defect model prepared from bovine femoral condyles for evaluating cartilage repair by the implantation of cells cultured in various ways, e.g., monolayer-cultured cells or suspension or pellet cultures of articular bovine chondrocytes representing different cell compactions with variable densities of chondrocytes. I report that the integrin subunit α10 was significantly upregulated in suspension-cultured bovine chondrocytes at passage P2 compared with monolayer-cultured cells at P1 (p = 0.0083) and P2 (p < 0.05). Suspension-cultured cells did not promote cartilage repair when compared with implanted monolayer-cultured chondrocytes and pellets: 24.0 ± 0.66% for suspension cells, 46.4 ± 2.9% for monolayer cells, and 127.64 ± 0.90% for pellets (p < 0.0001) of the original defect volume (percentage of defect). Additional cultivation with chondrogenesis-promoting growth factors TGF-β1 and BMP-2 revealed an enhancing effect on cartilage repair in all settings. The advantage and innovation of this system over in vitro differentiation (e.g., micromass, pellet) assays is the possibility of examining and evaluating cartilage regeneration in an environment in which implanted cells are embedded within native surrounding tissue at the defect site. Such ex vivo explants might serve as a better model system to mimic clinical situations. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
The rabbit costal cartilage reconstructive surgical model.
Badran, Karam W; Waki, Curt; Hamamoto, Ashley; Manz, Ryan; Wong, Brian J F
2014-02-01
Rib grafts in facial plastic surgery are becoming more frequently used. Small animal models, although not ideal may be used to emulate costal cartilage-based procedures. A surgical characterization of this tissue will assist future research in the selection of appropriate costal segments, based on quantitative and qualitative properties. The objective of this study is to assess the surgical anatomy of the rabbit costal margin and evaluate costal cartilage for use in either in vivo or ex vivo studies and to examine reconstructive procedures. Detailed thoracic dissections of 21 New Zealand white rabbits were performed post-mortem. Costal cartilage of true, false, and floating ribs were harvested. The length, thickness, and width at proximal, medial, and distal locations of the cartilage, with perichondrium intact were measured. Further qualitative observation and digital images of curvature, flexibility, and segmental cross-sectional shape were recorded. The main outcome measure(s) is to characterize, describe, and assess the consistency of dimensions, location, and shape of costal cartilage. In this study, 12 to 13 ribs encase the thoracic cavity. Cartilage from true ribs has an average length, width, and depth of 23.75 ± 0.662, 3.02 ± 0.025, and 2.18 ± 0.018 mm, respectively. The cartilage from false ribs has an average length, width, and depth of 41.97 ± 1.48, 2.00 ± 0.07, 1.19 ± 0.03 mm, and that of floating ribs are 7.66 ± 0.29, 1.98 ± 0.04, and 0.96 ± 0.03 mm. Rib 8 is found to be the longest costal cartilage (49.10 ± 0.64 mm), with the widest and thickest at ribs 1 (3.91 ± 0.08 mm) and 6 (2.41 ± 0.11 mm), respectively. Cross-sectional segments reveal the distal cartilage to maintain an hourglass shape that broadens to become circular and eventually ovoid at the costochondral junction. The New Zealand white rabbit is a practical source of costal cartilage that is of sufficient size and reproducibility to use in surgical research where the long-term effects of operations, therapies, devices, and pharmacologic on cartilage can be studied in vivo. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Neutral solute transport across osteochondral interface: A finite element approach.
Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A
2016-12-08
Investigation of the solute transfer across articular cartilage and subchondral bone plate could nurture the understanding of the mechanisms of osteoarthritis (OA) progression. In the current study, we approached the transport of neutral solutes in human (slight OA) and equine (healthy) samples using both computed tomography and biphasic-solute finite element modeling. We developed a multi-zone biphasic-solute finite element model (FEM) accounting for the inhomogeneity of articular cartilage (superficial, middle and deep zones) and subchondral bone plate. Fitting the FEM model to the concentration-time curves of the cartilage and the equilibrium concentration of the subchondral plate/calcified cartilage enabled determination of the diffusion coefficients in the superficial, middle and deep zones of cartilage and subchondral plate. We found slightly higher diffusion coefficients for all zones in the human samples as compared to the equine samples. Generally the diffusion coefficient in the superficial zone of human samples was about 3-fold higher than the middle zone, the diffusion coefficient of the middle zone was 1.5-fold higher than that of the deep zone, and the diffusion coefficient of the deep zone was 1.5-fold higher than that of the subchondral plate/calcified cartilage. Those ratios for equine samples were 9, 2 and 1.5, respectively. Regardless of the species considered, there is a gradual decrease of the diffusion coefficient as one approaches the subchondral plate, whereas the rate of decrease is dependent on the type of species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Jennifer; Hong, Yeon Sik; Jeong, Jeong Hee; Yang, Eun Ji; Jhun, Joo Yeon; Park, Mi Kyoung; Jung, Young Ok; Min, Jun Ki; Kim, Ho Youn; Park, Sung Hwan; Cho, Mi-La
2013-01-01
To investigate the effect of CoenzymeQ10 (CoQ10) on pain severity and cartilage degeneration in an experimental model of rat osteoarthritis (OA). OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) to the knee. Oral administration of CoQ10 was initiated on day 4 after MIA injection. Pain severity was assessed by measuring secondary tactile allodynia using the von Frey assessment test. The degree of cartilage degradation was determined by measuring cartilage thickness and the amount of proteoglycan. The mankin scoring system was also used. Expressions of matrix metalloproteinase-13 (MMP-13), interleukin-1β (IL-1β), IL-6, IL-15, inducible nitric oxide synthase (iNOS), nitrotyrosine and receptor for advanced glycation end products (RAGE) were analyzed using immunohistochemistry. Treatment with CoQ10 demonstrated an antinociceptive effect in the OA animal model. The reduction in secondary tactile allodynia was shown by an increased pain withdrawal latency and pain withdrawal threshold. CoQ10 also attenuated cartilage degeneration in the osteoarthritic joints. MMP-13, IL-1β, IL-6, IL-15, iNOS, nitrotyrosine and RAGE expressions were upregulated in OA joints and significantly reduced with CoQ10 treatment. CoQ10 exerts a therapeutic effect on OA via pain suppression and cartilage degeneration by inhibiting inflammatory mediators, which play a vital role in OA pathogenesis.
Park, Sang-Hyug; Kim, Moon Suk; Kim, Young Jick; Choi, Byung Hyune; Lee, Chun Tek; Park, So Ra; Min, Byoung-Hyun
2016-01-01
Recombinant human transforming growth factor beta-3 (rhTGF-β3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+) rhTGF-β3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair. PMID:27258120
Computer simulation models as a tool to investigate the role of microRNAs in osteoarthritis
Smith, Graham R.
2017-01-01
The aim of this study was to show how computational models can be used to increase our understanding of the role of microRNAs in osteoarthritis (OA) using miR-140 as an example. Bioinformatics analysis and experimental results from the literature were used to create and calibrate models of gene regulatory networks in OA involving miR-140 along with key regulators such as NF-κB, SMAD3, and RUNX2. The individual models were created with the modelling standard, Systems Biology Markup Language, and integrated to examine the overall effect of miR-140 on cartilage homeostasis. Down-regulation of miR-140 may have either detrimental or protective effects for cartilage, indicating that the role of miR-140 is complex. Studies of individual networks in isolation may therefore lead to different conclusions. This indicated the need to combine the five chosen individual networks involving miR-140 into an integrated model. This model suggests that the overall effect of miR-140 is to change the response to an IL-1 stimulus from a prolonged increase in matrix degrading enzymes to a pulse-like response so that cartilage degradation is temporary. Our current model can easily be modified and extended as more experimental data become available about the role of miR-140 in OA. In addition, networks of other microRNAs that are important in OA could be incorporated. A fully integrated model could not only aid our understanding of the mechanisms of microRNAs in ageing cartilage but could also provide a useful tool to investigate the effect of potential interventions to prevent cartilage loss. PMID:29095952
Pallante, Andrea L.; Görtz, Simon; Chen, Albert C.; Healey, Robert M.; Chase, Derek C.; Ball, Scott T.; Amiel, David; Sah, Robert L.; Bugbee, William D.
2012-01-01
Background: Understanding the effectiveness of frozen as compared with fresh osteochondral allografts at six months after surgery and the resultant consequences of traditional freezing may facilitate in vivo maintenance of cartilage integrity. Our hypothesis was that the state of the allograft at implantation affects its performance after six months in vivo. Methods: The effect of frozen as compared with fresh storage on in vivo allograft performance was determined for osteochondral allografts that were transplanted into seven recipient goats and analyzed at six months. Allograft performance was assessed by examining osteochondral structure (cartilage thickness, fill, surface location, surface degeneration, and bone-cartilage interface location), zonal cartilage composition (cellularity, matrix content), and cartilage biomechanical function (stiffness). Relationships between cartilage stiffness or cartilage composition and surface degeneration were assessed with use of linear regression. Results: Fresh allografts maintained cartilage load-bearing function, while also maintaining zonal organization of cartilage cellularity and matrix content, compared with frozen allografts. Overall, allograft performance was similar between fresh allografts and nonoperative controls. However, cartilage stiffness was approximately 80% lower (95% confidence interval [CI], 73% to 87%) in the frozen allografts than in the nonoperative controls or fresh allografts. Concomitantly, in frozen allografts, matrix content and cellularity were approximately 55% (95% CI, 22% to 92%) and approximately 96% (95% CI, 94% to 99%) lower, respectively, than those in the nonoperative controls and fresh allografts. Cartilage stiffness correlated positively with cartilage cellularity and matrix content, and negatively with surface degeneration. Conclusions: Maintenance of cartilage load-bearing function in allografts is associated with zonal maintenance of cartilage cellularity and matrix content. In this animal model, frozen allografts displayed signs of failure at six months, with cartilage softening, loss of cells and matrix, and/or graft subsidence, supporting the importance of maintaining cell viability during allograft storage and suggesting that outcomes at six months may be indicative of long-term (dys)function. Clinical Relevance: Fresh versus frozen allografts represent the “best versus worst” conditions with respect to chondrocyte viability, but “difficult versus simple” with respect to acquisition and distribution. The outcomes described from these two conditions expand the current understanding of in vivo cartilage remodeling and describe structural properties (initial graft subsidence), which may have implications for impending graft failure. PMID:23138239
Species-Independent Modeling of High-Frequency Ultrasound Backscatter in Hyaline Cartilage.
Männicke, Nils; Schöne, Martin; Liukkonen, Jukka; Fachet, Dominik; Inkinen, Satu; Malo, Markus K; Oelze, Michael L; Töyräs, Juha; Jurvelin, Jukka S; Raum, Kay
2016-06-01
Apparent integrated backscatter (AIB) is a common ultrasound parameter used to assess cartilage matrix degeneration. However, the specific contributions of chondrocytes, proteoglycan and collagen to AIB remain unknown. To reveal these relationships, this work examined biopsies and cross sections of human, ovine and bovine cartilage with 40-MHz ultrasound biomicroscopy. Site-matched estimates of collagen concentration, proteoglycan concentration, collagen orientation and cell number density were employed in quasi-least-squares linear regression analyses to model AIB. A positive correlation (R(2) = 0.51, p < 10(-4)) between AIB and a combination model of cell number density and collagen concentration was obtained for collagen orientations approximately perpendicular (>70°) to the sound beam direction. These findings indicate causal relationships between AIB and cartilage structural parameters and could aid in more sophisticated future interpretations of ultrasound backscatter. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.
2011-01-01
Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699
Optimized cartilage visualization using 7-T sodium ((23)Na) imaging after patella dislocation.
Widhalm, Harald K; Apprich, Sebastian; Welsch, Goetz H; Zbyn, Stefan; Sadoghi, Patrick; Vekszler, György; Hamböck, Martina; Weber, Michael; Hajdu, Stefan; Trattnig, Siegfried
2016-05-01
Retropatellar cartilage lesions often occur in the course of recurrent patella dislocation. Aim of this study was to develop a more detailed method for examining cartilage tissue, in order to reduce patient discomfort and time of care. For detailed diagnosing, a 7-T MRI of the knee joint and patella was performed in nine patients, with mean age of 26.4 years, after patella dislocation to measure the cartilage content in three different regions of interest of the patella. Axial sodium ((23)Na) images were derived from an optimized 3D GRE sequence on a 7-T MR scanner. Morphological cartilage grading was performed, and sodium signal-to-noise ratio (SNR) values were calculated. Mean global sodium values and SNR were compared between patients and volunteers. Two out of nine patients showed a maximum cartilage defect of International Cartilage Repair Society (ICRS) grade 3, three of grade 2, three of grade 1, and one patient showed no cartilage defect. The mean SNR in sodium images for cartilage was 13.4 ± 2.5 in patients and 14.6 ± 3.7 in volunteers (n.s.). A significant negative correlation between age and global sodium SNR for cartilage was found in the medial facet (R = -0.512; R (2) = 0.26; p = 0.030). Mixed-model ANOVA yielded a marked decrease of the sodium SNR, with increasing grade of cartilage lesions (p < 0.001). Utilization of the (23)Na MR imaging will make earlier detection of alterations to the patella cartilage after dislocation possible and will help prevent subsequent disease due to start adequate therapy earlier in the rehabilitation process. II.
NASA Astrophysics Data System (ADS)
Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.
2016-02-01
We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p < 0.05 experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0-2 years, p < 0.001) was followed by a slow or negligible degeneration (2-4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muehleman,C.; Li, J.; Zhong, Z.
2006-01-01
Objective: To demonstrate the ability of a novel radiographic technique, Diffraction Enhanced Radiographic Imaging (DEI), to render high contrast images of canine knee joints for identification of cartilage lesions in situ. Methods: DEI was carried out at the X-15A beamline at Brookhaven National Laboratory on intact canine knee joints with varying levels of cartilage damage. Two independent observers graded the DE images for lesions and these grades were correlated to the gross morphological grade. Results: The correlation of gross visual grades with DEI grades for the 18 canine knee joints as determined by observer 1 (r2=0.8856, P=0.001) and observer 2more » (r2=0.8818, P=0.001) was high. The overall weighted ? value for inter-observer agreement was 0.93, thus considered high agreement. Conclusion: The present study is the first study for the efficacy of DEI for cartilage lesions in an animal joint, from very early signs through erosion down to subchondral bone, representing the spectrum of cartilage changes occurring in human osteoarthritis (OA). Here we show that DEI allows the visualization of cartilage lesions in intact canine knee joints with good accuracy. Hence, DEI may be applicable for following joint degeneration in animal models of OA.« less
Bugbee, William D.; Pallante-Kichura, Andrea L.; Görtz, Simon; Amiel, David; Sah, Robert
2016-01-01
The treatment of articular cartilage injury and disease has become an increasingly relevant part of orthopaedic care. Articular cartilage transplantation, in the form of osteochondral allografting, is one of the most established techniques for restoration of articular cartilage. Our research efforts over the last two decades have supported the transformation of this procedure from experimental “niche” status to a cornerstone of orthopaedic practice. In this Kappa Delta paper, we describe our translational and clinical science contributions to this transformation: (1) to enhance the ability of tissue banks to process and deliver viable tissue to surgeons and patients, (2) to improve the biological understanding of in vivo cartilage and bone remodeling following osteochondral allograft (OCA) transplantation in an animal model system, (3) to define effective surgical techniques and pitfalls, and (4) to identify and clarify clinical indications and outcomes. The combination of coordinated basic and clinical studies is part of our continuing comprehensive academic OCA transplant program. Taken together, the results have led to the current standards for OCA processing and storage prior to implantation and also novel observations and mechanisms of the biological and clinical behavior of OCA transplants in vivo. Thus, OCA transplantation is now a successful and increasingly available treatment for patients with disabling osteoarticular cartilage pathology. PMID:26234194
High fat diet accelerates cartilage repair in DBA/1 mice.
Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M
2017-06-01
Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Desancé, Mélanie; Contentin, Romain; Bertoni, Lélia; Gomez-Leduc, Tangni; Branly, Thomas; Jacquet, Sandrine; Betsch, Jean-Marc; Batho, Agnès; Legendre, Florence; Audigié, Fabrice
2018-01-01
Cartilage engineering is a new strategy for the treatment of cartilage damage due to osteoarthritis or trauma in humans. Racehorses are exposed to the same type of cartilage damage and the anatomical, cellular, and biochemical properties of their cartilage are comparable to those of human cartilage, making the horse an excellent model for the development of cartilage engineering. Human mesenchymal stem cells (MSCs) differentiated into chondrocytes with chondrogenic factors in a biomaterial appears to be a promising therapeutic approach for direct implantation and cartilage repair. Here, we characterized equine umbilical cord blood-derived MSCs (eUCB-MSCs) and evaluated their potential for chondrocyte differentiation for use in cartilage repair therapy. Our results show that isolated eUCB-MSCs had high proliferative capacity and differentiated easily into osteoblasts and chondrocytes, but not into adipocytes. A three-dimensional (3D) culture approach with the chondrogenic factors BMP-2 and TGF-β1 potentiated chondrogenic differentiation with a significant increase in cartilage-specific markers at the mRNA level (Col2a1, Acan, Snorc) and the protein level (type II and IIB collagen) without an increase in hypertrophic chondrocyte markers (Col10a1 and Mmp13) in normoxia and in hypoxia. However, these chondrogenic factors caused an increase in type I collagen, which can be reduced using small interfering RNA targeting Col1a2. This study provides robust data on MSCs characterization and demonstrates that eUCB-MSCs have a great potential for cartilage tissue engineering. PMID:29439436
Pain, motor and gait assessment of murine osteoarthritis in a cruciate ligament transection model.
Ruan, M Z C; Patel, R M; Dawson, B C; Jiang, M-M; Lee, B H L
2013-09-01
The major complaint of Osteoarthritis (OA) patients is pain. However, due to the nature of clinical studies and the limitation of animal studies, few studies have linked function impairment and behavioral changes in OA animal models to cartilage loss and histopathology. Our objective was to study surrogate markers of functional impairment in relation to cartilage loss and pathological changes in a post-traumatic mouse model of OA. We performed a battery of functional analyses in a mouse model of OA generated by cruciate ligament transection (CLT). The changes in functional analyses were linked to histological changes graded by OARSI standards, histological grading of synovitis, and volumetric changes of the articular cartilage and osteophytes quantified by phase contrast micro-computed tomography (μCT). OA generated by CLT led to decreased time on rotarod, delayed response on hotplate analysis, and altered gait starting from 4 weeks after surgery. Activity in open field analysis did not change at 4, 8, or 12 weeks after CLT. The magnitude of behavioral changes was directly correlated with higher OARSI histological scores of OA, synovitis in the knee joints, cartilage volume loss, and osteophyte formation. Our findings link functional analyses to histological grading, synovitis, comprehensive three-dimensional assessment of cartilage volume and osteophyte formation. This serves as a reference for a mouse model in predicting outcomes of OA treatment. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Zhou, Feifei; Zhang, Xianzhu; Cai, Dandan; Li, Jun; Mu, Qin; Zhang, Wei; Zhu, Shouan; Jiang, Yangzi; Shen, Weiliang; Zhang, Shufang; Ouyang, Hong Wei
2017-11-01
The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage. Meanwhile the silk fibroin is well used as a structural constituent material because its remarkable mechanical properties, long-lasting in vivo stability and hypoimmunity. The application of composite silk fibroin and CS scaffolds for joint cartilage repair has not been well studied. Here we report that the combination of silk fibroin and CS could synergistically promote articular cartilage defect repair. The silk fibroin (silk) and silk fibroin/CS (silk-CS) scaffolds were fabricated with salt-leaching, freeze-drying and crosslinking methodologies. The biocompatibility of the scaffolds was investigated in vitro by cell adhesion, proliferation and migration with human articular chondrocytes. We found that silk-CS scaffold maintained better chondrocyte phenotype than silk scaffold; moreover, the silk-CS scaffolds reduced chondrocyte inflammatory response that was induced by interleukin (IL)-1β, which is in consistent with the well-documented anti-inflammatory activities of CS. The in vivo cartilage repair was evaluated with a rabbit osteochondral defect model. Silk-CS scaffold induced more neo-tissue formation and better structural restoration than silk scaffold after 6 and 12weeks of implantation in ICRS histological evaluations. In conclusion, we have developed a silk fibroin/ chondroitin sulfate scaffold for cartilage tissue engineering that exhibits immuno-inhibition property and can improve the self-repair capacity of cartilage. Severe cartilage defect such as osteoarthritis (OA) is difficult to self-repair because of its avascular, aneural and alymphatic nature. Current scaffolds often focus on providing sufficient mechanical support or bio-mimetic structure to promote cartilage repair. Thus, silk has been adopted and investigated broadly. However, inflammation is one of the most important factors in OA. But few scaffolds for cartilage repair reported anti-inflammation property. Meanwhile, chondroitin sulfate (CS) is a glycosaminoglycan present in the natural cartilage ECM, and has exhibited a number of useful biological properties including anti-inflammatory activity. Thus, we designed this silk-CS scaffold and proved that this scaffold exhibited good anti-inflammatory effects both in vitro and in vivo, promoted the repair of articular cartilage defect in animal model. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Particulated articular cartilage: CAIS and DeNovo NT.
Farr, Jack; Cole, Brian J; Sherman, Seth; Karas, Vasili
2012-03-01
Cartilage Autograft Implantation System (CAIS; DePuy/Mitek, Raynham, MA) and DeNovo Natural Tissue (NT; ISTO, St. Louis, MO) are novel treatment options for focal articular cartilage defects in the knee. These methods involve the implantation of particulated articular cartilage from either autograft or juvenile allograft donor, respectively. In the laboratory and in animal models, both CAIS and DeNovo NT have demonstrated the ability of the transplanted cartilage cells to "escape" from the extracellular matrix, migrate, multiply, and form a new hyaline-like cartilage tissue matrix that integrates with the surrounding host tissue. In clinical practice, the technique for both CAIS and DeNovo NT is straightforward, requiring only a single surgery to affect cartilage repair. Clinical experience is limited, with short-term studies demonstrating both procedures to be safe, feasible, and effective, with improvements in subjective patient scores, and with magnetic resonance imaging evidence of good defect fill. While these treatment options appear promising, prospective randomized controlled studies are necessary to refine the indications and contraindications for both CAIS and DeNovo NT.
Lee, Whasil; Leddy, Holly A.; Chen, Yong; Lee, Suk Hee; Zelenski, Nicole A.; McNulty, Amy L.; Wu, Jason; Beicker, Kellie N.; Coles, Jeffrey; Zauscher, Stefan; Grandl, Jörg; Sachs, Frederick; Liedtke, Wolfgang B.
2014-01-01
Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca2+ signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca2+ transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains. PMID:25385580
Zhao, Yunpeng; Li, Zhong; Wang, Wenhan; Zhang, Hui; Chen, Jianying; Su, Peng; Liu, Long; Li, Weiwei
2016-02-01
Naringin was previously reported as a multifunctional agent. Recently, naringin was found to play a protective role in various inflammatory conditions. However, the role of naringin in cartilage degeneration and osteoarthritis (OA) progression is still unknown. TNF-α is reported to play a detrimental role in OA. Herein, primary murine chondrocytes were isolated and cultured with stimulation of TNF-α, in the presence or absence of naringin treatment. As a result, naringin attenuated TNF-α-mediated inflammation and catabolism in chondrocyte. Besides, surgically induced OA mice models were established. Cartilage degradation and OA severity were evaluated using Safranin-O staining, immunohistochemistry, and ELISA. Moreover, levels of inflammatory cytokines and catabolic markers in OA were analyzed. Oral administration of naringin alleviated degradation of cartilage matrix and protected against OA development in the surgically induced OA models. Furthermore, the protective function of naringin in cartilage and chondrocyte was possibly due to suppression of NF-κB signaling pathway. Collectively, this study presents naringin as a potential target for the treatment of joint degenerative diseases, including OA.
Sibole, Scott C.; Erdemir, Ahmet
2012-01-01
Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro-scale model providing application for other multi-scale continuum mechanics problems. PMID:22649535
Bhumiratana, Sarindr; Eton, Ryan E.; Oungoulian, Sevan R.; Wan, Leo Q.; Ateshian, Gerard A.; Vunjak-Novakovic, Gordana
2014-01-01
The efforts to grow mechanically functional cartilage from human mesenchymal stem cells have not been successful. We report that clinically sized pieces of human cartilage with physiologic stratification and biomechanics can be grown in vitro by recapitulating some aspects of the developmental process of mesenchymal condensation. By exposure to transforming growth factor-β, mesenchymal stem cells were induced to condense into cellular bodies, undergo chondrogenic differentiation, and form cartilagenous tissue, in a process designed to mimic mesenchymal condensation leading into chondrogenesis. We discovered that the condensed mesenchymal cell bodies (CMBs) formed in vitro set an outer boundary after 5 d of culture, as indicated by the expression of mesenchymal condensation genes and deposition of tenascin. Before setting of boundaries, the CMBs could be fused into homogenous cellular aggregates giving rise to well-differentiated and mechanically functional cartilage. We used the mesenchymal condensation and fusion of CMBs to grow centimeter-sized, anatomically shaped pieces of human articular cartilage over 5 wk of culture. For the first time to our knowledge biomechanical properties of cartilage derived from human mesenchymal cells were comparable to native cartilage, with the Young’s modulus of >800 kPa and equilibrium friction coeffcient of <0.3. We also demonstrate that CMBs have capability to form mechanically strong cartilage–cartilage interface in an in vitro cartilage defect model. The CMBs, which acted as “lego-like” blocks of neocartilage, were capable of assembling into human cartilage with physiologic-like structure and mechanical properties. PMID:24778247
Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming
2013-12-01
Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis.
Wiegant, Karen; Intema, Femke; van Roermund, Peter M; Barten-van Rijbroek, Angelique D; Doornebal, Arie; Hazewinkel, Herman A W; Lafeber, Floris P J G; Mastbergen, Simon C
2015-02-01
Knee osteoarthritis (OA) is a degenerative joint disorder characterized by cartilage, bone, and synovial tissue changes that lead to pain and functional impairment. Joint distraction is a treatment that provides long-term improvement in pain and function accompanied by cartilage repair, as evaluated indirectly by imaging studies and measurement of biochemical markers. The purpose of this study was to evaluate cartilage tissue repair directly by histologic and biochemical assessments after joint distraction treatment. In 27 dogs, OA was induced in the right knee joint (groove model; surgical damage to the femoral cartilage). After 10 weeks of OA development, the animals were randomized to 1 of 3 groups. Two groups were fitted with an external fixator, which they wore for a subsequent 10 weeks (one group with and one without joint distraction), and the third group had no external fixation (OA control group). Pain/function was studied by force plate analysis. Cartilage integrity and chondrocyte activity of the surgically untouched tibial plateaus were analyzed 25 weeks after removal of the fixator. Changes in force plate analysis values between the different treatment groups were not conclusive. Features of OA were present in the OA control group, in contrast to the generally less severe damage after joint distraction. Those treated with joint distraction had lower macroscopic and histologic damage scores, higher proteoglycan content, better retention of newly formed proteoglycans, and less collagen damage. In the fixator group without distraction, similarly diminished joint damage was found, although it was less pronounced. Joint distraction as a treatment of experimentally induced OA results in cartilage repair activity, which corroborates the structural observations of cartilage repair indicated by surrogate markers in humans. Copyright © 2015 by the American College of Rheumatology.
Li, Xihai; Lang, Wenna; Ye, Hongzhi; Yu, Fangrong; Li, Huiting; Chen, Jiashou; Cai, Liangliang; Chen, Wenlie; Lin, Ruhui; Huang, Yunmei; Liu, Xianxiang
2013-06-01
The tidemark is located between calcified and non-calcified cartilage matrices. Tidemark replication plays an important role in the pathogenesis of osteoarthrosis (OA). Autophagy, or cellular self-digestion, is an essential cellular homeostasis mechanism that was found to be deficient in osteoarthritic cartilage. This study evaluated the effects of Tougu Xiaotong capsule (TXC) on the tidemark replication and cartilage degradation, and also investigated LC3 I/II, which executes autophagy, the potential role of ULK1, an inducer of autophagy, and Beclin1, a regulator of autophagy, in the development of a papain-induced OA in rat knee joints. Using a papain-injected knee rat model, standard histological methods were used to validate our model as well as treatment with TXC or glucosamine (GlcN). After 12 weeks of treatment, the changes of cartilage structure were observed by digital radiography (DR), optical microscopy, scanning electron microscopy and transmission electron microscopy, and the LC3 I/II, ULK1 and Beclin1 levels were measured by western blotting. Cartilage degradation was evaluated by the Mankin score on paraffin-embedded sections stained with Safranin O-fast green. TXC was found to improve the arrangement of subchondral bone collagen fibers and calcium phosphate crystals, inhibit the tidemark replication and delay the cartilage degradation in the papain-induced OA. Our results also showed that LC3 I/II, ULK1 and Beclin1 levels in both the TXC+OA and GlcN+OA groups were significantly increased compared to those in the OA group. The results indicate that TXC could inhibit the tidemark replication and cartilage degradation by the regulation of chondrocyte autophagy.
Chang, Ching-Min; Lo, Yu-Lung; Tran, Nghia-Khanh; Chang, Yu-Jen
2018-03-20
A method is proposed for characterizing the optical properties of articular cartilage sliced from a pig's thighbone using a Stokes-Mueller polarimetry technique. The principal axis angle, phase retardance, optical rotation angle, circular diattenuation, diattenuation axis angle, linear diattenuation, and depolarization index properties of the cartilage sample are all decoupled in the proposed analytical model. Consequently, the accuracy and robustness of the extracted results are improved. The glucose concentration, collagen distribution, and scattering properties of samples from various depths of the articular cartilage are systematically explored via an inspection of the related parameters. The results show that the glucose concentration and scattering effect are both enhanced in the superficial region of the cartilage. By contrast, the collagen density increases with an increasing sample depth.
NASA Astrophysics Data System (ADS)
Huang, Jung-Ju; Yang, Shu-Rui; Chu, I.-Ming; Brey, Eric M.; Hsiao, Hui-Yi; Cheng, Ming-Huei
2013-10-01
The clinical demand for cartilage tissue engineering is potentially large for reconstruction defects resulting from congenital deformities or degenerative disease due to limited donor sites for autologous tissue and donor site morbidities. Cartilage tissue engineering has been successfully applied to the medical field: a scaffold pre-cultured with chondrocytes was used prior to implantation in an animal model. We have developed a surgical approach in which tissues are engineered by implantation with a vascular pedicle as an in vivo bioreactor in bone and adipose tissue engineering. Collagen type II, chitosan, poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) were four commonly applied scaffolds in cartilage tissue engineering. To expand the application of the same animal model in cartilage tissue engineering, these four scaffolds were selected and compared for their ability to generate cartilage with chondrocytes in the same model with an in vivo bioreactor. Gene expression and immunohistochemistry staining methods were used to evaluate the chondrogenesis and osteogenesis of specimens. The result showed that the PLGA and PCL scaffolds exhibited better chondrogenesis than chitosan and type II collagen in the in vivo bioreactor. Among these four scaffolds, the PCL scaffold presented the most significant result of chondrogenesis embedded around the vascular pedicle in the long-term culture incubation phase.
Wurtz, Alain; Hysi, Ilir; Kipnis, Eric; Zawadzki, Christophe; Hubert, Thomas; Jashari, Ramadan; Copin, Marie-Christine; Jude, Brigitte
2013-01-01
OBJECTIVES Animal and clinical studies have demonstrated the feasibility of tracheal replacement by silicone-stented allogenic aortas. In clinical trials, however, this graft did not show mature cartilage regeneration into the grafts as was observed in animal models. To solve this issue, we investigated tracheal replacement with a composite graft based on a fascial flap-wrapped allogenic aorta with external cartilage-ring support in a rabbit model. METHODS Seven male 'Géant des Flandres' and 'New Zealand' rabbits served as donors of aortas and cartilage rings, respectively. Nineteen female 'New Zealand' rabbits were used as recipients. First, in nine animals, neoangiogenesis of the composite graft following a wrap using a pedicled lateral thoracic fascial flap and implantation under the skin of the chest wall was investigated. Animal sacrifice was scheduled at regular intervals up to 38 days. Second, 10 animals underwent tracheal replacement with the composite graft after a 7-to-9 day revascularization period, and were followed-up to death. Macroscopic and microscopic examinations were used to study the morphology, stiffness and viability of the construct. RESULTS There was one operative death after tracheal replacement. The first group of animals was found to have a satisfactory tubular morphology and stiffness of their construct associated with preserved histological structure of cartilages and moderate to severe aortic ischaemic lesions. In the group of rabbits having undergone tracheal replacement, the anatomical results were characterized by a discrepancy between the severity of ischaemic lesions involving both allogenic aorta and cartilage rings and the satisfactory biomechanical characteristics of the graft in 7 of 10 animals, probably due to cartilage calcification deposits associated with inflammatory scar tissue ensuring the stiffness of the construct. CONCLUSIONS Our investigations demonstrate the feasibility of the replacement of circumferential tracheal defects using our composite graft. Future experiments using therapeutic bronchoscopy tools are required to draw conclusions regarding the effectiveness of this tracheal substitute in the long-term. PMID:23049080
Hall, Sarah; Xia, Xin-Rui; Schwarz, Tobias
2017-01-01
Early diagnosis of cartilage disease at a time when changes are limited to depletion of extracellular matrix components represents an important diagnostic target to reduce patient morbidity. This report is to present proof of concept for nanoparticle dependent cartilage barrier imaging in a large animal model including the use of clinical magnetic resonance imaging (MRI). Conditioned (following matrix depletion) and unconditioned porcine metacarpophalangeal cartilage was evaluated on the basis of fluorophore conjugated 30 nm and 80 nm spherical gold nanoparticle permeation and multiphoton laser scanning and bright field microscopy after autometallographic particle enhancement. Consequently, conditioned and unconditioned joints underwent MRI pre- and post-injection with 12 nm superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate particle permeation in the context of matrix depletion and use of a clinical 1.5 Tesla MRI scanner. To gauge the potential pro-inflammatory effect of intra-articular nanoparticle delivery co-cultures of equine synovium and cartilage tissue were exposed to an escalating dose of SPIONs and IL-6, IL-10, IFN-γ and PGE2 were assessed in culture media. The chemotactic potential of growth media samples was subsequently assessed in transwell migration assays on isolated equine neutrophils. Results demonstrate an increase in MRI signal following conditioning of porcine joints which suggests that nanoparticle dependent compositional cartilage imaging is feasible. Tissue culture and neutrophil migration assays highlight a dose dependent inflammatory response following SPION exposure which at the imaging dose investigated was not different from controls. The preliminary safety and imaging data support the continued investigation of nanoparticle dependent compositional cartilage imaging. To our knowledge, this is the first report in using SPIONs as intra-articular MRI contrast agent for studying cartilage barrier function, which could potentially lead to a new diagnostic technique for early detection of cartilage disease. PMID:29287105
Röntgen, Viktoria; Blakytny, Robert; Matthys, Romano; Landauer, Mario; Wehner, Tim; Göckelmann, Melanie; Jermendy, Philipp; Amling, Michael; Schinke, Thorsten; Claes, Lutz; Ignatius, Anita
2010-11-01
Mice are increasingly used to investigate mechanobiology in fracture healing. The need exists for standardized models allowing for adjustment of the mechanical conditions in the fracture gap. We introduced such a model using rigid and flexible external fixators with considerably different stiffness (axial stiffnesses of 18.1 and 0.82 N/mm, respectively). Both fixators were used to stabilize a 0.5 mm osteotomy gap in the femur of C57BL/6 mice (each n = 8). Three-point bending tests, µCT, and histomorphometry demonstrated a different healing pattern after 21 days. Both fixations induced callus formation with a mixture of intramembranous and enchondral ossification. Under flexible conditions, the bending stiffness of the callus was significantly reduced, and a larger but qualitatively inferior callus with a significantly lower fraction of bone but a higher fraction of cartilage and soft tissue was formed. Monitoring of the animal movement and the ground reaction forces demonstrated physiological loading with no significant differences between the groups, suggesting that the differences in healing were not based on a different loading behavior. In summary, flexible external fracture fixation of the mouse femur led to delayed fracture healing in comparison to a more rigid situation. © 2010 Orthopaedic Research Society.
Chen, Zelong; Yan, Chenggong; Yan, Shina; Liu, Qin; Hou, Meirong; Xu, Yikai; Guo, Rui
2018-01-01
Numerous biodegradable hydrogels for cartilage regeneration have been widely used in the field of tissue engineering. However, to non-invasively monitor hydrogel degradation and efficiently evaluate cartilage restoration in situ is still challenging. Methods: A ultrasmall superparamagnetic iron oxide (USPIO)-labeled cellulose nanocrystal (CNC)/silk fibroin (SF)-blended hydrogel system was developed to monitor hydrogel degradation during cartilage regeneration. The physicochemical characterization and biocompatibility of the hydrogel were evaluated in vitro. The in vivo hydrogel degradation and cartilage regeneration of different implants were assessed using multiparametric magnetic resonance imaging (MRI) and further confirmed by histological analysis in a rabbit cartilage defect model for 3 months. Results: USPIO-labeled hydrogels showed sufficient MR contrast enhancement and retained stability without loss of the relaxation rate. Neither the mechanical properties of the hydrogels nor the proliferation of bone-marrow mesenchymal stem cells (BMSCs) were affected by USPIO labeling in vitro. CNC/SF hydrogels with BMSCs degraded more quickly than the acellular hydrogels as reflected by the MR relaxation rate trends in vivo. The morphology of neocartilage was noninvasively visualized by the three-dimensional water-selective cartilage MRI scan sequence, and the cartilage repair was further demonstrated by macroscopic and histological observations. Conclusion: This USPIO-labeled CNC/SF hydrogel system provides a new perspective on image-guided tissue engineering for cartilage regeneration. PMID:29464005
Liao, Jun-Lin; Chen, Jia; He, Bin; Chen, Yong; Xu, Jia-Qun; Xie, Hong-Ju; Hu, Feng; Wang, Ai-Jun; Luo, ChengQun; Li, Qing-Feng; Zhou, Jian-Da
2017-09-01
The objective of this study was to investigate the viability and biomechanics of diced cartilage blended with platelet-rich plasma (PRP) and wrapped with poly (lactic-co-glycolic) acid (PLGA) membrane in a rabbit model. A total of 10 New Zealand rabbits were used for the study. Cartilage grafts were harvested from 1 side ear. The grafts were divided into 3 groups for comparison: bare diced cartilage, diced cartilage wrapped with PLGA membrane, and diced cartilage blended with PRP and wrapped with PLGA membrane. Platelet-rich plasma was prepared using 8 mL of auricular blood. Three subcutaneous pockets were made in the backs of the rabbits, and the grafts were placed in these pockets. The subcutaneous implant tests were conducted for safety assessment of the PLGA membrane in vivo. All of the rabbits were sacrificed at the end of 3 months, and the specimens were collected. The sections were stained with hematoxylin and eosin, toluidin blue, and collagen II immunohistochemical. Simultaneously, biomechanical properties of grafts were assessed. This sample of PLGA membrane was conformed to the current standard of biological evaluation of medical devices. Moderate resorption was seen at the end of 3 months in the gross assessment in diced cartilage wrapped with PLGA membrane, while diced cartilage blended with PRP had no apparent resorption macroscopically and favorable viability in vivo after 3 months, and the histological parameters supported this. Stress-strain curves for the compression test indicated that the modulus of elasticity of bare diced cartilage was 7.65 ± 0.59 MPa; diced cartilage wrapped with PLGA membrane was 5.98 ± 0.45 MPa; and diced cartilage blended with PRP and wrapped with PLGA membrane was 7.48 ± 0.55 MPa, respectively. Diced cartilage wrapped with PLGA membrane had moderate resorption macroscopically after 3 months. However, blending with PRP has beneficial effects in improving the viability of diced cartilages. Additionally, the compression modulus of diced cartilage blended with PRP and wrapped with PLGA membrane was similar to bare diced cartilage.
Sasaki, T; Akagi, R; Akatsu, Y; Fukawa, T; Hoshi, H; Yamamoto, Y; Enomoto, T; Sato, Y; Nakagawa, R; Takahashi, K; Yamaguchi, S; Sasho, T
2017-03-01
The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF.Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. G-CSF promoted proliferation of MSCs in vitro . The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the number of MSCs in a rabbit model. Cite this article : T. Sasaki, R. Akagi, Y. Akatsu, T. Fukawa, H. Hoshi, Y. Yamamoto, T. Enomoto, Y. Sato, R. Nakagawa, K. Takahashi, S. Yamaguchi, T. Sasho. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017;6:123-131. DOI: 10.1302/2046-3758.63.BJR-2016-0083. © 2017 Sasho et al.
A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.
Buschmann, M D; Grodzinsky, A J
1995-05-01
Measured values of the swelling pressure of charged proteoglycans (PG) in solution (Williams RPW, and Comper WD; Biophysical Chemistry 36:223, 1990) and the ionic strength dependence of the equilibrium modulus of PG-rich articular cartilage (Eisenberg SR, and Grodzinsky AJ; J Orthop Res 3: 148, 1985) are compared to the predictions of two models. Each model is a representation of electrostatic forces arising from charge present on spatially fixed macromolecules and spatially mobile micro-ions. The first is a macroscopic continuum model based on Donnan equilibrium that includes no molecular-level structure and assumes that the electrical potential is spatially invariant within the polyelectrolyte medium (i.e. zero electric field). The second model is based on a microstructural, molecular-level solution of the Poisson-Boltzmann (PB) equation within a unit cell containing a charged glycosaminoglycan (GAG) molecule and its surrounding atmosphere of mobile ions. This latter approach accounts for the space-varying electrical potential and electrical field between the GAG constituents of the PG. In computations involving no adjustable parameters, the PB-cell model agrees with the measured pressure of PG solutions to within experimental error (10%), whereas the ideal Donnan model overestimates the pressure by up to 3-fold. In computations involving one adjustable parameter for each model, the PB-cell model predicts the ionic strength dependence of the equilibrium modulus of articular cartilage. Near physiological ionic strength, the Donnan model overpredicts the modulus data by 2-fold, but the two models coincide for low ionic strengths (C0 < 0.025M) where the spatially invariant Donnan potential is a closer approximation to the PB potential distribution. The PB-cell model result indicates that electrostatic forces between adjacent GAGs predominate in determining the swelling pressure of PG in the concentration range found in articular cartilage (20-80 mg/ml). The PB-cell model is also consistent with data (Eisenberg and Grodzinsky, 1985, Lai WM, Hou JS, and Mow VC; J Biomech Eng 113: 245, 1991) showing that these electrostatic forces account for approximately 1/2 (290kPa) the equilibrium modulus of cartilage at physiological ionic strength while absolute swelling pressures may be as low as approximately 25-100kPa. This important property of electrostatic repulsion between GAGs that are highly charged but spaced a few Debye lengths apart allows cartilage to resist compression (high modulus) without generating excessive intratissue swelling pressures.
Repair of full-thickness cartilage defects with cells of different origin in a rabbit model.
Yan, Hui; Yu, Changlong
2007-02-01
The purpose of this study was to evaluate the repaired tissues formed in full-thickness cartilage defects in a rabbit model implanted with 4 types of chondrogenic cells, including chondrocytes, mesenchymal stem cells (MSCs) and fibroblasts from rabbit, and human umbilical cord blood (hUCB) stem cells. Chondrocytes, MSCs, and fibroblasts were isolated from 6-week-old New Zealand rabbits; hUCB stem cells were isolated from the umbilical cord blood of newborn children. These 4 types of cells were cultured in vitro and embedded in polylactic acid (PLA) matrices. Full-thickness defects were produced in the femoral trochlear grooves of both knees in 36 adult New Zealand White rabbits. Cell/PLA composites were transplanted into cartilage defects. A total of 5 groups were formed according to implanted cell type: Group A, chondrocytes; Group B, MSCs; Group C, fibroblasts; Group D, hUCB stem cells; and Group E, no cells (control group). Repaired tissues were evaluated grossly, histologically, and immunohistochemically at 6 weeks and 12 weeks after implantation. In Groups A and B, defects were repaired with hyaline-like cartilage. In Group C, defects were repaired with fibrous tissue. In Group D, defects were repaired primarily with fibrous tissue and scattered chondrocytes; in some specimens, defects were repaired with a thin layer of hyaline-like cartilage at 12 weeks. In Group E, defects were repaired with fibrous tissue. Histologic scores in Groups A and B were significantly higher than those in Groups C, D, and E at 6 and 12 weeks after transplantation. Full-thickness cartilage defects treated with chondrocyte or MSC transplantation were repaired with hyaline-like cartilage tissue, and repair was significantly better than in tissues treated with fibroblasts and hUCB stem cells, as well as in the control group. Repaired tissues treated with MSCs appeared to have better cell arrangement, subchondral bone remodeling, and integration with surrounding cartilage than did repaired tissues generated by chondrocyte implantation. MSCs might be the most suitable cell source for cartilage repair. Further investigation into hUCB stem cell transplantation is needed. In our study of rabbits, MSCs supplied the most promising cell source for cartilage repair.
Yield Strength Testing in Human Cadaver Nasal Septal Cartilage and L-Strut Constructs.
Liu, Yuan F; Messinger, Kelton; Inman, Jared C
2017-01-01
To our knowledge, yield strength testing in human nasal septal cartilage has not been reported to date. An understanding of the basic mechanics of the nasal septum may help surgeons decide how much of an L-strut to preserve and how much grafting is needed. To determine the factors correlated with yield strength of the cartilaginous nasal septum and to explore the association between L-strut width and thickness in determining yield strength. In an anatomy laboratory, yield strength of rectangular pieces of fresh cadaver nasal septal cartilage was measured, and regression was performed to identify the factors correlated with yield strength. To measure yield strength in L-shaped models, 4 bonded paper L-struts models were constructed for every possible combination of the width and thickness, for a total of 240 models. Mathematical modeling using the resultant data with trend lines and surface fitting was performed to quantify the associations among L-strut width, thickness, and yield strength. The study dates were November 1, 2015, to April 1, 2016. The factors correlated with nasal cartilage yield strength and the associations among L-strut width, thickness, and yield strength in L-shaped models. Among 95 cartilage pieces from 12 human cadavers (mean [SD] age, 67.7 [12.6] years) and 240 constructed L-strut models, L-strut thickness was the only factor correlated with nasal septal cartilage yield strength (coefficient for thickness, 5.54; 95% CI, 4.08-7.00; P < .001), with an adjusted R2 correlation coefficient of 0.37. The mean (SD) yield strength R2 varied with L-strut thickness exponentially (0.93 [0.06]) for set widths, and it varied with L-strut width linearly (0.82 [0.11]) or logarithmically (0.85 [0.17]) for set thicknesses. A 3-dimensional surface model of yield strength with L-strut width and thickness as variables was created using a 2-dimensional gaussian function (adjusted R2 = 0.94). Estimated yield strengths were generated from the model to allow determination of the desired yield strength with different permutations of L-strut width and thickness. In this study of human cadaver nasal septal cartilage, L-strut thickness was significantly associated with yield strength. In a bonded paper L-strut model, L-strut thickness had a more important role in determining yield strength than L-strut width. Surgeons should consider the thickness of potential L-struts when determining the amount of cartilaginous septum to harvest and graft. NA.
Sasaki, T.; Akagi, R.; Akatsu, Y.; Fukawa, T.; Hoshi, H.; Yamamoto, Y.; Enomoto, T.; Sato, Y.; Nakagawa, R.; Takahashi, K.; Yamaguchi, S.
2017-01-01
Objectives The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. Methods MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. Results The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF. Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. Conclusions G-CSF promoted proliferation of MSCs in vitro. The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the number of MSCs in a rabbit model. Cite this article: T. Sasaki, R. Akagi, Y. Akatsu, T. Fukawa, H. Hoshi, Y. Yamamoto, T. Enomoto, Y. Sato, R. Nakagawa, K. Takahashi, S. Yamaguchi, T. Sasho. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017;6:123–131. DOI: 10.1302/2046-3758.63.BJR-2016-0083. PMID:28258115
Huang, Yong; Wang, Xin-Ling; Qiu, Heng; Xiao, Yi-Cheng; Wu, Zong-Hong; Xu, Jian
2018-02-01
Two types(A model and B model) of articular cartilage defect models were prepared by using adult New Zealand white rabbits. A model group was applied by drilling without through subchondral bone, whose right joint was repaired by composite scaffolds made by seed cell, gum-bletilla as well as Pluronic F-127, and left side was blank control. B model group was applied by subchondral drilling method, whose right joint was repaired by using composite scaffolds made by gum-bletilla and Pluronic F-127 without seed cells, and left side was blank control. Autogenous contrast was used in both model types. In addition, another group was applied with B model type rabbits, which was repaired with artificial complex material of Pluronic F-127 in both joint sides. 4, 12 and 24 weeks after operation, the animals were sacrificed and the samples were collected from repaired area for staining with HE, typeⅡcollagen immunohistochemical method, Alcian blue, and toluidine blue, and then were observed with optical microscope. Semi-quantitative scores were graded by referring to Wakitanis histological scoring standard to investigate the histomorphology of repaired tissue. Hyaline cartilage repairing was achieved in both Group A and Group B, with satisfactory results. There were no significant differences on repairing effects for articular cartilage defects between composite scaffolds made by seed cell, gum-bletilla and Pluronic F-127, and the composite scaffolds made by gum-bletilla and Pluronic F-127 without seed cell. Better repairing effects for articular cartilage defects were observed in groups with use of gum-bletilla, indicating that gum-bletilla is a vital part in composite scaffolds material. Copyright© by the Chinese Pharmaceutical Association.
Photodynamic damage to cartilage and synovial tissue grafted on a chick's chorioallantoic membrane
NASA Astrophysics Data System (ADS)
Fisher, M.; Nahir, A. M.; Kimel, Sol
1997-09-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints causing pain deformities and disability. The highly vascular inflamed synovium has aggressive and destructive characteristics, it invades, erodes and gradually destroys cartilage and underlying bone. Photodynamic therapy (PDT) was performed using the chick chorioallantoic membrane (CAM) model to investigate the vitality of synovium and cartilage implanted on the CAM. Synovium, obtained from human patients, was grafted onto the CAM; gross microscopy and histology proved its vitality 7 days post grafting. Cartilage obtained from rabbit knee joint was also maintained on the CAM for 7 days. Its vitality was demonstrated by histology and by measuring metabolic and enzymatic activity of cartilage cells (chondrocytes) as well as the collagen and proteoglycans content. Selective PDT was performed using aluminum phthalocyanine tetrasulfonate (AlPcS4), a hydrophilic compound, soluble in biological solutions, as a photosensitizer. After irradiation with a diode laser (lambda equals 670 nm, 10 mW) damage was observed in vascularized synovium grafts, whereas avascular cartilage remained intact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuzhakov, A V; Sviridov, A P; Shcherbakov, E M
2014-01-31
The optical properties of costal cartilage and their variation under the action of laser radiation with the wavelength 1.56 μm are studied. The laser action regime corresponds to that used for changing the cartilage shape. The dynamics of the passed scattered laser radiation was studied by means of the optical fibre system, and the optical properties of the cartilage tissue (on the basis of Monte Carlo modelling of light propagation) – using the setup with two integrating spheres. Under the influence of radiation, the characteristics of which corresponded to those used for the cartilage shape correction, no essential changes inmore » the optical parameters were found. The results obtained in the course of studying the dynamics of optical signals in the process of costal cartilage irradiation can be used for developing control systems, providing the safety and efficiency of laser medical technologies. (biophotonics)« less
NASA Astrophysics Data System (ADS)
Huynh, Ruby N.; Nehmetallah, George; Raub, Christopher B.
2017-06-01
Articular surface damage occurs to cartilage during normal aging, osteoarthritis, and in trauma. A noninvasive assessment of cartilage microstructural alterations is useful for studies involving cartilage explants. This study evaluates polarized reflectance microscopy as a tool to assess surface damage to cartilage explants caused by mechanical scraping and enzymatic degradation. Adult bovine articular cartilage explants were scraped, incubated in collagenase, or underwent scrape and collagenase treatments. In an additional experiment, cartilage explants were subject to scrapes at graduated levels of severity. Polarized reflectance parameters were compared with India ink surface staining, features of histological sections, changes in explant wet weight and thickness, and chondrocyte viability. The polarized reflectance signal was sensitive to surface scrape damage and revealed individual scrape features consistent with India ink marks. Following surface treatments, the reflectance contrast parameter was elevated and correlated with image area fraction of India ink. After extensive scraping, polarized reflectance contrast and chondrocyte viability were lower than that from untreated explants. As part of this work, a mathematical model was developed and confirmed the trend in the reflectance signal due to changes in surface scattering and subsurface birefringence. These results demonstrate the effectiveness of polarized reflectance microscopy to sensitively assess surface microstructural alterations in articular cartilage explants.
Identification of latexin by a proteomic analysis in rat normal articular cartilage
2010-01-01
Background Osteoarthritis (OA) is characterized by degeneration of articular cartilage. Animal models of OA induced are a widely used tool in the study of the pathogenesis of disease. Several proteomic techniques for selective extraction of proteins have provided protein profiles of chondrocytes and secretory patterns in normal and osteoarthritic cartilage, including the discovery of new and promising biomarkers. In this proteomic analysis to study several proteins from rat normal articular cartilage, two-dimensional electrophoresis and mass spectrometry (MS) were used. Interestingly, latexin (LXN) was found. Using an immunohistochemical technique, it was possible to determine its localization within the chondrocytes from normal and osteoarthritic articular cartilage. Results In this study, 147 proteins were visualized, and 47 proteins were identified by MS. A significant proportion of proteins are involved in metabolic processes and energy (32%), as well as participating in different biological functions including structural organization (19%), signal transduction and molecular signaling (11%), redox homeostasis (9%), transcription and protein synthesis (6%), and transport (6%). The identified proteins were assigned to one or more subcellular compartments. Among the identified proteins, we found some proteins already recognized in other studies such as OA-associated proteins. Interestingly, we identified LXN, an inhibitor of mammalian carboxypeptidases, which had not been described in articular cartilage. Immunolabeling assays for LXN showed a granular distribution pattern in the cytoplasm of most chondrocytes of the middle, deep and calcified zones of normal articular cartilage as well as in subchondral bone. In osteoarthritic cartilage, LXN was observed in superficial and deep zones. Conclusions This study provides the first proteomic analysis of normal articular cartilage of rat. We identified LXN, whose location was demonstrated by immunolabeling in the chondrocytes from the middle, deep and calcified zones of normal articular cartilage, and superficial and deep zones of osteoarthritic cartilage. PMID:20525390
Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S
2016-07-01
Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, P<0.05) with the longest time at the central area. Positive correlation was seen between mean T2 relaxation time and morphological grading (Pearson correlation coefficiency, P<0.001). T2 increased with severity of morphological grading from 0 to 3 (mixed model, P<0.001), but no statistical difference was seen between grades 3 and 4. In patellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.
Bos, P K; van Osch, G J; Frenz, D A; Verhaar, J A; Verwoerd-Verhoef, H L
2001-05-01
The ability of cartilage to regenerate following injury is limited, potentially leading to osteoarthritis. Integrative cartilage repair, necessary for durable restoration of cartilage lesions, can be regarded as a wound healing process. Little is known about the effects of growth factors regulating acute cartilage wound healing in vivo. In this study the temporal expression patterns of growth factors and proteoglycan content in cartilage wound edges in vivo were studied. Cartilage wounds were created in rabbit ear cartilage using a 6 mm biopsy punch. Specimens were subsequently harvested 1, 3, 7, 14 and 28 days after surgery. Paraffin sections were thionin stained to visualize proteoglycan loss and replacement. Immunohistochemical staining of TGFbeta1, TGFbeta3, IGF-1, IGF-II and FGF-2 was used to define growth factor expression at the cartilage wound sites. Almost no effect of cartilage wounding was observed one day after surgery. A decrease of proteoglycan content, with a maximal loss at day 7, and a subsequent restoration was observed at the wound edges. Growth factor expression increased simultaneously. Maximal immunostaining for IGF1, IGFII, FGF2 and TGF-beta3 was observed at day 7, followed by a gradual decrease. Increased expression of TGFbeta1 lasted from day 3 until day 14. We have demonstrated the ability of chondrocytes to increase growth factor expression and to restore the rapid decrease in proteoglycan content in the initial phase following acute wounding. A temporal increase in intracellular growth factor expression suggests an autocrine and/or paracrine metabolic stimulation, which can be regarded a sign of chondrocytes repair capacity. Copyright 2001 OsteoArthritis Research Society International.
Temple, Duncan K; Cederlund, Anna A; Lawless, Bernard M; Aspden, Richard M; Espino, Daniel M
2016-10-06
The purpose of this study was to compare the frequency-dependent viscoelastic properties of human and bovine cartilage. Full-depth cartilage specimens were extracted from bovine and human femoral heads. Using dynamic mechanical analysis, the viscoelastic properties of eight bovine and six human specimens were measured over the frequency range 1 Hz to 88 Hz. Significant differences between bovine and human cartilage viscoelastic properties were assessed using a Mann-Whitney test (p < 0.05). Throughout the range of frequencies tested and for both species, the storage modulus was greater than the loss modulus and both were frequency-dependent. The storage and loss moduli of all human and bovine cartilage specimens presented a logarithmic relationship with respect to frequency. The mean human storage modulus ranged from 31.9 MPa to 43.3 MPa, while the mean bovine storage modulus ranged from 54.0 MPa to 80.5 MPa; bovine storage moduli were 1.7 to 1.9 times greater than the human modulus. Similarly, the loss modulus of bovine cartilage was 2.0 to 2.1 times greater than human. The mean human loss modulus ranged from 5.3 MPa to 8.5 MPa while bovine moduli ranged from 10.6 MPa to 18.1 MPa. Frequency-dependent viscoelastic trends of bovine articular cartilage were consistent with those of human articular cartilage; this includes a similar frequency dependency and high-frequency plateau. Bovine cartilage was, however, 'stiffer' than human by a factor of approximately 2. With these provisos, bovine articular cartilage may be a suitable dynamic model for human articular cartilage.
Fabrication of Custom-Shaped Grafts for Cartilage Regeneration
Koo, Seungbum; Hargreaves, Brian A.; Gold, Garry E.; Dragoo, Jason L.
2011-01-01
Transplantation of engineered cartilage grafts is a promising method to treat diseased articular cartilage. The interfacial areas between the graft and the native tissues play an important role in the successful integration of the graft to adjacent native tissues. The purposes of the study were to create a custom shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4±0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04±0.19 mm. Custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology, which may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths. PMID:21058268
Boileau, C; Martel-Pelletier, J; Abram, F; Raynauld, J-P; Troncy, E; D'Anjou, M-A; Moreau, M; Pelletier, J-P
2008-07-01
Osteoarthritis (OA) structural changes take place over decades in humans. MRI can provide precise and reliable information on the joint structure and changes over time. In this study, we investigated the reliability of quantitative MRI in assessing knee OA structural changes in the experimental anterior cruciate ligament (ACL) dog model of OA. OA was surgically induced by transection of the ACL of the right knee in five dogs. High resolution three dimensional MRI using a 1.5 T magnet was performed at baseline, 4, 8 and 26 weeks post surgery. Cartilage volume/thickness, cartilage defects, trochlear osteophyte formation and subchondral bone lesion (hypersignal) were assessed on MRI images. Animals were killed 26 weeks post surgery and macroscopic evaluation was performed. There was a progressive and significant increase over time in the loss of knee cartilage volume, the cartilage defect and subchondral bone hypersignal. The trochlear osteophyte size also progressed over time. The greatest cartilage loss at 26 weeks was found on the tibial plateaus and in the medial compartment. There was a highly significant correlation between total knee cartilage volume loss or defect and subchondral bone hypersignal, and also a good correlation between the macroscopic and the MRI findings. This study demonstrated that MRI is a useful technology to provide a non-invasive and reliable assessment of the joint structural changes during the development of OA in the ACL dog model. The combination of this OA model with MRI evaluation provides a promising tool for the evaluation of new disease-modifying osteoarthritis drugs (DMOADs).
Mu, Wenbo; Xu, Boyong; Ma, Hairong; Ji, Baochao; Zhang, Zhendong; Li, Jiao; Amat, Abdusami; Cao, Li
2017-11-01
Osteoarthritis (OA) is the most common degenerative condition of the weight‑bearing joints worldwide without effective medical therapy. In order to investigate whether administration of halofuginone (HF) may attenuate OA, the present study allocated 3‑month‑old male mice into Sham group, vehicle‑treated anterior cruciate ligament transection (ACLT) group and HF‑treated ACLT group. The present study determined that HF treatment reduced the expression of matrix metallopeptidase‑13 and collagen X in articular cartilage. Additionally, it lowered the Osteoarthritis Research Society International‑Modified Mankin score and prevented the loss of articular cartilage from Safranin O and Fast Green staining. HF reduced the progression of osteoarthritis by downregulating abnormally elevated TGF‑β1 activity in articular cartilage. Administration of HF may be a potential preventive therapy for OA.
Majd, Sara Ehsani; Rizqy, Aditya Iman; Kaper, Hans J; Schmidt, Tannin A; Kuijer, Roel; Sharma, Prashant K
2017-07-01
Active lifestyles increase the risk of meniscal injury. A permanent meniscus implant of polycarbonate urethane (PCU) is a promising treatment to postpone/prevent total knee arthroplasty. Study of the changes in articular cartilage tribology in the presence of PCU is essential in developing the optimum meniscus implant. Therefore, a cartilage-meniscus reciprocating, sliding model was developed in vitro, mimicking the stance and swing phases of the gait cycle. The meniscus was further replaced with PCU and surface-modified PCUs (with C18 chains, mono-functional polydimethylsiloxane groups and mono-functional polytetrafluoroethylene groups) to study the changes. The coefficient of friction (COF) was calculated, and cartilage wear was determined and quantified histologically. The cartilage-meniscus sliding resulted in low COF during both stance and swing (0.01< COF <0.12) and low wear of cartilage (scores <1). The cartilage-PCU sliding, during stance, revealed similar low COFs. But during swing, the COFs were high (average ∼1, maximum 1.6), indicating a breakdown in interstitial fluid pressurization lubrication and non-effective activation of the boundary lubrication. This may lead to wear of cartilage in long term. However, under the tested conditions the wear of cartilage against PCUs was not higher than its wear against meniscus, and the cartilage was occasionally damaged. The COF decreased with increasing the contact pressure (as-per a power equation) up to 1MPa. The changes in the surface modification of PCU did not affect PCU's tribological performance. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Ho, Kai-Yu; Keyak, Joyce H; Powers, Christopher M
2014-01-03
Elevated bone principal strain (an indicator of potential bone injury) resulting from reduced cartilage thickness has been suggested to contribute to patellofemoral symptoms. However, research linking patella bone strain, articular cartilage thickness, and patellofemoral pain (PFP) remains limited. The primary purpose was to determine whether females with PFP exhibit elevated patella bone strain when compared to pain-free controls. A secondary objective was to determine the influence of patella cartilage thickness on patella bone strain. Ten females with PFP and 10 gender, age, and activity-matched pain-free controls participated. Patella bone strain fields were quantified utilizing subject-specific finite element (FE) models of the patellofemoral joint (PFJ). Input parameters for the FE model included (1) PFJ geometry, (2) elastic moduli of the patella bone, (3) weight-bearing PFJ kinematics, and (4) quadriceps muscle forces. Using quasi-static simulations, peak and average minimum principal strains as well as peak and average maximum principal strains were quantified. Cartilage thickness was quantified by computing the perpendicular distance between opposing voxels defining the cartilage edges on axial plane magnetic resonance images. Compared to the pain-free controls, individuals with PFP exhibited increased peak and average minimum and maximum principal strain magnitudes in the patella. Additionally, patella cartilage thickness was negatively associated with peak minimum principal patella strain and peak maximum principal patella strain. The elevated bone strain magnitudes resulting from reduced cartilage thickness may contribute to patellofemoral symptoms and bone injury in persons with PFP. © 2013 Published by Elsevier Ltd.
Bagi, C M; Berryman, E R; Teo, S; Lane, N E
2017-12-01
The aim of this study was to determine the ability of undenatured native chicken type II collagen (UC-II) to prevent excessive articular cartilage deterioration in a rat model of osteoarthritis (OA). Twenty male rats were subjected to partial medial meniscectomy tear (PMMT) surgery to induce OA. Immediately after the surgery 10 rats received vehicle and another 10 rats oral daily dose of UC-II at 0.66 mg/kg for a period of 8 weeks. In addition 10 naïve rats were used as an intact control and another 10 rats received sham surgery. Study endpoints included a weight-bearing capacity of front and hind legs, serum biomarkers of bone and cartilage metabolism, analyses of subchondral and cancellous bone at the tibial epiphysis and metaphysis, and cartilage pathology at the medial tibial plateau using histological methods. PMMT surgery produced moderate OA at the medial tibial plateau. Specifically, the deterioration of articular cartilage negatively impacted the weight bearing capacity of the operated limb. Immediate treatment with the UC-II preserved the weight-bearing capacity of the injured leg, preserved integrity of the cancellous bone at tibial metaphysis and limited the excessive osteophyte formation and deterioration of articular cartilage. Study results demonstrate that a clinically relevant daily dose of UC-II when applied immediately after injury can improve the mechanical function of the injured knee and prevent excessive deterioration of articular cartilage. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Zhou, S; Wang, Z; Tang, J; Li, W; Huang, J; Xu, W; Luo, F; Xu, M; Wang, J; Wen, X; Chen, L; Chen, H; Su, N; Shen, Y; Du, X; Xie, Y; Chen, L
2016-12-01
The aim of the present study is to investigate the effects of exogenous fibroblast growth factor (FGF)9 on the progression of post-traumatic osteoarthritis (OA). The expression of FGF9 in articular cartilage with OA is detected by immunohistochemistry (IHC). The effects of intra-articular exogenous FGF9 injection on post-traumatic OA induced by the destabilization of the medial meniscus (DMM) surgery are evaluated. Cartilage changes and osteophyte formation in knee joints are investigated by histological analysis. Changes in subchondral bone are evaluated by microcomputed tomography (micro-CT). The effect of exogenous FGF9 on an interleukin-1β (IL-1β)-induced ex vivo OA model of human articular cartilage tissues is also evaluated. FGF9 expression was down-regulated in articular chondrocytes of OA but ectopically induced at sites of osteophyte formation. Intra-articular injection of exogenous FGF9 attenuated articular cartilage degradation in mice after DMM surgery. Exogenous FGF9 suppressed collagen X and MMP13 expressions in OA cartilage, while promoted collagen II expression. Similar results were observed in IL-1β-induced ex vivo OA model. Intra-articular injection of FGF9 had no significant effect on the subchondral bone of knee joints after DMM surgery, but aggravated osteophyte formation. The expressions of SOX9 and collagen II, and cell proliferation were up-regulated at sites of initial osteophyte formation in mice with exogenous FGF9 treatment. Intra-articular injection of exogenous FGF9 delays articular cartilage degradation in post-traumatic OA, while aggravates osteophyte formation. Copyright © 2016. Published by Elsevier Ltd.
Gersing, Alexandra S.; Mbapte Wamba, John; Nevitt, Michael C.; McCulloch, Charles E.; Link, Thomas M.
2016-01-01
Purpose To determine the incidence with which morphologic articular cartilage defects develop over 48 months in cartilage with signal abnormalities at baseline magnetic resonance (MR) imaging in comparison with the incidence in articular cartilage without signal abnormalities at baseline. Materials and Methods The institutional review boards of all participating centers approved this HIPAA-compliant study. Right knees of 90 subjects from the Osteoarthritis Initiative (mean age, 55 years ± 8 [standard deviation]; 51% women) with cartilage signal abnormalities but without morphologic cartilage defects at 3.0-T MR imaging and without radiographic osteoarthritis (Kellgren-Lawrence score, 0–1) were frequency matched for age, sex, Kellgren-Lawrence score, and body mass index with right knees in 90 subjects without any signal abnormalities or morphologic defects in the articular cartilage (mean age, 54 years ± 5; 51% women). Individual signal abnormalities (n = 126) on intermediate-weighted fast spin-echo MR images were categorized into four subgrades: subgrade A, hypointense; subgrade B, inhomogeneous; subgrade C, hyperintense; and subgrade D, hyperintense with swelling. The development of morphologic articular cartilage defects (Whole-Organ MR Imaging Score ≥2) at 48 months was analyzed on a compartment level and was compared between groups by using generalized estimating equation logistic regression models. Results Cartilage signal abnormalities were more frequent in the patellofemoral joint than in the tibiofemoral joint (59.5% vs 39.5%). Subgrade A was seen more frequently than were subgrades C and D (36% vs 22%). Incidence of morphologic cartilage defects at 48 months was 57% in cartilage with baseline signal abnormalities, while only 4% of compartments without baseline signal abnormalities developed morphologic defects at 48 months (all compartments combined and each compartment separately, P < .01). The development of morphologic defects was not significantly more likely in any of the subgrades (P = .98) and was significantly associated with progression of bone marrow abnormalities (P = .002). Conclusion Knee cartilage signal abnormalities detected with MR imaging are precursors of morphologic defects with osteoarthritis and may serve as imaging biomarkers with which to assess risk for cartilage degeneration. © RSNA, 2016 PMID:27135833
Ichiseki, Toru; Shimasaki, Miyako; Ueda, Yoshimichi; Tsuchiya, Masanobu; Souma, Daisuke; Kaneuji, Ayumi; Kawahara, Norio
2018-01-01
Persistent inflammation is well known to promote the progression of arthropathy. mesenchymal stem cells (MSCs) have been shown to possess anti-inflammatory properties and tissue differentiation potency. Although the experience so far with the intraarticular administration of mesenchymal stem cell (MSC) to induce cartilage regeneration has been disappointing, MSC implantation is now being attempted using various surgical techniques. Meanwhile, prevention of osteoarthritis (OA) progression and pain control remain important components of the treatment of early-stage OA. We prepared a shoulder arthritis model by injecting monoiodoacetate (MIA) into a rat shoulder, and then investigated the intraarticular administration of MSC from the aspects of the cartilage protective effect associated with their anti-inflammatory property and inhibitory effect on central sensitization of pain. When MIA was administered in this rat shoulder arthritis model, anti-Calcitonin Gene Related Peptide (CGRP) was expressed in the joint and C5 spinal dorsal horn. Moreover, expression of A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), a marker of joint cartilage injury, was similarly elevated following MIA administration. When MSC were injected intraarticularly after MIA, the expression of CGRP in the spinal dorsal horn was significantly deceased, indicating suppression of the central sensitization of pain. The expression of ADAMTS 5 in joint cartilage was also significantly inhibited by MSC administration. In contrast, a significant increase in the expression of TNF-α stimulated gene/protein 6 (TSG-6), an anti-inflammatory and cartilage protective factor shown to be produced and secreted by MSC intraarticularly, was found to extend to the cartilage tissue following MSC administration. In this way, the intraarticular injection of MSC inhibited the central sensitization of pain and increased the expression of the anti-inflammatory and cartilage protective factor TSG-6. As the least invasive conservative strategies possible are desirable in the actual clinical setting, the intraarticular administration of MSC, which appears to be effective for the treatment of pain and cartilage protection in early-stage arthritis, may achieve these aims. PMID:29315262
1988-01-15
76] under physiological conditions. Oscillatory streaming currents of 1-5 pA/cm’ were recently demonstrated in bovine knee articular cartilage...in cellular metabolism or cellular acidosis ). In general, these agents are lethal in high enough doses. The stress proteins are highly conserved...which under reducing conditions subdivides into subunits of 35 kD (on SDS-PAGE) in bovine fetal epiphyseal and articular cartilage [170]. The tissue
Preclinical Studies for Cartilage Repair
Hurtig, Mark B.; Buschmann, Michael D.; Fortier, Lisa A.; Hoemann, Caroline D.; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.
2011-01-01
Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral defects in immature laboratory species, particularly the rabbit, was considered adequate; however, if successful and timely translation from animal models to regulatory approval and clinical use is the goal, a step-wise development using laboratory animals for screening and early development work followed by larger species such as the goat, sheep and horse for late development and pivotal studies is recommended. Such animals must have fully organized and mature cartilage. Both acute and chronic chondral defects can be used but the later are more like the lesions found in patients and may be more predictive. Quantitative and qualitative outcome measures such as macroscopic appearance, histology, biochemistry, functional imaging, and biomechanical testing of cartilage, provide reliable data to support investment decisions and subsequent applications to regulatory bodies for clinical trials. No one model or species can be considered ideal for pivotal studies, but the larger animal species are recommended for pivotal studies. Larger species such as the horse, goat and pig also allow arthroscopic delivery, and press-fit or sutured implant fixation in thick cartilage as well as second look arthroscopies and biopsy procedures. PMID:26069576
Mrugala, D; Bony, C; Neves, N; Caillot, L; Fabre, S; Moukoko, D; Jorgensen, C; Noël, D
2008-03-01
Multipotent mesenchymal stromal cells (MSC) are of particular interest for their potential clinical use in cartilage engineering, but a consistent model is missing in large animals. In the absence of any detailed study reporting a complete characterisation of the mesenchymal cells isolated from sheep bone marrow, we fully characterised adherent stromal cells and developed a pre-clinical model of cartilage engineering by implantation of autologous MSC in the Merinos sheep. Ovine MSC (oMSC) were isolated from bone marrow, expanded and further characterised according to the recently proposed definition of the MSC. The experimental model consists of partial-thickness lesions created in the inner part of the patellae of the posterior legs. Lesions were filled with oMSC with or without chitosan, with or without transforming growth factor (TGF)beta-3, in a fibrin clot. oMSC were shown to display the three main characteristics of MSC: adherence to plastic, phenotypic profile (positive for CD44, CD105, vimentin and negative for CD34 and CD45), and trilineage differentiation potential. We also report two other important functional characteristics of MSC: support of long-term haematopoiesis and immunosuppressive capacity. In vivo, 2 months after implantation the histological analysis revealed chondrocyte-like cells surrounded by a hyaline-like cartilaginous matrix that was integrated to the host cartilage when oMSC were combined with chitosan and TGFbeta-3. This study provides for the first time a strong characterisation of oMSC and establishes the basis for a model of cartilage engineering in a large animal.
Giunta, Salvatore; Castorina, Alessandro; Marzagalli, Rubina; Szychlinska, Marta Anna; Pichler, Karin; Mobasheri, Ali; Musumeci, Giuseppe
2015-01-01
Osteoarthritis (OA); the most common form of degenerative joint disease, is associated with variations in pro-inflammatory growth factor levels, inflammation and hypocellularity resulting from chondrocyte apoptosis. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide endowed with a range of trophic effects in several cell types; including chondrocytes. However; its role in OA has not been studied. To address this issue, we investigated whether PACAP expression is affected in OA cartilage obtained from experimentally-induced OA rat models, and then studied the effects of PACAP in isolated chondrocytes exposed to IL-1β in vitro to mimic the inflammatory milieu of OA cartilage. OA induction was established by histomorphometric and histochemical analyses. Changes in PACAP distribution in cartilage, or its concentration in synovial fluid (SF), were assessed by immunohistochemistry and ELISA. Results showed that PACAP abundance in cartilage tissue and SF was high in healthy controls. OA induction decreased PACAP levels both in affected cartilage and SF. In vitro, PACAP prevented IL-1β-induced chondrocyte apoptosis, as determined by MTT assay; Hoechst staining and western blots of apoptotic-related proteins. These changes were also accompanied by decreased i-NOS and COX-2 levels, suggesting an anti-inflammatory effect. Altogether, these findings support a potential role for PACAP as a chondroprotective agent for the treatment of OA. PMID:25782157
Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.
2016-01-01
We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p < 0.05; experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0–2 years, p < 0.001) was followed by a slow or negligible degeneration (2–4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis. PMID:26906749
Vinardell, T; Thorpe, S D; Buckley, C T; Kelly, D J
2009-12-01
Integration of repair tissue is a key indicator of the long-term success of cell-based therapies for cartilage repair. The objective of this study was to compare the in vitro chondrogenic differentiation and integration of agarose hydrogels seeded with either chondrocytes or bone marrow-derived mesenchymal stem cells (MSCs) in defects created in cartilage explants. Chondrocytes and MSCs were isolated from porcine donors, suspended in 2% agarose and then injected into cylindrical defects within the explants. These constructs were maintained in a chemically defined medium supplemented with 10 ng/mL of TGF-beta3. Cartilage integration was assessed by histology and mechanical push-out tests. After 6 weeks in culture, chondrocyte-seeded constructs demonstrated a higher integration strength (64.4 +/- 8.3 kPa) compared to MSC-seeded constructs (22.7 +/- 5.9 kPa). Glycosaminoglycan (GAG) (1.27 +/- 0.3 vs. 0.19 +/- 0.03 kPa) and collagen (0.31 +/- 0.08 vs. 0.09 +/- 0.01 kPa) accumulation in chondrocyte-seeded constructs was greater than that measured in the MSC-seeded group. The GAG, collagen, and DNA content of both chondrocyte- and MSC-seeded hydrogels cultured in cartilage explants was significantly lower than control constructs cultured in free swelling conditions. The results of this study suggest that the explant model may constitute a more rigorous in vitro test to assess MSC therapies for cartilage defect repair.
Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue.
Guo, Ting; Lembong, Josephine; Zhang, Lijie Grace; Fisher, John P
2017-06-01
In the past few decades, the field of tissue engineering combined with rapid prototyping (RP) techniques has been successful in creating biological substitutes that mimic tissues. Its applications in regenerative medicine have drawn efforts in research from various scientific fields, diagnostics, and clinical translation to therapies. While some areas of therapeutics are well developed, such as skin replacement, many others such as cartilage repair can still greatly benefit from tissue engineering and RP due to the low success and/or inefficiency of current existing, often surgical treatments. Through fabrication of complex scaffolds and development of advanced materials, RP provides a new avenue for cartilage repair. Computer-aided design and three-dimensional (3D) printing allow the fabrication of modeled cartilage scaffolds for repair and regeneration of damaged cartilage tissues. Specifically, the various processes of 3D printing will be discussed in details, both cellular and acellular techniques, covering the different materials, geometries, and operational printing conditions for the development of tissue-engineered articular cartilage. Finally, we conclude with some insights on future applications and challenges related to this technology, especially using 3D printing techniques to recapitulate the complexity of native structure for advanced cartilage regeneration.
Studies of mineralization in tissue culture: optimal conditions for cartilage calcification
NASA Technical Reports Server (NTRS)
Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.
1992-01-01
The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.
Tang, Quen Oak; Carasco, Clare Francesca; Gamie, Zakareya; Korres, Nectarios; Mantalaris, Athanasios; Tsiridis, Eleftherios
2012-10-01
With an ageing population, the prevalence of osteoarthritis (OA) has increased. Mesenchymal Stem Cells (MSCs) have been proposed to be an attractive alternative candidate in the tissue engineering of articular cartilage primarily due to its abundant source, reduced cartilage donor site morbidity, and strong capacity for proliferation and potential to differentiate toward a chondrogenic phenotype. A current overview of human, in vivo, and in vitro evidence on the use of MSCs in cartilage tissue engineering. We demonstrate robust evidence that MSCs have the potential to regenerate articular cartilage. We also identify the complexity of designing a suitable preclinical model and the challenges in considering its clinical application such as type of MSC, scaffold, culture construct and the method by which growth factors are delivered. Of great interest is further characterization of the factors that may prevent MSC-derived chondrocytes to undergo premature hypertrophy and to understand what enables the terminal developmental pathway for permanent hyaline cartilage regeneration. Despite this, there is an abundance of evidence suggesting that MSCs are a desirable cell source and will have significant impact in tissue engineering of cartilage in the future.
Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, René; Khan, Ilyas M; Malda, Jos
2017-10-01
Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells (ACPCs), that to date, received limited attention in biomaterials and tissue engineering applications. Harnessing the potential of these cells in 3D hydrogels can open new avenues for biomaterial-based regenerative therapies, especially with advanced biofabrication technologies (e.g. bioprinting). This study highlights the potential of ACPCs to generate neo-cartilage in a gelatin-based hydrogel and bioink. The ACPC-laden hydrogel is a suitable substrate for chondrogenesis and data shows it has a bias in directing cells towards a superficial zone phenotype. For the first time, ACPC-hydrogels are evaluated both as alternative for and in combination with chondrocytes and MSCs, using co-cultures and bioprinting for cartilage regeneration in vitro. This study provides important cues on ACPCs, indicating they represent a promising cell source for the next generation of cartilage constructs with increased biomimicry. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Choi, W-S; Chun, J-S
2017-03-01
Lipocalin-2 (LCN2) is a recently characterized adipokine that is upregulated in chondrocytes treated with pro-inflammatory mediators and in the synovial fluid of osteoarthritis (OA) patients. Here, we explored the in vivo functions of LCN2 in OA cartilage destruction in mice. The expression levels of LCN2 were determined at the mRNA and protein levels in primary cultured mouse chondrocytes and in human and mouse OA cartilage. Experimental OA was induced in wild-type (WT) or Lcn2-knockout (KO) mice by destabilization of the medial meniscus (DMM) or intra-articular (IA) injection of adenoviruses expressing hypoxia-inducible factor (HIF)-2α (Ad-Epas1), ZIP8 (Ad-Zip8), or LCN2 (Ad-Lcn2). The effect of LCN2 overexpression on the cartilage of WT mice was examined by IA injection of Ad-Lcn2. LCN2 mRNA levels in chondrocytes were markedly increased by the pro-inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor-α (TNF-α), and by previously identified catabolic regulators of OA, such as HIF-2α and components of the zinc-ZIP8-MTF1 axis. LCN2 protein levels were also markedly increased in human OA cartilage and cartilage from various experimental mouse models of OA. However, overexpression of LCN2 in chondrocytes did not modulate the expression of cartilage matrix molecules or matrix-degrading enzymes. Furthermore, LCN2 overexpression in mouse cartilage via IA injection of Ad-Lcn2 did not cause OA pathogenesis, and Lcn2 KO mice showed no alteration in DMM-induced OA cartilage destruction. Our observations collectively suggest that upregulation of LCN2 in OA cartilage is not sufficient or necessary for OA cartilage destruction in mice. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strecker, Ruben, E-mail: Ruben.Strecker@cos.uni-heidelberg.de; Weigt, Stefan, E-mail: stefan.weigt@merckgroup.com; Braunbeck, Thomas, E-mail: braunbeck@uni-hd.de
In order to investigate teratogenic effects, especially on cartilage and bone formation, zebrafish embryos were exposed for 144 h to the dithiocarbamate pesticide disulfiram (20–320 μg/L) and acetic acid hydrazide (0.375–12 g/L), a degradation product of isoniazid. After fixation and full-mount staining, disulfiram could be shown to induce strong cartilage malformations after exposure to ≥ 80 μg/L, whereas acetic acid hydrazide caused cartilage alterations only from 1.5 g/L. Undulating notochords occurred after exposure to disulfiram even at the lowest test concentration of 20 μg/L, whereas at the two lowest concentrations of acetic acid hydrazide (0.375 and 0.75 g/L) mainly fracturesmore » of the notochord were observed. Concentrations of acetic acid hydrazide ≥ 1.5 g/L resulted in undulated notochords similar to disulfiram. Cartilages and ossifications of the cranium, including the cleithrum, were individually analyzed assessing the severity of malformation and the degree of ossification in a semi-quantitative approach. Cartilages of the neurocranium such as the ethmoid plate proved to be more stable than cartilages of the pharyngeal skeleton such as Meckel's cartilage. Hence, ossification proved significantly more susceptible than cartilage. The alterations induced in the notochord as well as in the cranium might well be of ecological relevance, since notochord malformation is likely to result in impaired swimming and cranial malformation might compromise regular food uptake. - Highlights: ► Disulfiram and acetic acid hydrazide as notochord, cartilage and bone teratogens ► Zebrafish embryos to model effects on single cartilages and bones in the head ► LC50 calculation and head length measurements after six days post-fertilization ► Lethality, head length and teratogenic effects are dose-dependent. ► Cartilages of the neurocranium are the most stable elements in the head.« less
Dai, Linghui; He, Zhenming; Zhang, Xin; Hu, Xiaoqing; Yuan, Lan; Qiang, Ming; Zhu, Jingxian; Shao, Zhenxing; Zhou, Chunyan; Ao, Yingfang
2014-03-01
Cartilage repair still presents a challenge to clinicians and researchers alike. A more effective, simpler procedure that can produce hyaline-like cartilage is needed for articular cartilage repair. A technique combining microfracture with a biomaterial scaffold of perforated decalcified cortical-cancellous bone matrix (DCCBM; composed of cortical and cancellous parts) would create a 1-step procedure for hyaline-like cartilage repair. Controlled laboratory study. For the in vitro portion of this study, mesenchymal stem cells (MSCs) were isolated from bone marrow aspirates of New Zealand White rabbits. Scanning electron microscopy (SEM), confocal microscopy, and 1,9-dimethylmethylene blue assay were used to assess the attachment, proliferation, and cartilage matrix production of MSCs grown on a DCCBM scaffold. For the in vivo experiment, full-thickness defects were produced in the articular cartilage of the trochlear groove of 45 New Zealand White rabbits, and the rabbits were then assigned to 1 of 3 treatment groups: perforated DCCBM combined with microfracture (DCCBM+M group), perforated DCCBM alone (DCCBM group), and microfracture alone (M group). Five rabbits in each group were sacrificed at 6, 12, or 24 weeks after the operation, and the repair tissues were analyzed by histological examination, assessment of matrix staining, SEM, and nanoindentation of biomechanical properties. The DCCBM+M group showed hyaline-like articular cartilage repair, and the repair tissues appeared to have better matrix staining and revealed biomechanical properties close to those of the normal cartilage. Compared with the DCCBM+M group, there was unsatisfactory repair tissues with less matrix staining in the DCCBM group and no matrix staining in the M group, as well as poor integration with normal cartilage and poor biomechanical properties. The DCCBM scaffold is suitable for MSC growth and hyaline-like cartilage repair induction when combined with microfracture. Microfracture combined with a DCCBM scaffold is a promising method that can be performed and adopted into clinical treatment for articular cartilage injuries.
Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.
2011-01-01
We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095
NASA Astrophysics Data System (ADS)
Magin, Richard L.; Li, Weiguo; Pilar Velasco, M.; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.
2011-06-01
We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena ( T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter ( α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for micro-structural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues.
Wei, Zheng-mao; Du, Xiang-ke; Huo, Tian-long; Li, Xu-bin; Quan, Guang-nan; Li, Tian-ran; Cheng, Jin; Zhang, Wei-tao
2012-03-01
Quantitative T2 mapping has been a widely used method for the evaluation of pathological cartilage properties, and the histological assessment system of osteoarthritis in the rabbit has been published recently. The aim of the study was to investigate the effectiveness of quantitative T2 mapping evaluation for articular cartilage lesions of a rabbit model of anterior cruciate ligament transection (ACLT) osteoarthritis. Twenty New Zealand White (NZW) rabbits were divided into ACLT surgical group and sham operated group equally. The anterior cruciate ligaments of the rabbits in ACLT group were transected, while the joints were closed intactly in sham operated group. Magnetic resonance (MR) examinations were performed on 3.0T MR unit at week 0, week 6, and week 12. T2 values were computed on GE ADW4.3 workstation. All rabbits were killed at week 13, and left knees were stained with Haematoxylin and Eosin. Semiquantitative histological grading was obtained according to the osteoarthritis cartilage histopathology assessment system. Computerized image analysis was performed to quantitate the immunostained collagen type II. The average MR T2 value of whole left knee cartilage in ACLT surgical group ((29.05±12.01) ms) was significantly higher than that in sham operated group ((24.52±7.97) ms) (P=0.024) at week 6. The average T2 value increased to (32.18±12.79) ms in ACLT group at week 12, but remained near the baseline level ((27.66±8.08) ms) in the sham operated group (P=0.03). The cartilage lesion level of left knee in ACLT group was significantly increased at week 6 (P=0.005) and week 12 (P<0.001). T2 values had positive correlation with histological grading scores, but inverse correlation with optical densities (OD) of type II collagen. This study demonstrated the reliability and practicability of quantitative T2 mapping for the cartilage injury of rabbit ACLT osteoarthritis model.
Soltz, Michael A.; Basalo, Ines M.; Ateshian, Gerard A.
2010-01-01
This study presents an analysis of the contact of a rippled rigid impermeable indenter against a cartilage layer, which represents a first simulation of the contact of rough cartilage surfaces with lubricant entrapment. Cartilage was modeled with the biphasic theory for hydrated soft tissues, to account for fluid flow into or out of the lubricant pool. The findings of this study demonstrate that under contact creep, the trapped lubricant pool gets depleted within a time period on the order of seconds or minutes as a result of lubricant flow into the articular cartilage. Prior to depletion, hydrostatic fluid load across the contact interface may be enhanced by the presence of the trapped lubricant pool, depending on the initial geometry of the lubricant pool. According to friction models based on the biphasic nature of the tissue, this enhancement in fluid load support produces a smaller minimum friction coefficient than would otherwise be predicted without a lubricant pool. The results of this study support the hypothesis that trapped lubricant decreases the initial friction coefficient following load application, independently of squeeze-film lubrication effects. PMID:14618917
Lee, Shu Jin; Lee, Heow Pueh; Tse, Kwong Ming; Cheong, Ee Cherk; Lim, Siak Piang
2012-06-01
Complex 3-D defects of the facial skeleton are difficult to reconstruct with freehand carving of autogenous bone grafts. Onlay bone grafts are hard to carve and are associated with imprecise graft-bone interface contact and bony resorption. Autologous cartilage is well established in ear reconstruction as it is easy to carve and is associated with minimal resorption. In the present study, we aimed to reconstruct the hypoplastic orbitozygomatic region in a patient with left hemifacial microsomia using computer-aided design and rapid prototyping to facilitate costal cartilage carving and grafting. A three-step process of (1) 3-D reconstruction of the computed tomographic image, (2) mirroring the facial skeleton, and (3) modeling and rapid prototyping of the left orbitozygomaticomalar region and reconstruction template was performed. The template aided in donor site selection and extracorporeal contouring of the rib cartilage graft to allow for an accurate fit of the graft to the bony model prior to final fixation in the patient. We are able to refine the existing computer-aided design and rapid prototyping methods to allow for extracorporeal contouring of grafts and present rib cartilage as a good alternative to bone for autologous reconstruction.
Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces.
Morgese, Giulia; Ramakrishna, Shivaprakash N; Simic, Rok; Zenobi-Wong, Marcy; Benetti, Edmondo M
2018-02-12
Comb-like polymers presenting a hydroxybenzaldehyde (HBA)-functionalized poly(glutamic acid) (PGA) backbone and poly(2-methyl-2-oxazoline) (PMOXA) side chains chemisorb on aminolized substrates, including cartilage surfaces, forming layers that reduce protein contamination and provide lubrication. The structure, physicochemical, biopassive, and tribological properties of PGA-PMOXA-HBA films are finely determined by the copolymer architecture, its reactivity toward the surface, i.e. PMOXA side-chain crowding and HBA density, and by the copolymer solution concentration during assembly. Highly reactive species with low PMOXA content form inhomogeneous layers due to the limited possibility of surface rearrangements by strongly anchored copolymers, just partially protecting the functionalized surface from protein contamination and providing a relatively weak lubrication on cartilage. Biopassivity and lubrication can be improved by increasing copolymer concentration during assembly, leading to a progressive saturation of surface defects across the films. In a different way, less reactive copolymers presenting high PMOXA side-chain densities form uniform, biopassive, and lubricious films, both on model aminolized silicon oxide surfaces, as well as on cartilage substrates. When assembled at low concentrations these copolymers adopt a "lying down" conformation, i.e. adhering via their backbones onto the substrates, while at high concentrations they undergo a conformational transition, assuming a more densely packed, "standing up" structure, where they stretch perpendicularly from the substrate. This specific arrangement reduces protein contamination and improves lubrication both on model as well as on cartilage surfaces.
Ishitobi, Hiroyuki; Sanada, Yohei; Kato, Yoshio; Ikuta, Yasunari; Shibata, Sachi; Yamasaki, Satoshi; Lotz, Martin K; Matsubara, Kiminori; Miyaki, Shigeru; Adachi, Nobuo
2018-04-17
Osteoarthritis (OA) is common age-associated disease, and associated with joint pain, mobility limitations and compromised overall quality of life. OA treatment is currently limited to pain management and joint arthroplasty at end stage disease. Oxidative damage to cartilage extracellular matrix and cells is an important mechanism in joint aging and OA pathogenesis. Evidence from in vitro and in vivo models of OA suggests that pharmaceuticals and natural compounds with antioxidant properties reduce expression of mediators of OA pathogenesis and OA severity in animal models. Among the signaling pathways that control cellular protective mechanisms against oxygen radical damage is heme oxygenase-1 (HO-1). We recently report HO-1 reduced OA severity in a mouse model. This led to the hypothesis that compounds that increase HO-1 expression have therapeutic potential in OA. Carnosic acid (CA), a natural diterpene with oxidant activity, is prevents cartilage degeneration though induction of HO-1. CA induced HO-1 and miR-140 expression in human articular chondrocytes, and cartilage degeneration was attenuated by CA treatment. Induced HO-1 by CA was in part associated with downregulation via miR-140 binding to 3'UTR of BTB and CNC homology 1 (BACH1). These findings suggest that CA attenuates cartilage degradation through HO-1 upregulation and has potential as a supplement for OA prevention. Copyright © 2018 Elsevier B.V. All rights reserved.
Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke; Hede, Kris Chadwick; Lind, Martin
2016-06-01
Osteochondral injuries have poor endogenous healing potential, and no standard treatment has been established. The use of combined layered autologous bone and cartilage chips for treatment of osteochondral defects has shown promising short-term clinical results. This study aimed to investigate the role of cartilage chips by comparing combined layered autologous bone and cartilage chips with autologous bone implantation alone in a Göttingen minipig model. The hypothesis was that the presence of cartilage chips would improve the quality of the repair tissue. Controlled laboratory study. Twelve Göttingen minipigs received 2 osteochondral defects in each knee. The defects were randomized to autologous bone graft (ABG) combined with autologous cartilage chips (autologous dual-tissue transplantation [ADTT]) or ABG alone. Six animals were euthanized at 6 months and 6 animals were euthanized at 12 months. Follow-up evaluation consisted of histomorphometry, immunohistochemistry, semiquantitative scoring (International Cartilage Repair Society II), and computed tomography. There was significantly more hyaline cartilage in the ADTT group (25.8%) compared with the ABG group (12.8%) at 6 months after treatment. At 12 months, the fraction of hyaline cartilage in the ABG group had significantly decreased to 4.8%, whereas the fraction of hyaline cartilage in the ADTT group was unchanged (20.1%). At 6 and 12 months, there was significantly more fibrocartilage in the ADTT group (44% and 60.8%) compared with the ABG group (24.5% and 41%). The fraction of fibrous tissue was significantly lower in the ADTT group compared with the ABG group at both 6 and 12 months. The implanted cartilage chips stained >75% positive for collagen type 4 and laminin at both 6 and 12 months. Significant differences were found in a number of International Cartilage Repair Society II subcategories. The volume of the remaining bone defect significantly decreased from 6 to 12 months in both treatment groups; however, no difference in volume was found between the groups at either 6 or 12 months. The presence of cartilage chips in an osteochondral defect facilitated the formation of fibrocartilage as opposed to fibrous tissue at both 6 and 12 months posttreatment. The implanted chips were present in the defect and viable after 12 months. This study substantiates the chondrogenic role of cartilage chips in osteochondral defects. © 2016 The Author(s).
Liao, Junlin; Wang, Shaohua; Chen, Jia; Xie, Hongju; Zhou, Jianda
2017-02-28
Three-dimensional (3D) bioprinting provides an advanced technology for tissue engineering and regenerative medicine because of its ability to produce the models or organs with higher precision and more suitable for human body. It has been successfully used to produce a variety of cartilage scaffold materials. In addition, 3D bioprinter can directly to print tissue and organs with live chondrocytes. In conclusion, 3D bioprinting may have broad prospect for cartilage regeneration and reconstruction in tissue engineering.
Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury
Embree, Mildred C.; Chen, Mo; Pylawka, Serhiy; Kong, Danielle; Iwaoka, George M.; Kalajzic, Ivo; Yao, Hai; Shi, Chancheng; Sun, Dongming; Sheu, Tzong-Jen; Koslovsky, David A.; Koch, Alia; Mao, Jeremy J.
2016-01-01
Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment. Wnt signals deplete the reservoir of FCSCs and cause cartilage degeneration. We also show that intra-articular treatment with the Wnt inhibitor sclerostin sustains the FCSC pool and regenerates cartilage in a TMJ injury model. We demonstrate the promise of exploiting resident FCSCs as a regenerative therapeutic strategy to substitute cell transplantation that could be beneficial for patients suffering from fibrocartilage injury and disease. These data prompt the examination of utilizing this strategy for other musculoskeletal tissues. PMID:27721375
NASA Astrophysics Data System (ADS)
Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin
2010-09-01
The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.
Christensen, Bjørn Borsøe; Olesen, Morten Lykke; Lind, Martin; Foldager, Casper Bindzus
2017-06-01
Repair of chondral injuries by use of cartilage chips has recently demonstrated clinical feasibility. To investigate in vivo cartilage repair outcome of autologous cartilage chips compared with marrow stimulation in full-thickness cartilage defects in a minipig model. Controlled laboratory study. Six Göttingen minipigs received two 6-mm chondral defects in the medial and lateral trochlea of each knee. The two treatment groups were (1) autologous cartilage chips embedded in fibrin glue (ACC) (n = 12) and (2) marrow stimulation (MST) (n = 12). The animals were euthanized after 6 months, and the composition of repair tissue was quantitatively determined using histomorphometry. Semiquantitative evaluation was performed by means of the International Cartilage Repair Society (ICRS) II score. Collagen type II staining was used to further evaluate the repair tissue composition. Significantly more hyaline cartilage was found in the ACC (17.1%) compared with MST (2.9%) group ( P < .01). Furthermore, the ACC group had significantly less fibrous tissue (23.8%) compared with the MST group (41.1%) ( P < .01). No significant difference in fibrocartilage content was found (54.7% for ACC vs 50.8% for MST). The ACC group had significantly higher ICRS II scores for tissue morphological characteristics, matrix staining, cell morphological characteristics, surface assessment, mid/deep assessment, and overall assessment ( P < .05). The ACC-treated defects had significantly more collagen type II staining (54.5%) compared with the MST-treated defects (28.1%) ( P < .05). ACC transplant resulted in improved quality of cartilage repair tissue compared with MST at 6 months postoperatively. Further studies are needed to investigate ACC as a possible alternative first-line treatment for focal cartilage injuries in the knee.
Hyaline Articular Matrix Formed by Dynamic Self-Regenerating Cartilage and Hydrogels.
Meppelink, Amanda M; Zhao, Xing; Griffin, Darvin J; Erali, Richard; Gill, Thomas J; Bonassar, Lawrence J; Redmond, Robert W; Randolph, Mark A
2016-07-01
Injuries to the articular cartilage surface are challenging to repair because cartilage possesses a limited capacity for self-repair. The outcomes of current clinical procedures aimed to address these injuries are inconsistent and unsatisfactory. We have developed a novel method for generating hyaline articular cartilage to improve the outcome of joint surface repair. A suspension of 10(7) swine chondrocytes was cultured under reciprocating motion for 14 days. The resulting dynamic self-regenerating cartilage (dSRC) was placed in a cartilage ring and capped with fibrin and collagen gel. A control group consisted of chondrocytes encapsulated in fibrin gel. Constructs were implanted subcutaneously in nude mice and harvested after 6 weeks. Gross, histological, immunohistochemical, biochemical, and biomechanical analyses were performed. In swine patellar groove, dSRC was implanted into osteochondral defects capped with collagen gel and compared to defects filled with osteochondral plugs, collagen gel, or left empty after 6 weeks. In mice, the fibrin- and collagen-capped dSRC constructs showed enhanced contiguous cartilage matrix formation over the control of cells encapsulated in fibrin gel. Biochemically, the fibrin and collagen gel dSRC groups were statistically improved in glycosaminoglycan and hydroxyproline content compared to the control. There was no statistical difference in the biomechanical data between the dSRC groups and the control. The swine model also showed contiguous cartilage matrix in the dSRC group but not in the collagen gel and empty defects. These data demonstrate the survivability and successful matrix formation of dSRC under the mechanical forces experienced by normal hyaline cartilage in the knee joint. The results from this study demonstrate that dSRC capped with hydrogels successfully engineers contiguous articular cartilage matrix in both nonload-bearing and load-bearing environments.
De Bari, Cosimo; Dell'Accio, Francesco; Luyten, Frank P
2004-01-01
We previously reported the identification in a nude mouse assay of molecular markers predictive of the capacity of articular cartilage-derived cells (ACDCs) to form ectopic stable cartilage that is resistant to vascular invasion and endochondral ossification. In the present study, we investigated whether in vitro-differentiated mesenchymal stem cells (MSCs) from the synovial membrane (SM) express the stable-chondrocyte markers and form ectopic stable cartilage in vivo. Chondrogenesis was induced in micromass culture with the addition of transforming growth factor beta1 (TGFbeta1). After acquisition of the cartilage phenotype, micromasses were implanted subcutaneously into nude mice. Alternatively, cells were released enzymatically and either replated in monolayer or injected intramuscularly into nude mice. Marker analysis was performed by quantitative reverse transcription-polymerase chain reaction. Cell death was detected with TUNEL assay. Cartilage-like micromasses and released cells expressed the stable-chondrocyte markers at levels comparable with those expressed by stable ACDCs. The released cells lost chondrocyte marker expression by 24 hours in monolayer and failed to form cartilage when injected intramuscularly into nude mice. Instead, myogenic differentiation was detected. When intact TGFbeta1-treated micromasses were implanted subcutaneously, they partially lost their cartilage phenotype and underwent cell death and neoangiogenesis within 1 week. At later time points (15-40 days), we retrieved neither cartilage nor bone, and human cells were not detectable. The chondrocyte-like phenotype of human SM MSCs, induced in vitro under specific conditions, appears to be unstable and is not sufficient to obtain ectopic formation of stable cartilage in vivo. Studies in animal models of joint surface defect repair are necessary to evaluate the stability of the SM MSC chondrocyte-like phenotype within the joint environment.
Articular Cartilage of the Human Knee Joint: In Vivo Multicomponent T2 Analysis at 3.0 T
Choi, Kwang Won; Samsonov, Alexey; Spencer, Richard G.; Wilson, John J.; Block, Walter F.; Kijowski, Richard
2015-01-01
Purpose To compare multicomponent T2 parameters of the articular cartilage of the knee joint measured by using multicomponent driven equilibrium single-shot observation of T1 and T2 (mcDESPOT) in asymptomatic volunteers and patients with osteoarthritis. Materials and Methods This prospective study was performed with institutional review board approval and with written informed consent from all subjects. The mcDESPOT sequence was performed in the knee joint of 13 asymptomatic volunteers and 14 patients with osteoarthritis of the knee. Single-component T2 (T2Single), T2 of the fast-relaxing water component (T2F) and of the slow-relaxing water component (T2S), and the fraction of the fast-relaxing water component (FF) of cartilage were measured. Wilcoxon rank-sum tests and multivariate linear regression models were used to compare mcDESPOT parameters between volunteers and patients with osteoarthritis. Receiver operating characteristic analysis was used to assess diagnostic performance with mcDESPOT parameters for distinguishing morphologically normal cartilage from morphologically degenerative cartilage identified at magnetic resonance imaging in eight cartilage subsections of the knee joint. Results Higher cartilage T2Single (P < .001), lower cartilage FF (P < .001), and similar cartilage T2F (P = .079) and T2S (P = .124) values were seen in patients with osteoarthritis compared with those in asymptomatic volunteers. Differences in T2Single and FF remained significant (P < .05) after consideration of age differences between groups of subjects. Diagnostic performance was higher with FF than with T2Single for distinguishing between normal and degenerative cartilage (P < .05), with greater areas under the curve at receiver operating characteristic analysis. Conclusion Patients with osteoarthritis of the knee had significantly higher cartilage T2Single and significantly lower cartilage FF than did asymptomatic volunteers, and receiver operating characteristic analysis results suggested that FF may allow greater diagnostic performance than that with T2Single for distinguishing between normal and degenerative cartilage. © RSNA, 2015 Online supplemental material is available for this article. PMID:26024307
NASA Astrophysics Data System (ADS)
St-Pierre, Jean-Philippe
The development of bioengineered cartilage for replacement of damaged articular cartilage has gained momentum in recent years. One such approach has been developed in the Kandel lab, whereby cartilage is formed by seeding primary articular chondrocytes on the top surface of a porous biodegradable calcium polyphosphate (CPP) bone substitute, permitting anchorage of the tissue within the pores of the substrate; however, the interfacial shear properties of the tissue-substrate interface of these biphasic constructs are 1 to 2 orders of magnitude lower than the native cartilage-subchondral bone interface. To overcome this limitation, a strategy was devised to generate a zone of calcified cartilage (ZCC), thereby mimicking the native architecture of the osteochondral junction; however, the ZCC was located slightly above the cartilage-CPP interface. Thus, it was hypothesized that polyphosphate released from the CPP substrate and accumulating in the tissue inhibits the formation of the ZCC at the tissue-substrate interface. Based on this information, a strategy was devised to generate biphasic constructs incorporating a properly located ZCC. This approach involved the application of a thin calcium phosphate film to the surfaces of porous CPP via a sol-gel procedure, thereby limiting the accumulation of polyphosphate in the cartilaginous tissue. This modification to the substrate surface did not negatively impact the quality of the in vitro-formed cartilage tissue or the ZCC. Interfacial shear testing of biphasic constructs demonstrated significantly improved interfacial shear properties in the presence of a properly located ZCC. These studies also led to the observation that chondrocytes produce endogenous polyphosphate and that its levels in deep zone cartilage appear inversely related to mineral deposition within the tissue. Using an in vitro model of cartilage calcification, it was demonstrated that polyphosphate levels are modulated in part by the inhibitory effects of fibroblast growth factor 18 on exopolyphosphatase activity in the tissue. Polyphosphate also appears to act in a feedback loop to control exopolyphosphatase activity. Interestingly, polyphosphate also exhibits positive effects on cartilage matrix accumulation. The potential implication of polyphosphate in the maintenance of articular cartilage homeostasis is intriguing and must be investigated further.
Mohan, Geetha; Magnitsky, Sergey; Melkus, Gerd; Subburaj, Karupppasamy; Kazakia, Galateia; Burghardt, Andrew J; Dang, Alexis; Lane, Nancy E; Majumdar, Sharmila
2016-10-01
Osteoarthritis (OA) is a major degenerative joint disease characterized by progressive loss of articular cartilage, synovitis, subchondral bone changes, and osteophyte formation. Currently there is no treatment for OA except temporary pain relief and end-stage joint replacement surgery. We performed a pilot study to determine the effect of kartogenin (KGN, a small molecule) on both cartilage and subchondral bone in a rat model of OA using multimodal imaging techniques. OA was induced in rats (OA and KGN treatment group) by anterior cruciate ligament transection (ACLT) surgery in the right knee joint. Sham surgery was performed on the right knee joint of control group rats. KGN group rats received weekly intra-articular injection of 125 μM KGN 1 week after surgery until week 12. All rats underwent in vivo magnetic resonance imaging (MRI) at 3, 6, and 12 weeks after surgery. Quantitative MR relaxation measures (T 1ρ and T 2 ) were determined to evaluate changes in articular cartilage. Cartilage and bone turnover markers (COMP and CTX-I) were determined at baseline, 3, 6, and 12 weeks. Animals were sacrificed at week 12 and the knee joints were removed for micro-computed tomography (micro-CT) and histology. KGN treatment significantly lowered the T 1ρ and T 2 relaxation times indicating decreased cartilage degradation. KGN treatment significantly decreased COMP and CTX-I levels indicating decreased cartilage and bone turnover rate. KGN treatment also prevented subchondral bone changes in the ACLT rat model of OA. Thus, kartogenin is a potential drug to prevent joint deterioration in post-traumatic OA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1780-1789, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Bomer, Nils; Cornelis, Frederique M F; Ramos, Yolande F M; den Hollander, Wouter; Storms, Lies; van der Breggen, Ruud; Lakenberg, Nico; Slagboom, P Eline; Meulenbelt, Ingrid; Lories, Rik J L
2016-03-01
To further explore deiodinase iodothyronine type 2 (DIO2) as a therapeutic target in osteoarthritis (OA) by studying the effects of forced mechanical loading on in vivo joint cartilage tissue homeostasis and the modulating effect herein of Dio2 deficiency. Wild-type and C57BL/6-Dio2(-/-) -mice were subjected to a forced running regime for 1 h per day for 3 weeks. Severity of OA was assessed by histological scoring for cartilage damage and synovitis. Genome-wide gene expression was determined in knee cartilage by microarray analysis (Illumina MouseWG-6 v2). STRING-db analyses were applied to determine enrichment for specific pathways and to visualise protein-protein interactions. In total, 158 probes representing 147 unique genes showed significantly differential expression with a fold-change ≥1.5 upon forced exercise. Among these are genes known for their association with OA (eg, Mef2c, Egfr, Ctgf, Prg4 and Ctnnb1), supporting the use of forced running as an OA model in mice. Dio2-deficient mice showed significantly less cartilage damage and signs of synovitis. Gene expression response upon exercise between wild-type and knockout mice was significantly different for 29 genes. Mice subjected to a running regime have significant increased cartilage damage and synovitis scores. Lack of Dio2 protected against cartilage damage in this model and was reflected in a specific gene expression profile, and either mark a favourable effect in the Dio2 knockout (eg, Gnas) or an unfavourable effect in wild-type cartilage homeostasis (eg, Hmbg2 and Calr). These data further support DIO2 activity as a therapeutic target in OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah
2016-01-01
Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic models where calcified cartilage percent is double our highest value. PMID:27829059
Suppression of Cartilage Degradation by Zingerone Involving the p38 and JNK MAPK Signaling Pathway.
Ruangsuriya, Jetsada; Budprom, Piyaporn; Viriyakhasem, Nawarat; Kongdang, Patiwat; Chokchaitaweesuk, Chatchadawalai; Sirikaew, Nutnicha; Chomdej, Siriwadee; Nganvongpanit, Korakot; Ongchai, Siriwan
2017-02-01
Zingerone, an active compound that is present in cooked ginger, has been claimed to be a bioactive ingredient that holds the potential of preventing and/or treating diseases involving inflammation. In this study, zingerone was used to discover its properties against joint inflammation using interleukin-1 β -induced osteoarthritis in cartilage explant and cell culture models. Zingerone was supplemented into the cartilage explant and cell culture media at different concentrations along with the presence of interleukin-1 β , an inducer of osteoarthritis. Markers indicating cartilage degradation, inflammation, and the signaling molecules involved in the inflammatory induction were investigated. Diacerien, an anti-osteoarthritic drug, was used as a positive control. Zingerone at a concentration of 40 µM reduced the level of matrix metalloproteinase-13 to about 31.95 ± 4.33 % compared with the interleukin-1 β -treated group and halted cartilage explant degradation as indicated by reducing the accumulative release of sulfated glycosaminoglycans by falling to the control concomitantly with an elevation of the remaining contents of uronic acid and collagen in the explant tissues when zingerone was added. In the SW1353 cell line model, zingerone efficiently suppressed the expression of TNF- α , interleukin-6, and interleukin-8 mRNA levels and tended to reduce the levels of both p38 and c-Jun N-terminal kinase phosphorylation. From the results of this study, it can be concluded that zingerone potentially reduced cartilage degradation, which is partially involved in p38 and c-Jun N-terminal kinases of the mitogen activator protein kinase signaling pathway leading to the reduction of proinflammatory cytokine amplification effects and cartilage-degrading enzyme syntheses. This finding supports the contention that ginger holds positive pharmaceutical effects against osteoarthritis. Georg Thieme Verlag KG Stuttgart · New York.
Adebayo, O O; Ko, F C; Wan, P T; Goldring, S R; Goldring, M B; Wright, T M; van der Meulen, M C H
2017-12-01
Animal models recapitulating post-traumatic osteoarthritis (OA) suggest that subchondral bone (SCB) properties and remodeling may play major roles in disease initiation and progression. Thus, we investigated the role of SCB properties and its effects on load-induced OA progression by applying a tibial loading model on two distinct mouse strains treated with alendronate (ALN). Cyclic compression was applied to the left tibia of 26-week-old male C57Bl/6 (B6, low bone mass) and FVB (high bone mass) mice. Mice were treated with ALN (26 μg/kg/day) or vehicle (VEH) for loading durations of 1, 2, or 6 weeks. Changes in articular cartilage and subchondral and epiphyseal cancellous bone were analyzed using histology and microcomputed tomography. FVB mice exhibited thicker cartilage, a thicker SCB plate, and higher epiphyseal cancellous bone mass and tissue mineral density than B6 mice. Loading induced cartilage pathology, osteophyte formation, and SCB changes; however, lower initial SCB mass and stiffness in B6 mice did not attenuate load-induced OA severity compared to FVB mice. By contrast, FVB mice exhibited less cartilage damage, and slower-growing and less mature osteophytes. In B6 mice, inhibiting bone remodeling via ALN treatment exacerbated cartilage pathology after 6 weeks of loading, while in FVB mice, inhibiting bone remodeling protected limbs from load-induced cartilage loss. Intrinsically lower SCB properties were not associated with attenuated load-induced cartilage loss. However, inhibiting bone remodeling produced differential patterns of OA pathology in animals with low compared to high SCB properties, indicating that these factors do influence load-induced OA progression. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Ko, Frank C; Dragomir, Cecilia; Plumb, Darren A; Goldring, Steven R; Wright, Timothy M; Goldring, Mary B; van der Meulen, Marjolein C H
2013-06-01
Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone, and may subsequently influence the development of osteoarthritis (OA). Using an in vivo tibial loading model, the aim of this study was to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Cyclic compression at peak loads of 4.5N and 9.0N was applied to the left tibial knee joint of adult (26-week-old) C57BL/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. Changes in articular cartilage and subchondral bone were analyzed by histology and micro-computed tomography. Mechanical loading promoted cartilage damage in both age groups of mice, and the severity of joint damage increased with longer duration of loading. Metaphyseal bone mass increased with loading in young mice, but not in adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. In both age groups, articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau. Mice in both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. This noninvasive loading model permits dissection of temporal and topographic changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biologic events that promote OA onset and progression. Copyright © 2013 by the American College of Rheumatology.
Ko, Frank C.; Dragomir, Cecilia; Plumb, Darren A.; Goldring, Steven R.; Wright, Timothy M.; Goldring, Mary B.; van der Meulen, Marjolein C.H.
2013-01-01
Objectives Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone and subsequently influence the development of osteoarthritis (OA). We used an in vivo tibial loading model to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Methods We applied cyclic compression of 4.5 and 9.0N peak loads to the left tibia via the knee joint of adult (26-week-old) C57Bl/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. The changes in articular cartilage and subchondral bone were analyzed by histology and microcomputed tomography. Results Loading promoted cartilage damage in both age groups, with increased damage severity dependent upon the duration of loading. Metaphyseal bone mass increased in the young mice, but not in the adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. Articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau in both age groups. Both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. Conclusion This non-invasive loading model permits dissection of temporal and topographical changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biological events that promote OA onset and progression. PMID:23436303
Stender, Michael E; Regueiro, Richard A; Ferguson, Virginia L
2017-02-01
The changes experienced in synovial joints with osteoarthritis involve coupled chemical, biological, and mechanical processes. The aim of this study was to investigate the consequences of increasing permeability in articular cartilage (AC), calcified cartilage (CC), subchondral cortical bone (SCB), and subchondral trabecular bone (STB) as observed with osteoarthritis. Two poroelastic finite element models were developed using a depth-dependent anisotropic model of AC with strain-dependent permeability and poroelastic models of calcified tissues (CC, SCB, and STB). The first model simulated a bone-cartilage unit (BCU) in uniaxial unconfined compression, while the second model simulated spherical indentation of the AC surface. Results indicate that the permeability of AC is the primary determinant of the BCU's poromechanical response while the permeability of calcified tissues exerts no appreciable effect on the force-indentation response of the BCU. In spherical indentation simulations with osteoarthritic permeability properties, fluid velocities were larger in magnitude and distributed over a smaller area compared to normal tissues. In vivo, this phenomenon would likely lead to chondrocyte death, tissue remodeling, alterations in joint lubrication, and the progression of osteoarthritis. For osteoarthritic and normal tissue permeability values, fluid flow was predicted to occur across the osteochondral interface. These results help elucidate the consequences of increases in the permeability of the BCU that occur with osteoarthritis. Furthermore, this study may guide future treatments to counteract osteoarthritis.
Anomalous T2 relaxation in normal and degraded cartilage.
Reiter, David A; Magin, Richard L; Li, Weiguo; Trujillo, Juan J; Pilar Velasco, M; Spencer, Richard G
2016-09-01
To compare the ordinary monoexponential model with three anomalous relaxation models-the stretched Mittag-Leffler, stretched exponential, and biexponential functions-using both simulated and experimental cartilage relaxation data. Monte Carlo simulations were used to examine both the ability of identifying a given model under high signal-to-noise ratio (SNR) conditions and the accuracy and precision of parameter estimates under more modest SNR as would be encountered clinically. Experimental transverse relaxation data were analyzed from normal and enzymatically degraded cartilage samples under high SNR and rapid echo sampling to compare each model. Both simulation and experimental results showed improvement in signal representation with the anomalous relaxation models. The stretched exponential model consistently showed the lowest mean squared error in experimental data and closely represents the signal decay over multiple decades of the decay time (e.g., 1-10 ms, 10-100 ms, and >100 ms). The stretched exponential parameter αse showed an inverse correlation with biochemically derived cartilage proteoglycan content. Experimental results obtained at high field suggest potential application of αse as a measure of matrix integrity. Simulation reflecting more clinical imaging conditions, indicate the ability to robustly estimate αse and distinguish between normal and degraded tissue, highlighting its potential as a biomarker for human studies. Magn Reson Med 76:953-962, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Therapeutic effect of irradiation of magnetic infrared laser on osteoarthritis rat model.
Moon, Chul-Hwan; Kwon, Ogon; Woo, Chang-Hoon; Ahn, Hee-Duk; Kwon, Young-Sam; Park, Soo-Jin; Song, Chang-Hyun; Ku, Sae-Kwang
2014-01-01
Osteoarthritis (OA) is a degenerative joint disease caused by articular cartilage loss. Many complementary and alternative medicines for OA have been reported so far, but the effectiveness is controversial. Previously, we have shown anti-inflammatory effects of low level laser therapy with static magnetic field, magnetic infrared laser (MIL), in various animal models. Therefore, the beneficial effects were examined in OA rat model. Rats were divided by six groups; no treatment controls of sham and OA model, three MIL treatment groups of OA model at 6.65, 2.66 and 1.33 J cm(-2), and Diclofenac group of OA model with 2 mg kg(-1) diclofenac sodium. The OA control exhibited typical symptoms of OA, but 4-week MIL treatment improved the functional movement of knee joint with reduced edematous changes. In addition, cartilage GAGs were detected more in all MIL treatment groups than OA control. It suggests that 4-week MIL irradiation has dose-dependent anti-inflammatory and chondroprotective effects on OA. Histopathological analyses revealed that MIL treatment inhibits the cartilage degradation and enhances chondrocyte proliferation. The fact that MIL has an additional potential for the cartilage formation and no adverse effects can be regarded as great advantages for OA treatment. These suggest that MIL can be useful for OA treatment. © 2014 The American Society of Photobiology.
She, Guorong; Zhou, Ziqi; Zha, Zhengang; Wang, Fei; Pan, Xiaoting
2017-01-01
Subchondral bone reabsorption and remodeling are responsible for the initiation and progression of osteoarthritis (OA). Zoledronic acid (ZOL), a third-generation bisphosphonate (BIS), is an inhibitor of bone reabsorption. However, the intervention effect of ZOL on OA has not been fully characterized and remains to be directly demonstrated in animal experiments. The present study examined the microscopic and macroscopic changes in the anterior cruciate ligament transection (ACLT) model of OA in rabbits and evaluated the effects of ZOL on cartilage degeneration and subchondral bone loss. A total of 32 New Zealand white rabbits were randomly divided into four groups: High-, medium- and low-dose ZOL groups, which received an intravenous injection of 250, 50 and 10 µg/kg ZOL, respectively, after modeling, as well as an untreated group. The bone mineral density (BMD) of the knee joint was evaluated by dual-energy X-ray absorptiometry scanning immediately after modeling and at 4 and 8 weeks. At week 8, quantitative measurement of cartilage was performed by a specialized magnetic resonance imaging (MRI) technique, including three-dimensional fat-suppressed spoil gradient-recalled sequence and T2 mapping. The rabbits were sacrificed by air embolism after anesthesia and both knee joints were harvested and evaluated by general and histological observation. Toluidine blue and hematoxylin and eosin staining were used to assess histological changes in the articular cartilage. Quantitative analysis of cartilage histopathology was performed according to the Mankin scoring system. The BMD of ACLT joints dropped after modeling, which was effectively suppressed by ZOL at the high and medium dose but not the low dose. MRI scans demonstrated that in the untreated group, articular cartilages on ACLT knees were thinner than those on normal knees. The high dose of ZOL preserved the cartilage tissue thickness more efficiently than the medium and low doses. Observation of specimens and pathological slices revealed that the articular cartilage degeneration in the high-dose ZOL group was lightest, while that in the medium- and low-dose ZOL group was moderate, and the untreated group exhibited the most severe defect. The untreated group had the highest Mankin score, whereas the high-dose ZOL group had the lowest score. In conclusion, ZOL increased the subchondral bone density, improved the microstructure and reduced the degeneration of articular cartilage in OA according to morphological as well as quantitative observation. ZOL exerted significant chondroprotective effects in a dose-dependent manner. A favorable chondroprotective effect was induced at the dose of 250 µg/kg. ZOL may represent a novel promising drug to complement the treatment of OA. PMID:29201194
Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong
2017-05-01
In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by high-density culture of chondrocytes in vitro could cearte a chondrogenic niche in subcutaneous environment and efficiently retain the chondrogenic phenotype of in vitro BMSC engineered cartilage (vitro-BEC). Furthermore, cell tracing results revealed that the regenerated cartilage mainly derived from the implanted vitro-BEC. The current study not only proposes a novel research model for microenvironment simulation but also provides a useful strategy for stable ectopic cartilage regeneration of stem cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Palukuru, Uday P; Hanifi, Arash; McGoverin, Cushla M; Devlin, Sean; Lelkes, Peter I; Pleshko, Nancy
2016-07-05
Disease or injury to articular cartilage results in loss of extracellular matrix components which can lead to the development of osteoarthritis (OA). To better understand the process of disease development, there is a need for evaluation of changes in cartilage composition without the requirement of extensive sample preparation. Near infrared (NIR) spectroscopy is a chemical investigative technique based on molecular vibrations that is increasingly used as an assessment tool for studying cartilage composition. However, the assignment of specific molecular vibrations to absorbance bands in the NIR spectrum of cartilage, which arise from overtones and combinations of primary absorbances in the mid infrared (MIR) spectral region, has been challenging. In contrast, MIR spectroscopic assessment of cartilage is well-established, with many studies validating the assignment of specific bands present in MIR spectra to specific molecular vibrations. In the current study, NIR imaging spectroscopic data were obtained for compositional analysis of tissues that served as an in vitro model of OA. MIR spectroscopic data obtained from the identical tissue regions were used as the gold-standard for collagen and proteoglycan (PG) content. MIR spectroscopy in transmittance mode typically requires a much shorter pathlength through the sample (≤10 microns thick) compared to NIR spectroscopy (millimeters). Thus, this study first addressed the linearity of small absorbance bands in the MIR region with increasing tissue thickness, suitable for obtaining a signal in both the MIR and NIR regions. It was found that the linearity of specific, small MIR absorbance bands attributable to the collagen and PG components of cartilage (at 1336 and 856 cm(-1), respectively) are maintained through a thickness of 60 μm, which was also suitable for NIR data collection. MIR and NIR spectral data were then collected from 60 μm thick samples of cartilage degraded with chondroitinase ABC as a model of OA. Partial least squares (PLS) regression using NIR spectra as input predicted the MIR-determined compositional parameters of PG/collagen within 6% of actual values. These results indicate that NIR spectral data can be used to assess molecular changes that occur with cartilage degradation, and further, the data provide a foundation for future clinical studies where NIR fiber optic probes can be used to assess the progression of cartilage degradation. Copyright © 2016 Elsevier B.V. All rights reserved.
Bagi, Cedo M; Berryman, Edwin; Zakur, David E; Wilkie, Dean; Andresen, Catharine J
2015-11-06
Osteoarthritis (OA) is a leading cause of disability, but despite the high unmet clinical need and extensive research seeking dependable therapeutic interventions, no proven disease-modifying treatment for OA is currently available. Due to the close interaction and interplay between the articular cartilage and the subchondral bone plate, it has been hypothesized that antiresorptive drugs can also reduce cartilage degradation, inhibit excessive turnover of the subchondral bone plate, prevent osteophyte formation, and/or that bone anabolic drugs might also stimulate cartilage synthesis by chondrocytes and preserve cartilage integrity. The benefit of intensive zoledronate (Zol) and parathyroid hormone (PTH) therapy for bone and cartilage metabolism was evaluated in a rat model of OA. Medial meniscectomy (MM) was used to induce OA in male Lewis rats. Therapy with Zol and human PTH was initiated immediately after surgery. A dynamic weight-bearing (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs. At the end of the 10-week study, the rats were euthanized and the cartilage pathology was evaluated by contrast (Hexabrix)-enhanced μCT imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization. The results of this study highlight the complex changes in bone metabolism in different bone compartments influenced by local factors, including inflammation, pain and mechanical loads. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by contrast-enhanced μCT and histology. The study results showed the negative impact of MM surgery on the weight-bearing capacity of the operated limb, which was not corrected by treatment. Although both Zol and PTH improved subchondral bone mass and Zol reduced serum CTX-II level, both treatments failed to prevent or correct cartilage deterioration, osteophyte formation and mechanical incapacity. The various methods utilized in this study showed that aggressive treatment with Zol and PTH did not have the capacity to prevent or correct the deterioration of the hyaline cartilage, thickening of the subchondral bone plate, osteophyte formation or the mechanical incapacity of the osteoarthritic knee.
Bekkers, Joris E J; Tsuchida, Anika I; van Rijen, Mattie H P; Vonk, Lucienne A; Dhert, Wouter J A; Creemers, Laura B; Saris, Daniel B F
2013-09-01
Autologous chondrocyte implantation (ACI) is traditionally a 2-step procedure used to repair focal articular cartilage lesions. With use of a combination of chondrons (chondrocytes in their own territorial matrix) and mesenchymal stromal cells (MSCs), ACI could be innovated and performed in a single step, as sufficient cells would be available to fill the defect within a 1-step surgical procedure. Chondrons have been shown to have higher regenerative capacities than chondrocytes without such a pericellular matrix. To evaluate cartilage formation by a combination of chondrons and MSCs in vitro and in both small and large animal models. Controlled laboratory study. Chondrons and MSCs were cultured at different ratios in vitro containing 0%, 5%, 10%, 20%, 50%, or 100% chondrons (n = 3); embedded in injectable fibrin glue (Beriplast); and implanted subcutaneously in nude mice (n = 10; ratios of 0%, 5%, 10%, and 20% chondrons). Also, in a 1-step procedure, a combination of chondrons and MSCs was implanted in a freshly created focal articular cartilage lesion (10% chondrons) in goats (n = 8) and compared with microfracture. The effect of both treatments, after 6-month follow-up, was evaluated using biochemical glycosaminoglycan (GAG) and GAG/DNA analysis and scored using validated scoring systems for macroscopic and microscopic defect repairs. The addition of MSCs to chondron cultures enhanced cartilage-specific matrix production as reflected by a higher GAG production (P < .03), both in absolute levels and normalized to DNA content, compared with chondrocyte and 100% chondron cultures. Similar results were observed after 4 weeks of subcutaneous implantation in nude mice. Treatment of freshly created cartilage defects in goats using a combination of chondrons and MSCs in Beriplast resulted in better microscopic, macroscopic, and biochemical cartilage regeneration (P ≤ .02) compared with microfracture treatment. The combination of chondrons and MSCs increased cartilage matrix formation, and this combination of cells was safely applied in a goat model for focal cartilage lesions, outperforming microfracture. This study describes the bench-to-preclinical development of a new cell-based regenerative treatment for focal articular cartilage defects that outperforms microfracture in goats. In addition, it is a single-step procedure, thereby making the expensive cell expansion and reimplantation of dedifferentiated cells, as in ACI, redundant.
Investigating the Postmortem Molecular Biology of Cartilage and its Potential Forensic Applications.
Bolton, Shawna N; Whitehead, Michael P; Dudhia, Jayesh; Baldwin, Timothy C; Sutton, Raul
2015-07-01
This study investigated the postmortem molecular changes that articular cartilage undergoes following burial. Fresh pig trotters were interred in 30-cm-deep graves at two distinct locations exhibiting dissimilar soil environments for up to 42 days. Extracts of the metacarpophalangeal (MCP) and metatarsophalangeal (MTP) joint cartilage from trotters disinterred weekly over 6 weeks were analyzed by Western blot against the monoclonal antibody 2-B-6 to assess aggrecan degradation. In both soil conditions, aggrecan degradation by-products of decreasing molecular size and complexity were observed up to 21 days postmortem. Degradation products were undetected after this time and coincided with MCP/MTP joint exposure to the soil environment. These results show that cartilage proteoglycans undergo an ordered molecular breakdown, the analysis of which may have forensic applications. This model may prove useful for use as a human model and for forensic investigations concerning crimes against animals and the mortality of endangered species. © 2015 American Academy of Forensic Sciences.
Hui, Wang; Young, David A; Rowan, Andrew D; Xu, Xin; Cawston, Tim E; Proctor, Carole J
2016-01-01
Objective To use a computational approach to investigate the cellular and extracellular matrix changes that occur with age in the knee joints of mice. Methods Knee joints from an inbred C57/BL1/6 (ICRFa) mouse colony were harvested at 3–30 months of age. Sections were stained with H&E, Safranin-O, Picro-sirius red and antibodies to matrix metalloproteinase-13 (MMP-13), nitrotyrosine, LC-3B, Bcl-2, and cleaved type II collagen used for immunohistochemistry. Based on this and other data from the literature, a computer simulation model was built using the Systems Biology Markup Language using an iterative approach of data analysis and modelling. Individual parameters were subsequently altered to assess their effect on the model. Results A progressive loss of cartilage matrix occurred with age. Nitrotyrosine, MMP-13 and activin receptor-like kinase-1 (ALK1) staining in cartilage increased with age with a concomitant decrease in LC-3B and Bcl-2. Stochastic simulations from the computational model showed a good agreement with these data, once transforming growth factor-β signalling via ALK1/ALK5 receptors was included. Oxidative stress and the interleukin 1 pathway were identified as key factors in driving the cartilage breakdown associated with ageing. Conclusions A progressive loss of cartilage matrix and cellularity occurs with age. This is accompanied with increased levels of oxidative stress, apoptosis and MMP-13 and a decrease in chondrocyte autophagy. These changes explain the marked predisposition of joints to develop osteoarthritis with age. Computational modelling provides useful insights into the underlying mechanisms involved in age-related changes in musculoskeletal tissues. PMID:25475114
Drewniak, Elizabeth I.; Jay, Gregory D.; Fleming, Braden C.; Crisco, Joseph J.
2009-01-01
In attempts to better understand the etiology of osteoarthritis, a debilitating joint disease that results in the degeneration of articular cartilage in synovial joints, researchers have focused on joint tribology, the study of joint friction, lubrication, and wear. Several different approaches have been used to investigate the frictional properties of articular cartilage. In this study, we examined two analysis methods for calculating the coefficient of friction (μ) using a simple pendulum system and BL6 murine knee joints (n=10) as the fulcrum. A Stanton linear decay model (Lin μ) and an exponential model that accounts for viscous damping (Exp μ) were fit to the decaying pendulum oscillations. Root mean square error (RMSE), asymptotic standard error (ASE), and coefficient of variation (CV) were calculated to evaluate the fit and measurement precision of each model. This investigation demonstrated that while Lin μ was more repeatable, based on CV (5.0% for Lin μ; 18% for Exp μ), Exp μ provided a better fitting model, based on RMSE (0.165° for Exp μ; 0.391° for Lin μ) and ASE (0.033 for Exp μ; 0.185 for Lin μ), and had a significantly lower coefficient of friction value (0.022±0.007 for Exp μ; 0.042±0.016 for Lin μ) (p=0.001). This study details the use of a simple pendulum for examining cartilage properties in situ that will have applications investigating cartilage mechanics in a variety of species. The Exp μ model provided a more accurate fit to the experimental data for predicting the frictional properties of intact joints in pendulum systems. PMID:19632680
Hellingman, Catharine A; Koevoet, Wendy; van Osch, Gerjo J V M
2012-11-01
Chondrogenically differentiating bone marrow-derived mesenchymal stem cells (BMSCs) display signs of chondrocyte hypertrophy, such as production of collagen type X, MMP13 and alkaline phosphatase (ALPL). For cartilage reconstructions this is undesirable, as terminally differentiated cartilage produced by BMSCs mineralizes when implanted in vivo. Terminal differentiation is not restricted to BMSCs but is also encountered in chondrogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) as well as embryonic stem cells, which by definition should be able to generate all types of tissues, including stable cartilage. Therefore, we propose that the currently used culture conditions may drive the cells towards terminal differentiation. In this manuscript we aim to review the literature, supplemented by our own data to answer the question, is it possible to generate stable hyaline cartilage from adult MSCs? We demonstrate that recently published methods for inhibiting terminal differentiation (through PTHrP, MMP13 or blocking phosphorylation of Smad1/5/8) result in cartilage formation with reduction of hypertrophic markers, although this does not reach the low level of stable chondrocytes. A set of hypertrophy markers should be included in future studies to characterize the phenotype more precisely. Finally, we used what is currently known in developmental biology about the differential development of hyaline and terminally differentiated cartilage to provide thought and insights to change current culture models for creating hyaline cartilage. Inhibiting terminal differentiation may not result in stable hyaline cartilage if the right balance of signals has not been created from the start of culture onwards. Copyright © 2011 John Wiley & Sons, Ltd.
Chen, Jie; Yuan, Zhaoyuan; Liu, Yu; Zheng, Rui; Dai, Yao; Tao, Ran; Xia, Huitang; Liu, Hairong; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin
2016-01-01
Abstract In vitro three‐dimensional (3D) cartilage regeneration is a promising strategy for repair of cartilage defects. However, inferior mechanical strength and tissue homogeneity greatly restricted its clinical translation. Simulation of mechanical stress through a bioreactor is an important approach for improving in vitro cartilage regeneration. The current study developed a hydrostatic pressure (HP) bioreactor based on a novel pressure‐transmitting mode achieved by slight deformation of a flexible membrane in a completely sealed stainless steel device. The newly developed bioreactor efficiently avoided the potential risks of previously reported pressure‐transmitting modes and simultaneously addressed a series of important issues, such as pressure scopes, culture chamber sizes, sealability, contamination control, and CO2 balance. The whole bioreactor system realized stable long‐term (8 weeks) culture under high HP (5–10 MPa) without the problems of medium leakage and contamination. Furthermore, the results of in vitro 3D tissue culture based on a cartilage regeneration model revealed that HP provided by the newly developed bioreactor efficiently promoted in vitro 3D cartilage formation by improving its mechanical strength, thickness, and homogeneity. Detailed analysis in cell proliferation, cartilage matrix production, and cross‐linking level of collagen macromolecules, as well as density and alignment of collagen fibers, further revealed the possible mechanisms that HP regulated in vitro cartilage regeneration. The current study provided a highly efficient and stable bioreactor system for improving in vitro 3D cartilage regeneration and thus will help to accelerate its clinical translation. Stem Cells Translational Medicine 2017;6:982–991 PMID:28297584
Effect of Acupotomy on FAK-PI3K Signaling Pathways in KOA Rabbit Articular Cartilages
Xie, Zhan-guo; Guo, Yan; Yu, Jia-Ni; Lu, Juan; Zhang, Wei; Wang, Li-Juan; Xu, Jing; Zhao, Rui-Li; Zhou, Shuai
2017-01-01
Objective By observing the needle-knife of KOA rabbit morphology, knee joint cartilage p-FAK, p-PI3K, Aggrecan gene, and protein expression, to study the effect of needle-knife to promote cartilage cell synthesis metabolism mechanism. Method 49 male New Zealand rabbits, randomly divided into normal group (Z), model group (M), model-inhibitors (MP), needle-knife group (D), needle-knife inhibitors group (DP), electroacupuncture group (E), and electroacupuncture inhibitors (EP). RT-PCR and Western Blot were used to test each animal cartilage p-FAK, p-PI3K, and Aggrecan gene and protein expression level. Results Compared with N group, p-FAK and p-PI3K protein and mRNA expression of M group, D group, and E group increased (P < 0.05), while the protein and mRNA expression of Aggrecan reduced (P < 0.05). Compared with M group, p-FAK, p-PI3K, Aggrecan protein, and mRNA of E and D group increased (P < 0.05). Compared with E group, p-FAK, p-PI3K, Aggrecan protein, and mRNA expression of D group increased (P < 0.05); after adding inhibitors, p-FAK, p-PI3K, Aggrecan protein, and mRNA expression reduced (P < 0.05). Conclusion Needle-knife therapy can promote the repairment of cartilage cells by activating FAK-PI3K signaling pathways, promoting the synthesis of cartilage cell metabolism. PMID:29234400
Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice.
Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W; Siu, Sarah Y; Sundberg, John P; Uitto, Jouni; Li, Qiaoli
2016-03-15
Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the "acceleration diet" for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues.
Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo
Nakagawa, Yusuke; Muneta, Takeshi; Otabe, Koji; Ozeki, Nobutake; Mizuno, Mitsuru; Udo, Mio; Saito, Ryusuke; Yanagisawa, Katsuaki; Ichinose, Shizuko; Koga, Hideyuki; Tsuji, Kunikazu; Sekiya, Ichiro
2016-01-01
Objective Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. Methods For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. Results In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in the superficial cartilage. Conclusion Cartilage derived from MSCs expressed lubricin protein both in vitro and in vivo. Aggregation promoted lubricin expression of MSCs in vitro and transplantation of aggregates of MSCs regenerated cartilage including the superficial zone in a rat osteochondral defect model. Our results indicate that aggregated MSCs could be clinically relevant for therapeutic approaches to articular cartilage regeneration with an appropriate superficial zone in the future. PMID:26867127
Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.
Nakagawa, Yusuke; Muneta, Takeshi; Otabe, Koji; Ozeki, Nobutake; Mizuno, Mitsuru; Udo, Mio; Saito, Ryusuke; Yanagisawa, Katsuaki; Ichinose, Shizuko; Koga, Hideyuki; Tsuji, Kunikazu; Sekiya, Ichiro
2016-01-01
Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in the superficial cartilage. Cartilage derived from MSCs expressed lubricin protein both in vitro and in vivo. Aggregation promoted lubricin expression of MSCs in vitro and transplantation of aggregates of MSCs regenerated cartilage including the superficial zone in a rat osteochondral defect model. Our results indicate that aggregated MSCs could be clinically relevant for therapeutic approaches to articular cartilage regeneration with an appropriate superficial zone in the future.
A Dual Role for NOTCH Signaling in Joint Cartilage Maintenance and Osteoarthritis
Liu, Zhaoyang; Chen, Jianquan; Mirando, Anthony; Wang, Cuicui; Zuscik, Michael J.; O’Keefe, Regis J.; Hilton, Matthew J.
2015-01-01
Loss of NOTCH signaling in postnatal murine joints results in osteoarthritis (OA), indicating a requirement for NOTCH during joint cartilage maintenance. Unexpectedly, NOTCH components are significantly up-regulated in human and murine post-traumatic OA, suggesting either a reparative or pathological role for NOTCH activation in OA. Here we investigated the potential dual role for NOTCH in joint maintenance and OA by generating two mouse models overexpressing the NOTCH1 intracellular domain within postnatal joint cartilage; one with sustained NOTCH activation that likely resembles pathological NOTCH signaling and one with transient NOTCH activation that more closely reflects physiological NOTCH signaling. Sustained NOTCH signaling in joint cartilage leads to an early and progressive OA pathology, while on the contrary, transient NOTCH activation enhances cartilage matrix synthesis and promotes joint maintenance under normal physiological conditions. Using RNA-seq, immunohistochemical, and biochemical approaches we identified several novel targets potentially responsible for NOTCH-mediated cartilage degradation, fibrosis, and OA progression, including components of the IL6/STAT3 and ERK/p38 MAPK pathways; factors that may also contribute to post-traumatic OA development. Collectively, these data demonstrate a dual role for the NOTCH pathway in joint cartilage and identify important downstream NOTCH effectors as potential targets for disease modifying osteoarthritis drugs (DMOADs). PMID:26198357
Stimulation of inorganic pyrophosphate elaboration by cultured cartilage and chondrocytes.
Ryan, L M; Kurup, I; Rosenthal, A K; McCarty, D J
1989-08-01
Inorganic pyrophosphate elaboration by articular cartilage may favor calcium pyrophosphate dihydrate crystal deposition. Frequently crystal deposits form in persons affected with metabolic diseases. The cartilage organ culture system was used to model these metabolic conditions while measuring the influence on extracellular pyrophosphate elaboration. Alterations of ambient pH, thyroid stimulating hormone levels, and parathyroid hormone levels did not change pyrophosphate accumulation in the media. However, subphysiologic ambient calcium concentrations (25, 100, 500 microM) increased pyrophosphate accumulation about chondrocytes 3- to 10-fold. Low calcium also induced release of [14C]adenine-labeled nucleotides from chondrocytes, potential substrates for generation of extracellular pyrophosphate by ectoenzymes. Exposing cartilage to 10% fetal bovine serum also enhanced by 50% the egress of inorganic pyrophosphate from the tissue.
Nemoto, Hitoshi; Watson, Deborah; Masuda, Koichi
2015-01-01
Tissue engineering holds great promise for cartilage repair with minimal donor-site morbidity. The in vivo maturation of a tissue-engineered construct can be tested in the subcutaneous tissues of the same species for autografts or of immunocompromised animals for allografts or xenografts. This section describes detailed protocols for the surgical transplantation of a tissue-engineered construct into an animal model to assess construct validity.
A mathematical model of forces in the knee under isometric quadriceps contractions.
Huss, R A; Holstein, H; O'Connor, J J
2000-02-01
To predict the knee's response to isometric quadriceps contractions against a fixed tibial restraint.Design. Mathematical modelling of the human knee joint. Isometric quadriceps contraction is commonly used for leg muscle strengthening following ligament injury or reconstruction. It is desirable to know the ligament forces induced but direct measurement is difficult. The model, previously applied to the Lachmann or 'drawer' tests, combines an extensible fibre-array representation of the cruciate ligaments with a compressible 'thin-layer' representation of the cartilage. The model allows the knee configuration and force system to be calculated, given flexion angle, restraint position and loading. Inclusion of cartilage deformation increases relative tibio-femoral translation and decreases the ligament forces generated. For each restraint position, a range of flexion angles is found in which no ligament force is required, as opposed to a single flexion angle in the case of incompressible cartilage layers. Knee geometry and ligament elasticity are found to be the most important factors governing the joint's response to isometric quadriceps contractions, but cartilage deformation is found to be more important than in the Lachmann test. Estimation of knee ligament forces is important when devising exercise regimes following ligament injury or reconstruction. The finding of a 'neutral zone' of zero ligament force may have implications for rehabilitation of the ligament-injured knee.
Dvinskikh, N A; Blankevoort, L; Foumani, M; Spaan, J A E; Streekstra, G J
2010-03-22
Biomechanical models may aid in improving diagnosis and treatment of wrist joint disorders. As input, geometrical information is required for model development. Previous studies acquired some elements of the average wrist joint geometry. However, there is a close geometric functional match between articulating surfaces and ligament geometry. Therefore, biomechanical models need to be fed with the geometric data of individual joints. This study is aimed at acquiring geometric data of cartilage surfaces and ligaments from individual wrist joints by using a cryomicrotome imaging system and the evaluation of inter- and intra-observer variability of the data. The 3D geometry of 30 cartilage surfaces and 15 ligaments in three cadaver wrists was manually detected and quantitatively reconstructed. The inter- and intra-observer variability of the cartilage surface detection was 0.14 and 0.19 mm, respectively. For the position of the radius attachment of the dorsal radiocarpal ligament (DRC), the observer variations were 0.12 and 0.65 mm, for intra-/inter-observer, respectively. For the DRC attachment on the triquetrum, the observer variations were 0.22 and 1.19 mm. Anatomic reconstruction from 3D cryomicrotome images offer a method to obtain unique geometry data of the entire wrist joint for modeling purposes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Ravosa, Matthew J; Kane, Robert J
2017-10-01
Due to their nature as tissue composites, skeletal joints pose an additional challenge in terms of evaluating the functional significance of morphological variation in their bony and cartilaginous components in response to altered loading conditions. Arguably, this complexity requires more direct means of investigating joint plasticity and performance than typically employed to analyze macro- and micro-anatomical phenomena. To address a significant gap in our understanding of the plasticity of the mammalian temporomandibular joint (TMJ), we investigated the histology and mechanical properties of condylar articular cartilage in rabbits subjected to long-term variation in diet-induced masticatory stresses, specifically cyclical loading. Three cohorts of male weanlings were raised for six months on different diets until adulthood. Following euthanasia, the TMJ condyles on one side were dissected away, fixed, decalcified, dehydrated, embedded and sectioned. Safranin O staining was employed to identify variation in proteoglycan content, which in turn was used to predict patterns of articular cartilage stiffness in contralateral condylar specimens for each treatment group. Hematoxylin and eosin staining was used to quantify diet-induced changes in chondrocyte hypertrophy and cellularity. Mechanical tests document significant decreases in articular cartilage stiffness corresponding to patterns of extracellular matrix relative protein abundance in rabbits subjected to greater cyclical loading. This indicates that TMJs routinely subjected to higher masticatory stresses due to a challenging diet eventually develop postnatal decreases in the ability to counter compressive loads during postcanine biting and chewing. These findings provide novel information regarding TMJ performance, with broader implications about the costs and benefits of phenotypic plasticity as well as implications for how such biological processes affect connective tissue mechanobiology and pathobiology. Copyright © 2017 Elsevier GmbH. All rights reserved.
Solmaz, F; Akduman, D; Haksever, M; Gündoğdu, E; Yanılmaz, M; Mescioğlu, A
2016-08-01
Cartilage is one of the most preferable grafts for tympanoplasty (TPL). The anatomical and audiological results and take rates of perichondrium attached cartilage island graft in tympanoplasty (PACIT) are presented herein. One hundred ninety four ears of 191 patients (108 male, 83 female) were evaluated retrospectively in terms of the type of surgery, graft take rate and hearing results. Type I, II, and III TPL were performed in 127 (65.46%), 45 (23.20%), and 22 (11.34%) ears, respectively. The overall mean preoperative pure tone average-air bone gaps (PTA-ABGs) for TPL types were 33.74 ± 9.60, 52.58 ± 9.07, and 56.58 ± 10.27 dB HL, respectively; postoperative mean values for TPL groups were 18.55 ± 9.25, 31.21 ± 4.36, and 44.84 ± 12.45 dB HL. Postoperative hearing results showed an improvement (≥ 10 dB) in 76.81% of ears with a mean gain of 20 dB HL (range 10-40 dB). However, 19.07% of ears showed no change (< 10, ≥ 0 dB) in hearing, and hearing worsened in 4.12% of ears (< 0 dB) postoperatively. Overall, graft take was 91.24% at least 13 months (mean 68.64) after surgery with a graft failure rate of 8.76%. Graft take was successful in TPL groups. Postoperative PTA-ABG results demonstrated significant improvement. The long-term eligibility of perichondrium attached cartilage island graft in TPL is emphasised with this study. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.
Moon, Su-Jin; Park, Jin-Sil; Jeong, Jeong-Hee; Yang, Eun-Ji; Park, Mi-Kyung; Kim, Eun-Kyung; Park, Sung-Hwan; Kim, Ho-Youn; Cho, Mi-La; Min, Jun-Ki
2013-01-01
Osteoarthritis (OA) is a degenerative joint disease characterized by the progressive loss of articular cartilage and chronic pain. Although cyclooxygenase-2 (COX-2) inhibitors such as celecoxib are recommended to patients at high risk of gastrointestinal (GI) adverse events, COX-2 inhibitors do not completely prevent GI adverse events. Rebamipide, a gastroprotective agent, has anti-inflammatory properties and acts as an oxygen radical scavenger. The aim of this study was to investigate the in vivo effects of coadministration of rebamipide and celecoxib in an OA rat model. OA was induced by intra-articular injection of monosodium iodoacetate. Oral administration of rebamipide was initiated on the day of OA induction. In this study, rebamipide showed antinociceptive properties and attenuated cartilage degeneration. Rebamipide reduced the expression of matrix metalloproteinase 13, interleukin-1β, inducible nitric oxide synthase, and nitrotyrosine in OA cartilage. OA rats treated with celecoxib in combination with rebamipide demonstrated a higher pain threshold than those treated with monotherapy. Histological examination also showed that the joints from OA animals treated with combination therapy demonstrated less cartilage damage than those of animals treated with monotherapy. We showed that the potential benefit of combination therapy with celecoxib and rebamipide on pain and cartilage degeneration in OA.
Castelucci, Bianca Gazieri; Consonni, Sílvio Roberto; Rosa, Viviane Souza; Sensiate, Lucimara Aparecida; Delatti, Paula Cristina Rugno; Alvares, Lúcia Elvira; Joazeiro, Paulo Pinto
2018-01-01
Animal models commonly serve as a bridge between in vitro experiments and clinical applications; however, few physiological processes in adult animals are sufficient to serve as proof-of-concept models for cartilage regeneration. Intriguingly, some rodents, such as young adult mice, undergo physiological connective tissue modifications to birth canal elements such as the pubic symphysis during pregnancy; therefore, we investigated whether the differential expression of cartilage differentiation markers is associated with cartilaginous tissue morphological modifications during these changes. Our results showed that osteochondral progenitor cells expressing Runx2, Sox9, Col2a1 and Dcx at the non-pregnant pubic symphysis proliferated and differentiated throughout pregnancy, giving rise to a complex osteoligamentous junction that attached the interpubic ligament to the pubic bones until labour occurred. After delivery, the recovery of pubic symphysis cartilaginous tissues was improved by the time-dependent expression of these chondrocytic lineage markers at the osteoligamentous junction. This process potentially recapitulates embryologic chondrocytic differentiation to successfully recover hyaline cartilaginous pads at 10 days postpartum. Therefore, we propose that this physiological phenomenon represents a proof-of-concept model for investigating the mechanisms involved in cartilage restoration in adult animals.
Pepin, Scott R; Griffith, Chad J; Wijdicks, Coen A; Goerke, Ute; McNulty, Margaret A; Parker, Josh B; Carlson, Cathy S; Ellermann, Jutta; LaPrade, Robert F
2009-11-01
There has recently been increased interest in the use of 7.0-T magnetic resonance imaging for evaluating articular cartilage degeneration and quantifying the progression of osteoarthritis. The purpose of this study was to evaluate articular cartilage cross-sectional area and maximum thickness in the medial compartment of intact and destabilized canine knees using 7.0-T magnetic resonance images and compare these results with those obtained from the corresponding histologic sections. Controlled laboratory study. Five canines had a surgically created unilateral grade III posterolateral knee injury that was followed for 6 months before euthanasia. The opposite, noninjured knee was used as a control. At necropsy, 3-dimensional gradient echo images of the medial tibial plateau of both knees were obtained using a 7.0-T magnetic resonance imaging scanner. Articular cartilage area and maximum thickness in this site were digitally measured on the magnetic resonance images. The proximal tibias were processed for routine histologic analysis with hematoxylin and eosin staining. Articular cartilage area and maximum thickness were measured in histologic sections corresponding to the sites of the magnetic resonance slices. The magnetic resonance imaging results revealed an increase in articular cartilage area and maximum thickness in surgical knees compared with control knees in all specimens; these changes were significant for both parameters (P <.05 for area; P <.01 for thickness). The average increase in area was 14.8% and the average increase in maximum thickness was 15.1%. The histologic results revealed an average increase in area of 27.4% (P = .05) and an average increase in maximum thickness of 33.0% (P = .06). Correlation analysis between the magnetic resonance imaging and histology data revealed that the area values were significantly correlated (P < .01), but the values for thickness obtained from magnetic resonance imaging were not significantly different from the histology sections (P > .1). These results demonstrate that 7.0-T magnetic resonance imaging provides an alternative method to histology to evaluate early osteoarthritic changes in articular cartilage in a canine model by detecting increases in articular cartilage area. The noninvasive nature of 7.0-T magnetic resonance imaging will allow for in vivo monitoring of osteoarthritis progression and intervention in animal models and humans for osteoarthritis.
McGann, Megan E; Bonitsky, Craig M; Ovaert, Timothy C; Wagner, Diane R
2014-06-01
Given the important role of the collagenous structure in cartilage mechanics, there is considerable interest in the relationship between collagen crosslinking and the mechanical behavior of the cartilage matrix. While crosslink-induced alterations to the elastic modulus of cartilage have been described, changes to time-dependent behavior have not yet been determined. The objective of the study was to quantify changes to cartilage material properties, including viscoelastic coefficients, with crosslinking via indentation. To accomplish this, a semi-autonomous microindentation stress relaxation protocol was first developed, validated and then applied to cartilage specimens before and after crosslinking. The change in mechanical properties with crosslinking was analyzed both in the unloading portions of the test via the Oliver-Pharr method and in the holding portion with an inverse iterative finite element model that represented cartilage as a biphasic poroviscoelastic material. Although both techniques suggested a similar increase in equilibrium modulus in the crosslinked specimens as compared to the controls, distinct differences in the control specimens were apparent, suggesting that the two different techniques may be capturing different aspects of the material behavior. No differences in time-dependent properties were observed between the crosslinked and the control specimens. These results give further insight into the effects of crosslinking in cartilage mechanical behavior. Additionally, the microindentation stress relaxation protocol may enable increased automation for high-throughput testing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Hongmei; Chevrier, Anik; Hoemann, Caroline D; Sun, Jun; Picard, Genevieve; Buschmann, Michael D
2013-11-01
The influence of the location of cartilage lesions on cartilage repair outcome is incompletely understood. This study compared cartilage and bone repair in medial femoral condylar (MFC) versus femoral trochlear (TR) defects 3 months after bone marrow stimulation in mature rabbits. Intact femurs from adult rabbits served as controls. Results from quantitative histomorphometry and histological scoring showed that bone marrow stimulation produced inferior soft tissue repair in MFC versus TR defects, as indicated by significantly lower % Fill (p = 0.03), a significant increase in collagen type I immunostaining (p < 0.00001) and lower O'Driscoll scores (p < 0.05). 3D micro-CT analysis showed that repaired TR defects regained normal un-operated values of bone volume fraction, trabecular thickness, and trabecular number, whereas in MFC defects the repaired bone architecture appeared immature and less dense compared to intact un-operated MFC controls (p < 0.0001). Severe medial meniscal damage was found in 28% of operated animals and was strongly correlated with (i) low cartilage defect fill, (ii) incomplete bone repair in MFC, and (iii) with a more posterior defect placement in the weight-bearing region. We conclude that the location of cartilage lesions influences cartilage repair, with better outcome in TR versus MFC defects in rabbits. Meniscal degeneration is associated with cartilage damage. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Mechanism of laser-induced stress relaxation in cartilage
NASA Astrophysics Data System (ADS)
Sobol, Emil N.; Sviridov, Alexander P.; Omelchenko, Alexander I.; Bagratashvili, Victor N.; Bagratashvili, Nodar V.; Popov, Vladimir K.
1997-06-01
The paper presents theoretical and experimental results allowing to discuss and understand the mechanism of stress relaxation and reshaping of cartilage under laser radiation. A carbon dioxide and a Holmium laser was used for treatment of rabbits and human cartilage. We measured temperature, stress, amplitude of oscillation by free and forced vibration, internal friction, and light scattering in the course of laser irradiation. Using experimental data and theoretical modeling of heat and mass transfer in cartilaginous tissue we estimated the values of transformation heat, diffusion coefficients and energy activation for water movement.
Placement of trans-sternal wires according to an ellipsoid pressure vessel model of sternal forces.
Casha, Aaron R; Manché, Alex; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Schembri-Wismayer, Pierre; Sant, Zdenka; Gatt, Ruben; Grima, Joseph N
2012-03-01
Dehiscence of median sternotomy wounds remains a clinical problem. Wall forces in thin-walled pressure vessels can be calculated by membrane stress theory. An ellipsoid pressure vessel model of sternal forces is presented together with its application for optimal wire placement in the sternum. Sternal forces were calculated by computational simulation using an ellipsoid chest wall model. Sternal forces were correlated with different sternal thicknesses and radio-density as measured by computerized tomography (CT) scans of the sternum. A comparison of alternative placement of trans-sternal wires located either at the levels of the costal cartilages or the intercostal spaces was made. The ellipsoid pressure vessel model shows that higher levels of stress are operative at increasing chest diameter (P < 0.001). CT scans show that the thickness of the sternal body is on average 3 mm and 30% thicker (P < 0.001) and 53% more radio-dense (P < 0.001) at the costal cartilage levels when compared with adjacent intercostal spaces. This results in a decrease of average sternal stress from 438 kPa at the intercostal space level to 338 kPa at the costal cartilage level (P = 0.003). Biomechanical modelling suggests that placement of trans-sternal wires at the thicker bone and more radio-dense level of the costal cartilages will result in reduced stress.
Liu, Qihai; Wang, Jun; Chen, Yupeng; Zhang, Zhanpeng; Saunders, Laura; Schipani, Ernestina; Chen, Qian; Ma, Peter X
2018-06-22
Articular cartilage has a very limited ability to self-heal after injury or degeneration due to its low cellularity, poor proliferative activity, and avascular nature. Current clinical options are able to alleviate patient suffering, but cannot sufficiently regenerate the lost tissue. Biomimetic scaffolds that recapitulate the important features of the extracellular matrix (ECM) of cartilage are hypothesized to be advantageous in supporting cell growth, chondrogenic differentiation, and integration of regenerated cartilage with native cartilage, ultimately restoring the injured tissue to its normal function. It's a challenge to support and maintain articular cartilage regenerated by bone marrow-derived mesenchymal stem cells (BMSCs), which are prone to hypertrophy and endochondral ossification after implanted in vivo. In the present work, a nanofibrous poly(l-lactic acid) (NF PLLA) scaffold developed by our group was utilized because of the desired highly porous structure, high interconnectivity, collagen-like NF architecture to support rabbit BMSCs for articular cartilage regeneration. We further hypothesized that Matrilin-3 (MATN3), a non-collagenous, cartilage-specific ECM protein, would enhance the microenvironment of the NF PLLA scaffold for cartilage regeneration and maintaining its property. To test this hypothesis, we seeded BMSCs on the NF PLLA scaffold with or without MATN3. We found that MATN3 suppresses hypertrophy in this 3D culture system in vitro. Subcutaneous implantation of the chondrogenic cell/scaffold constructs in a nude mouse model showed that pretreatment with MATN3 was able to maintain chondrogenesis and prevent hypertrophy and endochondral ossification in vivo. These results demonstrate that the porous NF PLLA scaffold treated with MATN3 represents an advantageous 3D microenvironment for cartilage regeneration and phenotype maintenance, and is a promising strategy for articular cartilage repair. Articular cartilage defects, caused by trauma, inflammation, or joint instability, may ultimately lead to debilitating pain and disability. Bone marrow-derived mesenchymal stem cells (BMSCs) are an attractive cell source for articular cartilage tissue engineering. However, chondrogenic induction of BMSCs is often accompanied by undesired hypertrophy, which can lead to calcification and ultimately damage the cartilage. Therefore, a therapy to prevent hypertrophy and endochondral ossification is of paramount importance to adequately regenerate articular cartilage. We hypothesized that MATN3 (a non-collagenous ECM protein expressed exclusively in cartilage) may improve regeneration of articular cartilage with BMSCs by maintaining chondrogenesis and preventing hypertrophic transition in an ECM mimicking nanofibrous scaffold. Our results showed that the administration of MATN3 to the cell/nanofibrous scaffold constructs favorably maintained chondrogenesis and prevented hypertrophy/endochondral ossification in the chondrogenic constructs in vitro and in vivo. The combination of nanofibrous PLLA scaffolds and MATN3 treatment provides a very promising strategy to generate chondrogenic grafts with phenotypic stability for articular cartilage repair. Copyright © 2018. Published by Elsevier Ltd.
Toward understanding the role of cartilage particulates in synovial inflammation.
Silverstein, A M; Stefani, R M; Sobczak, E; Tong, E L; Attur, M G; Shah, R P; Bulinski, J C; Ateshian, G A; Hung, C T
2017-08-01
Arthroscopy with lavage and synovectomy can remove tissue debris from the joint space and the synovial lining to provide pain relief to patients with osteoarthritis (OA). Here, we developed an in vitro model to study the interaction of cartilage wear particles with fibroblast-like synoviocytes (FLS) to better understand the interplay of cartilage particulates with cytokines on cells of the synovium. In this study sub-10 μm cartilage particles or 1 μm latex particles were co-cultured with FLS ±10 ng/mL interleukin-1α (IL-1α) or tumor necrosis factor-α (TNF-α). Samples were analyzed for DNA, glycosaminoglycan (GAG), and collagen, and media samples were analyzed for media GAG, nitric oxide (NO) and prostaglandin-E2 (PGE2). The nature of the physical interaction between the particles and FLS was determined by microscopy. Both latex and cartilage particles could be phagocytosed by FLS. Cartilage particles were internalized and attached to the surface of both dense monolayers and individual cells. Co-culture of FLS with cartilage particulates resulted in a significant increase in cell sheet DNA and collagen content as well as NO and PGE2 synthesis compared to control and latex treated groups. The proliferative response of FLS to cartilage wear particles resulted in an overall increase in extracellular matrix (ECM) content, analogous to the thickening of the synovial lining observed in OA patients. Understanding how cartilage particles interface with the synovium may provide insight into how this interaction contributes to OA progression and may guide the role of lavage and synovectomy for degenerative disease. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Bonasia, Davide Edoardo; Martin, James A; Marmotti, Antonio; Kurriger, Gail L; Lehman, Abigail D; Rossi, Roberto; Amendola, Annunziato
2016-12-01
The goal of the study was to evaluate the repair of chondral lesions treated with combined autologous adult/allogenic juvenile cartilage fragments, compared with isolated adult and isolated juvenile cartilage fragments. Fifty-eight adult (>16 week old) and five juvenile (<6 week old) New Zealand White female rabbits were used. A large osteochondral defect was created in the center of the femoral trochlea of adult rabbits. The rabbits were divided in four groups: Group 1 = untreated defects (controls); Group 2 = adult cartilage fragments; Group 3 = juvenile cartilage fragments; and Group 4 = adult + juvenile cartilage fragments. Killings were performed at 3 and 6 months. The defects were evaluated with ICRS macroscopic score, modified O'Driscoll score, and Collagen type II immunostaining. At 3 months, Group 4 performed better than Group 1, in terms of modified O'Driscoll score (p = 0.001) and Collagen type II immunostaining (p = 0.015). At 6 months, Group 4 showed higher modified O'Driscoll score (p = 0.003) and Collagen type II immunostaining score (p < 0.001) than Group 1. Histologically, also Group 3 performed better than Group 1 (p = 0.03), and Group 4 performed better than Group 2 (p = 0.004). Mixing adult and juvenile cartilage fragments improved cartilage repair in a rabbit model. In the clinical setting, a new "one-stage" procedure combining the two cartilage sources can be hypothesized, with the advantages of improved chondral repair and large defect coverage, because of the use of an off-the-shelf juvenile allograft. Further studies on larger animals and clinical trials are required to confirm these results.
Tóth, F; Nissi, M J; Wang, L; Ellermann, J M; Carlson, C S
2015-02-01
Identify and interrupt the vascular supply to portions of the distal femoral articular-epiphyseal cartilage complex (AECC) in goat kids to induce cartilage necrosis, characteristic of early lesions of osteochondrosis (OC); then utilize magnetic resonance imaging (MRI) to identify necrotic areas of cartilage. Distal femora were perfused and cleared in goat kids of various ages to visualize the vascular supply to the distal femoral AECC. Vessels located on the axial aspect of the medial femoral condyle (MFC) and on the abaxial side of the lateral trochlear ridge were transected in eight 4- to 5-day-old goats to induce cartilage necrosis. Goats were euthanized 1, 2, 3, 4, 5, 6, 9, and 10 weeks post operatively and operated stifles were harvested. Adiabatic T1ρ relaxation time maps of the harvested distal femora were generated using a 9.4 T MR scanner, after which samples were evaluated histologically. Interruption of the vascular supply to the MFC caused lesions of cartilage necrosis in 6/8 goat kids that were demonstrated histologically. Adiabatic T1ρ relaxation time mapping identified these areas of cartilage necrosis in 5/6 cases. No significant findings were detected after transection of perichondrial vessels supplying the lateral trochlear ridge. Cartilage necrosis, characteristic of early OC, can be induced by interrupting the vascular supply to the distal femoral AECC in goat kids. The ability of high field MRI to identify these areas of cartilage necrosis in the AECC using the adiabatic T1ρ sequence suggests that this technique may be useful in the future for the early diagnosis of OC. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Yu, Xiaodan; Kawakami, Hiroko; Tahara, Naoyuki; Olmer, Merissa; Hayashi, Shinichi; Akiyama, Ryutaro; Bagchi, Anindya; Lotz, Martin; Kawakami, Yasuhiko
2017-08-01
Increasing evidence supports the idea that bone morphogenetic proteins (BMPs) regulate cartilage maintenance in the adult skeleton. The aim of this study is to obtain insight into the regulation of BMP activities in the adult skeletal system. We analyzed expression of Noggin and Gremlin1, BMP antagonists that are known to regulate embryonic skeletal development, in the adult skeletal system by Noggin-LacZ and Gremlin1-LacZ knockin reporter mouse lines. Both reporters are expressed in the adult skeleton in a largely overlapping manner with some distinct patterns. Both are detected in the articular cartilage, pubic symphysis, facet joint in the vertebrae, and intervertebral disk, suggesting that they regulate BMP activities in these tissues. In a surgically induced knee osteoarthritis model in mice, expression of Noggin mRNA was lost from the articular cartilage, which correlated with loss of BMP2/4 and pSMAD1/5/8, an indicator of active BMP signaling. Both reporters are also expressed in the sterna and rib cartilage, suggesting an extensive role of BMP antagonism in adult cartilage tissue. Moreover, Noggin-LacZ was detected in sutures in the skull and broadly in the nasal cartilage, while Gremlin1-LacZ exhibits a weaker and more restricted expression domain in the nasal cartilage. These results suggest broad regulation of BMP activities by Noggin and Gremlin1 in cartilage tissues in the adult skeleton, and that BMP signaling and its antagonism by NOGGIN play a role in osteoarthritis development. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1671-1682, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Jeng, Lily; Hsu, Hu-Ping; Spector, Myron
2013-10-01
The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration.
Jeng, Lily; Hsu, Hu-Ping
2013-01-01
The purpose of this study was the immunohistochemical evaluation of (1) cartilage tissue-engineered constructs; and (2) the tissue filling cartilage defects in a goat model into which the constructs were implanted, particularly for the presence of the basement membrane molecules, laminin and type IV collagen. Basement membrane molecules are localized to the pericellular matrix in normal adult articular cartilage, but have not been examined in tissue-engineered constructs cultured in vitro or in tissue filling cartilage defects into which the constructs were implanted. Cartilaginous constructs were engineered in vitro using caprine chondrocyte-seeded type II collagen scaffolds. Autologous constructs were implanted into 4-mm-diameter defects created to the tidemark in the trochlear groove in the knee joints of skeletally mature goats. Eight weeks after implantation, the animals were sacrificed. Constructs underwent immunohistochemical and histomorphometric evaluation. Widespread staining for the two basement membrane molecules was observed throughout the extracellular matrix of in vitro and in vivo samples in a distribution unlike that previously reported for cartilage. At sacrifice, 70% of the defect site was filled with reparative tissue, which consisted largely of fibrous tissue and some fibrocartilage, with over 70% of the reparative tissue bonded to the adjacent host tissue. A novel finding of this study was the observation of laminin and type IV collagen in in vitro engineered cartilaginous constructs and in vivo cartilage repair samples from defects into which the constructs were implanted, as well as in normal caprine articular cartilage. Future work is needed to elucidate the role of basement membrane molecules during cartilage repair and regeneration. PMID:23672504
Lau, Ting Ting; Zhang, Feng; Tang, Wei; Wang, Dong-An
2016-12-01
Osteoarthritis (OA) is a prevalent condition that compromises and even jeopardizes the life quality of millions of people. Common symptoms in OA includes joint stiffness and soreness, and they are often associated with inflammations to various extend. Due to the avascular and aneural nature of articular hyaline cartilage, it has limited self-repair capabilities; especially under inflammatory conditions, damages inflicted on cartilage are often irreversible. Hence, treatment approaches focus on anti-inflammation or articular cartilage replacement. In this study, an engineered, dual-functional living hyaline cartilage graft (LhCG), capable of releasing transgenic anti-inflammatory cytokine-progranulin (PGRN) is developed and envisioned to simultaneously fulfil both requirements. The therapeutic functionality of PGRN releasing LhCG is evaluated by co-culturing the constructs with tumor necrosis factor-alpha (TNFα) secreting THP-1 cells to simulate the inflammatory condition in arthritis. Non-transgenic LhCG constructs and non-coculture sample groups were set up as controls. Gene expression and ECM composition changes across samples were assessed to understand the effects of PGRN as well as inflammatory environment on the cartilage graft. Collectively, the results in this study suggest that in situ release of transgenic recombinant PGRN protects LhCG from induced inflammation in vitro; contrastively, in the absence of PGRN, cartilage grafts are at risk of being degraded and mineralized under exposure to TNFα signaling. This shows that cartilage graft itself can be at risk of degradation or calcification when implanted in arthritic microenvironment. Hence, the inflammatory microenvironment has to be considered in cartilage replacement therapy to increase chances of successful joint mobility restoration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2968-2977, 2016. © 2016 Wiley Periodicals, Inc.
Chan, Deva D.; Xiao, Wenfeng; Li, Jun; de la Motte, Carol A.; Sandy, John D.; Plaas, Anna
2015-01-01
Objective Articular cartilage defects commonly result from traumatic injury and predispose to degenerative joint diseases. To test the hypothesis that aberrant healing responses and chronic inflammation lead to osteoarthritis, we examined spatiotemporal changes in joint tissues after cartilage injury in murine knees. Since intra-articular injection of hyaluronan (HA) can attenuate injury-induced osteoarthritis in wild-type (WT) mice, we investigated a role for HA in the response to cartilage injury in mice lacking HA synthase 1 (Has1−/−). Design Femoral groove cartilage of WT and Has1−/− mice was debrided to generate a non-bleeding wound. Macroscopic imaging, histology, and gene expression were used to evaluate naïve, sham-operated, and injured joints. Results Acute responses (1–2 weeks) in injured joints from WT mice included synovial hyperplasia with HA deposition and joint-wide increases in expression of genes associated with inflammation, fibrosis, and extracellular matrix (ECM) production. By 4 weeks, some resurfacing of damaged cartilage occurred, and early cell responses were normalized. Cartilage damage in Has1−/− mice also induced early responses; however, at 4 weeks, inflammation and fibrosis genes remained elevated with widespread cartilage degeneration and fibrotic scarring in the synovium and joint capsule. Conclusions We conclude that the ineffective repair of injured cartilage in Has1−/− joints can be at least partly explained by the markedly enhanced expression of particular genes in pathways linked to ECM turnover, IL-17/IL-6 cytokine signaling, and apoptosis. Notably, Has1 ablation does not alter gross HA content in the ECM, suggesting that HAS1 has a unique function in the metabolism of inflammatory HA matrices. PMID:26521733
Settle, Steven; Vickery, Lillian; Nemirovskiy, Olga; Vidmar, Tom; Bendele, Alison; Messing, Dean; Ruminski, Peter; Schnute, Mark; Sunyer, Teresa
2010-10-01
To demonstrate that the novel highly selective matrix metalloproteinase 13 (MMP-13) inhibitor PF152 reduces joint lesions in adult dogs with osteoarthritis (OA) and decreases biomarkers of cartilage degradation. The potency and selectivity of PF152 were evaluated in vitro using 16 MMPs, TACE, and ADAMTS-4 and ADAMTS-5, as well as ex vivo in human cartilage explants. In vivo effects were evaluated at 3 concentrations in mature beagles with partial medial meniscectomy. Gross and histologic changes in the femorotibial joints were evaluated using various measures of cartilage degeneration. Biomarkers of cartilage turnover were examined in serum, urine, or synovial fluid. Results were analyzed individually and in combination using multivariate analysis. The potent and selective MMP-13 inhibitor PF152 decreased human cartilage degradation ex vivo in a dose-dependent manner. PF152 treatment of dogs with OA reduced cartilage lesions and decreased biomarkers of type II collagen (type II collagen neoepitope) and aggrecan (peptides ending in ARGN or AGEG) degradation. The dose required for significant inhibition varied with the measure used, but multivariate analysis of 6 gross and histologic measures indicated that all doses differed significantly from vehicle but not from each other. Combined analysis of cartilage degradation markers showed similar results. This highly selective MMP-13 inhibitor exhibits chondroprotective effects in mature animals. Biomarkers of cartilage degradation, when evaluated in combination, parallel the joint structural changes induced by the MMP-13 inhibitor. These data support the potential therapeutic value of selective MMP-13 inhibitors and the use of a set of appropriate biomarkers to predict efficacy in OA clinical trials.
Rackwitz, Lars; Djouad, Farida; Janjanin, Sasa; Nöth, Ulrich; Tuan, Rocky S.
2017-01-01
Objective The long-term performance of cell seeded matrix based cartilage constructs depends on (1) the development of sufficient biomechanical properties, and (2) lateral integration with host tissues, both of which require cartilage specific matrix deposition within the scaffold. In this study, we have examined the potential of tissue-engineered cartilage analogs developed using different cell types, i.e., MSCs versus chondrocytes and de-differentiated chondrocytes, in an established “construct in cartilage ring” model. Design Cell-laden constructs of differentiated chondrocytes, de-differentiated chondrocytes after 2, 5 or 8 population doublings, and MSCs were either implanted into a native cartilage ring immediately after fabrication (immature group) or pretreated for 21 days in a transforming growth factor-β3 (TGF-β3) containing medium prior to implantation. After additional culture for 28 days in a serum-free, chemically defined medium, the extent of lateral integration, and biochemical and biomechanical characteristics of the implants as hybrid constructs were assessed. Results The quality of integration, the amount of accumulated cartilage-specific matrix components and associated biomechanical properties were found to be highest when using differentiated chondrocytes. De-differentiation of chondrocytes negatively impacted the properties of the implants, as even two population doublings of the chondrocytes in culture significantly lowered cartilage repair capacity. In contrast, MSCs showed chondrogenic differentiation with TGF-β3 pre-treatment and superior integrational behavior. Conclusions Chondrocyte expansion and de-differentiation impaired the cell response, resulting in inferior cartilage repair in vitro. With TGF-β3 pre-treatment, MSCs were able to undergo sustained chondrogenic differentiation and exhibited superior matrix deposition and integration compared to de-differentiated chondrocytes. PMID:24887551
Wilson, Richard; Norris, Emma L.; Brachvogel, Bent; Angelucci, Constanza; Zivkovic, Snezana; Gordon, Lavinia; Bernardo, Bianca C.; Stermann, Jacek; Sekiguchi, Kiyotoshi; Gorman, Jeffrey J.; Bateman, John F.
2012-01-01
Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296–1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during cartilage development. Although the multifunctional chaperone BiP was not differentially expressed, enzymes and chaperones required specifically for collagen biosynthesis, such as the prolyl 3-hydroxylase 1, cartilage-associated protein, and peptidyl prolyl cis-trans isomerase B complex, were down-regulated during maturation. Conversely, the lumenal proteins calumenin, reticulocalbin-1, and reticulocalbin-2 were significantly increased, signifying a shift toward calcium binding functions. This first proteomic analysis of cartilage development in vivo reveals the breadth of protein expression changes during chondrocyte maturation and ECM remodeling in the mouse femoral head. PMID:21989018
High Throughput and Mechano-Active Platforms to Promote Cartilage Regeneration and Repair
NASA Astrophysics Data System (ADS)
Mohanraj, Bhavana
Traumatic joint injuries initiate acute degenerative changes in articular cartilage that can lead to progressive loss of load-bearing function. As a result, patients often develop post-traumatic osteoarthritis (PTOA), a condition for which there currently exists no biologic interventions. To address this need, tissue engineering aims to mimic the structure and function of healthy, native counterparts. These constructs can be used to not only replace degenerated tissue, but also build in vitro, pre-clinical models of disease. Towards this latter goal, this thesis focuses on the design of a high throughput system to screen new therapeutics in a micro-engineered model of PTOA, and the development of a mechanically-responsive drug delivery system to augment tissue-engineered approaches for cartilage repair. High throughput screening is a powerful tool for drug discovery that can be adapted to include 3D tissue constructs. To facilitate this process for cartilage repair, we built a high throughput mechanical injury platform to create an engineered cartilage model of PTOA. Compressive injury of functionally mature constructs increased cell death and proteoglycan loss, two hallmarks of injury observed in vivo. Comparison of this response to that of native cartilage explants, and evaluation of putative therapeutics, validated this model for subsequent use in small molecule screens. A primary screen of 118 compounds identified a number of 'hits' and relevant pathways that may modulate pathologic signaling post-injury. To complement this process of therapeutic discovery, a stimuli-responsive delivery system was designed that used mechanical inputs as the 'trigger' mechanism for controlled release. The failure thresholds of these mechanically-activated microcapsules (MAMCs) were influenced by physical properties and composition, as well as matrix mechanical properties in 3D environments. TGF-beta released from the system upon mechano-activation stimulated stem cell chondrogenesis, demonstrating the potential of MAMCs to actively deliver therapeutics within demanding mechanical environments. Taken together, this work advances our capacity to identify and deliver new compounds of clinical relevance to modulate disease progression following traumatic injury using state-of-the-art micro-engineered screening tools and a novel mechanically-activated delivery system. These platforms advance strategies for cartilage repair and regeneration in PTOA and provide new options for the treatment of this debilitating condition.
Goodrich, L R; Hidaka, C; Robbins, P D; Evans, C H; Nixon, A J
2007-05-01
Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 x 10(7) AdIGF-1 modified chondrocytes and the contralateral joint received 2 x 10(7) naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.
Orlandi, A; Oliva, F; Taurisano, G; Candi, E; Di Lascio, A; Melino, G; Spagnoli, L G; Tarantino, U
2009-04-01
Osteoarthritis is a progressive joint disease characterized by cartilage degradation and bone remodeling. Transglutaminases catalyze a calcium-dependent transamidation reaction that produces covalent cross-linking of available substrate glutamine residues and modifies the extracellular matrix. Increased transglutaminases-mediated activity is reported in osteoarthritis, but the relative contribution of transglutaminases-2 (TG2) is uncertain. We describe TG2 expression in human femoral osteoarthritis and in wild-type and homozygous TG2 knockout mice after surgically-induced knee joint instability. Increased TG2 levels were observed in human and wild-type murine osteoarthritic cartilage compared to the respective controls. Histomorphometrical but not X-ray investigation documented in osteoarthritic TG2 knockout mice reduced cartilage destruction and an increased osteophyte formation compared to wild-type mice. These differences were associated with increased TGFbeta-1 expression. In addition to confirming its important role in osteoarthritis development, our results demonstrated that TG2 expression differently influences cartilage destruction and bone remodeling, suggesting new targeted TG2-related therapeutic strategies.
Lai, Janice H; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan
2013-12-19
Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.
Stewart, Rachel C; Patwa, Amit N; Lusic, Hrvoje; Freedman, Jonathan D; Wathier, Michel; Snyder, Brian D; Guermazi, Ali; Grinstaff, Mark W
2017-07-13
Contrast agents that go beyond qualitative visualization and enable quantitative assessments of functional tissue performance represent the next generation of clinically useful imaging tools. An optimized and efficient large-scale synthesis of a cationic iodinated contrast agent (CA4+) is described for imaging articular cartilage. Contrast-enhanced CT (CECT) using CA4+ reveals significantly greater agent uptake of CA4+ in articular cartilage compared to that of similar anionic or nonionic agents, and CA4+ uptake follows Donnan equilibrium theory. The CA4+ CECT attenuation obtained from imaging ex vivo human hip cartilage correlates with the glycosaminoglycan content, equilibrium modulus, and coefficient of friction, which are key indicators of cartilage functional performance and osteoarthritis stage. Finally, preliminary toxicity studies in a rat model show no adverse events, and a pharmacokinetics study documents a peak plasma concentration 30 min after dosing, with the agent no longer present in vivo at 96 h via excretion in the urine.
Glycosylation of DMP1 Is Essential for Chondrogenesis of Condylar Cartilage.
Weng, Y; Liu, Y; Du, H; Li, L; Jing, B; Zhang, Q; Wang, X; Wang, Z; Sun, Y
2017-12-01
The mandibular condylar cartilage (MCC) shoulders force for the subchondral bone during mastication. The cartilage matrix contains various large molecules, such as type I, II, and X collagens and proteoglycans (PGs), which jointly play essential roles in maintaining cartilage characteristics. PGs play key roles in maintaining the elasticity of cartilage and providing a cushion against mastication forces. In addition to the well-known PGs, DMP1-PG, which is the PG form of dentin matrix protein 1 (DMP1), is a newly identified PG. DMP1 is proteolytically processed in vivo, and the N-terminus is glycosylated into its PG form-that is, DMP1-PG, which is highly expressed not only in tooth and bone but also in the matrix of the MCC. However, the specific functions of DMP1-PG in the MCC remain unclear. In human temporomandibular joint osteoarthritis and hyperocclusion model rat specimens, PGs are significantly downregulated, and DMP1-PG is the most prominently affected PG. To further investigate the role of DMP1-PG in condylar chondrogenesis, a glycosylation site mutant (S 89 -G 89 ) mouse model was established with knock-in methods. In the MCC of the S89G-DMP1 mice, the glycosylation level of DMP1 was significantly downregulated, and a series of abnormal developmental and pathologic changes could be observed. The morphologic changes included thinner cartilage layers, deformations of the MCC, and disordered arrangements of the chondrocytes, and an earlier onset of temporomandibular joint osteoarthritis-like changes was observed. In addition, markers of chondrogenesis were downregulated, and the matrix of the MCC displayed OA phenotypes in the S89G-DMP1 mice. Further investigations showed that the transforming growth factor β signaling molecules were affected in the MCC after the loss of DMP1-PG. In addition, the loss of DMP1-PG significantly accelerated the progression of cartilage injuries in the hyperocclusion models. Given these findings, we investigated the significant role of DMP1-PG in the chondrogenesis and maintenance of MCC.
A broadband damper design inspired by cartilage-like relaxation mechanisms
NASA Astrophysics Data System (ADS)
Liu, Lejie; Usta, Ahmet D.; Eriten, Melih
2017-10-01
In this study, we introduce a broadband damper design inspired by the cartilage-like relaxation mechanisms. In particular, we study broadband (static to 10 kHz) dissipative properties of model cartilage systems by probe-based static and dynamic indentation, and validate that fractional Zener models can simulate the empirical data up to a desirable accuracy within the frequency range of interest. Utilizing these observations, we design a composite damper design where a poroelastic layer is sandwiched between two hard materials, and load transfer occurs across interfaces with multiple length scales. Modeling those interfaces with fractional Zener elements in parallel configuration, and manipulating the distribution of the Zener elements across different peak relaxation frequencies, we obtain a relatively constant loss factor within an unprecedented frequency range (3-3 kHz). We also discuss how these findings can be employed in a practical damping design.
Rutkowski, Timothy P.; Kohn, Anat; Sharma, Deepika; Ren, Yinshi; Mirando, Anthony J.
2016-01-01
ABSTRACT RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors play any role(s) in the processes during cartilage development is unknown. Here, for the first time, we have developed unique in vivo genetic models and in vitro approaches demonstrating that the RBPjκ-dependent Notch targets HES1 and HES5 suppress chondrogenesis and promote the onset of chondrocyte hypertrophy. HES1 and HES5 might have some overlapping function in these processes, although only HES5 directly regulates Sox9 transcription to coordinate cartilage development. HEY1 and HEYL play no discernable role in regulating chondrogenesis or chondrocyte hypertrophy, whereas none of the HES or HEY factors appear to mediate Notch regulation of cartilage matrix catabolism. This work identifies important candidates that might function as downstream mediators of Notch signaling both during normal skeletal development and in Notch-related skeletal disorders. PMID:27160681
Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J; Vernerey, Franck J
2013-03-01
Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one's quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dhote, Valentin; Skaalure, Stacey; Akalp, Umut; Roberts, Justine; Bryant, Stephanie J.; Vernerey, Franck J.
2012-01-01
Damage to cartilage caused by injury or disease can lead to pain and loss of mobility, diminishing one’s quality of life. Because cartilage has a limited capacity for self-repair, tissue engineering strategies, such as cells encapsulated in synthetic hydrogels, are being investigated as a means to restore the damaged cartilage. However, strategies to date are suboptimal in part because designing degradable hydrogels is complicated by structural and temporal complexities of the gel and evolving tissue along multiple length scales. To address this problem, this study proposes a multi-scale mechanical model using a triphasic formulation (solid, fluid, unbound matrix molecules) based on a single chondrocyte releasing extracellular matrix molecules within a degrading hydrogel. This model describes the key players (cells, proteoglycans, collagen) of the biological system within the hydrogel encompassing different length scales. Two mechanisms are included: temporal changes of bulk properties due to hydrogel degradation, and matrix transport. Numerical results demonstrate that the temporal change of bulk properties is a decisive factor in the diffusion of unbound matrix molecules through the hydrogel. Transport of matrix molecules in the hydrogel contributes both to the development of the pericellular matrix and the extracellular matrix and is dependent on the relative size of matrix molecules and the hydrogel mesh. The numerical results also demonstrate that osmotic pressure, which leads to changes in mesh size, is a key parameter for achieving a larger diffusivity for matrix molecules in the hydrogel. The numerical model is confirmed with experimental results of matrix synthesis by chondrocytes in biodegradable poly(ethylene glycol)-based hydrogels. This model may ultimately be used to predict key hydrogel design parameters towards achieving optimal cartilage growth. PMID:23276516
Altered mechano-chemical environment in hip articular cartilage: effect of obesity.
Travascio, Francesco; Eltoukhy, Moataz; Cami, Sonila; Asfour, Shihab
2014-10-01
The production of extracellular matrix (ECM) components of articular cartilage is regulated, among other factors, by an intercellular signaling mechanism mediated by the interaction of cell surface receptors (CSR) with insulin-like growth factor-1 (IGF-1). In ECM, the presence of binding proteins (IGFBP) hinders IGF-1 delivery to CSR. It has been reported that levels of IGF-1 and IGFBP in obese population are, respectively, lower and higher than those found in normal population. In this study, an experimental-numerical approach was adopted to quantify the effect of this metabolic alteration found in obese population on the homeostasis of femoral hip cartilage. A new computational model, based on the mechano-electrochemical mixture theory, was developed to describe competitive binding kinetics of IGF-1 with IGFBP and CSR, and associated glycosaminoglycan (GAG) biosynthesis. Moreover, a gait analysis was carried out on obese and normal subjects to experimentally characterize mechanical loads on hip cartilage during walking. This information was deployed into the model to account for effects of physiologically relevant tissue deformation on GAG production in ECM. Numerical simulations were performed to compare GAG biosynthesis in femoral hip cartilage of normal and obese subjects. Results indicated that the lower ratio of IGF-1 to IGFBP found in obese population reduces cartilage GAG concentration up to 18 % when compared to normal population. Moreover, moderate physical activity, such as walking, has a modest beneficial effect on GAG production. The findings of this study suggest that IGF-1/IGFBP metabolic unbalance should be accounted for when considering the association of obesity with hip osteoarthritis.
Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model.
Elder, Steven H; Cooley, Avery J; Borazjani, Ali; Sowell, Brittany L; To, Harrison; Tran, Scott C
2009-10-01
A scaffoldless or self-assembly approach to cartilage tissue engineering has been used to produce hyaline cartilage from bone marrow-derived mesenchymal stem cells (bMSCs), but the mechanical properties of such engineered cartilage and the effects the transforming growth factor (TGF) isoform have not been fully explored. This study employs a cell culture insert model to produce tissue-engineered cartilage using bMSCs. Neonatal pig bMSCs were isolated by plastic adherence and expanded in monolayer before being seeded into porous transwell inserts and cultured for 4 or 8 weeks in defined chondrogenic media containing either TGF-beta1 or TGF-beta3. Following biomechanical evaluation in confined compression, colorimetric dimethyl methylene blue and Sircol dye-binding assays were used to analyze glycosaminoglycan (GAG) and collagen contents, respectively. Histological sections were stained with toluidine blue for proteoglycans and with picrosirius red to reveal collagen orientation, and immunostained for detection of collagen types I and II. Neocartilage increased in thickness, collagen, and GAG content between 4 and 8 weeks. Proteoglycan concentration increased with depth from the top surface. The tissue contained much more collagen type II than type I, and there was a consistent pattern of collagen alignment. TGF-beta1-treated and TGF-beta3-treated constructs were similar at 4 weeks, but 8-week TGF-beta1 constructs had a higher aggregate modulus and GAG content compared to TGF-beta3. These results demonstrate that bMSCs can generate functional hyaline-like cartilage through a self-assembling process.
Infrared fiber optic probe evaluation of degenerative cartilage correlates to histological grading.
Hanifi, Arash; Bi, Xiaohong; Yang, Xu; Kavukcuoglu, Beril; Lin, Ping Chang; DiCarlo, Edward; Spencer, Richard G; Bostrom, Mathias P G; Pleshko, Nancy
2012-12-01
Osteoarthritis (OA), a degenerative cartilage disease, results in alterations of the chemical and structural properties of tissue. Arthroscopic evaluation of full-depth tissue composition is limited and would require tissue harvesting, which is inappropriate in daily routine. Fourier transform infrared (FT-IR) spectroscopy is a modality based on molecular vibrations of matrix components that can be used in conjunction with fiber optics to acquire quantitative compositional data from the cartilage matrix. To develop a model based on infrared spectra of articular cartilage to predict the histological Mankin score as an indicator of tissue quality. Comparative laboratory study. Infrared fiber optic probe (IFOP) spectra were collected from nearly normal and more degraded regions of tibial plateau articular cartilage harvested during knee arthroplasty (N = 61). Each region was graded using a modified Mankin score. A multivariate partial least squares algorithm using second-derivative spectra was developed to predict the histological modified Mankin score. The partial least squares model derived from IFOP spectra predicted the modified Mankin score with a prediction error of approximately 1.4, which resulted in approximately 72% of the Mankin-scored tissues being predicted correctly and 96% being predicted within 1 grade of their true score. These data demonstrate that IFOP spectral parameters correlate with histological tissue grade and can be used to provide information on tissue composition. Infrared fiber optic probe studies have significant potential for the evaluation of cartilage tissue quality without the need for tissue harvest. Combined with arthroscopy, IFOP analysis could facilitate the definition of tissue margins in debridement procedures.
In situ handheld three-dimensional bioprinting for cartilage regeneration.
Di Bella, Claudia; Duchi, Serena; O'Connell, Cathal D; Blanchard, Romane; Augustine, Cheryl; Yue, Zhilian; Thompson, Fletcher; Richards, Christopher; Beirne, Stephen; Onofrillo, Carmine; Bauquier, Sebastien H; Ryan, Stewart D; Pivonka, Peter; Wallace, Gordon G; Choong, Peter F
2018-03-01
Articular cartilage injuries experienced at an early age can lead to the development of osteoarthritis later in life. In situ three-dimensional (3D) printing is an exciting and innovative biofabrication technology that enables the surgeon to deliver tissue-engineering techniques at the time and location of need. We have created a hand-held 3D printing device (biopen) that allows the simultaneous coaxial extrusion of bioscaffold and cultured cells directly into the cartilage defect in vivo in a single-session surgery. This pilot study assessed the ability of the biopen to repair a full-thickness chondral defect and the early outcomes in cartilage regeneration, and compared these results with other treatments in a large animal model. A standardized critical-sized full-thickness chondral defect was created in the weight-bearing surface of the lateral and medial condyles of both femurs of six sheep. Each defect was treated with one of the following treatments: (i) hand-held in situ 3D printed bioscaffold using the biopen (HH group), (ii) preconstructed bench-based printed bioscaffolds (BB group), (iii) microfractures (MF group) or (iv) untreated (control, C group). At 8 weeks after surgery, macroscopic, microscopic and biomechanical tests were performed. Surgical 3D bioprinting was performed in all animals without any intra- or postoperative complication. The HH biopen allowed early cartilage regeneration. The results of this study show that real-time, in vivo bioprinting with cells and scaffold is a feasible means of delivering a regenerative medicine strategy in a large animal model to regenerate articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.
Transcriptomic signatures in cartilage ageing
2013-01-01
Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P < 0.05, expression ratios ± 1.4 log2 fold-change). Ingenuity pathway analysis enabled networks, functional analyses and canonical pathways from differentially expressed genes to be determined. Results In total, the expression of 396 transcribed elements including mRNAs, small noncoding RNAs, pseudogenes, and a single microRNA was significantly different in old compared with young cartilage (± 1.4 log2 fold-change, P < 0.05). Of these, 93 were at higher levels in the older cartilage and 303 were at lower levels in the older cartilage. There was an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage derived from older donors compared with young donors. In addition, there was a reduction in Wnt signalling in ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome. PMID:23971731
Barske, Lindsey; Askary, Amjad; Zuniga, Elizabeth; Balczerski, Bartosz; Bump, Paul; Nichols, James T.; Crump, J. Gage
2016-01-01
The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways − Jagged-Notch, Endothelin1 (Edn1), and Bmp − regulate the pattern of facial cartilage and bone formation by controlling the timing of cartilage differentiation along the dorsoventral axis of the pharyngeal arches. A genomic analysis of purified facial skeletal precursors in mutant and overexpression embryos revealed a core set of differentiation genes that were commonly repressed by Jagged-Notch and induced by Edn1. Further analysis of the pre-cartilage condensation gene barx1, as well as in vivo imaging of cartilage differentiation, revealed that cartilage forms first in regions of high Edn1 and low Jagged-Notch activity. Consistent with a role of Jagged-Notch signaling in restricting cartilage differentiation, loss of Notch pathway components resulted in expanded barx1 expression in the dorsal arches, with mutation of barx1 rescuing some aspects of dorsal skeletal patterning in jag1b mutants. We also identified prrx1a and prrx1b as negative Edn1 and positive Bmp targets that function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Simultaneous loss of jag1b and prrx1a/b better rescued lower facial defects of edn1 mutants than loss of either pathway alone, showing that combined overactivation of Jagged-Notch and Bmp/Prrx1 pathways contribute to the absence of cartilage differentiation in the edn1 mutant lower face. These findings support a model in which Notch-mediated restriction of cartilage differentiation, particularly in the second pharyngeal arch, helps to establish a distinct skeletal pattern in the upper face. PMID:27058748
Bischofberger, Andrea S; Fürst, Anton E; Torgerson, Paul R; Carstens, Ann; Hilbe, Monika; Kircher, Patrick
2018-03-01
OBJECTIVE To characterize delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) features of healthy hyaline cartilage of the distal interphalangeal joint (DIPJ) of horses, to determine whether dGEMRIC can be used to differentiate various stages of naturally occurring osteoarthritis of the DIPJ, and to correlate relaxation times determined by dGEMRIC with the glycosaminoglycan concentration, water content, and macroscopic and histologic findings of hyaline cartilage of DIPJs with and without osteoarthritis. SAMPLE 1 cadaveric forelimb DIPJ from each of 12 adult warmblood horses. PROCEDURES T1-weighted cartilage relaxation times were obtained for predetermined sites of the DIPJ before (T1 preGd ) and after (T1 postGd ) intra-articular gadolinium administration. Corresponding cartilage sites underwent macroscopic, histologic, and immunohistochemical evaluation, and cartilage glycosaminoglycan concentration and water content were determined. Median T1 preGd and T1 postGd were correlated with macroscopic, histologic, and biochemical data. Mixed generalized linear models were created to evaluate the effects of cartilage site, articular surface, and macroscopic and histologic scores on relaxation times. RESULTS 122 cartilage specimens were analyzed. Median T1 postGd was lower than the median T1 preGd for normal and diseased cartilage. Both T1 preGd and T1 postGd were correlated with macroscopic and histologic scores, whereby T1 preGd increased and T1 postGd decreased as osteoarthritis progressed. There was topographic variation of T1 preGd and T1 postGd within the DIPJ. Cartilage glycosaminoglycan concentration and water content were significantly correlated with T1 preGd and macroscopic and histologic scores but were not correlated with T1 postGd . CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that dGEMRIC relaxation times varied for DIPJs with various degrees of osteoarthritis. These findings may help facilitate early detection of osteoarthritis.
Bowes, Michael A; McLure, Stewart Wd; Wolstenholme, Christopher Bh; Vincent, Graham R; Williams, Sophie; Grainger, Andrew; Conaghan, Philip G
2016-10-01
The aetiology of bone marrow lesions (BMLs) in knee osteoarthritis (OA) is poorly understood. We employed three-dimensional (3D) active appearance modelling (AAM) to study the spatial distribution of BMLs in an OA cohort and compare this with the distribution of denuded cartilage. Participants were selected from the Osteoarthritis Initiative progressor cohort with Kellgren-Lawrence scores ≥2, medial joint space narrowing and osteophytes. OA and ligamentous BMLs and articular cartilage were manually segmented. Bone surfaces were automatically segmented by AAM. Cartilage thickness of <0.5 mm was defined as denuded and ≥0.5-1.5 mm as severely damaged. Non-quantitative assessment and 3D population maps were used for analysing the comparative position of BMLs and damaged cartilage. 88 participants were included, 45 men, mean age (SD) was 61.3 (9.9) years and mean body mass index was 31.1 (4.6) kg/m(2). 227 OA and 107 ligamentous BMLs were identified in 86.4% and 73.8% of participants; OA BMLs were larger. Denuded cartilage was predominantly confined to a central region on the medial femur and tibia, and the lateral facet of the trochlear femur. 67% of BMLs were colocated with denuded cartilage and a further 21% with severe cartilage damage. In the remaining 12%, 25/28 were associated with cartilage defects. 74% of all BMLs were directly opposing (kissing) another BML across the joint. There was an almost exclusive relationship between the location of OA BML and cartilage denudation, which itself had a clear spatial pattern. We propose that OA, ligamentous and traumatic BMLs represent a bone response to abnormal loading. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Kretzschmar, M; Heilmeier, U; Yu, A; Joseph, G B; Liu, F; Solka, M; McCulloch, C E; Nevitt, M C; Link, T M
2016-08-01
To investigate the change in cartilage T2 values and structural degeneration in knee joints over 72 months in women of African American (AA) vs Caucasian American (CA) ethnicity. Knee 3T magnetic resonance imaging (MRIs) from baseline, 24, 48 and 72 months visits of 100 AA and 100 CA women from the Osteoarthritis Initiative (OAI) were assessed for cartilage T2 values and whole-organ magnetic resonance imaging (WORMS) score. Subjects were pair-matched by age, body mass index (BMI), Kellgren-Lawrence (KL) score, clinical site and subcohort within the OAI. We compared the rate of change in whole knee cartilage T2 values and WORMS cartilage, bone marrow edema pattern (BMEP) and meniscus scores between the two ethnic groups using mixed random effects models. At 24 and 48 months 60 subjects and at 72 months 45 subjects per group were available for analysis resulting in 38 complete pairs with data of all time points. Compared to CA, cartilage T2 values in AA increased at a significantly faster rate at baseline (AA: 0.45 ms/y, CA: 0.35 ms/y, P = 0.029) and averaged over 6 years (AA: 0.36 ms/y, CA: 0.27 ms/y, P = 0.039) with changes in both groups reaching a plateau by 48 months. Cartilage, meniscus and BMEP scores tended to increase in both groups during follow up, but rates of change did not differ by ethnicity. Cartilage T2 values increased faster over 72 months in AA than CA, however changes in WORMS cartilage, meniscus and BMEP scores did not differ. T2 values may be able to distinguish ethnicity-related differences of cartilage degeneration at an early stage before differences in structural joint degeneration appear. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Cao, Lei; Yang, Fei; Liu, Guangwang; Yu, Degang; Li, Huiwu; Fan, Qiming; Gan, Yaokai; Tang, Tingting; Dai, Kerong
2011-06-01
Although Sox9 is essential for chondrogenic differentiation and matrix production, its application in cartilage tissue engineering has been rarely reported. In this study, the chondrogenic effect of Sox9 on bone marrow mesenchymal stem cells (BMSCs) in vitro and its application in articular cartilage repair in vivo were evaluated. Rabbit BMSCs were transduced with adenoviral vector containing Sox9. Toluidine blue, safranin O staining and real-time PCR were performed to check chondrogenic differentiation. The results showed that Sox9 could induce chondrogenesis of BMSCs both in monolayer and on PGA scaffold effectively. The rabbit model with full-thickness cartilage defects was established and then repaired by PGA scaffold and rabbit BMSCs with or without Sox9 transduction. HE, safranin O staining and immunohistochemistry were used to assess the repair of defects by the complex. Better repair, including more newly-formed cartilage tissue and hyaline cartilage-specific extracellular matrix and greater expression of several chondrogenesis marker genes were observed in PGA scaffold and BMSCs with Sox9 transduction, compared to that without transduction. Our findings defined the important role of Sox9 in the repair of cartilage defects in vivo and provided evidence that Sox9 had the potential and advantage in the application of tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie
2016-12-01
The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Pot, Michiel W; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; van Kuppevelt, Toin H; de Vries, Rob B M; Daamen, Willeke F
2016-01-01
Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0-100% scale. Implantation of acellular biomaterials significantly improved cartilage regeneration by 15.6% compared to non-treated empty defect controls. The addition of biologics to biomaterials significantly improved cartilage regeneration by 7.6% compared to control biomaterials. No significant differences were found between biomaterials from natural or synthetic origin or between scaffolds, hydrogels and blends. No noticeable differences were found in outcome between animal models. The risk of bias assessment indicated poor reporting for the majority of studies, impeding an assessment of the actual risk of bias. In conclusion, implantation of biomaterials in osteochondral defects improves cartilage regeneration compared to natural healing, which is further improved by the incorporation of biologics.
Pot, Michiel W.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna
2016-01-01
Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly improved cartilage regeneration by 15.6% compared to non-treated empty defect controls. The addition of biologics to biomaterials significantly improved cartilage regeneration by 7.6% compared to control biomaterials. No significant differences were found between biomaterials from natural or synthetic origin or between scaffolds, hydrogels and blends. No noticeable differences were found in outcome between animal models. The risk of bias assessment indicated poor reporting for the majority of studies, impeding an assessment of the actual risk of bias. In conclusion, implantation of biomaterials in osteochondral defects improves cartilage regeneration compared to natural healing, which is further improved by the incorporation of biologics. PMID:27651981
Comparison between FEBio and Abaqus for biphasic contact problems.
Meng, Qingen; Jin, Zhongmin; Fisher, John; Wilcox, Ruth
2013-09-01
Articular cartilage plays an important role in the function of diarthrodial joints. Computational methods have been used to study the biphasic mechanics of cartilage, and Abaqus has been one of the most widely used commercial software packages for this purpose. A newly developed open-source finite element solver, FEBio, has been developed specifically for biomechanical applications. The aim of this study was to undertake a direct comparison between FEBio and Abaqus for some practical contact problems involving cartilage. Three model types, representing a porous flat-ended indentation test, a spherical-ended indentation test, and a conceptual natural joint contact model, were compared. In addition, a parameter sensitivity study was also performed for the spherical-ended indentation test to investigate the effects of changes in the input material properties on the model outputs, using both FEBio and Abaqus. Excellent agreement was found between FEBio and Abaqus for all of the model types and across the range of material properties that were investigated.
Comparison between FEBio and Abaqus for biphasic contact problems
Jin, Zhongmin; Fisher, John; Wilcox, Ruth
2013-01-01
Articular cartilage plays an important role in the function of diarthrodial joints. Computational methods have been used to study the biphasic mechanics of cartilage, and Abaqus has been one of the most widely used commercial software packages for this purpose. A newly developed open-source finite element solver, FEBio, has been developed specifically for biomechanical applications. The aim of this study was to undertake a direct comparison between FEBio and Abaqus for some practical contact problems involving cartilage. Three model types, representing a porous flat-ended indentation test, a spherical-ended indentation test, and a conceptual natural joint contact model, were compared. In addition, a parameter sensitivity study was also performed for the spherical-ended indentation test to investigate the effects of changes in the input material properties on the model outputs, using both FEBio and Abaqus. Excellent agreement was found between FEBio and Abaqus for all of the model types and across the range of material properties that were investigated. PMID:23804955
Comparison of stress on knee cartilage during kneeling and standing using finite element models.
Wang, Yuxing; Fan, Yubo; Zhang, Ming
2014-04-01
Kneeling is a common activity required for both occupational and cultural reasons and has been shown to be associated with an increased risk of knee disorders. While excessive contact pressure is considered to be a possible aggressor, it is not clear whether and to what extent stress on the cartilage during kneeling is different from that while standing. In this study, finite element models of the knee joint for both kneeling and standing positions were constructed. The results indicated differences in high-stress regions between kneeling and standing. And both the peak von-Mises stress and contact pressure on the cartilage were larger in kneeling. During kneeling, the contact pressure reached 4.25 MPa under a 300 N compressive load. It then increased to 4.66 MPa at 600 N and 5.15 MPa at 1000 N. Changing the Poisson's ratio of the cartilage, which represents changes in compressibility caused by different loading rates, was found to have an influence on the magnitude of stress. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Saxby, David John; Bryant, Adam L; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M; Bennell, Kim L; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M; Vertullo, Christopher J; Feller, Julian A; Whitehead, Tim; Gallie, Price; Lloyd, David G
2017-08-01
Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Cross-sectional study; Level of evidence, 3. Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R 2 = 0.43, β = 0.62, P = .000; lateral: R 2 = 0.19, β = 0.46, P = .03) and medial thicknesses ( R 2 = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes ( R 2 = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes ( R 2 = 0.41, β = 0.64, P = .001) and thicknesses ( R 2 = 0.20, β = 0.46, P = .04). At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance.
Saxby, David John; Bryant, Adam L.; Wang, Xinyang; Modenese, Luca; Gerus, Pauline; Konrath, Jason M.; Bennell, Kim L.; Fortin, Karine; Wrigley, Tim; Cicuttini, Flavia M.; Vertullo, Christopher J.; Feller, Julian A.; Whitehead, Tim; Gallie, Price; Lloyd, David G.
2017-01-01
Background: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Hypotheses: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. Results: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R 2 = 0.43, β = 0.62, P = .000; lateral: R 2 = 0.19, β = 0.46, P = .03) and medial thicknesses (R 2 = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes (R 2 = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes (R 2 = 0.41, β = 0.64, P = .001) and thicknesses (R 2 = 0.20, β = 0.46, P = .04). Conclusion: At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance. PMID:28894756
Zhang, Lei; Wang, Ping-er; Ying, Jun; Jin, Xing; Luo, Cheng; Xu, Taotao; Xu, Shibing; Dong, Rui; Xiao, Luwei; Tong, Peijian; Jin, Hongting
2017-01-01
Yougui pills (YGPs) have been used for centuries in the treatment of Chinese patients with Kidney-Yang Deficiency Syndrome. Despite the fact that the efficiency of YGPs on treating osteoarthritis has been verified in clinic, the underlying mechanisms are not totally understood. The present study observes the therapeutic role of YGPs and mechanisms underlying its chondroprotective action in osteoarthritic cartilage. To evaluate the chondroprotective effects of YGPs, we examined the impact of orally administered YGPs in a model of destabilization of the medial meniscus (DMM). Male C57BL/6J mice were provided a daily treatment of YGPs and a DMM surgery was performed on the right knee. At 12 weeks post-surgery, the joints were harvested for tissue analyses, including histomorphometry, OARSI scoring, micro-CT and immunohistochemistry for COL-2, MMP-13 and pSMAD-2. We also performed the relative experiments mentioned above in mice with Tgfbr2 conditional knockout (TGF-βRIICol2ER mice) in articular cartilage. To evaluate the safety of YGPs, hematology was determined in each group. Amelioration of cartilage degradation was observed in the YGPs group, with increases in cartilage area and thickness, proteoglycan matrix, and decreases in OARSI score at 12 weeks post surgery. In addition, reduced BV/TV and Tb. Th, and elevated Tb. Sp were observed in DMM-induced mice followed by YGPs treatment. Moreover, the preservation of cartilage correlated with reduced MMP-13, and elevated COL-2 and pSMAD-2 protein expressional levels were also revealed in DMM-induced mice treated with YGPs. Similarly, TGF-βRIICol2ER mice exhibited significant OA-like phenotype. However, no significant difference in cartilage structure was observed in TGF-βRIICol2ER mice after YGPs treatment. Interestingly, no obvious adverse effects were observed in mice from each group based on the hematologic analyses. These findings suggested that YGPs could inhibit cartilage degradation through enhancing TGF-β/Smad signaling activation, and be considered a good option for the treatment of osteoarthritis. PMID:28928664
Zhang, Lei; Wang, Ping-Er; Ying, Jun; Jin, Xing; Luo, Cheng; Xu, Taotao; Xu, Shibing; Dong, Rui; Xiao, Luwei; Tong, Peijian; Jin, Hongting
2017-01-01
Yougui pills (YGPs) have been used for centuries in the treatment of Chinese patients with Kidney-Yang Deficiency Syndrome. Despite the fact that the efficiency of YGPs on treating osteoarthritis has been verified in clinic, the underlying mechanisms are not totally understood. The present study observes the therapeutic role of YGPs and mechanisms underlying its chondroprotective action in osteoarthritic cartilage. To evaluate the chondroprotective effects of YGPs, we examined the impact of orally administered YGPs in a model of destabilization of the medial meniscus (DMM). Male C57BL/6J mice were provided a daily treatment of YGPs and a DMM surgery was performed on the right knee. At 12 weeks post-surgery, the joints were harvested for tissue analyses, including histomorphometry, OARSI scoring, micro-CT and immunohistochemistry for COL-2, MMP-13 and pSMAD-2. We also performed the relative experiments mentioned above in mice with Tgfbr2 conditional knockout ( TGF-βRII Col2ER mice) in articular cartilage. To evaluate the safety of YGPs, hematology was determined in each group. Amelioration of cartilage degradation was observed in the YGPs group, with increases in cartilage area and thickness, proteoglycan matrix, and decreases in OARSI score at 12 weeks post surgery. In addition, reduced BV/TV and Tb. Th, and elevated Tb. Sp were observed in DMM-induced mice followed by YGPs treatment. Moreover, the preservation of cartilage correlated with reduced MMP-13, and elevated COL-2 and pSMAD-2 protein expressional levels were also revealed in DMM-induced mice treated with YGPs. Similarly, TGF-βRII Col2ER mice exhibited significant OA-like phenotype. However, no significant difference in cartilage structure was observed in TGF-βRII Col2ER mice after YGPs treatment. Interestingly, no obvious adverse effects were observed in mice from each group based on the hematologic analyses. These findings suggested that YGPs could inhibit cartilage degradation through enhancing TGF-β/Smad signaling activation, and be considered a good option for the treatment of osteoarthritis.
Luo, Ziwei; Jiang, Li; Xu, Yan; Li, Haibin; Xu, Wei; Wu, Shuangchi; Wang, Yuanliang; Tang, Zhenyu; Lv, Yonggang; Yang, Li
2015-06-01
Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor β3 (TGF-β3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-β3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-β3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-β3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-β3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (P<0.05). Similarly, more cartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-β3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (P<0.05), indicating that MGF and TGF-β3 might be a better candidate for cartilage regeneration. This study demonstrated that TGF-β3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Weimin; Guo, Daiqi; Peng, Liangquan; Chen, Yun Fang; Cui, Jiaming; Xiong, Jianyi; Lu, Wei; Duan, Li; Chen, Kang; Zeng, Yanjun; Wang, Daping
2017-02-01
Objective To assess the effect of the fusion of rabbit bone marrow stromal cells (rBMSCs) and Nano-hydroxyapatite/poly (l-lactic acid) (Nano-HA/PLLA) in repairing the rabbit knee joint with full-thickness cartilage defect. Method The rBMSCs were isolated and cultured in vitro, and the third generation of rBMSCs was co-cultured with the Nano-HA/PLLA to construct the tissue-engineered cartilage (TEC). Eighteen New Zealand white rabbits were selected and randomly divided into three groups, namely, TEC group, Nano-HA/PLLA group, and control group. A cartilage defect model with the diameter of 4.5 mm and depth of 5 mm was constructed on the articular surface of medial malleolus of rabbit femur. General observation, histological observation, and Wakitani's histological scoring were conducted in the 12th and 24th week postoperatively. Results The results of TEC group indicated that new cartilage tissue was formed on the defect site and subchondral bone achieved physiological integration basically. Histological and immunohistochemical analyses indicated the generation of massive extracellular matrix. In contrast, limited regeneration and reconstruction of cartilage was achieved in the Nano-HA/PLLA group and control group, with a significant difference from the TEC group (p < 0.05). Moreover, the effect of cartilage repair was positively correlated with time. Conclusion The porous Nano-HA/PLLA combined with BMSCs promoted the repair of weight-bearing bone of adult rabbit's knee joint with cartilage defect.
Guillén-García, Pedro; Rodríguez-Iñigo, Elena; Guillén-Vicente, Isabel; Caballero-Santos, Rosa; Guillén-Vicente, Marta; Abelow, Stephen; Giménez-Gallego, Guillermo; López-Alcorocho, Juan Manuel
2014-04-01
We hypothesized that implanting cells in a chondral defect at a density more similar to that of the intact cartilage could induce them to synthesize matrix with the features more similar to that of the uninjured one. We compared the implantation of different doses of chondrocytes: 1 million (n = 5), 5 million (n = 5), or 5 million mesenchymal cells (n = 5) in the femoral condyle of 15 sheep. Tissue generated by microfracture at the trochlea, and normal cartilage from a nearby region, processed as the tissues resulting from the implantation, were used as references. Histological and molecular (expression of type I and II collagens and aggrecan) studies were performed. The features of the cartilage generated by implantation of mesenchymal cells and elicited by microfractures were similar and typical of a poor repair of the articular cartilage (presence of fibrocartilage, high expression of type I collagen and a low mRNA levels of type II collagen and aggrecan). Nevertheless, in the samples obtained from tissues generated by implantation of chondrocytes, hyaline-like cartilage, cell organization, low expression rates of type I collagen and high levels of mRNA corresponding to type II collagen and aggrecan were observed. These histological features, show less variability and are more similar to those of the normal cartilage used as control in the case of 5 million cells implantation than when 1 million cells were used. The implantation of autologous chondrocytes in type I/III collagen membranes at high density could be a promising tool to repair articular cartilage.
Ravanbod, R; Torkaman, G; Mophid, M; Mohammadali, F
2015-09-01
Mesenchymal stem cells (MSCs) therapy is a field in progress in cartilage repair strategies. We tried to investigate the functional properties of the joint and cartilage in experimental haemarthrosis (EH) after MSCs intra-articular (IA) injection. One millilitre of fresh autologous blood was injected twice a week for three consecutive weeks in three groups including control haemophilia 10 days (n = 8), control haemophilia 38 days (n = 8) and MSCs (n = 8) group. In later, 10 days after the end of IA blood injections, MSCs IA injection was performed. Eight animals received no treatment as the normal control group. Thirty-eight days after the end of IA blood injections, animals were sacrificed. Joint friction and stress-relaxation tests were done, inflammatory cytokines of synovial membrane and scanning electron microscopy of the cartilage assessed. Joint friction decreased in MSCs in comparison to other groups and was significant with normal control group, (P = 0.011). The mechanical properties of cartilage showed no significant differences between groups. Tumour necrosis factor alpha and interleukin 1 beta decreased and IL-4 very slightly increased in MSCs in comparison to the time-matched control group. Scanning electron microscopy enabled acquisition of good structural properties of the surface and layers of the cartilage after MSCs injection. The hole induced in the medial plateau of the tibia bones, after inducing haemarthrosis, were covered with cartilage-like structure. The results showed that MSCs IA injection has some beneficial effects on cartilage structure and function in haemarthrosis model and is promising in patients with haemophilia. © 2015 John Wiley & Sons Ltd.
Tong, Wenxue; Geng, Yiyun; Huang, Yan; Shi, Yu; Xiang, Shengnan; Zhang, Ning; Qin, Ling; Shi, Qin; Chen, Qian; Dai, Kerong; Zhang, Xiaoling
2015-10-01
Osteoarthritis (OA) is a highly prevalent and debilitating joint disorder characterized by the degeneration of articular cartilage. However, no effective medical therapy has been found yet for such condition. In this study, we directly confirmed the existence of articular cartilage stem cells (ACSCs) in vivo and in situ for the first time both in normal and OA articular cartilage, and explored their chondrogenesis in Interleukin-1β (IL-1β) induced inflammation environment and disclose whether the inhibition of NF-κB signaling can induce ACSCs activation thus improve the progression of experimental OA. We found an interesting phenomenon that ACSCs were activated and exhibited a transient proliferative response in early OA as an initial attempt for self-repair. During the in vitro mechanism study, we discovered IL-1β can efficiently activate the NF-κB pathway and potently impair the responsiveness of ACSCs, whereas the NF-κB pathway inhibitor rescued the ACSCs chondrogenesis. The final in vivo experiments further confirmed ACSCs' activation were maintained by NF-κB pathway inhibitor, which induced cartilage regeneration, and protected articular cartilage from injury in an OA animal model. Our results provided in vivo evidence of the presence of ACSCs, and disclosed their action in the early OA stage and gradual quiet as OA process, presented a potential mechanism for both cartilage intrinsic repair and its final degradation, and demonstrated the feasibility of inducing endogenous adult tissue-specific mesenchymal stem cells for articular cartilage repair and OA therapy. © 2015 AlphaMed Press.
Yuan, Xue; Yang, Shuying
2015-01-01
Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation. PMID:26098911
Roth, Melanie; Wirth, Wolfgang; Emmanuel, Katja; Culvenor, Adam G; Eckstein, Felix
2017-02-01
To explore to what extent three-dimensional measures of the meniscus and femorotibial cartilage explain the variation in medial and lateral femorotibial radiographic joint space width (JSW), in healthy men and women. The right knees of 87 Osteoarthritis Initiative healthy reference participants (no symptoms, radiographic signs or risk factors of osteoarthritis; 37 men, 50 women; age 55.0±7.6; BMI 24.4±3.1) were assessed. Quantitative measures of subregional femorotibial cartilage thickness and meniscal position and morphology were computed from segmented magnetic resonance images. Minimal and medial/lateral fixed-location JSW were determined from fixed-flexion radiographs. Correlation and regression analyses were used to explore the contribution of demographic, cartilage and meniscal parameters to JSW in healthy subjects. The correlation with (medial) minimal JSW was somewhat stronger for cartilage thickness (0.54≤r≤0.67) than for meniscal (-0.31≤r≤0.50) or demographic measures (-0.15≤r≤0.48), in particular in men. In women, in contrast, the strength of the correlations of cartilage thickness and meniscal measures with minimal JSW were in the same range. Fixed-location JSW measures showed stronger correlations with cartilage thickness (r≥0.68 medially; r≥0.59 laterally) than with meniscal measures (r≤|0.32| medially; r≤|0.32| laterally). Stepwise regression models revealed that meniscal measures added significant independent information to the total variance explained in minimal JSW (adjusted multiple r 2 =58%) but not in medial or lateral fixed-location JSW (r 2 =60/51%, respectively). In healthy subjects, minimal JSW was observed to reflect a combination of cartilage and meniscal measures, particularly in women. Fixed-location JSW, in contrast, was found to be dominated by variance in cartilage thickness in both men and women, with somewhat higher correlations between cartilage and JSW in the medial than lateral femorotibial compartment. The significant contribution of the meniscus' position on minimal JSW reinforces concerns over validity of JSW as an indirect measure of hyaline cartilage. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels.
Zhao, Xing; Papadopoulos, Anestis; Ibusuki, Shinichi; Bichara, David A; Saris, Daniel B; Malda, Jos; Anseth, Kristi S; Gill, Thomas J; Randolph, Mark A
2016-06-03
Injuries to the human native cartilage tissue are particularly problematic because cartilage has little to no ability to heal or regenerate itself. Employing a tissue engineering strategy that combines suitable cell sources and biomimetic hydrogels could be a promising alternative to achieve cartilage regeneration. However, the weak mechanical properties may be the major drawback to use fully degradable hydrogels. Besides, most of the fully degradable hydrogels degrade too fast to permit enough extracellular matrix (ECM) production for neocartilage formation. In this study, we demonstrated the feasibility of neocartilage regeneration using swine articular chondrocytes photoencapsualted into poly (ethylene glycol) dimethacrylate (PEGDM) copolymer hydrogels composed of different degradation profiles: degradable (PEG-LA-DM) and nondegradable (PEGDM) macromers in molar ratios of 50/50, 60/40, 70/30, 80/20, and 90/10. Articular chondrocytes were isolated enzymatically from juvenile Yorkshire swine cartilage. 6 × 10(7) cells cells were added to each milliliter of macromer/photoinitiator (I2959) solution. Nonpolymerized gel containing the cells (100 μL) was placed in cylindrical molds (4.5 mm diameter × 6.5 mm in height). The macromer/photoinitiator/chondrocyte solutions were polymerized using ultraviolet (365 nm) light at 10 mW/cm(2) for 10 mins. Also, an articular cartilaginous ring model was used to examine the capacity of the engineered cartilage to integrate with native cartilage. Samples in the pilot study were collected at 6 weeks. Samples in the long-term experimental groups (60/40 and 70/30) were implanted into nude mice subcutaneously and harvested at 6, 12 and 18 weeks. Additionally, cylindrical constructs that were not implanted used as time zero controls. All of the harvested specimens were examined grossly and analyzed histologically and biochemically. Histologically, the neocartilage formed in the photochemically crosslinked gels resembled native articular cartilage with chondrocytes in lacunae and surrounded by new ECM. Increases in total DNA, glycosaminoglycan, and hydroxyproline were observed over the time periods studied. The neocartilage integrated with existing native cartilage. Articular cartilage generation was achieved using swine articular chondrocytes photoencapsulated in copolymer PEGDM hydrogels, and the neocartilage tissue had the ability to integrate with existing adjacent native cartilage.
Mechanical force-mediated pathological cartilage thinning is regulated by necroptosis and apoptosis.
Zhang, C; Lin, S; Li, T; Jiang, Y; Huang, Z; Wen, J; Cheng, W; Li, H
2017-08-01
This study aimed to identify the mechanisms underlying mandibular chondrocyte cell death and cartilage thinning in response to mechanical force. An in vivo model (compressive mechanical force) and an in vitro model (TNF-α+cycloheximide) were used to induce mandibular chondrocyte necroptosis. Hematoxylin and eosin staining and transmission electron microscopy were used to assess histological and subcellular changes in mandibular chondrocyte. Immunohistochemistry, western blotting, and real-time PCR were performed to evaluate changes in necroptotic protein markers. Cell activity, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were examined in vitro. The expression of RIP1, RIP3 and Caspase-8 in mandibular chondrocytes significantly increased after 4 days of compressive mechanical force. Furthermore, the inhibition of necroptosis by Necrostatin-1 (Nec-1) or the inhibition of apoptosis by N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD) partially restored mechanical force-mediated mandibular cartilage thinning and chondrocyte death. Moreover, a synergistic effect on cell death inhibition and mandibular cartilage thickness restoration were found when treated with Nec-1+Z-VAD. The results of the in vitro model were in line with the in vivo ones, indicating that the changes in MMP and ROS generation contributed to mandibular chondrocyte apoptosis and necroptosis. In addition to apoptosis, necroptosis also plays critical roles in pathological changes in mandibular cartilage after compressive mechanical force stimulation, implying RIP1, a master protein that mediates both necroptosis and apoptosis, as a potential therapeutic target in temporal mandibular osteoarthritis. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Kapitanov, Georgi I; Ayati, Bruce P; Martin, James A
2017-01-01
Osteoarthritis (OA) is a disease characterized by degeneration of joint cartilage. It is associated with pain and disability and is the result of either age and activity related joint wear or an injury. Non-invasive treatment options are scarce and prevention and early intervention methods are practically non-existent. The modeling effort presented in this article is constructed based on an emerging biological hypothesis-post-impact oxidative stress leads to cartilage cell apoptosis and hence the degeneration observed with the disease. The objective is to quantitatively describe the loss of cell viability and function in cartilage after an injurious impact and identify the key parameters and variables that contribute to this phenomenon. We constructed a system of differential equations that tracks cell viability, mitochondrial function, and concentrations of reactive oxygen species (ROS), adenosine triphosphate (ATP), and glycosaminoglycans (GAG). The system was solved using MATLAB and the equations' parameters were fit to existing data using a particle swarm algorithm. The model fits well the available data for cell viability, ATP production, and GAG content. Local sensitivity analysis shows that the initial amount of ROS is the most important parameter. The model we constructed is a viable method for producing in silico studies and with a few modifications, and data calibration and validation, may be a powerful predictive tool in the search for a non-invasive treatment for post-traumatic osteoarthritis.
Multiscale modeling of growth plate cartilage mechanobiology.
Gao, Jie; Williams, John L; Roan, Esra
2017-04-01
Growth plate chondrocytes are responsible for bone growth through proliferation and differentiation. However, the way they experience physiological loads and regulate bone formation, especially during the later developmental phase in the mature growth plate, is still under active investigation. In this study, a previously developed multiscale finite element model of the growth plate is utilized to study the stress and strain distributions within the cartilage at the cellular level when rapidly compressed to 20 %. Detailed structures of the chondron are included in the model to examine the hypothesis that the same combination of mechanoregulatory signals shown to maintain cartilage or stimulate osteogenesis or fibrogenesis in the cartilage anlage or fracture callus also performs the same function at the cell level within the chondrons of growth plate cartilage. Our cell-level results are qualitatively and quantitatively in agreement with tissue-level theories when both hydrostatic cellular stress and strain are considered simultaneously in a mechanoregulatory phase diagram similar to that proposed at the tissue level by Claes and Heigele for fracture healing. Chondrocytes near the reserve/proliferative zone border are subjected to combinations of high compressive hydrostatic stresses ([Formula: see text] MPa), and cell height and width strains of [Formula: see text] to [Formula: see text] respectively, that maintain cartilage and keep chondrocytes from differentiating and provide conditions favorable for cell division, whereas chondrocytes closer to the hypertrophic/calcified zone undergo combinations of lower compressive hydrostatic stress ([Formula: see text] MPa) and cell height and width strains as low as [Formula: see text] to +4 %, respectively, that promote cell differentiation toward osteogenesis; cells near the outer periphery of the growth plate structure experience a combination of low compressive hydrostatic stress (0 to [Formula: see text] MPa) and high maximum principal strain (20-29 %) that stimulate cell differentiation toward fibrocartilage or fibrous tissue.
NASA Astrophysics Data System (ADS)
Ramakrishna, Bharath; Saiprasad, Ganesh; Safdar, Nabile; Siddiqui, Khan; Chang, Chein-I.; Siegel, Eliot
2008-03-01
Osteoarthritis (OA) is the most common form of arthritis and a major cause of morbidity affecting millions of adults in the US and world wide. In the knee, OA begins with the degeneration of joint articular cartilage, eventually resulting in the femur and tibia coming in contact, and leading to severe pain and stiffness. There has been extensive research examining 3D MR imaging sequences and automatic/semi-automatic techniques for 2D/3D articular cartilage extraction. However, in routine clinical practice the most popular technique still remain radiographic examination and qualitative assessment of the joint space. This may be in large part because of a lack of tools that can provide clinically relevant diagnosis in adjunct (in near real time fashion) with the radiologist and which can serve the needs of the radiologists and reduce inter-observer variation. Our work aims to fill this void by developing a CAD application that can generate clinically relevant diagnosis of the articular cartilage damage in near real time fashion. The algorithm features a 2D Active Shape Model (ASM) for modeling the bone-cartilage interface on all the slices of a Double Echo Steady State (DESS) MR sequence, followed by measurement of the cartilage thickness from the surface of the bone, and finally by the identification of regions of abnormal thinness and focal/degenerative lesions. A preliminary evaluation of CAD tool was carried out on 10 cases taken from the Osteoarthritis Initiative (OAI) database. When compared with 2 board-certified musculoskeletal radiologists, the automatic CAD application was able to get segmentation/thickness maps in little over 60 seconds for all of the cases. This observation poses interesting possibilities for increasing radiologist productivity and confidence, improving patient outcomes, and applying more sophisticated CAD algorithms to routine orthopedic imaging tasks.
Boileau, Christelle; Martel-Pelletier, Johanne; Caron, Judith; Msika, Philippe; Guillou, Georges B; Baudouin, Caroline; Pelletier, Jean-Pierre
2009-01-01
The aims of this study were, first, to investigate the in vivo effects of treatment with avocado/soybean unsaponifiables on the development of osteoarthritic structural changes in the anterior cruciate ligament dog model and, second, to explore their mode of action. Osteoarthritis was induced by anterior cruciate ligament transection of the right knee in crossbred dogs. There were two treatment groups (n = 8 dogs/group), in which the animals received either placebo or avocado/soybean unsaponifiables (10 mg/kg per day), which were given orally for the entire duration of the study (8 weeks). We conducted macroscopic and histomorphological analyses of cartilage and subchondral bone of the femoral condyles and/or tibial plateaus. We also conducted immunohistochemical analyses in cartilage for the following antigens: inducible nitric oxide synthase, matrix metalloproteinase (MMP)-1, MMP-13, a disintegrin and metalloproteinase domain with thrombospondin motifs (ADAMTS)4 and ADAMTS5. The size of macroscopic lesions on the tibial plateaus was decreased (P = 0.04) in dogs treated with the avocado/soybean unsaponifiables. Histologically, in these animals the severity of cartilage lesions on both tibial plateaus and femoral condyles, and the cellular infiltration in synovium were significantly decreased (P = 0.0002 and P = 0.04, respectively). Treatment with avocado/soybean unsaponifiables also reduced loss of subchondral bone volume (P < 0.05) and calcified cartilage thickness (P = 0.01) compared with placebo. Immunohistochemical analysis of cartilage revealed that avocado/soybean unsaponifiables significantly reduced the level of inducible nitric oxide synthase (P < 0.05) and MMP-13 (P = 0.01) in cartilage. This study demonstrates that treatment with avocado/soybean unsaponifiables can reduce the development of early osteoarthritic cartilage and subchondral bone lesions in the anterior cruciate ligament dog model of osteoarthritis. This effect appears to be mediated through the inhibition of inducible nitric oxide synthase and MMP-13, which are key mediators of the structural changes that take place in osteoarthritis.
Lu, Wei; Wang, Lin; Yao, Jing; Wo, Chunxin; Chen, Yu
2018-06-22
Degenerative alterations in articular cartilage are involved in the pathogenesis of osteoarthritis. The present study aimed to evaluate the role of complement component 5a (C5a) in osteoarthritic alterations in the articular cartilage and synovialis via a joint immobilization (IM) rat model. Rats were assigned to three groups: Control, IM and IM+anti‑C5a antibody (IM+anti‑C5a) groups. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay and hematoxylin and eosin staining were used to evaluate the morphological alterations in the articular cartilage and synovialis. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis, immunohistochemical analysis and western blotting were used to evaluate C5a expression in the articular cartilage and synovialis. An ELISA was used to evaluate C5a‑induced alterations in interleukin (IL)‑1β, IL‑17A and tumor necrosis factor (TNF)‑α levels in the serum and joint fluid. The results demonstrated that knee joint immobilization induced destruction of knee joint synovial fluid and cartilage in the IM and IM+anti‑C5a antibody groups. Immobilization significantly increased the expression levels of C5a in serum and joint fluid in the IM group. Immunohistochemistry, western blotting and RT‑qPCR analysis illustrated markedly increased expression of C5a in the IM group. Immobilization markedly increased the IL‑1β, IL‑17A and TNF‑α expression levels in the serum and joint fluid in the IM group. Anti‑C5a was able to decrease immobilization‑induced alterations in morphology and cytokines compared with the IM group. The expression of C5a was increased in synoviocytes and joint cartilage in the IM model. Pro‑inflammatory cytokines, including TNF‑α and IL‑1β were released in the activated synoviocytes via the induction of C5a, suggesting that C5a serves an important role in joint inflammatory processes.
Patrascu, Jenel M; Krüger, Jan Philipp; Böss, Hademar G; Ketzmar, Anna-Katharina; Freymann, Undine; Sittinger, Michael; Notter, Michael; Endres, Michaela; Kaps, Christian
2013-10-01
In cartilage repair, scaffold-assisted one-step approaches are used to improve the microfracture (Mfx) technique. Since the number of progenitors in Mfx is low and may further decrease with age, aim of our study was to analyze the chondrogenic potential of freeze-dried polyglycolic acid-hyaluronan (PGA-HA) implants preloaded with mesenchymal stem cells (MSCs) in vitro and in a rabbit articular cartilage defect model. Human bone marrow-derived MSC from iliac crest were cultured in freeze-dried PGA-HA implants for chondrogenic differentiation. In a pilot study, implants were loaded with autologous rabbit MSC and used to cover 5 mm × 6 mm full-thickness femoral articular cartilage defects (n = 4). Untreated defects (n = 3) served as controls. Gene expression analysis and histology showed induction of typical chondrogenic marker genes like type II collagen and formation of hyaline-like cartilaginous tissue in MSC-laden PGA-HA implants. Histological evaluation of rabbit repair tissue formation after 30 and 45 days showed formation of repair tissue, rich in chondrocytic cells and of a hyaline-like appearance. Controls showed no articular resurfacing, tissue repair in the subchondral zone and fibrin formation. These results suggest that MSC-laden PGA-HA scaffolds have chondrogenic potential and are a promising option for stem cell-mediated cartilage regeneration. Copyright © 2013 Wiley Periodicals, Inc.
Rabbit Trochlear Model of Osteochondral Allograft Transplantation
To, Nhat; Curtiss, Shane; Neu, Corey P; Salgado, Christopher J; Jamali, Amir A
2011-01-01
Allografting and autografting of osteochondral tissues is a promising strategy to treat articular cartilage lesions in damaged joints. We developed a new model of fresh osteochondral allografting using the entire rabbit trochlea. The objective of the current study was to demonstrate that this model would achieve reproducible graft–host healing and maintain normal articular cartilage histologic, immunolocalization, and biochemical characteristics after transplantation under diverse storage and transplantation conditions. New Zealand white (n = 8) and Dutch belted (n = 8) rabbits underwent a 2-stage transplantation operation using osteochondral grafts that had been stored for 2 or 4 wk. Trochlear grafts harvested from the left knee were transplanted to the right knee as either autografts or allografts. Grafts were fixed with 22-gauge steel wire or 3-0 nylon suture. Rabbits were euthanized for evaluation at 1, 2, 4, 6, and 12 wk after transplantation. All grafts that remained in vivo for at least 4 wk demonstrated 100% interface healing by microCT. Trabecular bridging was present at the host–graft interface starting at 2 wk after transplantation, with no significant difference in cartilage histology between the various groups. The combined histology scores indicated minimal evidence of osteoarthritis. Immunostaining revealed that superficial zone protein was localized at the surface of all transplants. The rabbit trochlear model met our criteria for a successful model in regard to the ease of the procedure, low rate of surgical complications, relatively large articular cartilage surface area, and amount of host–graft bone interface available for analysis. PMID:22330350
Khunakornvichaya, Arada; Lekmeechai, Sujinna; Pham, Phi Phuong; Himakoun, Wanwisa; Pitaksuteepong, Tasana; Morales, Noppawan Phumala; Hemstapat, Warinkarn
2016-01-01
This study was designed to investigate the anti-nociceptive effect of Morus alba stem extract as well as its cartilage protective effect in the anterior cruciate ligament transection (ACLT)-induced rat model of osteoarthritis (OA). The anti-nociceptive effect of this plant extract was determined by measuring hind limb weight bearing, while the severity of cartilage damage to the knee joints was evaluated using the modified Mankin grading system. Oral administration of M. alba stem extract (56 and 560 mg/kg) significantly attenuated joint pain as indicated by a significant (p < 0.05) increase in the values of percent weight borne on the operated hind limb for the OA-induced groups that received M. alba stem extract at 56 and 560 mg/kg when compared to those of the vehicle-treated OA-induced group. In addition, a significant improvement in the Mankin score was also observed in rats treated with 560 mg/kg M. alba stem extract, which was in agreement with its pain-relieving effect. The results showed that M. alba stem extract exhibited an anti-nociceptive effect as well as cartilage protection in the ACLT-induced rat model of OA, supporting its potential use as a therapeutic treatment for OA. © 2016 S. Karger AG, Basel.
Hindle, Paul; Baily, James; Khan, Nusrat; Biant, Leela C; Simpson, A Hamish R; Péault, Bruno
2016-11-01
Previous research has indicated that purified perivascular stem cells (PSCs) have increased chondrogenic potential compared to conventional mesenchymal stem cells (MSCs) derived in culture. This study aimed to develop an autologous large animal model for PSC transplantation and to specifically determine if implanted cells are retained in articular cartilage defects. Immunohistochemistry and fluorescence-activated cell sorting were used to ascertain the reactivity of anti-human and anti-ovine antibodies, which were combined and used to identify and isolate pericytes (CD34 - CD45 - CD146 + ) and adventitial cells (CD34 + CD45 - CD146 - ). The purified cells demonstrated osteogenic, adipogenic, and chondrogenic potential in culture. Autologous ovine PSCs (oPSCs) were isolated, cultured, and efficiently transfected using a green fluorescence protein (GFP) encoding lentivirus. The cells were implanted into articular cartilage defects on the medial femoral condyle using hydrogel and collagen membranes. Four weeks following implantation, the condyle was explanted and confocal laser scanning microscopy demonstrated the presence of oPSCs in the defect repaired with the hydrogel. These data suggest the testability in a large animal of native MSC autologous grafting, thus avoiding possible biases associated with xenotransplantation. Such a setting will be used in priority for indications in orthopedics, at first to model articular cartilage repair.
Zhang, Bei-Ying; Wang, Bing-Yun; Li, Shao-Chuan; Luo, Dong-Zhang; Zhan, Xiaoshu; Chen, Sheng-Feng; Chen, Zhi-Sheng; Liu, Can-Ying; Ji, Hui-Qin; Bai, Yin-Shan; Li, Dong-Sheng; He, Yang
2018-01-01
The aim of this study was to assess the efficacy of canine umbilical cord mesenchymal stem cells (UC-MSCs) on the treatment of knee osteoarthritis in dogs. Eight dogs were evenly assigned to two groups. The canine model of knee osteoarthritis was established by surgical manipulation of knee articular cartilage on these eight dogs. UC-MSCs were isolated from umbilical cord Wharton's jelly by 0.1% type collagenase I and identified by immunofluorescence staining and adipogenic and osteogenic differentiation in vitro . A suspension of allogeneic UC-MSCs (1 × 10 6 ) and an equal amount of physiological saline was injected into the cavitas articularis in the treated and untreated control groups, respectively, on days 1 and 3 posttreatment. The structure of the canine knee joint was observed by magnetic resonance imaging (MRI), B-mode ultrasonography, and X-ray imaging at the 3rd, 7th, 14th, and 28th days after treatment. Concurrently, the levels of IL-6, IL-7, and TNF- α in the blood of the examined dogs were measured. Moreover, the recovery of cartilage and patella surface in the treated group and untreated group was compared using a scanning electron microscope (SEM) after a 35-day treatment. Results revealed that the isolated cells were UC-MSCs, because they were positive for CD44 and negative for CD34 surface markers, and the cells were differentiated into adipocytes and osteoblasts. Imaging technology showed that as treatment time increased, the high signal in the MRI T2-weighted images decreased, the echo-free space in B ultrasonography images disappeared basically, and the continuous linear hypoechoic region at the trochlear sulcus thickened. On X-ray images, the serrate defect at the ventral cortex of the patella improved, and the low-density gap of the ventral patella and trochlear crest gradually increased in the treated group. On the contrary, the high signal in the MRI T2-weighted images and the echo-free space in B ultrasonography images still increased after a 14-day treatment in the untreated control group, and the linear hypoechoic region was discontinuous. On the X-ray images, there was no improvement in the serrate defect of the ventral cortex of the patella. Results for inflammatory factors showed that the blood levels of IL-6, IL-7, and TNF- α of the untreated control group were significantly higher than those of the treated group ( P < 0.05) 7-14 days posttreatment. The result of SEM showed that the cartilage neogenesis in the treated group had visible neonatal tissue and more irregular arrangement of new tissue fibers than that of the untreated control group. Furthermore, more vacuoles but without collagen fibers were observed in the cartilage of the untreated control group, and the thickness of the neogenetic cartilage in the treated group (65.13 ± 5.29, 65.30 ± 5.83) and the untreated control group (34.27 ± 5.42) showed a significant difference ( P < 0.01). Significantly higher improvement in cartilage neogenesis and recovery was observed in the treated group compared to the untreated control group. The joint fluid and the inflammatory response in the treated group decreased. Moreover, improved recovery in the neogenetic cartilage, damaged skin fascia, and muscle tissue around the joints was more significant in the treated group than in the untreated control group. In conclusion, canine UC-MSCs promote the repair of cartilage and patella injury in osteoarthritis, improve the healing of the surrounding tissues, and reduce the inflammatory response.
Zhang, Bei-ying; Li, Shao-chuan; Luo, Dong-zhang; Zhan, Xiaoshu; Chen, Sheng-feng; Chen, Zhi-sheng; Liu, Can-ying; Ji, Hui-qin; Bai, Yin-shan; Li, Dong-sheng; He, Yang
2018-01-01
Objective The aim of this study was to assess the efficacy of canine umbilical cord mesenchymal stem cells (UC-MSCs) on the treatment of knee osteoarthritis in dogs. Methods Eight dogs were evenly assigned to two groups. The canine model of knee osteoarthritis was established by surgical manipulation of knee articular cartilage on these eight dogs. UC-MSCs were isolated from umbilical cord Wharton's jelly by 0.1% type collagenase I and identified by immunofluorescence staining and adipogenic and osteogenic differentiation in vitro. A suspension of allogeneic UC-MSCs (1 × 106) and an equal amount of physiological saline was injected into the cavitas articularis in the treated and untreated control groups, respectively, on days 1 and 3 posttreatment. The structure of the canine knee joint was observed by magnetic resonance imaging (MRI), B-mode ultrasonography, and X-ray imaging at the 3rd, 7th, 14th, and 28th days after treatment. Concurrently, the levels of IL-6, IL-7, and TNF-α in the blood of the examined dogs were measured. Moreover, the recovery of cartilage and patella surface in the treated group and untreated group was compared using a scanning electron microscope (SEM) after a 35-day treatment. Results Results revealed that the isolated cells were UC-MSCs, because they were positive for CD44 and negative for CD34 surface markers, and the cells were differentiated into adipocytes and osteoblasts. Imaging technology showed that as treatment time increased, the high signal in the MRI T2-weighted images decreased, the echo-free space in B ultrasonography images disappeared basically, and the continuous linear hypoechoic region at the trochlear sulcus thickened. On X-ray images, the serrate defect at the ventral cortex of the patella improved, and the low-density gap of the ventral patella and trochlear crest gradually increased in the treated group. On the contrary, the high signal in the MRI T2-weighted images and the echo-free space in B ultrasonography images still increased after a 14-day treatment in the untreated control group, and the linear hypoechoic region was discontinuous. On the X-ray images, there was no improvement in the serrate defect of the ventral cortex of the patella. Results for inflammatory factors showed that the blood levels of IL-6, IL-7, and TNF-α of the untreated control group were significantly higher than those of the treated group (P < 0.05) 7–14 days posttreatment. The result of SEM showed that the cartilage neogenesis in the treated group had visible neonatal tissue and more irregular arrangement of new tissue fibers than that of the untreated control group. Furthermore, more vacuoles but without collagen fibers were observed in the cartilage of the untreated control group, and the thickness of the neogenetic cartilage in the treated group (65.13 ± 5.29, 65.30 ± 5.83) and the untreated control group (34.27 ± 5.42) showed a significant difference (P < 0.01). Conclusion Significantly higher improvement in cartilage neogenesis and recovery was observed in the treated group compared to the untreated control group. The joint fluid and the inflammatory response in the treated group decreased. Moreover, improved recovery in the neogenetic cartilage, damaged skin fascia, and muscle tissue around the joints was more significant in the treated group than in the untreated control group. In conclusion, canine UC-MSCs promote the repair of cartilage and patella injury in osteoarthritis, improve the healing of the surrounding tissues, and reduce the inflammatory response. PMID:29861739
Zhang, Yongliang; Mi, Yiqun; Gang, Jiahong; Wang, Huamin
2016-02-01
To observe the effects of warm needling moxibustion on body mass, knee cartilage andmorphology in rats with knee osteoarthritis (KOA). Forty SD rats were randomly divided into a normalgroup, a model group, a medication group and a warm needling group, 10 rats in each one. Except the normalgroup, the rats in the remaining three groups were injected with papain to establish the model of KOA. After themodeling, rats in the model group did not receive any treatment; rats in the warm needling group were treated withwarm needling moxibustion at bilateral "Xiqian"; rats in the medication group were treated with intragastric administration of meloxicam; rats in the normal group were treated with 0. 9% NaCl solution (identical dose as medication group) and immobilized as the warm needling group. The treatment was given once a day for consecutive20 days. The body mass, scale of knee cartilage and morphological changes were observed in each group after'treatment. The increasing of body mass in the medication group and warm needling group was faster than!that in the model group, but slower than that in the normal group (all P<0. 05); the difference between medication group and warm needling group was not statistically significant (P>0. 05). The scale of knee cartilage in thewarm needling group and medication group was significantly lower than that in the model group (both P<0. 05),while the scale in the warm needling group was lower than that in the medication group (P<. 05). Regarding theknee morphology under micro-CT, the relief of knee degeneration and improvement of knee recovery in the warm needlinggroup were superior to those in the medication group. The warm needling moxibustion could effectively reduce the knee pain, improve the recovery of knee cartilage, which is a safe and effective treatment.
Autologous chondrocyte implantation in the knee: systematic review and economic evaluation.
Mistry, Hema; Connock, Martin; Pink, Joshua; Shyangdan, Deepson; Clar, Christine; Royle, Pamela; Court, Rachel; Biant, Leela C; Metcalfe, Andrew; Waugh, Norman
2017-02-01
The surfaces of the bones in the knee are covered with articular cartilage, a rubber-like substance that is very smooth, allowing frictionless movement in the joint and acting as a shock absorber. The cells that form the cartilage are called chondrocytes. Natural cartilage is called hyaline cartilage. Articular cartilage has very little capacity for self-repair, so damage may be permanent. Various methods have been used to try to repair cartilage. Autologous chondrocyte implantation (ACI) involves laboratory culture of cartilage-producing cells from the knee and then implanting them into the chondral defect. To assess the clinical effectiveness and cost-effectiveness of ACI in chondral defects in the knee, compared with microfracture (MF). A broad search was done in MEDLINE, EMBASE, The Cochrane Library, NHS Economic Evaluation Database and Web of Science, for studies published since the last Health Technology Assessment review. Systematic review of recent reviews, trials, long-term observational studies and economic evaluations of the use of ACI and MF for repairing symptomatic articular cartilage defects of the knee. A new economic model was constructed. Submissions from two manufacturers and the ACTIVE (Autologous Chondrocyte Transplantation/Implantation Versus Existing Treatment) trial group were reviewed. Survival analysis was based on long-term observational studies. Four randomised controlled trials (RCTs) published since the last appraisal provided evidence on the efficacy of ACI. The SUMMIT (Superiority of Matrix-induced autologous chondrocyte implant versus Microfracture for Treatment of symptomatic articular cartilage defects) trial compared matrix-applied chondrocyte implantation (MACI ® ) against MF. The TIG/ACT/01/2000 (TIG/ACT) trial compared ACI with characterised chondrocytes against MF. The ACTIVE trial compared several forms of ACI against standard treatments, mainly MF. In the SUMMIT trial, improvements in knee injury and osteoarthritis outcome scores (KOOSs), and the proportion of responders, were greater in the MACI group than in the MF group. In the TIG/ACT trial there was improvement in the KOOS at 60 months, but no difference between ACI and MF overall. Patients with onset of symptoms < 3 years' duration did better with ACI. Results from ACTIVE have not yet been published. Survival analysis suggests that long-term results are better with ACI than with MF. Economic modelling suggested that ACI was cost-effective compared with MF across a range of scenarios. The main limitation is the lack of RCT data beyond 5 years of follow-up. A second is that the techniques of ACI are evolving, so long-term data come from trials using forms of ACI that are now superseded. In the modelling, we therefore assumed that durability of cartilage repair as seen in studies of older forms of ACI could be applied in modelling of newer forms. A third is that the high list prices of chondrocytes are reduced by confidential discounting. The main research needs are for longer-term follow-up and for trials of the next generation of ACI. The evidence base for ACI has improved since the last appraisal by the National Institute for Health and Care Excellence. In most analyses, the incremental cost-effectiveness ratios for ACI compared with MF appear to be within a range usually considered acceptable. Research is needed into long-term results of new forms of ACI. This study is registered as PROSPERO CRD42014013083. The National Institute for Health Research Health Technology Assessment programme.
Martin, James A.; Anderson, Donald D.; Goetz, Jessica E.; Fredericks, Douglas; Pedersen, Douglas R.; Ayati, Bruce P.; Marsh, J. Lawrence; Buckwalter, Joseph A.
2016-01-01
Two categories of joint overloading cause post-traumatic osteoarthritis (PTOA): single acute traumatic loads/impactions and repetitive overloading due to incongruity/instability. We developed and refined three classes of complementary models to define relationships between joint overloading and progressive cartilage loss across the spectrum of acute injuries and chronic joint abnormalities: explant and whole joint models that allow probing of cellular responses to mechanical injury and contact stresses, animal models that enable study of PTOA pathways in living joints and pre-clinical testing of treatments, and patient-specific computational models that define the overloading that causes OA in humans. We coordinated methodologies across models so that results from each informed the others, maximizing the benefit of this complementary approach. We are incorporating results from these investigations into biomathematical models to provide predictions of PTOA risk and guide treatment. Each approach has limitations, but each provides opportunities to elucidate PTOA pathogenesis. Taken together, they help define levels of joint overloading that cause cartilage destruction, show that both forms of overloading can act through the same biologic pathways, and create a framework for initiating clinical interventions that decrease PTOA risk. PMID:27509320
Nasal tip support: A finite element analysis of the role of the caudal septum during tip depression
Manuel, Cyrus T.; Leary, Ryan; Protsenko, Dmitriy E.; Wong, Brian J.F.
2014-01-01
Objective/Hypothesis Although minor and major tip support mechanisms have been described in detail, no quantitative models exist to provide support for the relative contributions of the structural properties of the major alar cartilage, the fibrous attachments to surrounding structures, and the rigid support structures in an objective manner. Study Design The finite element method was used to compute the stress distribution in the nose during simple tip compression, and then identify the specific anatomic structures that resist deformation and thus contribute to “tip support”. Additionally, the impact of caudal septal resection on nasal tip support was examined. Method The computer models consisted of three tissue components with anatomically correct geometries for skin and bone derived from CT data. Septum, upper lateral cartilages, and major alar cartilages were fitted within the model using 3D CAD software. 5mm nasal tip compression was performed on the models with caudal septal resection (3mm and 5 mm) and without resection to simulate palpation, then the resulting spatial distribution of stress and displacement was calculated. Results The von Mises stress in the normal model was primarily concentrated along medial crural angle. As caudal septum length was reduced, stress was redistributed to adjacent soft tissue and bone, resulting in less force acting on the septum. In all models, displacement was greatest near the intermediate crura. Conclusions These models are the first step in the comprehensive mechanical analysis of nasal tip dynamics. Our model supports the concept of the caudal septum and major alar cartilage as providing the majority of critical load-bearing support. Level of Evidence N/A PMID:23878007
Prediction of elbow joint contact mechanics in the multibody framework.
Rahman, Munsur; Cil, Akin; Stylianou, Antonis P
2016-03-01
Computational multibody musculoskeletal models of the elbow joint that are capable of simultaneous and accurate predictions of muscle and ligament forces, along with cartilage contact mechanics can be immensely useful in clinical practice. As a step towards producing a musculoskeletal model that includes the interaction between cartilage and muscle loading, the goal of this study was to develop subject-specific multibody models of the elbow joint with discretized humerus cartilage representation interacting with the radius and ulna cartilages through deformable contacts. The contact parameters for the compliant contact law were derived using simplified elastic foundation contact theory. The models were then validated by placing the model in a virtual mechanical tester for flexion-extension motion similar to a cadaver experiment, and the resulting kinematics were compared. Two cadaveric upper limbs were used in this study. The humeral heads were subjected to axial motion in a mechanical tester and the resulting kinematics from three bones were recorded for model validation. The maximum RMS error between the predicted and measured kinematics during the complete testing cycle was 2.7 mm medial-lateral translation and 9.7° varus-valgus rotation of radius relative to humerus (for elbow 2). After model validation, a lateral ulnar collateral ligament (LUCL) deficient condition was simulated and, contact pressures and kinematics were compared to the intact elbow model. A noticeable difference in kinematics, contact area, and contact pressure were observed for LUCL deficient condition. LUCL deficiency induced higher internal rotations for both the radius and ulna during flexion and an associated medial shift of the articular contact area. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Proctor, CJ; Macdonald, C; Milner, JM; Rowan, AD; Cawston, TE
2014-01-01
Objective To use a novel computational approach to examine the molecular pathways involved in cartilage breakdown and to use computer simulation to test possible interventions for reducing collagen release. Methods We constructed a computational model of the relevant molecular pathways using the Systems Biology Markup Language, a computer-readable format of a biochemical network. The model was constructed using our experimental data showing that interleukin-1 (IL-1) and oncostatin M (OSM) act synergistically to up-regulate collagenase protein levels and activity and initiate cartilage collagen breakdown. Simulations were performed using the COPASI software package. Results The model predicted that simulated inhibition of JNK or p38 MAPK, and overexpression of tissue inhibitor of metalloproteinases 3 (TIMP-3) led to a reduction in collagen release. Overexpression of TIMP-1 was much less effective than that of TIMP-3 and led to a delay, rather than a reduction, in collagen release. Simulated interventions of receptor antagonists and inhibition of JAK-1, the first kinase in the OSM pathway, were ineffective. So, importantly, the model predicts that it is more effective to intervene at targets that are downstream, such as the JNK pathway, rather than those that are close to the cytokine signal. In vitro experiments confirmed the effectiveness of JNK inhibition. Conclusion Our study shows the value of computer modeling as a tool for examining possible interventions by which to reduce cartilage collagen breakdown. The model predicts that interventions that either prevent transcription or inhibit the activity of collagenases are promising strategies and should be investigated further in an experimental setting. PMID:24757149
Viscoelastic Properties of Human Tracheal Tissues.
Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B
2017-01-01
The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.
Dwarfism in homozygous Agc1CreERT mice is associated with decreased expression of aggrecan.
Rashid, Harunur; Chen, Haiyan; Hassan, Quamarul; Javed, Amjad
2017-10-01
Aggrecan (Acan), a large proteoglycan is abundantly expressed in cartilage tissue. Disruption of Acan gene causes dwarfism and perinatal lethality of homozygous mice. Because of sustained expression of Acan in the growth plate and articular cartilage, Agc Cre model has been developed for the regulated ablation of target gene in chondrocytes. In this model, the IRES-CreERT-Neo-pgk transgene is knocked-in the 3'UTR of the Acan gene. We consistently noticed variable weight and size among the Agc Cre littermates, prompting us to examine the cause of this phenotype. Wild-type, Cre-heterozygous (Agc +/Cre ), and Cre-homozygous (Agc Cre/Cre ) littermates were indistinguishable at birth. However, by 1-month, Agc Cre/Cre mice showed a significant reduction in body weight (18-27%) and body length (19-22%). Low body weight and dwarfism was sustained through adulthood and occurred in both genders. Compared with wild-type and Agc +/Cre littermates, long bones and vertebrae were shorter in Agc Cre/Cre mice. Histological analysis of Agc Cre/Cre mice revealed a significant reduction in the length of the growth plate and the thickness of articular cartilage. The amount of proteoglycan deposited in the cartilage of Agc Cre/Cre mice was nearly half of the WT littermates. Analysis of gene expression indicates impaired differentiation of chondrocyte in hyaline cartilage of Agc Cre/Cre mice. Notably, both Acan mRNA and protein was reduced by 50% in Agc Cre/Cre mice. A strong correlation was noted between the level of Acan mRNA and the body length. Importantly, Agc +/Cre mice showed no overt skeletal phenotype. Thus to avoid misinterpretation of data, only the Agc +/Cre mice should be used for conditional deletion of a target gene in the cartilage tissue. © 2017 Wiley Periodicals, Inc.
Lakin, Benjamin A.; Patel, Harsh; Holland, Conor; Freedman, Jonathan D.; Shelofsky, Joshua S.; Snyder, Brian D.; Stok, Kathryn S.; Grinstaff, Mark W.
2017-01-01
Mouse models of osteoarthritis (OA) are commonly used to study the disease’s pathogenesis and efficacy of potential treatments. However, measuring the biochemical and mechanical properties of articular cartilage in these models currently requires destructive and time-consuming histology and mechanical testing. Therefore, we examined the feasibility of using contrast-enhanced CT (CECT) to rapidly and non-destructively image and assess the glycosaminoglycan (GAG) content. Using three ex vivo C57BL/6 mouse tibial plateaus, we determined the time required for the cationic contrast agent CA4+ to equilibrate in the cartilage. The whole-joint coefficient of friction (μ) of thirteen mouse knees (some digested with Chondroitenase ABC to introduce variation in GAG) was evaluated using a modified Stanton pendulum. For both the medial and lateral tibial plateau cartilage of these knees, linear regression was used to compare the equilibrium CECT attenuations to μ, as well as each side’s indentation equilibrium modulus (E) and Safranin-O determined GAG content. CA4+ equilibrated in the cartilage in 30.9 ± 0.95 min (mean ± SD, tau value of 6.17 ± 0.19 min). The mean medial and lateral CECT attenuation was correlated with μ (R2=0.69, p<0.05), and the individual medial and lateral CECT attenuations correlated with their respective GAG contents (R2≥0.63, p<0.05) and E (R2≥0.63, p<0.05). In conclusion, CECT using CA4+ is a simple, non-destructive technique for three-dimensional imaging of ex vivo mouse cartilage, and significant correlations between CECT attenuation and GAG, E, and μ are observed. PMID:26697956
Tsai, Ping-Huei; Lee, Herng-Sheng; Siow, Tiing Yee; Chang, Yue-Cune; Chou, Ming-Chung; Lin, Ming-Huang; Lin, Chien-Yuan; Chung, Hsiao-Wen; Huang, Guo-Shu
2013-01-01
Background There is an emerging interest in using magnetic resonance imaging (MRI) T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA). However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX). Materials and Methods Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group). Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery. Results Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001). In the ACLX group (compared to the sham and control groups), T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001), then in the anterior horn of the medial meniscus at 13 weeks (p<0.001), and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043). Conclusion Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression. PMID:24204653
Collins, Jamie E.; Losina, Elena; Nevitt, Michael C.; Roemer, Frank W.; Guermazi, Ali; Lynch, John A.; Katz, Jeffrey N.; Kwoh, C. Kent; Kraus, Virginia B.; Hunter, David J.
2017-01-01
Objective To determine the association between changes in semi-quantitative knee MRI biomarkers over 24 months and radiographic and pain progression over 48 months in knees with mild to moderate osteoarthritis. Methods We undertook a nested case-control study as part of the Osteoarthritis Biomarkers Consortium Project. We built multivariable logistic regression models to examine the association between change over 24 months in semi-quantitative MR imaging markers and knee OA radiographic and pain progression. MRIs were read according to the MRI Osteoarthritis Knee Score (MOAKS) scoring system. We focused on changes in cartilage, osteophytes, meniscus, bone marrow lesions, Hoffa-synovitis, and synovitis-effusion. Results The most parsimonious model included changes in cartilage thickness and surface area, synovitis-effusion, Hoffa-synovitis, and meniscal morphology (C-statistic =0.740). Subjects with worsening cartilage thickness in 3+ subregions vs. no worsening had 2.8-fold (95% CI: 1.3 – 5.9) greater odds of being a case while subjects with worsening in cartilage surface area in 3+ subregions vs. no worsening had 2.4-fold (95% CI: 1.3 – 4.4) greater odds of being a case. Having worsening in any region in meniscal morphology was associated with a 2.2-fold (95%CI: 1.3 – 3.8) greater odds of being a case. Worsening synovitis-effusion (OR=2.7) and Hoffa-synovitis (OR=2.0) were also associated with greater odds of being a case. Conclusion Twenty-four-month change in cartilage thickness, cartilage surface area, synovitis-effusion, Hoffa-synovitis, and meniscal morphology were independently associated with OA progression, suggesting that they may serve as efficacy biomarkers in clinical trials of disease modifying interventions for knee OA. PMID:27111771
Liu, H; Yang, L; Yu, F F; Wang, S; Wu, C; Qu, C; Lammi, M J; Guo, X
2017-05-01
The development of induced pluripotent stem cells (iPSCs) technology has opened up new horizons for development of new research tools especially for skeletal dysplasias, which often lack human disease models. Regenerative medicine and tissue engineering could be the next areas to benefit from refinement of iPSC methods to repair focal cartilage defects, while applications for osteoarthritis (OA) and drug screening have evolved rather slowly. Although the advances in iPSC research of skeletal dysplasias and repair of focal cartilage lesions are not directly relevant to OA, they can be considered to pave the way to future prospects and solutions to OA research, too. The same problems which face the present cell-based treatments of cartilage injuries concern also the iPSC-based ones. However, established iPSC lines, which have no genomic aberrations and which efficiently differentiate into extracellular matrix secreting chondrocytes, could be an invaluable cell source for cell transplantations in the future. The safety issues concerning the recipient risks of teratoma formation and immune response still have to be solved before the potential use of iPSCs in cartilage repair of focal cartilage defects and OA. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Croxford, Allyson M.; Selva Nandakumar, Kutty; Holmdahl, Rikard; Tobin, Mark J.; McNaughton, Don; Rowley, Merrill J.
2011-06-01
Collagen antibody-induced arthritis develops in mice following passive transfer of monoclonal antibodies (mAbs) to type II collagen (CII) and is attributed to effects of proinflammatory immune complexes, but transferred mAbs may react directly and damagingly with CII. To determine whether such mAbs cause cartilage damage in vivo in the absence of inflammation, mice lacking complement factor 5 that do not develop joint inflammation were injected intravenously with two arthritogenic mAbs to CII, M2139 and CIIC1. Paws were collected at day 3, decalcified, paraffin embedded, and 5-μm sections were examined using standard histology and synchrotron Fourier-transform infrared microspectroscopy (FTIRM). None of the mice injected with mAb showed visual or histological evidence of inflammation but there were histological changes in the articular cartilage including loss of proteoglycan and altered chondrocyte morphology. Findings using FTIRM at high lateral resolution revealed loss of collagen and the appearance of a new peak at 1635 cm-1 at the surface of the cartilage interpreted as cellular activation. Thus, we demonstrate the utility of synchrotron FTIRM for examining chemical changes in diseased cartilage at the microscopic level and establish that arthritogenic mAbs to CII do cause cartilage damage in vivo in the absence of inflammation.
Alexander, Peter G.; Song, Yingjie; Taboas, Juan M.; Chen, Faye H.; Melvin, Gary M.; Manner, Paul A.
2013-01-01
Objective: Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner. Design: Impacts of increasing force are delivered to adult bovine articular cartilage explants in confined compression. Impact parameters are correlated with tissue damage, cell viability, matrix and inflammatory mediator release, and gene expression 24 hours postimpact. Results: Nitric oxide release is first detected after 7.7 MPa impacts, whereas cell death, glycosaminoglycan release, and prostaglandin E2 release are first detected at 17 MPa. Catabolic markers increase linearly to maximal levels after ≥36 MPa impacts. Conclusions: A single supraphysiologic impact negatively affects cartilage integrity, cell viability, and GAG release in a dose-dependent manner. Our findings showed that 7 to 17 MPa impacts can induce cell death and catabolism without compromising the articular surface, whereas a 17 MPa impact is sufficient to induce increases in most common catabolic markers of osteoarthritic degeneration. PMID:26069650
Olstad, K; Hendrickson, E H S; Carlson, C S; Ekman, S; Dolvik, N I
2013-05-01
To transect blood vessels within epiphyseal cartilage canals and observe whether this resulted in ischaemic chondronecrosis, an associated focal delay in enchondral ossification [osteochondrosis (OC)] and pathological cartilage fracture [osteochondrosis dissecans (OCD)] in the distal femur of foals, with potential translational value to the pathogenesis of juvenile osteochondritis dissecans (JOCD) in children. Ten Norwegian Fjord Pony foals were operated at the age of 13-15 days. Two vessels supplying the epiphyseal growth cartilage of the lateral trochlear ridge of the left distal femur were transected in each foal. Follow-up examination was carried out from 1 to 49 days post-operatively and included plain radiography, macroscopic and histological examination. Transection of blood vessels within epiphyseal cartilage canals resulted in necrosis of vessels and chondrocytes, i.e., ischaemic chondronecrosis, in foals. Areas of ischaemic chondronecrosis were associated with a focal delay in enchondral ossification (OC) in foals examined 21 days or more after transection, and pathological cartilage fracture (OCD) in one foal examined 42 days after transection. The ischaemic hypothesis for the pathogenesis of OC has been reproduced experimentally in foals. There are several similarities between OCD in animals and JOCD in children. It should be investigated whether JOCD also occurs due to a focal failure in the cartilage canal blood supply, followed by ischaemic chondronecrosis. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Bian, Liming; Zhai, David Y; Zhang, Emily C; Mauck, Robert L; Burdick, Jason A
2012-04-01
Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair, and there is growing evidence that mechanical signals play a critical role in the regulation of stem cell chondrogenesis and in cartilage development. In this study we investigated the effect of dynamic compressive loading on chondrogenesis, the production and distribution of cartilage specific matrix, and the hypertrophic differentiation of human MSCs encapsulated in hyaluronic acid (HA) hydrogels during long term culture. After 70 days of culture, dynamic compressive loading increased the mechanical properties, as well as the glycosaminoglycan (GAG) and collagen contents of HA hydrogel constructs in a seeding density dependent manner. The impact of loading on HA hydrogel construct properties was delayed when applied to lower density (20 million MSCs/ml) compared to higher seeding density (60 million MSCs/ml) constructs. Furthermore, loading promoted a more uniform spatial distribution of cartilage matrix in HA hydrogels with both seeding densities, leading to significantly improved mechanical properties as compared to free swelling constructs. Using a previously developed in vitro hypertrophy model, dynamic compressive loading was also shown to significantly reduce the expression of hypertrophic markers by human MSCs and to suppress the degree of calcification in MSC-seeded HA hydrogels. Findings from this study highlight the importance of mechanical loading in stem cell based therapy for cartilage repair in improving neocartilage properties and in potentially maintaining the cartilage phenotype.
Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes.
Hu, Xiang; Wang, Qian; Liu, Yang; Liu, Hongguang; Qin, Chunxia; Cheng, Kai; Robinson, William; Gray, Brian D; Pak, Koon Y; Yu, Aixi; Cheng, Zhen
2014-08-01
Articular cartilage is the hydrated tissue that lines the ends of long bones in load bearing joints and provides joints with a smooth, nearly frictionless gliding surface. However, the deterioration of articular cartilage occurs in the early stages of osteoarthritis (OA) and is clinically and radiographically silent. Here two cationic near infrared fluorescent (NIRF) dipicolylamine (DPA) probes, Cy5-DPA-Zn and Cy7-DPA-Zn, were prepared for cartilage degeneration imaging and OA early detection through binding to the anionic glycosaminoglycans (GAGs). The feasibility of NIRF dye labeled DPA-Zn probes for cartilage degeneration imaging was examined ex vivo and in vivo. The ex vivo studies showed that Cy5-DPA-Zn and Cy7-DPA-Zn not only showed the high uptake and electrostatic attractive binding to cartilage, but also sensitively reflected the change of GAGs contents. In vivo imaging study further indicated that Cy5-DPA-Zn demonstrated higher uptake and retention in young mice (high GAGs) than old mice (low GAGs) when administrated via local injection in mouse knee joints. More importantly, Cy5-DPA-Zn showed dramatic higher signals in sham joint (high GAGs) than OA side (low GAGs), through sensitive reflecting the change of GAGs in the surgical induced OA models. In summary, Cy5-DPA-Zn provides promising visual detection for early cartilage pathological degeneration in living subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mueller, A J; Tew, S R; Vasieva, O; Clegg, P D; Canty-Laird, E G
2016-09-27
Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.
NASA Astrophysics Data System (ADS)
Collier, Michael A.; Haugland, L. Mark; Bellamy, Janine; Johnson, Lanny L.; Rohrer, Michael D.; Walls, Robert C.; Bartels, Kenneth E.
1994-09-01
The effects of Ho:YAG laser energy on articular cartilage and subchondral bone adjacent to traumatically created cartilage lesions in a continuous weight-bearing model were investigated. The 2.1 micrometers wavelength was delivered in hand-controlled contact and near-contact hard tissue arthroscopic surgery in a saline medium. Bilateral arthroscopy was performed on normal antebrachiocarpal and intercarpal joints of four adult horses. One-hundred twenty traumatic lesions were created on three weight-bearing articular surfaces with a knife, curette, or a motorized burr. Depths of the lesions were partial and full thickness. Configurations of the lesions were lacerations, scrapes, and craters. Left limbs were used as controls. Right limb lesions were treated with various intensities of laser energy. Animals were sacrificed at intervals of 1, 3, and 8 weeks. Gross microscopic anatomy was documented, and tissue sections were subjected to blind review by a pathologist. Mankin grading for cellularity and proteoglycan content was used to qualitatively evaluate cartilage response. Cartilage adjacent to all lesions exposed to laser energy had better cellularity and proteoglycan content than corresponding controls by Mankin grading.
Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse
2018-01-01
Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.
Mori, Yoshifumi; Saito, Taku; Chang, Song Ho; Kobayashi, Hiroshi; Ladel, Christoph H.; Guehring, Hans; Chung, Ung-il; Kawaguchi, Hiroshi
2014-01-01
To identify genes that maintain the homeostasis of adult articular cartilage and regenerate its lesions, we initially compared four types of chondrocytes: articular (AA) versus growth plate (AG) cartilage chondrocytes in adult rats, and superficial layer (IS) versus deep layer (ID) chondrocytes of epiphyseal cartilage in infant rats. Microarray analyses revealed that 40 and 186 genes had ≥10-fold higher expression ratios of AA/AG and IS/ID, respectively, and 16 genes showed ≥10-fold of both AA/AG and IS/ID ratios. The results were validated by real-time RT-PCR analysis. Among them, Hoxd1, Fgf18, and Esm1 were expressed more strongly in AA than in IS. Fgf18 was the extracellular and secreted factor that decreased glycosaminoglycan release and depletion from the cartilage, and enhanced proliferation of articular chondrocytes. Fgf18 was strongly expressed in the articular cartilage chondrocytes of adult rats. In a surgical rat osteoarthritis model, a once-weekly injection of recombinant human FGF18 (rhFGF18) given 3 weeks after surgery prevented cartilage degeneration in a dose-dependent manner at 6 and 9 weeks after surgery, with significant effect at 10 μg/week of rhFGF18. As the underlying mechanism, rhFGF18 strongly up-regulated Timp1 expression in the cell and organ cultures, and inhibition of aggrecan release by rhFGF18 was restored by addition of an antibody to Timp1. In conclusion, we have identified Fgf18 as a molecule that protects articular cartilage by gene expression profiling, and the anticatabolic effects may at least partially be mediated by the Timp1 expression. PMID:24577103
Kim, Minwook; Kraft, Jeffrey J.; Volk, Andrew C.; Pugarelli, Joan; Pleshko, Nancy; Dodge, George R.
2011-01-01
Maintenance of chondrocyte phenotype and robust expression and organization of macromolecular components with suitable cartilaginous properties is an ultimate goal in cartilage tissue engineering. We used a self-aggregating suspension culture (SASC) method to produce an engineered cartilage, “cartilage tissue analog” (CTA). With an objective of understanding the stability of phenotype of the CTA over long periods, we cultured chondrocytes up to 4 years and analyzed the matrix. Both early (eCTAs) (6 months) and aged (aCTAs) (4 years) showed type II collagen throughout with higher concentrations near the edge. Using Fourier transform-infrared imaging spectroscopy (FT-IRIS), proteoglycan/collagen ratio of eCTA was 2.8 times greater than native cartilage at 1 week, but the ratio was balanced to native level (p = 0.017) by 36 weeks. Surprisingly, aCTAs maintained the hyaline characteristics, but there was evidence of calcification within the tissue with a distinct range of intensities. Mineral/matrix ratio of those aCTA with “intensive” calcification was significantly higher (p = 0.017) than the “partial,” but when compared to native bone the ratio of “intensive” aCTAs was 2.4 times lower. In this study we utilized the imaging approach of FT-IRIS and have shown that a biomaterial formed is compositionally closely related to natural cartilage for long periods in culture. We show that this culture platform can maintain a CTA for extended periods of time (4 years) and under those conditions signs of mineralization can be found. This method of cartilage tissue engineering is a promising method to generate cartilaginous biomaterial and may have potential to be utilized in both cartilage and boney repairs. PMID:21630329
On foundations of discrete element analysis of contact in diarthrodial joints.
Volokh, K Y; Chao, E Y S; Armand, M
2007-06-01
Information about the stress distribution on contact surfaces of adjacent bones is indispensable for analysis of arthritis, bone fracture and remodeling. Numerical solution of the contact problem based on the classical approaches of solid mechanics is sophisticated and time-consuming. However, the solution can be essentially simplified on the following physical grounds. The bone contact surfaces are covered with a layer of articular cartilage, which is a soft tissue as compared to the hard bone. The latter allows ignoring the bone compliance in analysis of the contact problem, i.e. rigid bones are considered to interact through a compliant cartilage. Moreover, cartilage shear stresses and strains can be ignored because of the negligible friction between contacting cartilage layers. Thus, the cartilage can be approximated by a set of unilateral compressive springs normal to the bone surface. The forces in the springs can be computed from the equilibrium equations iteratively accounting for the changing contact area. This is the essence of the discrete element analysis (DEA). Despite the success in applications of DEA to various bone contact problems, its classical formulation required experimental validation because the springs approximating the cartilage were assumed linear while the real articular cartilage exhibited non-linear mechanical response in reported tests. Recent experimental results of Ateshian and his co-workers allow for revisiting the classical DEA formulation and establishing the limits of its applicability. In the present work, it is shown that the linear spring model is remarkably valid within a wide range of large deformations of the cartilage. It is also shown how to extend the classical DEA to the case of strong nonlinearity if necessary.
Expression of CHI3L1 and CHIT1 in Osteoarthritic Rat Cartilage Model. A Morphological Study
Di Rosa, M.; Szychlinska, M.A.; Tibullo, D.; Malaguarnera, L.
2014-01-01
Osteoarthritis is a degenerative joint disease, which affects millions of people around the world. It occurs when the protective cartilage at the end of bones wears over time, leading to loss of flexibility of the joint, pain and stiffness. The cause of osteoarthritis is unknown, but its development is associated with different factors, such as metabolic, genetic, mechanical and inflammatory ones. In recent years the biological role of chitinases has been studied in relation to different inflammatory diseases and more in particular the elevated levels of human cartilage glycoprotein 39 (CHI3L1) and chitotriosidase (CHIT1) have been reported in a variety of diseases including chronic inflammation and degenerative disorders. The aim of this study was to investigate, by immunohistochemistry, the distribution of CHI3L1 and CHIT1 in osteoarthritic and normal rat articular cartilage, to discover their potential role in the development of this disease. The hypothesis was that the expression of chitinases could increase in OA disease. Immunohistochemical analysis showed that CHI3L1 and CHIT1 staining was very strong in osteoarthritic cartilage, especially in the superficial areas of the cartilage most exposed to mechanical load, while it was weak or absent in normal cartilage. These findings suggest that these two chitinases could be functionally associated with the development of osteoarthritis and could be used as markers, so in the future they could have a role in the daily clinical practice to stage the severity of the disease. However, the longer-term in vivoand in vitro studies are needed to understand the exact mechanism of these molecules, their receptors and activities on cartilage tissue. PMID:25308850
Simple geometry tribological study of osteochondral graft implantation in the knee.
Bowland, Philippa; Ingham, Eileen; Fisher, John; Jennings, Louise M
2018-03-01
Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates that had 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm 3 ) and cartilage defect (0.99 mm 3 ) groups were low and not significantly different (p > 0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model.
Pan, Feng; Laslett, Laura; Tian, Jing; Cicuttini, Flavia; Winzenberg, Tania; Ding, Changhai; Jones, Graeme
2017-05-01
Pain is common in the elderly. Knee pain may predict knee cartilage loss, but whether generalized pain is associated with knee cartilage loss is unclear. This study, therefore, aimed to determine whether pain at multiple sites predicts knee cartilage volume loss among community-dwelling older adults, and, if so, to explore potential mechanisms. Data from the prospective Tasmanian Older Adult Cohort study was utilized (n = 394, mean age 63 years, range 52-79 years). Experience of pain at multiple sites was assessed using a questionnaire at baseline. T1-weighted fat-saturated magnetic resonance imaging of the right knee was performed to assess the cartilage volume at baseline and after 2.6 years. Linear regression modeling was used with adjustment for potential confounders. The median number of painful sites was 3 (range 0-7). There was a dose-response relationship between the number of painful sites and knee cartilage volume loss in the lateral and total tibiofemoral compartments (lateral β = -0.28% per annum; total β = -0.25% per annum, both P for trend < 0.05), but not in the medial compartment. These associations were stronger in participants without radiographic knee osteoarthritis (OA) (P < 0.05) and independent of age, sex, body mass index, physical activity, pain medication, and knee structural abnormalities. The number of painful sites independently predicts knee cartilage volume loss, especially in people without knee OA, suggesting that widespread pain may be an early marker of more rapid knee cartilage loss in those without radiographic knee OA. The underlying mechanism is unclear, but it is independent of anthropometrics, physical activity, and knee structural abnormalities. © 2016, American College of Rheumatology.
Kim, Minwook; Kraft, Jeffrey J; Volk, Andrew C; Pugarelli, Joan; Pleshko, Nancy; Dodge, George R
2011-12-01
Maintenance of chondrocyte phenotype and robust expression and organization of macromolecular components with suitable cartilaginous properties is an ultimate goal in cartilage tissue engineering. We used a self-aggregating suspension culture (SASC) method to produce an engineered cartilage, "cartilage tissue analog" (CTA). With an objective of understanding the stability of phenotype of the CTA over long periods, we cultured chondrocytes up to 4 years and analyzed the matrix. Both early (eCTAs) (6 months) and aged (aCTAs) (4 years) showed type II collagen throughout with higher concentrations near the edge. Using Fourier transform-infrared imaging spectroscopy (FT-IRIS), proteoglycan/collagen ratio of eCTA was 2.8 times greater than native cartilage at 1 week, but the ratio was balanced to native level (p = 0.017) by 36 weeks. Surprisingly, aCTAs maintained the hyaline characteristics, but there was evidence of calcification within the tissue with a distinct range of intensities. Mineral/matrix ratio of those aCTA with "intensive" calcification was significantly higher (p = 0.017) than the "partial," but when compared to native bone the ratio of "intensive" aCTAs was 2.4 times lower. In this study we utilized the imaging approach of FT-IRIS and have shown that a biomaterial formed is compositionally closely related to natural cartilage for long periods in culture. We show that this culture platform can maintain a CTA for extended periods of time (4 years) and under those conditions signs of mineralization can be found. This method of cartilage tissue engineering is a promising method to generate cartilaginous biomaterial and may have potential to be utilized in both cartilage and boney repairs. Copyright © 2011 Orthopaedic Research Society.
Sermer, Corey; Kandel, Rita; Anderson, Jesse; Hurtig, Mark; Theodoropoulos, John
2018-02-01
Current therapies for cartilage repair can be limited by an inability of the repair tissue to integrate with host tissue. Thus, there is interest in developing approaches to enhance integration. We have previously shown that platelet-rich plasma (PRP) improves cartilage tissue formation. This raised the question as to whether PRP could promote cartilage integration. Chondrocytes were isolated from cartilage harvested from bovine joints, seeded on a porous bone substitute and grown in vitro to form an osteochondral-like implant. After 7 days, the biphasic construct was soaked in PRP for 30 min before implantation into the core of a donut-shaped biphasic explant of native cartilage and bone. Controls were not soaked in PRP. The implant-explant construct was cultured for 2-4 weeks. PRP-soaked bioengineered implants integrated with host tissue in 73% of samples, whereas controls only integrated in 19% of samples. The integration strength, as determined by a push-out test, was significantly increased in the PRP-soaked implant group (219 ± 35.4 kPa) compared with controls (72.0 ± 28.5 kPa). This correlated with an increase in glycosaminoglycan and collagen accumulation in the region of integration in the PRP-treated implant group, compared with untreated controls. Immunohistochemical studies revealed that the integration zone contained collagen type II and aggrecan. The cells at the zone of integration in the PRP-soaked group had a 3.5-fold increase in matrix metalloproteinase-13 gene expression compared with controls. These results suggest that PRP-soaked bioengineered cartilage implants may be a better approach for cartilage repair due to enhanced integration. Copyright © 2017 John Wiley & Sons, Ltd.
Pest, Michael A.; Russell, Bailey A.; Zhang, Yu-Wen; Jeong, Jae-Wook; Beier, Frank
2017-01-01
Objective Mitogen-inducible gene 6 (MIG-6) regulates epidermal growth factor receptor (EGFR) signaling in synovial joint tissues. Whole-body knockout of the Mig6 gene in mice has been shown to induce osteoarthritis and joint degeneration. To evaluate the role of chondrocytes in this process, Mig6 was conditionally deleted from Col2a1-expressing cell types in the cartilage of mice. Methods Bone and cartilage in the synovial joints of cartilage-specific Mig6-deleted (knockout [KO]) mice and control littermates were compared. Histologic staining and immunohistochemical analyses were used to evaluate joint pathology as well as the expression of key extracellular matrix and regulatory proteins. Calcified tissue in synovial joints was assessed by micro–computed tomography (micro-CT) and whole-skeleton staining. Results Formation of long bones was found to be normal in KO animals. Cartilage thickness and proteoglycan staining of articular cartilage in the knee joints of 12-week-old KO mice were increased as compared to controls, with higher cellularity throughout the tissue. Radiopaque chondro-osseous nodules appeared in the knees of KO animals by 12 weeks of age and progressed to calcified bone–like tissue by 36 weeks of age. Nodules were also observed in the spine of 36-week-old animals. Erosion of bone at ligament entheses was evident by 12 weeks of age, by both histologic and micro-CT assessment. Conclusion MIG-6 expression in chondrocytes is important for the maintenance of cartilage and joint homeostasis. Dysregulation of EGFR signaling in chondrocytes results in anabolic activity in cartilage, but erosion of ligament entheses and the formation of ectopic chondro-osseous nodules severely disturb joint physiology. PMID:24966136
Liebensteiner, Michael C; Nogler, Michael; Giesinger, Johannes M; Lechner, Ricarda; Lenze, Florian; Thaler, Martin
2015-01-01
The purpose of this study is to investigate whether inconsistently reported factors influence the health-related quality of life (HRQOL) outcome of partial meniscectomy. Short Form 36 (SF-36) data on 216 patients were retrospectively analysed for the influence of the factors age, gender and degree of cartilage degeneration. Mixed linear models were applied for univariate and multivariate analyses. All SF-36 scales, including the psychosocial scales, showed a significant improvement from pre- to post-operative (p < 0.001). The factor 'degree of cartilage degeneration' was found to significantly influence post-surgical improvement of the SF-36 'physical component summary' score. Patients with mild cartilage degeneration benefited significantly more from surgery than did patients with advanced cartilage degeneration (p = 0.011). Older patients had significantly lower scores on each subscale, but showed no significant age-time interaction, that is, no association was seen between age and the degree of improvement. No effect was determined for the variable gender. The findings of the current study can be interpreted to show that arthroscopic partial meniscectomy significantly improves HRQOL, even in mental or psychosocial dimensions of HRQOL. Not age but the degree of cartilage degeneration influences the HRQOL gain that can be expected. The factor gender has no effect on HRQOL. The findings of our study influence our daily routine, in that we take the degree of cartilage degeneration and not age as predictive value for the success to be anticipated from the procedure. Concerning the preoperative consenting, it is important to mention that advanced cartilage degeneration is a predictor of a less favourable outcome. IV.
Simple geometry tribological study of osteochondral graft implantation in the knee
Bowland, Philippa; Ingham, Eileen; Fisher, John; Jennings, Louise M
2018-01-01
Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates that had 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm3) and cartilage defect (0.99 mm3) groups were low and not significantly different (p > 0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model. PMID:29375001
Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse
2017-01-01
Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431
Bae, Hojae; Puranik, Amey S; Gauvin, Robert; Edalat, Faramarz; Carrillo-Conde, Brenda; Peppas, Nicholas A; Khademhosseini, Ali
2012-11-14
Only a few engineered tissues-skin, cartilage, bladder-have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology.
Bae, Hojae; Puranik, Amey S.; Gauvin, Robert; Edalat, Faramarz; Carrillo-Conde, Brenda; Peppas, Nicholas A.; Khademhosseini, Ali
2013-01-01
Only a few engineered tissues—skin, cartilage, bladder—have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology. PMID:23152325
Anatomy of the Eustachian Tube.
Leuwer, Rudolf
2016-10-01
The eustachian tube consists of 2 compartments: the Rüdinger's safety canal and the auxiliary gap. It is surrounded by a cartilaginous wall on the craniomedial side and a membranous wall on the inferolateral side. The eustachian tube cartilage is firmly attached to the skull base by the lateral and the medial suspensory ligaments, which are separated by the medial Ostmann fat pad. The function of the isometric tensor veli palatini muscle is modulated by hypomochlia, which have an influence on the muscular force vectors. Copyright © 2016 Elsevier Inc. All rights reserved.
* Human Amniotic Mesenchymal Stromal Cells as Favorable Source for Cartilage Repair.
Muiños-López, Emma; Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; de Toro-Santos, Javier; Blanco, Francisco Javier; Díaz-Prado, Silvia María
2017-09-01
Localized trauma-derived breakdown of the hyaline articular cartilage may progress toward osteoarthritis, a degenerative condition characterized by total loss of articular cartilage and joint function. Tissue engineering technologies encompass several promising approaches with high therapeutic potential for the treatment of these focal defects. However, most of the research in tissue engineering is focused on potential materials and structural cues, while little attention is directed to the most appropriate source of cells endowing these materials. In this study, using human amniotic membrane (HAM) as scaffold, we defined a novel static in vitro model for cartilage repair. In combination with HAM, four different cell types, human chondrocytes, human bone marrow-derived mesenchymal stromal cells (hBMSCs), human amniotic epithelial cells, and human amniotic mesenchymal stromal cells (hAMSCs) were assessed determining their therapeutic potential. A chondral lesion was drilled in human cartilage biopsies simulating a focal defect. A pellet of different cell types was implanted inside the lesion and covered with HAM. The biopsies were maintained for 8 weeks in culture. Chondrogenic differentiation in the defect was analyzed by histology and immunohistochemistry. HAM scaffold showed good integration and adhesion to the native cartilage in all groups. Although all cell types showed the capacity of filling the focal defect, hBMSCs and hAMSCs demonstrated higher levels of new matrix synthesis. However, only the hAMSCs-containing group presented a significant cytoplasmic content of type II collagen when compared with chondrocytes. More collagen type I was identified in the new synthesized tissue of hBMSCs. In accordance, hBMSCs and hAMSCs showed better International Cartilage Research Society scoring although without statistical significance. HAM is a useful material for articular cartilage repair in vitro when used as scaffold. In combination with hAMSCs, HAM showed better potential for cartilage repair with similar reparation capacity than chondrocytes.
von Bomhard, Achim; Veit, Johannes; Bermueller, Christian; Rotter, Nicole; Staudenmaier, Rainer; Storck, Katharina; The, Hoang Nguyen
2013-01-01
The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE) three-dimensional (3D) cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D) cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15×8 cm) and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM) components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps and the implanted cultivated constructs were well neovascularized. The presented method is suggested as a promising alternative towards clinical application of engineered cartilaginous tissue for plastic and reconstructive surgery. PMID:23951215
Haj-Mirzaian, Arya; Guermazi, Ali; Hafezi-Nejad, Nima; Sereni, Christopher; Hakky, Michael; Hunter, David J; Zikria, Bashir; Roemer, Frank W; Demehri, Shadpour
2018-04-12
To determine the association of superolateral Hoffa's fat pad (SHFP) oedema and patellofemoral joint structural damage in participants of Foundation for the National Institute of Health Osteoarthritis Biomarkers Consortium study. Baseline and 24-month MRIs of 600 subjects were assessed. The presence of SHFP oedema (using 0-3 grading scale) and patellar morphology metrics were determined using baseline MRI. Quantitative patellar cartilage volume and semi-quantitative MRI osteoarthritis knee score (MOAKS) variables were extracted. The associations between SHFP oedema and patellar cartilage damage, bone marrow lesion (BML), osteophyte and morphology were evaluated in cross-sectional model. In longitudinal analysis, the associations between oedema and cartilage volume loss (defined using reliable change index) and MOAKS worsening were evaluated. In cross-sectional evaluations, the presence of SHFP oedema was associated with simultaneous lateral patellar cartilage/BML defects and inferior-medial patellar osteophyte size. A significant positive correlation between the degree of patella alta and SHFP oedema was detected (r = 0.259, p < 0.001). The presence of oedema was associated with 24-month cartilage volume loss (odds ratio (OR) 2.11, 95% confidence interval 1.46-3.06) and medial patellar BML size (OR 1.92 (1.15-3.21)) and number (OR 2.50 (1.29-4.88)) worsening. The optimal cut-off value for the grade of baseline SHFP oedema regarding both presence and worsening of patellar structural damage was ≥ 1 (presence of any SHFP hyperintensity). The presence of SHFP oedema could be considered as a predictor of future patellar cartilage loss and BML worsening, and an indicator of simultaneous cartilage, BML and osteophyte defects. • SHFP oedema was associated with simultaneous lateral patellar OA-related structural damage. • SHFP oedema was associated with longitudinal patellar cartilage loss over 24 months. • SHFP oedema could be considered as indicator and predictor of patellar OA.
von Bomhard, Achim; Veit, Johannes; Bermueller, Christian; Rotter, Nicole; Staudenmaier, Rainer; Storck, Katharina; The, Hoang Nguyen
2013-01-01
The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE) three-dimensional (3D) cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D) cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15 × 8 cm) and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM) components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps and the implanted cultivated constructs were well neovascularized. The presented method is suggested as a promising alternative towards clinical application of engineered cartilaginous tissue for plastic and reconstructive surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javaid, Zarrar; Unsworth, Charles P., E-mail: c.unsworth@auckland.ac.nz; Boocock, Mark G.
2016-03-15
Purpose: The aim of this work is to demonstrate a new image processing technique that can provide a “near real-time” 3D reconstruction of the articular cartilage of the human knee from MR images which is user friendly. This would serve as a point-of-care 3D visualization tool which would benefit a consultant radiologist in the visualization of the human articular cartilage. Methods: The authors introduce a novel fusion of an adaptation of the contour method known as “contour interpolation (CI)” with radial basis functions (RBFs) which they describe as “CI-RBFs.” The authors also present a spline boundary correction which further enhancesmore » volume estimation of the method. A subject cohort consisting of 17 right nonpathological knees (ten female and seven male) is assessed to validate the quality of the proposed method. The authors demonstrate how the CI-RBF method dramatically reduces the number of data points required for fitting an implicit surface to the entire cartilage, thus, significantly improving the speed of reconstruction over the comparable RBF reconstruction method of Carr. The authors compare the CI-RBF method volume estimation to a typical commercial package (3D DOCTOR), Carr’s RBF method, and a benchmark manual method for the reconstruction of the femoral, tibial, and patellar cartilages. Results: The authors demonstrate how the CI-RBF method significantly reduces the number of data points (p-value < 0.0001) required for fitting an implicit surface to the cartilage, by 48%, 31%, and 44% for the patellar, tibial, and femoral cartilages, respectively. Thus, significantly improving the speed of reconstruction (p-value < 0.0001) by 39%, 40%, and 44% for the patellar, tibial, and femoral cartilages over the comparable RBF model of Carr providing a near real-time reconstruction of 6.49, 8.88, and 9.43 min for the patellar, tibial, and femoral cartilages, respectively. In addition, it is demonstrated how the CI-RBF method matches the volume estimation of a typical commercial package (3D DOCTOR), Carr’s RBF method, and a benchmark manual method for the reconstruction of the femoral, tibial, and patellar cartilages. Furthermore, the performance of the segmentation method used for the extraction of the femoral, tibial, and patellar cartilages is assessed with a Dice similarity coefficient, sensitivity, and specificity measure providing high agreement to manual segmentation. Conclusions: The CI-RBF method provides a fast, accurate, and robust 3D model reconstruction that matches Carr’s RBF method, 3D DOCTOR, and a manual benchmark method in accuracy and significantly improves upon Carr’s RBF method in data requirement and computational speed. In addition, the visualization tool has been designed to quickly segment MR images requiring only four mouse clicks per MR image slice.« less
Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L
2017-07-01
Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.
Shu, Cindy C; Jackson, Miriam T; Smith, Margaret M; Smith, Susan M; Penm, Steven; Lord, Megan S; Whitelock, John M; Little, Christopher B; Melrose, James
2016-04-01
To investigate the role of the heparan sulfate (HS) proteoglycan perlecan (HSPG-2) in regulating fibroblast growth factor (FGF) activity, bone and joint growth, and the onset and progression of posttraumatic osteoarthritis (OA) in a mouse gene-knockout model. Maturational changes were evaluated histologically in the knees of 3-, 6-, and 12-week-old wild-type (WT) mice and Hspg2(Δ3-/Δ3-) mice (Hspg2 lacking domain 1 HS, generated by ablation of exon 3 of perlecan). Cartilage damage, subchondral bone sclerosis, osteophytosis, and synovial inflammation were scored at 4 and 8 weeks after surgical induction of OA in WT and Hspg2(Δ3-/Δ3-) mice. Changes in cartilage expression of FGF-2, FGF-18, HSPG-2, FGF receptor 1 (FGFR-1), and FGFR-3 were examined immunohistochemically. Femoral head cartilage from both mouse genotypes was cultured in the presence or absence of interleukin-1α (IL-1α), FGF-2, and FGF-18, and the content and release of glycosaminoglycan (GAG) and expression of messenger RNA (mRNA) for key matrix molecules, enzymes, and inhibitors were quantified. No effect of perlecan HS ablation on growth plate or joint development was detected. After induction of OA, Hspg2(Δ3-/Δ3-) mice had significantly reduced cartilage erosion, osteophytosis, and synovitis. OA-induced loss of chondrocyte expression of FGF-2, FGF-18, and HSPG-2 occurred in both genotypes. Expression of FGFR-1 after OA induction was maintained in WT mice, while FGFR-3 loss after OA induction was significantly reduced in Hspg2(Δ3-/Δ3-) mice. There were no genotypic differences in GAG content or release between unstimulated control cartilage and IL-1α-stimulated cartilage. However, IL-1α-induced cartilage expression of Mmp3 mRNA was significantly reduced in Hspg2(Δ3-/Δ3-) mice. Cartilage GAG release in either the presence or absence of IL-1α was unaltered by FGF-2 in both genotypes. In cartilage cultures with FGF-18, IL-1α-stimulated GAG loss was significantly reduced only in Hspg2(Δ3-/Δ3-) mice, and this was associated with maintained expression of Fgfr3 mRNA and reduced expression of Mmp2/Mmp3 mRNA. Perlecan HS has significant roles in directing the development of posttraumatic OA, potentially via the alteration of FGF/HS/FGFR signaling. These data suggest that the chondroprotection conferred by perlecan HS ablation could be attributed, at least in part, to the preservation of FGFR-3 and increased FGF signaling. © 2016, American College of Rheumatology.
NASA Astrophysics Data System (ADS)
Wahlquist, Joseph A.
This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.
A Road Map to Commercialization of Cartilage Therapy in the United States of America.
Sridharan, BanuPriya; Sharma, Blanka; Detamore, Michael S
2015-11-05
Despite numerous efforts in cartilage regeneration, few products see the light of clinical translation as the commercialization process is opaque, financially demanding, and requires collaboration with people of varied skill sets. The aim of this review is to introduce, to an academic audience, the different paradigms involved in the commercialization of cartilage regeneration technology, elucidate the different hurdles associated with the use of cells and materials in developing new technologies, discuss potential commercialization strategies, and inform the reader about the current trends observed in both the clinical and laboratory setting for establishing clinical trials. Although there are review articles on articular cartilage tissue engineering, independent reports provided by the Food and Drug Administration, and separate review articles on animal models, this is the first review that encompasses all of these facets and is presented in a format favorable to the academic investigator interested in clinical translation from bench to bedside.
A Road Map to Commercialization of Cartilage Therapy in the United States of America
Sridharan, BanuPriya; Sharma, Blanka
2016-01-01
Despite numerous efforts in cartilage regeneration, few products see the light of clinical translation as the commercialization process is opaque, financially demanding, and requires collaboration with people of varied skill sets. The aim of this review is to introduce, to an academic audience, the different paradigms involved in the commercialization of cartilage regeneration technology, elucidate the different hurdles associated with the use of cells and materials in developing new technologies, discuss potential commercialization strategies, and inform the reader about the current trends observed in both the clinical and laboratory setting for establishing clinical trials. Although there are review articles on articular cartilage tissue engineering, independent reports provided by the Food and Drug Administration, and separate review articles on animal models, this is the first review that encompasses all of these facets and is presented in a format favorable to the academic investigator interested in clinical translation from bench to bedside. PMID:26192161
Ratneswaran, A; LeBlanc, E A; Walser, E; Welch, I; Mort, J S; Borradaile, N; Beier, F
2015-02-01
Osteoarthritis (OA) is a serious disease of the entire joint, characterized by articular cartilage degeneration, subchondral bone changes, osteophyte formation, and synovial hyperplasia. Currently, there are no pharmaceutical treatments that can slow the disease progression, resulting in greatly reduced quality of life for patients and the need for joint replacement surgeries in many cases. The lack of available treatments for OA is partly due to our incomplete understanding of the molecular mechanisms that promote disease initiation and progression. The purpose of the present study was to examine the role of the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) as a promoter of cartilage degeneration in a mouse model of posttraumatic OA. Mouse chondrocytes and knee explants were treated with a pharmacologic agonist of PPARδ (GW501516) to evaluate changes in gene expression, histologic features, and matrix glycosaminoglycan breakdown. In vivo, PPARδ was specifically deleted from the cartilage of mice. Histopathologic scoring according to the Osteoarthritis Research Society International (OARSI) system and immunohistochemical analysis were used to compare mutant and control mice subjected to surgical destabilization of the medial meniscus (DMM). In vitro, PPARδ activation by GW501516 resulted in increased expression of several proteases in chondrocytes, as well as aggrecan degradation and glycosaminoglycan release in knee joint explants. In vivo, cartilage-specific PPARδ-knockout mice did not display any abnormalities of skeletal development but showed marked protection in the DMM model of posttraumatic OA (as compared to control littermates). OARSI scoring and immunohistochemical analyses confirmed strong protection of mutant mice from DMM-induced cartilage degeneration. These data demonstrate a catabolic role of endogenous PPARδ in posttraumatic OA and suggest that pharmacologic inhibition of PPARδ is a promising therapeutic strategy. Copyright © 2015 by the American College of Rheumatology.
Davidson, Rose K; Jupp, Orla; de Ferrars, Rachel; Kay, Colin D; Culley, Kirsty L; Norton, Rosemary; Driscoll, Clare; Vincent, Tonia L; Donell, Simon T; Bao, Yongping; Clark, Ian M
2013-12-01
Sulforaphane (SFN) has been reported to regulate signaling pathways relevant to chronic diseases. The aim of this study was to investigate the impact of SFN treatment on signaling pathways in chondrocytes and to determine whether sulforaphane could block cartilage destruction in osteoarthritis. Gene expression, histone acetylation, and signaling of the transcription factors NF-E2-related factor 2 (Nrf2) and NF-κB were examined in vitro. The bovine nasal cartilage explant model and the destabilization of the medial meniscus (DMM) model of osteoarthritis in the mouse were used to assess chondroprotection at the tissue and whole-animal levels. SFN inhibited cytokine-induced metalloproteinase expression in primary human articular chondrocytes and in fibroblast-like synovial cells. SFN acted independently of Nrf2 and histone deacetylase activity to regulate metalloproteinase expression in human articular chondrocytes but did mediate prolonged activation of JNK and p38 MAPK. SFN attenuated NF-κB signaling at least through inhibition of DNA binding in human articular chondrocytes, with decreased expression of several NF-κB-dependent genes. Compared with cytokines alone, SFN (10 μM) abrogated cytokine-induced destruction of bovine nasal cartilage at both the proteoglycan and collagen breakdown levels. An SFN-rich diet (3 μmoles/day SFN versus control chow) decreased the arthritis score in the DMM model of osteoarthritis in the mouse, with a concurrent block of early DMM-induced gene expression changes. SFN inhibits the expression of key metalloproteinases implicated in osteoarthritis, independently of Nrf2, and blocks inflammation at the level of NF-κB to protect against cartilage destruction in vitro and in vivo. © The Authors. Arthritis & Rheumatism is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.
Orth, Patrick; Zurakowski, David; Alini, Mauro; Cucchiarini, Magali
2013-01-01
Advanced tissue engineering approaches for articular cartilage repair in the knee joint rely on translational animal models. In these investigations, cartilage defects may be established either in one joint (unilateral design) or in both joints of the same animal (bilateral design). We hypothesized that a lower intraindividual variability following the bilateral strategy would reduce the number of required joints. Standardized osteochondral defects were created in the trochlear groove of 18 rabbits. In 12 animals, defects were produced unilaterally (unilateral design; n=12 defects), while defects were created bilaterally in 6 animals (bilateral design; n=12 defects). After 3 weeks, osteochondral repair was evaluated histologically applying an established grading system. Based on intra- and interindividual variabilities, required sample sizes for the detection of discrete differences in the histological score were determined for both study designs (α=0.05, β=0.20). Coefficients of variation (%CV) of the total histological score values were 1.9-fold increased following the unilateral design when compared with the bilateral approach (26 versus 14%CV). The resulting numbers of joints needed to treat were always higher for the unilateral design, resulting in an up to 3.9-fold increase in the required number of experimental animals. This effect was most pronounced for the detection of small-effect sizes and estimating large standard deviations. The data underline the possible benefit of bilateral study designs for the decrease of sample size requirements for certain investigations in articular cartilage research. These findings might also be transferred to other scoring systems, defect types, or translational animal models in the field of cartilage tissue engineering. PMID:23510128
Hayami, Tadashi; Zhuo, Ya; Wesolowski, Gregg A; Pickarski, Maureen; Duong, Le T
2012-06-01
To investigate the disease modifying effects of cathepsin K (CatK) inhibitor L-006235 compared to alendronate (ALN) in two preclinical models of osteoarthritis (OA). Skeletally mature rabbits underwent sham or anterior cruciate ligament transection (ACLT)-surgery and were treated with L-006235 (L-235, 10 mg/kg or 50 mg/kg, p.o., daily) or ALN (0.6 mg/kg, s.c., weekly) for 8-weeks. ACLT joint instability was also induced in CatK(-/-) versus wild type (wt) mice and treated for 16-weeks. Changes in cartilage degeneration, subchondral bone volume and osteophyte area were determined by histology and μ-CT. Collagen type I helical peptide (HP-I), a bone resorption marker and collagen type II C-telopeptide (CTX-II), a cartilage degradation marker were measured. L-235 (50 mg/kg) and ALN treatment resulted in significant chondroprotective effects, reducing CTX-II by 60% and the histological Mankin score for cartilage damage by 46% in the ACLT-rabbits. Both doses of L-235 were more potent than ALN in protecting against focal subchondral bone loss, and reducing HP-I by 70% compared to vehicle. L-235 (50 mg/kg) and ALN significantly reduced osteophyte formation in histomorphometric analysis by 55%. The Mankin score in ACLT-CatK(-/-) mice was ~2.5-fold lower than the ACLT-wt mice and was not different from sham-CatK(-/-). Osteophyte development was not different among the groups. Inhibition of CatK provides significant benefits in ACLT-model of OA, including: 1) protection of subchondral bone integrity, 2) protection against cartilage degradation and 3) reduced osteophytosis. Preclinical evidence supports the role of CatK as a potential therapeutic target for the treatment of OA. Copyright © 2012 Elsevier Inc. All rights reserved.
Bagi, Cedo M; Zakur, David E; Berryman, Edwin; Andresen, Catharine J; Wilkie, Dean
2015-08-25
To acquire the most meaningful understanding of human arthritis, it is essential to select the disease model and methodology translatable to human conditions. The primary objective of this study was to evaluate a number of analytic techniques and biomarkers for their ability to accurately gauge bone and cartilage morphology and metabolism in the medial meniscal tear (MMT) model of osteoarthritis (OA). MMT surgery was performed in rats to induce OA. A dynamic weight bearing system (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs in rats. At the end of a 10-week study cartilage pathology was evaluated by micro computed tomography (μCT), contrast enhanced μCT (EPIC μCT) imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization. The study results showed a negative impact of MMT surgery on the weight-bearing capacity of the operated limb. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by elevated CTX-II in serum, EPIC μCT and histology. Bone analysis by μCT showed thickening of the subchondral bone beneath the damaged cartilage, loss of cancellous bone at the metaphysis and active osteophyte formation. The study emphasizes the need for using various methodologies that complement each other to provide a comprehensive understanding of the pathophysiology of OA at the organ, tissue and cellular levels. Results from this study suggest that use of histology, μCT and EPIC μCT, and functional DWB tests provide powerful combination to fully assess the key aspects of OA and enhance data interpretation.
Zhou, Qi; Xu, Chunhua; Cheng, Xingyao; Liu, Yangyang; Yue, Ming; Hu, Mengjiao; Luo, Dongjiao; Niu, Yuxi; Ouyang, Hongwei; Ji, Jiansong; Hu, Hu
2016-01-01
Osteoarthritis (OA) is the most common age-related degenerative joint disease and platelet-rich plasma (PRP) has been shown to be beneficial in OA. Therefore, in this study, we aimed to investigate the effects of platelets on chondrocytes and the underlying mechanisms. Anabolic and catabolic activity and the proliferation rate of chondrocytes were evaluated after co-culture with platelets. Chondrocyte gene expression was measured by real-time PCR. Chondrocyte protein expression and phosphorylation were measured by western blot. Chondrocytes treated with or without platelets were transplanted into a rat model of OA induced by intra-articular injection of monosodium iodoacetate and the repair of articular cartilage was evaluated macroscopically and histologically. Platelets significantly promoted the proliferation of chondrocytes, while mildly influencing anabolic and catabolic activity. Chondrocytes co-cultured with platelets showed significantly increased production of bone morphogenetic protein 7 (BMP7). The autocrine/paracrine effect of BMP7 was responsible for the increased proliferation of chondrocytes, via the ERK/CDK1/cyclin B1 signaling pathway. Transplantation of platelet-treated chondrocytes showed better cartilage repair in the OA model. Platelet-derived ADP was identified as the major mediator to promote the production of BMP7 and the proliferation of chondrocytes, through the ADP receptor P2Y1. Finally, direct injection of α,β-methyleneadenosine-5'-diphosphate into OA joints also enhanced cartilage repair. This study has identified that platelet-derived ADP, but not ATP, is the key mediator for platelet-promoted chondrocyte proliferation and cartilage repair in osteoarthritis. This finding may provide a key explanation for the therapeutic effect of platelets in OA and help shaping a strategy to improve OA therapy.
Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A
2016-09-06
Analytical and numerical methods have been used to extract essential engineering parameters such as elastic modulus, Poisson׳s ratio, permeability and diffusion coefficient from experimental data in various types of biological tissues. The major limitation associated with analytical techniques is that they are often only applicable to problems with simplified assumptions. Numerical multi-physics methods, on the other hand, enable minimizing the simplified assumptions but require substantial computational expertise, which is not always available. In this paper, we propose a novel approach that combines inverse and forward artificial neural networks (ANNs) which enables fast and accurate estimation of the diffusion coefficient of cartilage without any need for computational modeling. In this approach, an inverse ANN is trained using our multi-zone biphasic-solute finite-bath computational model of diffusion in cartilage to estimate the diffusion coefficient of the various zones of cartilage given the concentration-time curves. Robust estimation of the diffusion coefficients, however, requires introducing certain levels of stochastic variations during the training process. Determining the required level of stochastic variation is performed by coupling the inverse ANN with a forward ANN that receives the diffusion coefficient as input and returns the concentration-time curve as output. Combined together, forward-inverse ANNs enable computationally inexperienced users to obtain accurate and fast estimation of the diffusion coefficients of cartilage zones. The diffusion coefficients estimated using the proposed approach are compared with those determined using direct scanning of the parameter space as the optimization approach. It has been shown that both approaches yield comparable results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Promoting Endochondral Bone Repair Using Human Osteoarthritic Articular Chondrocytes.
Bahney, Chelsea S; Jacobs, Linsey; Tamai, Robert; Hu, Diane; Luan, Tammy F; Wang, Miqi; Reddy, Sanjay; Park, Michelle; Limburg, Sonja; Kim, Hubert T; Marcucio, Ralph; Kuo, Alfred C
2016-03-01
Current tissue engineering strategies to heal critical-size bone defects through direct bone formation are limited by incomplete integration of grafts with host bone and incomplete graft vascularization. An alternative strategy for bone regeneration is the use of cartilage grafts that form bone through endochondral ossification. Endochondral cartilages stimulate angiogenesis and are remodeled into bone, but are found in very small quantities in growth plates and healing fractures. We sought to develop engineered endochondral cartilage grafts using osteoarthritic (OA) articular chondrocytes as a cell source. Such chondrocytes often undergo hypertrophy, which is a characteristic of endochondral cartilages. We compared the ability of unmodified human OA (hOA) cartilage and cartilage grafts formed in vitro from hOA chondrocytes to undergo endochondral ossification in mice. Scaffold-free engineered chondrocyte grafts were generated by pelleting chondrocytes, followed by culture with transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein 4. Samples derived from either primary or passaged chondrocytes were implanted subcutaneously into immunocompromised mice. Grafts derived from passaged chondrocytes from three patients were implanted into critical-size tibial defects in mice. Bone formation was assessed with histology after 4 weeks of implantation. The composition of tibial repair tissue was quantified with histomorphometry. Engineered cartilage grafts generated from passaged OA chondrocytes underwent endochondral ossification after implantation either subcutaneously or in bone. Cartilage grafts integrated with host bone at 15 out of 16 junctions. Grafts variably remodeled into woven bone, with the proportion of bony repair tissue in tibial defects ranging from 22% to 85% (average 48%). Bony repair tissue bridged the tibial defects in half of the animals. In contrast, unmodified OA cartilage and engineered grafts formed from primary chondrocytes did not undergo endochondral ossification in vivo. hOA chondrocytes can adopt an endochondral phenotype after passaging and TGF-β superfamily treatment. Engineered endochondral cartilage grafts can integrate with host bone, undergo ossification, and heal critical-size long-bone defects in a mouse model. However, additional methods to further enhance ossification of these grafts are required before the clinical translation of this approach.
Badran, Karam W.; Manuel, Cyrus T.; Loy, Anthony Chin; Conderman, Christian; Yau, Yuk Yee; Lin, Jennifer; Tjoa, Tjoson; Su, Erica; Protsenko, Dmitriy; Wong, Brian J. F.
2016-01-01
Objectives/Hypothesis To demonstrate the dosimetry effect of electromechanical reshaping (EMR) on cartilage shape change, structural integrity, cellular viability, and remodeling of grafts in an in vivo long-term animal model. Study Design Animal study. Methods A subperichondrial cartilaginous defect was created within the base of the pinna of 31 New Zealand white rabbits. Autologous costal cartilage grafts were electromechanically reshaped to resemble the rabbit auricular base framework and mechanically secured into the pinna base defect. Forty-nine costal cartilage specimens (four control and 45 experimental) successfully underwent EMR using a paired set of voltage-time combinations and survived for 6 or 12 weeks. Shape change was measured, and specimens were analyzed using digital imaging, tissue histology, and confocal microscopy with LIVE-DEAD viability assays. Results Shape change was proportional to charge transfer in all experimental specimens (P <.01) and increased with voltage. All experimental specimens contoured to the auricular base. Focal cartilage degeneration and fibrosis was observed where needle electrodes were inserted, ranging from 2.2 to 3.9 mm. The response to injury increased with increasing charge transfer and survival duration. Conclusions EMR results in appropriate shape change in cartilage grafts with chondrocyte injury highly localized. These studies suggest that elements of auricular reconstruction may be feasible using EMR. Extended survival periods and further optimization of voltage-time pairs are necessary to evaluate the long-term effects and shape-change potential of EMR. PMID:25779479
Chen, Rebecca; Mian, Michelle; Fu, Martin; Zhao, Jing Ying; Yang, Liang; Li, Yefu; Xu, Lin
2016-01-01
Transforming growth factor beta 1 (TGF-β1) is implicated in osteoarthritis. We therefore studied the role of TGF-β1 signaling in the development of osteoarthritis in a developmental stage-dependent manner. Three different mouse models were investigated. First, the Tgf-β receptor II (Tgfbr2) was specifically removed from the mature cartilage of joints. Tgfbr2-deficient mice were grown to 12 months of age and were then euthanized for collection of knee and temporomandibular joints. Second, Tgfbr2-deficient mice were subjected to destabilization of the medial meniscus (DMM) surgery. Knee joints were then collected from the mice at 8 and 16 weeks after the surgery. Third, wild-type mice were subjected to DMM at the age of 8 weeks. Immediately after the surgery, these mice were treated with the Tgfbr2 inhibitor losartan for 8 weeks and then euthanized for collection of knee joints. All joints were characterized for evidences of articular cartilage degeneration. Initiation or acceleration of articular cartilage degeneration was not observed by the genetic inactivation of Tgfbr2 in the joints at the age of 12 months. In fact, the removal of Tgfbr2 and treatment with losartan both delayed the progression of articular cartilage degeneration induced by DMM compared with control littermates. Therefore, we conclude that inhibition of Tgf-β1 signaling protects adult knee joints in mice against the development of osteoarthritis. PMID:26355014
Liao, Tzu-Chieh; Keyak, Joyce H; Powers, Christopher M
2018-02-27
The purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared to pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress during running. Twenty-two female recreational runners participated (12 with PFP and 10 pain-free controls). Patella cartilage stress profiles were quantified using subject-specific finite element models simulating the maximum knee flexion angle during stance phase of running. Input parameters to the finite element model included subject-specific patellofemoral joint geometry, quadriceps muscle forces, and lower extremity kinematics in the frontal and transverse planes. Tibiofemoral joint kinematics and kinetics were quantified to determine the best predictor of stress using stepwise regression analysis. Compared to the pain-free runners, those with PFP exhibited greater peak hydrostatic pressure (PFP vs. control, 21.2 ± 5.6 MPa vs. 16.5 ± 4.6 MPa) and maximum shear stress (11.3 ± 4.6 MPa vs. 8.7 ± 2.3 MPa). Knee external rotation was the best predictor of peak hydrostatic pressure and peak maximum shear stress (38% and 25% of variances, respectively) followed by the knee extensor moment (21% and 25% of variances, respectively). Runners with PFP exhibit greater peak patella cartilage stress during running compared to pain-free individuals. The combination of knee external rotation and a high knee extensor moment best predicted elevated peak stress during running.
Chen, Wei-Ping; Tang, Jing-Li; Bao, Jia-Peng; Hu, Peng-Fei; Shi, Zhong-Li; Wu, Li-Dong
2011-01-01
Cartilage degradation is one of the pathological changes of osteoarthritis (OA), and accumulating evidence suggests an excess of matrix metalloproteinases (MMPs) plays a role in this cartilage breakdown. Here, we investigated the effects of chlorogenic acid (CGA) on the mRNA and protein expression of MMPs in interleukin (IL)-1β-induced rabbit chondrocytes and evaluated the in vivo effects of CGA in experimental OA induced by anterior cruciate ligament transection (ACLT) in rabbits. Using quantitative real-time PCR and ELISA to investigate the expression levels of MMP-1, MMP-3, MMP-13, and tissue inhibitors of metalloproteinase-1(TIMP-1) in IL-1β-induced rabbit chondrocytes, we showed that CGA inhibits the expression of these MMPs while increasing TIMP-1 expression, at both the mRNA and protein levels. In addition, IL-1β-induced activation of nuclear factor kappa B (NF-κB) and the degradation of inhibitor of κB (IκB)-α were suppressed by CGA. In rabbits, CGA decreased cartilage degradation as assessed by morphological and histological analyses. The down-regulation of MMP-1, MMP-3, and MMP-13 expression and up-regulation of TIMP-1 expression were also detected in CGA-treated cartilage compared with vehicle-treated cartilage, confirming these findings in an in vivo model. Taken together, these findings indicate that CGA may be considered as a possible candidate agent in the treatment of OA. Copyright © 2010 Elsevier B.V. All rights reserved.
Sibole, Scott C.; Maas, Steve; Halloran, Jason P.; Weiss, Jeffrey A.; Erdemir, Ahmet
2014-01-01
Understanding the mechanical behavior of chondrocytes as a result of cartilage tissue mechanics has significant implications for both evaluation of mechanobiological function and to elaborate on damage mechanisms. A common procedure for prediction of chondrocyte mechanics (and of cell mechanics in general) relies on a computational post-processing approach where tissue level deformations drive cell level models. Potential loss of information in this numerical coupling approach may cause erroneous cellular scale results, particularly during multiphysics analysis of cartilage. The goal of this study was to evaluate the capacity of 1st and 2nd order data passing to predict chondrocyte mechanics by analyzing cartilage deformations obtained for varying complexity of loading scenarios. A tissue scale model with a sub-region incorporating representation of chondron size and distribution served as control. The postprocessing approach first required solution of a homogeneous tissue level model, results of which were used to drive a separate cell level model (same characteristics as the subregion of control model). The 1st data passing appeared to be adequate for simplified loading of the cartilage and for a subset of cell deformation metrics, e.g., change in aspect ratio. The 2nd order data passing scheme was more accurate, particularly when asymmetric permeability of the tissue boundaries were considered. Yet, the method exhibited limitations for predictions of instantaneous metrics related to the fluid phase, e.g., mass exchange rate. Nonetheless, employing higher-order data exchange schemes may be necessary to understand the biphasic mechanics of cells under lifelike tissue loading states for the whole time history of the simulation. PMID:23809004
Schmal, Hagen; Kowal, Justyna M; Kassem, Moustapha; Seidenstuecker, Michael; Bernstein, Anke; Böttiger, Katharina; Xiong, Tanshiyue; Südkamp, Norbert P; Kubosch, Eva J
2018-01-01
Known problems of the autologous chondrocyte implantation motivate the search for cellular alternatives. The aim of the study was to test the potential of synovium-derived stem cells (SMSC) to regenerate cartilage using a matrix-associated implantation. In an osteochondral defect model of the medial femoral condyle in a rabbit, a collagen membrane was seeded with either culture-expanded allogenic chondrocytes or SMSC and then transplanted into the lesion. A tailored piece synovium served as a control. Rabbit SMSC formed typical cartilage in vitro. Macroscopic evaluation of defect healing and the thickness of the regenerated tissue did not reveal a significant difference between the intervention groups. However, instantaneous and shear modulus, reflecting the biomechanical strength of the repair tissue, was superior in the implantation group using allogenic chondrocytes ( p < 0.05). This correlated with a more chondrogenic structure and higher proteoglycan expression, resulting in a lower OARSI score ( p < 0.05). The repair tissue of all groups expressed comparable amounts of the collagen types I, II, and X. Cartilage regeneration following matrix-associated implantation using allogenic undifferentiated synovium-derived stem cells in a defect model in rabbits showed similar macroscopic results and collagen composition compared to amplified chondrocytes; however, biomechanical characteristics and histological scoring were inferior.
Kowal, Justyna M.; Seidenstuecker, Michael; Bernstein, Anke; Böttiger, Katharina; Xiong, Tanshiyue; Südkamp, Norbert P.
2018-01-01
Known problems of the autologous chondrocyte implantation motivate the search for cellular alternatives. The aim of the study was to test the potential of synovium-derived stem cells (SMSC) to regenerate cartilage using a matrix-associated implantation. In an osteochondral defect model of the medial femoral condyle in a rabbit, a collagen membrane was seeded with either culture-expanded allogenic chondrocytes or SMSC and then transplanted into the lesion. A tailored piece synovium served as a control. Rabbit SMSC formed typical cartilage in vitro. Macroscopic evaluation of defect healing and the thickness of the regenerated tissue did not reveal a significant difference between the intervention groups. However, instantaneous and shear modulus, reflecting the biomechanical strength of the repair tissue, was superior in the implantation group using allogenic chondrocytes (p < 0.05). This correlated with a more chondrogenic structure and higher proteoglycan expression, resulting in a lower OARSI score (p < 0.05). The repair tissue of all groups expressed comparable amounts of the collagen types I, II, and X. Cartilage regeneration following matrix-associated implantation using allogenic undifferentiated synovium-derived stem cells in a defect model in rabbits showed similar macroscopic results and collagen composition compared to amplified chondrocytes; however, biomechanical characteristics and histological scoring were inferior. PMID:29765410
Primal/dual linear programming and statistical atlases for cartilage segmentation.
Glocker, Ben; Komodakis, Nikos; Paragios, Nikos; Glaser, Christian; Tziritas, Georgios; Navab, Nassir
2007-01-01
In this paper we propose a novel approach for automatic segmentation of cartilage using a statistical atlas and efficient primal/dual linear programming. To this end, a novel statistical atlas construction is considered from registered training examples. Segmentation is then solved through registration which aims at deforming the atlas such that the conditional posterior of the learned (atlas) density is maximized with respect to the image. Such a task is reformulated using a discrete set of deformations and segmentation becomes equivalent to finding the set of local deformations which optimally match the model to the image. We evaluate our method on 56 MRI data sets (28 used for the model and 28 used for evaluation) and obtain a fully automatic segmentation of patella cartilage volume with an overlap ratio of 0.84 with a sensitivity and specificity of 94.06% and 99.92%, respectively.
3D braid scaffolds for regeneration of articular cartilage.
Ahn, Hyunchul; Kim, Kyoung Ju; Park, Sook Young; Huh, Jeong Eun; Kim, Hyun Jeong; Yu, Woong-Ryeol
2014-06-01
Regenerating articular cartilage in vivo from cultured chondrocytes requires that the cells be cultured and implanted within a biocompatible, biodegradable scaffold. Such scaffolds must be mechanically stable; otherwise chondrocytes would not be supported and patients would experience severe pain. Here we report a new 3D braid scaffold that matches the anisotropic (gradient) mechanical properties of natural articular cartilage and is permissive to cell cultivation. To design an optimal structure, the scaffold unit cell was mathematically modeled and imported into finite element analysis. Based on this analysis, a 3D braid structure with gradient axial yarn distribution was designed and manufactured using a custom-built braiding machine. The mechanical properties of the 3D braid scaffold were evaluated and compared with simulated results, demonstrating that a multi-scale approach consisting of unit cell modeling and continuum analysis facilitates design of scaffolds that meet the requirements for mechanical compatibility with tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characterization of the surface and interfacial properties of the lamina splendens
NASA Astrophysics Data System (ADS)
Rexwinkle, Joe T.; Hunt, Heather K.; Pfeiffer, Ferris M.
2017-06-01
Joint disease affects approximately 52.5 million patients in the United States alone, costing 80.8 billion USD in direct healthcare costs. The development of treatment programs for joint disease and trauma requires accurate assessment of articular cartilage degradation. The articular cartilage is the interfacial tissue between articulating surfaces, such as bones, and acts as low-friction interfaces. Damage to the lamina splendens, which is the articular cartilage's topmost layer, is an early indicator of joint degradation caused by injury or disease. By gaining comprehensive knowledge on the lamina splendens, particularly its structure and interfacial properties, researchers could enhance the accuracy of human and animal biomechanical models, as well as develop appropriate biomimetic materials for replacing damaged articular cartilage, thereby leading to rational treatment programs for joint disease and injury. Previous studies that utilize light, electron, and force microscopy techniques have found that the lamina splendens is composed of collagen fibers oriented parallel to the cartilage surface and encased in a proteoglycan matrix. Such orientation maximizes wear resistance and proteoglycan retention while promoting the passage of nutrients and synovial fluid. Although the structure of the lamina splendens has been explored in the literature, the low-friction interface of this tissue remains only partially characterized. Various functional models are currently available for the interface, such as pure boundary lubrication, thin films exuded under pressure, and sheets of trapped proteins. Recent studies suggest that each of these lubrication models has certain advantages over one another. Further research is needed to fully model the interface of this tissue. In this review, we summarize the methods for characterizing the lamina splendens and the results of each method. This paper aims to serve as a resource for existing studies to date and a roadmap of the investigations needed to gain further insight into the lamina splendens and the progression of joint disease.
Change in joint space width: hyaline articular cartilage loss or alteration in meniscus?
Hunter, D J; Zhang, Y Q; Tu, X; Lavalley, M; Niu, J B; Amin, S; Guermazi, A; Genant, H; Gale, D; Felson, D T
2006-08-01
To explore the relative contribution of hyaline cartilage morphologic features and the meniscus to the radiographic joint space. The Boston Osteoarthritis of the Knee Study is a natural history study of symptomatic knee osteoarthritis (OA). Baseline and 30-month followup assessments included knee magnetic resonance imaging (MRI) and fluoroscopically positioned weight-bearing knee radiographs. Cartilage and meniscal degeneration were scored on MRI in the medial and lateral tibiofemoral joints using a semiquantitative grading system. Meniscal position was measured to the nearest millimeter. The dependent variable was joint space narrowing (JSN) on the plain radiograph (possible range 0-3). The predictor variables were MRI cartilage score, meniscal degeneration, and meniscal position measures. We first conducted a cross-sectional analysis using multivariate regression to determine the relative contribution of meniscal factors and cartilage morphologic features to JSN, adjusting for body mass index (BMI), age, and sex. The same approach was used for change in JSN and change in predictor variables. We evaluated 264 study participants with knee OA (mean age 66.7 years, 59% men, mean BMI 31.4 kg/m(2)). The results from the models demonstrated that meniscal position and meniscal degeneration each contributed to prediction of JSN, in addition to the contribution by cartilage morphologic features. For change in medial joint space, both change in meniscal position and change in articular cartilage score contributed substantially to narrowing of the joint space. The meniscus (both its position and degeneration) accounts for a substantial proportion of the variance explained in JSN, and the change in meniscal position accounts for a substantial proportion of change in JSN.
Changes in Cartilage Morphology of the Knee after 14-days of Bed Rest
NASA Astrophysics Data System (ADS)
Liphardt, A.-M.; Mündermann, A.; Koo, S.; Bäcker, N.; Andriacchi, T.; Zange, J.; Mester, J.; Heer, M.
Introduction While there are still many unanswered questions related to the effects of space flight and disuse on cartilage health and cartilage morphology the number of in vivo experiments in humans is small For muscle and bone tissue it is well known that unloading results in degeneration of those tissues Also for cartilage previous studies in patients suggest that unloading causes cartilage degeneration Studies using immobilization as a model of unloading help to investigate the importance of experiencing mechanical loads for the maintenance of healthy biological tissues The goal of our study was to investigate whether bed rest induced immobilization has a negative effect on articular cartilage in healthy subjects and if vibration training is a potential counter-measure for these negative effects Methods Eight male healthy subjects 78 1 pm 9 5 kg 179 pm 9 6 cm 26 pm 5 years performed a 14-day bed rest in 6 r -head down tilt HDT The study was designed in a cross-over-design where each subject received a training intervention vib in one phase and no intervention con in the other phase During the training intervention subjects trained 2 x 5-minutes per day at 20 Hz with 2 -- 4 mm amplitude on a vibration plate Galileo 900 Magnet resonance MR imaging of the right knee was performed to measure articular cartilage thickness MR-images 2 mm slice thickness 0 35 mm x 0 35 mm in-plane resolution 448 x 512 pixels were taken before and after bed rest to investigate the effects of bed rest
Neidel, J; Schroers, B; Sintermann, F
1998-01-01
To determine whether systemic administration of methotrexate (MTX) can prevent joint destruction in experimental osteoarthrosis (OA) in rabbits, the disorder was induced unilaterally in the knee joints of 40 rabbits by partial medial meniscectomy and sectioning of the medial collateral and both cruciate ligaments. A sham operation (arthrotomy only) was performed in another four animals. Effects on the cartilage of the femoral condyles were studied after 6 and 12 weeks. Twelve weeks after induction, femoral and tibial osteophyte formation was demonstrated on radiographs in all cases. Marked cartilage damage was found histologically (median Mankin score 10 vs 1 for non-operated controls; P < 0.05, Wilcoxon test). Cartilage proteoglycan (GAG) content (dye binding assay) was reduced in operated joints [63 +/- 8 (mean +/- SEM) vs 75 +/- 6 micrograms chondroitin sulfate/mg cartilage wet weight], and the leukocyte count in the joints was elevated (226 +/- 14 vs 7 +/- 3 leukocytes per microliter joint aspirate after injection of 0.5 ml saline solution; both P < 0.05, Wilcoxon test). The rate of GAG synthesis was unchanged (ex vivo labelling with 35S-sulfate). Treatment with MTX (30 mg x kg body weight-1 x week-1 i.m., starting 12 h postoperatively) reduced cartilage damage (median Mankin score 8 vs 10 for placebo, P < 0.05, Mann-Whitney U-test), but had no significant effect on the other parameters tested. No significant MTX effects were observed on cartilage from nonoperated joints. Our data indicate that MTX may have a limited therapeutic effect in experimental OA in the rabbit.
Morgan, Patrick; Nissi, Mikko J; Hughes, John; Mortazavi, Shabnam; Ellerman, Jutta
2017-07-01
Objectives The purpose of this study was to validate T2* mapping as an objective, noninvasive method for the prediction of acetabular cartilage damage. Methods This is the second step in the validation of T2*. In a previous study, we established a quantitative predictive model for identifying and grading acetabular cartilage damage. In this study, the model was applied to a second cohort of 27 consecutive hips to validate the model. A clinical 3.0-T imaging protocol with T2* mapping was used. Acetabular regions of interest (ROI) were identified on magnetic resonance and graded using the previously established model. Each ROI was then graded in a blinded fashion by arthroscopy. Accurate surgical location of ROIs was facilitated with a 2-dimensional map projection of the acetabulum. A total of 459 ROIs were studied. Results When T2* mapping and arthroscopic assessment were compared, 82% of ROIs were within 1 Beck group (of a total 6 possible) and 32% of ROIs were classified identically. Disease prediction based on receiver operating characteristic curve analysis demonstrated a sensitivity of 0.713 and a specificity of 0.804. Model stability evaluation required no significant changes to the predictive model produced in the initial study. Conclusions These results validate that T2* mapping provides statistically comparable information regarding acetabular cartilage when compared to arthroscopy. In contrast to arthroscopy, T2* mapping is quantitative, noninvasive, and can be used in follow-up. Unlike research quantitative magnetic resonance protocols, T2* takes little time and does not require a contrast agent. This may facilitate its use in the clinical sphere.
Biphasic investigation of contact mechanics in natural human hips during activities
Hua, Xijin; Jin, Zhongmin; Fisher, John; Wilcox, Ruth K
2014-01-01
The aim of this study was to determine the cartilage contact mechanics and the associated fluid pressurisation of the hip joint under eight daily activities, using a three-dimensional finite element hip model with biphasic cartilage layers and generic geometries. Loads with spatial and temporal variations were applied over time and the time-dependent performance of the hip cartilage during walking was also evaluated. It was found that the fluid support ratio was over 90% during the majority of the cycles for all the eight activities. A reduced fluid support ratio was observed for the time at which the contact region slid towards the interior edge of the acetabular cartilage, but these occurred when the absolute level of the peak contact stress was minimal. Over 10 cycles of gait, the peak contact stress and peak fluid pressure remained constant, but a faster process of fluid exudation was observed for the interior edge region of the acetabular cartilage. The results demonstrate the excellent function of the hip cartilage within which the solid matrix is prevented from high levels of stress during activities owing to the load shared by fluid pressurisation. The findings are important in gaining a better understanding of the hip function during daily activities, as well as the pathology of hip degeneration and potential for future interventions. They provide a basis for future subject-specific biphasic investigations of hip performance during activities. PMID:24898443
Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D
2014-01-01
The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513
Wu, Yabin; Stoddart, Martin J; Wuertz-Kozak, Karin; Grad, Sibylle; Alini, Mauro; Ferguson, Stephen J
2017-08-01
Articular cartilage plays an essential role in joint lubrication and impact absorption. Through this, the mechanical signals are coupled to the tissue's physiological response. Healthy synovial fluid has been shown to reduce and homogenize the shear stress acting on the cartilage surfaces due to its unique shear-thinning viscosity. As cartilage tissues are sensitive to mechanical changes in articulation, it was hypothesized that replacing the traditional culture medium with a healthy non-Newtonian lubricant could enhance tissue development in a cartilage engineering model, where joint-kinematic-mimicking mechanical loading is applied. Different amounts of hyaluronic acid were added to the culture medium to replicate the viscosities of synovial fluid at different health states. Hyaluronic acid supplementation, especially at a physiologically healthy concentration (2.0 mg ml -1 ), promoted a better preservation of chondrocyte phenotype. The ratio of collagen II to collagen I mRNA was 4.5 times that of the control group, implying better tissue development (however, with no significant difference of measured collagen II content), with a good retention of collagen II and proteoglycan in the mechanically active region. Simulating synovial fluid properties by hyaluronic acid supplementation created a favourable mechanical environment for mechanically loaded constructs. These findings may help in understanding the influence of joint articulation on tissue homeostasis, and moreover, improve methods for functional cartilage tissue engineering. © 2017 The Author(s).
Simulating the swelling and deformation behaviour in soft tissues using a convective thermal analogy
Wu, John Z; Herzog, Walter
2002-01-01
Background It is generally accepted that cartilage adaptation and degeneration are mechanically mediated. Investigating the swelling behaviour of cartilage is important because the stress and strain state of cartilage is associated with the swelling and deformation behaviour. It is well accepted that the swelling of soft tissues is associated with mechanical, chemical, and electrical events. Method The purpose of the present study was to implement the triphasic theory into a commercial finite element tool (ABAQUS) to solve practical problems in cartilage mechanics. Because of the mathematical identity between thermal and mass diffusion processes, the triphasic model was transferred into a convective thermal diffusion process in the commercial finite element software. The problem was solved using an iterative procedure. Results The proposed approach was validated using the one-dimensional numerical solutions and the experimental results of confined compression of articular cartilage described in the literature. The time-history of the force response of a cartilage specimen in confined compression, which was subjected to swelling caused by a sudden change of saline concentration, was predicted using the proposed approach and compared with the published experimental data. Conclusion The advantage of the proposed thermal analogy technique over previous studies is that it accounts for the convective diffusion of ion concentrations and the Donnan osmotic pressure in the interstitial fluid. PMID:12685940
Zhang, Wei; Chen, Jialin; Tao, Jiadong; Jiang, Yangzi; Hu, Changchang; Huang, Lu; Ji, Junfeng; Ouyang, Hong Wei
2013-01-01
Despite the presence of cartilage-derived mesenchymal stem cells (C-MSCs) and synovial membrane-derived mesenchymal stem cells (SM-MSCs) populations, partial-thickness cartilage defects, in contrast to the full-thickness defects, are devoid of spontaneous repair capacity. This study aims to create an in situ matrix environment conducive to C-MSCs and SM-MSCs to promote cartilage self-repair. Spontaneous repair with MSCs migration into the defect area was observed in full-thickness defects, but not in partial-thickness defects in rabbit model. Ex vivo and in vitro studies showed that subchondral bone or type 1 collagen (col1) scaffold was more permissive for MSCs adhesion than cartilage or type 2 collagen (col2) scaffold and induced robust stromal cell-derived factors-1 (SDF-1) dependent migration of MSCs. Furthermore, creating a matrix environment with col1 scaffold containing SDF-1 enhanced in situ self-repair of partial-thickness defects in rabbit 6 weeks post-injury. Hence, the inferior self-repair capacity in partial-thickness defects is partially owing to the non-permissive matrix environment. Creating an in situ matrix environment conducive to C-MSCs and SM-MSCs migration and adhesion with col1 scaffold containing SDF-1 can be exploited to improve self-repair capacity of cartilage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.
Zhao, Jiajun; Huang, Suizhu; Zheng, Jia; Zhong, Chunan; Tang, Chao; Zheng, Lei; Zhang, Zhen; Xu, Jianzhong
2014-01-01
Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and determine their relationship. 20 months old female Chinese rabbits received either knee damaging operations with articular cartilage scratch method or sham operation randomly on one of their knees. They were sacrificed after 1-6 weeks post-operation. Medial Displacement Index (MDI) for meniscus dislocation, hematoxylin and eosin (HE) for routine histological evaluation, Toluidine blue (TB) stains for evaluating proteoglycans were carried out. Immunohistochemical (IHC) staining was performed with a two-step detection kit. Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the operation model, as well as MDI increase and all characteristics of OA. High expression of MMP-3 and TIMP-1 also were found in both hyaline cartilage and meniscus. Biomechanical and biochemistry environment around the meniscus is altered when OA occur. If meniscus showed degeneration, subluxation and dysfunction, OA would be more severe. Prompt repair or reconstruction of hyaline cartilage in weight bearing area when it injured could prevent meniscus degeneration and subluxation, then prevent the development of OA.
Williams, J M; Brandt, K D
1985-11-01
Although corticosteroids have been shown to cause articular cartilage degeneration, recent studies of experimentally induced osteoarthritis indicate that under certain conditions they may protect against cartilage damage and osteophyte formation. The present study examines the in vivo effect of triamcinolone hexacetonide on the degeneration of articular cartilage which occurs following intraarticular injection of sodium iodoacetate. Three weeks after a single injection of iodoacetate into the knees of guinea pigs, ipsilateral femoral condylar cartilage exhibited fibrillation, loss of staining with Safranin O, depletion of chondrocytes, and prominent osteophytes. In striking contrast, when triamcinolone hexacetonide was injected into the ipsilateral knee 24 hours after the intraarticular injection of iodoacetate, fibrillation was noted in only 1 of 6 samples, osteophytes were much less prominent, pericellular staining with Safranin O persisted, and cell loss was less extensive. Knees of animals which received only one-tenth as much intraarticular triamcinolone hexacetonide after the iodoacetate injection also exhibited marked reduction in size and extent of osteophytes. However, the degree of fibrillation, loss of Safranin O staining, and chondrocyte depletion was similar to that observed in animals injected with iodoacetate but not treated with intraarticular steroid. No apparent morphologic or histochemical changes were observed after intraarticular injection of the steroid preparation alone. Thus, triamcinolone hexacetonide produced a marked, dose-dependent protective effect in this model of chemically induced articular cartilage damage.
Nissi, Mikko J; Toth, Ferenc; Zhang, Jinjin; Schmitter, Sebastian; Benson, Michael; Carlson, Cathy S; Ellermann, Jutta M
2014-06-01
High-resolution visualization of cartilage canals has been restricted to histological methods and contrast-enhanced imaging. In this study, the feasibility of non-contrast-enhanced susceptibility weighted imaging (SWI) for visualization of the cartilage canals was investigated ex vivo at 9.4 T, further explored at 7 and 3 T and demonstrated in vivo at 7 T, using a porcine animal model. SWI scans of specimens of distal femur and humerus from 1 to 8 week-old piglets were conducted at 9.4 T using 3D-GRE sequence and SWI post-processing. The stifle joints of a 2-week old piglet were scanned ex vivo at 7 and 3 T. Finally, the same sites of a 3-week-old piglet were scanned, in vivo, at 7 T under general anesthesia using the vendor-provided sequences. High-contrast visualization of the cartilage canals was obtained ex vivo, especially at higher field strengths; the results were confirmed histologically. In vivo feasibility was demonstrated at 7 T and comparison of ex vivo scans at 3 and 7 T indicated feasibility of using SWI at 3 T. High-resolution 3D visualization of cartilage canals was demonstrated using SWI. This demonstration of fully noninvasive visualization opens new avenues to explore skeletal maturation and the role of vascular supply for diseases such as osteochondrosis. Copyright © 2013 Wiley Periodicals, Inc.
The cranial cartilages of teleosts and their classification.
Benjamin, M
1990-04-01
The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage and lipo/hyaline-cell cartilage, (b) Schaffer's Zellknorpel, typified by the cartilage in the gill filaments of most teleosts examined, (c) elastic/cell-rich cartilage, such as that which supports the barbels and oral valves of catfish, e.g. Corydoras metae, (d) fibro/cell-rich cartilage, as in the submaxillary meniscus of Sphaerichthys osphromenoides, (e) cell-rich hyaline and (f) matrix-rich hyaline cartilage--both of which are common in the neurocranium and gill arches of most teleosts. The range of cartilages seen, and the predominant cartilage type, is recorded for each species and a list is provided of the tissues that most typify different organs or regions of the head. As a preliminary pointer to developmental relationships between the cartilages, note was taken of gradual transitions between one cartilage and another. It is suggested that hyaline-cell cartilage occupies a key position in teleosts as the most labile of the supporting tissues and is highly characteristic of Cypriniformes. The cartilage that best resembles mammalian hyaline cartilage (matrix-rich hyaline cartilage) has a very conservative distribution in different skeletal elements and the least number of associations with other tissues. It is well represented in Siluriformes.
Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis
2015-10-01
osteoarthritis, articular fracture, joint injury, trauma, biomarker, inflammation, MRI , knee, mouse model, translational research. 3. OVERALL PROJECT...intervention. MRI imaging of the injured knee will be obtained to assess the articular cartilage. Degenerative changes in the cartilage and joint space...successfully enrolled patients, collected and stored biosamples, obtained all post-operative MRI scans and are continuing to obtain 18- month MRI scans for
Pelletier, J P; Lajeunesse, D; Jovanovic, D V; Lascau-Coman, V; Jolicoeur, F C; Hilal, G; Fernandes, J C; Martel-Pelletier, J
2000-12-01
To examine the effect of a nonsteroidal antiinflammatory drug, carprofen, on the structure and metabolism of cartilage and subchondral bone in the experimental osteoarthritic (OA) canine model. Experimental Groups 1 and 2 received a sectioning of the anterior cruciate ligament (ACL) of the right stifle joint, and were administered carprofen (2.2 and 4.4 mg/kg/twice daily/po, respectively) for 8 weeks beginning 4 weeks postsurgery. Group 3 received ACL sectioning and no treatment. Group 4 was composed of unoperated normal dogs. Cartilage macroscopic lesions were assessed, and their histological severity was graded. Specimens of subchondral bones were fixed, decalcified, and stained with hematoxylin/eosin. The level of metalloprotease (MMP) activity in cartilage was measured. Osteoblast cells were prepared from the subchondral bone. The level of synthesis of osteoblast biomarkers (osteocalcin, alkaline phosphatase), as well as urokinase plasminogen activator (uPA) activity and insulin-like growth factor (IGF-1) in the culture medium, was estimated. Carprofen treatment decreased the width of osteophytes (p < 0.01), the size of cartilage lesions, and the histologic severity of cartilage lesions (p < 0.008). There was no difference in the levels of MMP activity in cartilage between OA and carprofen treated groups. In OA dogs, the subchondral bone plate was thinner and was the site of an extensive remodeling process with numerous lacunae. Dogs treated with carprofen showed a marked decrease in the remodeling activity with normal plate thickness, and subchondral bone morphology resembling that of normal dogs. Osteoblasts from untreated OA dogs showed slightly higher alkaline phosphatase activities and osteocalcin release that reverted back to normal upon carprofen treatment. Moreover, uPA activity and IGF-1 levels were increased in OA dogs and were significantly reduced in carprofen treated dogs. Under therapeutic conditions, treatment with carprofen could reduce the progression of early structural changes in experimental OA. Carprofen treatment also delays and/or prevents the abnormal metabolism of subchondral osteoblasts in this model. The hypothesis of a possible link between the protective effect of carprofen and its effect on subchondral bone is of interest in the context of therapeutic intervention.
Bioactive Nano-Fibrous Scaffolds for Bone and Cartilage Tissue Engineering
NASA Astrophysics Data System (ADS)
Feng, Kai
Scaffolds that can mimic the structural features of natural extracellular matrix and can deliver biomolecules in a controlled fashion may provide cells with a favorable microenvironment to facilitate tissue regeneration. Biodegradable nanofibrous scaffolds with interconnected pore network have previously been developed in our laboratory to mimic collagen matrix and advantageously support both bone and cartilage regeneration. This dissertation project aims to expand both the structural complexity and the biomolecule delivery capacity of such biomimetic scaffolds for tissue engineering. We first developed a nanofibrous scaffold that can release an antibiotic (doxycycline) with a tunable release rate and a tunable dosage, which was demonstrated to be able to inhibit bacterial growth over a prolonged time period. We then developed a nanofibrous tissue-engineciing scaffold that can release basic fibroblast growth factor (bFGF) in a spatially and temporally controlled fashion. In a mouse subcutaneous implantation model, the bFGF-releasing scaffold was shown to enhance cell penetration, tissue ingrowth and angiogenesis. It was also found that both the dose and the release rate of bFGF play roles in the biologic function of the scaffold. After that, we developed a nanofibrous PLLA scaffold that can release both bone morphogenetic protein 7 (BMP-7) and platelet-derived growth factor (PDGF) with distinct dosages and release kinetics. It was demonstrated that BMP-7 and PDGF could synergistically enhance bone regeneration using a mouse ectopic bone formation model and a rat periodontal fenestration defect regeneration model. The regeneration outcome was dependent on the dosage, the ratio and the release kinetics of the two growth factors. Last, we developed an anisotropic composite scaffold with an upper layer mimicking the superficial zone of cartilage and a lower layer mimicking the middle zone of cartilage. The thin superficial layer was fabricated using an electrospinning technique to support a more parallel ECM orientation to the cartilage surface. The lower layer was fabricated using a phase-separation technique to support a more isotropic ECM distribution. Human bone marrow-derived mesenchymal stem cells (hMSCs) were seeded on this complex scaffold and cultured under chondrogenic conditions. The results showed that the composite scaffold was indeed able to support anisotropic cartilage tissue structure formation.
Biosse Duplan, Martin; Komla-Ebri, Davide; Heuzé, Yann; Estibals, Valentin; Gaudas, Emilie; Kaci, Nabil; Benoist-Lasselin, Catherine; Zerah, Michel; Kramer, Ina; Kneissel, Michaela; Porta, Diana Grauss; Di Rocco, Federico; Legeai-Mallet, Laurence
2016-01-01
Activating FGFR3 mutations in human result in achondroplasia (ACH), the most frequent form of dwarfism, where cartilages are severely disturbed causing long bones, cranial base and vertebrae defects. Because mandibular development and growth rely on cartilages that guide or directly participate to the ossification process, we investigated the impact of FGFR3 mutations on mandibular shape, size and position. By using CT scan imaging of ACH children and by analyzing Fgfr3Y367C/+ mice, a model of ACH, we show that FGFR3 gain-of-function mutations lead to structural anomalies of primary (Meckel’s) and secondary (condylar) cartilages of the mandible, resulting in mandibular hypoplasia and dysmorphogenesis. These defects are likely related to a defective chondrocyte proliferation and differentiation and pan-FGFR tyrosine kinase inhibitor NVP-BGJ398 corrects Meckel’s and condylar cartilages defects ex vivo. Moreover, we show that low dose of NVP-BGJ398 improves in vivo condyle growth and corrects dysmorphologies in Fgfr3Y367C/+ mice, suggesting that postnatal treatment with NVP-BGJ398 mice might offer a new therapeutic strategy to improve mandible anomalies in ACH and others FGFR3-related disorders. PMID:27260401
Figueroa, D; Espinosa, M; Calvo, R; Scheu, M; Valderrama, J J; Gallegos, M; Conget, P
2014-01-01
To evaluate the effect of 2 different protocols of intra-articular hyaluronic acid (HA, hylan G-F20) to articular cartilage regeneration in acute full-thickness chondral defects. Full-thickness chondral defects of 3 x 6 mm were performed into the lateral femoral condyles of New Zealand rabbits, treated with a single or three doses of HA. The animals were sacrified at 12 weeks and the regenerated tissue was evaluated by direct observation and histology with the ICRS scale. Macroscopically, in both groups treated with HA the defects were filled with irregular tissue with areas similar to hyaline cartilage and others in which depressed areas with exposed subchondral bone were observed. Histological analysis showed in both groups treated with HA a hyaline-like cartilage compared to control group. However, the score of the International Cartilage Repair Society (ICRS) scale did not show differences between the groups treated with HA. The use of single dose or 3 doses of AH in acute chondral lesions has a limited and similar benefit in articular cartilage regeneration. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.