Sample records for cartilage intermediate layer

  1. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    PubMed

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    PubMed

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    Excess accumulation of extracellular inorganic pyrophosphate (ePPi) in aged human cartilage is crucial in calcium pyrophosphate dihydrate (CPPD) crystal formation in cartilage matrix. Two sources of ePPi are ePPi-generating ectoenzymes (NTPPPH) and extracellular transport of intracellular PPi by ANK. This study was undertaken to evaluate the role of NTPPPH and ANK in ePPi elaboration, by investigating expression of NTPPPH enzymes (cartilage intermediate-layer protein [CILP] and plasma cell membrane glycoprotein 1 [PC-1]) and ANK in human chondrocytes from osteoarthritic (OA) articular cartilage containing CPPD crystals and without crystals. Chondrocytes were harvested from knee cartilage at the time of arthroplasty (OA with CPPD crystals [CPPD], n = 8; OA without crystals [OA], n = 10). Normal adult human chondrocytes (n = 1) were used as a control. Chondrocytes were cultured with transforming growth factor beta1 (TGFbeta1), which stimulates ePPi elaboration, and/or insulin-like growth factor 1 (IGF-1), which inhibits ePPi elaboration. NTPPPH and ePPi were measured in the media at 48 hours. Media CILP, PC-1, and ANK were determined by dot-immunoblot analysis. Chondrocyte messenger RNA (mRNA) was extracted for reverse transcriptase-polymerase chain reaction to study expression of mRNA for CILP, PC-1, and ANK. NTPPPH and ANK mRNA and protein were also studied in fresh frozen cartilage. Basal ePPi elaboration and NTPPPH activity in conditioned media from CPPD chondrocytes were elevated compared with normal chondrocytes, and tended to be higher compared with OA chondrocytes. Basal expression of mRNA for CILP (chondrocytes) and ANK (cartilage) was higher in both CPPD chondrocytes and CPPD cartilage extract than in OA or normal samples. PC-1 mRNA was less abundant in CPPD chondrocytes and cartilage extract than in OA chondrocytes and extract, although the difference was not significant. CILP, PC-1, and ANK protein levels were similar in CPPD, OA, and normal chondrocytes or cartilage extracts. Both CILP and ANK mRNA expression and ePPi elaboration were stimulated by TGFbeta1 and inhibited by IGF-1 in chondrocytes from all sources. CILP and ANK mRNA expression correlates with chondrocyte ePPi accumulation around CPPD and OA chondrocytes, and all respond similarly to growth factor stimulation. These findings suggest that up-regulated CILP and ANK expression contributes to higher ePPi accumulation from CPPD crystal-forming cartilage.

  3. Measurements of surface layer of the articular cartilage using microscopic techniques

    NASA Astrophysics Data System (ADS)

    Ryniewicz, A. M.; Ryniewicz, A.; Ryniewicz, W.; Gaska, A.

    2010-07-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  4. [3T magnetic resonance T2 mapping for evaluation of cartilage repair after matrix-associated autologous chondrocyte transplantation].

    PubMed

    Zhang, Jun; Xu, Xian; Li, Xue; Chen, Min; Dong, Tian-Ming; Zuo, Pan-Li; An, Ning-Yu

    2015-01-01

    To assess the value of magnetic resonance imaging (MRI) T2 mapping in quantitative evaluation of cartilage repair following matrix-associated autologous chondrocyte transplantation (MACT). Six patients (with 9 plug cartilages) following MACT underwent MRI on a 3.0 Tesla MR scan system at 3, 6 and 12 months after the surgery. The full-thickness and zonal areas (deep and superficial layers) T2 values were calculated for the repaired cartilage and control cartilage. The mean T2 values of the repaired cartilage after MACT were significantly higher than that of the control cartilages at 3 and 6 months (P<0.05), but not at 12 months (P=0.063). At 6 and 12 months, the T2 values of the superficial layers were significantly higher than those of the deep layers in the repaired cartilages (P<0.05). The zonal (deep and superficial layers) T2 values of the repaired cartilages decreased significantly over time at 6 and 12 months as compared to those at 3 months after the surgery (P<0.05). MRI T2 mapping can serve as an important modality for assessing the repair of the articular cartilage following MACT.

  5. High throughput proteomic analysis of the secretome in an explant model of articular cartilage inflammation

    PubMed Central

    Clutterbuck, Abigail L.; Smith, Julia R.; Allaway, David; Harris, Pat; Liddell, Susan; Mobasheri, Ali

    2011-01-01

    This study employed a targeted high-throughput proteomic approach to identify the major proteins present in the secretome of articular cartilage. Explants from equine metacarpophalangeal joints were incubated alone or with interleukin-1beta (IL-1β, 10 ng/ml), with or without carprofen, a non-steroidal anti-inflammatory drug, for six days. After tryptic digestion of culture medium supernatants, resulting peptides were separated by HPLC and detected in a Bruker amaZon ion trap instrument. The five most abundant peptides in each MS scan were fragmented and the fragmentation patterns compared to mammalian entries in the Swiss-Prot database, using the Mascot search engine. Tryptic peptides originating from aggrecan core protein, cartilage oligomeric matrix protein (COMP), fibronectin, fibromodulin, thrombospondin-1 (TSP-1), clusterin (CLU), cartilage intermediate layer protein-1 (CILP-1), chondroadherin (CHAD) and matrix metalloproteinases MMP-1 and MMP-3 were detected. Quantitative western blotting confirmed the presence of CILP-1, CLU, MMP-1, MMP-3 and TSP-1. Treatment with IL-1β increased MMP-1, MMP-3 and TSP-1 and decreased the CLU precursor but did not affect CILP-1 and CLU levels. Many of the proteins identified have well-established extracellular matrix functions and are involved in early repair/stress responses in cartilage. This high throughput approach may be used to study the changes that occur in the early stages of osteoarthritis. PMID:21354348

  6. CD36 Is a Matrix Metalloproteinase-9 Substrate That Stimulates Neutrophil Apoptosis and Removal During Cardiac Remodeling.

    PubMed

    DeLeon-Pennell, Kristine Y; Tian, Yuan; Zhang, Bai; Cates, Courtney A; Iyer, Rugmani Padmanabhan; Cannon, Presley; Shah, Punit; Aiyetan, Paul; Halade, Ganesh V; Ma, Yonggang; Flynn, Elizabeth; Zhang, Zhen; Jin, Yu-Fang; Zhang, Hui; Lindsey, Merry L

    2016-02-01

    After myocardial infarction, the left ventricle undergoes a wound healing response that includes the robust infiltration of neutrophils and macrophages to facilitate removal of dead myocytes as well as turnover of the extracellular matrix. Matrix metalloproteinase (MMP)-9 is a key enzyme that regulates post-myocardial infarction left ventricular remodeling. Infarct regions from wild-type and MMP-9 null mice (n=8 per group) analyzed by glycoproteomics showed that of 541 N-glycosylated proteins quantified, 45 proteins were at least 2-fold upregulated or downregulated with MMP-9 deletion (all P<0.05). Cartilage intermediate layer protein and platelet glycoprotein 4 (CD36) were identified as having the highest fold increase in MMP-9 null mice. By immunoblotting, CD36 but not cartilage intermediate layer protein decreased steadily during the time course post-myocardial infarction, which identified CD36 as a candidate MMP-9 substrate. MMP-9 was confirmed in vitro and in vivo to proteolytically degrade CD36. In vitro stimulation of day 7 post-myocardial infarction macrophages with MMP-9 or a CD36-blocking peptide reduced phagocytic capacity. Dual immunofluorescence revealed concomitant accumulation of apoptotic neutrophils in the MMP-9 null group compared with wild-type group. In vitro stimulation of isolated neutrophils with MMP-9 decreased neutrophil apoptosis, indicated by reduced caspase-9 expression. Our data reveal a new cell-signaling role for MMP-9 through CD36 degradation to regulate macrophage phagocytosis and neutrophil apoptosis. © 2015 American Heart Association, Inc.

  7. Asporin stably expressed in the surface layer of mandibular condylar cartilage and augmented in the deeper layer with age.

    PubMed

    Miyamoto, Yutaka; Kanzaki, Hiroyuki; Wada, Satoshi; Tsuruoka, Sari; Itohiya, Kanako; Kumagai, Kenichi; Hamada, Yoshiki; Nakamura, Yoshiki

    2017-12-01

    Mandibular condylar cartilage (MCC) exhibits dual roles both articular cartilage and growth center. Of many growth factors, TGF-β has been implicated in the growth of articular cartilage including MCC. Recently, Asporin, decoy to TGF-β, was discovered and it blocks TGF-β signaling. Asporin is expressed in a variety of tissues including osteoarthritic articular cartilage, though there was no report of Asporin expression in MCC. In the present study, we investigated the temporal and spatial expression of Asporin in MCC. Gene expression profile of MCC and epiphyseal cartilage in tibia of 5 weeks old ICR mice were firstly compared with microarray analysis using the laser capture microdissected samples. Variance of gene expression was further confirmed by real-time RT-PCR and immunohistochemical staining at 1,3,10, and 20 weeks old. TGF-β and its signaling molecule, phosphorylated Smad-2/3 (p-Smad2/3), were also examined by immunohistochemical staining. Microarray analysis revealed that Asporin was highly expressed in MCC. Real-time RT-PCR analysis confirmed that the fibrous layer of MCC exhibited stable higher Asporin expression at any time points as compared to epiphyseal cartilage. This was also observed in immunohistochemical staining. Deeper layer in MCC augmented Asporin expression with age. Whereas, TGF-β was stably highly observed in the layer. The fibrous layer of MCC exhibited weak staining of p-Smad2/3, though the proliferating layer of MCC was strongly stained as compared to epiphyseal cartilage of tibia at early time point. Consistent with the increase of Asporin expression in the deeper layer of MCC, the intensity of p-Smad-2/3 staining was decreased with age. In conclusion, we discovered that Asporin was stably expressed at the fibrous layer of MCC, which makes it possible to manage both articular cartilage and growth center at the same time.

  8. Sex- and Age-Dependence of Region- and Layer-Specific Knee Cartilage Composition (Spin-Spin-Relaxation Time) in Healthy Reference Subjects

    PubMed Central

    Wirth, Wolfgang; Maschek, Susanne; Eckstein, Felix

    2016-01-01

    SUMMARY Compositional measures of articular cartilage are accessible in vivo by magnetic resonance imaging (MRI) based relaxometry and cartilage spin-spin transverse relaxation time (T2) has been related to tissue hydration, collagen content and orientation, and mechanical (functional) properties of articular cartilage. The objective of the current study was therefore to evaluate subregional variation, and sex- and age-differences, in laminar (deep and superficial) femorotibial cartilage T2 relaxation time in healthy adults. To this end, we studied the right knees of 92 healthy subjects from the Osteoarthritis Initiative reference cohort (55 women, 37 men; age range 45–78 years; BMI 24.4±3.1) without knee pain, radiographic signs, or risk factors of knee osteoarthritis in either knee. T2 of the deep and superficial femorotibial cartilages was determined in 16 femorotibial subregions, using a multi-echo spin-echo (MESE) MRI sequence. Significant subregional variation in femorotibial cartilage T2 was observed for the superficial and for the deep (both p<0.001) cartilage layer (Friedman test). Yet, layer- and region-specific femorotibial T2 did not differ between men and women, or between healthy adults below and above the median age (54y). In conclusion, this first study to report subregional (layer-specific) compositional variation of femorotibial cartilage T2 in healthy adults identifies significant differences in both superficial and deep cartilage T2 between femorotibial subregions. However, no relevant sex- or age-dependence of cartilage T2 was observed between age 45–78y. The findings suggest that a common, non-sex-specific set of layer-and region-specific T2 reference values can be used to identify compositional pathology in joint disease for this age group. PMID:27836800

  9. An ultrasonic measurement for in vitro depth-dependent equilibrium strains of articular cartilage in compression

    NASA Astrophysics Data System (ADS)

    Zheng, Y. P.; Mak, A. F. T.; Lau, K. P.; Qin, L.

    2002-09-01

    The equilibrium depth-dependent biomechanical properties of articular cartilage were measured using an ultrasound-compression method. Ten cylindrical bovine patella cartilage-bone specimens were tested in compression followed by a period of force-relaxation. A 50 MHz focused ultrasound beam was transmitted into the cartilage specimen through a remaining bone layer and a small hole at the centre of a specimen platform. The ultrasound echoes reflected or scattered within the articular cartilage were collected using the same transducer. The displacements of the tissues at different depths of the articular cartilage were derived from the ultrasound echo signals recorded during the compression and the subsequent force-relaxation. For two steps of 0.1 mm compression, the average strain at the superficial 0.2 mm thick layer (0.35 +/- 0.09) was significantly (p < 0.05) larger than that at the subsequent 0.2 mm thick layer (0.05 +/- 0.07) and that at deeper layers (0.01 +/- 0.02). It was demonstrated that the compressive biomechanical properties of cartilage were highly depth-dependent. The results suggested that the ultrasound-compression method could be a useful tool for the study of the depth-dependent biomechanical properties of articular cartilage.

  10. The distribution patterns of COMP and matrilin-3 in septal, alar and triangular cartilages of the human nose.

    PubMed

    Wiggenhauser, Paul Severin; Schwarz, Silke; Rotter, Nicole

    2018-05-02

    The biomechanical characteristics of septal cartilage depend strongly on the distinct extracellular matrix of cartilage tissue; therefore, it is essential that the components of this matrix are identified and understood. Cartilage oligomeric matrix protein (COMP) and matrilin-3 are localised in articular cartilage. This study was the first to examine all subtypes of mature human nasal cartilages (alar, triangular and septal) with specific attention to the distribution of COMP and matrilin-3. Three whole fresh-frozen noses from human donors were dissected, and exemplary biopsies were examined using histochemical staining (haematoxylin and eosin and Alcian blue) and immunohistochemistry (collagen II, COMP and matrilin-3). The following three zones within the nasal cartilage were identified: superficial, intermediate and central. COMP was detected as highest in the intermediate zones in all three subtypes of nasal cartilage, whereas matrilin-3 was detected with pericellular deposition mainly within septal cartilage predominantly in the superficial zones. The distinct staining patterns of COMP and matrilin-3 underscore the different functional roles of both proteins in nasal cartilage. According to the literature, COMP might be involved with collagen II in the formation of networks, whereas matrilin-3 is reported to prevent ossification or regulate mechanosensitivity. The predominant staining observed in septal cartilage suggests matrilin-3's modulatory role because of its presence in the osteochondral junctional zone and given that the biomechanical load in septal cartilage is different from that in alar or triangular cartilage. In conclusion, COMP and matrilin-3 were detected in mature human nasal cartilage but displayed different staining patterns that might be explained by the functional roles of the respective matrix protein; however, further research is necessary to identify and define the functional aspects of this morphological difference.

  11. Longitudinal analysis of MR spin-spin relaxation times (T2) in medial femorotibial cartilage of adolescent vs mature athletes: dependence of deep and superficial zone properties on sex and age.

    PubMed

    Wirth, W; Eckstein, F; Boeth, H; Diederichs, G; Hudelmaier, M; Duda, G N

    2014-10-01

    Cartilage spin-spin magnetic resonance imaging (MRI) relaxation time (T2) represents a promising imaging biomarker of "early" osteoarthritis (OA) known to be associated with cartilage composition (collagen integrity, orientation, and hydration). However, no longitudinal imaging studies have been conducted to examine cartilage maturation in healthy subjects thus far. Therefore, we explore T2 change in the deep and superficial cartilage layers at the end of adolescence. Twenty adolescent and 20 mature volleyball athletes were studied (each 10 men and 10 women). Multi-echo spin-echo (MESE) images were acquired at baseline and 2-year follow-up. After segmentation, cartilage T2 was calculated in the deep and superficial cartilage layers of the medial tibial (MT) and the central, weight-bearing part of the medial femoral condyle (cMF), using five echoes (TE 19.4-58.2 ms). 16 adolescent (6 men, 10 women, baseline age 15.8 ± 0.5 years) and 17 mature (nine men, eight women, age 46.5 ± 5.2 years) athletes had complete baseline and follow-up images of sufficient quality to compute T2. In adolescents, a longitudinal decrease in T2 was observed in the deep layers of MT (-2.0 ms; 95% confidence interval (CI): [-3.4, -0.6] ms; P < 0.01) and cMF (-1.3 ms; [-2.4, -0.3] ms; P < 0.05), without obvious differences between males and females. No significant change was observed in the superficial layers, or in the deep or superficial layers of the mature athletes. In this first pilot study on quantitative imaging of cartilage maturation in healthy, athletic subjects, we find evidence of cartilage compositional change in deep cartilage layers of the medial femorotibial compartment in adolescents, most likely related to organizational changes in the collagen matrix. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Magnetic resonance imaging of hyaline cartilage regeneration in neocartilage graft implantation.

    PubMed

    Tan, C F; Ng, K K; Ng, S H; Cheung, Y C

    2003-12-01

    The purpose of this study was to investigate the regenerative potential of hyaline cartilage in a neocartilage graft implant with the aid of MR cartilage imaging using a rabbit model. Surgical osteochondral defects were created in the femoral condyles of 30 mature New Zealand rabbits. The findings of neocartilage in autologous cartilage grafts packed into osteochondral defects were compared with control group of no implant to the osteochondral defect. The outcome of the implantations was correlated with histologic and MR cartilage imaging findings over a 3-month interval. Neocartilage grafts packed into osteochondral defects showed regeneration of hyaline cartilage at the outer layer of the implant using MR cartilage imaging. Fibrosis of fibrocartilage developed at the outer layer of the autologous cartilage graft together with an inflammatory reaction within the osteochondral defect. This animal study provides evidence of the regenerative ability of hyaline cartilage in neocartilage transplants to repair articular cartilage.

  13. Changes in the Chondrocyte and Extracellular Matrix Proteome during Post-natal Mouse Cartilage Development*

    PubMed Central

    Wilson, Richard; Norris, Emma L.; Brachvogel, Bent; Angelucci, Constanza; Zivkovic, Snezana; Gordon, Lavinia; Bernardo, Bianca C.; Stermann, Jacek; Sekiguchi, Kiyotoshi; Gorman, Jeffrey J.; Bateman, John F.

    2012-01-01

    Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296–1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during cartilage development. Although the multifunctional chaperone BiP was not differentially expressed, enzymes and chaperones required specifically for collagen biosynthesis, such as the prolyl 3-hydroxylase 1, cartilage-associated protein, and peptidyl prolyl cis-trans isomerase B complex, were down-regulated during maturation. Conversely, the lumenal proteins calumenin, reticulocalbin-1, and reticulocalbin-2 were significantly increased, signifying a shift toward calcium binding functions. This first proteomic analysis of cartilage development in vivo reveals the breadth of protein expression changes during chondrocyte maturation and ECM remodeling in the mouse femoral head. PMID:21989018

  14. An Immunohistochemical Study of Matrix Proteins in the Craniofacial Cartilage in Midterm Human Fetuses

    PubMed Central

    Shibata, S.; Sakamoto, Y.; Baba, O.; Qin, C.; Murakami, G.; Cho, B.H.

    2013-01-01

    Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes. PMID:24441192

  15. [Preparation of acellular matrix from antler cartilage and its biological compatibility].

    PubMed

    Fu, Jing; Zhang, Wei; Zhang, Aiwu; Ma, Lijuan; Chu, Wenhui; Li, Chunyi

    2017-06-01

    To study the feasibility of acellular matrix materials prepared from deer antler cartilage and its biological compatibility so as to search for a new member of the extracellular matrix family for cartilage regeneration. The deer antler mesenchymal (M) layer tissue was harvested and treated through decellular process to prepare M layer acellular matrix; histologic observation and detection of M layer acellular matrix DNA content were carried out. The antler stem cells [antlerogenic periosteum (AP) cells] at 2nd passage were labelled by fluorescent stains and by PKH26. Subsequently, the M layer acellular matrix and the AP cells at 2nd passage were co-cultured for 7 days; then the samples were transplanted into nude mice to study the tissue compatibility of M layer acellular matrix in the living animals. HE and DAPI staining confirmed that the M layer acellular matrix did not contain nucleus; the DNA content of the M layer acellular matrix was (19.367±5.254) ng/mg, which was significantly lower than that of the normal M layer tissue [(3 805.500±519.119) ng/mg]( t =12.630, P =0.000). In vitro co-culture experiments showed that AP cells could adhere to or even embedded in the M layer acellular matrix. Nude mice transplantation experiments showed that the introduced AP cells could proliferate and induce angiogenesis in the M layer acellular matrix. The deer antler cartilage acellular matrix is successfully prepared. The M layer acellular matrix is suitable for adhesion and proliferation of AP cells in vitro and in vivo , and it has the function of stimulating angiogenesis. This model for deer antler cartilage acellular matrix can be applied in cartilage tissue engineering in the future.

  16. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation

    PubMed Central

    Jia, Haoruo; Ma, Xiaoyuan; Tong, Wei; Doyran, Basak; Sun, Zeyang; Wang, Luqiang; Zhang, Xianrong; Zhou, Yilu; Badar, Farid; Chandra, Abhishek; Lu, X. Lucas; Xia, Yang; Han, Lin; Enomoto-Iwamoto, Motomi; Qin, Ling

    2016-01-01

    Osteoarthritis (OA) is the most common joint disease, characterized by progressive destruction of the articular cartilage. The surface of joint cartilage is the first defensive and affected site of OA, but our knowledge of genesis and homeostasis of this superficial zone is scarce. EGFR signaling is important for tissue homeostasis. Immunostaining revealed that its activity is mostly dominant in the superficial layer of healthy cartilage but greatly diminished when OA initiates. To evaluate the role of EGFR signaling in the articular cartilage, we studied a cartilage-specific Egfr-deficient (CKO) mouse model (Col2-Cre EgfrWa5/flox). These mice developed early cartilage degeneration at 6 mo of age. By 2 mo of age, although their gross cartilage morphology appears normal, CKO mice had a drastically reduced number of superficial chondrocytes and decreased lubricant secretion at the surface. Using superficial chondrocyte and cartilage explant cultures, we demonstrated that EGFR signaling is critical for maintaining the number and properties of superficial chondrocytes, promoting chondrogenic proteoglycan 4 (Prg4) expression, and stimulating the lubrication function of the cartilage surface. In addition, EGFR deficiency greatly disorganized collagen fibrils in articular cartilage and strikingly reduced cartilage surface modulus. After surgical induction of OA at 3 mo of age, CKO mice quickly developed the most severe OA phenotype, including a complete loss of cartilage, extremely high surface modulus, subchondral bone plate thickening, and elevated joint pain. Taken together, our studies establish EGFR signaling as an important regulator of the superficial layer during articular cartilage development and OA initiation. PMID:27911782

  17. Mesenchymal stem cell differentiation in an experimental cartilage defect: restriction of hypertrophy to bone-close neocartilage.

    PubMed

    Steck, Eric; Fischer, Jennifer; Lorenz, Helga; Gotterbarm, Tobias; Jung, Martin; Richter, Wiltrud

    2009-09-01

    Mesenchymal stem cells (MSCs) are promising for the treatment of articular cartilage defects; however, common protocols for in vitro chondrogenesis induce typical features of hypertrophic chondrocytes reminiscent of endochondral bone formation. Aim of the study was to compare chondrogenic differentiation of MSCs in vitro and in vivo in experimental full-thickness cartilage defects, asking whether MSCs can differentiate into collagen type X-negative chondrocytes in an orthotopic environment. Cartilage defects in knees of minipigs were covered with a collagen type I/III membrane, and half of them received transplantation of expanded autologous MSCs. At 1, 3, and 8 weeks, morphological and molecular aspects of repair were assessed. The orthotopic environment triggered a spatially organized repair tissue with upper fibrous, intermediate chondrogenic, and low layer hypertrophic differentiation of cells and a trend to more safranin-O and collagen type II-positive samples after MSC transplantation at 8 weeks. Compared to in vitro chondrogenesis, significant lower COL10A1/COL2A1 and MMP13/COL2A1 ratios were obtained for in vivo differentiation. This indicates that, as opposed to in vitro chondrogenic induction of MSCs, the in vivo signaling molecules and biomechanical stimuli provide an appropriate environment for progenitor cells to differentiate into collagen type X-negative chondrocytes. Thus, until better in vitro induction protocols become available for chondrogenesis of MSCs, their predifferentiation before transplantation may be unfavorable.

  18. In vivo deformation of thin cartilage layers: Feasibility and applicability of T2* mapping.

    PubMed

    Van Ginckel, Ans; Witvrouw, Erik E

    2016-05-01

    The objectives of this study were as follows: (i) to assess segmentation consistency and scan precision of T2* mapping of human tibio-talar cartilage, and (ii) to monitor changes in T2* relaxation times of ankle cartilage immediately following a clinically relevant in vivo exercise and during recovery. Using multi-echo gradient recalled echo sequences, averaged T2* values were calculated for tibio-talar cartilage layers in 10 healthy volunteers. Segmentation consistency and scan precision were determined from two repeated segmentations and two repeated acquisitions with repositioning, respectively. Subsequently, acute in vivo cartilage loading responses were monitored by calculating averaged tibio-talar T2* values at rest, immediately after (i.e., deformation) and at 15 min (i.e., recovery) following a 30-repetition knee bending exercise. Precision errors attained 4-6% with excellent segmentation consistency point estimates (i.e., intra-rater ICC of 0.95) and acceptable limits of confidence. At deformation, T2* values were increased in both layers [+16.1 (10.7)%, p = 0.004 and +17.3 (15.3)%, p = 0.023, for the talus and tibia, respectively] whereas during recovery no significant changes could be established when comparing to baseline [talar cartilage: +5.2 (8.2)%, p = 0.26 and tibial cartilage: +6.6 (10.4)%, p = 0.23]. T2* mapping is a viable method to monitor deformational behavior in thin cartilage layers such as ankle cartilage. Longitudinal changes in T2* can be reliably appraised and require at least 4-6% differences to ascertain statistical significance. The ability to detect considerable change even after non-strenuous loading events, endorses T2* mapping as an innovative method to evaluate the effects of therapeutic exercise on thin cartilage layers. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:771-778, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage.

    PubMed

    Reesink, Heidi L; Bonnevie, Edward D; Liu, Sherry; Shurer, Carolyn R; Hollander, Michael J; Bonassar, Lawrence J; Nixon, Alan J

    2016-05-09

    Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin's mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.

  20. Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage

    PubMed Central

    Reesink, Heidi L.; Bonnevie, Edward D.; Liu, Sherry; Shurer, Carolyn R.; Hollander, Michael J.; Bonassar, Lawrence J.; Nixon, Alan J.

    2016-01-01

    Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin’s mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis. PMID:27157803

  1. Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage

    NASA Astrophysics Data System (ADS)

    Reesink, Heidi L.; Bonnevie, Edward D.; Liu, Sherry; Shurer, Carolyn R.; Hollander, Michael J.; Bonassar, Lawrence J.; Nixon, Alan J.

    2016-05-01

    Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin’s mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.

  2. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.

    PubMed

    Kim, Minwook; Farrell, Megan J; Steinberg, David R; Burdick, Jason A; Mauck, Robert L

    2017-08-01

    Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics and mechanical properties of native cartilage while minimizing the need for large numbers of chondrocytes. In addition, introduction of a porous hollow fiber (combined with a cotton thread) enhanced nutrient transport and depth-dependent properties of the tri-layered construct. Such a tri-layered construct may provide critical advantages for focal cartilage repair. These constructs hold promise for restoring native tissue structure and function, and may be beneficial in terms of zone-to-zone integration with adjacent host tissue and providing more appropriate strain transfer after implantation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Embryonic development of the axial column in the little skate, Leucoraja erinacea.

    PubMed

    Criswell, Katharine E; Coates, Michael I; Gillis, J Andrew

    2017-03-01

    The morphological patterns and molecular mechanisms of vertebral column development are well understood in bony fishes (osteichthyans). However, vertebral column morphology in elasmobranch chondrichthyans (e.g., sharks and skates) differs from that of osteichthyans, and its development has not been extensively studied. Here, we characterize vertebral development in an elasmobranch fish, the little skate, Leucoraja erinacea, using microCT, paraffin histology, and whole-mount skeletal preparations. Vertebral development begins with the condensation of mesenchyme, first around the notochord, and subsequently around the neural tube and caudal artery and vein. Mesenchyme surrounding the notochord differentiates into a continuous sheath of spindle-shaped cells, which forms the precursor to the mineralized areolar calcification of the centrum. Mesenchyme around the neural tube and caudal artery/vein becomes united by a population of mesenchymal cells that condenses lateral to the sheath of spindle-shaped cells, with this mesenchymal complex eventually differentiating into the hyaline cartilage of the future neural arches, hemal arches, and outer centrum. The initially continuous layers of areolar tissue and outer hyaline cartilage eventually subdivide into discrete centra and arches, with the notochord constricted in the center of each vertebra by a late-forming "inner layer" of hyaline cartilage, and by a ring of areolar calcification located medial to the outer vertebral cartilage. The vertebrae of elasmobranchs are distinct among vertebrates, both in terms of their composition (i.e., with centra consisting of up to three tissues layers-an inner cartilage layer, a calcified areolar ring, and an outer layer of hyaline cartilage), and their mode of development (i.e., the subdivision of arch and outer centrum cartilage from an initially continuous layer of hyaline cartilage). Given the evident variation in patterns of vertebral construction, broad taxon sampling, and comparative developmental analyses are required to understand the diversity of mechanisms at work in the developing axial skeleton of vertebrates. J. Morphol. 278:300-320, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. PTH [1-34]-induced alterations of the subchondral bone provoke early osteoarthritis.

    PubMed

    Orth, P; Cucchiarini, M; Wagenpfeil, S; Menger, M D; Madry, H

    2014-06-01

    To test the hypothesis that changes in the subchondral bone induced by parathyroid hormone (PTH [1-34]) reciprocally affect the integrity of the articular cartilage within a naïve osteochondral unit in vivo. Daily subcutaneous injections of 10 μg PTH [1-34]/kg were given to adult rabbits for 6 weeks, controls received saline. Blood samples were continuously collected to monitor renal function. The subchondral bone plate and subarticular spongiosa of the femoral heads were separately assessed by micro-computed tomography. Articular cartilage was evaluated by macroscopic and histological osteoarthritis scoring, polarized light microscopy, and immunohistochemical determination of type-I, type-II, type-X collagen contents, PTH [1-34] receptor and caspase-3 expression. Absolute and relative extents of hyaline and calcified articular cartilage layers were measured histomorphometrically. The correlation between PTH-induced changes in subchondral bone and articular cartilage was determined. PTH [1-34] enhanced volume, mineral density, and trabecular thickness within the subarticular spongiosa, and increased thickness of the calcified cartilage layer (all P < 0.05). Moreover, PTH [1-34] led to cartilage surface irregularities and reduced matrix staining (both P < 0.03). These early osteoarthritic changes correlated with and were ascribed to the increased thickness of the calcified cartilage layer (P = 0.026) and enhanced mineral density of the subarticular spongiosa (P = 0.001). Modifications of the subarticular spongiosa by PTH [1-34] cause broadening of the calcified cartilage layer, resulting in osteoarthritic cartilage degeneration. These findings identify a mechanism by which PTH-induced alterations of the normal subchondral bone microarchitecture may provoke early osteoarthritis. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Layering PLGA-based electrospun membranes and cell sheets for engineering cartilage-bone transition.

    PubMed

    Mouthuy, P-A; El-Sherbini, Y; Cui, Z; Ye, H

    2016-04-01

    It is now widely acknowledged that implants that have been designed with an effort towards reconstructing the transition between tissues might improve their functionality and integration in vivo. This paper contributes to the development of improved treatment for articular cartilage repair by exploring the potential of the combination of electrospinning technology and cell sheet engineering to create cartilage tissue. Poly(lactic-co-glycolic acid) (PLGA) was used to create the electrospun membranes. The focus being on the cartilage-bone transition, collagen type I and hydroxyapatite (HA) were also added to the scaffolds to increase the histological biocompatibility. Human mesenchymal stem cells (hMSCs) were cultured in thermoresponsive dishes to allow non-enzymatic removal of an intact cell layer after reaching confluence. The tissue constructs were created by layering electrospun membranes with sheets of hMSCs and were cultured under chondrogenic conditions for up to 21 days. High viability was found to be maintained in the multilayered construct. Under chondrogenic conditions, reverse-transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry have shown high expression levels of collagen type X, a form of collagen typically found in the calcified zone of articular cartilage, suggesting an induction of chondrocyte hypertrophy in the PLGA-based scaffolds. To conclude, this paper suggests that layering electrospun scaffolds and cell sheets is an efficient approach for the engineering of tissue transitions, and in particular the cartilage-bone transition. The use of PLGA-based scaffold might be particularly useful for the bone-cartilage reconstruction, since the differentiated tissue constructs seem to show characteristics of calcified cartilage. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development.

    PubMed

    Nah, H D; Pacifici, M; Gerstenfeld, L C; Adams, S L; Kirsch, T

    2000-03-01

    Calvarial and facial bones form by intramembranous ossification, in which bone cells arise directly from mesenchyme without an intermediate cartilage anlage. However, a number of studies have reported the emergence of chondrocytes from in vitro calvarial cell or organ cultures and the expression of type II collagen, a cartilage-characteristic marker, in developing calvarial bones. Based on these findings we hypothesized that a covert chondrogenic phase may be an integral part of the normal intramembranous pathway. To test this hypothesis, we analyzed the temporal and spatial expression patterns of cartilage characteristic genes in normal membranous bones from chick embryos at various developmental stages (days 12, 15 and 19). Northern and RNAse protection analyses revealed that embryonic frontal bones expressed not only the type I collagen gene but also a subset of cartilage characteristic genes, types IIA and XI collagen and aggrecan, thus resembling a phenotype of prechondrogenic-condensing mesenchyme. The expression of cartilage-characteristic genes decreased with the progression of bone maturation. Immunohistochemical analyses of developing embryonic chick heads indicated that type II collagen and aggrecan were produced by alkaline phosphatase activity positive cells engaged in early stages of osteogenic differentiation, such as cells in preosteogenic-condensing mesenchyme, the cambium layer of periosteum, the advancing osteogenic front, and osteoid bone. Type IIB and X collagen messenger RNAs (mRNA), markers for mature chondrocytes, were also detected at low levels in calvarial bone but not until late embryonic stages (day 19), indicating that some calvarial cells may undergo overt chondrogenesis. On the basis of our findings, we propose that the normal intramembranous pathway in chicks includes a previously unrecognized transient chondrogenic phase similar to prechondrogenic mesenchyme, and that the cells in this phase retain chondrogenic potential that can be expressed in specific in vitro and in vivo microenvironments.

  7. Subregional laminar cartilage MR spin-spin relaxation times (T2) in osteoarthritic knees with and without medial femorotibial cartilage loss - data from the Osteoarthritis Initiative (OAI).

    PubMed

    Wirth, W; Maschek, S; Beringer, P; Eckstein, F

    2017-08-01

    To explore whether subregional laminar femorotibial cartilage spin-spin relaxation time (T2) is associated with subsequent radiographic progression and cartilage loss and/or whether one-year change in subregional laminar femorotibial cartilage T2 is associated with concurrent progression in knees with established radiographic OA (ROA). In this case-control study, Osteoarthritis Initiative (OAI) knees with medial femorotibial progression were selected based on one-year loss in both quantitative cartilage thickness Magnetic resonance imaging (MRI) and radiographic joint space width (JSW). Non-progressor knees were matched by sex, Body mass index (BMI), baseline Kellgren-Lawrence-grade (2/3), and pain. Baseline and one-year follow-up superficial and deep cartilage T2 was analyzed in 16 femorotibial subregions using multi-echo spin-echo MRI. 37 knees showed medial femorotibial progression whereas 37 matched controls had no medial or lateral compartment progression. No statistically significant baseline differences between progressor and non-progressor knees in medial femorotibial cartilage T2 were observed in the superficial (48.9 ± 3.0 ms; 95% CI: [47.9, 49.9] vs 47.8 ± 3.6 ms; 95% CI: [46.6, 49.0], P = 0.07) or deep cartilage layer (40.8 ± 3.6 ms; 95% CI: [39.5, 42.0] vs 40.1 ± 4.7 ms; 95% CI: [38.5, 41.6], P = 0.29). Concurrent T2 change was more pronounced in the deep than the superficial cartilage layer. In the medial femorotibial compartment (MFTC), longitudinal change was greater in the deep layer of progressor than non-progressor knees (1.8 ± 4.5 ms; 95% CI: [0.3, 3.3] vs -0.2 ± 1.9 ms; 95% CI: [-0.8, 0.5], P = 0.02), whereas no difference was observed in the superficial layer. Medial compartment cartilage T2 did not appear to be a strong prognostic factor for subsequent structural progression in the same compartment of knees with established ROA, when appropriately controlling for covariates. Yet, deep layer T2 change in the medial compartment occurred concurrent with medial femorotibial progression. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Application of multiphysics models to efficient design of experiments of solute transport across articular cartilage.

    PubMed

    Pouran, Behdad; Arbabi, Vahid; Weinans, Harrie; Zadpoor, Amir A

    2016-11-01

    Transport of solutes helps to regulate normal physiology and proper function of cartilage in diarthrodial joints. Multiple studies have shown the effects of characteristic parameters such as concentration of proteoglycans and collagens and the orientation of collagen fibrils on the diffusion process. However, not much quantitative information and accurate models are available to help understand how the characteristics of the fluid surrounding articular cartilage influence the diffusion process. In this study, we used a combination of micro-computed tomography experiments and biphasic-solute finite element models to study the effects of three parameters of the overlying bath on the diffusion of neutral solutes across cartilage zones. Those parameters include bath size, degree of stirring of the bath, and the size and concentration of the stagnant layer that forms at the interface of cartilage and bath. Parametric studies determined the minimum of the finite bath size for which the diffusion behavior reduces to that of an infinite bath. Stirring of the bath proved to remarkably influence neutral solute transport across cartilage zones. The well-stirred condition was achieved only when the ratio of the diffusivity of bath to that of cartilage was greater than ≈1000. While the thickness of the stagnant layer at the cartilage-bath interface did not significantly influence the diffusion behavior, increase in its concentration substantially elevated solute concentration in cartilage. Sufficient stirring attenuated the effects of the stagnant layer. Our findings could be used for efficient design of experimental protocols aimed at understanding the transport of molecules across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    PubMed

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Transplantation of rib cartilage reshaped with 1.56 μm laser radiation in rabbits

    NASA Astrophysics Data System (ADS)

    Sobol, E.; Baum, O.; Alexandrovskaya, Yu.; Shekhter, A.; Selezneva, L.; Svistuskin, V.

    2017-02-01

    As cartilage is an ideal natural material for transplantation, its use in the ENT surgery is limited by a difficulty to get proper shape of cartilage implants. Aim of the work is to make ring-shaped cartilage implants, to check their stability after laser reshaping and to perform transplantation into rabbits in vivo. We experimented with costal cartilages of 1-2 mm in thickness obtained from 3rd and 4rd ribs of a rabbit. 1.56 μm laser (Arcuo Medical Inc.) was used for cartilage reshaping. The laser settings were established taking into account anisotropy of cartilage structure for different orientation of the implants. The reshaped cartilage implants were surgically sewn to rib cartilages of the other rabbits. The rabbits were slaughtered in 3.5-4 months after surgery. The results have shown that (1) all reshaped implants kept circular form, and (2) the implants were adhered to the native rabbit cartilage sites (3) pronounced signs of regeneration in the intermediate zones were observed. The prospects of the cartilage implants use in larynx stenosis surgery are discussed.

  11. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.

    PubMed

    You, Fu; Eames, B Frank; Chen, Xiongbiao

    2017-07-23

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.

  12. Quasi-static elastography comparison of hyaline cartilage structures

    NASA Astrophysics Data System (ADS)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  13. Quantitative T2-Mapping and T2⁎-Mapping Evaluation of Changes in Cartilage Matrix after Acute Anterior Cruciate Ligament Rupture and the Correlation between the Results of Both Methods.

    PubMed

    Tao, Hongyue; Qiao, Yang; Hu, Yiwen; Xie, Yuxue; Lu, Rong; Yan, Xu; Chen, Shuang

    2018-01-01

    To quantitatively assess changes in cartilage matrix after acute anterior cruciate ligament (ACL) rupture using T2- and T2 ⁎ -mapping and analyze the correlation between the results of both methods. Twenty-three patients and 23 healthy controls were enrolled and underwent quantitative MRI examination. The knee cartilage was segmented into six compartments, including lateral femur (LF), lateral tibia (LT), medial femur (MF), medial tibia (MT), trochlea (Tr), and patella (Pa). T2 and T2 ⁎ values were measured in full-thickness as well as superficial and deep layers of each cartilage compartment. Differences of T2 and T2 ⁎ values between patients and controls were compared using unpaired Student's t -test, and the correlation between their reciprocals was analyzed using Pearson's correlation coefficient. ACL-ruptured patients showed higher T2 and T2 ⁎ values in full-thickness and superficial layers of medial and lateral tibiofemoral joint. Meanwhile, patients exhibited higher T2 ⁎ values in deep layers of lateral tibiofemoral joint. The elevated percentages of T2 and T2 ⁎ value in superficial LT were most significant (20.738%, 17.525%). The reciprocal of T2 ⁎ value was correlated with that of T2 value ( r = 0.886, P < 0.001). The early degeneration could occur in various knee cartilage compartments after acute ACL rupture, especially in the superficial layer of LT. T2 ⁎ -mapping might be more sensitive in detecting deep layer of cartilage than T2-mapping.

  14. Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application.

    PubMed

    Nasiri, Bita; Mashayekhan, Shohreh

    2017-07-01

    Due to the avascular nature of articular cartilage, damaged tissue has little capacity for spontaneous healing. Three-dimensional scaffolds have potential for use in tissue engineering approach for cartilage repair. In this study, bovine cartilage tissue was decellularized and chemically crosslinked hybrid chitosan/extracellular matrix (ECM) scaffolds were fabricated with different ECM weight ratios by simple freeze drying method. Various properties of chitosan/ECM scaffolds such as microstructure, mechanical strength, swelling ratio, and biodegradability rate were investigated to confirm improved structural and biological characteristics of chitosan scaffolds in the presence of ECM. The results indicated that by introducing ECM to chitosan, pore sizes in scaffolds with 1% and 2% ECM decreased and thus the mechanical properties were improved. The presence of ECM in the same scaffolds also improved the swelling ratio and biodegradation rate in the hybrid scaffolds. MTT cytotoxicity assays performed on chondrocyte cells cultured on chitosan/ECM scaffolds having various amounts of ECM showed that the greatest cell attachment belongs to the sample with intermediate ECM content (2% ECM). Overall, it can be concluded from all obtained results that the prepared scaffold with intermediate concentration of ECM could be a proper candidate for use in cartilage tissue engineering. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  15. Accuracy of magnetic resonance imaging to detect cartilage loss in severe osteoarthritis of the first carpometacarpal joint: comparison with histological evaluation.

    PubMed

    Saltzherr, Michael S; Coert, J Henk; Selles, Ruud W; van Neck, Johan W; Jaquet, Jean-Bart; van Osch, Gerjo J V M; Oei, Edwin H G; Luime, Jolanda J; Muradin, Galied S R

    2017-03-14

    Magnetic resonance imaging (MRI) is increasingly used for research in hand osteoarthritis, but imaging the thin cartilage layers in the hand joints remains challenging. We therefore assessed the accuracy of MRI in detecting cartilage loss in patients with symptomatic osteoarthritis of the first carpometacarpal (CMC1) joint. Twelve patients scheduled for trapeziectomy to treat severe symptomatic osteoarthritis of the CMC1 joint underwent a preoperative high resolution 3D spoiled gradient (SPGR) MRI scan. Subsequently, the resected trapezium was evaluated histologically. The sections were scored for cartilage damage severity (Osteoarthritis Research Society International (OARSI) score), and extent of damage (percentage surface area). Each MRI scan was scored for the area of normal cartilage, partial cartilage loss and full cartilage loss. The percentages of the total surface area with any cartilage loss and full-thickness cartilage loss were calculated using MRI and histological evaluation. MRI and histological evaluation both identified large areas of overall cartilage loss. The median (IQR) surface area of any cartilage loss on MRI was 98% (82-100%), and on histological assessment 96% (87-98%). However, MRI underestimated the extent of full-thickness cartilage loss. The median (IQR) surface area of full-thickness cartilage loss on MRI was 43% (22-70%), and on histological evaluation 79% (67-85%). The difference was caused by a thin layer of high signal on the articulating surface, which was interpreted as damaged cartilage on MRI but which was not identified on histological evaluation. Three-dimensional SPGR MRI of the CMC1 joint demonstrates overall cartilage damage, but underestimates full-thickness cartilage loss in patients with advanced osteoarthritis.

  16. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running.

    PubMed

    Mosher, T J; Liu, Y; Torok, C M

    2010-03-01

    To characterize effects of age and physical activity level on cartilage thickness and T2 response immediately after running. Institutional review board approval was obtained and all subjects provided informed consent prior to study participation. Cartilage thickness and magnetic resonance imaging (MRI) T2 values of 22 marathon runners and 15 sedentary controls were compared before and after 30 min of running. Runner and control groups were stratified by ageor=46 years. Multi-echo [(Time to Repetition (TR)/Time to Echo (TE) 1500 ms/9-109 ms)] MR images obtained using a 3.0 T scanner were used to calculate thickness and T2 values from the central femoral and tibial cartilage. Baseline cartilage T2 values, and change in cartilage thickness and T2 values after running were compared between the four groups using one-way analysis of variance (ANOVA). After running MRI T2 values decreased in superficial femoral (2 ms-4 ms) and tibial (1 ms-3 ms) cartilage along with a decrease in cartilage thickness: (femoral: 4%-8%, tibial: 0%-12%). Smaller decrease in cartilage T2 values were observed in the middle zone of cartilage, and no change was observed in the deepest layer. There was no difference cartilage deformation or T2 response to running as a function of age or level of physical activity. Running results in a measurable decrease in cartilage thickness and MRI T2 values of superficial cartilage consistent with greater compressibility of the superficial cartilage layer. Age and level of physical activity did not alter the T2 response to running. Copyright 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering

    PubMed Central

    You, Fu; Eames, B. Frank; Chen, Xiongbiao

    2017-01-01

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed. PMID:28737701

  18. Dynamic compressive properties of bovine knee layered tissue

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Hino, Yuki; Todo, Mitsugu

    2015-09-01

    In Japan, the most common articular disease is knee osteoarthritis. Among many treatment methodologies, tissue engineering and regenerative medicine have recently received a lot of attention. In this field, cells and scaffolds are important, both ex vivo and in vivo. From the viewpoint of effective treatment, in addition to histological features, the compatibility of mechanical properties is also important. In this study, the dynamic and static compressive properties of bovine articular cartilage-cancellous bone layered tissue were measured using a universal testing machine and a split Hopkinson pressure bar method. The compressive behaviors of bovine articular cartilage-cancellous bone layered tissue were examined. The effects of strain rate on the maximum stress and the slope of stress-strain curves of the bovine articular cartilage-cancellous bone layered tissue were discussed.

  19. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.

    PubMed

    Wu, J Z; Herzog, W; Epstein, M

    1998-02-01

    The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.

  20. Synergistic Interactions of a Synthetic Lubricin-Mimetic with Fibronectin for Enhanced Wear Protection

    PubMed Central

    Andresen Eguiluz, Roberto C.; Cook, Sierra G.; Tan, Mingchee; Brown, Cory N.; Pacifici, Noah J.; Samak, Mihir S.; Bonassar, Lawrence J.; Putnam, David; Gourdon, Delphine

    2017-01-01

    Lubricin (LUB), a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN), a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA) normal force measurements indicate that the lubricin-mimetic (mimLUB) could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (μ ≈ 0.28). These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica) substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo. PMID:28702455

  1. Repair of articular cartilage and subchondral defects in rabbit knee joints with a polyvinyl alcohol/nano-hydroxyapatite/polyamide 66 biological composite material.

    PubMed

    Guo, Tao; Tian, Xiaobin; Li, Bo; Yang, Tianfu; Li, Yubao

    2017-11-15

    This study sought to prepare a new PVA/n-HA/PA66 composite to investigate the repair of articular cartilage and subchondral defects in rabbit knee joints. A 5 × 5 × 5 mm-sized defect was created in the patellofemoral joints of 72 healthy adult New Zealand rabbits. The rabbits were then randomly divided into three groups (n = 24): PVA/n-HA+PA66 group, polyvinyl alcohol (PVA) group, and control (untreated) group. Cylindrical PVA/n-HA+PA66, 5 × 5 mm, comprised an upper PVA layer and a lower n-HA+PA66 layer. Macroscopic and histological evaluations were performed at 4, 8, 12, and 24 weeks, postoperatively. Type II collagen was measured by immunohistochemical staining. The implant/cartilage and bone interfaces were observed by scanning electron microscopy. At 24 weeks postoperatively, the lower PVA/n-HA+PA66 layer became surrounded by cartilage, with no obvious degeneration. In the PVA group, an enlarged space was observed between the implant and the host tissue that had undergone degeneration. In the control group, the articular cartilage had become calcified. In the PVA/n-HA+PA66 group, positive type II collagen staining was observed between the composite and the surrounding cartilage and on the implant surface. In the PVA group, positive staining was slightly increased between the PVA and the surrounding cartilage, but reduced on the PVA surface. In the control group, reduced staining was observed throughout. Scanning electron microscopy showed increased bone tissue in the lower n-HA+PA66 layer that was in close approximation with the upper PVA layer of the composite. In the PVA group, the bone tissue around the material had receded, and in the control group, the defect was filled with bone tissue, while the superior aspect of the defect was filled with disordered, fibrous tissue. The diphase biological composite material PVA/n-HA+PA66 exhibits good histocompatibility and offers a satisfactory substitute for articular cartilage and subchondral bone.

  2. Quantitative T2-Mapping and T2⁎-Mapping Evaluation of Changes in Cartilage Matrix after Acute Anterior Cruciate Ligament Rupture and the Correlation between the Results of Both Methods

    PubMed Central

    Tao, Hongyue; Qiao, Yang; Hu, Yiwen; Xie, Yuxue; Lu, Rong; Yan, Xu

    2018-01-01

    Objectives To quantitatively assess changes in cartilage matrix after acute anterior cruciate ligament (ACL) rupture using T2- and T2⁎-mapping and analyze the correlation between the results of both methods. Methods Twenty-three patients and 23 healthy controls were enrolled and underwent quantitative MRI examination. The knee cartilage was segmented into six compartments, including lateral femur (LF), lateral tibia (LT), medial femur (MF), medial tibia (MT), trochlea (Tr), and patella (Pa). T2 and T2⁎ values were measured in full-thickness as well as superficial and deep layers of each cartilage compartment. Differences of T2 and T2⁎ values between patients and controls were compared using unpaired Student's t-test, and the correlation between their reciprocals was analyzed using Pearson's correlation coefficient. Results ACL-ruptured patients showed higher T2 and T2⁎ values in full-thickness and superficial layers of medial and lateral tibiofemoral joint. Meanwhile, patients exhibited higher T2⁎ values in deep layers of lateral tibiofemoral joint. The elevated percentages of T2 and T2⁎ value in superficial LT were most significant (20.738%, 17.525%). The reciprocal of T2⁎ value was correlated with that of T2 value (r = 0.886, P < 0.001). Conclusion The early degeneration could occur in various knee cartilage compartments after acute ACL rupture, especially in the superficial layer of LT. T2⁎-mapping might be more sensitive in detecting deep layer of cartilage than T2-mapping. PMID:29888279

  3. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    PubMed

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage tissue with properties similar to the deep layer of HC in vitro. The HC tissue obtained by the method described can be used to develop an implantable product for the replacement of damaged or malformed AC, especially in younger patients where the lesions are caused by trauma or mechanical stress.

  4. Morphometric evaluation of condylar cartilage of growing rats in response to mandibular retractive forces.

    PubMed

    de Sá, Milena Peixoto Nogueira; Zanoni, Jacqueline Nelisis; de Salles, Carlos Luiz Fernandes; de Souza, Fabrício Dias; Suga, Uhana Seifert Guimarães; Terada, Raquel Sano Suga

    2013-01-01

    The mandibular condylar surface is made up of four layers, i.e., an external layer composed of dense connective tissue, followed by a layer of undifferentiated cells, hyaline cartilage and bone. Few studies have demonstrated the behavior of the condylar cartilage when the mandible is positioned posteriorly, as in treatments for correcting functional Class III malocclusion. The aim of this study was to assess the morphologic and histological aspects of rat condyles in response to posterior positioning of the mandible. Thirty five-week-old male Wistar rats were selected and randomly divided into two groups: A control group (C) and an experimental group (E) which received devices for inducing mandibular retrusion. The animals were euthanized at time intervals of 7, 21 and 30 days after the experiment had began. For histological analysis, total condylar thickness was measured, including the proliferative, hyaline and hypertrophic layers, as well as each layer separately, totaling 30 measurements for each parameter of each animal. The greatest difference in cartilage thickness was observed in 21 days, although different levels were observed in the other periods. Group E showed an increase of 39.46% in the total layer, reflected by increases in the thickness of the hypertrophic (42.24%), hyaline (46.92%) and proliferative (17.70%) layers. Posteriorly repositioning the mandible produced a series of histological and morphological responses in the condyle, suggesting condylar and mandibular adaptation in rats.

  5. Cartilage canals in the distal intermediate ridge of the tibia of fetuses and foals are surrounded by different types of collagen.

    PubMed

    Hellings, Ingunn Risnes; Dolvik, Nils Ivar; Ekman, Stina; Olstad, Kristin

    2017-10-01

    Some epiphyseal growth cartilage canals are surrounded by a ring of hypereosinophilic matrix consisting of collagen type I. Absence of the collagen type I ring may predispose canal vessels to failure and osteochondrosis, which can lead to fragments in joints (osteochondrosis dissecans). It is not known whether the ring develops in response to programming or biomechanical force. The distribution that may reveal the function of the ring has only been described in the distal femur of a limited number of foals. It is also not known which cells are responsible for producing the collagen ring. The aims of the current study were to examine fetuses and foals to infer whether the ring forms in response to biomechanical force or programming, to describe distribution and to investigate which cell type produces the ring. The material consisted of 46 fetuses and foals from 293 days of gestation to 142 days old, of both sexes and different breeds, divided into three groups, designated the naïve group up to and including the day of birth, the adapting group from 2 days up to and including 14 days old, and the loaded group from 15 days and older. The distal tibia was sawn into parasagittal slabs and the cranial half of the central slab from the intermediate ridge was examined by light microscopy and immunohistochemical staining for collagen type I. Presence, completeness and location of the collagen ring was compared, as was the quantity of perivascular mesenchymal cells. An eosinophilic ring present on HE-stained sections was seen in every single fetus and foal examined, which corresponded to collagen type I in immunostained sections. A higher proportion of cartilage canals were surrounded by an eosinophilic ring in the naïve and adapting groups at 73 and 76%, respectively, compared with the loaded group at 51%. When considering only patent canals, the proportion of canals with an eosinophilic ring was higher in the adapting and loaded than the naïve group of foals. The ring was present around 90 and 81% of patent canals in the deep and middle layers, respectively, compared with 58% in the superficial layer, and the ring was more often complete around deep compared with superficial canals. The ring was absent or partial around chondrifying canals. When an eosinophilic ring was present around patent canals, it was more common for the canal to contain one or more layers of perivascular mesenchymal cells rather than few to no layers. It was also more common for the collagen ring to be more complete around canals that contained many as opposed to few mesenchymal cells. In conclusion, the proportion of cartilage canals that had an eosinophilic ring was similar in all three groups of fetuses and foals, indicating that the presence of the collagen ring was mostly programmed, although some adaptation was evident. The ring was more often present around deep, compared with superficial canals, indicating a role in preparation for ossification. The collagen ring appeared to be produced by perivascular mesenchymal cells. © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  6. Cartilage intermediate layer protein-1 alleviates pressure overload-induced cardiac fibrosis via interfering TGF-β1 signaling.

    PubMed

    Zhang, Cheng-Lin; Zhao, Qian; Liang, Hui; Qiao, Xue; Wang, Jin-Yu; Wu, Dan; Wu, Li-Ling; Li, Li

    2018-03-01

    Cardiac fibrosis is characterized by excessive deposition of extracellular matrix (ECM) proteins in the myocardium and results in decreased ventricular compliance and diastolic dysfunction. Cartilage intermediate layer protein-1 (CILP-1), a novel identified cardiac matricellular protein, is upregulated in most conditions associated with cardiac remodeling, however, whether CILP-1 is involved in pressure overload-induced fibrotic response is unknown. Here, we investigated whether CILP-1 was critically involved in the fibrotic remodeling induced by pressure overload. Western blot analysis and immunofluorescence staining showed that CILP-1 was predominantly detected in cardiac myocytes and to a less extent in the interstitium. In isolated adult mouse ventricular myocytes and nonmyocytes, CILP-1 was found to be mainly synthesized by myocytes. CILP-1 expression in left ventricles was upregulated in C57BL/6 mice undergoing transverse aortic constriction (TAC). Myocardial CILP-1 knockdown aggravated whereas CILP-1 overexpression attenuated TAC-induced ventricular remodeling and dysfunction, as measured by echocardiography test, morphological examination, and gene expressions of fibrotic molecules. Incubation of cardiac fibroblasts with the conditioned medium containing full-length, N-terminal, or C-terminal CILP-1 inhibited transforming growth factor (TGF)-β1-induced Smad3 phosphorylation and the subsequent profibrotic events. We first demonstrated that C-terminal CILP-1 increased Akt phosphorylation, promoted the interaction between Akt and Smad3, and suppressed Smad3 phosphorylation. Blockade of PI3K-Akt pathway attenuated the inhibitory effect of C-CILP-1 on TGF-β1-induced Smad3 activation. We conclude that CILP-1 is a novel ECM protein possessing anti-fibrotic ability in pressure overload-induced fibrotic remodeling. This anti-fibrotic effect of CILP-1 attributes to interfering TGF-β1 signaling through its N- and C- terminal fragments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. T2 mapping in patellar chondromalacia.

    PubMed

    Ruiz Santiago, Fernando; Pozuelo Calvo, Rocío; Almansa López, Julio; Guzmán Álvarez, Luis; Castellano García, María Del Mar

    2014-06-01

    To study the correlation between the T2 relaxation times of the patellar cartilage and morphological MRI findings of chondromalacia. This prospective study comprises 50 patients, 27 men and 23 women suffering of anterior knee pain (mean age: 29.7, SD 8.3 years; range: 16-45 years). MRI of 97 knees were performed in these patients at 1.5T magnet including sagittal T1, coronal intermediate, axial intermediate fat sat and T2 mapping. Chondromalacia was assessed using a modified version of Noyes classification. The relaxation time, T2, was studied segmenting the full thickness of the patellar cartilage in 12 areas: 4 proximal (external facet-proximal-lateral (EPL), external facet-proximal-central (EPC), internal facet-proximal-central (IPC), internal facet-proximal-medial (IPM), 4 in the middle section (external facet-middle-lateral (EML), external facet-middle-central (EMC), internal facet-middle-central (IMC), internal facet-middle-medial (IMM) and 4 distal (external facet-distal-lateral (EDL), external facet-distal-central (EDC), internal facet-distal-central (IDC), internal facet-distal-medial (IDM). T2 values showed a significant increase in mild chondromalacia regarding normal cartilage in most of the cartilage areas (p<0.05), except in the internal distal facet (IDC and IDM), EPC, EDL, and IMM. Severe chondromalacia was characterized by a fall of T2 relaxation times with loss of statistical significant differences in comparison with normal cartilage, except in EMC and IMC, where similar values as mild chondromalacia were maintained (p<0.05). Steepest increase in T2 values of patellar cartilage occurs in early stages of patellar cartilage degeneration. Progression of morphologic changes of chondromalacia to more severe degrees is associated to a new drop of T2 relaxation times approaching basal values in most of the areas of the patellar cartilage, except in the central area of the middle section, where T2 values remain increased. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Investigation of Migration and Differentiation of Human Mesenchymal Stem Cells on Five-Layered Collagenous Electrospun Scaffold Mimicking Native Cartilage Structure.

    PubMed

    Reboredo, Jenny W; Weigel, Tobias; Steinert, Andre; Rackwitz, Lars; Rudert, Maximilian; Walles, Heike

    2016-09-01

    Cartilage degeneration is the major cause of chronic pain, lost mobility, and reduced quality of life for over estimated 150 million osteoarthritis sufferers worldwide. Despite intensive research, none of the available therapies can restore the hyaline cartilage surface beyond just fibrous repair. To overcome these limitations, numerous cell-based approaches for cartilage repair are being explored that aim to provide an appropriate microenvironment for chondrocyte maintenance and differentiation of multipotent mesenchymal stem cells (MSCs) toward the chondrogenic lineage. Articular cartilage is composed of highly organized collagen network that entails the tissue into four distinct zones and each zone into three different regions based on differences in matrix morphology and biochemistry. Current cartilage implants cannot establish the hierarchical tissue organization that seems critical for normal cartilage function. Therefore, in this study, a structured, multilayered collagen scaffold designed for the replacement of damaged cartilage is presented that allows repopulation by host cells and synthesis of a new natural matrix. By using the electrospinning method, the potential to engineer a scaffold consisting of two different collagen types is obtained. With the developed collagen scaffold, a five-layered biomaterial is created that has the potency to induce the differentiation of human bone marrow derived MSCs toward the chondrogenic lineage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation.

    PubMed

    Richard, F; Villars, M; Thibaud, S

    2013-08-01

    The viscoelastic behavior of articular cartilage changes with progression of osteoarthritis. The objective of this study is to quantify this progression and to propose a viscoelastic model of articular cartilage taking into account the degree of osteoarthritis that which be easily used in predictive numerical simulations of the hip joint behavior. To quantify the effects of osteoarthritis (OA) on the viscoelastic behavior of human articular cartilage, samples were obtained from the hip arthroplasty due to femoral neck fracture (normal cartilage) or advanced coxarthrosis (OA cartilage). Experimental data were obtained from instrumented indentation tests on unfrozen femoral cartilage collected and studied in the day following the prosthetic hip surgery pose. By using an inverse method coupled with a numerical modeling (FEM) of all experimental data of the indentation tests, the viscoelastic properties of the two states were quantified. Mean values of viscoelastic parameters were significantly lower for OA cartilage than normal (instantaneous and relaxed tension moduli, viscosity coefficient). Based on the results and in the thermodynamic framework, a constitutive viscoelastic model taking into account the degree of osteoarthritis as an internal variable of damage is proposed. The isotropic phenomenological viscoelastic model including degradation provides an accurate prediction of the mechanical response of the normal human cartilage and OA cartilage with advanced coxarthrosis but should be further validated for intermediate degrees of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage.

    PubMed

    Schooler, J; Kumar, D; Nardo, L; McCulloch, C; Li, X; Link, T M; Majumdar, S

    2014-01-01

    To investigate longitudinal changes in laminar and spatial distribution of knee articular cartilage magnetic resonance imaging (MRI) T1ρ and T2 relaxation times, in individuals with and without medial compartment cartilage defects. All subjects (at baseline n = 88, >18 years old) underwent 3-Tesla knee MRI at baseline and annually thereafter for 3 years. The MR studies were evaluated for presence of cartilage defects (modified Whole-Organ Magnetic Resonance Imaging Scoring - mWORMS), and quantitative T1ρ and T2 relaxation time maps. Subjects were segregated into those with (mWORMS ≥2) and without (mWORMS ≤1) cartilage lesions at the medial tibia (MT) or medial femur (MF) at each time point. Laminar (bone and articular layer) and spatial (gray level co-occurrence matrix - GLCM) distribution of the T1ρ and T2 relaxation time maps were calculated. Linear regression models (cross-sectional) and Generalized Estimating Equations (GEEs) (longitudinal) were used. Global T1ρ, global T2 and articular layer T2 relaxation times at the MF, and global and articular layer T2 relaxation times at the MT, were higher in subjects with cartilage lesions compared to those without lesions. At the MT global T1ρ relaxation times were higher at each time point in subjects with lesions. MT T1ρ and T2 became progressively more heterogeneous than control compartments over the course of the study. Spatial distribution of T1ρ and T2 relaxation time maps in medial knee OA using GLCM technique may be a sensitive indicator of cartilage deterioration, in addition to whole-compartment relaxation time data. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage.

    PubMed

    Mononen, Mika E; Jurvelin, Jukka S; Korhonen, Rami K

    2015-01-01

    Computational models can be used to evaluate the functional properties of knee joints and possible risk locations within joints. Current models with fibril-reinforced cartilage layers do not provide information about realistic human movement during walking. This study aimed to evaluate stresses and strains within a knee joint by implementing load data from a gait cycle in healthy and meniscectomised knee joint models with fibril-reinforced cartilages. A 3D finite element model of a knee joint with cartilages and menisci was created from magnetic resonance images. The gait cycle data from varying joint rotations, translations and axial forces were taken from experimental studies and implemented into the model. Cartilage layers were modelled as a fibril-reinforced poroviscoelastic material with the menisci considered as a transversely isotropic elastic material. In the normal knee joint model, relatively high maximum principal stresses were specifically predicted to occur in the medial condyle of the knee joint during the loading response. Bilateral meniscectomy increased stresses, strains and fluid pressures in cartilage on the lateral side, especially during the first 50% of the stance phase of the gait cycle. During the entire stance phase, the superficial collagen fibrils modulated stresses of cartilage, especially in the medial tibial cartilage. The present computational model with a gait cycle and fibril-reinforced biphasic cartilage revealed time- and location-dependent differences in stresses, strains and fluid pressures occurring in cartilage during walking. The lateral meniscus was observed to have a more significant role in distributing loads across the knee joint than the medial meniscus, suggesting that meniscectomy might initiate a post-traumatic process leading to osteoarthritis at the lateral compartment of the knee joint.

  12. Multiple prismatic calcium phosphate layers in the jaws of present-day sharks (Chondrichthyes; Selachii).

    PubMed

    Dingerkus, G; Séret, B; Guilbert, E

    1991-01-15

    Jaws of large individuals, over 2 m in total length, of the shark species Carcharodon carcharias (great white shark) and Isurus oxyrinchus (mako shark) of the family Lamnidae, and Galeocerdo cuvieri (tiger shark) and Carcharhinus leucas (bull shark) of the family Carcharhinidae were found to have multiple, up to five, layers of prismatic calcium phosphate surrounding the cartilages. Smaller individuals of these species and other known species of living chondrichthyans have only one layer of prismatic calcium phosphate surrounding the cartilages, as also do most species of fossil chondrichthyans. Two exceptions are the fossil shark genera Xenacanthus and Tamiobatis. Where it is found in living forms, this multiple layered calcification does not appear to be phylogenetic, as it appears to be lacking in other lamnid and carcharhinid genera and species. Rather it appears to be functional, only appearing in larger individuals and species of these two groups, and hence may be necessary to strengthen the jaw cartilages of such individuals for biting.

  13. Using Four-Layer Sculpted Rib Cartilage Framework to Increase Transverse Height of the Reconstructive Ear in One Operative Stage for Microtia Patients.

    PubMed

    Wan, Rui; Pang, Xingyuan; Ren, Jun

    2018-02-01

    This case study improves an operative method of ear reconstruction for microtia patients by using a four-layer rib cartilage framework to increase transverse height of the reconstructive ear to a natural level in one operative stage. The procedures of ear reconstruction were conducted from February 2014 to May 2016. The ear framework used in the procedures was fabricated from autologous rib cartilage into a four-layer spliced sculpture. Totally 23 patients with unilateral microtia were willing to be enrolled in this study. After the operation, 23 patients achieved 2.3-2.8 cm transverse height of reconstructed ears, which was basically the same as the normal side. Both patients and their families felt satisfied with the results. Follow-up was performed at 6-16 months after the procedures. Only one case showed significantly lowered transverse height of the reconstructed ear, compared to the normal one. It was due to the sleeping position of the patient (10-year-old boy), which put the reconstructed ear under pressure and reduced the transverse height of the ear. The method of four-layer sculpted autologous rib cartilage ear reconstruction has good clinical effect. It can provide a reconstructed ear that reaches normal transverse height and avoids a third operation to increase the transverse height by rib cartilage transplantation. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  14. Cartilage grafting in nasal reconstruction.

    PubMed

    Immerman, Sara; White, W Matthew; Constantinides, Minas

    2011-02-01

    Nasal reconstruction after resection for cutaneous malignancies poses a unique challenge to facial plastic surgeons. The nose, a unique 3-D structure, not only must remain functional but also be aesthetically pleasing to patients. A complete understanding of all the layers of the nose and knowledge of available cartilage grafting material is necessary. Autogenous material, namely septal, auricular, and costal cartilage, is the most favored material in a free cartilage graft or a composite cartilage graft. All types of material have advantages and disadvantages that should guide the most appropriate selection to maximize the functional and cosmetic outcomes for patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Ultrasound elastography to determine the layered mechanical properties of articular cartilage and the importance of such structural characteristics under load.

    PubMed

    McCredie, Alexandra J; Stride, Eleanor; Saffari, Nader

    2009-01-01

    Articular cartilage is an important load bearing surface in joints. Prone to damage and with limited self-repair ability, it is of interest to tissue engineers. Tissue implant design requires full mechanical characterisation of healthy native tissue. A layered organisation of reinforcing collagen fibrils exists in healthy articular cartilage and is believed to be important for correct tissue function. However, the effect of this on the local depth-dependent elasticity is poorly characterised. In this study, quasi-static ultrasound elastography is used both to compare the depth-dependent elastic properties of cartilage structures with two different fibril arrangements and to monitor changes in the elastic properties of engineered samples during development. Results show global and local elastic properties of the native tissues and highlight the differences caused by fibril architecture. At increasing culture periods, results from the engineered tissue demonstrate an increase in elastic stiffness and the time taken to reach equilibrium under a quasi-static displacement. The study suggests suitability of ultrasound elastography for design and monitoring engineered articular cartilage.

  16. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.

    PubMed

    Wiener, Edzard; Settles, Marcus; Diederichs, Gerd

    2010-01-01

    The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p < 0.001) were measurable for all three contrast agents. T(2) values were 58 +/- 2 and 62 +/- 3 ms for gadopentetate dimeglumine, 46 +/- 2 and 57 +/- 2 ms for gadobenate dimeglumine, and 38 +/- 2 and 42 +/- 2 ms for gadoteridol at 1 and 3 mm depths, respectively. The r(2)/r(1) relaxivity ratios across cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John Wiley & Sons, Ltd.

  17. Low-field one-dimensional and direction-dependent relaxation imaging of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Mollova, Ayret; Stapf, Siegfried

    2011-12-01

    The structure of articular cartilage is separated into three layers of differently oriented collagen fibers, which is accompanied by a gradient of increasing glycosaminoglycan (GAG) and decreasing water concentration from the top layer towards the bone interface. The combined effect of these structural variations results in a change of the longitudinal and transverse relaxation times as a function of the distance from the cartilage surface. In this paper, this dependence is investigated at a magnetic field strength of 0.27 T with a one-dimensional depth resolution of 50 μm on bovine hip and stifle joint articular cartilage. By employing this method, advantage is taken of the increasing contrast of the longitudinal relaxation rate found at lower magnetic field strengths. Furthermore, evidence for an orientational dependence of relaxation times with respect to an axis normal to the surface plane is given, an observation that has recently been reported using high-field MRI and that was explained by preferential orientations of collagen bundles in each of the three cartilage zones. In order to quantify the extent of a further contrast mechanism and to estimate spatially dependent glycosaminoglycan concentrations, the data are supplemented by proton relaxation times that were acquired in bovine articular cartilage that was soaked in a 0.8 mM aqueous Gd ++ solution.

  18. Implantation of Autologous Cartilage Chips Improves Cartilage Repair Tissue Quality in Osteochondral Defects: A Study in Göttingen Minipigs.

    PubMed

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke; Hede, Kris Chadwick; Lind, Martin

    2016-06-01

    Osteochondral injuries have poor endogenous healing potential, and no standard treatment has been established. The use of combined layered autologous bone and cartilage chips for treatment of osteochondral defects has shown promising short-term clinical results. This study aimed to investigate the role of cartilage chips by comparing combined layered autologous bone and cartilage chips with autologous bone implantation alone in a Göttingen minipig model. The hypothesis was that the presence of cartilage chips would improve the quality of the repair tissue. Controlled laboratory study. Twelve Göttingen minipigs received 2 osteochondral defects in each knee. The defects were randomized to autologous bone graft (ABG) combined with autologous cartilage chips (autologous dual-tissue transplantation [ADTT]) or ABG alone. Six animals were euthanized at 6 months and 6 animals were euthanized at 12 months. Follow-up evaluation consisted of histomorphometry, immunohistochemistry, semiquantitative scoring (International Cartilage Repair Society II), and computed tomography. There was significantly more hyaline cartilage in the ADTT group (25.8%) compared with the ABG group (12.8%) at 6 months after treatment. At 12 months, the fraction of hyaline cartilage in the ABG group had significantly decreased to 4.8%, whereas the fraction of hyaline cartilage in the ADTT group was unchanged (20.1%). At 6 and 12 months, there was significantly more fibrocartilage in the ADTT group (44% and 60.8%) compared with the ABG group (24.5% and 41%). The fraction of fibrous tissue was significantly lower in the ADTT group compared with the ABG group at both 6 and 12 months. The implanted cartilage chips stained >75% positive for collagen type 4 and laminin at both 6 and 12 months. Significant differences were found in a number of International Cartilage Repair Society II subcategories. The volume of the remaining bone defect significantly decreased from 6 to 12 months in both treatment groups; however, no difference in volume was found between the groups at either 6 or 12 months. The presence of cartilage chips in an osteochondral defect facilitated the formation of fibrocartilage as opposed to fibrous tissue at both 6 and 12 months posttreatment. The implanted chips were present in the defect and viable after 12 months. This study substantiates the chondrogenic role of cartilage chips in osteochondral defects. © 2016 The Author(s).

  19. Collagen-PVA aligned nanofiber on collagen sponge as bi-layered scaffold for surface cartilage repair.

    PubMed

    Lin, Hsin-Yi; Tsai, Wen-Chi; Chang, Shih-Hsing

    2017-05-01

    Researchers have made bi-layered scaffolds but mostly for osteochondral repairs. The anatomic structure of human cartilage has different zones and that each has varying matrix morphology and mechanical properties is often overlooked. Two bi-layered collagen-based composites were made to replicate the superficial and transitional zones of an articular cartilage. Aligned and random collagen-PVA nanofibers were electrospun onto a freeze-dried collagen sponge to make the aligned and random composites, respectively. The morphology, swelling ratio, degradation and tensile properties of the two composites were examined. Primary porcine chondrocytes were cultured on the composites for three weeks and their proliferation and secretion of glycosaminoglycan (GAG) and type II collagen were measured. The influences of the cell culture on the tensile properties of the composites were studied. The nanofiber layer remained adhered to the sponge after three weeks of cell culture. Both composites lost 30-35% of their total weight in a saline buffer after three weeks. The tensile strength and Young's modulus of both composites increased after three weeks of chondrocyte culture (p < 0.05). The aligned composite with extracellular matrix deposition had a Young's modulus (0.35 MPa) similar to that of articular cartilage reported in literature (0.36-0.8 MPa). The chondrocytes on both aligned and random composites proliferated and secreted similar amounts of GAG and type II collagen. They were seen embedded in lacunae after three weeks. The aligned composite may be more suitable for articular cartilage repair because of the higher tensile strength from the aligned nanofibers on the surface that can better resist wear.

  20. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2-mapping at 3T MRI: a feasibility study.

    PubMed

    Marik, W; Apprich, S; Welsch, G H; Mamisch, T C; Trattnig, S

    2012-05-01

    To perform an in vivo evaluation comparing overlying articular cartilage in patients suffering from osteochondrosis dissecans (OCD) in the talocrural joint and healthy volunteers using quantitative T2 mapping at 3.0 T. Ten patients with OCD of Grade II or lower and 9 healthy age matched volunteers were examined at a 3.0 T whole body MR scanner using a flexible multi-element coil. In all investigated persons MRI included proton-density (PD)-FSE and 3D GRE (TrueFisp) sequences for morphological diagnosis and location of anatomical site and quantitative T2 and T2 maps. Region of interest (ROI) analysis was performed for the cartilage layer above the OCD and for a morphologically healthy graded cartilage layer. Mean T2 and T2 values were then statistically analysed. The cartilage layer of healthy volunteers showed mean T2 and T2 values of 29.4 ms (SD 4.9) and 11.8 ms (SD 2.7), respectively. In patients with OCD of grade I and II lesions mean T2 values were 40.9 ms (SD 6.6), 48.7 ms (SD 11.2) and mean T2 values were 16.1 ms (SD 3.2), 16.2 ms (SD 4.8). Therefore statistically significantly higher mean T2 and T2 values were found in patients suffering from OCD compared to healthy volunteers. T2 and T2 mapping can help assess the microstructural composition of cartilage overlying osteochondral lesions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. An integral biochemical analysis of the main constituents of articular cartilage, subchondral and trabecular bone.

    PubMed

    van der Harst, Mark R; Brama, Pieter A J; van de Lest, Chris H A; Kiers, Geesje H; DeGroot, Jeroen; van Weeren, P René

    2004-09-01

    In articular joints, the forces generated by locomotion are absorbed by the whole of cartilage, subchondral bone and underlying trabecular bone. The objective of this study is to test the hypothesis that regional differences in joint loading are related to clear and interrelated differences in the composition of the extracellular matrix (ECM) of all three weight-bearing constituents. Cartilage, subchondral- and trabecular bone samples from two differently loaded sites (site 1, dorsal joint margin; site 2, central area) of the proximal articular surface of 30 macroscopically normal equine first phalanxes were collected. Collagen content, cross-linking (pentosidine, hydroxylysylpyridinoline (HP), lysylpyridinoline (LP)) hydroxylation, and denaturation, as well as glycosaminoglycan (GAG) and DNA content were measured in all three tissues. In addition, bone mineral density (BMD), the percentage of ash and the mineral composition (calcium, magnesium and phosphorus) were determined in the bony samples. For pentosidine cross-links there was an expected correlation with age. Denatured collagen content was significantly higher in cartilage at site 1 than at site 2 and was higher in trabecular bone compared to subchondral bone, with no site differences. There were significant site differences in hydroxylysine (Hyl) concentration and HP cross-links in cartilage that were paralleled in one or both of the bony layers. In subchondral bone there was a positive correlation between total (HP+LP) cross-links and Ca content. For Ca and other minerals there were corresponding site differences in both bony layers. It is concluded that there are distinct differences in distribution of the major biochemical components over both sites in all three layers. These differences show similar patterns in cartilage, subchondral bone and trabecular bone, stressing the functional unity of these tissues. Overall, differences could be interpreted as adaptations to a considerably higher cumulative loading over time at site 2, requiring stiffer tissue. Turnover is higher in trabecular bone than in subchondral bone. In cartilage, the dorsal site 1 appears to suffer more tissue damage.

  2. Matrix Disruptions, Growth, and Degradation of Cartilage with Impaired Sulfation*

    PubMed Central

    Mertz, Edward L.; Facchini, Marcella; Pham, Anna T.; Gualeni, Benedetta; De Leonardis, Fabio; Rossi, Antonio; Forlino, Antonella

    2012-01-01

    Diastrophic dysplasia (DTD) is an incurable recessive chondrodysplasia caused by mutations in the SLC26A2 transporter responsible for sulfate uptake by chondrocytes. The mutations cause undersulfation of glycosaminoglycans in cartilage. Studies of dtd mice with a knock-in Slc26a2 mutation showed an unusual progression of the disorder: net undersulfation is mild and normalizing with age, but the articular cartilage degrades with age and bones develop abnormally. To understand underlying mechanisms, we studied newborn dtd mice. We developed, verified and used high-definition infrared hyperspectral imaging of cartilage sections at physiological conditions, to quantify collagen and its orientation, noncollagenous proteins, and chondroitin chains, and their sulfation with 6-μm spatial resolution and without labeling. We found that chondroitin sulfation across the proximal femur cartilage varied dramatically in dtd, but not in the wild type. Corresponding undersulfation of dtd was mild in most regions, but strong in narrow articular and growth plate regions crucial for bone development. This undersulfation correlated with the chondroitin synthesis rate measured via radioactive sulfate incorporation, explaining the sulfation normalization with age. Collagen orientation was reduced, and the reduction correlated with chondroitin undersulfation. Such disorientation involved the layer of collagen covering the articular surface and protecting cartilage from degradation. Malformation of this layer may contribute to the degradation progression with age and to collagen and proteoglycan depletion from the articular region, which we observed in mice already at birth. The results provide clues to in vivo sulfation, DTD treatment, and cartilage growth. PMID:22556422

  3. 3.0T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging-A preliminary study.

    PubMed

    Jungmann, Pia M; Baum, Thomas; Schaeffeler, Christoph; Sauerschnig, Martin; Brucker, Peter U; Mann, Alexander; Ganter, Carl; Bieri, Oliver; Rummeny, Ernst J; Woertler, Klaus; Bauer, Jan S

    2015-08-01

    To determine the impact of axial traction during high resolution 3.0T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. MR images of n=25 asymptomatic ankles were acquired with and without axial traction (6kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1=best, 4=worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n=8) T2 and SSFP diffusion-weighted imaging (DWI; n=8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P<0.05). Cartilage surfaces were best visualized on coronal T1-w images (P<0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P>0.05). T2 values were lower at the tibia than at the talus (P<0.001). Reproducibility was better for images with axial traction. Axial traction increased the joint space width, allowed for better visualization of cartilage surfaces and improved compartment discrimination and reproducibility of quantitative cartilage parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. HYDROSTATIC PRESSURIZATION AND DEPLETION OF TRAPPED LUBRICANT POOL DURING CREEP CONTACT OF A RIPPLED INDENTER AGAINST A BIPHASIC ARTICULAR CARTILAGE LAYER

    PubMed Central

    Soltz, Michael A.; Basalo, Ines M.; Ateshian, Gerard A.

    2010-01-01

    This study presents an analysis of the contact of a rippled rigid impermeable indenter against a cartilage layer, which represents a first simulation of the contact of rough cartilage surfaces with lubricant entrapment. Cartilage was modeled with the biphasic theory for hydrated soft tissues, to account for fluid flow into or out of the lubricant pool. The findings of this study demonstrate that under contact creep, the trapped lubricant pool gets depleted within a time period on the order of seconds or minutes as a result of lubricant flow into the articular cartilage. Prior to depletion, hydrostatic fluid load across the contact interface may be enhanced by the presence of the trapped lubricant pool, depending on the initial geometry of the lubricant pool. According to friction models based on the biphasic nature of the tissue, this enhancement in fluid load support produces a smaller minimum friction coefficient than would otherwise be predicted without a lubricant pool. The results of this study support the hypothesis that trapped lubricant decreases the initial friction coefficient following load application, independently of squeeze-film lubrication effects. PMID:14618917

  5. Identification of DNA methylation changes associated with disease progression in subchondral bone with site-matched cartilage in knee osteoarthritis.

    PubMed

    Zhang, Yanfei; Fukui, Naoshi; Yahata, Mitsunori; Katsuragawa, Yozo; Tashiro, Toshiyuki; Ikegawa, Shiro; Lee, Ming Ta Michael

    2016-09-30

    Subchondral bone plays a key role in the development of osteoarthritis, however, epigenetics of subchondral bone has not been extensively studied. In this study, we examined the genome-wide DNA methylation profiles of subchondral bone from three regions on tibial plateau representing disease progression using HumanMethylation450 BeadChip to identify progression associated DNA methylation alterations. Significant differential methylated probes (DMPs) and differential methylated genes (DMGs) were identified in the intermediate and late stages and during the transition from intermediate to late stage of OA in the subchondral bone. Over half of the DMPs were hyper-methylated. Genes associated with OA and bone remodeling were identified. DMGs were enriched in morphogenesis and development of skeletal system, and HOX transcription factors. Comparison of DMGs identified in subchondral bone and site-matched cartilage indicated that DNA methylation changes occurred earlier in subchondral bone and identified different methylation patterns at the late stage of OA. However, shared DMPs, DMGs and common pathways that implicated the tissue reparation were also identified. Methylation is one key mechanism to regulate the crosstalk between cartilage and subchondral bone.

  6. Identification of DNA methylation changes associated with disease progression in subchondral bone with site-matched cartilage in knee osteoarthritis

    PubMed Central

    Zhang, Yanfei; Fukui, Naoshi; Yahata, Mitsunori; Katsuragawa, Yozo; Tashiro, Toshiyuki; Ikegawa, Shiro; Lee, Ming Ta Michael

    2016-01-01

    Subchondral bone plays a key role in the development of osteoarthritis, however, epigenetics of subchondral bone has not been extensively studied. In this study, we examined the genome-wide DNA methylation profiles of subchondral bone from three regions on tibial plateau representing disease progression using HumanMethylation450 BeadChip to identify progression associated DNA methylation alterations. Significant differential methylated probes (DMPs) and differential methylated genes (DMGs) were identified in the intermediate and late stages and during the transition from intermediate to late stage of OA in the subchondral bone. Over half of the DMPs were hyper-methylated. Genes associated with OA and bone remodeling were identified. DMGs were enriched in morphogenesis and development of skeletal system, and HOX transcription factors. Comparison of DMGs identified in subchondral bone and site-matched cartilage indicated that DNA methylation changes occurred earlier in subchondral bone and identified different methylation patterns at the late stage of OA. However, shared DMPs, DMGs and common pathways that implicated the tissue reparation were also identified. Methylation is one key mechanism to regulate the crosstalk between cartilage and subchondral bone. PMID:27686527

  7. Identification of Fibroblast Growth Factor-18 as a Molecule to Protect Adult Articular Cartilage by Gene Expression Profiling*

    PubMed Central

    Mori, Yoshifumi; Saito, Taku; Chang, Song Ho; Kobayashi, Hiroshi; Ladel, Christoph H.; Guehring, Hans; Chung, Ung-il; Kawaguchi, Hiroshi

    2014-01-01

    To identify genes that maintain the homeostasis of adult articular cartilage and regenerate its lesions, we initially compared four types of chondrocytes: articular (AA) versus growth plate (AG) cartilage chondrocytes in adult rats, and superficial layer (IS) versus deep layer (ID) chondrocytes of epiphyseal cartilage in infant rats. Microarray analyses revealed that 40 and 186 genes had ≥10-fold higher expression ratios of AA/AG and IS/ID, respectively, and 16 genes showed ≥10-fold of both AA/AG and IS/ID ratios. The results were validated by real-time RT-PCR analysis. Among them, Hoxd1, Fgf18, and Esm1 were expressed more strongly in AA than in IS. Fgf18 was the extracellular and secreted factor that decreased glycosaminoglycan release and depletion from the cartilage, and enhanced proliferation of articular chondrocytes. Fgf18 was strongly expressed in the articular cartilage chondrocytes of adult rats. In a surgical rat osteoarthritis model, a once-weekly injection of recombinant human FGF18 (rhFGF18) given 3 weeks after surgery prevented cartilage degeneration in a dose-dependent manner at 6 and 9 weeks after surgery, with significant effect at 10 μg/week of rhFGF18. As the underlying mechanism, rhFGF18 strongly up-regulated Timp1 expression in the cell and organ cultures, and inhibition of aggrecan release by rhFGF18 was restored by addition of an antibody to Timp1. In conclusion, we have identified Fgf18 as a molecule that protects articular cartilage by gene expression profiling, and the anticatabolic effects may at least partially be mediated by the Timp1 expression. PMID:24577103

  8. On foundations of discrete element analysis of contact in diarthrodial joints.

    PubMed

    Volokh, K Y; Chao, E Y S; Armand, M

    2007-06-01

    Information about the stress distribution on contact surfaces of adjacent bones is indispensable for analysis of arthritis, bone fracture and remodeling. Numerical solution of the contact problem based on the classical approaches of solid mechanics is sophisticated and time-consuming. However, the solution can be essentially simplified on the following physical grounds. The bone contact surfaces are covered with a layer of articular cartilage, which is a soft tissue as compared to the hard bone. The latter allows ignoring the bone compliance in analysis of the contact problem, i.e. rigid bones are considered to interact through a compliant cartilage. Moreover, cartilage shear stresses and strains can be ignored because of the negligible friction between contacting cartilage layers. Thus, the cartilage can be approximated by a set of unilateral compressive springs normal to the bone surface. The forces in the springs can be computed from the equilibrium equations iteratively accounting for the changing contact area. This is the essence of the discrete element analysis (DEA). Despite the success in applications of DEA to various bone contact problems, its classical formulation required experimental validation because the springs approximating the cartilage were assumed linear while the real articular cartilage exhibited non-linear mechanical response in reported tests. Recent experimental results of Ateshian and his co-workers allow for revisiting the classical DEA formulation and establishing the limits of its applicability. In the present work, it is shown that the linear spring model is remarkably valid within a wide range of large deformations of the cartilage. It is also shown how to extend the classical DEA to the case of strong nonlinearity if necessary.

  9. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    PubMed

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. © 2013.

  10. The molecular origin of a loading-induced black layer in the deep region of articular cartilage at the magic angle

    PubMed Central

    Wang, Nian; Kahn, David; Badar, Farid; Xia, Yang

    2014-01-01

    Purpose To investigate the molecular origin of an unusual low-intensity layer in the deep region of articular cartilage as seen in MRI when the tissue is imaged under compression and oriented at the magic angle. Materials and Methods Microscopic MRI (μMRI) T2 and T1ρ experiments were carried out for both native and degraded (treated with trypsin) 18 specimens. The glycosaminoglycan (GAG) concentrations in the specimens were quantified by both sodium ICP-OES and μMRI Gd(DTPA)2--contrast methods. The mechanical modulus of the specimens was also measured. Results Native tissue shows no load-induced layer, while the trypsin-degraded tissue shows clearly the low-intensity line at the deep part of tissue. The GAG reductions are confirmed by the sodium ICP-OES (from 81.7 ± 5.4 mg/ml to 9.2 ± 3.4 mg/ml), MRI GAG quantification (from 72.4 ± 6.7 mg/ml to 11.2 ± 2.9 mg/ml). The modulus reduction is confirmed by biomechanics (from 4.3 ± 0.7 MPa to 0.3 ± 0.1 MPa). Conclusion Both T2 and T1ρ profiles in native and degraded cartilage show strongly strain-, depth-, and angle-dependent using high resolution MRI. The GAG reduction is responsible for the visualization of a low-intensity layer in deep cartilage when it is loaded and orientated at 55°. PMID:24833266

  11. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers.

    PubMed

    Li, Junyan; Stewart, Todd D; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John

    2013-06-21

    Computational models of the natural hip joint are needed to examine and optimise tissue sparing interventions where the natural cartilage remains part of the bearing surfaces. Although the importance of interstitial fluid pressurisation in the performance of cartilage has long been recognized, few studies have investigated the time dependent interstitial fluid pressurisation in a three dimensional natural hip joint model. The primary aim of this study was to develop a finite element model of the natural hip incorporating the biphasic cartilage layers that was capable of simulating the joint response over a prolonged physiological loading period. An initial set of sensitivity studies were also undertaken to investigate the influence of hip size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the joint. The contact stress, contact area, fluid pressure and fluid support ratio were calculated and cross-compared between models with different parameters to evaluate their influence. It was found that the model predictions for the period soon after loading were sensitive to the hip size, clearance, cartilage aggregate modulus, thickness and hemiarthroplasty, while the time dependent behaviour over 3000s was influenced by the hip clearance and cartilage aggregate modulus, permeability, thickness and hemiarthroplasty. The modelling methods developed in this study provide a basic platform for biphasic simulation of the whole hip joint onto which more sophisticated material models or other input parameters could be added in the future. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Bioactive Nano-Fibrous Scaffolds for Bone and Cartilage Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Feng, Kai

    Scaffolds that can mimic the structural features of natural extracellular matrix and can deliver biomolecules in a controlled fashion may provide cells with a favorable microenvironment to facilitate tissue regeneration. Biodegradable nanofibrous scaffolds with interconnected pore network have previously been developed in our laboratory to mimic collagen matrix and advantageously support both bone and cartilage regeneration. This dissertation project aims to expand both the structural complexity and the biomolecule delivery capacity of such biomimetic scaffolds for tissue engineering. We first developed a nanofibrous scaffold that can release an antibiotic (doxycycline) with a tunable release rate and a tunable dosage, which was demonstrated to be able to inhibit bacterial growth over a prolonged time period. We then developed a nanofibrous tissue-engineciing scaffold that can release basic fibroblast growth factor (bFGF) in a spatially and temporally controlled fashion. In a mouse subcutaneous implantation model, the bFGF-releasing scaffold was shown to enhance cell penetration, tissue ingrowth and angiogenesis. It was also found that both the dose and the release rate of bFGF play roles in the biologic function of the scaffold. After that, we developed a nanofibrous PLLA scaffold that can release both bone morphogenetic protein 7 (BMP-7) and platelet-derived growth factor (PDGF) with distinct dosages and release kinetics. It was demonstrated that BMP-7 and PDGF could synergistically enhance bone regeneration using a mouse ectopic bone formation model and a rat periodontal fenestration defect regeneration model. The regeneration outcome was dependent on the dosage, the ratio and the release kinetics of the two growth factors. Last, we developed an anisotropic composite scaffold with an upper layer mimicking the superficial zone of cartilage and a lower layer mimicking the middle zone of cartilage. The thin superficial layer was fabricated using an electrospinning technique to support a more parallel ECM orientation to the cartilage surface. The lower layer was fabricated using a phase-separation technique to support a more isotropic ECM distribution. Human bone marrow-derived mesenchymal stem cells (hMSCs) were seeded on this complex scaffold and cultured under chondrogenic conditions. The results showed that the composite scaffold was indeed able to support anisotropic cartilage tissue structure formation.

  13. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    PubMed

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  14. Study of the Histopathologic Characteristics and Surface Morphologies of Glottic Carcinomas With Anterior Vocal Commissure Involvement.

    PubMed

    Wu, Jianhui; Zhao, Jing; Wang, Zhangfeng; Li, Zenghong; Luo, Jie; Liao, Bing; Yang, Zhiyun; Liu, Qihong; Wang, Bin; Wen, Weiping; Lei, Wenbin

    2015-07-01

    This article explores the features and the role of the anterior vocal commissure (AVC) structure and the surface morphologies of glottic carcinomas with AVC involvement to provide a reference for the selection of transoral carbon dioxide (CO2) laser surgery. A total of 31 cases of glottic carcinomas with AVC involvement from May 2012 to January 2014 were included. All patients underwent electronic laryngoscopic examinations and computed tomography scans to determine the surface morphology. After surgery, the tumor specimens were resected integrally, and axial serial sections parallel to the plane of vocal cords were taken to explore the features and possible invasion paths of the glottic carcinomas with AVC involvement. The rates of involvement of the supraglottis and subglottis were 71.4% and 14.8%, respectively, via the AVC. The involvement of the superficial layer of the unilateral or bilateral vocal cords without involvement of the vocal muscle in the AVC region (IVM) or the cartilage was present in 15 cases (48.4%). The involvement of the superficial layer of the unilateral and bilateral vocal cords occurred in 16 cases (51.6%) with the IVM in 13 cases and the involvement of the intermediate lamina of the thyroid cartilage (ITC) in 8 cases. The involvement of the ITC was associated with the involvement of the vocal muscle of the AVC region (P < 0.05). Among the pushing carcinomas, 15 of 21 (71.4%) presented with well-defined tumor mass, and 8 of 10 (80.0%) infiltrating carcinomas presented with multiple tumor nests that were often surrounded by fibrosis (P < 0.05). The AVC is an important path of invasion of subglottic in glottic carcinomas but less so for suparglottic. The Broyles' ligaments acted as a barrier against the spread of the tumors to the thyroid cartilage, but this role was obviously weaken by the involvement of the vocal muscle of the AVC region. The infiltrating carcinomas presented with multiple tumor nests in fibrous tissue. When CO2 laser microsurgery is considered as a treatment option, these facts should be kept in mind.

  15. Study of the Histopathologic Characteristics and Surface Morphologies of Glottic Carcinomas With Anterior Vocal Commissure Involvement

    PubMed Central

    Wu, Jianhui; Zhao, Jing; Wang, Zhangfeng; Li, Zenghong; Luo, Jie; Liao, Bing; Yang, Zhiyun; Liu, Qihong; Wang, Bin; Wen, Weiping; Lei, Wenbin

    2015-01-01

    Abstract This article explores the features and the role of the anterior vocal commissure (AVC) structure and the surface morphologies of glottic carcinomas with AVC involvement to provide a reference for the selection of transoral carbon dioxide (CO2) laser surgery. A total of 31 cases of glottic carcinomas with AVC involvement from May 2012 to January 2014 were included. All patients underwent electronic laryngoscopic examinations and computed tomography scans to determine the surface morphology. After surgery, the tumor specimens were resected integrally, and axial serial sections parallel to the plane of vocal cords were taken to explore the features and possible invasion paths of the glottic carcinomas with AVC involvement. The rates of involvement of the supraglottis and subglottis were 71.4% and 14.8%, respectively, via the AVC. The involvement of the superficial layer of the unilateral or bilateral vocal cords without involvement of the vocal muscle in the AVC region (IVM) or the cartilage was present in 15 cases (48.4%). The involvement of the superficial layer of the unilateral and bilateral vocal cords occurred in 16 cases (51.6%) with the IVM in 13 cases and the involvement of the intermediate lamina of the thyroid cartilage (ITC) in 8 cases. The involvement of the ITC was associated with the involvement of the vocal muscle of the AVC region (P < 0.05). Among the pushing carcinomas, 15 of 21 (71.4%) presented with well-defined tumor mass, and 8 of 10 (80.0%) infiltrating carcinomas presented with multiple tumor nests that were often surrounded by fibrosis (P < 0.05). The AVC is an important path of invasion of subglottic in glottic carcinomas but less so for suparglottic. The Broyles’ ligaments acted as a barrier against the spread of the tumors to the thyroid cartilage, but this role was obviously weaken by the involvement of the vocal muscle of the AVC region. The infiltrating carcinomas presented with multiple tumor nests in fibrous tissue. When CO2 laser microsurgery is considered as a treatment option, these facts should be kept in mind. PMID:26200618

  16. Age-related changes in the articular cartilage of the stifle joint in non-working and working German Shepherd dogs.

    PubMed

    Francuski, J V; Radovanović, A; Andrić, N; Krstić, V; Bogdanović, D; Hadzić, V; Todorović, V; Lazarević Macanović, M; Sourice Petit, S; Beck-Cormier, S; Guicheux, J; Gauthier, O; Kovacević Filipović, M

    2014-11-01

    The aims of this study were to define age-related histological changes in the articular cartilage of the stifle joint in non-chondrodystrophic dogs and to determine whether physical activity has a positive impact on preservation of cartilage structure during ageing. Twenty-eight German shepherd dogs were included in the study. These dogs had no evidence of joint inflammation as defined by clinical assessment, radiology and synovial fluid analysis (specifically absence of synovial fluid serum amyloid A). The dogs were grouped as young working (n ¼ 4), young non-working (n ¼ 5), aged working (n ¼ 13) and aged non-working (n ¼ 6) animals. Gross changes in the stifle joints were recorded and biopsy samples of femoral and tibial articular cartilage were evaluated for thickness; chondrocyte number, density, surface area and morphology; isogenous group morphology; tidemark integrity; subchondral bone structure; presence of proteoglycans/ glycosaminoglycans; and expression of type I, II and X collagens. The major age-related changes, not related to type of physical activity, included elevated chondrocyte density and thinning of tibial cartilage and increased chondrocyte surface area in the superficial and intermediate zone of the femoral cartilage. There was also expression of type X collagen in the femoral and tibial calcified and non-calcified cartilage; however, type X collagen was not detected in the superficial zone of old working dogs. Therefore, ageing, with or without physical activity, leads to slight cartilage degeneration, while physical activity modulates the synthesis of type X collagen in the superficial cartilage zone, partially preserving the structure of hyaline cartilage. 2014 Elsevier Ltd. All rights reserved.

  17. Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method.

    PubMed

    Xu, Hao; Chen, Shigao; An, Kai-Nan; Luo, Zong-Ping

    2017-10-30

    Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue shapes, is crucial for elasticity estimating in SWE. However, wave propagation model for cartilage was unclear. This study aimed to establish a wave propagation model for the cartilage-bone structure. We fabricated a cartilage-bone structure, and studied the elasticity measurement and wave propagation by experimental and numerical Lamb wave method (LWM). Results indicated the wave propagation model satisfied the lamb wave theory for two-layered structure. Moreover, a near field region, which affects wave speed measurements and whose occurrence can be prevented if the wave frequency is larger than one critical frequency, was observed. Our findings would provide a theoretical foundation for further application of LWM in elasticity measurement of cartilage in vivo. It can help the application of LWM to the diagnosis of osteoarthritis.

  18. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging.

    PubMed

    Chang, Gregory; Deniz, Cem M; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R; Zhu, Yudong; Sodickson, Daniel K; Brown, Ryan

    2014-06-01

    To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. Copyright © 2013 Wiley Periodicals, Inc.

  19. Label-free characterization of articular cartilage in osteoarthritis model mice by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Akehi, Mayu; Kiyomatsu, Hiroshi; Miura, Hiromasa

    2017-02-01

    Osteoarthritis (OA) is very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Cartilage contains mostly type II collagen and proteoglycans, so it is difficult to access the quality and morphology of cartilage tissue in situ by conventional diagnostic tools (X-ray, MRI and echography) directly or indirectly. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. In this study, we generated an animal OA model surgically induced by knee joint instability, and the femurs were harvested at two weeks after the surgery. We performed Raman spectroscopic analysis for the articular cartilage of distal femurs in OA side and unaffected side in each mouse. In the result, there is no gross findings in the surface of the articular cartilage in OA. On the other hand, Raman spectral data of the articular cartilage showed drastic changes in comparison between OA and control side. The major finding of this study is that the relative intensity of phosphate band (960 cm-1) increases in the degenerative cartilage. This may be the result of exposure of subchondral bone due to thinning of the cartilage layer. In conclusion, Raman spectroscopic technique is sufficient to characterize articular cartilage in OA as a pilot study for Raman application in cartilage degeneration and regeneration using animal models and human subjects.

  20. Analysis of the intermediate size proteoglycans from the developing chick limb buds.

    PubMed

    Vasan, N

    1982-08-01

    Limb-bud proteoglycans are heterogeneous molecules which vary in their chemical and physical properties with development. This report describes proteoglycan intermediates (PG-I) that predominate in stage-34 limbs, and compares them with proteoglycan aggregates (PG-A) in stage-38 limbs. We analysed proteoglycans and their components extracted with guanidinium chloride by subjecting them to density gradient centrifugation, molecular sieve chromatography, electrophoretic separation, and selective enzymatic degradation. PG-I and PG-A have similar chondroitin sulphate composition, amino sugars, chondroitin sulphate side-chain length, glycoprotein link factors, and hyaluronic acid binding capacity, and both cross react with antisera prepared against cartilage-specific chick sternal proteoglycans. However, PG-I has lower molecular weight, lower buoyant density, and fewer chondroitin sulphate side chains on the protein core. The PG-I in the developing limb can be considered a mixture of smaller aggregates and cartilage-specific large monomers in which the former predominate.

  1. Spatio-temporal expression patterns of Wnt signaling pathway during the development of temporomandibular condylar cartilage.

    PubMed

    Chen, Kan; Quan, Huixin; Chen, Gang; Xiao, Di

    2017-11-01

    There is a growing body of evidence supporting the involvement of the Wnt signaling pathway in various aspects of skeletal and joint development; however, it is unclear whether it is involved in the process of temporomandibular joint development. In order to clarify this issue, we examined the spatio-temporal distribution of mRNAs and proteins of the Wnt family during the formation of the mandibular condylar cartilage at the prenatal and postnatal stages. An in situ hybridization test revealed no mRNAs of β-catenin and Axin2 during early mesenchymal condensation; the ligands surveyed in this study (including Wnt-4, 5a, and 9a) were clearly detected at various ranges of expression, mainly in the condylar blastema and later distinct cartilaginous layers. Apart from β-catenin and Axin2, the Wnt family members surveyed in this study, including Lef-1, were found to be immunopositive during early chondrogenesis in the condylar cartilage at E14.5. After distinct chondrocyte layers were identified within the cartilage at E16.5, the expression of the Wnt signaling members was different and mainly restricted to proliferating cells and mineralized hypertrophic chondrocytes. In the adult mandibular condylar cartilage, the Wnt-4 mRNA, as well as the Wnt-4 and Wnt-9a proteins, was not observed. Our findings demonstrated that the Wnt signaling pathway was associated with the development of mandibular condylar cartilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. In vivo evaluation of biomechanical properties in the patellofemoral joint after matrix-associated autologous chondrocyte transplantation by means of quantitative T2 MRI.

    PubMed

    Pachowsky, M L; Trattnig, S; Wondrasch, B; Apprich, S; Marlovits, S; Mauerer, A; Welsch, Goetz H; Blanke, M

    2014-06-01

    To determine in vivo biomechanical properties of articular cartilage and cartilage repair tissue of the patella, using biochemical MRI by means of quantitative T2 mapping. Twenty MR scans were achieved at 3T MRI, using a new 8-channel multi-function coil allowing controlled bending of the knee. Multi-echo spin-echo T2 mapping was prepared in healthy volunteers and in age- and sex-matched patients after matrix-associated autologous chondrocyte transplantation (MACT) of the patella. MRI was performed at 0° and 45° of flexion of the knee after 0 min and after 1 h. A semi-automatic region-of-interest analysis was performed for the whole patella cartilage. To allow stratification with regard to the anatomical (collagen) structure, further subregional analysis was carried out (deep-middle-superficial cartilage layer). Statistical analysis of variance was performed. During 0° flexion (decompression), full-thickness T2 values showed no significant difference between volunteers (43 ms) and patients (41 ms). Stratification was more pronounced for healthy cartilage compared to cartilage repair tissue. During 45° flexion (compression), full-thickness T2 values within volunteers were significantly increased (54 ms) compared to patients (44 ms) (p < 0.001). Again, stratification was more pronounced in volunteers compared to patients. The volunteer group showed no significant increase in T2 values measured in straight position and in bended position. There was no significant difference between the 0- and the 60-min MRI examination. T2 values in the patient group increased between the 0- and the 60-min examination. However, the increase was only significant in the superior cartilage layer of the straight position (p = 0.021). During compression (at 45° flexion), healthy patellar cartilage showed a significant increase in T2-values, indicating adaptations of water content and collagen fibril orientation to mechanical load. This could not be observed within the patella cartilage after cartilage repair (MACT) of the patella, most obvious due to a lack of biomechanical adjustment. III.

  3. Can Signal Abnormalities Detected with MR Imaging in Knee Articular Cartilage Be Used to Predict Development of Morphologic Cartilage Defects? 48-Month Data from the Osteoarthritis Initiative

    PubMed Central

    Gersing, Alexandra S.; Mbapte Wamba, John; Nevitt, Michael C.; McCulloch, Charles E.; Link, Thomas M.

    2016-01-01

    Purpose To determine the incidence with which morphologic articular cartilage defects develop over 48 months in cartilage with signal abnormalities at baseline magnetic resonance (MR) imaging in comparison with the incidence in articular cartilage without signal abnormalities at baseline. Materials and Methods The institutional review boards of all participating centers approved this HIPAA-compliant study. Right knees of 90 subjects from the Osteoarthritis Initiative (mean age, 55 years ± 8 [standard deviation]; 51% women) with cartilage signal abnormalities but without morphologic cartilage defects at 3.0-T MR imaging and without radiographic osteoarthritis (Kellgren-Lawrence score, 0–1) were frequency matched for age, sex, Kellgren-Lawrence score, and body mass index with right knees in 90 subjects without any signal abnormalities or morphologic defects in the articular cartilage (mean age, 54 years ± 5; 51% women). Individual signal abnormalities (n = 126) on intermediate-weighted fast spin-echo MR images were categorized into four subgrades: subgrade A, hypointense; subgrade B, inhomogeneous; subgrade C, hyperintense; and subgrade D, hyperintense with swelling. The development of morphologic articular cartilage defects (Whole-Organ MR Imaging Score ≥2) at 48 months was analyzed on a compartment level and was compared between groups by using generalized estimating equation logistic regression models. Results Cartilage signal abnormalities were more frequent in the patellofemoral joint than in the tibiofemoral joint (59.5% vs 39.5%). Subgrade A was seen more frequently than were subgrades C and D (36% vs 22%). Incidence of morphologic cartilage defects at 48 months was 57% in cartilage with baseline signal abnormalities, while only 4% of compartments without baseline signal abnormalities developed morphologic defects at 48 months (all compartments combined and each compartment separately, P < .01). The development of morphologic defects was not significantly more likely in any of the subgrades (P = .98) and was significantly associated with progression of bone marrow abnormalities (P = .002). Conclusion Knee cartilage signal abnormalities detected with MR imaging are precursors of morphologic defects with osteoarthritis and may serve as imaging biomarkers with which to assess risk for cartilage degeneration. © RSNA, 2016 PMID:27135833

  4. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    PubMed

    Ferrara, Toni L; Boughton, Philip; Slavich, Eve; Wroe, Stephen

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable to a variety of hydrated biological materials whether soft or hard.

  5. Differential regulation of immature articular cartilage compressive moduli and Poisson's ratios by in vitro stimulation with IGF-1 and TGF-beta1.

    PubMed

    Williams, Gregory M; Dills, Kristin J; Flores, Christian R; Stender, Michael E; Stewart, Kevin M; Nelson, Lauren M; Chen, Albert C; Masuda, Koichi; Hazelwood, Scott J; Klisch, Stephen M; Sah, Robert L

    2010-09-17

    Mechanisms of articular cartilage growth and maturation have been elucidated by studying composition-function dynamics during in vivo development and in vitro culture with stimuli such as insulin-like growth factor-1 (IGF-1) and transforming growth factor-beta 1 (TGF-beta1). This study tested the hypothesis that IGF-1 and TGF-beta1 regulate immature cartilage compressive moduli and Poisson's ratios in a manner consistent with known effects on tensile properties. Bovine calf articular cartilage from superficial-articular (S) and middle-growth (M) regions were analyzed fresh or following culture in medium with IGF-1 or TGF-beta1. Mechanical properties in confined (CC) and unconfined (UCC) compression, cartilage matrix composition, and explant size were assessed. Culture with IGF-1 resulted in softening in CC and UCC, increased Poisson's ratios, substantially increased tissue volume, and accumulation of glycosaminoglycan (GAG) and collagen (COL). Culture with TGF-beta1 promoted maturational changes in the S layer, including stiffening in CC and UCC and increased concentrations of GAG, COL, and pyridinoline crosslinks (PYR), but little growth. Culture of M layer explants with TGF-beta1 was nearly homeostatic. Across treatment groups, compressive moduli in CC and UCC were positively related to GAG, COL, and PYR concentrations, while Poisson's ratios were negatively related to concentrations of these matrix components. Thus, IGF-1 and TGF-beta1 differentially regulate the compressive mechanical properties and size of immature articular cartilage in vitro. Prescribing tissue growth, maturation, or homeostasis by controlling the in vitro biochemical environment with such growth factors may have applications in cartilage repair and tissue engineering.

  6. [Preliminary investigation on the pathogeny, diagnosis and treatment of chondromalacia patella].

    PubMed

    Ye, Q B; Wu, Z H; Wang, Y P; Lin, J; Qiu, G X

    2001-04-01

    This paper presents the preliminary investigation on chondromalacia patella at our department in recent years. A random cluster sampling survey covering 2743 normal persons was carried out. The prevalence rate is 36.2%. It was found that, applying transmission electron microscope and immunohistochemical methods on to cartilage tissues of the abnormal region, articular cartilage necrosis was in direct proportion with the abnormal pressure, while the restoration capability of local chondrocytes was in inverse proportion with pathological changes and the pressure. The chondromalacia patella was produced by repeated abnormal stress acting on the cartilage. The stress derived from the uncongruency and the decreasing in the contact area of patellofemoral joint when the subluxation or tilt of patellae was caused by the abnormal anatomical and biomechanical relationship. The initial lesion was at the matrix of cartilage, the collagen network was disrupted, then proteoglycan was lost. The microenvironment of chondrocytes was changed with degradation of matrix. So the chondrocytes became degenerative and necrosis from superficial to deep layer, then feed back the matrix again. Finally, the total cartilage layer might disappear, and the bone under cartilage might proliferate. At late stage, the cartilage was completely destroyed and had no self-restorative ability. Therefore, early diagnosis and treatment are necessary. It is highly suggested axis radiograph of the knee with the tibiae tuberositas localization are helpful to early diagnosis. Furthermore, JKY-Muscle Rehabilitation Instrument is invented for non-operative therapy. It enhances muscle power by selective training of the vastus medialis muscle using electrical stimulator to relieve pain and correct subluxation of patella with 90% efficiency (63% of excellent-effective rate). In late stage, patellofemoral replacement is recommended. The excellent-effective rate is 86.3%.

  7. LOGISMOS—Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces: Cartilage Segmentation in the Knee Joint

    PubMed Central

    Zhang, Xiangmin; Williams, Rachel; Wu, Xiaodong; Anderson, Donald D.; Sonka, Milan

    2011-01-01

    A novel method for simultaneous segmentation of multiple interacting surfaces belonging to multiple interacting objects, called LOGISMOS (layered optimal graph image segmentation of multiple objects and surfaces), is reported. The approach is based on the algorithmic incorporation of multiple spatial inter-relationships in a single n-dimensional graph, followed by graph optimization that yields a globally optimal solution. The LOGISMOS method’s utility and performance are demonstrated on a bone and cartilage segmentation task in the human knee joint. Although trained on only a relatively small number of nine example images, this system achieved good performance. Judged by dice similarity coefficients (DSC) using a leave-one-out test, DSC values of 0.84 ± 0.04, 0.80 ± 0.04 and 0.80 ± 0.04 were obtained for the femoral, tibial, and patellar cartilage regions, respectively. These are excellent DSC values, considering the narrow-sheet character of the cartilage regions. Similarly, low signed mean cartilage thickness errors were obtained when compared to a manually-traced independent standard in 60 randomly selected 3-D MR image datasets from the Osteoarthritis Initiative database—0.11 ± 0.24, 0.05 ± 0.23, and 0.03 ± 0.17 mm for the femoral, tibial, and patellar cartilage thickness, respectively. The average signed surface positioning errors for the six detected surfaces ranged from 0.04 ± 0.12 mm to 0.16 ± 0.22 mm. The reported LOGISMOS framework provides robust and accurate segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multiobject multisurface segmentation problems. PMID:20643602

  8. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M. A.; Cernohorsky, Paul; de Bruin, Daniel M.; van der Pol, Edwin; Savci-Heijink, Cemile D.; Strackee, Simon D.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-02-01

    Quantification of the OCT signal is an important step toward clinical implementation of a diagnostic tool in cartilage imaging. Discrimination of structural cartilage differences in patients with osteoarthritis is critical, yet challenging. This study assesses the variation in the optical attenuation coefficient (μOCT) between healthy cartilage, repair tissue, bone and layers within repair tissue in a controlled setting. OCT and histology was used to assess goat talus articular surfaces in which central osteochondral defects were created. Exact matches of OCT and histology were selected for research. μOCT measurements were taken from healthy cartilage, repair tissue and bone. Measured μOCT in healthy cartilage was higher compared to both repair tissue and bone tissue. Two possible mechanisms for the difference in attenuation were investigated. We studied morphological parameters in terms of nucleus count, nucleus size and inter-nucleus distance. Collagen content in healthy cartilage and repair tissue was assessed using polarization microscopy. Quantitative analysis of the nuclei did not demonstrate a difference in nucleus size and count between healthy cartilage and repair tissue. In healthy cartilage, cells were spaced farther apart and had a lower variation in local nuclear density compared to repair tissue. Polarization microscopy suggested higher collagen content in healthy cartilage compared to repair tissue. μOCT measurements can distinguish between healthy cartilage, repair tissue and bone. Results suggest that cartilage OCT attenuation measurements could be of great impact in clinical diagnostics of osteoarthritis.

  9. Calcified cartilage or bone? Collagens in the tessellated endoskeletons of cartilaginous fish (sharks and rays).

    PubMed

    Seidel, Ronald; Blumer, Michael; Pechriggl, Elisabeth-Judith; Lyons, Kady; Hall, Brian K; Fratzl, Peter; Weaver, James C; Dean, Mason N

    2017-10-01

    The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis

    PubMed Central

    LI, BAOHUA; MARSHALL, DEBORAH; ROE, MARTIN; ASPDEN, RICHARD M.

    1999-01-01

    The subchondral bone plate supports the articular cartilage in diarthrodial joints. It has a significant mechanical function in transmitting loads from the cartilage into the underlying cancellous bone and has been implicated in the destruction of cartilage in osteoarthritis (OA) and its sparing in osteoporosis (OP), but little is known of its composition, structure or material properties. This study investigated the microscopic appearance and mineral composition of the subchondral bone plate in femoral heads from patients with OA or OP to determine how these correspond to changes in composition and stiffness found in other studies. Freeze-fractured full-depth samples of the subchondral bone plate from the femoral heads of patients with osteoarthritis, osteoporosis or a matched control group were examined using back scattered and secondary emission scanning electron microscopy. Other samples were embedded and polished and examined using back-scattered electron microscopy and electron probe microanalysis. The appearances of the samples from the normal and osteoporotic patients were very similar, with the subchondral bone plate overlayed by a layer of calcified cartilage. Osteoporotic samples presented a more uniform fracture surface and the relative thicknesses of the layers appeared to be different. In contrast, the OA bone plate appeared to be porous and have a much more textured surface. There were occasional sites of microtrabecular bone formation between the trabeculae of the underlying cancellous bone, which were not seen in the other groups, and more numerous osteoclast resorption pits. The calcified cartilage layer was almost absent and the bone plate was apparently thickened. The appearance of the osteoarthritic subchondral bone plate was, therefore, considerably different from both the normal and the osteoporotic, strongly indicative of abnormal cellular activity. PMID:10473297

  11. Resurfacing Damaged Articular Cartilage to Restore Compressive Properties

    PubMed Central

    Grenier, Stephanie; Donnelly, Patrick E.; Gittens, Jamila; Torzilli, Peter A.

    2014-01-01

    Surface damage to articular cartilage is recognized as the initial underlying process causing the loss of mechanical function in early-stage osteoarthritis. In this study, we developed structure-modifying treatments to potentially prevent, stabilize or reverse the loss in mechanical function. Various polymers (chondroitin sulfate, carboxymethylcellulose, sodium hyaluronate) and photoinitiators (riboflavin, irgacure 2959) were applied to the surface of collagenase-degraded cartilage and crosslinked in situ using UV light irradiation. While matrix permeability and deformation significantly increased following collagenase-induced degradation of the superficial zone, resurfacing using tyramine-substituted sodium hyaluronate and riboflavin decreased both values to a level comparable to that of intact cartilage. Repetitive loading of resurfaced cartilage showed minimal variation in the mechanical response over a 7 day period. Cartilage resurfaced using a low concentration of riboflavin had viable cells in all zones while a higher concentration resulted in a thin layer of cell death in the uppermost superficial zone. Our approach to repair surface damage initiates a new therapeutic advance in the treatment of injured articular cartilage with potential benefits that include enhanced mechanical properties, reduced susceptibility to enzymatic degradation and reduced adhesion of macrophages. PMID:25468298

  12. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    PubMed

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism.

  13. Towards Regeneration of Articular Cartilage

    PubMed Central

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  14. Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces.

    PubMed

    Morgese, Giulia; Ramakrishna, Shivaprakash N; Simic, Rok; Zenobi-Wong, Marcy; Benetti, Edmondo M

    2018-02-12

    Comb-like polymers presenting a hydroxybenzaldehyde (HBA)-functionalized poly(glutamic acid) (PGA) backbone and poly(2-methyl-2-oxazoline) (PMOXA) side chains chemisorb on aminolized substrates, including cartilage surfaces, forming layers that reduce protein contamination and provide lubrication. The structure, physicochemical, biopassive, and tribological properties of PGA-PMOXA-HBA films are finely determined by the copolymer architecture, its reactivity toward the surface, i.e. PMOXA side-chain crowding and HBA density, and by the copolymer solution concentration during assembly. Highly reactive species with low PMOXA content form inhomogeneous layers due to the limited possibility of surface rearrangements by strongly anchored copolymers, just partially protecting the functionalized surface from protein contamination and providing a relatively weak lubrication on cartilage. Biopassivity and lubrication can be improved by increasing copolymer concentration during assembly, leading to a progressive saturation of surface defects across the films. In a different way, less reactive copolymers presenting high PMOXA side-chain densities form uniform, biopassive, and lubricious films, both on model aminolized silicon oxide surfaces, as well as on cartilage substrates. When assembled at low concentrations these copolymers adopt a "lying down" conformation, i.e. adhering via their backbones onto the substrates, while at high concentrations they undergo a conformational transition, assuming a more densely packed, "standing up" structure, where they stretch perpendicularly from the substrate. This specific arrangement reduces protein contamination and improves lubrication both on model as well as on cartilage surfaces.

  15. Widespread epigenomic, transcriptomic and proteomic differences between hip osteophytic and articular chondrocytes in osteoarthritis.

    PubMed

    Steinberg, Julia; Brooks, Roger A; Southam, Lorraine; Bhatnagar, Sahir; Roumeliotis, Theodoros I; Hatzikotoulas, Konstantinos; Zengini, Eleni; Wilkinson, J Mark; Choudhary, Jyoti S; McCaskie, Andrew W; Zeggini, Eleftheria

    2018-05-08

    To identify molecular differences between chondrocytes from osteophytic and articular cartilage tissue from OA patients. We investigated genes and pathways by combining genome-wide DNA methylation, RNA sequencing and quantitative proteomics in isolated primary chondrocytes from the cartilaginous layer of osteophytes and matched areas of low- and high-grade articular cartilage across nine patients with OA undergoing hip replacement surgery. Chondrocytes from osteophytic cartilage showed widespread differences to low-grade articular cartilage chondrocytes. These differences were similar to, but more pronounced than, differences between chondrocytes from osteophytic and high-grade articular cartilage, and more pronounced than differences between high- and low-grade articular cartilage. We identified 56 genes with significant differences between osteophytic chondrocytes and low-grade articular cartilage chondrocytes on all three omics levels. Several of these genes have known roles in OA, including ALDH1A2 and cartilage oligomeric matrix protein, which have functional genetic variants associated with OA from genome-wide association studies. An integrative gene ontology enrichment analysis showed that differences between osteophytic and low-grade articular cartilage chondrocytes are associated with extracellular matrix organization, skeletal system development, platelet aggregation and regulation of ERK1 and ERK2 cascade. We present a first comprehensive view of the molecular landscape of chondrocytes from osteophytic cartilage as compared with articular cartilage chondrocytes from the same joints in OA. We found robust changes at genes relevant to chondrocyte function, providing insight into biological processes involved in osteophyte development and thus OA progression.

  16. Catalyst containing oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  17. Toward patient-specific articular contact mechanics

    PubMed Central

    Ateshian, Gerard A.; Henak, Corinne R.; Weiss, Jeffrey A.

    2015-01-01

    The mechanics of contacting cartilage layers is fundamentally important to understanding the development, homeostasis and pathology of diarthrodial joints. Because of the highly nonlinear nature of both the materials and the contact problem itself, numerical methods such as the finite element method are typically incorporated to obtain solutions. Over the course of five decades, we have moved from an initial qualitative understanding of articular cartilage material behavior to the ability to perform complex, three-dimensional contact analysis, including multiphasic material representations. This history includes the development of analytical and computational contact analysis methods that now provide the ability to perform highly nonlinear analyses. Numerical implementations of contact analysis based on the finite element method are rapidly advancing and will soon enable patient-specific analysis of joint contact mechanics using models based on medical image data. In addition to contact stress on the articular surfaces, these techniques can predict variations in strain and strain through the cartilage layers, providing the basis to predict damage and failure. This opens up exciting areas for future research and application to patient-specific diagnosis and treatment planning applied to a variety of pathologies that affect joint function and cartilage homeostasis. PMID:25698236

  18. Bone sialoprotein in laboratory diagnostic work-up of osteoarthritis.

    PubMed

    Lis, Kinga

    2008-01-01

    Changes in osteoarthritis joint appear in the articular cartilage, synovium and in subchondral bone. It is necessary to find, apart from markers of cartilage destruction, a sensitive and specific biochemical marker which would reflect the metabolism as well as degradation of subchondral bone. Bone sialoprotein is mostly synthesized in osseous tissue found directly under the surface of joint cartilage. As a result, it is being increasingly perceived as a valuable marker of the metabolism rate of this layer of bone. Bone sialoprotein seems to be of use as a marker for subchondral bone degradation rate in laboratory diagnostic work-up of osteoarthritis.

  19. Nondestructive imaging of fiber structure in articular cartilage using optical polarization tractography

    NASA Astrophysics Data System (ADS)

    Yao, Xuan; Wang, Yuanbo; Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Duan, Dongsheng; Yao, Gang

    2016-11-01

    Collagen fiber orientation plays an important role in determining the structure and function of the articular cartilage. However, there is currently a lack of nondestructive means to image the fiber orientation from the cartilage surface. The purpose of this study is to investigate whether the newly developed optical polarization tractography (OPT) can image fiber structure in articular cartilage. OPT was applied to obtain the depth-dependent fiber orientation in fresh articular cartilage samples obtained from porcine phalanges. For comparison, we also obtained collagen fiber orientation in the superficial zone of the cartilage using the established split-line method. The direction of each split-line was quantified using image processing. The orientation measured in OPT agreed well with those obtained from the split-line method. The correlation analysis of a total of 112 split-lines showed a greater than 0.9 coefficient of determination (R2) between the split-line results and OPT measurements obtained between 40 and 108 μm in depth. In addition, the thickness of the superficial layer can also be assessed from the birefringence images obtained in OPT. These results support that OPT provides a nondestructive way to image the collagen fiber structure in articular cartilage. This technology may be valuable for both basic cartilage research and clinical orthopedic applications.

  20. State of the Art: MR Imaging after Knee Cartilage Repair Surgery.

    PubMed

    Guermazi, Ali; Roemer, Frank W; Alizai, Hamza; Winalski, Carl S; Welsch, Goetz; Brittberg, Mats; Trattnig, Siegfried

    2015-10-01

    Cartilage injuries are common, especially in athletes. Because these injuries frequently affect young patients, and they have the potential to progress to osteoarthritis, treatment to alleviate symptoms and delay joint degeneration is warranted. A number of surgical techniques are available to treat focal chondral defects, including marrow stimulation, osteochondral auto- and allografting, and autologous chondrocyte implantation. Although arthroscopy is considered the standard of reference for the evaluation of cartilage before and after repair, it is invasive with associated morbidity and cannot adequately depict the deep cartilage layer and underlying bone. Magnetic resonance (MR) imaging provides unparalleled noninvasive assessment of the repair site and all other joint tissues. MR observation of cartilage repair tissue is a well-established semiquantitative scoring system for repair tissue that has primarily been used in clinical research studies. The cartilage repair osteoarthritis knee score (CROAKS) optimizes comprehensive morphologic assessment of the knee joint after cartilage repair. Furthermore, quantitative, compositional MR imaging measurements (eg, T2, T2*, T1ρ), delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC), and sodium imaging are available for biochemical assessment. These quantitative MR imaging techniques help assess collagen content and orientation, water content, and glycosaminoglycan and/or proteoglycan content both in the repair tissue as it matures and in the "native" cartilage. In this review, the authors discuss the principles of state-of-the-art morphologic and compositional MR imaging techniques for imaging of cartilage repair and their application to longitudinal studies. (©) RSNA, 2015.

  1. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix

    PubMed Central

    Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid

    2011-01-01

    Aim To investigate the cell growth, matrix accumulation and mechanical properties of neocartilage formed by human or porcine articular chondrocytes on a porous, porcine cartilage-derived matrix (CDM) for use in cartilage tissue engineering. Materials & methods We examined the physical properties, cell infiltration and matrix accumulation in different formulations of CDM and selected a CDM made of homogenized cartilage slurry as an appropriate scaffold for long-term culture of human and porcine articular chondrocytes. Results The CDM scaffold supported growth and proliferation of both human and porcine chondrocytes. Histology and immunohistochemistry showed abundant cartilage-specific macromolecule deposition at day 28. Human chondrocytes migrated throughout the CDM, showing a relatively homogeneous distribution of new tissue accumulation, whereas porcine chondrocytes tended to form a proteoglycan-rich layer primarily on the surfaces of the scaffold. Human chondrocyte-seeded scaffolds had a significantly lower aggregate modulus and hydraulic permeability at day 28. Conclusions These data show that a scaffold derived from native porcine articular cartilage can support neocartilage formation in the absence of exogenous growth factors. The overall characteristics and properties of the constructs depend on factors such as the concentration of CDM used, the porosity of the scaffold, and the species of chondrocytes. PMID:21175289

  2. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system.

    PubMed

    Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng; Wei, Lei

    2018-01-01

    Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog ( Ihh ) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes.

  3. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system

    PubMed Central

    Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng

    2018-01-01

    Background Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. Purpose The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. Methods LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog (Ihh) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). Results In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. Conclusion This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes. PMID:29440889

  4. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis.

    PubMed

    van Lent, P L E M; Grevers, L; Blom, A B; Sloetjes, A; Mort, J S; Vogl, T; Nacken, W; van den Berg, W B; Roth, J

    2008-12-01

    To study the active involvement of Myeloid-related proteins S100A8 and S100A9 in joint inflammation and cartilage destruction during antigen-induced arthritis (AIA). Joint inflammation and cartilage destruction was measured with 99mTc uptake and histology. The role of S100A8/A9 was investigated by inducing AIA in S100A9-/- mice that also lack S100A8 at protein level, or after intra-articular injection of rS100A8 in mouse knee joints. Cartilage destruction was measured using immunolocalisation of the neoepitope VDIPEN or NITEGE. mRNA levels of matrix metalloproteinases (MMPs) and cytokines were measured using reverse transcriptase (RT)-PCR. Immunisation of S100A9-/- mice with the antigen mBSA induced normal cellular and humoral responses, not different from wild type (WT) controls. However, joint swelling measured at day 3 and 7 after AIA induction was significantly lower (36 and 70%, respectively). Histologically, at day 7 AIA, cellular mass was much lower (63-80%) and proteoglycan depletion from cartilage layers was significantly reduced (between 50-95%). Cartilage destruction mediated by MMPs was absent in S100A9-/- mice but clearly present in controls. MMP3, 9 and 13 mRNA levels were significantly lowered in arthritic synovia of S100A9-/-. In vitro stimulation of macrophages by the heterodimer S100A8/A9 or S100A8 elevated mRNA levels of MMP3, 9 and in particular MMP13. Intra-articular injection of S100A8 caused prominent joint inflammation and depletion of proteoglycans at day 1. Significant upregulation of mRNA levels of S100A8/A9, cytokines (interleukin 1 (IL1)), MMPs (MMP3, MMP13 and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4) was found in the synovium and correlated with strong upregulation of NITEGE neoepitopes within the cartilage layers. S100A8/A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis.

  5. Prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects-a 3.0 T magnetic resonance imaging study.

    PubMed

    Stahl, Robert; Luke, Anthony; Ma, C Benjamin; Krug, Roland; Steinbach, Lynne; Majumdar, Sharmila; Link, Thomas M

    2008-07-01

    To determine the prevalence of pathologic findings in asymptomatic knees of marathon runners before and after a competition in comparison with physically active subjects. To compare the diagnostic performance of cartilage-dedicated magnetic resonance imaging (MRI) sequences at 3.0 T. Ten marathon runners underwent 3.0 T MRI 2-3 days before and after competition. Twelve physically active asymptomatic subjects not performing long-distance running were examined as controls. Pathologic condition was assessed with the whole-organ magnetic resonance imaging score (WORMS). Cartilage abnormalities and bone marrow edema pattern (BMEP) were quantified. Visualization of cartilage pathology was assessed with intermediate-weighted fast spin-echo (IM-w FSE), fast imaging employing steady-state acquisition (FIESTA) and T1-weighted three-dimensional (3D) high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) MRI sequences. Eight of ten marathon runners and 7/12 controls showed knee abnormality. Slightly more and larger cartilage abnormalities, and BMEP, in marathon runners yielded higher but not significantly different WORMS (P > 0.05) than in controls. Running a single marathon did not alter MR findings substantially. Cartilage abnormalities were best visualized with IM-w FSE images (P < 0.05). A high prevalence of knee abnormalities was found in marathon runners and also in active subjects participating in other recreational sports. IM-w FSE sequences delineated more cartilage MR imaging abnormalities than did FIESTA and SPGR sequences.

  6. A mathematical model of forces in the knee under isometric quadriceps contractions.

    PubMed

    Huss, R A; Holstein, H; O'Connor, J J

    2000-02-01

    To predict the knee's response to isometric quadriceps contractions against a fixed tibial restraint.Design. Mathematical modelling of the human knee joint. Isometric quadriceps contraction is commonly used for leg muscle strengthening following ligament injury or reconstruction. It is desirable to know the ligament forces induced but direct measurement is difficult. The model, previously applied to the Lachmann or 'drawer' tests, combines an extensible fibre-array representation of the cruciate ligaments with a compressible 'thin-layer' representation of the cartilage. The model allows the knee configuration and force system to be calculated, given flexion angle, restraint position and loading. Inclusion of cartilage deformation increases relative tibio-femoral translation and decreases the ligament forces generated. For each restraint position, a range of flexion angles is found in which no ligament force is required, as opposed to a single flexion angle in the case of incompressible cartilage layers. Knee geometry and ligament elasticity are found to be the most important factors governing the joint's response to isometric quadriceps contractions, but cartilage deformation is found to be more important than in the Lachmann test. Estimation of knee ligament forces is important when devising exercise regimes following ligament injury or reconstruction. The finding of a 'neutral zone' of zero ligament force may have implications for rehabilitation of the ligament-injured knee.

  7. Histological assessments on the abnormalities of mouse epiphyseal chondrocytes with short term centrifugal loading.

    PubMed

    de Freitas, Paulo Henrique Luiz; Kojima, Taku; Ubaidus, Sobhan; Li, Minqi; Shang, Guangwei; Takagi, Ritsuo; Maeda, Takeyasu; Oda, Kimimitsu; Ozawa, Hidehiro; Amizuka, Norio

    2007-08-01

    We have examined the morphological changes in chondrocytes after exposure to experimental hypergravity. Tibial epiphyseal cartilages of 17-days-old mouse fetuses were exposed to centrifugation at 3G for 16 h mimicking hypergravitational environment (experimental group), or subjected to stationary cultures (control group). Centrifugation did not affect the sizes of epiphyseal cartilage, chondrocyte proliferation, type X collagen-positive hypertrophic zone, and the mRNA expressions of parathyroid hormone-related peptide and fibroblast growth factor receptor III. However, centrifuged chondrocytes showed abnormal morphology and aberrant spatial arrangements, resulting in disrupted chondrocytic columns. Through histochemical assessments, actin filaments were shown to distribute evenly along cell membranes of control proliferative chondrocytes, while chondrocytes subjected to centrifugal force developed a thicker layer of actin filaments. Transmission electron microscopic observations revealed spotty electron-dense materials underlying control chondrocytes' cell membranes, while experimental chondrocytes showed their thick layer. In the intracolumnar regions of the control cartilage, longitudinal electron-dense fibrils were associated with short cytoplasmic processes of normal chondrocytes, indicating assumed cell-tomatrix interactions. These extracellular fibrils were disrupted in the centrifuged samples. Summarizing, altered actin filaments associated with cell membranes, irregular cell shape and disappearance of intracolumnar extracellular fibrils suggest that hypergravity disturbs cell-to-matrix interactions in our cartilage model.

  8. Human cartilage tissue fabrication using three-dimensional inkjet printing technology.

    PubMed

    Cui, Xiaofeng; Gao, Guifang; Yonezawa, Tomo; Dai, Guohao

    2014-06-10

    Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.

  9. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA.

    PubMed

    Gao, Guifang; Schilling, Arndt F; Hubbell, Karen; Yonezawa, Tomo; Truong, Danh; Hong, Yi; Dai, Guohao; Cui, Xiaofeng

    2015-11-01

    Bioprinting of bone and cartilage suffers from low mechanical properties. Here we have developed a unique inkjet bioprinting approach of creating mechanically strong bone and cartilage tissue constructs using poly(ethylene glycol) dimethacrylate, gelatin methacrylate, and human MSCs. The printed hMSCs were evenly distributed in the polymerized PEG-GelMA scaffold during layer-by-layer assembly. The procedure showed a good biocompatibility with >80% of the cells surviving the printing process and the resulting constructs provided strong mechanical support to the embedded cells. The printed mesenchymal stem cells showed an excellent osteogenic and chondrogenic differentiation capacity. Both osteogenic and chondrogenic differentiation as determined by specific gene and protein expression analysis (RUNX2, SP7, DLX5, ALPL, Col1A1, IBSP, BGLAP, SPP1, Col10A1, MMP13, SOX9, Col2A1, ACAN) was improved by PEG-GelMA in comparison to PEG alone. These observations were consistent with the histological evaluation. Inkjet bioprinted-hMSCs in simultaneously photocrosslinked PEG-GelMA hydrogel scaffolds demonstrated an improvement of mechanical properties and osteogenic and chondrogenic differentiation, suggesting its promising potential for usage in bone and cartilage tissue engineering.

  10. Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs.

    PubMed

    Lee, Whitaik David; Gawri, Rahul; Pilliar, Robert M; Stanford, William L; Kandel, Rita A

    2017-10-15

    Integration of in vitro-formed cartilage on a suitable substrate to form tissue-engineered implants for osteochondral defect repair is a considerable challenge. In healthy cartilage, a zone of calcified cartilage (ZCC) acts as an intermediary for mechanical force transfer from soft to hard tissue, as well as an effective interlocking structure to better resist interfacial shear forces. We have developed biphasic constructs that consist of scaffold-free cartilage tissue grown in vitro on, and interdigitated with, porous calcium polyphosphate (CPP) substrates. However, as CPP degrades, it releases inorganic polyphosphates (polyP) that can inhibit local mineralization, thereby preventing the formation of a ZCC at the interface. Thus, we hypothesize that coating CPP substrate with a layer of hydroxyapatite (HA) might prevent or limit this polyP release. To investigate this we tested both inorganic or organic sol-gel processing methods, asa barrier coating on CPP substrate to inhibit polyP release. Both types of coating supported the formation of ZCC in direct contact with the substrate, however the ZCC appeared more continuous in the tissue formed on the organic HA sol gel coated CPP. Tissues formed on coated substrates accumulated comparable quantities of extracellular matrix and mineral, but tissues formed on organic sol-gel (OSG)-coated substrates accumulated less polyP than tissues formed on inorganic sol-gel (ISG)-coated substrates. Constructs formed with OSG-coated CPP substrates had greater interfacial shear strength than those formed with ISG-coated and non-coated substrates. These results suggest that the OSG coating method can modify the location and distribution of ZCC and can be used to improve the mechanical integrity of tissue-engineered constructs formed on porous CPP substrates. Articular cartilage interfaces with bone through a zone of calcified cartilage. This study describes a method to generate an "osteochondral-like" implant that mimics this organization using isolated deep zone cartilage cells and a sol-gel hydroxyapatite coated bone substitute material composed of calcium polyphosphate (CPP). Developing a layer of calcified cartilage at the interface should contribute to enhancing the success of this "osteochondral-like" construct following implantation to repair cartilage defects. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells.

    PubMed

    Ando, Wataru; Fujie, Hiromichi; Moriguchi, Yu; Nansai, Ryosuke; Shimomura, Kazunori; Hart, David A; Yoshikawa, Hideki; Nakamura, Norimasa

    2012-09-28

    The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC) derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  12. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    PubMed

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Catalyst containing oxygen transport membrane

    DOEpatents

    Lane, Jonathan A.; Wilson, Jamie R.; Christie, Gervase Maxwell; Petigny, Nathalie; Sarantopoulos, Christos

    2017-02-07

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  14. Racial differences in biochemical knee cartilage composition between African-American and Caucasian-American women with 3Tesla MR-based T2 relaxation time measurements – Data from the Osteoarthritis Initiative

    PubMed Central

    YU, A.; Heilmeier, U.; Kretzschmar, M.; Joseph, G.B.; Liu, F.; Liebl, H.; McCulloch, C.E.; Nevitt, M.C.; Lane, Nancy E.; Link, T.M.

    2015-01-01

    Objective To determine whether knee cartilage composition differs between African-American and Caucasian-American women at risk for Osteoarthritis using in-vivo 3 Tesla MRI T2 relaxation time measurements. Methods Right knee MRI studies of 200 subjects (100 African-American women, and 100 closely matched Caucasian-American women) were selected from the Osteoarthritis Initiative. Knee cartilage was segmented in the patellar (PAT), medial and lateral femoral (MF/LF), and medial and lateral tibial compartments (MT/LT)). Mean T2 relaxation time values per compartment and per whole joint cartilage were generated and analyzed spatially via laminar and grey-level co-occurrence matrix texture methods. Presence and severity of cartilage lesions per compartment were graded using a modified WORMS grading. Statistical analysis employed paired t- and McNemar testing. Results While African-American women and Caucasian-Americans had similar WORMS cartilage lesion scores (p=0.970), African-Americans showed significantly lower mean T2 values (~1ms difference; ~0.5SD) than Caucasian-Americans in the whole knee cartilage (p<0.001), and in the subcompartments (LF: p=0.001, MF: p<0.001, LT: p=0.019, MT: p=0.001) and particularly in the superficial cartilage layer (whole cartilage: p<0.001, LF: p<0.001, MF: p<0.001, LT: p=0.003, MT: p<0.001). T2 texture parameters were also significantly lower in the whole joint cartilage of African-Americans than in Caucasian-Americans (variance: p=0.001; contrast: p=0.018). In analyses limited to matched pairs with no cartilage lesions in a given compartment, T2 values remained significantly lower in African-Americans. Conclusion Using T2 relaxation time as a biomarker for the cartilage collagen network, our findings suggest racial differences in the biochemical knee cartilage composition between African-American and Caucasian-American women. PMID:25937026

  15. Bioactive glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs: a pilot study.

    PubMed

    Jayabalan, Prakash; Tan, Andrea R; Rahaman, Mohammed N; Bal, B Sonny; Hung, Clark T; Cook, James L

    2011-10-01

    Replacement of diseased areas of the joint with tissue-engineered osteochondral grafts has shown potential in the treatment of osteoarthritis. Bioactive glasses are candidates for the osseous analog of these grafts. (1) Does Bioactive Glass 13-93 (BG 13-93) as a subchondral substrate improve collagen and glycosaminoglycan production in a tissue-engineered cartilage layer? (2) Does BG 13-93 as a culture medium supplement increase the collagen and glycosaminoglycan production and improve the mechanical properties in a tissue-engineered cartilage layer? In Study 1, bioactive glass samples (n = 4) were attached to a chondrocyte-seeded agarose layer to form an osteochondral construct, cultured for 6 weeks, and compared to controls. In Study 2, bioactive glass samples (n = 5) were cocultured with cell-seeded agarose for 6 weeks. The cell-seeded agarose layer was exposed to BG 13-93 either continuously or for the first or last 2 weeks in culture or had no exposure. Osteochondral constructs with a BG 13-93 base had improved glycosaminoglycan deposition but less collagen II content. Agarose scaffolds that had a temporal exposure to BG 13-93 within the culture medium had improved mechanical and biochemical properties compared to continuous or no exposure. When used as a subchondral substrate, BG 13-93 did not improve biochemical properties compared to controls. However, as a culture medium supplement, BG 13-93 improved the biochemical and mechanical properties of a tissue-engineered cartilage layer. BG 13-93 may not be suitable in osteochondral constructs but could have potential as a medium supplement for neocartilage formation.

  16. Developments in dynamic MR elastography for in vitro biomechanical assessment of hyaline cartilage under high-frequency cyclical shear.

    PubMed

    Lopez, Orlando; Amrami, Kimberly K; Manduca, Armando; Rossman, Phillip J; Ehman, Richard L

    2007-02-01

    The design, construction, and evaluation of a customized dynamic magnetic resonance elastography (MRE) technique for biomechanical assessment of hyaline cartilage in vitro are described. For quantification of the dynamic shear properties of hyaline cartilage by dynamic MRE, mechanical excitation and motion sensitization were performed at frequencies in the kilohertz range. A custom electromechanical actuator and a z-axis gradient coil were used to generate and image shear waves throughout cartilage at 1000-10,000 Hz. A radiofrequency (RF) coil was also constructed for high-resolution imaging. The technique was validated at 4000 and 6000 Hz by quantifying differences in shear stiffness between soft ( approximately 200 kPa) and stiff ( approximately 300 kPa) layers of 5-mm-thick bilayered phantoms. The technique was then used to quantify the dynamic shear properties of bovine and shark hyaline cartilage samples at frequencies up to 9000 Hz. The results demonstrate that one can obtain high-resolution shear stiffness measurements of hyaline cartilage and small, stiff, multilayered phantoms at high frequencies by generating robust mechanical excitations and using large magnetic field gradients. Dynamic MRE can potentially be used to directly quantify the dynamic shear properties of hyaline and articular cartilage, as well as other cartilaginous materials and engineered constructs. (c) 2007 Wiley-Liss, Inc.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan

    Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less

  18. Electrochemical cells and methods of manufacturing the same

    DOEpatents

    Bazzarella, Ricardo; Slocum, Alexander H; Doherty, Tristan; Cross, III, James C

    2015-11-03

    Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.

  19. Rhinoplasty. The difficult nasal tip: total resection of the alar cartilages.

    PubMed

    Rodriguez-Camps, Salvador

    2009-01-01

    There are many ways to reconstruct and make nasal tips more attractive. Sometimes we cannot find the best way unless we at least remove all surplus from the tip. This may occur in primary or secondary rhinoplasty. In principle, anything is possible when relocating and reconstructing. However, sometimes we face reality when we uncover the tip: broken or bulging cartilages that are difficult to put right. For this reason, in 1987 we thought of totally resectioning the alar cartilages in a case of secondary rhinoplasty with an unsightly appearance. After a year the result was seen to be correct from an aesthetic and a functional perspective and is still so today. Aesthetically, it kept its shape and did not collapse with nasal respiratory failure. We covered the end of the crus medialis with a small, temporary, one- to two-layered fascia patch. Except in exceptional cases, we now use this procedure: Total sectioning of the alar cartilages including the domes, or maintenance of them by preserving the fibroadipose tip tissue with a suture in the middle of the end of the crus medialis and by covering this with temporary fascia, which usually has two layers depending on the thickness of the skin of the tip. This procedure is indicated mainly in secondary rhinoplasty when the cartilages of the tip are completely destroyed, and in primary rhinoplasty when the tip is excessively wide and bulbous. Our philosophy is, therefore, elegance and beauty of the nasal tip with a solid and equilateral base without prejudices.

  20. Medial meniscal posterior root/horn radial tears correlate with cartilage degeneration detected by T1ρ relaxation mapping.

    PubMed

    Takahashi, Kenji; Hashimoto, Sanshiro; Nakamura, Hiroshi; Mori, Atsushi; Sato, Akiko; Majima, Tokifumi; Takai, Shinro

    2015-06-01

    This study aimed to identify factors on routine pulse sequence MRI associated with cartilage degeneration observed on T1ρ relaxation mapping. This study included 137 subjects with knee pain. T1ρ values were measured in the regions of interest on the surface layer of the cartilage on mid-coronal images of the femorotibial joint. Assessment of cartilage, subchondral bone, meniscus and ligaments was performed using routine pulse sequence MRI. Radiographic evaluation for osteoarthritis was also performed. Multiple regression analysis revealed posterior root/horn tears to be independent factors increasing the T1ρ values of the cartilage in the medial compartment of the femorotibial joint. Even when adjusted for radiographically defined early-stage osteoarthritis, medial posterior meniscal radial tears significantly increased the T1ρ values. This study showed that posterior root/horn radial tears in the medial meniscus are particularly important MRI findings associated with cartilage degeneration observed on T1ρ relaxation mapping. Morphological factors of the medial meniscus on MRI provide findings useful for screening early-stage osteoarthritis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. T2 Relaxation Values of the Talar Trochlear Articular Cartilage: Comparison Between Patients With Lateral Instability of the Ankle Joint and Healthy Volunteers.

    PubMed

    Park, So Yoon; Yoon, Young Cheol; Cha, Jang Gyu; Sung, Ki Sun

    2016-01-01

    The purpose of this study was to evaluate the difference between the T2 relaxation values of the talar trochlear cartilage in patients with lateral instability of the ankle joint and the values in healthy volunteers. A retrospective assessment was conducted of images from 13 MRI examinations of the ankles of 12 patients who underwent lateral ankle ligament repair with an arthroscopically proven normal talar trochlear cartilage. Thirteen ankle MRI examinations of 12 healthy age- and sex-matched volunteers were prospectively performed. Two radiologists independently measured the T2 relaxation values of the talar trochlear cartilage in two layers (superficial and deep) in the following six compartments: medial anterior (M1), medial middle (M2), medial posterior (M3), lateral anterior (L1), lateral middle (L2), and lateral posterior (L3). The T2 relaxation values of patients were compared with those of healthy volunteers. Both readers found that the mean T2 relaxation values of all six compartments of the superficial layer were significantly higher in patients than in control subjects. For reader 1, the M1 findings were 46.2 for patients and 39.6 for healthy volunteers; M2, 50.4 and 41.1; M3, 52.1 and 46.2; L1, 43.1 and 37.9; L2, 47.8 and 41.8; and L3, 53.8 and 49.8. For reader 2, the M1 findings were 45.0 and 40.2; M2, 48.8 and 41.1; M3, 53.2 and 45.6; L1, 42.8 and 38.5; L2, 48.0 and 42.1; and L3, 55.0 and 49.0 (p < 0.05). For the deep layer, the mean T2 relaxation values of M2 (patients, 32.6; volunteers, 27.8 [p = 0.004]) and M3 (patients, 38.3; volunteers, 35.0 [p = 0.046]) for reader 1 and M2 (patients, 31.6; volunteers, 28.7 [p = 0.041]) for reader 2 were significantly higher in patients than in control subjects. Intraobserver and interobserver variability were excellent, except for interobserver variability for M1 deep (0.79) and L1 deep (0.75). The T2 relaxation values of arthroscopically proven normal talar trochlear cartilage of patients with lateral instability were higher than those of healthy volunteers, especially in the superficial layer and the M2 deep layer.

  2. Heritability of articular cartilage regeneration and its association with ear wound healing in mice.

    PubMed

    Rai, Muhammad Farooq; Hashimoto, Shingo; Johnson, Eric E; Janiszak, Kara L; Fitzgerald, Jamie; Heber-Katz, Ellen; Cheverud, James M; Sandell, Linda J

    2012-07-01

    Emerging evidence suggests that genetic components contribute significantly to cartilage degeneration in osteoarthritis pathophysiology, but little information is available on the genetics of cartilage regeneration. Therefore, this study was undertaken to investigate cartilage regeneration in genetic murine models using common inbred strains and a set of recombinant inbred (RI) lines generated from LG/J (healer of ear wounds) and SM/J (nonhealer) inbred mouse strains. An acute full-thickness cartilage injury was introduced in the trochlear groove of 8-week-old mice (n=265) through microsurgery. Mouse knee joints were sagittally sectioned and stained with toluidine blue to evaluate regeneration. For the ear wound phenotype, a bilateral 2-mm through-and-through puncture was created in 6-week-old mice (n=229), and healing outcomes were measured after 30 days. Broad-sense heritability and genetic correlations were calculated for both phenotypes. Time-course analysis of the RI mouse lines showed no significant regeneration until 16 weeks after surgery; at that time, the strains could be segregated into 3 categories: good, intermediate, and poor healers. Analysis of heritability (H2) showed that both cartilage regeneration (H2=26%; P=0.006) and ear wound closure (H2=53%; P<0.00001) were significantly heritable. The genetic correlations between the two healing phenotypes for common inbred mouse strains (r=0.92) and RI mouse lines (r=0.86) were found to be extremely high. Our findings indicate that articular cartilage regeneration in mice is heritable, the differences between the mouse lines are due to genetic differences, and a strong genetic correlation between the two phenotypes exists, indicating that they plausibly share a common genetic basis. We therefore surmise that LG/J by SM/J intercross mice can be used to dissect the genetic basis of variation in cartilage regeneration. Copyright © 2012 by the American College of Rheumatology.

  3. Electrochemical cells and methods of manufacturing the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzarella, Ricardo; Slocum, Alexander H.; Doherty, Tristan

    2016-07-26

    Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus,more » the intermediate layer can serve as a current collector for the electrochemical cell.« less

  4. Gene and protein expressions of vimentin and desmin during embryonic development of the mylohyoid muscle.

    PubMed

    Kishi, Asuka; Yamamoto, Masahito; Kikuchi, Akihito; Iwanuma, Osamu; Watanabe, Yutaka; Ide, Yoshinobu; Abe, Shinichi

    2012-09-01

    Meckel's cartilage is known to be involved in formation of the prenatal mandible. However, the relationship between Meckel's cartilage and the embryonic mylohyoid muscle during growth and development has been investigated only rarely. This study examined the expression of intermediate filaments in Meckel's cartilage and the embryonic mylohyoid muscle in fetal mice during morphological development. Specimens of E12-16 ICR mice sectioned in the frontal direction were subjected to immunohistochemistry for vimentin and desmin. Hematoxylin and eosin sections showed that the immature mylohyoid muscle began to grow along Meckel's cartilage during fetal development. Weak vimentin expression was detected in the mylohyoid muscle and surrounding tissues at E12. Desmin expression was detected specifically in the mylohyoid, and strong expression was evident after E13, and increased with age. It was inferred that the mylohyoid muscle is one the tissues developing from Meckel's cartilage, the latter exerting a continuous influence on the growth of the former. In the early stage, the surrounding mesenchymal tissues expressing vimentin formed a scaffold for the developing mylohyoid muscle. Muscle attachment at E13 showed steady desmin expression, which continued until maturity. This study suggested the possibility that Meckel's cartilage has an influence not only on the mandibular bone, but also on the development of the mylohyoid muscle attached to the mandibular bone. Furthermore, it revealed a stage of the developmental process of the mylohyoid muscle in which the expression of vimentin, which is a common protein in the surrounding tissue such as muscle and bone, induces the morphological formation of the mylohyoid muscle, cooperating with the surrounding structures.

  5. Correction of lobule-type microtia: I. The first stage of costal cartilage grafting.

    PubMed

    Yotsuyanagi, Takatoshi; Yamashita, Ken; Yamauchi, Makoto; Sugai, Asuka; Kayama, Musashi; Gonda, Ayako; Kita, Arisa

    2014-01-01

    Recently, auriculoplasty with costal cartilage grafting has been successfully used for correcting microtia and creating a clearly refined contour and a natural appearance of the ear. However, several important problems remain unsolved in these techniques. The authors describe an improved technique for harvesting costal cartilage with minimal morbidity and a new procedure for fabricating a cartilage frame that ensures a refined shape and rigid structure of the constructed ear. Costal cartilage is harvested directly with a chisel. This technique enables some of the cartilage at the chest wall to remain intact. The base frame is fabricated by two cartilage blocks partly overlapped on the area of the antihelix. The thickness in the overlapping area emphasizes the contour between the antihelix and the helical crus. To prevent absorption of the cartilage, helical and antihelical parts are created using the outer rigid layer of the harvested cartilage and are covered as much as possible by perichondrium. A total of 137 ears in 121 patients were corrected with the authors' technique and followed up for at least 3 years. Almost all of the patients could walk within 2 days after the operation. The structure and contour of the constructed ear were well maintained. Attention should be given not only to successful outcomes of construction of the ear but also to minimal morbidity for the patients. Our technique made it possible to construct a cosmetically refined ear that could be maintained for a long period and minimize the pain and deformity of the donor's chest.

  6. Subchondral bone histology and grading in osteoarthritis

    PubMed Central

    Aho, Olli-Matti; Finnilä, Mikko; Thevenot, Jerome; Saarakkala, Simo; Lehenkari, Petri

    2017-01-01

    Objective Osteoarthritis (OA) has often regarded as a disease of articular cartilage only. New evidence has shifted the paradigm towards a system biology approach, where also the surrounding tissue, especially bone is studied more vigorously. However, the histological features of subchondral bone are only poorly characterized in current histological grading scales of OA. The aim of this study is to specifically characterize histological changes occurring in subchondral bone at different stages of OA and propose a simple grading system for them. Design 20 patients undergoing total knee replacement surgery were randomly selected for the study and series of osteochondral samples were harvested from the tibial plateaus for histological analysis. Cartilage degeneration was assessed using the standardized OARSI grading system, while a novel four-stage grading system was developed to illustrate the changes in subchondral bone. Subchondral bone histology was further quantitatively analyzed by measuring the thickness of uncalcified and calcified cartilage as well as subchondral bone plate. Furthermore, internal structure of calcified cartilage-bone interface was characterized utilizing local binary patterns (LBP) based method. Results The histological appearance of subchondral bone changed drastically in correlation with the OARSI grading of cartilage degeneration. As the cartilage layer thickness decreases the subchondral plate thickness and disorientation, as measured with LBP, increases. Calcified cartilage thickness was highest in samples with moderate OA. Conclusion The proposed grading system for subchondral bone has significant relationship with the corresponding OARSI grading for cartilage. Our results suggest that subchondral bone remodeling is a fundamental factor already in early stages of cartilage degeneration. PMID:28319157

  7. Intermediate coating layer for high temperature rubbing seals for rotary regenerators

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1995-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. Because of the YSZ intermediate layer, the coating is thermodynamically stable and resists swelling at high temperatures.

  8. Stiffening the stingray skeleton - an investigation of durophagy in myliobatid stingrays (Chondrichthyes, batoidea, myliobatidae).

    PubMed

    Summers, A P

    2000-02-01

    The stingray family Myliobatidae contains five durophagous (hard prey specialist) genera and two planktivorous genera. A suite of morphological features makes it possible for the hard prey specialists to crush mollusks and crustaceans in their cartilaginous jaws. These include: 1) flat, pavement-like tooth plates set in an elastic dental ligament; 2) multiple layers of calcified cartilage on the surface of the jaws; 3) calcified struts running through the jaws; and 4) a lever system that amplifies the force of the jaw adductors. Examination of a range of taxa reveals that the presence of multiple layers of calcified cartilage, previously described from just a few species, is a plesiomorphy of Chondrichthyes. Calcified struts within the jaw, called "trabecular cartilage," are found only in the myliobatid genera, including the planktivorous Manta birostris. In the durophagous taxa, the struts are concentrated under the area where prey is crushed, thereby preventing local buckling of the jaws. Trabecular cartilage develops early in ontogeny, and does not appear to develop as a direct result of the stresses associated with feeding on hard prey. A "nutcracker" model of jaw function is proposed. In this model, the restricted gape, fused mandibular and palatoquadrate symphyses, and asynchronous contraction of the jaw adductors function to amplify the closing force by 2-4 times. Copyright 2000 Wiley-Liss, Inc.

  9. Fabrication of a Neotrachea Using Engineered Cartilage

    PubMed Central

    Weidenbecher, Mark; Tucker, Harvey M.; Awadallah, Amad; Dennis, James E.

    2008-01-01

    Objectives Surgical management of long-segment tracheal stenosis is an ongoing problem. Many types of tracheal prostheses have been tried but with limited success because of immune rejection, graft ischemia, or restenosis. Tissue engineered cartilage may offer a solution to this problem, although scaffolds, which are currently often used for support, can lead to biocompatibility problems. This study investigated the feasibility of scaffold-free cartilage to tissue engineer a vascularized neotrachea in rabbits. Study Design Animal study. Methods Autologous neotracheal constructs were implanted in the abdomen of six New Zealand white rabbits. Auricular chondrocytes were used to engineer scaffold-free cartilage sheets. A muscle flap raised from the external abdominal oblique muscle and the engineered cartilage were wrapped around a silicone stent to fabricate a vascularized neotrachea in vivo. In two of the six rabbits, a full thickness skin graft was used to create an epithelial lining. The constructs were harvested after either 6 or 10 weeks. Results All neotracheal constructs were healthy with well-vascularized and integrated layers. The implanted engineered cartilage underwent a remodeling process, forming a solid tracheal framework. Constructs harvested after 10 weeks proved to have significantly better mechanical properties than after 6 weeks and were comparable with the rabbit's native trachea. Conclusion Scaffold-free engineered cartilage can successfully fabricate a well-vascularized, autologous neotrachea with excellent mechanical properties. The results suggest that this approach can be used to reconstruct tracheal defects in rabbits. PMID:18197138

  10. Tribological properties of PVA/PVP blend hydrogels against articular cartilage.

    PubMed

    Kanca, Yusuf; Milner, Piers; Dini, Daniele; Amis, Andrew A

    2018-02-01

    This research investigated in-vitro tribological performance of the articulation of cartilage-on- polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) blend hydrogels using a custom-designed multi-directional wear rig. The hydrogels were prepared by repeated freezing-thawing cycles at different concentrations and PVA to PVP fractions at a given concentration. PVA/PVP blend hydrogels showed low coefficient of friction (COF) values (between 0.12 ± 0.01 and 0.14 ± 0.02) which were closer to the cartilage-on-cartilage articulation (0.03 ± 0.01) compared to the cartilage-on-stainless steel articulation (0.46 ± 0.06). The COF increased with increasing hydrogel concentration (p = 0.03) and decreasing PVP content at a given concentration (p < 0.05). The cartilage-on-hydrogel tests showed only the surface layers of the cartilage being removed (average volume loss of the condyles was 12.5 ± 4.2mm 3 ). However, the hydrogels were found to be worn/deformed. The hydrogels prepared at a higher concentration showed lower apparent volume loss. A strong correlation (R 2 = 0.94) was found between the COF and compressive moduli of the hydrogel groups, resulting from decreasing contact congruency. It was concluded that the hydrogels were promising as hemiarthroplasty materials, but that improved mechanical behaviour was required for clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Spatial Distribution and Relationship of T1ρ and T2 Relaxation Times in Knee Cartilage With Osteoarthritis

    PubMed Central

    Li, Xiaojuan; Pai, Alex; Blumenkrantz, Gabrielle; Carballido-Gamio, Julio; Link, Thomas; Ma, Benjamin; Ries, Michael; Majumdar, Sharmila

    2009-01-01

    T1ρ and T2 relaxation time constants have been proposed to probe biochemical changes in osteoarthritic cartilage. This study aimed to evaluate the spatial correlation and distribution of T1ρ and T2 values in osteoarthritic cartilage. Ten patients with osteoarthritis (OA) and 10 controls were studied at 3T. The spatial correlation of T1ρ and T2 values was investigated using Z-scores. The spatial variation of T1ρ and T2 values in patellar cartilage was studied in different cartilage layers. The distribution of these relaxation time constants was measured using texture analysis parameters based on gray-level co-occurrence matrices (GLCM). The mean Z-scores for T1ρ and T2 values were significantly higher in OA patients vs. controls (P < 0.05). Regional correlation coefficients of T1ρ and T2 Z-scores showed a large range in both controls and OA patients (0.2– 0.7). OA patients had significantly greater GLCM contrast and entropy of T1ρ values than controls (P < 0.05). In summary, T1ρ and T2 values are not only increased but are also more heterogeneous in osteoarthritic cartilage. T1ρ and T2 values show different spatial distributions and may provide complementary information regarding cartilage degeneration in OA. PMID:19319904

  12. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs.

    PubMed

    Mouser, V H M; Abbadessa, A; Levato, R; Hennink, W E; Vermonden, T; Gawlitta, D; Malda, J

    2017-03-23

    Fine-tuning of bio-ink composition and material processing parameters is crucial for the development of biomechanically relevant cartilage constructs. This study aims to design and develop cartilage constructs with tunable internal architectures and relevant mechanical properties. More specifically, the potential of methacrylated hyaluronic acid (HAMA) added to thermosensitive hydrogels composed of methacrylated poly[N-(2-hydroxypropyl)methacrylamide mono/dilactate] (pHPMA-lac)/polyethylene glycol (PEG) triblock copolymers, to optimize cartilage-like tissue formation by embedded chondrocytes, and enhance printability was explored. Additionally, co-printing with polycaprolactone (PCL) was performed for mechanical reinforcement. Chondrocyte-laden hydrogels composed of pHPMA-lac-PEG and different concentrations of HAMA (0%-1% w/w) were cultured for 28 d in vitro and subsequently evaluated for the presence of cartilage-like matrix. Young's moduli were determined for hydrogels with the different HAMA concentrations. Additionally, hydrogel/PCL constructs with different internal architectures were co-printed and analyzed for their mechanical properties. The results of this study demonstrated a dose-dependent effect of HAMA concentration on cartilage matrix synthesis by chondrocytes. Glycosaminoglycan (GAG) and collagen type II content increased with intermediate HAMA concentrations (0.25%-0.5%) compared to HAMA-free controls, while a relatively high HAMA concentration (1%) resulted in increased fibrocartilage formation. Young's moduli of generated hydrogel constructs ranged from 14 to 31 kPa and increased with increasing HAMA concentration. The pHPMA-lac-PEG hydrogels with 0.5% HAMA were found to be optimal for cartilage-like tissue formation. Therefore, this hydrogel system was co-printed with PCL to generate porous or solid constructs with different mesh sizes. Young's moduli of these composite constructs were in the range of native cartilage (3.5-4.6 MPa). Interestingly, the co-printing procedure influenced the mechanical properties of the final constructs. These findings are relevant for future bio-ink development, as they demonstrate the importance of selecting proper HAMA concentrations, as well as appropriate print settings and construct designs for optimal cartilage matrix deposition and final mechanical properties of constructs, respectively.

  13. Characterisation of lubricin in synovial fluid from horses with osteoarthritis.

    PubMed

    Svala, E; Jin, C; Rüetschi, U; Ekman, S; Lindahl, A; Karlsson, N G; Skiöldebrand, E

    2017-01-01

    The glycoprotein lubricin contributes to the boundary lubrication of the articular cartilage surface. The early events of osteoarthritis involve the superficial layer where lubricin is synthesised. To characterise the glycosylation profile of lubricin in synovial fluid from horses with osteoarthritis and study secretion and degradation of lubricin in an in vitro inflammation cartilage model. In vitro study. Synovial fluid samples collected from horses with joints with normal articular cartilage and structural osteoarthritic lesions; with and without osteochondral fragments, were analysed for the lubricin glycosylation profiles. Articular cartilage explants were stimulated with or without interleukin-1β for 25 days. Media samples collected at 3-day intervals were analysed by quantitative proteomics, western blot and enzyme-linked immunosorbent assay. O-glycosylation profiles in synovial fluid revealed both Core 1 and 2 O-glycans, with Core 1 O-glycans predominating. Synovial fluid from normal joints (49.5 ± 1.9%) contained significantly lower amounts of monosialylated Core 1 O-glycans compared with joints with osteoarthritis (53.8 ± 7.8%, P = 0.03) or joints with osteochondral fragments (57.3 ± 8.8%, P = 0.001). Additionally, synovial fluid from normal joints (26.7 ± 6.7%) showed higher amounts of disialylated Core 1 O-glycan than from joints with osteochondral fragments (21.2 ± 4.9%, P = 0.03). A C-terminal proteolytic cleavage site in lubricin was found in synovial fluid from normal and osteochondral fragment joints and in media from interleukin-1β stimulated and unstimulated articular cartilage explants. This is the first demonstration of a change in the glycosylation profile of lubricin in synovial fluid from diseased equine joints compared with that from normal joints. We demonstrate an identical proteolytic cleavage site of lubricin both in vitro and in vivo. The reduced sialation of lubricin in synovial fluid from diseased joints may affect the boundary lubricating ability of the superficial layer of articular cartilage and could be one of the early events in the progression of osteoarthritis. © 2015 EVJ Ltd.

  14. UTE bi-component analysis of T2* relaxation in articular cartilage

    PubMed Central

    Shao, H.; Chang, E.Y.; Pauli, C.; Zanganeh, S.; Bae, W.; Chung, C.B.; Tang, G.; Du, J.

    2015-01-01

    SUMMARY Objectives To determine T2* relaxation in articular cartilage using ultrashort echo time (UTE) imaging and bi-component analysis, with an emphasis on the deep radial and calcified cartilage. Methods Ten patellar samples were imaged using two-dimensional (2D) UTE and Car-Purcell-Meiboom-Gill (CPMG) sequences. UTE images were fitted with a bi-component model to calculate T2* and relative fractions. CPMG images were fitted with a single-component model to calculate T2. The high signal line above the subchondral bone was regarded as the deep radial and calcified cartilage. Depth and orientation dependence of T2*, fraction and T2 were analyzed with histopathology and polarized light microscopy (PLM), confirming normal regions of articular cartilage. An interleaved multi-echo UTE acquisition scheme was proposed for in vivo applications (n = 5). Results The short T2* values remained relatively constant across the cartilage depth while the long T2* values and long T2* fractions tended to increase from subchondral bone to the superficial cartilage. Long T2*s and T2s showed significant magic angle effect for all layers of cartilage from the medial to lateral facets, while the short T2* values and T2* fractions are insensitive to the magic angle effect. The deep radial and calcified cartilage showed a mean short T2* of 0.80 ± 0.05 ms and short T2* fraction of 39.93 ± 3.05% in vitro, and a mean short T2* of 0.93 ± 0.58 ms and short T2* fraction of 35.03 ± 4.09% in vivo. Conclusion UTE bi-component analysis can characterize the short and long T2* values and fractions across the cartilage depth, including the deep radial and calcified cartilage. The short T2* values and T2* fractions are magic angle insensitive. PMID:26382110

  15. Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells.

    PubMed

    Mesallati, Tariq; Buckley, Conor T; Kelly, Daniel J

    2017-05-01

    During postnatal joint development, progenitor cells that reside in the superficial region of articular cartilage first drive the rapid growth of the tissue and later help direct the formation of mature hyaline cartilage. These developmental processes may provide directions for the optimal structuring of co-cultured chondrocytes (CCs) and multipotent stromal/stem cells (MSCs) required for engineering cartilaginous tissues. The objective of this study was to engineer cartilage grafts by recapitulating aspects of joint development where a population of superficial progenitor cells drives the development of the tissue. To this end, MSCs were either self-assembled on top of CC-laden agarose gels (structured co-culture) or were mixed with CCs before being embedded in an agarose hydrogel (mixed co-culture). Porcine infrapatellar fat pad-derived stem cells (FPSCs) and bone marrow-derived MSCs (BMSCs) were used as sources of progenitor cells. The DNA, sGAG and collagen content of a mixed co-culture of FPSCs and CCs was found to be lower than the combined content of two control hydrogels seeded with CCs and FPSCs only. In contrast, a mixed co-culture of BMSCs and CCs led to increased proliferation and sGAG and collagen accumulation. Of note was the finding that a structured co-culture, at the appropriate cell density, led to greater sGAG accumulation than a mixed co-culture for both MSC sources. In conclusion, assembling MSCs onto CC-laden hydrogels dramatically enhances the development of the engineered tissue, with the superficial layer of progenitor cells driving CC proliferation and cartilage ECM production, mimicking certain aspects of developing cartilage. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    PubMed

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  17. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo.

    PubMed

    Martínez Ávila, Héctor; Feldmann, Eva-Maria; Pleumeekers, Mieke M; Nimeskern, Luc; Kuo, Willy; de Jong, Willem C; Schwarz, Silke; Müller, Ralph; Hendriks, Jeanine; Rotter, Nicole; van Osch, Gerjo J V M; Stok, Kathryn S; Gatenholm, Paul

    2015-03-01

    Tissue engineering provides a promising alternative therapy to the complex surgical reconstruction of auricular cartilage by using ear-shaped autologous costal cartilage. Bacterial nanocellulose (BNC) is proposed as a promising scaffold material for auricular cartilage reconstruction, as it exhibits excellent biocompatibility and secures tissue integration. Thus, this study evaluates a novel bilayer BNC scaffold for auricular cartilage tissue engineering. Bilayer BNC scaffolds, composed of a dense nanocellulose layer joined with a macroporous composite layer of nanocellulose and alginate, were seeded with human nasoseptal chondrocytes (NC) and cultured in vitro for up to 6 weeks. To scale up for clinical translation, bilayer BNC scaffolds were seeded with a low number of freshly isolated (uncultured) human NCs combined with freshly isolated human mononuclear cells (MNC) from bone marrow in alginate and subcutaneously implanted in nude mice for 8 weeks. 3D morphometric analysis showed that bilayer BNC scaffolds have a porosity of 75% and mean pore size of 50 ± 25 μm. Furthermore, endotoxin analysis and in vitro cytotoxicity testing revealed that the produced bilayer BNC scaffolds were non-pyrogenic (0.15 ± 0.09 EU/ml) and non-cytotoxic (cell viability: 97.8 ± 4.7%). This study demonstrates that bilayer BNC scaffolds offer a good mechanical stability and maintain a structural integrity while providing a porous architecture that supports cell ingrowth. Moreover, bilayer BNC scaffolds provide a suitable environment for culture-expanded NCs as well as a combination of freshly isolated NCs and MNCs to form cartilage in vitro and in vivo as demonstrated by immunohistochemistry, biochemical and biomechanical analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    PubMed

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM.

  19. Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction

    PubMed Central

    Sun, Liguo; Li, Hongguo; Qu, Ling; Zhu, Rui; Fan, Xiangli; Xue, Yingsen; Xie, Zhenghong; Fan, Hongbin

    2014-01-01

    The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface. PMID:25019087

  20. Biodynamic Performance of Hyaluronic Acid versus Synovial fluid of the Knee for Osteoarthritic Therapy

    PubMed Central

    Corvelli, Michael; Che, Bernadette; Saeui, Christopher; Singh, Anirudha; Elisseeff, Jennifer

    2015-01-01

    Hyaluronic acid (HA), a natural biomaterial present in healthy joints but depleted in osteoarthritis (OA), has been employed clinically to provide symptomatic relief of joint pain. Joint movement combined with a reduced joint lubrication in osteoarthritic knees can result in increased wear and tear, chondrocyte apoptosis, and inflammation, leading to cascading cartilage deterioration. Therefore, development of an appropriate cartilage model and evaluation for its friction properties with potential lubricants in different conditions is necessary, which can closely resemble a mechanically induced OA cartilage. Additionally, the comparison of different models with and without endogenous lubricating surface zone proteins, such as PRG4 promotes a well-rounded understanding of cartilage lubrication. In this study, we present our findings on the lubricating effects of HA on different articular cartilage model surfaces in comparison to synovial fluid, a physiological lubricating biomaterial. The mechanical testings data demonstrated that HA reduced average static and kinetic friction coefficient values of the cartilage samples by 75% and 70%, respectively. Furthermore, HA mimicked the friction characteristics of freshly harvested natural synovial fluid throughout all tested and modeled OA conditions with no statistically significant difference. These characteristics led us to exclusively identify HA as an effective boundary layer lubricant in the technology that we develop to treat OA [Singh et al. 2104]. PMID:25858258

  1. Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage

    PubMed Central

    Chung, Chen-Yuan; Heebner, Joseph; Baskaran, Harihara; Welter, Jean F.; Mansour, Joseph M.

    2015-01-01

    Tissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor. As a proof-of-concept, and to standardize an assessment protocol, a well-characterized three-layered hydrogel construct was used as a surrogate for TE cartilage, and was studied under controlled incremental compressions. The strain field of the construct predicted by elastography was then validated by comparison with a poroelastic finite-element analysis (FEA). On average, the differences between the strains predicted by elastography and the FEA were within 10%. Subsequently engineered cartilage tissue was evaluated in the same test fixture. Results from these examinations showed internal regions where the local strain was 1–2 orders of magnitude greater than that near the surface. These studies document the feasibility of using ultrasound to evaluate the mechanical behaviors of maturing TE constructs in a sterile environment. PMID:26077987

  2. A Population of Progenitor Cells in the Basal and Intermediate Layers of the Murine Bladder Urothelium Contributes to Urothelial Development and Regeneration

    PubMed Central

    Colopy, Sara A.; Bjorling, Dale E.; Mulligan, William A.; Bushman, Wade

    2014-01-01

    Background Homeostatic maintenance and repair of the bladder urothelium has been attributed to proliferation of keratin 5-expressing basal cells (K5-BC) with subsequent differentiation into superficial cells. Recent evidence, however, suggests that the intermediate cell layer harbors a population of progenitor cells. We use label-retaining cell (LRC) methodology in conjunction with a clinically relevant model of uropathogenic Escherichia coli (UPEC)-induced injury to characterize urothelial ontogeny during development and in response to diffuse urothelial injury. Results In the developing urothelium, proliferating cells were dispersed throughout the K5-BC and intermediate cells layers, becoming progressively concentrated in the K5-BC layer with age. When 5-bromo-2-deoxyuridine (BrdU) was administered during urothelial development, LRCs in the adult were found within the K5-BC, intermediate, and superficial cell layers, the location dependent upon time of labeling. UPEC inoculation resulted in loss of the superficial cell layer followed by robust proliferation of K5-BCs and intermediate cells. LRCs within the K5-BC and intermediate cell layers proliferated in response to injury. Conclusions Urothelial development and regeneration following injury relies on proliferation of K5-BC and intermediate cells. The existence and proliferation of LRCs within both the K5-BC and intermediate cell layers suggests the presence of two populations of urothelial progenitor cells. PMID:24796293

  3. Integrating qPLM and biomechanical test data with an anisotropic fiber distribution model and predictions of TGF-β1 and IGF-1 regulation of articular cartilage fiber modulus

    PubMed Central

    Stender, Michael E.; Raub, Christopher B.; Yamauchi, Kevin A.; Shirazi, Reza; Vena, Pasquale; Sah, Robert L.; Hazelwood, Scott J.; Klisch, Stephen M.

    2013-01-01

    A continuum mixture model with distinct collagen (COL) and glycosaminoglycan (GAG) elastic constituents was developed for the solid matrix of immature bovine articular cartilage. A continuous COL fiber volume fraction distribution function and a true COL fiber elastic modulus (Ef) were used. Quantitative polarized light microscopy (qPLM) methods were developed to account for the relatively high cell density of immature articular cartilage and used with a novel algorithm that constructs a 3D distribution function from 2D qPLM data. For specimens untreated and cultured in vitro, most model parameters were specified from qPLM analysis and biochemical assay results; consequently, Ef was predicted using an optimization to measured mechanical properties in uniaxial tension and unconfined compression. Analysis of qPLM data revealed a highly anisotropic fiber distribution, with principal fiber orientation parallel to the surface layer. For untreated samples, predicted Ef values were 175 and 422 MPa for superficial (S) and middle (M) zone layers, respectively. TGF-β1 treatment was predicted to increase and decrease Ef values for the S and M layers to 281 and 309 MPa, respectively. IGF-1 treatment was predicted to decrease Ef values for the S and M layers to 22 and 26 MPa, respectively. A novel finding was that distinct native depth-dependent fiber modulus properties were modulated to nearly homogeneous values by TGF-β1 and IGF-1 treatments, with modulated values strongly dependent on treatment. PMID:23266906

  4. Experimental study on the role of intra-articular injection of MSCs on cartilage regeneration in haemophilia.

    PubMed

    Ravanbod, R; Torkaman, G; Mophid, M; Mohammadali, F

    2015-09-01

    Mesenchymal stem cells (MSCs) therapy is a field in progress in cartilage repair strategies. We tried to investigate the functional properties of the joint and cartilage in experimental haemarthrosis (EH) after MSCs intra-articular (IA) injection. One millilitre of fresh autologous blood was injected twice a week for three consecutive weeks in three groups including control haemophilia 10 days (n = 8), control haemophilia 38 days (n = 8) and MSCs (n = 8) group. In later, 10 days after the end of IA blood injections, MSCs IA injection was performed. Eight animals received no treatment as the normal control group. Thirty-eight days after the end of IA blood injections, animals were sacrificed. Joint friction and stress-relaxation tests were done, inflammatory cytokines of synovial membrane and scanning electron microscopy of the cartilage assessed. Joint friction decreased in MSCs in comparison to other groups and was significant with normal control group, (P = 0.011). The mechanical properties of cartilage showed no significant differences between groups. Tumour necrosis factor alpha and interleukin 1 beta decreased and IL-4 very slightly increased in MSCs in comparison to the time-matched control group. Scanning electron microscopy enabled acquisition of good structural properties of the surface and layers of the cartilage after MSCs injection. The hole induced in the medial plateau of the tibia bones, after inducing haemarthrosis, were covered with cartilage-like structure. The results showed that MSCs IA injection has some beneficial effects on cartilage structure and function in haemarthrosis model and is promising in patients with haemophilia. © 2015 John Wiley & Sons Ltd.

  5. Temperature affects transport of polysaccharides and proteins in articular cartilage explants.

    PubMed

    Moeini, Mohammad; Lee, Kwan-Bong; Quinn, Thomas M

    2012-07-26

    Solute transport phenomena mediate many aspects of the physiology and contrast agent-based clinical imaging of articular cartilage. Temperatures up to 10°C below standard body temperature (37°C) are common in articulating joints during normal activities and clinically (e.g. cold treatment of injuries). Therefore it is of interest to characterize the effects of temperature changes on solute transport parameters in cartilage. A range of fluorescent solutes including fluorescein isothiocyanate, 4 and 40kDa dextrans, myoglobin, insulin and chondroitin sulfate were prepared and used in assays of solute effective partition coefficient and effective diffusivity in bovine intermediate zone articular cartilage explants maintained at 10, 22 or 37°C. Trends for increasing partition coefficient with increasing temperature were evident for all solutes except chondroitin sulfate, with significant changes between 22 and 37°C for 4kDa dextran, insulin and myoglobin. Diffusivities of most solutes tested also tended to increase with increasing temperature, with significant changes between 10 and 22°C for FITC, 40kDa dextran and myoglobin. Oddly, insulin diffusivity decreased significantly as temperature increased from 22 to 37°C while chondroitin sulfate diffusivity exhibited no clear temperature dependence. These results highlight solute-specific temperature dependences of transport phenomena which may depend upon molecular weight, chemical structure, molecular conformation, and solute-matrix and solute-solute interactions. The articular cartilage explants themselves exhibited small but significant changes in water and glycosaminoglycan contents during experiments, underscoring the importance of solute-matrix interactions. Solute transport parameters in cartilage and their temperature dependences are therefore not easily predicted, and case-by-case experimental determination may be essential. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. An In Vivo Lapine Model for Impact-Induced Injury and Osteoarthritic Degeneration of Articular Cartilage

    PubMed Central

    Alexander, Peter G.; McCarron, Jesse A.; Levine, Matthew J.; Melvin, Gary M.; Murray, Patrick J.; Manner, Paul A.

    2012-01-01

    Objective: In this study, we applied a spring-loaded impactor to deliver traumatic forces to articular cartilage in vivo. Based on our recent finding that a 0.28-J impact induces maximal catabolic response in adult bovine articular cartilage in vitro using this device, we hypothesize that this impact will induce the formation of a focal osteoarthritic defect in vivo. Design: The femoral condyle of New Zealand White rabbits was exposed and one of the following procedures performed: 0.28 J impact, anterior cruciate ligament transection, articular surface grooving, or no joint or cartilage destruction (control). After 24 hours, 4 weeks, or 12 weeks (n = 3 for each time point), wounds were localized with India ink, and tissue samples were collected and characterized histomorphometrically with Safranin O/Fast green staining and Hoechst 33342 nuclear staining for cell vitality. Results: The spring-loaded device delivered reproducible impacts with the following characteristics: impact area of 1.39 ± 0.11 mm2, calculated load of 326 ± 47.3 MPa, time-to-peak of 0.32 ± 0.03 ms, and an estimated maximal displacement of 25.1% ± 4.5% at the tip apex. The impact resulted in immediate cartilage fissuring and cell loss in the surface and intermediate zones, and it induced the formation of a focal lesion at 12 weeks. The degeneration was defined and appeared more slowly than after anterior cruciate ligament transection, and more pronounced and characteristic than after grooving. Conclusion: A single traumatic 0.28 J impact delivered with this spring-loaded impactor induces focal cartilage degeneration characteristic of osteoarthritis. PMID:26069642

  7. Regeneration of subcutaneous tissue-engineered mandibular condyle in nude mice.

    PubMed

    Wang, Feiyu; Hu, Yihui; He, Dongmei; Zhou, Guangdong; Yang, Xiujuan; Ellis, Edward

    2017-06-01

    To explore the feasibility of regenerating mandibular condyles based on cartilage cell sheet with cell bone-phase scaffold compared with cell-biphasic scaffolds. Tissue-engineered mandibular condyles were regenerated by the following: 1) cartilage cell sheet + bone-phase scaffold (PCL/HA) seeded with bone marrow stem cells (BMSCs) from minipigs (cell sheet group), and 2) cartilage phase scaffold (PGA/PLA) seeded with auricular chondrocytes + bone-phase scaffold seeded with BMSCs from minipigs (biphasic scaffold group). They were implanted subcutaneously in nude mice after being cultured in vitro for different periods of time. After 12 weeks, the mice were sacrificed, and the specimens were harvested and evaluated based on gross appearance and histopathologic observations with hematoxylin and eosin, safranin O-fast green and immumohistochemical staining for collagen I and II. The histopathologic assessment score of condylar cartilage and bone density were compared between the 2 groups using SPSS 17.0 software. The 2 groups' specimens all formed mature cartilage-like tissues with numerous chondrocytes, typical cartilage lacuna and abundant cartilage-specific extracellular matrix. The regenerated cartilage was instant, continuous, homogeneous and avascular. In the biphasic scaffold group, there were still a few residual PGA fibers in the cartilage layer. The cartilage and bone interface was established in the 2 groups, and the microchannels of the bone-phase scaffolds were filled with bone tissue. The score of cartilage regeneration in the cell sheet group was a little higher than that in the biphasic scaffold group, but the difference was not significant (p > 0.05). There was no significant difference in bone tissue formation between the 2 groups (p > 0.05). Both the cartilage cell sheet group and the biphasic scaffold group of nude mice underwent regeneration of condyle-shaped osteochondral composite. Without residual PGA fibers, the cell sheet group might have less chance of immunological rejection compared to biphasic scaffold group. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers☆

    PubMed Central

    Li, Junyan; Stewart, Todd D.; Jin, Zhongmin; Wilcox, Ruth K.; Fisher, John

    2013-01-01

    Computational models of the natural hip joint are needed to examine and optimise tissue sparing interventions where the natural cartilage remains part of the bearing surfaces. Although the importance of interstitial fluid pressurisation in the performance of cartilage has long been recognized, few studies have investigated the time dependent interstitial fluid pressurisation in a three dimensional natural hip joint model. The primary aim of this study was to develop a finite element model of the natural hip incorporating the biphasic cartilage layers that was capable of simulating the joint response over a prolonged physiological loading period. An initial set of sensitivity studies were also undertaken to investigate the influence of hip size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the joint. The contact stress, contact area, fluid pressure and fluid support ratio were calculated and cross-compared between models with different parameters to evaluate their influence. It was found that the model predictions for the period soon after loading were sensitive to the hip size, clearance, cartilage aggregate modulus, thickness and hemiarthroplasty, while the time dependent behaviour over 3000 s was influenced by the hip clearance and cartilage aggregate modulus, permeability, thickness and hemiarthroplasty. The modelling methods developed in this study provide a basic platform for biphasic simulation of the whole hip joint onto which more sophisticated material models or other input parameters could be added in the future. PMID:23664238

  9. Jellyfish mucin may have potential disease-modifying effects on osteoarthritis

    PubMed Central

    2009-01-01

    Background We aimed to study the effects of intra-articular injection of jellyfish mucin (qniumucin) on articular cartilage degeneration in a model of osteoarthritis (OA) created in rabbit knees by resection of the anterior cruciate ligament. Qniumucin was extracted from Aurelia aurita (moon jellyfish) and Stomolophus nomurai (Nomura's jellyfish) and purified by ion exchange chromatography. The OA model used 36 knees in 18 Japanese white rabbits. Purified qniumucin extracts from S. nomurai or A. aurita were used at 1 mg/ml. Rabbits were divided into four groups: a control (C) group injected with saline; a hyaluronic acid (HA)-only group (H group); two qniumucin-only groups (M groups); and two qniumucin + HA groups (MH groups). One milligram of each solution was injected intra-articularly once a week for 5 consecutive weeks, starting from 4 weeks after surgery. Ten weeks after surgery, the articular cartilage was evaluated macroscopically and histologically. Results In the C and M groups, macroscopic cartilage defects extended to the subchondral bone medially and laterally. When the H and both MH groups were compared, only minor cartilage degeneration was observed in groups treated with qniumucin in contrast to the group without qniumucin. Histologically, densely safranin-O-stained cartilage layers were observed in the H and two MH groups, but cartilage was strongly maintained in both MH groups. Conclusion At the concentrations of qniumucin used in this study, injection together with HA inhibited articular cartilage degeneration in this model of OA. PMID:19995451

  10. Release of oxygen radicals by articular chondrocytes: a study of luminol-dependent chemiluminescence and hydrogen peroxide secretion.

    PubMed

    Rathakrishnan, C; Tiku, K; Raghavan, A; Tiku, M L

    1992-10-01

    We previously established that normal articular chondrocytes, like macrophages, express class II major histocompatibility antigens, present antigen, and induce mixed and autologous lymphocyte stimulation. In a recent study using the trapped indicator 2',7'-dichlorofluorescein diacetate, we were able to measure levels of intracellular hydrogen peroxide within normal articular chondrocytes (J Immunol 245:690-696, 1990). In the present study, we utilized the technique of chemiluminescence and the biochemical method of quantitating hydrogen peroxide release to measure the production of reactive oxygen intermediates by articular chondrocytes. Chondrocytes, in suspension or adherent to coverslips, showed luminol-dependent chemiluminescence that was dependent on the number and viability of cells. There was a dose-dependent increase in chemiluminescence in response to soluble stimuli, such as phorbol myristate acetate (PMA), concanavalin A (ConA), and f-Met-Leu-Phe (FMLP). Azide inhibited chemiluminescence, suggesting that the light emission in chondrocytes is myeloperoxidase dependent. The antioxidant, catalase, inhibited chemiluminescence but superoxide dismutase had no effect, suggesting that luminol-dependent chemiluminescence in chondrocytes mostly measured hydrogen peroxide. Chemiluminescence was also observed in fragments of live cartilage tissue, indicating that chondrocytes that are cartilage matrix bound can generate the respiratory burst response. Using the scopoletin oxidation assay, we confirmed the release of increasing amounts of hydrogen peroxide by chondrocytes exposed to interleukin-1, rabbit interferon, and tumor necrosis factor alpha. Tumor necrosis factor alpha had both priming and enhancing effects on reactive oxygen intermediate production by chondrocytes. Reactive oxygen intermediates have been shown to play a significant role in matrix degradation. We suggest that reactive oxygen intermediates produced by chondrocytes play an important role in the degradation of matrix in arthritis.

  11. Model-based cartilage thickness measurement in the submillimeter range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.

    2007-09-15

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness wasmore » varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical sections. We present a method that yields virtually unbiased thickness estimates of cartilage layers in the submillimeter range. The good agreement of thickness estimates from CT images with estimates from anatomical sections is promising for clinical application of the method in cartilage integrity staging of the wrist and the ankle.« less

  12. The pathogenesis of cauliflower ear. An experimental study in rabbits.

    PubMed

    Ohlsén, L; Skoog, T; Sohn, S A

    1975-01-01

    Appreciating an imcomplete understanding of the pathogenesis of cauliflower ear, an experimental study was designed to demonstrate the pathophysiology of this deformity. The investigation was conducted in 2-month-old rabbits. In one ear a collection of blood was placed under the raised perichondrium which was then sutured back in place and the skin closed. In the other ear an equal amount of blood was deposited between the intact perichondrium and skin. In the first study new cartilage developed under the perichondrium, but in the ear in which the blood was left above the surface of the perichondrium-covered cartilage, complete resorption of the clot occurred. The cauliflower ear was thus shown to be generating cartilage, arising from a layer of raised perichondrium which was further stimulated by a sero-sanguinous medium. The subperichondrial hematoma was extensively invaded by chondroblasts within 2 weeks, and over a period of 4 weeks the new tissue gradually changed into more mature cartilage. It was a consistent finding that the separated perichondrium retracted, thus causing the original cartilage to rise and buckle over the hamatoma, similar to the picture observed in the human pathology.

  13. Non-invasive monitoring of cytokine-based regenerative treatment of cartilage by hyperspectral unmixing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.

    2016-03-01

    Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.

  14. The Glycosaminoglycans of Normal and Arthritic Cartilage

    PubMed Central

    Mankin, Henry J.; Lippiello, Louis

    1971-01-01

    The cartilages from the hip joints of 13 normal and 15 osteoarthritic humans were analyzed for glycosaminoglycan content and distribution. The GAGs were separated by elution with CPC on a short cellulose column by the technique of Svejcar and Robertson after digestion of the tissue with pronase and papain. The eluates were identified by a variety of methods including determination of molar ratios, N-acetyl-hexosamine determinations after hyaluronidase treatment and thin-layer chromatography of unhydrolyzed and hydrolyzed GAGs. From the data obtained, it was demonstrated that cartilage from arthritic patients showed a significant increase in the concentration of chondroitin 4-sulfate and a significant decrease in keratan sulfate, with only slight changes in the total amount of GAG present. Calculations of the molar ratios showed variation in the sulfation with chondroitin 4-sulfate appearing in the “supersulfated” state in the arthritic cartilage. The data lead to speculation regarding the process of osteoarthritis, and it is concluded that the changes seen are more likely to represent an altered pattern of synthesis rather than selective degradation. Since the changes suggest a younger cartilage, a theory is advanced that the chondrocyte responds to the chronic stress of osteoarthritis by modulation to a chondroblastic phase. PMID:4255496

  15. Study of cartilage and bone layers of the bearing surface of the equine metacarpophalangeal joint relative to different timescales of maturation.

    PubMed

    van der Harst, M R; van de Lest, C H A; Degroot, J; Kiers, G H; Brama, P A J; van Weeren, P R

    2005-05-01

    A detailed and comprehensive insight into the normal maturation process of the different tissues that make up functional units of the locomotor system such as joints is necessary to understand the influence of early training on musculoskeletal tissues. To study simultaneously the maturation process in the entire composite structure that makes up the bearing surface of a joint (cartilage, subchondral and trabecular bone) in terms of biochemical changes in the tissues of juvenile horses at 2 differently loaded sites of the metacarpophalangeal joint, compared to a group of mature horses. In all the structures described above developmental changes may follow a different timescale. Age-related changes in biochemical characteristics of the collagen part of the extracellular matrix (hydroxylysine, hydroxyproline, hydroxypyridinum crosslinks) of articular cartilage and of the underlying subchondral and trabecular bone were determined in a group of juvenile horses (n = 13) (Group 1, age 6 months-4 years) and compared to a group of mature horses (n = 30) (Group 2, >4 years). In both bony layers, bone mineral density, ash content and levels of individual minerals were determined. In cartilage, subchondral bone and trabecular bone, virtually all collagen parameters in juvenile horses were already at a similar (stable) level as in mature horses. In both bony layers, bone mineral density, ash- and calcium content were also stable in the mature horses, but continued to increase in the juvenile group. For magnesium there was a decrease in the juvenile animals, followed by a steady state in the mature horses. In horses age 6 months-4 years, the collagen network of all 3 layers within the joint has already attained a mature biochemical composition, but the mineral composition of both subchondral and trabecular bone continues to develop until approximately age 4 years. The disparity in maturation of the various extracellular matrix components of a joint can be assumed to have consequences for the capacity to sustain load and should hence be taken into account when training or racing young animals.

  16. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes.

    PubMed

    Zhu, Linyi; Seror, Jasmine; Day, Anthony J; Kampf, Nir; Klein, Jacob

    2017-09-01

    The boundary layers coating articular cartilage in synovial joints constitute unique biomaterials, providing lubricity at levels unmatched by any human-made materials. The underlying molecular mechanism of this lubricity, essential to joint function, is not well understood. Here we study the interactions between surfaces bearing attached hyaluronan (hyaluronic acid, or HA) to which different phosphatidylcholine (PC) lipids had been added, in the form of small unilamellar vesicles (SUVs or liposomes), using a surface force balance, to shed light on possible cartilage boundary lubrication by such complexes. Surface-attached HA was complexed with different PC lipids (hydrogenated soy PC (HSPC), 1,2-dimyristoyl-sn-glycero-3-PC (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-PC (POPC)), followed by rinsing. Atomic force microscopy (AFM) and cryo-scanning electron microscopy (Cryo-SEM) were used to image the HA-PC surface complexes following addition of the SUVs. HA-HSPC complexes provide very efficient lubrication, with friction coefficients as low as μ∼0.001 at physiological pressures P≈150atm, while HA-DMPC and HA-POPC complexes are efficient only at low P (up to 10-20atm). The friction reduction in all cases is attributed to hydration lubrication by highly-hydrated phosphocholine groups exposed by the PC-HA complexes. The greater robustness at high P of the HSPC (C 16(15%) ,C 18(85%) ) complexes relative to the DMPC ((C 14 ) 2 ) or POPC (C 16 , C 18:1 ) complexes is attributed to the stronger van der Waals attraction between the HSPC acyl tails, relative to the shorter or un-saturated tails of the other two lipids. Our results shed light on possible lubrication mechanisms at the articular cartilage surface in joints. Can designed biomaterials emulate the unique lubrication ability of articular cartilage, and thus provide potential alleviation to friction-related joint diseases? This is the motivation behind the present study. The principles of cartilage lubrication have attracted considerable attention for decades, and several models have been proposed to elucidate it, however, the mechanism of this ultralow friction is still not clear. In this paper we explore the recent suggestion that its efficient lubrication arises from boundary layers of hyaluronan-lipid complexes at its surface, in particular exploring a range of different phosphatidylcholines (PCs) mimicking the wide range of PCs in synovial joints. The present study suggests a synergistic lubricating behavior of the different lipids in living joints, and potential treatment directions using such biomaterial complexes for widespread cartilage-friction-related diseases such as osteoarthritis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Magnetic resonance imaging of the wrist: bone and cartilage injury.

    PubMed

    Hayter, Catherine L; Gold, Stephanie L; Potter, Hollis G

    2013-05-01

    Magnetic resonance imaging (MRI) is particularly useful for imaging the wrist due to its superior soft tissue contrast and ability to detect subtle bone marrow changes and occult fractures. A high field (1.5T or greater) strength, dedicated wrist coil, and high in-plane and through-plane resolution must be utilized to successfully visualize the relatively thin cartilage of the wrist. MRI can be used to detect occult carpal bone fractures, identify complications following scaphoid fractures, and assess for avascular necrosis in the setting in Kienböck's and Preiser's disease. MRI is useful to identify secondary soft tissue and chondral pathology in impaction/impingement syndromes. The use of an intermediate-echo time fast spin echo sequence allows for accurate assessment of articular cartilage, allowing evaluation of chondral wear in the setting of primary osteoarthritis and posttraumatic degenerative arthrosis. MRI is the most sensitive imaging modality for the detection of early inflammatory arthropathies and can detect synovitis, bone marrow edema, and early erosions in the setting of negative radiographs. Copyright © 2012 Wiley Periodicals, Inc.

  18. Effect of plasma nitriding on the structural stability and hydrogen absorption capability of Pd-coated Nb during thermal treatment

    NASA Astrophysics Data System (ADS)

    Ohtsu, Naofumi; Kozuka, Taro; Shibata, Yuga; Yamane, Misao

    2017-11-01

    Plasma nitriding was explored for improving the thermal stability of a composite hydrogen permeable membrane comprising a Pd coating on Nb substrate. A NbN intermediate layer was formed on the Nb substrate, and the progress of interdiffusion and deterioration of hydrogen absorption behavior after a thermal treatment at 573 and 773 K, respectively, were investigated. The intermediate layer significantly suppressed the interdiffusion between the coating and the substrate. Furthermore, an increase in the NbN concentration of the intermediate layer enhanced the suppression efficiency. However, the hydrogen permeability of the intermediate layer was significantly low, and hence, an increase in NbN concentration further decreased the hydrogen permeability. We concluded that the nitride layer with a high NbN content was unsuitable as an intermediate layer owing to its low hydrogen permeability, while the partial nitride layer with a low NbN content was inefficient in suppressing the interdiffusion.

  19. On the detection of early osteoarthritis by quantitative microscopic imaging

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Daniel John

    Articular cartilage is a thin layer of connective tissue that protects the ends of bones in diarthroidal joints. Cartilage distributes mechanical forces during daily movement throughout its unique depth-dependent structure. The extracellular matrix (ECM) of cartilage primarily contains water, collagen, and glycosaminoglycan (GAG). The collagen fibers are intertwined with negatively charged GAG and surround the cells (i.e. chondrocytes) in cartilage. Degradation to the ECM reduces the load bearing properties of cartilage which can be initiated by injury (e.g. anterior cruciate ligament (ACL) rupture) or disease (e.g. osteoarthritis (OA)). Magnetic resonance imaging (MRI) and x-ray computed tomography (CT) are noninvasive imaging techniques that are increasingly being used in the clinical detection of cartilage degradation. The aim of the first project in this dissertation was to quantify and compare the depth-dependent GAG concentration from healthy and biochemically degraded humeral ex vivo articular cartilage using quantitative contrast enhanced micro-computed tomography (qCECT) at high resolution. The second project in this dissertation was aimed to measure the topographical and depth-dependent GAG concentration using qCECT and delayed gadolinium enhanced magnetic resonance imaging of cartilage (dGEMRIC) from the medial tibia cartilage three weeks after unilateral ACL transection which is an animal model of OA (i.e. modified Pond-Nuki model). These GAG measurements were correlated with a biochemical method, inductively couple plasma optical emission spectrometry, to compare the degradation on the medial tibia between the OA and contralateral cartilage. The third project in this dissertation used the same cartilage specimens as in project two to investigate the change in T2 due to OA and the effect on T2 from a contrast agent. Furthermore, the change in T2 relaxation was investigated from static unconfined compression with correlations by biomechanical measurements. These studies demonstrate the ability to use two quantitative microscopic imaging techniques, microCT and microMRI, to detect microscopic changes in collagen and GAG from healthy, biochemically degraded, and early OA cartilage. The capability for microscopic imaging to detect alterations at the earliest stages of OA will ultimately improve the understanding of degradation and may help aid in the detection for the prevention of disease and repair of damaged cartilage.

  20. Visualization of small lesions in rat cartilage by means of laboratory-based x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Marenzana, Massimo; Hagen, Charlotte K.; Das Neves Borges, Patricia; Endrizzi, Marco; Szafraniec, Magdalena B.; Ignatyev, Konstantin; Olivo, Alessandro

    2012-12-01

    Being able to quantitatively assess articular cartilage in three-dimensions (3D) in small rodent animal models, with a simple laboratory set-up, would prove extremely important for the development of pre-clinical research focusing on cartilage pathologies such as osteoarthritis (OA). These models are becoming essential tools for the development of new drugs for OA, a disease affecting up to 1/3 of the population older than 50 years for which there is no cure except prosthetic surgery. However, due to limitations in imaging technology, high-throughput 3D structural imaging has not been achievable in small rodent models, thereby limiting their translational potential and their efficiency as research tools. We show that a simple laboratory system based on coded-aperture x-ray phase contrast imaging (CAXPCi) can correctly visualize the cartilage layer in slices of an excised rat tibia imaged both in air and in saline solution. Moreover, we show that small, surgically induced lesions are also correctly detected by the CAXPCi system, and we support this finding with histopathology examination. Following these successful proof-of-concept results in rat cartilage, we expect that an upgrade of the system to higher resolutions (currently underway) will enable extending the method to the imaging of mouse cartilage as well. From a technological standpoint, by showing the capability of the system to detect cartilage also in water, we demonstrate phase sensitivity comparable to other lab-based phase methods (e.g. grating interferometry). In conclusion, CAXPCi holds a strong potential for being adopted as a routine laboratory tool for non-destructive, high throughput assessment of 3D structural changes in murine articular cartilage, with a possible impact in the field similar to the revolution that conventional microCT brought into bone research.

  1. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue.

    PubMed

    Babur, Betul Kul; Futrega, Kathryn; Lott, William B; Klein, Travis Jacob; Cooper-White, Justin; Doran, Michael Robert

    2015-09-01

    Engineered biphasic osteochondral tissues may have utility in cartilage defect repair. As bone-marrow-derived mesenchymal stem/stromal cells (MSC) have the capacity to make both bone-like and cartilage-like tissues, they are an ideal cell population for use in the manufacture of osteochondral tissues. Effective differentiation of MSC to bone-like and cartilage-like tissues requires two unique medium formulations and this presents a challenge both in achieving initial MSC differentiation and in maintaining tissue stability when the unified osteochondral tissue is subsequently cultured in a single medium formulation. In this proof-of-principle study, we used an in-house fabricated microwell platform to manufacture thousands of micropellets formed from 166 MSC each. We then characterized the development of bone-like and cartilage-like tissue formation in the micropellets maintained for 8-14 days in sequential combinations of osteogenic or chondrogenic induction medium. When bone-like or cartilage-like micropellets were induced for only 8 days, they displayed significant phenotypic changes when the osteogenic or chondrogenic induction medium, respectively, was swapped. Based on these data, we developed an extended 14-day protocol for the pre-culture of bone-like and cartilage-like micropellets in their respective induction medium. Unified osteochondral tissues were formed by layering 12,000 osteogenic micropellets and 12,000 chondrogenic micropellets into a biphasic structure and then further culture in chondrogenic induction medium. The assembled tissue was cultured for a further 8 days and characterized via histology. The micropellets had amalgamated into a continuous structure with distinctive bone-like and cartilage-like regions. This proof-of-concept study demonstrates the feasibility of micropellet assembly for the formation of osteochondral-like tissues for possible use in osteochondral defect repair.

  2. Biphasic investigation of contact mechanics in natural human hips during activities

    PubMed Central

    Hua, Xijin; Jin, Zhongmin; Fisher, John; Wilcox, Ruth K

    2014-01-01

    The aim of this study was to determine the cartilage contact mechanics and the associated fluid pressurisation of the hip joint under eight daily activities, using a three-dimensional finite element hip model with biphasic cartilage layers and generic geometries. Loads with spatial and temporal variations were applied over time and the time-dependent performance of the hip cartilage during walking was also evaluated. It was found that the fluid support ratio was over 90% during the majority of the cycles for all the eight activities. A reduced fluid support ratio was observed for the time at which the contact region slid towards the interior edge of the acetabular cartilage, but these occurred when the absolute level of the peak contact stress was minimal. Over 10 cycles of gait, the peak contact stress and peak fluid pressure remained constant, but a faster process of fluid exudation was observed for the interior edge region of the acetabular cartilage. The results demonstrate the excellent function of the hip cartilage within which the solid matrix is prevented from high levels of stress during activities owing to the load shared by fluid pressurisation. The findings are important in gaining a better understanding of the hip function during daily activities, as well as the pathology of hip degeneration and potential for future interventions. They provide a basis for future subject-specific biphasic investigations of hip performance during activities. PMID:24898443

  3. Biostable scaffolds of polyacrylate polymers implanted in the articular cartilage induce hyaline-like cartilage regeneration in rabbits.

    PubMed

    Sancho-Tello, María; Forriol, Francisco; Martín de Llano, José J; Antolinos-Turpin, Carmen; Gómez-Tejedor, José A; Gómez Ribelles, José L; Carda, Carmen

    2017-07-05

    To study the influence of scaffold properties on the organization of in vivo cartilage regeneration. Our hypothesis was that stress transmission to the cells seeded inside the pores of the scaffold or surrounding it, which is highly dependent on the scaffold properties, determines the differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. 4 series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells, were implanted in cartilage defects in rabbits. Subchondral bone was injured during the surgery to allow blood to reach the implantation site and fill the scaffold pores. At 3 months after implantation, excellent tissue regeneration was obtained, with a well-organized layer of hyaline-like cartilage at the condylar surface in most cases of the hydrophobic or slightly hydrophilic series. The most hydrophilic material induced the poorest regeneration. However, no statistically significant difference was observed between preseeded and non-preseeded scaffolds. All of the materials used were biocompatible, biostable polymers, so, in contrast to some other studies, our results were not perturbed by possible effects attributable to material degradation products or to the loss of scaffold mechanical properties over time due to degradation. Cartilage regeneration depends mainly on the properties of the scaffold, such as stiffness and hydrophilicity, whereas little difference was observed between preseeded and non-preseeded scaffolds.

  4. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model

    PubMed Central

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-01-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513

  5. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage.

    PubMed

    Meng, Qingen; An, Shuqiang; Damion, Robin A; Jin, Zhongmin; Wilcox, Ruth; Fisher, John; Jones, Alison

    2017-01-01

    The highly inhomogeneous distribution of collagen fibrils may have important effects on the biphasic mechanics of articular cartilage. However, the effect of the inhomogeneity of collagen fibrils has mainly been investigated using simplified three-layered models, which may have underestimated the effect of collagen fibrils by neglecting their realistic orientation. The aim of this study was to investigate the effect of the realistic orientation of collagen fibrils on the biphasic mechanics of articular cartilage. Five biphasic material models, each of which included a different level of complexity of fibril reinforcement, were solved using two different finite element software packages (Abaqus and FEBio). Model 1 considered the realistic orientation of fibrils, which was derived from diffusion tensor magnetic resonance images. The simplified three-layered orientation was used for Model 2. Models 3-5 were three control models. The realistic collagen orientations obtained in this study were consistent with the literature. Results from the two finite element implementations were in agreement for each of the conditions modelled. The comparison between the control models confirmed some functions of collagen fibrils. The comparison between Models 1 and 2 showed that the widely-used three-layered inhomogeneous model can produce similar fluid load support to the model including the realistic fibril orientation; however, an accurate prediction of the other mechanical parameters requires the inclusion of the realistic orientation of collagen fibrils. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Ultrasound detection of cartilage calcification at knee level in calcium pyrophosphate deposition disease.

    PubMed

    Gutierrez, Marwin; Di Geso, Luca; Salaffi, Fausto; Carotti, Marina; Girolimetti, Rita; De Angelis, Rossella; Filippucci, Emilio; Grassi, Walter

    2014-01-01

    To determine the sensitivity, specificity, and accuracy of ultrasound (US) in the detection of cartilage calcification at knee level in patients with calcium pyrophosphate deposition disease (CPDD) and to assess the interobserver reliability. Seventy-four CPDD patients and 83 controls with other chronic arthritis were included. All patients underwent a clinical examination, synovial fluid analysis, and radiographic assessment of the knee. US examinations were performed in order to detect hyperechoic spots within the hyaline cartilage layer and hyperechoic areas within the meniscal fibrocartilage. Twenty patients were assessed by 2 operators in order to calculate the interobserver reliability. A total of 314 knees in 157 patients (74 with CPDD, 19 with rheumatoid arthritis, 17 with spondyloarthritis, 32 with osteoarthritis, and 15 with gout) were assessed. In the 74 patients with CPDD, hyaline cartilage spots were detected by US in at least 1 knee in 44 patients (59.5%), whereas radiography detected hyaline cartilage spots in 34 patients (45.9%) (P < 0.001). Meniscal fibrocartilage calcifications were detected by US in 67 of the 74 CPDD patients (90.5%), whereas conventional radiography detected calcifications in 62 patients (83.7%) (P = 0.011). The criterion validity expressed as percentage of sensitivity, specificity, and accuracy of US in the detection of articular cartilage calcification was high. Both kappa values and overall agreement percentages showed moderate to excellent agreement. US is an accurate and reliable imaging technique in the detection of articular cartilage calcification at knee level in patients with CPDD. Copyright © 2014 by the American College of Rheumatology.

  7. Decrease in local volumetric bone mineral density (vBMD) in osteoarthritic joints is associated with the increase in cartilage damage: a pQCT study

    NASA Astrophysics Data System (ADS)

    Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong

    2017-11-01

    Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.

  8. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    PubMed

    Silva, Joana M; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L; Van Blitterswijk, Clemens A; Karperien, Marcel; Mano, João F

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  9. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    PubMed Central

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM. PMID:26069692

  10. Group I-III-VI.sub.2 semiconductor films for solar cell application

    DOEpatents

    Basol, Bulent M.; Kapur, Vijay K.

    1991-01-01

    This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.

  11. Ultrasound elastomicroscopy for articular cartilage: from static to transient and 1D to 2D

    NASA Astrophysics Data System (ADS)

    Zheng, Yongping; Bridal, Sharon L.; Shi, Jun; Saied, Amena; Lu, Minghua; Jaffre, Britta; Mak, Arthur F. T.; Laugier, Pascal; Qin, Ling

    2003-05-01

    Articular cartilage (AC) is a biological weight-bearing tissue covering the ends of articulating bones within synovial joints. Its function very much depends on the unique multi-layered structure and the depth-dependent material properties, which have not been well invetigated nondestructively. In this study, transient depth-dependent material properties of bovine patella cartilage were measured using ultrasound elastomicroscopy methods. A 50 MHz focused ultrasound transducer was used to collect A-mode ultrasound echoes from the articular cartilage during the compression and subsequent force-relaxation. The transient displacements of the cartilage tissues at different depths were calculated from the ultrasound echoes using a cross-correlation technique. It was observed that the strains in the superficial zone were much larger than those in the middle and deep zones as the equilibrium state was approached. The tissues inside the AC layer continued to move during the force-relaxation phase after the compression was completed. This process has been predicted by a biphasic theory. In this study, it has been verified experimentally. It was also observed that the tissue deformations at different depths of AC were much more evenly distributed before force-relaxation. AC specimens were also investigated using a 2D ultrasound elastomicroscopy system that included a 3D translating system for moving the ultrasound transducer over the specimens. B-mode RF ultrasound signals were collected from the specimens under different loading levels applied with a specially designed compressor. Preliminary results demonstrated that the scanning was repeatable with high correlation of radio frequency signals obtained from the same site during different scans when compression level was unchanged (R2 > 0.97). Strains of the AC specimens were mapped using data collected with this ultrasound elastomicroscope. This system can also be potentially used for the assessment of other biological tissues, bioengineered tissues or biomaterials with fine structures.

  12. Observations of an Intermediate Layer During the Coqui II Campaign

    NASA Technical Reports Server (NTRS)

    Bishop, R. L.; Earle, G. D.; Herrero, F. A.; Bateman, T. T.

    2000-01-01

    NASA sounding rocket 21.114, launched March 7, 1998, during the Coqui II campaign, provided neutral wind and plasma density measurements of a weak intermediate layer. The layer was centered near 140 km and had an approximate peak plasma density of 2200 cc. The measured winds were typically less than 40 m/s, in agreement with wind shear formation theory and coincident density observations. The data obtained during the flight allow us to explore the plasma density structure and wind field morphology of the intermediate layer. Coupled with simultaneous data from Arecibo Observatory, the upleg and downleg density profiles provide three spatially separated measurements that enable the first detailed investigation of the horizontal extent and variation of an intermediate layer.

  13. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration

    NASA Astrophysics Data System (ADS)

    Naranda, Jakob; Sušec, Maja; Maver, Uroš; Gradišnik, Lidija; Gorenjak, Mario; Vukasović, Andreja; Ivković, Alan; Rupnik, Marjan Slak; Vogrin, Matjaž; Krajnc, Peter

    2016-06-01

    Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50-170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation.

  14. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    PubMed

    Ye, Ken; Felimban, Raed; Traianedes, Kathy; Moulton, Simon E; Wallace, Gordon G; Chung, Johnson; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-01-01

    Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  15. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration

    PubMed Central

    Naranda, Jakob; Sušec, Maja; Maver, Uroš; Gradišnik, Lidija; Gorenjak, Mario; Vukasović, Andreja; Ivković, Alan; Rupnik, Marjan Slak; Vogrin, Matjaž; Krajnc, Peter

    2016-01-01

    Development of artificial materials for the facilitation of cartilage regeneration remains an important challenge in orthopedic practice. Our study investigates the potential for neocartilage formation within a synthetic polyester scaffold based on the polymerization of high internal phase emulsions. The fabrication of polyHIPE polymer (PHP) was specifically tailored to produce a highly porous (85%) structure with the primary pore size in the range of 50–170 μm for cartilage tissue engineering. The resulting PHP scaffold was proven biocompatible with human articular chondrocytes and viable cells were observed within the materials as evaluated using the Live/Dead assay and histological analysis. Chondrocytes with round nuclei were organized into multicellular layers on the PHP surface and were observed to grow approximately 300 μm into the scaffold interior. The accumulation of collagen type 2 was detected using immunohistochemistry and chondrogenic specific genes were expressed with favorable collagen type 2 to 1 ratio. In addition, PHP samples are biodegradable and their baseline mechanical properties are similar to those of native cartilage, which enhance chondrocyte cell growth and proliferation. PMID:27340110

  16. Repair of full-thickness cartilage defects with cells of different origin in a rabbit model.

    PubMed

    Yan, Hui; Yu, Changlong

    2007-02-01

    The purpose of this study was to evaluate the repaired tissues formed in full-thickness cartilage defects in a rabbit model implanted with 4 types of chondrogenic cells, including chondrocytes, mesenchymal stem cells (MSCs) and fibroblasts from rabbit, and human umbilical cord blood (hUCB) stem cells. Chondrocytes, MSCs, and fibroblasts were isolated from 6-week-old New Zealand rabbits; hUCB stem cells were isolated from the umbilical cord blood of newborn children. These 4 types of cells were cultured in vitro and embedded in polylactic acid (PLA) matrices. Full-thickness defects were produced in the femoral trochlear grooves of both knees in 36 adult New Zealand White rabbits. Cell/PLA composites were transplanted into cartilage defects. A total of 5 groups were formed according to implanted cell type: Group A, chondrocytes; Group B, MSCs; Group C, fibroblasts; Group D, hUCB stem cells; and Group E, no cells (control group). Repaired tissues were evaluated grossly, histologically, and immunohistochemically at 6 weeks and 12 weeks after implantation. In Groups A and B, defects were repaired with hyaline-like cartilage. In Group C, defects were repaired with fibrous tissue. In Group D, defects were repaired primarily with fibrous tissue and scattered chondrocytes; in some specimens, defects were repaired with a thin layer of hyaline-like cartilage at 12 weeks. In Group E, defects were repaired with fibrous tissue. Histologic scores in Groups A and B were significantly higher than those in Groups C, D, and E at 6 and 12 weeks after transplantation. Full-thickness cartilage defects treated with chondrocyte or MSC transplantation were repaired with hyaline-like cartilage tissue, and repair was significantly better than in tissues treated with fibroblasts and hUCB stem cells, as well as in the control group. Repaired tissues treated with MSCs appeared to have better cell arrangement, subchondral bone remodeling, and integration with surrounding cartilage than did repaired tissues generated by chondrocyte implantation. MSCs might be the most suitable cell source for cartilage repair. Further investigation into hUCB stem cell transplantation is needed. In our study of rabbits, MSCs supplied the most promising cell source for cartilage repair.

  17. Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage.

    PubMed

    Nguyen, Christelle; Bazin, Dominique; Daudon, Michel; Chatron-Colliet, Aurore; Hannouche, Didier; Bianchi, Arnaud; Côme, Dominique; So, Alexander; Busso, Nathalie; Busso, Nathalie; Lioté, Frédéric; Ea, Hang-Korng

    2013-01-01

    Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.

  18. Orthopedic Health: Healthy Joints for a Lifetime / Keep Your Moving Parts Moving

    MedlinePlus

    ... diabetes. The most common form of arthritis is osteoarthritis. It is seen especially among older people and is sometimes called degenerative joint disease. In osteoarthritis, the surface layer of cartilage (the hard but ...

  19. Biphasic investigation of contact mechanics in natural human hips during activities.

    PubMed

    Li, Junyan; Hua, Xijin; Jin, Zhongmin; Fisher, John; Wilcox, Ruth K

    2014-06-01

    The aim of this study was to determine the cartilage contact mechanics and the associated fluid pressurisation of the hip joint under eight daily activities, using a three-dimensional finite element hip model with biphasic cartilage layers and generic geometries. Loads with spatial and temporal variations were applied over time and the time-dependent performance of the hip cartilage during walking was also evaluated. It was found that the fluid support ratio was over 90% during the majority of the cycles for all the eight activities. A reduced fluid support ratio was observed for the time at which the contact region slid towards the interior edge of the acetabular cartilage, but these occurred when the absolute level of the peak contact stress was minimal. Over 10 cycles of gait, the peak contact stress and peak fluid pressure remained constant, but a faster process of fluid exudation was observed for the interior edge region of the acetabular cartilage. The results demonstrate the excellent function of the hip cartilage within which the solid matrix is prevented from high levels of stress during activities owing to the load shared by fluid pressurisation. The findings are important in gaining a better understanding of the hip function during daily activities, as well as the pathology of hip degeneration and potential for future interventions. They provide a basis for future subject-specific biphasic investigations of hip performance during activities. © IMechE 2014.

  20. The Postauricular Helix-based Adipodermal-pedicle Turnover (PHAT) Flap: An Original Single-Stage Technique for Antihelix and Scapha Reconstruction.

    PubMed

    Beustes-Stefanelli, Matthieu; O'Toole, Greg; Schertenleib, Pierre

    2016-01-01

    In reconstructing anterior defects of the ear, postauricular flaps represent a popular option. The pedicle of such transauricular flaps can be superior, inferior, medial, or lateral. The postauricular helix-based adipodermal-pedicle turnover (PHAT) flap is an original single-stage transauricular technique for defects of the antihelix and scapha. Its skin paddle is on the posterior aspect of the ear. Its lateral de-epithelialized pedicle in front of the helix allows for it to easily reach peripheral anterior defects. In cases in which the underlying cartilage is involved, the extended PHAT (ePHAT) flap allows for restoring the contours of the ear without a cartilage graft. Between 2009 and 2011, a PHAT flap was used in 5 cases of defects of the antihelix or the scapha after tumor resection, 3 of which are in an extended version (ePHAT flap). There were no complications and a satisfactory aesthetic result was achieved in all cases. The PHAT flap is an original single-stage procedure for anterior auricular defects located on the antihelix or scapha. The single-layer PHAT flap is indicated in purely skin defect. The triple-layer ePHAT flap includes two subcutaneous extensions which increase its thickness and is indicated to restore the ear contours when cartilage has been removed.

  1. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    PubMed

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    PubMed

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  3. Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor)

    2004-01-01

    A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.

  4. Changes in collagen fibril network organization and proteoglycan distribution in equine articular cartilage during maturation and growth

    PubMed Central

    Hyttinen, Mika M; Holopainen, Jaakko; René van Weeren, P; Firth, Elwyn C; Helminen, Heikki J; Brama, Pieter A J

    2009-01-01

    The aim of this study was to record growth-related changes in collagen network organization and proteoglycan distribution in intermittently peak-loaded and continuously lower-level-loaded articular cartilage. Cartilage from the proximal phalangeal bone of the equine metacarpophalangeal joint at birth, at 5, 11 and 18 months, and at 6–10 years of age was collected from two sites. Site 1, at the joint margin, is unloaded at slow gaits but is subjected to high-intensity loading during athletic activity; site 2 is a continuously but less intensively loaded site in the centre of the joint. The degree of collagen parallelism was determined with quantitative polarized light microscopy and the parallelism index for collagen fibrils was computed from the cartilage surface to the osteochondral junction. Concurrent changes in the proteoglycan distribution were quantified with digital densitometry. We found that the parallelism index increased significantly with age (up to 90%). At birth, site 2 exhibited a more organized collagen network than site 1. In adult horses this situation was reversed. The superficial and intermediate zones exhibited the greatest reorganization of collagen. Site 1 had a higher proteoglycan content than site 2 at birth but here too the situation was reversed in adult horses. We conclude that large changes in joint loading during growth and maturation in the period from birth to adulthood profoundly affect the architecture of the collagen network in equine cartilage. In addition, the distribution and content of proteoglycans are modified significantly by altered joint use. Intermittent peak-loading with shear seems to induce higher collagen parallelism and a lower proteoglycan content in cartilage than more constant weight-bearing. Therefore, we hypothesize that the formation of mature articular cartilage with a highly parallel collagen network and relatively low proteoglycan content in the peak-loaded area of a joint is needed to withstand intermittent stress and shear, whereas a constantly weight-bearing joint area benefits from lower collagen parallelism and a higher proteoglycan content. PMID:19732210

  5. Endochondral ossification is required for haematopoietic stem-cell niche formation.

    PubMed

    Chan, Charles K F; Chen, Ching-Cheng; Luppen, Cynthia A; Kim, Jae-Beom; DeBoer, Anthony T; Wei, Kevin; Helms, Jill A; Kuo, Calvin J; Kraft, Daniel L; Weissman, Irving L

    2009-01-22

    Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation. With this assay, we identified a population of progenitor cells with surface markers CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1.1(-) (CD105(+)Thy1(-)) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1(+) (CD105(+)Thy1(+)) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105(+)Thy1(-) progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.

  6. Preliminary Investigations on Therapy Thresholds for Laser Dosimetry, Cryogen Spray Cooling Duration, and Treatment Cycles for Laser Cartilage Reshaping in the New Zealand White Rabbit Auricle

    PubMed Central

    Chlebicki, Cara A.; Protsenko, Dmitry E.; Wong, Brian J.

    2014-01-01

    Previous studies have demonstrated the feasibility of laser irradiation (λ=1.45 μm) in tandem with cryogen spray cooling (CSC) to reshape rabbit auricular cartilage using total energy density of 14 J/cm2. The aim of this study was to further explore and identify the dosimetry parameter space for laser output energy, CSC duration, and treatment cycles required to achieve shape change while limiting skin and cartilage injury. Ten New Zealand white rabbits were treated with the 1.45 μm diode laser combined with cryogen spray cooling (Candela Smoothbeam™, Candela Co., Wayland, MA). The ear's central portion was bent around a cylindrical jig and irradiated in consecutive spots of 6 mm diameter (13 J/cm2 or 14 J/cm2 per spot) along 3 rows encompassing the bend. CSC was delivered during irradiation in cycles consisting of 25-35 ms. At thin and thick portions of the ear, 4-7 and 6-10 treatment cycles were delivered, respectively. After surgery, ears were examined and splinted for 6 weeks. Treatment parameters resulting in acceptable (Grades 1 & 2) and unacceptable (Grade 3) skin injuries for thick and thin regions were identified and shape change was observed. Confocal and histological analysis of cartilage tissue revealed several outcomes correlating to laser dosimetry, CSC duration, and treatment cycles. These outcomes included expansion of cartilage layers (thickening), partial cartilage injuries, and full thickness cartilage injuries. We determined therapy thresholds for laser output energy, cryogen spray cooling duration, and treatment cycles in the rabbit auricular model. These parameters are a starting point for future clinical procedures aimed at correcting external ear deformities. PMID:24202858

  7. Preliminary investigations on therapy thresholds for laser dosimetry, cryogen spray cooling duration, and treatment cycles for laser cartilage reshaping in the New Zealand white rabbit auricle.

    PubMed

    Chlebicki, Cara A; Protsenko, Dmitry E; Wong, Brian J

    2014-05-01

    Previous studies have demonstrated the feasibility of laser irradiation (λ = 1.45 μm) in tandem with cryogen spray cooling (CSC) to reshape rabbit auricular cartilage using a total energy density of 14 J/cm(2). The aim of this study was to further explore and identify the dosimetry parameter space for laser output energy, CSC duration, and treatment cycles required to achieve shape change while limiting skin and cartilage injury. Ten New Zealand white rabbits were treated with the 1.45 μm diode laser combined with cryogen spray cooling (Candela Smoothbeam™, Candela Co., Wayland, MA, USA). The ear's central portion was bent around a cylindrical jig and irradiated in consecutive spots of 6 mm diameter (13 or 14 J/cm(2) per spot) along three rows encompassing the bend. CSC was delivered during irradiation in cycles consisting of 25-35 ms. At thin and thick portions of the ear, 4-7 and 6-10 treatment cycles were delivered, respectively. After surgery, ears were examined and splinted for 6 weeks. Treatment parameters resulting in acceptable (grades 1 and 2) and unacceptable (grade 3) skin injuries for thick and thin regions were identified, and shape change was observed. Confocal and histological analysis of cartilage tissue revealed several outcomes correlating to laser dosimetry, CSC duration, and treatment cycles. These outcomes included expansion of cartilage layers (thickening), partial cartilage injuries, and full-thickness cartilage injuries. We determined therapy thresholds for laser output energy, cryogen spray cooling duration, and treatment cycles in the rabbit auricular model. These parameters are a starting point for future clinical procedures aimed at correcting external ear deformities.

  8. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo.

    PubMed

    Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P

    2018-02-21

    Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.

  9. Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up.

    PubMed

    Tins, Bernhard J; McCall, Iain W; Takahashi, Tomoki; Cassar-Pullicino, Victor; Roberts, Sally; Ashton, Brian; Richardson, James

    2005-02-01

    To evaluate magnetic resonance (MR) imaging features of autologous chondrocyte implantation (ACI) grafts and compare these with graft histologic features 1 year after ACI for treatment of femoral condylar defects. This study was approved by the regional ethics committee, and all patients gave informed consent. Forty-one patients (mean age, 35 years; 30 men, 11 women) underwent ACI for treatment of femoral condylar defects. One year later, knee joint MR imaging and graft biopsy were performed. Graft biopsy results were categorized into those showing hyaline, mixed fibrohyaline cartilage, fibrocartilage, and fibrous tissue. Standard T1-, T2-, T2*-, and intermediate-weighted sequences were performed, as well as three-dimensional (3D) fast low-angle shot (FLASH) and double-echo steady-state sequences for cartilage assessment. ACI grafts were assessed for signal intensity (with FLASH sequence), thickness, overgrowth, surface smoothness, integration to adjacent cartilage and underlying bone, bone marrow edema underneath graft, and contour of bone underneath graft. MR images were assessed by two observers, first independently and then in consensus. MR imaging findings were correlated with histologic findings. All 41 grafts were present at 1-year follow-up. The graft consisted of hyaline cartilage in four, mixed fibrohyaline cartilage in 10, fibrocartilage in 25, and fibrous tissue in two cases. Graft signal intensity was virtually always lower than adjacent normal cartilage signal intensity, and there was no relationship between graft signal intensity and histologic appearance (P = .34). Graft thickness (P = .83), overgrowth (P = .69), surface smoothness (P = .28), and integration with adjacent cartilage and underlying bone (P = .90); edema in bone marrow underneath graft (P = .63); and bone contour underneath graft (P = .94) at MR imaging had no correlation with graft histologic appearance. Graft overgrowth (n = 16; 39%) and edema-like signal in bone marrow underneath graft (n = 23; 56%) were common. The origin of graft overgrowth remains unclear. With the methods presented here, MR imaging findings cannot predict ACI graft histologic features, and graft histologic appearance determined at biopsy was not related to graft signal intensity, graft thickness, overgrowth, surface smoothness, integration with adjacent cartilage or underlying bone, signal intensity change in underlying bone marrow, or underlying bone contour. Overgrowth and bone marrow changes underneath the graft were common. (c) RSNA, 2004.

  10. Process for ion-assisted laser deposition of biaxially textured layer on substrate

    DOEpatents

    Russo, R.E.; Reade, R.P.; Garrison, S.M.; Berdahl, P.

    1995-07-11

    A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film. 8 figs.

  11. Process for ion-assisted laser deposition of biaxially textured layer on substrate

    DOEpatents

    Russo, Richard E.; Reade, Ronald P.; Garrison, Stephen M.; Berdahl, Paul

    1995-01-01

    A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film.

  12. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Reade, R. P.; Mao, X. L.; Russo, R. E.

    1991-08-01

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.

  13. A broadband damper design inspired by cartilage-like relaxation mechanisms

    NASA Astrophysics Data System (ADS)

    Liu, Lejie; Usta, Ahmet D.; Eriten, Melih

    2017-10-01

    In this study, we introduce a broadband damper design inspired by the cartilage-like relaxation mechanisms. In particular, we study broadband (static to 10 kHz) dissipative properties of model cartilage systems by probe-based static and dynamic indentation, and validate that fractional Zener models can simulate the empirical data up to a desirable accuracy within the frequency range of interest. Utilizing these observations, we design a composite damper design where a poroelastic layer is sandwiched between two hard materials, and load transfer occurs across interfaces with multiple length scales. Modeling those interfaces with fractional Zener elements in parallel configuration, and manipulating the distribution of the Zener elements across different peak relaxation frequencies, we obtain a relatively constant loss factor within an unprecedented frequency range (3-3 kHz). We also discuss how these findings can be employed in a practical damping design.

  14. [Histological study on spontaneous osteoarthritis of the knee in C57 black mouse].

    PubMed

    Takahama, A

    1990-04-01

    The purpose of this study was to investigate the initial changes and pathological process of osteoarthritis in male C57 black mice (Silberberg), which develop spontaneous osteoarthritic lesions in the knee joints. The initial event in the development of the lesions was the slight loss of glycosaminoglycans in the articular cartilage matrix of the tibia, adjacent to the free margin of the anterior segment of the meniscus at 3 months of age. Microscopy under polarized light revealed irregularity of the tangential layer in the corresponding area at 6 months of age. Horizontal cleft along the tidemark, defect of cartilage and eburnation of subchondral bone later developed. Osteoarthritic changes were observed in all mice aged 18 and 24 months. However, no fibrillation of the cartilage matrix, chondrocyte clustering, osteophyte formation or synovitis was observed, probably because of the small joint and poor reparative ability in the mouse.

  15. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    PubMed

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered to native cartilage integration and cellular processes.

  16. Effect of intermediate layers on atomic layer deposition-aluminum oxide protected silver mirrors

    NASA Astrophysics Data System (ADS)

    Fryauf, David M.; Diaz Leon, Juan J.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2017-07-01

    This work investigates intermediate materials deposited between silver (Ag) thin-film mirrors and an aluminum oxide (AlOx) barrier overlayer and compares the effects on mirror durability to environmental stresses. Physical vapor deposition of various fluorides, oxides, and nitrides in combination with AlOx by atomic layer deposition (ALD) is used to develop several coating recipes. Ag-AlOx samples with different intermediate materials undergo aggressive high-temperature (80°C), high-humidity (80%) (HTHH) testing for 10 days. Reflectivity of mirror samples is measured before and after HTHH testing, and image processing techniques are used to analyze the specular surface of the samples after HTHH testing. Among the seven intermediate materials used in this work, TiN, MgAl2O4, NiO, and Al2O3 intermediate layers offer more robust protection against chemical corrosion and moisture when compared with samples with no intermediate layer. In addition, results show that the performance of the ALD-AlOx barrier overlayer depends significantly on the ALD-growth process temperature. Because higher durability is observed in samples with less transparent TiN and NiO layers, we propose a figure of merit based on post-HTHH testing reflectivity change and specular reflective mirror surface area remaining after HTHH testing to judge overall barrier performance.

  17. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    NASA Astrophysics Data System (ADS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-06-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  18. From intricate to integrated: Biofabrication of articulating joints.

    PubMed

    Groen, Wilhelmina Margaretha; Diloksumpan, Paweena; van Weeren, Paul René; Levato, Riccardo; Malda, Jos

    2017-10-01

    Articulating joints owe their function to the specialized architecture and the complex interplay between multiple tissues including cartilage, bone and synovium. Especially the cartilage component has limited self-healing capacity and damage often leads to the onset of osteoarthritis, eventually resulting in failure of the joint as an organ. Although in its infancy, biofabrication has emerged as a promising technology to reproduce the intricate organization of the joint, thus enabling the introduction of novel surgical treatments, regenerative therapies, and new sets of tools to enhance our understanding of joint physiology and pathology. Herein, we address the current challenges to recapitulate the complexity of articulating joints and how biofabrication could overcome them. The combination of multiple materials, biological cues and cells in a layer-by-layer fashion, can assist in reproducing both the zonal organization of cartilage and the gradual transition from resilient cartilage toward the subchondral bone in biofabricated osteochondral grafts. In this way, optimal integration of engineered constructs with the natural surrounding tissues can be obtained. Mechanical characteristics, including the smoothness and low friction that are hallmarks of the articular surface, can be tuned with multi-head or hybrid printers by controlling the spatial patterning of printed structures. Moreover, biofabrication can use digital medical images as blueprints for printing patient-specific implants. Finally, the current rapid advances in biofabrication hold significant potential for developing joint-on-a-chip models for personalized medicine and drug testing or even for the creation of implants that may be used to treat larger parts of the articulating joint. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:2089-2097, 2017. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc.

  19. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics.

    PubMed

    Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, W J A; van Weeren, P R; Malda, J

    2016-04-01

    Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT-PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold-seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet-assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite.

    PubMed

    Chia, Hao-Chung; Sheu, Hwo-Shuenn; Hsiao, Yu-Yun; Li, Shao-Sian; Lan, Yi-Kang; Lin, Chung-Yao; Chang, Je-Wei; Kuo, Yen-Chien; Chen, Chia-Hao; Weng, Shih-Chang; Su, Chun-Jen; Su, An-Chung; Chen, Chun-Wei; Jeng, U-Ser

    2017-10-25

    We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH 3 NH 3 ) 2 PbI 2 Cl 2 ·CH 3 NH 3 I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH 3 NH 3 I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

  1. Transplantation of free tibial periosteal grafts for the repair of articular cartilage defect: An experimental study

    PubMed Central

    Singh, Ravijot; Chauhan, Vijendra; Chauhan, Neena; Sharma, Sansar

    2009-01-01

    Background: Articular chondrocytes have got a long lifespan but rarely divides after maturity. Thus, an articular cartilage has a limited capacity for repair. Periosteal grafts have chondrogenic potential and have been used to repair defects in the articular cartilage. The purpose of the present study is to investigate the differentiation of free periosteal grafts in the patellofemoral joint where the cambium layer faces the subchondral bone and to investigate the applicability of periosteal grafts in the reconstruction of articular surfaces. Materials and Methods: The study was carried out over a period of 1 year on 25 adult, male Indian rabbits after obtaining permission from the institutional animal ethical committee. A full-thickness osteochondral defect was created by shaving off the whole articular cartilage of the patella of the left knee. The defect thus created was grafted with free periosteal graft. The patella of the right knee was taken as a control where no grafting was done after shaving off the articular cartilage. The first animal was used to study the normal histology of the patellar articular cartilage and periosteum obtained from the medial surface of tibial condyle. Rest 24 animals were subjected to patellectomy, 4 each at serial intervals of 2, 4, 8, 16, 32 and 48 weeks and the patellar articular surfaces were examined macroscopically and histologically. Results: The grafts got adherent to the underlying patellar articular surface at the end of 4 weeks. Microscopically, graft incorporation could be appreciated at 4 weeks. Mesenchymal cells of the cambium layer were seen differentiating into chondrocytes by the end of 4 weeks in four grafts (100%) and they were arranged in a haphazard manner. Till the end of 8 weeks, the cellular arrangement was mostly wooly. At 16 weeks, one graft (25%) had wooly arrangement of chondrocytes and three grafts (75%) had columnar formation of cells. Same percentage was maintained at 32 weeks. Four grafts (100%) at 48 weeks showed columnar orientation. The control side showed no changes over the shaved off articular surface in all the rabbits. One rabbit at 4 weeks had a dislocation of the patella on the control side. None of the rabbits developed any infection or wound dehiscence. Conclusion: Autologous periosteal graft transplantation can be a promising substitute for articular cartilaginous defects. PMID:19838382

  2. Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls.

    PubMed

    Marchand, Catherine; Chen, Gaoping; Tran-Khanh, Nicolas; Sun, Jun; Chen, Hongmei; Buschmann, Michael D; Hoemann, Caroline D

    2012-03-01

    This study analyzed the long-term cartilage and subchondral bone repair of microdrilled defects treated with chitosan glycerol-phosphate/blood implant, using thrombin (Factor IIa) to accelerate in situ solidification. We also evaluated the cartilage repair response to six smaller microdrill holes compared with two larger holes. Bilateral knee trochlear cartilage defects were created in n=8 skeletally mature rabbits, drilled with six proximal 0.5 mm and two distal 0.9 mm holes, then covered with in situ-solidified IIa-implants (treated) or with IIa-alone (control). After 6.5 months of repair, cartilage repair tissues were analyzed by histological scoring and histomorphometry for hyaline matrix characteristics and osseous integration. Subchondral repair bone was analyzed by 3D microcomputed tomography and compared to acute defects (n=6) and intact trochlea (n=8). Implant-treated cartilage repair tissues had higher structural integrity through the entire defect (p=0.02), twofold higher percent staining for glycosaminoglycan (p=0.0004), and ~24% more collagen type II staining over the smaller drill holes (p=0.008) compared with controls. Otherwise, hole diameter had no specific effect on cartilage repair. The subchondral bone plate was partially restored in treated and control defects but less dense than intact trochlea, with evidence of incomplete regeneration of the calcified cartilage layer. More residual drill holes (p=0.054) were detected in control versus treated defects, and control defects with more than 40% residual holes presented abnormally thicker trabeculae compared with treated defects. Low osteoclast numbers after 6.5 months repair suggested that bone was no longer remodeling. The subchondral bone plate surrounding the defects exhibited a significant thickening compared with age-matched intact trochlea. These data suggest that debridement and drilling can lead to long-term subchondral bone changes outside the cartilage defect. Compared with drilled controls, chitosan implants solidified with thrombin elicited a more hyaline and structurally integrated osteochondral unit, features needed for long-term durability.

  3. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  4. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  5. Delayed endochondral ossification in early medial coronoid disease (MCD): a morphological and immunohistochemical evaluation in growing Labrador retrievers.

    PubMed

    Lau, S F; Hazewinkel, H A W; Grinwis, G C M; Wolschrijn, C F; Siebelt, M; Vernooij, J C M; Voorhout, G; Tryfonidou, M A

    2013-09-01

    Medial coronoid disease (MCD) is a common joint disease of dogs. It has a multifactorial aetiology, but the relationship between known causal factors and the disease has yet to be elucidated. As most of the published literature is clinical and it reports changes associated with advanced disease, it is not known whether the changes reflect the cause or consequences of the condition. The aim of this study was to investigate early micromorphological changes occurring in articular cartilage and to describe the postnatal development of the medial coronoid process (MCP) before MCD develops. Three litters of MCD-prone young Labrador retrievers were purpose-bred from a dam and two sires with MCD. Comparisons of the micromorphological appearance of the MCP in MCD-negative and MCD-positive joints demonstrated that MCD was initially associated with a disturbance of endochondral ossification, namely a delay in the calcification of the calcifying zone, without concurrent abnormalities in the superficial layers of the joint cartilage. Cartilage canals containing patent blood vessels were only detected in dogs <12 weeks old, but the role of these channels in impaired ossification requires further investigation. Retained hyaline cartilage might ossify as the disease progresses, but weak areas can develop into cracks between the retained cartilage and the subchondral bone, leading to cleft formation and fragmentation of the MCP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model

    PubMed Central

    Jia, Yanhui; Yuan, Mei; Guo, Weimin; Huang, Jingxiang; Zhao, Bin; Xu, Wenjing; Lu, Shibi

    2017-01-01

    Umbilical cord Wharton's jelly-derived mesenchymal stem cell (WJMSC) is a new-found mesenchymal stem cell in recent years with multiple lineage potential. Due to its abundant resources, no damage procurement, and lower immunogenicity than other adult MSCs, WJMSC promises to be a good xenogenous cell candidate for tissue engineering. This in vivo pilot study explored the use of human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) containing a tissue engineering construct xenotransplant in rabbits to repair full-thickness cartilage defects in the femoral patellar groove. We observed orderly spatial-temporal remodeling of hWJMSCs into cartilage tissues during repair over 16 months, with characteristic architectural features, including a hyaline-like neocartilage layer with good surface regularity, complete integration with adjacent host cartilage, and regenerated subchondral bone. No immune rejection was detected when xenograft hWJMSCs were implanted into rabbit cartilage defects. The repair results using hWJMSCs were superior to those of chondrogenically induced hWJMSCs after assessing gross appearance and histological grading scores. These preliminary results suggest that using novel undifferentiated hWJMSCs as seed cells might be a better approach than using transforming growth factor-β-induced differentiated hWJMSCs for in vivo tissue engineering treatment of cartilage defects. hWJMSC allografts may be promising for clinical applications. PMID:28261617

  7. Hyaline cartilage involvement in patients with gout and calcium pyrophosphate deposition disease. An ultrasound study.

    PubMed

    Filippucci, E; Riveros, M Gutierrez; Georgescu, D; Salaffi, F; Grassi, W

    2009-02-01

    The main aim of the present study was to determine the sensitivity, specificity and accuracy of ultrasonography (US) in detecting monosodium urate and calcium pyrophosphate dihydrate crystals deposits at knee cartilage level using clinical definite diagnosis as standard reference. A total of 32 patients with a diagnosis of gout and 48 patients with pyrophosphate arthropathy were included in the study. Fifty-two patients with rheumatoid arthritis (RA), psoriatic arthritis or osteoarthritis (OA) were recruited as disease controls. All diagnoses were made using an international clinical criterion. US examinations were performed by an experienced sonographer, blind to clinical and laboratory data. Hyaline cartilage was assessed to detect two US findings recently indicated as indicative of crystal deposits: hyperechoic enhancement of the superficial margin of the hyaline cartilage and hyperechoic spots within the cartilage layer not generating a posterior acoustic shadow. Hyperechoic enhancement of the chondrosynovial margin was found in at least one knee of 14 out of 32 (43.7%) patients with gout and in a single knee of only one patient affected by pyrophosphate arthropathy (specificity=99%). Intra-cartilaginous hyperechoic spots were detected in at least one knee of 33 out of 48 (68.7%) patients with pyrophosphate arthropathy and in two disease controls one with OA and the second with RA (specificity=97.6%). The results of the present study indicate that US may play a relevant role in distinguishing cartilage involvement in patients with crystal-related arthropathy. The selected US findings were found to be highly specific.

  8. Fabrication of custom PCL scaffold for nasal septal perforation repair

    NASA Astrophysics Data System (ADS)

    Gadaleta, Dominick; Lee, Daniel Z.; Peng, Matthew W.; Cruickshank, Nicholas; Shinde, Rohit; Hong, Abigail; Pennacchi, Sara; Dawit, Abel; Krein, Howard; Udupa, Jayaram K.; Rajapakse, Chamith S.

    2018-03-01

    Nasal septal perforations (NSPs) are relatively common. They can be problematic for both patients and head and neck reconstructive surgeons who attempt to repair them. Often, this repair is made using an interpositional graft sandwiched between bilateral mucoperichondrial advancement flaps. The ideal graft is nasal septal cartilage. However, many patients with NSP lack sufficient septal cartilage to harvest. Harvesting other sources of autologous cartilage grafts, such as auricular cartilage, adds morbidity to the surgical case and results in a graft that lacks the ideal qualities required to repair the nasal septum. Tissue engineering has allowed for new reconstructive protocols to be developed. Currently, the authors are unaware of any new literature that looks to improve repair of NSP using custom tissue-engineered cartilage grafts. The first step of this process involves developing a protocol to print the graft from a patient's pre-operative CT. In this study, CT scans were converted into STereoLithography (STL) file format. The subsequent STL files were transformed into 3D printable G-Code using the Slic3r software. This allowed us to customize the parameters of our print and we were able to choose a layer thickness of 0.1mm. A desktop 3D bioprinter (BioBot 1) was then used to construct the scaffold. This method resulted in the production of a PCL scaffold that precisely matched the patient's nasal septal defect, in both size and shape. This serves as the first step in our goal to create patient-specific tissue engineered nasal septal cartilage grafts for NSP repair.

  9. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.

    PubMed

    Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, René; Khan, Ilyas M; Malda, Jos

    2017-10-01

    Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells (ACPCs), that to date, received limited attention in biomaterials and tissue engineering applications. Harnessing the potential of these cells in 3D hydrogels can open new avenues for biomaterial-based regenerative therapies, especially with advanced biofabrication technologies (e.g. bioprinting). This study highlights the potential of ACPCs to generate neo-cartilage in a gelatin-based hydrogel and bioink. The ACPC-laden hydrogel is a suitable substrate for chondrogenesis and data shows it has a bias in directing cells towards a superficial zone phenotype. For the first time, ACPC-hydrogels are evaluated both as alternative for and in combination with chondrocytes and MSCs, using co-cultures and bioprinting for cartilage regeneration in vitro. This study provides important cues on ACPCs, indicating they represent a promising cell source for the next generation of cartilage constructs with increased biomimicry. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    DOEpatents

    Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast

    2015-03-24

    An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.

  11. A Closed Chondromimetic Environment within Magnetic-Responsive Liquified Capsules Encapsulating Stem Cells and Collagen II/TGF-β3 Microparticles.

    PubMed

    Correia, Clara R; Gil, Sara; Reis, Rui L; Mano, João F

    2016-06-01

    TGF-β3 is enzymatically immobilized by transglutaminase-2 action to poly(l-lactic acid) microparticles coated with collagen II. Microparticles are then encapsulated with stem cells inside liquified spherical compartments enfolded with a permselective shell through layer-by-layer adsorption. Magnetic nanoparticles are electrostatically bound to the multilayered shell, conferring magnetic-response ability. The goal of this study is to engineer a closed environment inside which encapsulated stem cells would undergo a self-regulated chondrogenesis. To test this hypothesis, capsules are cultured in chondrogenic differentiation medium without TGF-β3. Their biological outcome is compared with capsules encapsulating microparticles without TGF-β3 immobilization and cultured in normal chondrogenic differentiation medium containing soluble TGF-β3. Glycosaminoglycans quantification demosntrates that similar chondrogenesis levels are achieved. Moreover, collagen fibrils resembling the native extracellular matrix of cartilage can be observed. Importantly, the genetic evaluation of characteristic cartilage markers confirms the successful chondrogenesis, while hypertrophic markers are downregulated. In summary, the engineered capsules are able to provide a suitable and stable chondrogenesis environment for stem cells without the need of TGF-β3 supplementation. This kind of self-regulated capsules with softness, robustness, and magnetic responsive characteristics is expected to provide injectability and in situ fixation, which is of great advantage for minimal invasive strategies to regenerate cartilage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatchmore » between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or polygon, total absorption remains approximately the same. However, the total absorption suffers significantly if the holes are triangle. The transmission spectra of incident light into the bottom subcell, and hence the absorption, change significantly for square and circle holes if the active materials change to cadmium selenide (CdSe) and cadmium telluride (CdTe) in the top and bottom subcells, respectively. Although the intermediate metal layer may induce electron-hole pair recombination due to surface defects, the short-circuit current density of an ultra-thin plasmonic solar cell with an intermediate metal layer with two-dimensional hole array is >9% of that of a structure without the intermediate metal layer.« less

  13. Cervical Chondrocutaneous Branchial Remnants.

    PubMed

    Ginat, Daniel T; Johnson, Daniel N; Shogan, Andrea; Cipriani, Nicole A

    2018-06-01

    Cervical chondrocutaneous branchial remnants are rare congenital choristomas. These lesions contain a cartilage core surrounded by skin with adnexal structures and subcutaneous fat. Correspondingly, on ultrasound there is a tubular hypoechoic core surrounded by hyperechoic, while on CT there is central intermediate attenuation surrounded by fat attenuation tissues. These features are exemplified in this sine qua non radiology-pathology correlation article. Management includes complete surgical resection and evaluating for potential associated anomalies, such as other branchial apparatus anomalies, as well as cardiac anomalies.

  14. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering

    PubMed Central

    Wang, Limin; Zhao, Liang; Detamore, Michael S.

    2013-01-01

    Cell sources and tissue integration between cartilage and bone regions are critical to successful osteochondral regeneration. In this study, human umbilical cord mesenchymal stromal cells (hUCMSCs), derived from Wharton’s jelly, were introduced to the field of osteochondral tissue engineering and a new strategy for osteochondral integration was developed by sandwiching a layer of cells between chondrogenic and osteogenic constructs before suturing them together. Specifically, hUCMSCs were cultured in biodegradable poly-l-lactic acid scaffolds for 3 weeks in either chondrogenic or osteogenic medium to differentiate cells toward cartilage or bone lineages, respectively. A highly concentrated cell solution containing undifferentiated hUCMSCs was pasted onto the surface of the bone layer at week 3 and the two layers were then sutured together to form an osteochondral composite for another 3 week culture period. Chondrogenic and osteogenic differentiation was initiated during the first 3 weeks, as evidenced by the expression of type II collagen and runt-related transcription factor 2 genes, respectively, and continued with the increase of extracellular matrix during the last 3 weeks. Histological and immunohistochemical staining, such as for glycosaminoglycans, type I collagen and calcium, revealed better integration and transition of these matrices between two layers in the composite group containing sandwiched cells compared to other control composites. These results suggest that hUCMSCs may be a suitable cell source for osteochondral regeneration, and the strategy of sandwiching cells between two layers may facilitate scaffold and tissue integration. PMID:21953869

  15. Subclinical cartilage degeneration in young athletes with posterior cruciate ligament injuries detected with T1ρ magnetic resonance imaging mapping.

    PubMed

    Okazaki, Ken; Takayama, Yukihisa; Osaki, Kanji; Matsuo, Yoshio; Mizu-Uchi, Hideki; Hamai, Satoshi; Honda, Hiroshi; Iwamoto, Yukihide

    2015-10-01

    Prediction of the risk of osteoarthritis in asymptomatic active patients with an isolated injury of the posterior cruciate ligament (PCL) is difficult. T1ρ magnetic resonance imaging (MRI) enables the quantification of the proteoglycan content in the articular cartilage. The purpose of this study was to evaluate subclinical cartilage degeneration in asymptomatic young athletes with chronic PCL deficiency using T1ρ MRI. Six athletes with chronic PCL deficiency (median age 17, range 14-36 years) and six subjects without any history of knee injury (median age 31.5, range 24-33 years) were recruited. Regions of interest were placed on the articular cartilage of the tibia and the distal and posterior areas of the femoral condyle, and T1ρ values were calculated. On stress radiographs, the mean side-to-side difference in posterior laxity was 9.8 mm. The T1ρ values at the posterior area of the lateral femoral condyle and the superficial layer of the distal area of the medial and lateral femoral condyle of the patients were significantly increased compared with those of the normal controls (p < 0.05). At the tibial plateau, the T1ρ values in both the medial and lateral compartments were significantly higher in patients compared with those in the normal controls (p < 0.05). T1ρ MRI detected unexpected cartilage degeneration in the well-functioning PCL-deficient knees of young athletes. One should be alert to the possibility of subclinical cartilage degeneration even in asymptomatic patients who show no degenerative changes on plain radiographs or conventional MRI. IV.

  16. The comparative arthropathy of fluoroquinolones in dogs.

    PubMed

    Takizawa, T; Hashimoto, K; Minami, T; Yamashita, S; Owen, K

    1999-06-01

    1. Fluoroquinolone antibiotics are generally only prescribed to paediatric patients on compassionate grounds. This is because they are known to cause lesions in the cartilage of the major diarthroidal joints in immature experimental animals. As dogs are considered to be the most sensitive species, a series of studies was performed to compare the potential for grepafloxacin (a new fluoroquinolone) to cause arthropathy to that of ofloxacin and ciprofloxacin in juvenile (3 month old) beagles. 2. Grepafloxacin was administered once daily to male juvenile dogs at dosages of up to 100 mg/kg/day (intravenously), 60 mg/kg/day (orally) or 30 mg/kg/day (subcutaneously) for 1 week. Blister formation was observed on the surface of the joints in one of the three animals treated with grepafloxacin intravenously at 100 mg/kg/day. No abnormalities were observed at lower dosages or when grepafloxacin was administered orally or subcutaneously, regardless of dose. In animals treated with ofloxacin or ciprofloxacin at dosages of 10-30 mg/kg/day, blister formation or erosion was observed on the surface of joints regardless of dose or route of administration. 3. Histopathological examination of the joint surfaces of affected animals revealed the loss of cartilaginous matrix and chondrocytes, cavitation within the intermediate zone of cartilage accompanied by cartilage fibrillation or chondrocyte clustering, or loss of the surface layer which covers the cavitation (or loss of outer wall of the cavity). These findings were not present in the absence of grossly observed lesions. 4. Absorption following oral administration of grepafloxacin was low. Examination of plasma concentrations of drug following intravenous administration showed that joint toxicity was seen with ofloxacin and ciprofloxacin at maximum concentrations as low as 3.80 and 4.24 mg/l, respectively, while plasma levels of grepafloxacin of up to 11.95 mg/l failed to cause such lesions. When the concentration of grepafloxacin was 18.69 mg/l a single joint lesion was seen. Following subcutaneous administration of grepafloxacin, systemic exposure (area under the curve) of approximately 1.5 times that seen in man was not associated with joint lesions. However, lesions were noted for ofloxacin and ciprofloxacin treated animals at exposures equal to or below those seen in man. Therefore grepafloxacin appeared to have a relatively low potential for joint toxicity; this was not due to lack of penetration into the synovial fluid.

  17. [The initial (I and II) and advanced (III and IV) stages of juvenile patellar chondromalacia. Its diagnosis by magnetic resonance using a 1.5-T magnet with FLASH sequences].

    PubMed

    Macarini, L; Rizzo, A; Martino, F; Zaccheo, N; Angelelli, G; Rotondo, A

    1998-06-01

    Juvenile patellar chondromalacia is a common orthopedic disorder which can mimic other conditions; early diagnosis is mandatory to prevent its evolution into osteoarthrosis. In the early stages of patellar chondromalacia (I and II), the lesions originate in the deep cartilage layer and the joint surface is not affected. Arthroscopy can demonstrate joint surface changes only and give indirect information about deeper lesions. We investigated the yield of 2D FLASH MRI with 30 degrees flip angle and a dedicated coil in the diagnosis of patellar chondromalacia, especially in its early stages. Eighteen patients (mean age: 21 years) with clinically suspected patellar chondromalacia were examined with MRI; 13 of them were also submitted to arthroscopy. A 1.5 T unit with a transmit-and-receive extremity coil was used. We acquired T1 SE sequences (TR/TE: 500-700/15/20) and 2D T2* FLASH sequence (TR/TE/FA: 500-800/18/30 degrees). The field of view was 160-180 mm and the matrix 192 x 256, with 2-3 NEX. The images were obtained on the axial plane. The lesions were classified in 4 stages according to Shahriaree classification. Agreement between MR and arthroscopic findings was good in both early and advanced lesions in 12/13 cases. Early lesions appeared as hyperintense focal thickening of the hyaline cartilage (stage I) or as small cystic lesions within the cartilage and no articular surface involvement (stage II). The medial patellar facet was the most frequent site. Advanced lesions appeared as articular surface ulcerations, thinning and cartilage hypointensity (stage III); stage IV lesions presented as complete erosions of the hyaline cartilage and hypointense underlying bone. 2D FLASH MRI with 30 degrees flip angle can show the differences in water content in the cartilage and thus permit to detect early chondromalacia lesions in the deep cartilage.

  18. Distribution of pericellular matrix molecules in the temporomandibular joint and their chondroprotective effects against inflammation

    PubMed Central

    Chu, Wern Cui; Zhang, Shipin; Sng, Timothy J; Ong, Yu Jie; Tan, Wen-Li; Ang, Vivien Y; Foldager, Casper B; Toh, Wei Seong

    2017-01-01

    The objectives of this study were to (1) determine the distribution and synthesis of pericellular matrix (PCM) molecules (collagen VI, collagen IV and laminin) in rat temporomandibular joint (TMJ) and (2) investigate the effects of PCM molecules on chondrocytes against inflammation in osteoarthritis. Four zones (fibrous, proliferating, mature and hypertrophic) of condylar cartilage and three bands (anterior, intermediate and posterior) of disc were analysed by immunohistochemistry for the presence of PCM molecules in rat TMJs. Isolated chondrocytes were pre-treated with PCM molecules before being subjected to interleukin (IL)-1β treatment to stimulate inflammation. The responses of the chondrocytes were analysed using gene expression, nitric oxide release and matrix metalloproteinase (MMP)-13 production measures. Histomorphometric analyses revealed that the highest areal deposition of collagen VI (67.4%), collagen IV (45.7%) and laminin (52.4%) was in the proliferating zone of TMJ condylar cartilage. No significant difference in the distribution of PCM molecules was noted among the three bands of the TMJ disc. All three PCM molecules were expressed intracellularly by chondrocytes cultured in the monolayer. Among the PCM molecules, pre-treatment with collagen VI enhanced cellular proliferation, ameliorated IL-1β-induced MMP-3, MMP-9, MMP-13 and inducible nitric oxide synthase gene expression, and attenuated the downregulation of cartilage matrix genes, including collagen I, aggrecan and cartilage oligomeric matrix protein (COMP). Concurrently, collagen VI pretreatment inhibited nitric oxide and MMP-13 production. Our study demonstrates for the first time the distribution and role of PCM molecules, particularly collagen VI, in the protection of chondrocytes against inflammation. PMID:28282029

  19. Demonstration of variation in chondrocyte activity in different zones of articular cartilage: an assessment of the value of in-situ hybridization.

    PubMed

    Marles, P J; Hoyland, J A; Parkinson, R; Freemont, A J

    1991-04-01

    Several methods have been described for investigating chondrocyte metabolism in vitro. In this study, in-situ hybridization (ISH) using an oligonucleotide probe (i.e. a poly-d(T) probe) to detect total messenger RNA (mRNA) in cartilage explants has been compared with radiosulphate and radioleucine uptake studies in an attempt to assess the value of ISH in investigating chondrocyte metabolism. The relative results of the three parameters indicate qualitative similarities in cells in the intermediate, deep and calcified zones but differences in the superficial zone. The relative levels of mRNA and leucine and sulphate uptake in the midzone areas could be construed as indicating that the bulk of cellular activity was directed towards the synthesis of proteoglycans. A similar relation between the three parameters, but at a lower level, was seen in chondrocytes in the calcified zone demonstrating that these cells are viable and biosynthetic. Both quantitative and qualitative differences between the three methods were observed in the superficial chondrocytes regarding the amount of mRNA compared to sulphate and leucine uptake. The results suggest that ISH can detect differences in the amount of mRNA present in chondrocytes in differing zones of cartilage and, like the radioleucine and radiosulphate studies, particularly emphasizes their functional heterogeneity.

  20. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    NASA Astrophysics Data System (ADS)

    He, Xianyun; Wang, Yingjun; Wu, Gang

    2012-10-01

    In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ɛ-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  1. Characterisation of mineralisation of bone and cartilage: X-ray diffraction and Ca and Sr K α X-ray fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Muthuvelu, P.; Ellis, R. E.; Green, E. M.; Attenburrow, D.; Barrett, R.; Arkill, K.; Colridge, D. B.; Winlove, C. P.

    2007-10-01

    Bone is a dynamic structure, constantly remodelling in response to changing mechanical and environmental factors. This is particularly evident in the mineral component encrusting the collagenous framework. The mineral is principally in the form of calcium apatite, but calcium can exchange with strontium, both during the cellular processes of mineralisation and resorption and by passive exchange with the deposited crystals. Mineralisation is generally characterized by densitometry, but because of the differences in absorption cross sections of calcium and strontium it can be misleading in studies of composition. In this work we have used X-ray diffraction to identify calcium and strontium apatite and X-ray fluorescence to quantify strontium and calcium distribution. With the beam characteristics available from synchrotron radiation, this has enabled us to obtain microscopic resolution on thin sections of bone and cartilage from the equine metacarpophalangeal joint. Two issues have been investigated; the first is the distribution of mineral in the bone-cartilage interface and within individual trabeculae. In trabecular bone the ratio of strontium to calcium concentration was typically 0.0035 ± 0.0020, and higher by a factor of ∼3 at the periphery than in the centre of a trabeculum (possibly reflecting the more rapid turnover of mineral in the surface layer). In the dense subchondral bone the ratio was similar, approximately doubling in the calcified cartilage. The second objective was to explore the changes in mineralisation associated with development of osteoarthrosis. We analysed lesions showing cartilage thinning and changes in the trabecular organization and density of the underlying bone. At the centre of the lesion the ratio of strontium to calcium was much lower than that in normal tissue, although the calcified cartilage still showed a higher ratio than the underlying bone. In the superficially normal tissue around the lesion the calcified cartilage returned to a normal ratio much more rapidly than the underlying bone. These data demonstrate the complex relationship between changes in cartilage and the underlying bone.

  2. Contrast agent enhanced pQCT of articular cartilage

    NASA Astrophysics Data System (ADS)

    Kallioniemi, A. S.; Jurvelin, J. S.; Nieminen, M. T.; Lammi, M. J.; Töyräs, J.

    2007-02-01

    The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T1,Gd and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n = 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r = -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally degraded articular cartilage in vitro. As high resolution imaging of e.g. the knee joint is possible with pQCT, the present technique may be further developed for in vivo quantification of PG depletion in osteoarthritic cartilage. However, careful in vitro and in vivo characterization of diffusion mechanics and optimal contrast agent concentrations are needed before diagnostic applications are feasible.

  3. Evaluation of Chondrocalcinosis and Associated Knee Joint Degeneration Using MR Imaging: Data from the Osteoarthritis Initiative.

    PubMed

    Gersing, Alexandra S; Schwaiger, Benedikt J; Heilmeier, Ursula; Joseph, Gabby B; Facchetti, Luca; Kretzschmar, Martin; Lynch, John A; McCulloch, Charles E; Nevitt, Michael C; Steinbach, Lynne S; Link, Thomas M

    2017-06-01

    To evaluate the ability of different MRI sequences to detect chondrocalcinosis within knee cartilage and menisci, and to analyze the association with joint degeneration. Subjects with radiographic knee chondrocalcinosis (n = 90, age 67.7 ± 7.3 years, 50 women) were selected from the Osteoarthritis Initiative and matched to controls without radiographic chondrocalcinosis (n = 90). Visualization of calcium-containing crystals (CaC) was compared between 3D T1-weighted gradient-echo (T1GE), 3D dual echo steady-state (DESS), 2D intermediate-weighted (IW), and proton density (PD)-weighted fast spin-echo (FSE) sequences obtained with 3T MRI and correlated with a semiquantitative CaC score obtained from radiographs. Structural abnormalities were assessed using Whole-Organ MRI Score (WORMS) and logistic regression models were used to compare cartilage compartments with and without CaC. Correlations between CaC counts of MRI sequences and degree of radiographic calcifications were highest for GE (r T1GE  = 0.73, P < 0.001; r DESS  = 0.68, P < 0.001) compared to other sequences (P > 0.05). Meniscus WORMS was significantly higher in subjects with chondrocalcinosis compared to controls (P = 0.005). Cartilage defects were significantly more frequent in compartments with CaC than without (patella: P = 0.006; lateral tibia: P < 0.001; lateral femur condyle: P = 0.017). Gradient-echo sequences were most useful for the detection of chondrocalcinosis and presence of CaC was associated with higher prevalence of cartilage and meniscal damage. • Magnetic resonance imaging is useful for assessing burden of calcium-containing crystals (CaC). • Gradient-echo sequences are superior to fast spin echo sequences for CaC imaging. • Presence of CaC is associated with meniscus and cartilage degradation.

  4. Bioengineering pediatric scaffold-free auricular cartilaginous constructs.

    PubMed

    Akbari, Pedram; Waldman, Stephen D; Cushing, Sharon L; Papsin, Blake C; Propst, Evan J; Weber, Joanna F; Yeger, Herman; Farhat, Walid A

    2017-05-01

    The use of exogenous materials as scaffolds in cartilage tissue engineering has limited the clinical application of resultant constructs due to the risk of postoperative complications. In an effort to minimize such complications, we aim to generate human, scaffold-free auricular cartilaginous constructs. Laboratory study using pediatric auricular cartilage. Remnant, normal pediatric auricular cartilage samples that would have otherwise been discarded were collected and digested to free cells. Harvested cells were cultured and expanded in vitro for two passages and plated as micromass cultures. The culture medium was replaced with a chemically defined chondrogenic medium, and cellular monolayers surrounding micromass cultures were continuously scraped off. Constructs were allowed to mature for a period of 8 weeks. Micromass constructs showed mechanical stability and structurally resembled native auricular tissue, with a perichondrium-like layer of cells surrounding the inner cartilaginous zone. Constructs accumulated equivalent sulphated glycosaminoglycan and 50% of collagen content compared to native auricular cartilage by mass, while displaying 156% more cellularity. High-density micromass cultures of pediatric auricular chondrocytes can generate stable cartilaginous constructs following prolonged chondrogenic inductions in vitro. This technique is an essential step toward the development of three-dimensional constructs to recreate clinically applicable auricular cartilaginous constructs. NA. Laryngoscope, 127:E153-E158, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Cartilage Morphological and Histological Findings After Reconstruction of the Glenoid With an Iliac Crest Bone Graft.

    PubMed

    Auffarth, Alexander; Resch, Herbert; Matis, Nicholas; Hudelmaier, Martin; Wirth, Wolfgang; Forstner, Rosemarie; Neureiter, Daniel; Traweger, Andreas; Moroder, Philipp

    2018-04-01

    The J-bone graft is presumably representative of iliac crest bone grafts in general and allows anatomic glenoid reconstruction in cases of bone defects due to recurrent traumatic anterior shoulder dislocations. As a side effect, these grafts have been observed to be covered by some soft, cartilage-like tissue when arthroscopy has been indicated after such procedures. To evaluate the soft tissue covering of J-bone grafts by use of magnetic resonance imaging (MRI) and histological analysis. Case series; Level of evidence, 4. Patients underwent MRI at 1 year after the J-bone graft procedures. Radiological data were digitally processed and evaluated by segmentation of axial images. Independent from the MRI analysis, 2 biopsy specimens of J-bone grafts were harvested for descriptive histological analysis. Segmentation of the images revealed that all grafts were covered by soft tissue. This layer had an average thickness of 0.87 mm compared with 1.96 mm at the adjacent native glenoid. Of the 2 biopsy specimens, one exhibited evident hyaline-like cartilage and the other presented patches of chondrocytes embedded in a glycosaminoglycan-rich extracellular matrix. J-bone grafts are covered by soft tissue that can differentiate into fibrous and potentially hyaline cartilage. This feature may prove beneficial for delaying the onset of dislocation arthropathy of the shoulder.

  6. Type II Collagen and Gelatin from Silvertip Shark (Carcharhinus albimarginatus) Cartilage: Isolation, Purification, Physicochemical and Antioxidant Properties

    PubMed Central

    Jeevithan, Elango; Bao, Bin; Bu, Yongshi; Zhou, Yu; Zhao, Qingbo; Wu, Wenhui

    2014-01-01

    Type II acid soluble collagen (CIIA), pepsin soluble collagen (CIIP) and type II gelatin (GII) were isolated from silvertip shark (Carcharhinus albimarginatus) cartilage and examined for their physicochemical and antioxidant properties. GII had a higher hydroxyproline content (173 mg/g) than the collagens and cartilage. CIIA, CIIP and GII were composed of two identical α1 and β chains and were characterized as type II. Amino acid analysis of CIIA, CIIP and GII indicated imino acid contents of 150, 156 and 153 amino acid residues per 1000 residues, respectively. Differing Fourier transform infrared (FTIR) spectra of CIIA, CIIP and GII were observed, which suggested that the isolation process affected the secondary structure and molecular order of collagen, particularly the triple-helical structure. The denaturation temperature of GII (32.5 °C) was higher than that of CIIA and CIIP. The antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl radicals and the reducing power of CIIP was greater than that of CIIA and GII. SEM microstructure of the collagens depicted a porous, fibrillary and multi-layered structure. Accordingly, the physicochemical and antioxidant properties of type II collagens (CIIA, CIIP) and GII isolated from shark cartilage were found to be suitable for biomedical applications. PMID:24979271

  7. Characterizing cartilage microarchitecture on phase-contrast x-ray computed tomography using deep learning with convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Deng, Botao; Abidin, Anas Z.; D'Souza, Adora M.; Nagarajan, Mahesh B.; Coan, Paola; Wismüller, Axel

    2017-03-01

    The effectiveness of phase contrast X-ray computed tomography (PCI-CT) in visualizing human patellar cartilage matrix has been demonstrated due to its ability to capture soft tissue contrast on a micrometer resolution scale. Recent studies have shown that off-the-shelf Convolutional Neural Network (CNN) features learned from a nonmedical data set can be used for medical image classification. In this paper, we investigate the ability of features extracted from two different CNNs for characterizing chondrocyte patterns in the cartilage matrix. We obtained features from 842 regions of interest annotated on PCI-CT images of human patellar cartilage using CaffeNet and Inception-v3 Network, which were then used in a machine learning task involving support vector machines with radial basis function kernel to classify the ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area (AUC) under the Receiver Operating Characteristic (ROC) curve. The best classification performance was observed with features from Inception-v3 network (AUC = 0.95), which outperforms features extracted from CaffeNet (AUC = 0.91). These results suggest that such characterization of chondrocyte patterns using features from internal layers of CNNs can be used to distinguish between healthy and osteoarthritic tissue with high accuracy.

  8. Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.

    PubMed

    Nia, Hadi Tavakoli; Han, Lin; Bozchalooi, Iman Soltani; Roughley, Peter; Youcef-Toumi, Kamal; Grodzinsky, Alan J; Ortiz, Christine

    2015-03-24

    Poroelastic interactions between interstitial fluid and the extracellular matrix of connective tissues are critical to biological and pathophysiological functions involving solute transport, energy dissipation, self-stiffening and lubrication. However, the molecular origins of poroelasticity at the nanoscale are largely unknown. Here, the broad-spectrum dynamic nanomechanical behavior of cartilage aggrecan monolayer is revealed for the first time, including the equilibrium and instantaneous moduli and the peak in the phase angle of the complex modulus. By performing a length scale study and comparing the experimental results to theoretical predictions, we confirm that the mechanism underlying the observed dynamic nanomechanics is due to solid-fluid interactions (poroelasticity) at the molecular scale. Utilizing finite element modeling, the molecular-scale hydraulic permeability of the aggrecan assembly was quantified (kaggrecan = (4.8 ± 2.8) × 10(-15) m(4)/N·s) and found to be similar to the nanoscale hydraulic permeability of intact normal cartilage tissue but much lower than that of early diseased tissue. The mechanisms underlying aggrecan poroelasticity were further investigated by altering electrostatic interactions between the molecule's constituent glycosaminoglycan chains: electrostatic interactions dominated steric interactions in governing molecular behavior. While the hydraulic permeability of aggrecan layers does not change across species and age, aggrecan from adult human cartilage is stiffer than the aggrecan from newborn human tissue.

  9. Theoretical model for the discrete flexoelectric effect and a description for the sequence of intermediate smectic phases with increasing periodicity.

    PubMed

    Emelyanenko, A V; Osipov, M A

    2003-11-01

    A general phenomenological description and a simple molecular model is proposed for the "discrete" flexoelectric effect in tilted smectic liquid crystal phases. This effect defines a polarization in a smectic layer induced by a difference of director orientations in the two smectic layers adjacent to it. It is shown that the "discrete" flexoelectric effect is determined by electrostatic dipole-quadrupole interaction between positionally correlated molecules located in adjacent smectic layers, while the corresponding dipole-dipole interaction is responsible for a coupling between polarization vectors in neighboring layers. It is shown that a simple phenomenological model of a ferrielectric smectic liquid crystal, which has recently been proposed in the literature, can be used to describe the whole sequence of intermediate chiral smectic C* phases with increasing periods, and to determine the nonplanar structure of each phase without additional assumptions. In this sequence the phases with three- and four-layer periodicities have the same structure, as observed in the experiment. The theory predicts also the structure of intermediate phases with longer periods that have not been studied experimentally so far. The structures of intermediate phases with periodicities of up to nine layers are presented together with the phase diagrams, and a relationship between molecular chirality and the three-dimensional structure of intermediate phases is discussed. It is considered also how the coupling between the spontaneous polarization determined by molecular chirality and the induced polarization determined by the discrete flexoelectric effect stabilizes the nonplanar structure of intermediate phases.

  10. Articular chondrocyte network mediated by gap junctions: role in metabolic cartilage homeostasis.

    PubMed

    Mayan, Maria D; Gago-Fuentes, Raquel; Carpintero-Fernandez, Paula; Fernandez-Puente, Patricia; Filgueira-Fernandez, Purificacion; Goyanes, Noa; Valiunas, Virginijus; Brink, Peter R; Goldberg, Gary S; Blanco, Francisco J

    2015-01-01

    This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 µm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and β-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Long-Term Morphological and Microarchitectural Stability of Tissue-Engineered, Patient-Specific Auricles In Vivo

    PubMed Central

    Cohen, Benjamin Peter; Hooper, Rachel C.; Puetzer, Jennifer L.; Nordberg, Rachel; Asanbe, Ope; Hernandez, Karina A.; Spector, Jason A.

    2016-01-01

    Current techniques for autologous auricular reconstruction produce substandard ear morphologies with high levels of donor-site morbidity, whereas alloplastic implants demonstrate poor biocompatibility. Tissue engineering, in combination with noninvasive digital photogrammetry and computer-assisted design/computer-aided manufacturing technology, offers an alternative method of auricular reconstruction. Using this method, patient-specific ears composed of collagen scaffolds and auricular chondrocytes have generated auricular cartilage with great fidelity following 3 months of subcutaneous implantation, however, this short time frame may not portend long-term tissue stability. We hypothesized that constructs developed using this technique would undergo continued auricular cartilage maturation without degradation during long-term (6 month) implantation. Full-sized, juvenile human ear constructs were injection molded from high-density collagen hydrogels encapsulating juvenile bovine auricular chondrocytes and implanted subcutaneously on the backs of nude rats for 6 months. Upon explantation, constructs retained overall patient morphology and displayed no evidence of tissue necrosis. Limited contraction occurred in vivo, however, no significant change in size was observed beyond 1 month. Constructs at 6 months showed distinct auricular cartilage microstructure, featuring a self-assembled perichondrial layer, a proteoglycan-rich bulk, and rounded cellular lacunae. Verhoeff's staining also revealed a developing elastin network comparable to native tissue. Biochemical measurements for DNA, glycosaminoglycan, and hydroxyproline content and mechanical properties of aggregate modulus and hydraulic permeability showed engineered tissue to be similar to native cartilage at 6 months. Patient-specific auricular constructs demonstrated long-term stability and increased cartilage tissue development during extended implantation, and offer a potential tissue-engineered solution for the future of auricular reconstructions. PMID:26847742

  12. Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO 3 overlay and intermediate coupling layer

    NASA Astrophysics Data System (ADS)

    Sohn, Kyung-Rak; Song, Jae-Won

    2002-03-01

    Using a side-polished single-mode fiber covered with a polished LiNbO 3 overlay and an intermediate coupling layer, tunable fiber-optic comb filters are demonstrated. The device behaviors based on the modal properties of the fiber and the planar LiNbO 3 waveguide are analyzed by two dimensional beam propagation methods (2-D BPM) and discussed the role of an intermediate coupling layer in terms of coupling efficiency. We also show that the thermo-optic effects of this layer can be utilized to tune the comb filter. When the polished x-cut LiNbO 3 with 200 μm thickness is used as a multimode overlay waveguide, the comb output spectra with free spectral range of 4 nm are measured in 1550 nm wavelength range. The tuning rate as a function of the refractive index of an intermediate coupling layer, Δλ/ Δnb, is about -0.129 nm/-0.001. The experimental results are in good agreement with the calculated results.

  13. Nasal tip support: A finite element analysis of the role of the caudal septum during tip depression

    PubMed Central

    Manuel, Cyrus T.; Leary, Ryan; Protsenko, Dmitriy E.; Wong, Brian J.F.

    2014-01-01

    Objective/Hypothesis Although minor and major tip support mechanisms have been described in detail, no quantitative models exist to provide support for the relative contributions of the structural properties of the major alar cartilage, the fibrous attachments to surrounding structures, and the rigid support structures in an objective manner. Study Design The finite element method was used to compute the stress distribution in the nose during simple tip compression, and then identify the specific anatomic structures that resist deformation and thus contribute to “tip support”. Additionally, the impact of caudal septal resection on nasal tip support was examined. Method The computer models consisted of three tissue components with anatomically correct geometries for skin and bone derived from CT data. Septum, upper lateral cartilages, and major alar cartilages were fitted within the model using 3D CAD software. 5mm nasal tip compression was performed on the models with caudal septal resection (3mm and 5 mm) and without resection to simulate palpation, then the resulting spatial distribution of stress and displacement was calculated. Results The von Mises stress in the normal model was primarily concentrated along medial crural angle. As caudal septum length was reduced, stress was redistributed to adjacent soft tissue and bone, resulting in less force acting on the septum. In all models, displacement was greatest near the intermediate crura. Conclusions These models are the first step in the comprehensive mechanical analysis of nasal tip dynamics. Our model supports the concept of the caudal septum and major alar cartilage as providing the majority of critical load-bearing support. Level of Evidence N/A PMID:23878007

  14. Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications

    PubMed Central

    Karbasi, Saeed; Khorasani, Saied Nouri; Ebrahimi, Somayeh; Khalili, Shahla; Fekrat, Farnoosh; Sadeghi, Davoud

    2016-01-01

    Background: Poly (hydroxy butyrate) (PHB) is a biodegradable and biocompatible polymer with good mechanical properties. This polymer could be a promising material for scaffolds if some features improve. Materials and Methods: In the present work, new PHB/chitosan blend scaffolds were prepared as a three-dimensional substrate in cartilage tissue engineering. Chitosan in different weight percent was added to PHB and solved in trifluoroacetic acid. Statistical Taguchi method was employed in the design of experiments. Results: The Fourier-transform infrared spectroscopy test revealed that the crystallization of PHB in these blends is suppressed with increasing the amount of chitosan. Scanning electron microscopy images showed a thin and rough top layer with a nodular structure, supported with a porous sub-layer in the surface of the scaffolds. In vitro degradation rate of the scaffolds was higher than pure PHB scaffolds. Maximum degradation rate has been seen for the scaffold with 90% wt. NaCl and 40% wt. chitosan. Conclusions: The obtained results suggest that these newly developed PHB/chitosan blend scaffolds may serve as a three-dimensional substrate in cartilage tissue engineering. PMID:28028517

  15. Preparation and characterization of poly (hydroxy butyrate)/chitosan blend scaffolds for tissue engineering applications.

    PubMed

    Karbasi, Saeed; Khorasani, Saied Nouri; Ebrahimi, Somayeh; Khalili, Shahla; Fekrat, Farnoosh; Sadeghi, Davoud

    2016-01-01

    Poly (hydroxy butyrate) (PHB) is a biodegradable and biocompatible polymer with good mechanical properties. This polymer could be a promising material for scaffolds if some features improve. In the present work, new PHB/chitosan blend scaffolds were prepared as a three-dimensional substrate in cartilage tissue engineering. Chitosan in different weight percent was added to PHB and solved in trifluoroacetic acid. Statistical Taguchi method was employed in the design of experiments. The Fourier-transform infrared spectroscopy test revealed that the crystallization of PHB in these blends is suppressed with increasing the amount of chitosan. Scanning electron microscopy images showed a thin and rough top layer with a nodular structure, supported with a porous sub-layer in the surface of the scaffolds. In vitro degradation rate of the scaffolds was higher than pure PHB scaffolds. Maximum degradation rate has been seen for the scaffold with 90% wt. NaCl and 40% wt. chitosan. The obtained results suggest that these newly developed PHB/chitosan blend scaffolds may serve as a three-dimensional substrate in cartilage tissue engineering.

  16. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in partsmore » of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.« less

  17. Do Cartilage Repair Procedures Prevent Degenerative Meniscus Changes? Longitudinal T1ρ and Morphological Evaluation at 3.0T

    PubMed Central

    Jungmann, Pia M.; Li, Xiaojuan; Nardo, Lorenzo; Subburaj, Karupppasamy; Lin, Wilson; Ma, C. Benjamin; Majumdar, Sharmila; Link, Thomas M.

    2014-01-01

    Background Cartilage repair (CR) procedures are widely accepted for treatment of isolated cartilage defects at the knee joint. However, it is not well known whether these procedures prevent degenerative joint disease. Hypothesis/Purpose CR procedures prevent accelerated qualitative and quantitative progression of meniscus degeneration in individuals with focal cartilage defects. Study Design Cohort Study; Level of evidence 2b Methods A total of 94 subjects were studied. CR procedures were performed on 34 patients (n=16 osteochondral transplantation, n=18 microfracture); 34 controls were matched. An additional 13 patients received CR and anterior cruciate ligament (ACL) reconstruction (CR&ACL) and 13 patients received only ACL reconstruction. 3.0T MRI with T1ρ mapping and sagittal fat-saturated intermediate-weighted fast spin echo (FSE) sequences was performed to analyze menisci quantitatively and qualitatively (Whole-Organ Magnetic Resonance Imaging Score, WORMS). CR and CR&ACL patients were examined 4 months (n=34; n=13), 1 (n=21; n=8) and 2 (n=9; n=5) years post CR. Control subjects were scanned at baseline and after 1 and 2 years, ACL patients after 1 and 2 years. Results At baseline, global meniscus T1ρ values were higher in individuals with CR (14.2±0.6ms; P=0.004) and in individuals with CR&ACL (17.1±0.9ms; P<0.001) when compared to controls (12.8±0.6ms). After two years, there was a statistical difference between T1ρ at the overlying meniscus above cartilage defects (16.4±1.0ms) and T1ρ of the subgroup of control knees without cartilage defects (12.1±0.8ms; P<0.001) and a statistical trend to the CR group (13.3±1.0 ms; P=0.088). At baseline, 35% of subjects with CR showed morphological meniscus tears at the overlying meniscus; 10% of CR subjects showed an increase of WORMS meniscus score within the first year, none progressed in the second year. Control subjects with (without) cartilage defects showed meniscus tears in 30% (5%) at baseline; 38% (19%) increased within the first, and 15% (10%) within the second year. Conclusions This study identified more severe meniscus degeneration after CR surgery compared to controls. However, progression of T1ρ values was not observed from 1 to 2 years after surgery. These results suggest, that CR may prevent degenerative meniscus changes. PMID:23104606

  18. A novel MSC-seeded triphasic construct for the repair of osteochondral defects.

    PubMed

    Marquass, B; Somerson, J S; Hepp, P; Aigner, T; Schwan, S; Bader, A; Josten, C; Zscharnack, M; Schulz, R M

    2010-12-01

    Mesenchymal stem cells (MSC) are increasingly replacing chondrocytes in tissue engineering based research for treatment of osteochondral defects. The aim of this work was to determine whether repair of critical-size chronic osteochondral defects in an ovine model using MSC-seeded triphasic constructs would show results comparable to osteochondral autografting (OATS). Triphasic implants were engineered using a beta-tricalcium phosphate osseous phase, an intermediate activated plasma phase, and a collagen I hydrogel chondral phase. Autologous MSCs were used to seed the implants, with chondrogenic predifferentiation of the cells used in the cartilage phase. Osteochondral defects of 4.0 mm diameter were created bilaterally in ovine knees (n = 10). Six weeks later, half of the lesions were treated with OATS and half with triphasic constructs. The knees were dissected at 6 or 12 months. With the chosen study design we were not able to demonstrate significant differences between the histological scores of both groups. Subcategory analysis of O'Driscoll scores showed superior cartilage bonding in the 6-month triphasic group compared to the autograft group. The 12-month autograft group showed superior cartilage matrix morphology compared to the 12-month triphasic group. Macroscopic and biomechanical analysis showed no significant differences at 12 months. Autologous MSC-seeded triphasic implants showed comparable repair quality to osteochondral autografts in terms of histology and biomechanical testing. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Lucigenin-dependent chemiluminescence in articular chondrocytes.

    PubMed

    Rathakrishnan, C; Tiku, M L

    1993-08-01

    We were recently able to measure intracellular levels of hydrogen peroxide within normal articular chondrocytes using the trapped indicator 2',7'-dichlorofluorescein diacetate. Further studies have shown that stimulated chondrocytes produce luminol-dependent chemiluminescence, suggesting that these cells produce hydrogen peroxide and singlet oxygen. In the present study, we have investigated the lucigenin-dependent chemiluminescence response in normal articular chondrocytes. Chondrocytes either in suspension or adhered to cover slips showed lucigenin-dependent chemiluminescence. There was a dose-dependent increase in chemiluminescence response when chondrocytes were incubated with soluble stimuli like phorbol-myristate-acetate, concanavalin A, and f-met-leu-phe. Catalase and the metabolic inhibitor, sodium azide, which inhibits the enzyme myeloperoxidase, had no inhibitory effect on lucigenin-dependent chemiluminescence production. Only the antioxidant, superoxide dismutase, prevented lucigenin-dependent chemiluminescence, indicating that this assay measures the production of superoxide anions by chondrocytes. We confirmed that chondrocytes release superoxide radicals using the biochemical assay of ferricytochrome c reduction. Since cartilage tissue is semi-transparent, we were able to measure chemiluminescence response in live cartilage tissue, showing that chondrocytes which are embedded within the matrix can also generate superoxide anion radicals. Reactive oxygen intermediates have been shown to play a significant role in the degradation of matrix in arthritis. Our previous and present studies suggest that oxygen radicals produced by chondrocytes may be an important mechanism by which chondrocytes induce cartilage matrix degradation.

  20. Joint morphogenetic cells in the adult mammalian synovium

    PubMed Central

    Roelofs, Anke J.; Zupan, Janja; Riemen, Anna H. K.; Kania, Karolina; Ansboro, Sharon; White, Nathan; Clark, Susan M.; De Bari, Cosimo

    2017-01-01

    The stem cells that safeguard synovial joints in adulthood are undefined. Studies on mesenchymal stromal/stem cells (MSCs) have mainly focused on bone marrow. Here we show that lineage tracing of Gdf5-expressing joint interzone cells identifies in adult mouse synovium an MSC population largely negative for the skeletal stem cell markers Nestin-GFP, Leptin receptor and Gremlin1. Following cartilage injury, Gdf5-lineage cells underpin synovial hyperplasia through proliferation, are recruited to a Nestin-GFPhigh perivascular population, and contribute to cartilage repair. The transcriptional co-factor Yap is upregulated after injury, and its conditional ablation in Gdf5-lineage cells prevents synovial lining hyperplasia and decreases contribution of Gdf5-lineage cells to cartilage repair. Cultured Gdf5-lineage cells exhibit progenitor activity for stable chondrocytes and are able to self-organize three-dimensionally to form a synovial lining-like layer. Finally, human synovial MSCs transduced with Bmp7 display morphogenetic properties by patterning a joint-like organ in vivo. Our findings further the understanding of the skeletal stem/progenitor cells in adult life. PMID:28508891

  1. Bio-inspired design of a magnetically active trilayered scaffold for cartilage tissue engineering.

    PubMed

    Brady, Mariea A; Talvard, Lucien; Vella, Alain; Ethier, C Ross

    2017-04-01

    An important topic in cartilage tissue engineering is the development of biomimetic scaffolds which mimic the depth-dependent material properties of the native tissue. We describe an advanced trilayered nanocomposite hydrogel (ferrogel) with a gradient in compressive modulus from the top to the bottom layers (p < 0.05) of the construct. Further, the scaffold was able to respond to remote external stimulation, exhibiting an elastic, depth-dependent strain gradient. When bovine chondrocytes were seeded into the ferrogels and cultured for up to 14 days, there was good cell viability and a biochemical gradient was measured with sulphated glycosaminoglycan increasing with depth from the surface. This novel construct provides tremendous scope for tailoring location-specific cartilage replacement tissue; by varying the density of magnetic nanoparticles, concentration of base hydrogel and number of cells, physiologically relevant depth-dependent gradients may be attained. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.

  2. Glycosylation of DMP1 Is Essential for Chondrogenesis of Condylar Cartilage.

    PubMed

    Weng, Y; Liu, Y; Du, H; Li, L; Jing, B; Zhang, Q; Wang, X; Wang, Z; Sun, Y

    2017-12-01

    The mandibular condylar cartilage (MCC) shoulders force for the subchondral bone during mastication. The cartilage matrix contains various large molecules, such as type I, II, and X collagens and proteoglycans (PGs), which jointly play essential roles in maintaining cartilage characteristics. PGs play key roles in maintaining the elasticity of cartilage and providing a cushion against mastication forces. In addition to the well-known PGs, DMP1-PG, which is the PG form of dentin matrix protein 1 (DMP1), is a newly identified PG. DMP1 is proteolytically processed in vivo, and the N-terminus is glycosylated into its PG form-that is, DMP1-PG, which is highly expressed not only in tooth and bone but also in the matrix of the MCC. However, the specific functions of DMP1-PG in the MCC remain unclear. In human temporomandibular joint osteoarthritis and hyperocclusion model rat specimens, PGs are significantly downregulated, and DMP1-PG is the most prominently affected PG. To further investigate the role of DMP1-PG in condylar chondrogenesis, a glycosylation site mutant (S 89 -G 89 ) mouse model was established with knock-in methods. In the MCC of the S89G-DMP1 mice, the glycosylation level of DMP1 was significantly downregulated, and a series of abnormal developmental and pathologic changes could be observed. The morphologic changes included thinner cartilage layers, deformations of the MCC, and disordered arrangements of the chondrocytes, and an earlier onset of temporomandibular joint osteoarthritis-like changes was observed. In addition, markers of chondrogenesis were downregulated, and the matrix of the MCC displayed OA phenotypes in the S89G-DMP1 mice. Further investigations showed that the transforming growth factor β signaling molecules were affected in the MCC after the loss of DMP1-PG. In addition, the loss of DMP1-PG significantly accelerated the progression of cartilage injuries in the hyperocclusion models. Given these findings, we investigated the significant role of DMP1-PG in the chondrogenesis and maintenance of MCC.

  3. Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro.

    PubMed

    Spiteri, C G; Pilliar, R M; Kandel, R A

    2006-09-15

    Tissue engineering is being explored as a new approach to treat damaged cartilage. As the biomaterial used may influence tissue formation, the effects of substrate geometry on chondrocyte behavior in vitro were examined. Articular chondrocytes were isolated and cultured on the surface of smooth, rough, porous-coated, and fully porous Ti-6Al-4V substrates. The percentage of chondrocytes that attached to each substrate at 24 h was determined. After 24 and 72 h, chondrocytes were visualized by scanning electron microscopy and cell areas were measured. Collagen and proteoglycan accumulation within the first 24 h was determined by incorporation with [3H]-proline and [35S]-SO4, respectively. Chondrocyte attachment as well as matrix accumulation was enhanced as substrate surface area increased. Cell areas on the fully porous substrate were over four times greater than on any other substrate by 72 h in culture. After 8 weeks in culture, a continuous layer of cartilaginous tissue formed only on the surface of the fully porous substrate. This suggests that fully porous Ti-6Al-4V substrates provide the conditions that favor cartilage tissue formation by influencing cell attachment and extent of cell spreading. Understanding how substrate porosity influences chondrocyte behavior may help identify methods to further enhance cartilage tissue formation in vitro. 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.

  4. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology.

    PubMed

    Xu, Yuanyuan; Guo, Xiao; Yang, Shuaitao; Li, Long; Zhang, Peng; Sun, Wei; Liu, Changyong; Mi, Shengli

    2018-06-01

    Articular cartilage (AC) has gradient features in both mechanics and histology as well as a poor regeneration ability. The repair of AC poses difficulties in both research and the clinic. In this paper, a gradient scaffold based on poly(lactic-co-glycolic acid) (PLGA)-extracellular matrix was proposed. Cartilage scaffolds with a three-layer gradient structure were fabricated by PLGA through three-dimensional printing, and the microstructure orientation and pore fabrication were made by decellularized extracellular matrix injection and directional freezing. The manufactured scaffold has a mechanical strength close to that of real cartilage. A quantitative optimization of the Young's modulus and shear modulus was achieved by material mechanics formulas, which achieved a more accurate mechanical bionic and a more stable interface performance because of the one-time molding process. At the same time, the scaffolds have a bionic and gradient microstructure orientation and pore size, and the stratification ratio can be quantitatively optimized by design of the freeze box and temperature simulation. In general, this paper provides a method to optimize AC scaffolds by both mechanics and histology as well as a bionic multimaterial scaffold. This paper is of significance for cell culture and clinical transplantation experiments. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1664-1676, 2018. © 2018 Wiley Periodicals, Inc.

  5. Cartilaginous Metabolomic Study Reveals Potential Mechanisms of Osteophyte Formation in Osteoarthritis.

    PubMed

    Xu, Zhongwei; Chen, Tingmei; Luo, Jiao; Ding, Shijia; Gao, Sichuan; Zhang, Jian

    2017-04-07

    Osteophyte is one of the inevitable consequences of progressive osteoarthritis with the main characteristics of cartilage degeneration and endochondral ossification. The pathogenesis of osteophyte formation is not fully understood to date. In this work, metabolomic approaches were employed to explore potential mechanisms of osteophyte formation by detecting metabolic variations between extracts of osteophyte cartilage tissues (n = 32) and uninvolved control cartilage tissues (n = 34), based on the platform of ultraperformance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, as well as the use of multivariate statistic analysis and univariate statistic analysis. The osteophyte group was significantly separated from the control group by the orthogonal partial least-squares discriminant analysis models, indicating that metabolic state of osteophyte cartilage had been changed. In total, 28 metabolic variations further validated by mass spectrum (MS) match, tandom mass spectrum (MS/MS) match, and standards match mainly included amino acids, sulfonic acids, glycerophospholipids, and fatty acyls. These metabolites were related to some specific physiological or pathological processes (collagen dissolution, boundary layers destroyed, self-restoration triggered, etc.) which might be associated with the procedure of osteophyte formation. Pathway analysis showed phenylalanine metabolism (PI = 0.168, p = 0.004) was highly correlative to this degenerative process. Our findings provided a direction for targeted metabolomic study and an insight into further reveal the molecular mechanisms of ostophyte formation.

  6. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.

    PubMed

    Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D

    2007-01-01

    We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (P<0.005), and of a higher total O'Driscoll score (P<0.005 and P<0.01, respectively). Chitosan-GP/blood implants applied in conjunction with drilling, compared to drilling alone, elicited a more hyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.

  7. Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli.

    PubMed

    Coates, Emily E; Fisher, John P

    2010-11-01

    Articular cartilage defects have limited capacity to self-repair, and cost society up to 60 billion dollars annually in both medical treatments and loss of working days. Recent developments in cartilage tissue engineering have resulted in many new products coming to market or entering clinical trials. However, there is a distinct lack of treatments which aim to recreate the complex zonal organization of articular cartilage. Cartilage tissue withstands repetitive strains throughout an individual's lifetime and provides frictionless movement between joints. The structure and composition of its intricately organized extracellular matrix varies with tissue depth to provide optimal resistance to loading, ensure ease of movement, and integrate with the subchondral bone. Each tissue zone is specially designed to resist the load it experiences, and maximize the tissue properties needed for its location. It is unlikely that a homogenous solution to tissue repair will be able to optimally restore the function of such a heterogeneous tissue. For zonal engineering of articular cartilage to become practical, maintenance of phenotypically stable zonal cell populations must be achieved. The chondrocyte phenotype varies considerably by zone, and it is the activity of these cells that help achieve the structural organization of the tissue. This review provides an examination of literature which has studied variations in cellular phenotype between cartilage zones. By doing so, we have identified critical differences between cell populations and highlighted areas of research which show potential in the field. Current research has made the morphological and metabolic variations between these cell populations clear, but an ideal way of maintaining these differences in vitro culture is yet to be established. Combinations of delivered growth factors, mechanical loading, and layered three-dimensional culture systems all show potential for achieving this goal. Furthermore, differentiation of progenitor cell populations into chondrocyte subpopulations may also hold promise for achieving large numbers of zonal chondrocytes. Success of the field lies in establishing methods of retaining phenotypically stable cell populations for in vitro culture.

  8. Influence of a NiO intermediate layer on the properties of ZnO grown on Si by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Djiokap, S. R. Tankio; Urgessa, Z. N.; Mbulanga, C. M.; Boumenou, C. Kameni; Venter, A.; Botha, J. R.

    2018-04-01

    In this paper, the growth of ZnO nanorods on bare and NiO-coated p-Si substrates is reported. A two-step chemical bath deposition process has been used to grow the nanorods. X-ray diffraction and scanning probe microscopy confirmed that the NiO films were polycrystalline, and that the average grain size correlated with the NiO layer thickness. The ZnO nanorod morphology, orientation and optical properties seemed to be unaffected by the intermediate NiO layer thickness. Current-voltage measurements confirmed the rectifying behavior of all the ZnO/NiO/Si heterostructures. The inclusion of a NiO layer between the substrate and the ZnO nanorods are shown to cause a reduction in both the forward and reverse bias currents. This is in qualitative agreement with the band diagram of these heterostructures, which suggests that the intermediate NiO layer should act as an electron blocking layer.

  9. Recirculation of the Canary Current in Fall

    NASA Astrophysics Data System (ADS)

    Hernandez-Guerra, A.; Espino-Falcón, E.; Vélez-Belchí, P.; Pérez-Hernández, M. D.; Martínez, A.; Cana, L.

    2015-12-01

    CTD and LADCP data measured in October 2014 are used to describe water masses, geostrophic circulation and mass transport in the Eastern Boundary of the North Atlantic Subtropical Gyre. Initial geostrophic velocities are adjusted to velocities from the LADCP data to estimate an initial velocity at the reference layer. Final reference velocities and consequently circulation is estimated from an inverse box model applied to an ocean divided into 12 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport derived from the Weather Research and Forecasting (WRF) model is added to the first layer and adjusted with the inverse model. The Canary Current (CC) transports southward a net mass of 3.8±0.7 Sv (1 Sv=106 m3/s≈109 kg/s) of North Atlantic Central Water (NACW) at the thermocline layers (~0-700 m) and 1.9±0.6 Sv of a mixture of Mediterranean Water (MW) and Antarctic Intermediate Water (AAIW) at intermediate layers (~800-1400 m). The CC recirculates northward at a rate of 4.8±0.8 Sv at the thermocline layers between the Lanzarote Island and the African coast (Lanzarote Passage) on this occasion. Separately, at intermediate layers, AAIW flows northward at a rate of 2.4±0.6 Sv through the Lanzarote Passage transported by the Intermediate Poleward Undercurrent (IPUC).

  10. Method of making a ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2003-01-01

    A method of forming an article. The method comprises forming a silicon-based substrate that is oxidizable by reaction with an oxidant to form at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  11. Solid Lubricant For Alumina

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1993-01-01

    Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.

  12. Simulation of ground-water flow in the Intermediate and Floridan aquifer systems in Peninsular Florida

    USGS Publications Warehouse

    Sepúlveda, Nicasio

    2002-01-01

    A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.

  13. Chondroblastoma with Secondary Aneurysmal Bone Cyst

    DTIC Science & Technology

    2008-02-01

    dysplasia, chondroblastoma, chondromyxoid fibroma, osteochondroma, giant cell tumors, or enchondroma. Chondrosarcoma , osteoblastoma–aggressive variant and...Histology reveals cartilage with a layer of smooth, thin bone surrounding. 2 Chondrosarcomas tend to occur in an older population than most primary bone...mentioned was considered. All of those suspected neoplasms, with the exception of chondrosarcoma , fit this patient’s age group, as all frequently

  14. Cartilage Restoration of the Knee: A Systematic Review and Meta-analysis of Level 1 Studies.

    PubMed

    Mundi, Raman; Bedi, Asheesh; Chow, Linda; Crouch, Sarah; Simunovic, Nicole; Sibilsky Enselman, Elizabeth; Ayeni, Olufemi R

    2016-07-01

    Focal cartilage defects of the knee are a substantial cause of pain and disability in active patients. There has been an emergence of randomized controlled trials evaluating surgical techniques to manage such injuries, including marrow stimulation (MS), autologous chondrocyte implantation (ACI), and osteochondral autograft transfer (OAT). A meta-analysis was conducted to determine if any single technique provides superior clinical results at intermediate follow-up. Systematic review and meta-analysis of randomized controlled trials. The MEDLINE, EMBASE, and Cochrane Library databases were systematically searched and supplemented with manual searches of PubMed and reference lists. Eligible studies consisted exclusively of randomized controlled trials comparing MS, ACI, or OAT techniques in patients with focal cartilage defects of the knee. The primary outcome of interest was function (Lysholm score, International Knee Documentation Committee score, Knee Osteoarthritis Outcome Score) and pain at 24 months postoperatively. A meta-analysis using standardized mean differences was performed to provide a pooled estimate of effect comparing treatments. A total of 12 eligible randomized trials with a cumulative sample size of 765 patients (62% males) and a mean (±SD) lesion size of 3.9 ± 1.3 cm(2) were included in this review. There were 5 trials comparing ACI with MS, 3 comparing ACI with OAT, and 3 evaluating different generations of ACI. In a pooled analysis comparing ACI with MS, there was no difference in outcomes at 24-month follow-up for function (standardized mean difference, 0.47 [95% CI, -0.19 to 1.13]; P = .16) or pain (standardized mean difference, -0.13 [95% CI, -0.39 to 0.13]; P = .33). The comparisons of ACI to OAT or between different generations of ACI were not amenable to pooled analysis. Overall, 5 of the 6 trials concluded that there was no significant difference in functional outcomes between ACI and OAT or between generations of ACI. There is no significant difference between MS, ACI, and OAT in improving function and pain at intermediate-term follow-up. Further randomized trials with long-term outcomes are warranted. © 2015 The Author(s).

  15. Correlation between polarization sensitive optical coherence tomography and SHG microscopy in articular cartilage

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Ju, Myeong Jin; Huang, Lin; Tang, Shuo

    2017-02-01

    Polarization-sensitive optical coherence tomography (PS-OCT) and second harmonic generation (SHG) microscopy are two imaging modalities with different resolutions, field-of-views (FOV), and contrasts, while they both have the capability of imaging collagen fibers in biological tissues. PS-OCT can measure the tissue birefringence which is induced by highly organized fibers while SHG can image the collagen fiber organization with high resolution. Articular cartilage, with abundant structural collagen fibers, is a suitable sample to study the correlation between PS-OCT and SHG microscopy. Qualitative conjecture has been made that the phase retardation measured by PS-OCT is affected by the relationship between the collagen fiber orientation and the illumination direction. Anatomical studies show that the multilayered architecture of articular cartilage can be divided into four zones from its natural surface to the subchondral bone: the superficial zone, the middle zone, the deep zone, and the calcified zone. The different zones have different collagen fiber orientations, which can be studied by the different slopes in the cumulative phase retardation in PS-OCT. An algorithm is developed based on the quantitative analysis of PS-OCT phase retardation images to analyze the microstructural features in swine articular cartilage tissues. This algorithm utilizes the depth-dependent slope changing of phase retardation A-lines to segment structural layers. The results show good consistency with the knowledge of cartilage morphology and correlation with the SHG images measured at selected depth locations. The correlation between PS-OCT and SHG microscopy shows that PS-OCT has the potential to analyze both the macro and micro characteristics of biological tissues with abundant collagen fibers and other materials that may cause birefringence.

  16. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-10-05

    An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.

  17. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale.

    PubMed

    Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-09-25

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  18. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  19. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  20. Numerical Study of Quantum Hall Bilayers at Total Filling νT=1 : A New Phase at Intermediate Layer Distances

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Fu, Liang; Sheng, D. N.

    2017-10-01

    We study the phase diagram of quantum Hall bilayer systems with total filing νT=1 /2 +1 /2 of the lowest Landau level as a function of layer distances d . Based on numerical exact diagonalization calculations, we obtain three distinct phases, including an exciton superfluid phase with spontaneous interlayer coherence at small d , a composite Fermi liquid at large d , and an intermediate phase for 1.1

  1. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  2. Surface Modification Enhanced Reflection Intensity of Quartz Crystal Microbalance Sensors upon Molecular Adsorption.

    PubMed

    Kojima, Taisuke

    2018-01-01

    Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to the QCM technique hinders the quantitative analysis of the adsorption events. Here, a layer-by-layer surface modification of a QCM sensor is studied to increase the optical sensitivity. The intermediate layers of organic-inorganic molecules and metal-metal oxide were explored on a gold (Au) surface of a QCM sensor. First, polyhedral oligomeric silsesquioxane-derivatives that served as the organic-inorganic intermediate layer were synthesized and modified on the Au-QCM surface. Meanwhile, titanium oxide, fabricated by anodic oxidation of titanium, was used as a metal-metal oxide intermediate layer on a titanium-coated QCM surface. The developed technique enabled interrogation of the molecular adsorption owing to the enhanced optical sensitivity.

  3. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  4. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  5. Regional differences of tibial and femoral cartilage in the chondrocyte gene expression, immunhistochemistry and composite in different stages of osteoarthritis.

    PubMed

    Lahm, A; Dabravolski, D; Spank, H; Merk, H; Esser, J; Kasch, R

    2017-04-01

    The function of articular cartilage as an avascular tissue is mainly served by collagen type II and proteoglycan molecules. Within this matrix homeostasis between production and breakdown of the matrix is exceptionally sensitive. The current study was conducted to identify regional differences in specific alterations in cartilage composition during the osteoarthritic process of the human knee joint. Therefor the changes in the expression of the key molecules of the extracellular matrix were measured in dependence of the anatomical side (femoral vs tibial) and associated with immunohistochemistry and quantitative measurement. 60 serial osteochondral femoral condyle and the tibial plateau samples of patients undergoing implantation of total knee endoprosthesis of areas showing mild (Group A, macroscopically ICRS grade 1b) respectively advanced (Group B, macroscopically ICRS grade 3a/3b) (30 each) osteoarthritis according to the histological-histochemical grading system (HHGS) were compared with 20 healthy biopsies with immunohistochemistry and histology. We quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorometrically. In group A slightly increased colour intensity was found for collagen II in deeper layers, suggesting a persisting but initially still intact repair process. But especially on the medial tibia plateau the initial Col II increase in gene expression is followed by a decrease leading to the lowest over all Col II expression on the medial plateau, here especially in the central part. There in late stage diseases the collagen type I expression was also more pronounced. Markedly decreased safranin O staining intensity was observed in the radial zone and less reduced intensity in the transitional zone with loss of zonal anatomy in 40% of the specimens in group A and all specimens in group B. Correlation between colorometrically analysed proteoglycan GAG content and aggrecan Real Time PCR is mainly weak. Tibial and femoral cartilage in contrast to patellar cartilage both are preferential exposed to compressive stresses, but presence of menisci affects the load distribution at the tibial side, which creates varying conditions for the different cartilage surfaces in the knee. As directly measured Poissońs ratio in tibial cartilage is higher but Younǵs modulus is lower than in femoral cartilage, different resulting feedback amplification loops interact with proceeding cartilage damage. The initial loss of aggrecan may support Matrix metalloproteinases (Mmps) in the access to the collagen network and the considerably differing mechanical properties at both joint surfaces result in varying increased synthesis and release of matrix degrading enzymes. The present study has identified a selection of events which reflect the response of cartilage structure and composite, chondrocytes itself and their productivity to changes in mechanical stress depending on the anatomical site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Postnatal Development of the Spheno-occipital Synchondrosis: A Histological Analysis.

    PubMed

    Dai, Jiewen; Lin, Yuheng; Ningjuan, Ouyang; Shi, Jun; Yu, Dedong; Shen, Guofang

    2017-09-01

    The spheno-occipital synchondrosis (SOS) in cranial base is an important growth center for the craniofacial skeleton, and also is a guide rail for development of the maxilla, midface, and mandible. Previous studies showed that SOS may be a treatment target for youngsters with midfacial hypoplasia and small cranial vault secondary to craniosynostosis. However, most of studies about the SOS are based on imaging data. In this study, we try to explore the characteristics of postnatal development of the mouse SOS based on histological analysis. Our findings showed that the width of the SOS in mice were gradually decreased from newborn mice to adult mice, and the SOS cartilage was gradually became small, then almost completely ossificated in adult mice. The resting and proliferative layers in SOS cartilage were gradually decreased, and almost only hypertrophic chondrocytes while no resting and proliferative layer chondrocytes in adult mice. The proliferative ability of SOS chondrocytes also gradually decreased. These findings will be of benefit for the further clinical treatment for patients with midfacial hypoplasia or small cranial vault secondary to craniosynostosis. Further evidence-based research about the clinical implication is necessary in future.

  7. Plume Splitting in a Two-layer Stratified Ambient Fluid

    NASA Astrophysics Data System (ADS)

    Ma, Yongxing; Flynn, Morris; Sutherland, Bruce

    2017-11-01

    A line-source plume descending into a two-layer stratified ambient fluid in a finite sized tank is studied experimentally. Although the total volume of ambient fluid is fixed, lower- and upper-layer fluids are respectively removed and added at a constant rate mimicking marine outfall through diffusers and natural and hybrid ventilated buildings. The influence of the plume on the ambient depends on the value of λ, defined as the ratio of the plume buoyancy to the buoyancy loss of the plume as it crosses the ambient interface. Similar to classical filling-box experiments, the plume can always reach the bottom of the tank if λ > 1 . By contrast, if λ < 1 , an intermediate layer eventually forms as a result of plume splitting. Eventually all of the plume fluid spreads within the intermediate layer. The starting time, tv, and the ending time, tt, of the transition process measured from experiments correlate with the value of λ. A three-layer ambient fluid is observed after transition, and the mean value of the measured densities of the intermediate layer fluid is well predicted using plume theory. Acknowledgments: Funding for this study was provided by NSERC.

  8. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering.

    PubMed

    Pieper, J S; van der Kraan, P M; Hafmans, T; Kamp, J; Buma, P; van Susante, J L C; van den Berg, W B; Veerkamp, J H; van Kuppevelt, T H

    2002-08-01

    The limited intrinsic repair capacity of articular cartilage has stimulated continuing efforts to develop tissue engineered analogues. Matrices composed of type II collagen and chondroitin sulfate (CS), the major constituents of hyaline cartilage, may create an appropriate environment for the generation of cartilage-like tissue. In this study, we prepared, characterized, and evaluated type 11 collagen matrices with and without CS. Type II collagen matrices were prepared using purified, pepsin-treated, type II collagen. Techniques applied to prepare type I collagen matrices were found unsuitable for type II collagen. Crosslinking of collagen and covalent attachment of CS was performed using 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide. Porous matrices were prepared by freezing and lyophilization, and their physico-chemical characteristics (degree of crosslinking, denaturing temperature, collagenase-resistance, amount of CS incorporated) established. Matrices were evaluated for their capacity to sustain chondrocyte proliferation and differentiation in vitro. After 7 d of culture, chondrocytes were mainly located at the periphery of the matrices. In contrast to type I collagen, type II collagen supported the distribution of cells throughout the matrix. After 14 d of culture, matrices were surfaced with a cartilagenous-like layer, and occasionally clusters of chondrocytes were present inside the matrix. Chondrocytes proliferated and differentiated as indicated by biochemical analyses, ultrastructural observations, and reverse transcriptase PCR for collagen types I, II and X. No major differences were observed with respect to the presence or absence of CS in the matrices.

  9. Potential for thermal damage to articular cartilage by PMMA reconstruction of a bone cavity following tumor excision: A finite element study.

    PubMed

    Radev, Boyko R; Kase, Jonathan A; Askew, Michael J; Weiner, Scott D

    2009-05-29

    Benign, giant cell tumors are often treated by intralesional excision and reconstruction with polymethylmethacrylate (PMMA) bone cement. The exothermic reaction of the in-situ polymerizing PMMA is believed to beneficially kill remaining tumor cells. However, at issue is the extent of this necrotic effect into the surrounding normal bone and the adjacent articular cartilage. Finite element analysis (ABAQUS 6.4-1) was used to determine the extent of possible thermal necrosis around prismatically shaped, PMMA implants (8-24cc in volume), placed into a peripheral, sagittally symmetric, metaphyseal defect in the proximal tibia. Temperature/exposure time conditions indicating necrotic potential during the exotherm of the polymerizing bone cement were found in regions of the cancellous bone within 3mm of the superior surface of the PMMA implant. If less than 3mm of cancellous bone existed between the PMMA implant and the subchondral bone layer, regions of the subchondral bone were also exposed to thermally necrotic conditions. However, as long as there were at least 2mm of uniform subchondral bone above the PMMA implant, the necrotic regions did not extend into the overlying articular cartilage. This was the case even when the PMMA was in direct contact with the subchondral bone. If the subchondral bone is not of sufficient thickness, or is not continuous, then care should be taken to protect the articular cartilage from thermal damage as a result of the reconstruction of the tumor cavity with PMMA bone cement.

  10. Distribution of lactate dehydrogenase in healthy and degenerative canine stifle joint cartilage.

    PubMed

    Walter, Eveline L C; Spreng, David; Schmöckel, Hugo; Schawalder, Peter; Tschudi, Peter; Friess, Armin E; Stoffel, Michael H

    2007-07-01

    In dogs, degenerative joint diseases (DJD) have been shown to be associated with increased lactate dehydrogenase (LDH) activity in the synovial fluid. The goal of this study was to examine healthy and degenerative stifle joints in order to clarify the origin of LDH in synovial fluid. In order to assess the distribution of LDH, cartilage samples from healthy and degenerative knee joints were investigated by means of light and transmission electron microscopy in conjunction with immunolabeling and enzyme cytochemistry. Morphological analysis confirmed DJD. All techniques used corroborated the presence of LDH in chondrocytes and in the interterritorial matrix of healthy and degenerative stifle joints. Although enzymatic activity of LDH was clearly demonstrated in the territorial matrix by means of the tetrazolium-formazan reaction, immunolabeling for LDH was missing in this region. With respect to the distribution of LDH in the interterritorial matrix, a striking decrease from superficial to deeper layers was present in healthy dogs but was missing in affected joints. These results support the contention that LDH in synovial fluid of degenerative joints originates from cartilage. Therefore, we suggest that (1) LDH is transferred from chondrocytes to ECM in both healthy dogs and dogs with degenerative joint disease and that (2) in degenerative joints, LDH is released from chondrocytes and the ECM into synovial fluid through abrasion of cartilage as well as through enhanced diffusion as a result of increased water content and degradation of collagen.

  11. Ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2001-01-01

    An article comprises a silicon-containing substrate and an external environmental/thermal barrier coating. The external environmental/thermal barrier coating is permeable to diffusion of an environmental oxidant and the silicon-containing substrate is oxidizable by reaction with oxidant to form at least one gaseous product. The article comprises an intermediate layer/coating between the silicon-containing substrate and the environmental/thermal barrier coating that is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant. A method of forming an article, comprises forming a silicon-based substrate that is oxidizable by reaction with oxidant to at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  12. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis

    NASA Astrophysics Data System (ADS)

    Ahmed, Maqsood; Ramos, Tiago André Da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-01

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  13. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis.

    PubMed

    Ahmed, Maqsood; Ramos, Tiago André da Silva; Damanik, Febriyani; Quang Le, Bach; Wieringa, Paul; Bennink, Martin; van Blitterswijk, Clemens; de Boer, Jan; Moroni, Lorenzo

    2015-10-07

    The extracellular matrix (ECM) is a three-dimensional (3D) structure composed of proteinaceous fibres that provide physical and biological cues to direct cell behaviour. Here, we build a library of hybrid collagen-polymer fibrous scaffolds with nanoscale dimensions and screen them for their ability to grow chondrocytes for cartilage repair. Poly(lactic acid) and poly (lactic-co-glycolic acid) at two different monomer ratios (85:15 and 50:50) were incrementally blended with collagen. Physical properties (wettability and stiffness) of the scaffolds were characterized and related to biological performance (proliferation, ECM production, and gene expression) and structure-function relationships were developed. We found that soft scaffolds with an intermediate wettability composed of the highly biodegradable PLGA50:50 and collagen, in two ratios (40:60 and 60:40), were optimal for chondrogenic differentiation of ATDC5 cells as determined by increased ECM production and enhanced cartilage specific gene expression. Long-term cultures indicated a stable phenotype with minimal de-differentiation or hypertrophy. The combinatorial methodology applied herein is a promising approach for the design and development of scaffolds for regenerative medicine.

  14. Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair

    PubMed Central

    Lopez-Baez, Juan Carlos; Zeng, Zhiqiang; Brunsdon, Hannah; Salzano, Angela; Brombin, Alessandro; Wyatt, Cameron; Rybski, Witold; Huitema, Leonie F A; Dale, Rodney M; Kawakami, Koichi; Englert, Christoph; Chandra, Tamir; Schulte-Merker, Stefan

    2018-01-01

    Regenerative therapy for degenerative spine disorders requires the identification of cells that can slow down and possibly reverse degenerative processes. Here, we identify an unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor (WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in sheath cells, and that wt1b+cells migrate into the wound to form a stopper-like structure, likely to maintain structural integrity. Wt1b+sheath cells are distinct in expressing cartilage and vacuolar genes, and in repressing a Wt1b-p53 transcriptional programme. At the wound, wt1b+and entpd5+ cells constitute separate, tightly-associated subpopulations. Surprisingly, wt1b expression at the site of injury is maintained even into adult stages in developing vertebrae, which form in an untypical manner via a cartilage intermediate. Given that notochord cells are retained in adult intervertebral discs, the identification of novel subpopulations may have important implications for regenerative spine disorder treatments. PMID:29405914

  15. A Metal Bump Bonding Method Using Ag Nanoparticles as Intermediate Layer

    NASA Astrophysics Data System (ADS)

    Fu, Weixin; Nimura, Masatsugu; Kasahara, Takashi; Mimatsu, Hayata; Okada, Akiko; Shoji, Shuichi; Ishizuka, Shugo; Mizuno, Jun

    2015-11-01

    The future development of low-temperature and low-pressure bonding technology is necessary for fine-pitch bump application. We propose a bump structure using Ag nanoparticles as an intermediate layer coated on a fine-pitch Cu pillar bump. The intermediate layer is prepared using an efficient and cost-saving squeegee-coating method followed by a 100°C baking process. This bump structure can be easily flattened before the bonding process, and the low-temperature sinterability of the nanoparticles is retained. The bonding experiment was successfully performed at 250°C and 39.8 MPa and the bonding strength was comparable to that achieved via other bonding technology utilizing metal particles or porous material as bump materials.

  16. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, B.L.

    1999-04-27

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  17. BIORESORBABLE POLYMERIC MENISCAL PROSTHESIS: STUDY IN RABBITS

    PubMed Central

    Cardoso, Tulio Pereira; de Rezende Duek, Eliana Aparecida; Amatuzzi, Marco Martins; Caetano, Edie Benedito

    2015-01-01

    Objective: To induce growth of a neomeniscus into the pores of a prosthesis in order to protect the knee joint cartilage. Methods: 70 knees of 35 New Zealand rabbits were operated. The rabbits were five to seven months old, weighed 2 to 3.8 kilograms, and 22 were male and 13 were female. Each animal underwent medial meniscectomy in both knees during a single operation. A bioabsorbable polymeric meniscal prosthesis composed of 70% polydioxanone and 30% L-lactic acid polymer was implanted in one side. The animals were sacrificed after different postoperative time intervals. The femoral condyles and neomeniscus were subjected to histological analysis. Histograms were used to measure the degradation and absorption of the prosthesis, the growth of meniscal tissue in the prosthesis and the degree of degradation of the femoral condyle joint cartilage. Results: The data obtained showed that tissue growth histologically resembling a normal meniscus occurred, with gradual absorption of the prosthesis, and the percentages of chondrocytes on the control side and prosthesis side. Conclusion: Tissue growth into the prosthesis pores that histologically resembled the normal rabbit meniscus was observed. The joint cartilage of the femoral condyles on the prosthesis side presented greater numbers of chondrocytes in all its layers. PMID:27022549

  18. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    PubMed Central

    Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-01-01

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view. PMID:28946690

  19. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  20. Blood sinuses in the submucosa of the large airways of the sheep.

    PubMed Central

    Hill, P; Goulding, D; Webber, S E; Widdicombe, J G

    1989-01-01

    We have studied the airway vasculature in sheep using light and transmission electron microscopy, as well as arterial and venous (retrograde) injections of anatomical corrosion compound and latex. Vascular casts were viewed by scanning electron microscopy. There is a complex network of blood sinuses of large diameter (up to 500 microns) in the submucosa of the large airways. The vessels have thin walls formed by a single layer of flattened endothelium with tight junctions and without pericytes or smooth muscle cells. Characteristically the sinuses lie between the cartilage and lamina propria of the trachea or between cartilage and smooth muscle in the bronchi. Sinuses of greater than 50 microns transverse diameter are not found in airways less than 1.0 mm across. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 PMID:2808119

  1. Intermediate connector for stacked organic light emitting devices

    DOEpatents

    D& #x27; Andrade, Brian

    2013-02-12

    A device is provided, having an anode, a cathode, and an intermediate connector disposed between the anode and the cathode. A first organic layer including an emissive sublayer is disposed between the anode and the intermediate connector, and a second including an emissive sublayer is disposed between the intermediate connector and the cathode. The intermediate connector includes a first metal having a work function lower than 4.0 eV and a second metal having a work function lower than 5.0 eV. The work function of the first metal is at least 0.5 eV less than the work function of the second metal. The first metal is in contact with a sublayer of the second organic layer that includes a material well adapted to receive holes from a low work function metal.

  2. [Cartilage tissue reconstruction by the polymer biomaterials--early macroscopic and histological results].

    PubMed

    Scierski, Wojciech; Polok, Aleksandra; Namysłowski, Grzegorz; Nozyński, Jerzy; Turecka, Lucyna; Urbaniec, Natalia; Pamuła, Elzbieta

    2009-09-01

    The surgical treatment of large cartilage defects in the region of head and neck is often impossible because of the atrophy of surrounding tissues and lack of suitable material for reconstruction. In the surgical treatment many of methods and reconstructive materials have been used. For many years the suitable synthetic material for the cartilage defects reconstruction has been searched for. Was to evaluate two different biomaterials with proper mechanical and biological features for the cartilage replacement. Two type of biomaterials in this study were used: resorbable polymer - poly(L-lactide-co-glycolide) (PLG) acting as a supportive matrix. A thin layer of sodium hyaluronate (Hyal) was also deposited on the surface as well in the pore walls of PLG scaffolds in order to provide biologically active molecules promoting differentiation and regeneration of the tissue. The studies were performed on the 50 animals--rabbits divided into 2 groups. The animals were operated in the general anaesthesia. The incision was done along the edge of the rabbit's auricle. Perichondrium and cartilage of the auricle on the surface 4 x 3 cm were prepared. Subperichondrically 1 x 1 cm fragment of the cartilage was removed by the scissors. This fragment was then replaced by the biomaterials: PLG in first group of 25 rabbits and PLG-Hyal in second group 25 rabbits. The tissues were sutured with polyglycolide Safil 3-0. The animals obtained Enrofloxacin for three days after the operation. Then 1, 4 and 12 weeks after the surgery the animals were painlessly euthanized by an overdose of Morbital. Implants and surrounding tissues were excised and observed macroscopically and using an optical microscope. In all the observation periods we observed proper macroscopic healing process of biomaterials. We didn't stated strong inflammatory process and necrosis around the implanted biomaterials. The histological and macroscopic examinations indicated that both materials developed in this study have properties similar to cartilaginous tissue and seem to be good for her restoration. Although the quickest tissue regeneration was found after implantation of PLG-Hyal.

  3. Structure for HTS composite conductors and the manufacture of same

    DOEpatents

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  4. Structure for hts composite conductors and the manufacture of same

    DOEpatents

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  5. RECONDITIONING FUEL ELEMENTS

    DOEpatents

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  6. Reflective coating for near-infrared immersion gratings

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Paul J.; Ikeda, Yuji; Kobayashi, Naoto; Mirkarimi, Paul B.; Alameda, Jennifer B.

    2012-09-01

    Achieving high reflectivity from an immersed grating facet can be challenging in the near infrared. The reflectivity of metallic coatings in common use, such as Al and Cr/Au, decrease with decreasing wavelength in the near IR. A layer of copper on ZnSe or ZnS should have a high, immersed reflectivity based on tabulated values of refractive index, but in fact performs poorly. We attribute this to a chemical reaction between the copper and the selenium or sulfur. A non-reactive intermediate layer can prevent this problem. Since reflectivity at an interface increases with increasing difference in refractive index, it is beneficial to choose an intermediate layer of low index. A further improvement is gained by adjusting the layer thickness so that reflections from the two interfaces of the intermediate layer add constructively. We sputtered 130 nm of SiO2 onto ZnSe and ZnS substrates followed by 200 nm of Cu. The copper was then coated with 5 nm of SiC as a protective capping layer. Immersed reflectivity measured shortly after coating exceeded 95% between 1500 and 1100 nm and exceeded 90% down to 850 nm. A repeat measurement after long term exposure to high humidity conditions showed no changes.

  7. Surgical correction of constricted ear combined with Stahl's ear.

    PubMed

    Bi, Ye; Lin, Lin; Yang, Qinhua; Pan, Bo; Zhao, Yanyong; He, Leren; Jiang, Haiyue

    2015-07-01

    Constricted ear combined with Stahl's ear is a rare ear deformity, which is a kind of complex congenital auricular deformity. From 1 January 2007 to 1 January 2014, 19 patients with constricted ear combined with Stahl's ear (Spock ear) were enrolled in this study, most of which were unilaterally deformed. To correct the deformity, a double Z-shaped skin incision was made on the posterior side of the auricle, with the entire layer of cartilage cut parallel to the helix traversing the third crus to form a fan-shaped cartilage flap. The superior crura of the antihelix were shaped by the folding cartilage rim. The cartilage of the abnormal third crus was made part of the new superior crura of antihelix, and the third crus was eliminated. The postoperative aesthetic assessment of the reshaped auricle was graded by both doctors and patients (or their parents). Out of the 19 patients, the number of satisfying cases of the symmetry, helix stretch, elimination of the third crus, the cranioauricular angle, and the substructure of the reshaped ears was 14 (nine excellent and five good), 16 (six excellent and 10 good), 17 (eight excellent and nine good), 15 (five excellent and 10 good), and 13 (two excellent and 11 good), respectively. With a maximum of a 90-month follow-up, no complication was observed. The results of the study suggested that this rare deformity could be corrected by appropriate surgical treatment, with a satisfied postoperative appearance. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison.

    PubMed

    Schmaranzer, Florian; Klauser, Andrea; Kogler, Michael; Henninger, Benjamin; Forstner, Thomas; Reichkendler, Markus; Schmaranzer, Ehrenfried

    2015-06-01

    To assess diagnostic performance of traction MR arthrography of the hip in detection and grading of chondral and labral lesions with arthroscopic comparison. Seventy-five MR arthrograms obtained ± traction of 73 consecutive patients (mean age, 34.5 years; range, 14-54 years) who underwent arthroscopy were included. Traction technique included weight-adapted traction (15-23 kg), a supporting plate for the contralateral leg, and intra-articular injection of 18-27 ml (local anaesthetic and contrast agent). Patients reported on neuropraxia and on pain. Two blinded readers independently assessed femoroacetabular cartilage and labrum lesions which were correlated with arthroscopy. Interobserver agreement was calculated using κ values. Joint distraction ± traction was evaluated in consensus. No procedure had to be stopped. There were no cases of neuropraxia. Accuracy for detection of labral lesions was 92 %/93 %, 91 %/83 % for acetabular lesions, and 92 %/88 % for femoral cartilage lesions for reader 1/reader 2, respectively. Interobserver agreement was moderate (κ = 0.58) for grading of labrum lesions and substantial (κ = 0.7, κ = 0.68) for grading of acetabular and femoral cartilage lesions. Joint distraction was achieved in 72/75 and 14/75 hips with/without traction, respectively. Traction MR arthrography safely enabled accurate detection and grading of labral and chondral lesions. • The used traction technique was well tolerated by most patients. • The used traction technique almost consistently achieved separation of cartilage layers. • Traction MR arthrography enabled accurate detection of chondral and labral lesions.

  9. Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1 Is Necessary for Normal Endochondral Ossification and Aggrecan Metabolism*

    PubMed Central

    Sato, Takashi; Kudo, Takashi; Ikehara, Yuzuru; Ogawa, Hiroyasu; Hirano, Tomoko; Kiyohara, Katsue; Hagiwara, Kozue; Togayachi, Akira; Ema, Masatsugu; Takahashi, Satoru; Kimata, Koji; Watanabe, Hideto; Narimatsu, Hisashi

    2011-01-01

    Chondroitin sulfate (CS) is a glycosaminoglycan, consisting of repeating disaccharide units of N-acetylgalactosamine and glucuronic acid residues, and plays important roles in development and homeostasis of organs and tissues. Here, we generated and analyzed mice lacking chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGalNAcT-1). Csgalnact1−/− mice were viable and fertile but exhibited slight dwarfism. Biochemically, the level of CS in Csgalnact1−/− cartilage was reduced to ∼50% that of wild-type cartilage, whereas its chain length was similar to wild-type mice, indicating that CSGalNAcT-1 participates in the CS chain initiation as suggested in the previous study (Sakai, K., Kimata, K., Sato, T., Gotoh, M., Narimatsu, H., Shinomiya, K., and Watanabe, H. (2007) J. Biol. Chem. 282, 4152–4161). Histologically, the growth plate of Csgalnact1−/− mice contained shorter and slightly disorganized chondrocyte columns with a reduced volume of the extracellular matrix principally in the proliferative layer. Immunohistochemical analysis revealed that the level of both aggrecan and link protein 1 were decreased in Csgalnact1−/− cartilage. Western blot analysis demonstrated an increase in processed forms of aggrecan core protein. These results suggest that CSGalNAcT-1 is required for normal levels of CS biosynthesis in cartilage. Our observations suggest that CSGalNAcT-1 is necessary for normal levels of endochondral ossification, and the decrease in CS amount in the growth plate by its absence causes a rapid catabolism of aggrecan. PMID:21148564

  10. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes.

    PubMed

    Golditz, T; Steib, S; Pfeifer, K; Uder, M; Gelse, K; Janka, R; Hennig, F F; Welsch, G H

    2014-10-01

    The aim of this study was to investigate, using T2-mapping, the impact of functional instability in the ankle joint on the development of early cartilage damage. Ethical approval for this study was provided. Thirty-six volunteers from the university sports program were divided into three groups according to their ankle status: functional ankle instability (FAI, initial ankle sprain with residual instability); ankle sprain Copers (initial sprain, without residual instability); and controls (without a history of ankle injuries). Quantitative T2-mapping magnetic resonance imaging (MRI) was performed at the beginning ('early-unloading') and at the end ('late-unloading') of the MR-examination, with a mean time span of 27 min. Zonal region-of-interest T2-mapping was performed on the talar and tibial cartilage in the deep and superficial layers. The inter-group comparisons of T2-values were analyzed using paired and unpaired t-tests. Statistical analysis of variance was performed. T2-values showed significant to highly significant differences in 11 of 12 regions throughout the groups. In early-unloading, the FAI-group showed a significant increase in quantitative T2-values in the medial, talar regions (P = 0.008, P = 0.027), whereas the Coper-group showed this enhancement in the central-lateral regions (P = 0.05). Especially the comparison of early-loading to late-unloading values revealed significantly decreasing T2-values over time laterally and significantly increasing T2-values medially in the FAI-group, which were not present in the Coper- or control-group. Functional instability causes unbalanced loading in the ankle joint, resulting in cartilage alterations as assessed by quantitative T2-mapping. This approach can visualize and localize early cartilage abnormalities, possibly enabling specific treatment options to prevent osteoarthritis in young athletes. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Characterization of the surface and interfacial properties of the lamina splendens

    NASA Astrophysics Data System (ADS)

    Rexwinkle, Joe T.; Hunt, Heather K.; Pfeiffer, Ferris M.

    2017-06-01

    Joint disease affects approximately 52.5 million patients in the United States alone, costing 80.8 billion USD in direct healthcare costs. The development of treatment programs for joint disease and trauma requires accurate assessment of articular cartilage degradation. The articular cartilage is the interfacial tissue between articulating surfaces, such as bones, and acts as low-friction interfaces. Damage to the lamina splendens, which is the articular cartilage's topmost layer, is an early indicator of joint degradation caused by injury or disease. By gaining comprehensive knowledge on the lamina splendens, particularly its structure and interfacial properties, researchers could enhance the accuracy of human and animal biomechanical models, as well as develop appropriate biomimetic materials for replacing damaged articular cartilage, thereby leading to rational treatment programs for joint disease and injury. Previous studies that utilize light, electron, and force microscopy techniques have found that the lamina splendens is composed of collagen fibers oriented parallel to the cartilage surface and encased in a proteoglycan matrix. Such orientation maximizes wear resistance and proteoglycan retention while promoting the passage of nutrients and synovial fluid. Although the structure of the lamina splendens has been explored in the literature, the low-friction interface of this tissue remains only partially characterized. Various functional models are currently available for the interface, such as pure boundary lubrication, thin films exuded under pressure, and sheets of trapped proteins. Recent studies suggest that each of these lubrication models has certain advantages over one another. Further research is needed to fully model the interface of this tissue. In this review, we summarize the methods for characterizing the lamina splendens and the results of each method. This paper aims to serve as a resource for existing studies to date and a roadmap of the investigations needed to gain further insight into the lamina splendens and the progression of joint disease.

  12. Large lattice mismatch effects on the epitaxial growth and magnetic properties of FePt films

    NASA Astrophysics Data System (ADS)

    Deng, Jinyu; Dong, Kaifeng; Yang, Ping; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng

    2018-01-01

    Heteroepitaxial film growth is crucial for magnetic and electronic devices. In this work, we reported the effects of the large lattice mismatch and film thickness on the epitaxial growth and magnetic properties of FePt films on ZrxTi1-xN (0 0 1) intermediate layer. FePt films with different thickness were deposited on ZrTiN intermediate layers with various doping concentration of TiN in ZrN. The increase in doping concentration of TiN caused a decrease in the lattice parameters of ZrTiN intermediate layer. It was found that (0 0 1) epitaxy of FePt 10 nm films was only achieved on ZrTiN intermediate layer when the TiN composition was ≥25 vol%, while (0 0 1) texture of 5 nm films was achieved on ZrTiN intermediate layer with a minimum of 50 vol% TiN composition. The in-plane lattice constants of FePt and Zr0.70Ti0.30N (25 vol% TiN) were 3.870 Å and 4.476 Å, respectively, which resulted in a lattice mismatch as large as 15.7%. These large lattice mismatch heterostructures adopted 7/6 domain matching epitaxy. The magneto-crystalline anisotropy of FePt films was improved with the increase in lattice mismatch. Intrinsic magnetic properties were extrapolated for FePt (30 nm)/Zr0.70Ti0.30N (30 nm)/TaN (30 nm)/MgO, and the Ms(0 K) and K1(0 K) were 1042 emu/cc and 5.10 × 107 erg/cc, respectively, which is comparable to that of bulk L10 FePt.

  13. The Transient Intermediate Plexiform Layer, a Plexiform Layer-like Structure Temporarily Existing in the Inner Nuclear Layer in Developing Rat Retina.

    PubMed

    Park, Hyung Wook; Kim, Hong-Lim; Park, Yong Soo; Kim, In-Beom

    2018-02-01

    The retina is a highly specialised part of the brain responsible for visual processing. It is well-laminated; three layers containing five different types of neurons are compartmentalised by two synaptic layers. Among the retinal layers, the inner nuclear layer (INL) is composed of horizontal, bipolar, and amacrine cell types. Bipolar cells form one sublayer in the distal half of the IPL, while amacrine cells form another sublayer in the proximal half, without any border-like structure. Here, we report that a plexiform layer-like structure exists temporarily in the border between the bipolar and amacrine sublayers in the INL in the rat retina during retinal development. This transient intermediate plexiform layer (TIPL) appeared at postnatal day (PD) 7 and then disappeared around PD 12. Most apoptotic cells in the INL were found near the TIPL. These results suggest that the TIPL may contribute to the formation of sublayers and the cell number limit in the INL.

  14. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    PubMed

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  15. Fullerene surfactants and their use in polymer solar cells

    DOEpatents

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  16. Correction of the lobule.

    PubMed

    Siegert, Ralf

    2004-11-01

    Many techniques have been described for the correction of protruding ears. Most of them concentrate on correcting the form and position of auricular cartilage. The lobule is a soft tissue structure. Skin resections of its posterior surface have been propagated for the correction of its position; however, these cause tension on the wound and might increase the already relatively high risk for the development of keloids. We have modified the technique for correcting the protruding lobule for its exact positioning and minimizing the risk for relapse and keloids. Starting from the incision performed for the anthelix plasty, a subcutaneous pocket is prepared between the anterior and posterior sides of the lobule. Afterwards, the subcutaneous layer of the postlobular skin is adjusted and fixed to the cartilage of the conchal cavum with a special mattress suture. This technique is a refinement of otoplasty for bat ears. It is indicated for precise modification of form and position of protruding lobules.

  17. Observations of the Ca/+/ twilight airglow from intermediate layers of ionization

    NASA Technical Reports Server (NTRS)

    Tepley, C. A.; Meriwether, J. W., Jr.; Walker, J. C. G.; Mathews, J. D.

    1981-01-01

    Optical and incoherent scatter radar techniques are applied to detect the presence of Ca(+) in lower thermospheric intermediate layers over Arecibo. The Arecibo 430 MHz radar is used to measure electron densities, and the altitude distribution and density of the calcium ion is inferred from the variation of twilight resonant scattering with solar depression angle. Ca(+) and electron column densities are compared, and results indicate that the composition of low-altitude intermediate layers is 2% Ca(+), which is consistent with rocket mass spectrometer measurements. Fe(+) and Mg(+) ultraviolet resonance lines are not detected from the ground due to ozone absorbing all radiation short of 3000 A, and measurements of the neutral iron resonance line at 3860 A show that an atmospheric continuum may result in overestimations of emission rates at high solar depression angles.

  18. Room temperature bonding and debonding of polyimide film and glass substrate based on surface activate bonding method

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-02-01

    The temporary bonding of polyimide (PI) films and glass substrates is a key technology for realizing flexible devices with thin-film transistors (TFTs). In this paper, we report the surface activated bonding (SAB) method using Si intermediate layers and its bonding and debonding mechanisms after heating. The bonding interface composed of Si and Fe shows a higher bond strength than the interface of only Si, while the bond strengths of both interfaces decrease with post bonding heating. It is also clarified by composition analysis on the debonded surfaces and cross-sectional observation of the bonding interface that the bond strength depends on the toughness of the intermediated layers and PI. The SAB method using Si intermediate layers is found to be applicable to the bonding and debonding of PI and glass.

  19. Distribution of elastic fibers in the head and neck: a histological study using late-stage human fetuses.

    PubMed

    Kinoshita, Hideaki; Umezawa, Takashi; Omine, Yuya; Kasahara, Masaaki; Rodríguez-Vázquez, José Francisco; Murakami, Gen; Abe, Shinichi

    2013-03-01

    There is little or no information about the distribution of elastic fibers in the human fetal head. We examined this issue in 15 late-stage fetuses (crown-rump length, 220-320 mm) using aldehyde-fuchsin and elastica-Masson staining, and we used the arterial wall elastic laminae and external ear cartilages as positive staining controls. The posterior pharyngeal wall, as well as the ligaments connecting the laryngeal cartilages, contained abundant elastic fibers. In contrast with the sphenomandibular ligament and the temporomandibular joint disk, in which elastic fibers were partly present, the discomalleolar ligament and the fascial structures around the pterygoid muscles did not have any elastic fibers. In addition, the posterior marginal fascia of the prestyloid space did contain such fibers. Notably, in the middle ear, elastic fibers accumulated along the tendons of the tensor tympani and stapedius muscles and in the joint capsules of the ear ossicle articulations. Elastic fibers were not seen in any other muscle tendons or vertebral facet capsules in the head and neck. Despite being composed of smooth muscle, the orbitalis muscle did not contain any elastic fibers. The elastic fibers in the sphenomandibular ligament seemed to correspond to an intermediate step of development between Meckel's cartilage and the final ligament. Overall, there seemed to be a mini-version of elastic fiber distribution compared to that in adults and a different specific developmental pattern of connective tissues. The latter morphology might be a result of an adaptation to hypoxic conditions during development.

  20. Distribution of elastic fibers in the head and neck: a histological study using late-stage human fetuses

    PubMed Central

    Kinoshita, Hideaki; Umezawa, Takashi; Omine, Yuya; Kasahara, Masaaki; Rodríguez-Vázquez, José Francisco; Murakami, Gen

    2013-01-01

    There is little or no information about the distribution of elastic fibers in the human fetal head. We examined this issue in 15 late-stage fetuses (crown-rump length, 220-320 mm) using aldehyde-fuchsin and elastica-Masson staining, and we used the arterial wall elastic laminae and external ear cartilages as positive staining controls. The posterior pharyngeal wall, as well as the ligaments connecting the laryngeal cartilages, contained abundant elastic fibers. In contrast with the sphenomandibular ligament and the temporomandibular joint disk, in which elastic fibers were partly present, the discomalleolar ligament and the fascial structures around the pterygoid muscles did not have any elastic fibers. In addition, the posterior marginal fascia of the prestyloid space did contain such fibers. Notably, in the middle ear, elastic fibers accumulated along the tendons of the tensor tympani and stapedius muscles and in the joint capsules of the ear ossicle articulations. Elastic fibers were not seen in any other muscle tendons or vertebral facet capsules in the head and neck. Despite being composed of smooth muscle, the orbitalis muscle did not contain any elastic fibers. The elastic fibers in the sphenomandibular ligament seemed to correspond to an intermediate step of development between Meckel's cartilage and the final ligament. Overall, there seemed to be a mini-version of elastic fiber distribution compared to that in adults and a different specific developmental pattern of connective tissues. The latter morphology might be a result of an adaptation to hypoxic conditions during development. PMID:23560235

  1. Tissue Engineering Whole Bones Through Endochondral Ossification: Regenerating the Distal Phalanx.

    PubMed

    Sheehy, Eamon J; Mesallati, Tariq; Kelly, Lara; Vinardell, Tatiana; Buckley, Conor T; Kelly, Daniel J

    2015-01-01

    Novel strategies are urgently required to facilitate regeneration of entire bones lost due to trauma or disease. In this study, we present a novel framework for the regeneration of whole bones by tissue engineering anatomically shaped hypertrophic cartilaginous grafts in vitro that subsequently drive endochondral bone formation in vivo. To realize this, we first fabricated molds from digitized images to generate mesenchymal stem cell-laden alginate hydrogels in the shape of different bones (the temporomandibular joint [TMJ] condyle and the distal phalanx). These constructs could be stimulated in vitro to generate anatomically shaped hypertrophic cartilaginous tissues that had begun to calcify around their periphery. Constructs were then formed into the shape of the distal phalanx to create the hypertrophic precursor of the osseous component of an engineered long bone. A layer of cartilage engineered through self-assembly of chondrocytes served as the articular surface of these constructs. Following chondrogenic priming and subcutaneous implantation, the hypertrophic phase of the engineered phalanx underwent endochondral ossification, leading to the generation of a vascularized bone integrated with a covering layer of stable articular cartilage. Furthermore, spatial bone deposition within the construct could be modulated by altering the architecture of the osseous component before implantation. These findings open up new horizons to whole limb regeneration by recapitulating key aspects of normal bone development.

  2. A light and transmission electron microscope study of the distribution and ultrastructural features of peripheral nerve processes in the extra-retinal layers of the zebrafish eye.

    PubMed

    Chapman, G B; Tarboush, R; Eagles, D A; Connaughton, V P

    2009-08-01

    The distribution and ultrastructural features of peripheral nerve processes in the extra-retinal layers of the eyes of the zebrafish, Danio rerio (Hamilton), were investigated using light and transmission electron microscopy. A comparative study of the quality of preservation provided by three different fixation procedures revealed no consistently striking general differences. However, somewhat subjectively, the fixative containing Millonig's buffer did consistently provide better fixation of myelin. Overall, nerve processes, depending on the site studied, were distributed as either (1) bundles (in the choroid near the optic nerve head and in the choroid adjacent to the limbus), (2) linear arrays (in the junction between the sclera and cartilage and in the choroid adjacent to the retina) or (3) individual units (in the choroid under the cartilage or in the sclera). Both myelinated and unmyelinated processes were identified in these locations. Myelinated processes usually contained both neurofilaments and neurotubules, but a few apparently contained only neurofilaments. Unmyelinated processes usually contained mainly neurotubules, but a few apparently contained only neurofilaments. Taken together, these findings indicate innervation of extra-retinal structures, as seen in zebrafish, is highly conserved among vertebrates, further supporting the use of zebrafish as a model for the vertebrate visual system.

  3. Grainyhead-like 3 regulation of endothelin-1 in the pharyngeal endoderm is critical for growth and development of the craniofacial skeleton.

    PubMed

    Dworkin, Sebastian; Simkin, Johanna; Darido, Charbel; Partridge, Darren D; Georgy, Smitha R; Caddy, Jacinta; Wilanowski, Tomasz; Lieschke, Graham J; Doggett, Karen; Heath, Joan K; Jane, Stephen M

    2014-08-01

    Craniofacial development is a highly conserved process that requires complex interactions between neural crest cells (NCCs) and pharyngeal tissues derived from all three germ layers. Signals emanating from the pharyngeal endoderm drive differentiation of NCCs into craniofacial cartilage, and disruption of this process underpins several human craniofacial defects (CFD). Here, we demonstrate that morpholino (MO)-mediated knockdown in zebrafish of the highly conserved transcription factor grainyhead-like 3 (grhl3), which is selectively expressed in the pharyngeal endoderm, leads to severe hypoplasia of the lower jaw cartilages. Phylogenetic analysis of conserved grhl-binding sites in gene regulatory regions identified endothelin-1 (edn1) as a putative direct grhl3 target gene, and this was confirmed by chromatin precipitation (ChIP) assays in zebrafish embryos. Injection of sub-phenotypic concentrations of MOs targeting both grhl3 and edn1 induced jaw abnormalities, and injection of edn1 mRNA into grhl3-morphants rescued both pharyngeal expression of the downstream effectors of edn1, and jaw cartilage formation. This study sheds new light on the role of endodermal endothelin-1 in vertebrate jaw development, and highlights potential new genetic defects that could underpin human CFD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Substrate structures for InP-based devices

    DOEpatents

    Wanlass, Mark W.; Sheldon, Peter

    1990-01-01

    A substrate structure for an InP-based semiconductor device having an InP based film is disclosed. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at one end to the GaAs layer and substantially lattice-matched at the opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  5. Fiber laser welding of austenitic steel and commercially pure copper butt joint

    NASA Astrophysics Data System (ADS)

    Kuryntsev, S. V.; Morushkin, A. E.; Gilmutdinov, A. Kh.

    2017-03-01

    The fiber laser welding of austenitic stainless steel and commercially pure copper in butt joint configuration without filler or intermediate material is presented. In order to melt stainless steel directly and melt copper via heat conduction a defocused laser beam was used with an offset to stainless steel. During mechanical tests the weld seam was more durable than heat affected zone of copper so samples without defects could be obtained. Three process variants of offset of the laser beam were applied. The following tests were conducted: tensile test of weldment, intermediate layer microhardness, optical metallography, study of the chemical composition of the intermediate layer, fractography. Measurements of electrical resistivity coefficients of stainless steel, copper and copper-stainless steel weldment were made, which can be interpreted or recalculated as the thermal conductivity coefficient. It shows that electrical resistivity coefficient of cooper-stainless steel weldment higher than that of stainless steel. The width of intermediate layer between stainless steel and commercially pure copper was 41-53 μm, microhardness was 128-170 HV0.01.

  6. Improved ohmic contact of Ga-Doped ZnO to p-GaN by using copper sulfide intermediate layers

    NASA Astrophysics Data System (ADS)

    Gu, Wen; Xu, Tao; Zhang, Jianhua

    2013-11-01

    Copper sulfide (CuS) was used as the intermediate layer to build ohmic contact of Ga-Doped ZnO (GZO) transparent conduction layer (TCL) to p-GaN. The CuS and GZO layers were prepared by thermal evaporation and RF magnetron sputtering, respectively. Although the GZO-only contacts to p-GaN exhibit nonlinear behavior, ohmic contact with a specific contact resistance of 1.6 × 10-2 Ω cm2 has been realized by inserting 3 nm CuS layer between GZO and p-GaN. The optical transmittance of CuS/GZO film was measured to be higher than 80% in the range of 450-600 nm wavelength. The possible mechanism for the ohmic contact behavior can be attributed to the increased hole concentration of p-GaN surface induced by CuS films after annealing. The forward voltage of LEDs with CuS/GZO TCL has been reduced by 1.7 V at 20 mA and the output power has been increased by 29.6% at 100 mA compared with LEDs without CuS interlayer. These results indicated that using CuS intermediate layer could be a potential ohmic contact method to realize high-efficiency LEDs.

  7. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under different conditions. In addition, AFM was used to measure the charge density of cell surface in physiological conditions. We found that the treatments changed the cancer cells' ultra-structural and mechanical properties at the nanometer scale. Finally, we used AFM to characterize many non-biological materials with relevance to biomedical science. Various metals, polymers, and semi-conducting materials were characterized in air and multiple liquid media through AFM - techniques from which a plethora of industries can benefit. This applies especially to the fledging solar industry which has found much promise in nanoscopic insights. Independent of the material being examined, a reliable method to measure the surface force between a nano probe and a sample surface in a variety of ionic concentrations was also found in the process of procuring these measurements. The key findings were that the charge density increases with the increase of the medium's ionic concentration.

  8. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response

    NASA Astrophysics Data System (ADS)

    Sallée, J.-B.; Shuckburgh, E.; Bruneau, N.; Meijers, A. J. S.; Bracegirdle, T. J.; Wang, Z.; Roy, T.

    2013-04-01

    The ability of the models contributing to the fifth Coupled Models Intercomparison Project (CMIP5) to represent the Southern Ocean hydrological properties and its overturning is investigated in a water mass framework. Models have a consistent warm and light bias spread over the entire water column. The greatest bias occurs in the ventilated layers, which are volumetrically dominated by mode and intermediate layers. The ventilated layers have been observed to have a strong fingerprint of climate change and to impact climate by sequestrating a significant amount of heat and carbon dioxide. The mode water layer is poorly represented in the models and both mode and intermediate water have a significant fresh bias. Under increased radiative forcing, models simulate a warming and lightening of the entire water column, which is again greatest in the ventilated layers, highlighting the importance of these layers for propagating the climate signal into the deep ocean. While the intensity of the water mass overturning is relatively consistent between models, when compared to observation-based reconstructions, they exhibit a slightly larger rate of overturning at shallow to intermediate depths, and a slower rate of overturning deeper in the water column. Under increased radiative forcing, atmospheric fluxes increase the rate of simulated upper cell overturning, but this increase is counterbalanced by diapycnal fluxes, including mixed-layer horizontal mixing, and mostly vanishes.

  9. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic conductivity in the intermediate layer, determined from one aquifer test, is 20 feet per day. An extensive stormwater drainage system is present at OU3 and the surrounding area. Some of the stormwater drains have been documented to be draining ground water from the upper layer of the surficial aquifer, whereas other drains are only suspected to be draining ground water. The subregional model contained 78 rows and 148 columns of square model cells that were 100 feet on each side. Vertically, the surficial aquifer was divided into two layers; layer 1 represented the upper layer and layer 2 represented the intermediate layer. Steady-state ground-water flow conditions were assumed. The model was calibrated to head data collected on October 29 and 30, 1996. After calibration, the model matched all 67 measured heads to within the calibration criterion of 1 foot; and 48 of 67 simulated heads (72 percent) were within 0.5 foot. Model simulated recharge rates ranged from 0.4 inch per year in areas that were largely paved to 13.0 inches per year in irrigated areas. Simulated hydraulic conductivities in the upper layer at OU3 ranged from 0.5 foot per day in the north to 1.0 foot per day in the south. Simulated vertical leakance between the upper and intermediate layers ranged from 1.0x10-6 per day in an area with low-permeability clays to 4.3x10-2 per day in an area that had been dredged. Simulated transmissivities in the intermediate layer ranged from 25 feet squared per day in an area of low-permeability channel-fill deposits to a high of 1,200 feet squared per day in areas covering most of OU3. Simulated riverbed conductances ranged from 4 to 60 feet squared per day and simulated bottom conductances of leaking stormwater drains ranged from 5 to 20 feet squared per day. The direction and velocity of ground-water flow was determined using particle-tracking techniques. Ground-water flow in the upper layer was generally eastward toward the St. Johns River. However, leaking stormwat

  10. Patterning Surfaces on Azo-Based Multilayer Films via Surface Wrinkling Combined with Visible Light Irradiation.

    PubMed

    Zong, Chuanyong; Zhao, Yan; Ji, Haipeng; Xie, Jixun; Han, Xue; Wang, Juanjuan; Cao, Yanping; Lu, Conghua; Li, Hongfei; Jiang, Shichun

    2016-08-01

    Here, a simple combined strategy of surface wrinkling with visible light irradiation to fabricate well tunable hierarchical surface patterns on azo-containing multilayer films is reported. The key to tailor surface patterns is to introduce a photosensitive poly(disperse orange 3) intermediate layer into the film/substrate wrinkling system, in which the modulus decrease is induced by the reversible photoisomerization. The existence of a photoinert top layer prevents the photoisomerization-induced stress release in the intermediate layer to some extent. Consequently, the as-formed wrinkling patterns can be modulated over a large area by light irradiation. Interestingly, in the case of selective exposure, the wrinkle wavelength in the exposed region decreases, while the wrinkles in the unexposed region are evolved into highly oriented wrinkles with the orientation perpendicular to the exposed/unexposed boundary. Compared with traditional single layer-based film/substrate systems, the multilayer system consisting of the photosensitive intermediate layer offers unprecedented advantages in the patterning controllability/universality. As demonstrated here, this simple and versatile strategy can be conveniently extended to functional multilayer systems for the creation of prescribed hierarchical surface patterns with optically tailored microstructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [The three-dimensional simulation of arytenoid cartilage movement].

    PubMed

    Zhang, Jun; Wang, Xuefeng

    2011-08-01

    Exploring the characteristics of arytenoid cartilage movement. Using Pro/ENGINEER (Pro/E) software, the cricoid cartilage, arytenoid cartilage and vocal cords were simulated to the three-dimensional reconstruction, by analyzing the trajectory of arytenoid cartilage in the joint surface from the cricoid cartilage and arytenoid cartilage composition. The 3D animation simulation showed the normal movement patterns of the vocal cords and the characteristics of vocal cords movement in occasion of arytenoid cartilage dislocation vividly. The three-dimensional model has clinical significance for arytenoid cartilage movement disorders.

  12. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation.

    PubMed

    Li, Panyuan; Wang, Zhi; Li, Wen; Liu, Yanni; Wang, Jixiao; Wang, Shichang

    2015-07-22

    It is desirable to develop high-performance composite membranes for efficient CO2 separation in CO2 capture process. Introduction of a highly permeable polydimethylsiloxane (PDMS) intermediate layer between a selective layer and a porous support has been considered as a simple but efficient way to enhance gas permeance while maintaining high gas selectivity, because the introduced intermediate layer could benefit the formation of an ultrathin defect-free selective layer owing to the circumvention of pore penetration phenomenon. However, the selection of selective layer materials is unfavorably restricted because of the low surface energy of PDMS. Various highly hydrophilic membrane materials such as amino group-rich polyvinylamine (PVAm), a representative facilitated transport membrane material for CO2 separation, could not be facilely coated over the surface of the hydrophobic PDMS intermediate layer uniformly. Inspired by the hydrophilic nature and strong adhesive ability of polydopamine (PDA), PDA was therefore selected as a versatile molecular bridge between hydrophobic PDMS and hydrophilic PVAm. The PDA coating endows a highly compatible interface between both components with a large surface energy difference via multiple-site cooperative interactions. The resulting multilayer composite membrane with a thin facilitated transport PVAm selective layer exhibits a notably enhanced CO2 permeance (1887 GPU) combined with a slightly improved CO2/N2 selectivity (83), as well as superior structural stability. Similarly, the multilayer composite membrane with a hydrophilic CO2-philic Pebax 1657 selective layer was also developed for enhanced CO2 separation performance.

  13. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    DOEpatents

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  14. Combined PDF and Rietveld studies of ADORable zeolites and the disordered intermediate IPC-1P.

    PubMed

    Morris, Samuel A; Wheatley, Paul S; Položij, Miroslav; Nachtigall, Petr; Eliášová, Pavla; Čejka, Jiří; Lucas, Tim C; Hriljac, Joseph A; Pinar, Ana B; Morris, Russell E

    2016-09-28

    The disordered intermediate of the ADORable zeolite UTL has been structurally confirmed using the pair distribution function (PDF) technique. The intermediate, IPC-1P, is a disordered layered compound formed by the hydrolysis of UTL in 0.1 M hydrochloric acid solution. Its structure is unsolvable by traditional X-ray diffraction techniques. The PDF technique was first benchmarked against high-quality synchrotron Rietveld refinements of IPC-2 (OKO) and IPC-4 (PCR) - two end products of IPC-1P condensation that share very similar structural features. An IPC-1P starting model derived from density functional theory was used for the PDF refinement, which yielded a final fit of Rw = 18% and a geometrically reasonable structure. This confirms the layers do stay intact throughout the ADOR process and shows PDF is a viable technique for layered zeolite structure determination.

  15. The cranial cartilages of teleosts and their classification.

    PubMed

    Benjamin, M

    1990-04-01

    The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage and lipo/hyaline-cell cartilage, (b) Schaffer's Zellknorpel, typified by the cartilage in the gill filaments of most teleosts examined, (c) elastic/cell-rich cartilage, such as that which supports the barbels and oral valves of catfish, e.g. Corydoras metae, (d) fibro/cell-rich cartilage, as in the submaxillary meniscus of Sphaerichthys osphromenoides, (e) cell-rich hyaline and (f) matrix-rich hyaline cartilage--both of which are common in the neurocranium and gill arches of most teleosts. The range of cartilages seen, and the predominant cartilage type, is recorded for each species and a list is provided of the tissues that most typify different organs or regions of the head. As a preliminary pointer to developmental relationships between the cartilages, note was taken of gradual transitions between one cartilage and another. It is suggested that hyaline-cell cartilage occupies a key position in teleosts as the most labile of the supporting tissues and is highly characteristic of Cypriniformes. The cartilage that best resembles mammalian hyaline cartilage (matrix-rich hyaline cartilage) has a very conservative distribution in different skeletal elements and the least number of associations with other tissues. It is well represented in Siluriformes.

  16. Composite hydrogen separation element and module

    DOEpatents

    Edlund, D.J.

    1996-03-12

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer. 15 figs.

  17. Formation of ZrO{sub 2} in coating on Mg–3 wt.%Al–1 wt.%Zn alloy via plasma electrolytic oxidation: Phase and structure of zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong

    2015-01-15

    An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less

  18. A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Lu, Yuanxi; Huang, Jian; Li, Bing; Tang, Ke; Ma, Yuncheng; Cao, Meng; Wang, Lin; Wang, Linjun

    2018-01-01

    ZnO (Zinc oxide)/Si (Silicon) heterojunctions were prepared by depositing n-type ZnO films on p-type single crystal Si substrates using magnetron sputtering. A boron and gallium co-doped ZnO (BGZO) high conductivity intermediate layer was deposited between aurum (Au) electrodes and ZnO films. The influence of the BGZO layer on the properties of Au/ZnO contacts and the performance of ZnO/Si heterojunctions was investigated. The results show an improvement in contact resistance by introducing the BGZO layer. Compared with the ZnO/Si heterojunction, the BGZO/ZnO/Si heterojunction exhibits a larger forward current, a smaller turn-on voltage and higher ratio of ultraviolet (UV) photo current/dark current.

  19. Method of manufacturing a matrix for the detection of mismatches

    DOEpatents

    Ershov, Gennady Moiseevich; Mirzabekov, Andrei Darievich

    1998-01-01

    This method for preparing micromatrices consists in applying a specially-patterned intermediate layer of laser-absorbing substance on a solid support. The configuration of the sublayer fully corresponds to the topology of the manufactured matrix. The intermediate layer is further covered by a continuous layer of gel , the gel and the material of the support being transparent towards laser radiation. The gel layer is irradiated by a laser beam for a time needed to evaporate simultaneously the gel in the places immediately above the laser-absorbing sublayer and the sublayer itself. Oligonucleotides from a chosen set are then attached to the formed gel `cells`, one oligonucleotide to each cell. This method is intended for use in biotechnology, specifically for deciphering the nucleotide sequence of DNA.

  20. Ready to Use Tissue Construct for Military Bone & Cartilage Trauma

    DTIC Science & Technology

    2013-10-01

    scaffolds composed of 90% poly-caprolactone (PCL) and 10% hydroxyapatite (HA) by weight (PCL+HA) without any seeding with either canine MSC or biologic...ligaments of the 5 knee. The implant consisted of a two layer Polycarprolacton (PCL) mixed with 10% hydroxyapatite (HA) scaffold with a 500 μm top...denoted by arrows, are apparent on both tibiae. Ratios of the biomechanical test parameters (experimental/control) in terms of percentage for

  1. Defect-enhanced performance of a 3D graphene anode in a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Guo, Hongchen; Long, Deng; Zheng, Zongmin; Chen, Xinyi; Ng, Alan M. C.; Lu, Miao

    2017-12-01

    Morphological defects were generated in an undoped 3D graphene structure via the involvement of a ZnO and Mg(OH)2 intermediate nanostructure layer placed between two layers of vapor-deposited graphene. Once the intermediate layer was etched, the 3D graphene lost support and shrank; during this process many morphological defects were formed. The electrochemical performance of the derived defective graphene utilized as the anode of a lithium (Li)-ion battery was significantly improved from ˜382 mAh g-1 to ˜2204 mAh g-1 at 0.5 A g-1 compared to normal 3D graphene. The derived defective graphene exhibited an initial capacity of 1009 mAh g-1 and retention of 83% at 4 A g-1 for 500 cycles, and ˜330 mAh g-1 at a high rate of 20 A g-1. Complicated defects such as wrinkles, pores, and particles formed during the etching of the intermediate layer, were considered to contribute to the improvement of the electrochemical performance.

  2. Neural Network Model For Fast Learning And Retrieval

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Macukow, Bohdan

    1989-05-01

    An approach to learning in a multilayer neural network is presented. The proposed network learns by creating interconnections between the input layer and the intermediate layer. In one of the new storage prescriptions proposed, interconnections are excitatory (positive) only and the weights depend on the stored patterns. In the intermediate layer each mother cell is responsible for one stored pattern. Mutually interconnected neurons in the intermediate layer perform a winner-take-all operation, taking into account correlations between stored vectors. The performance of networks using this interconnection prescription is compared with two previously proposed schemes, one using inhibitory connections at the output and one using all-or-nothing interconnections. The network can be used as a content-addressable memory or as a symbolic substitution system that yields an arbitrarily defined output for any input. The training of a model to perform Boolean logical operations is also described. Computer simulations using the network as an autoassociative content-addressable memory show the model to be efficient. Content-addressable associative memories and neural logic modules can be combined to perform logic operations on highly corrupted data.

  3. Optimization of hetero-epitaxial growth for the threading dislocation density reduction of germanium epilayers

    NASA Astrophysics Data System (ADS)

    Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui

    2018-04-01

    In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.

  4. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images

    NASA Astrophysics Data System (ADS)

    Rogowska, Jadwiga; Brezinski, Mark E.

    2002-02-01

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.

  5. Accident resistant transport container

    DOEpatents

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  6. Accident resistant transport container

    DOEpatents

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  7. The cranial cartilages of teleosts and their classification.

    PubMed Central

    Benjamin, M

    1990-01-01

    The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage and lipo/hyaline-cell cartilage, (b) Schaffer's Zellknorpel, typified by the cartilage in the gill filaments of most teleosts examined, (c) elastic/cell-rich cartilage, such as that which supports the barbels and oral valves of catfish, e.g. Corydoras metae, (d) fibro/cell-rich cartilage, as in the submaxillary meniscus of Sphaerichthys osphromenoides, (e) cell-rich hyaline and (f) matrix-rich hyaline cartilage--both of which are common in the neurocranium and gill arches of most teleosts. The range of cartilages seen, and the predominant cartilage type, is recorded for each species and a list is provided of the tissues that most typify different organs or regions of the head. As a preliminary pointer to developmental relationships between the cartilages, note was taken of gradual transitions between one cartilage and another. It is suggested that hyaline-cell cartilage occupies a key position in teleosts as the most labile of the supporting tissues and is highly characteristic of Cypriniformes. The cartilage that best resembles mammalian hyaline cartilage (matrix-rich hyaline cartilage) has a very conservative distribution in different skeletal elements and the least number of associations with other tissues. It is well represented in Siluriformes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 24 Fig. 25 Fig. 26 Fig. 27 PMID:2384333

  8. Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model

    PubMed Central

    Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing

    2018-01-01

    Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects. PMID:29666653

  9. Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model.

    PubMed

    Guo, Weimin; Zheng, Xifu; Zhang, Weiguo; Chen, Mingxue; Wang, Zhenyong; Hao, Chunxiang; Huang, Jingxiang; Yuan, Zhiguo; Zhang, Yu; Wang, Mingjie; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Liu, Shuyun; Lu, Shibi; Guo, Quanyi

    2018-01-01

    Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.

  10. BioCartilage Improves Cartilage Repair Compared With Microfracture Alone in an Equine Model of Full-Thickness Cartilage Loss.

    PubMed

    Fortier, Lisa A; Chapman, Hannah S; Pownder, Sarah L; Roller, Brandon L; Cross, Jessica A; Cook, James L; Cole, Brian J

    2016-09-01

    Microfracture (MFx) remains a dominant treatment strategy for symptomatic articular cartilage defects. Biologic scaffold adjuncts, such as particulated allograft articular cartilage (BioCartilage) combined with platelet-rich plasma (PRP), offer promise in improving clinical outcomes as an adjunct to MFx. To evaluate the safety, biocompatibility, and efficacy of BioCartilage and PRP for cartilage repair in a preclinical equine model of full-thickness articular cartilage loss. Controlled laboratory study. Two 10-mm-diameter full-thickness cartilage defects were created in 5 horses in the trochlear ridge of both knees: one proximal (high load) and another distal (low load). Complete blood counts were performed on each peripheral blood and resultant PRP sample. In each horse, one knee received MFx with BioCartilage + PRP, and the other knee received MFx alone. Horses were euthanized at 13 months. Outcomes were assessed with serial arthroscopy, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and histology. Statistics were performed using a mixed-effects model with response variable contrasts. No complications occurred. PRP generated in all subjects yielded an increase in platelet fold of 3.8 ± 4.7. Leukocyte concentration decreased in PRP samples by an average fold change of 5 ± 0.1. The overall International Cartilage Repair Society repair score in both the proximal and distal defects was significantly higher (better) in the BioCartilage group compared with MFx (proximal BioCartilage: 7.4 ± 0.51, MFx 4.8 ± 0.1, P = .041; distal BioCartilage: 5.6 ± 0.98, MFx 2.6 ± 1.5, P = .022). BioCartilage-treated proximal defects demonstrated improved histologic scores for repair-host integration (BioCartilage, 96 ± 9; MFx, 68 ± 18; P = .02), base integration (BioCartilage, 100 ± 0; MFx, 70 ± 37; P = .04), and formation of collagen type II (BioCartilage, 82 ± 8; MFx, 58 ± 11; P = .05) compared with the positive control. On MRI, T2 relaxation time was significantly shorter (better) in the superficial region of BioCartilage-treated distal defects compared with MFx (P = .05). There were no significant differences between BioCartilage and MFx on micro-CT analysis. BioCartilage with PRP safely improved cartilage repair compared with MFx alone in an equine model of articular cartilage defects up to 13 months after implantation. The 1-year results of BioCartilage + PRP suggest that homologous allograft tissue provides a safe and effective augmentation of traditional MFx. © 2016 The Author(s).

  11. Gradient SiNO anti-reflective layers in solar selective coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhifeng; Cao, Feng; Sun, Tianyi

    A solar selective coating includes a substrate, a cermet layer having nanoparticles therein deposited on the substrate, and an anti-reflection layer deposited on the cermet layer. The cermet layer and the anti-reflection layer may each be formed of intermediate layers. A method for constructing a solar-selective coating is disclosed and includes preparing a substrate, depositing a cermet layer on the substrate, and depositing an anti-reflection layer on the cermet layer.

  12. Surface control alloy substrates and methods of manufacture therefor

    DOEpatents

    Fritzemeier, Leslie G.; Li, Qi; Rupich, Martin W.; Thompson, Elliott D.; Siegal, Edward J.; Thieme, Cornelis Leo Hans; Annavarapu, Suresh; Arendt, Paul N.; Foltyn, Stephen R.

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  13. Stretchable Characteristics of Thin Au Film on Polydimethylsiloxane Substrate with Parylene Intermediate Layer for Stretchable Electronic Packaging

    NASA Astrophysics Data System (ADS)

    Park, Donghyun; Shin, Soo Jin; Oh, Tae Sung

    2018-01-01

    Thin Au films with thickness of 150 nm could be reversibly stretched up to 30% elongation on polydimethylsiloxane (PDMS) substrate with 150-nm-thick Parylene C deposited as intermediate layer instead of a Cr adhesion layer. Prestretching of the Parylene-deposited PDMS was effective to suppress the resistance increase of Au films during their tensile elongation. While the resistance change rate Δ R/ R 0 of the Au film at 30% elongation was 11 without prestretching of the Parylene-deposited PDMS, it was substantially suppressed to 0.4 with 30% prestretching of the Parylene-deposited PDMS.

  14. Association of baseline knee bone size, cartilage volume, and body mass index with knee cartilage loss over time: a longitudinal study in younger or middle-aged adults.

    PubMed

    Antony, Benny; Ding, Changhai; Stannus, Oliver; Cicuttini, Flavia; Jones, Graeme

    2011-09-01

    To determine the association of knee bone size, cartilage volume, and body mass index (BMI) at baseline with knee cartilage loss over 2 years in younger or middle-aged adults. A total of 324 subjects (mean age 45 yrs, range 26-61) were measured at baseline and about 2 years later. Knee cartilage volume and bone size were determined using T1-weighted fat-saturated magnetic resonance imaging. In multivariable analysis, baseline knee bone size was negatively associated with annual change in knee cartilage volume at medial and lateral tibial sites (ß = -0.62% to -0.47%/cm(2), all p < 0.001). The associations disappeared at medial tibial site after adjustment for baseline cartilage volume and became of borderline statistical significance at lateral tibial site after adjustment for both baseline cartilage volume and osteophytes (ß = -0.29, p = 0.059). Baseline knee cartilage volume was consistently and negatively associated with annual change in knee cartilage volume at all 3 medial tibial, lateral tibial, and patellar sites (ß = -4.41% to -1.37%/ml, all p < 0.001). Baseline BMI was negatively associated with an annual change in knee cartilage volume, but only in subjects within the upper tertile of baseline cartilage volume, even after adjusting for cartilage defects (ß = -0.16% to -0.34%/kg/m(2), all p < 0.05). Our study suggests that both higher baseline tibial bone area and knee cartilage volume (most likely due to cartilage swelling) are associated with greater knee cartilage loss over 2 years. A higher BMI was associated with greater knee cartilage loss only in subjects with higher baseline cartilage volume.

  15. [Study on shape and structure of calcified cartilage zone in normal human knee joint].

    PubMed

    Wang, Fuyou; Yang, Liu; Duan, Xiaojun; Tan, Hongbo; Dai, Gang

    2008-05-01

    To explore the shape and structure of calcified cartilage zone and its interface between the non-calcified articular cartilage and subchondral bone plate. The normal human condyles of femur (n=20) were obtained from the tissue bank donated by the residents, 10 males and 10 females, aged 17-45 years. The longitudinal and transverse paraffin sections were prepared by the routine method. The shape and structure of calcified cartilage zone were observed with the Safranin O/fast green and von kossa stain method. The interface conjunction among zones of cartilage was researched by SEM and the 3D structural model was established by serial sections and modeling technique. Articular bone-cartilage safranin O/fast green staining showed that cartilage was stained red and subchondral bone was stained blue. The calcified cartilage zone was located between the tidemark and cement line. Von kossa staining showed that calcified cartilage zone was stained black and sharpness of structure border. Upper interface gomphosised tightly with the non-calcified cartilage by the wave shaped tidemark and lower interface anchored tightly with the subchondral bone by the uneven comb shaped cement line. The non-calcified cartilage zone was interlocked tightly in the manner of "ravine-engomphosis" by the calcified cartilage zone as observed under SEM, and the subchondral bone was anchored tightly in the manner of"comb-anchor" by the in the calcified cartilage zone 3D reconstruction model. The calcified cartilage zone is an important structure in the articular cartilage. The articular cartilage is fixed firmly into subchondral bone plate by the distinctive conjunct interfaces of calcified cartilage zone.

  16. Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs.

    PubMed

    Marlovits, Stefan; Mamisch, Tallal Charles; Vekszler, György; Resinger, Christoph; Trattnig, Siegfried

    2008-04-01

    Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.

  17. Satisfactory surgical option for cartilage graft absorption in microtia reconstruction.

    PubMed

    Han, So-Eun; Oh, Kap Sung

    2016-04-01

    We routinely perform auricular elevation at least 6 months after implantation of framework in microtia reconstruction using costal cartilage. However, in a few cases, cartilage graft absorption has occurred, which has led to contour irregularity with unfavorable long-term results. In the present study, we recount the details of using additional rib cartilage augmentation to achieve an accentuated contour in cartilage graft absorption cases. The cartilage graft absorption was defined as contour irregularity or cartilage graft deformation as evaluated by the surgeon and patient. Depending on the extent of cartilage graft absorption, another rib cartilage framework was added to the previously implanted framework, targeting the absorption area. We used banked cartilage or harvested new cartilage based on three-dimensional rib computed tomography. Additional recontouring of framework was conducted in eight patients who were examined for cartilage graft absorption from 1.5 to 5 years after implantation of the framework. Four patients received additional rib cartilage augmentation and tissue expander insertion simultaneously prior to auricular elevation. Two patients underwent auricular elevation simultaneously. In another two patients, additional rib cartilage augmentation was performed before auricular elevation. The mean follow-up period was 18 months, and in all cases reconstructive results were acceptable. Although further follow-up evaluation is required, additional rib cartilage augmentation is an attractive surgical option for cartilage graft absorption cases. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Solid-state membrane module

    DOEpatents

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  19. Description of the chimaerid jaw and its phylogenetic origins.

    PubMed

    Grogan, Eileen D; Lund, Richard; Didier, Dominique

    1999-01-01

    Anatomical delineation of the holocephalan palatoquadrate has proven to be difficult and, so, has been an extensively debated topic as it relates to the evolutionary derivation of jaws, modes of jaw suspension, and the interrelationships of the hondrichthyes (Elasmobranchii and Holocephali). Embryological analyses of the chimaerid jaw and cranium are presented to provide an anatomical description of the palatoquadrate in modern chimaerids. The palatoquadrate fuses, anteriorly, to the nasal capsule early in development. This marks the first point of contact between the mandibular arch and cranium. Orbitonasal canal foramina delineate the dorsal palatoquadrate margin. The posteriormost margin is marked by fusion of the upper jaw with trabecular and parachordal cartilages in the region of the efferent eudobranchial artery foramen and by a suborbitally positioned basitrabecular cartilage. This basitrabecula generates a subocular shelf as it fuses medially to the parachordal cartilage and posteriorly to the postorbital wall and cranial otic process. The results of these analyses are related to morphological studies of Paleozoic chondrichthyan fishes, particularly the autodiastylic paraselachians that represent morphological intermediates to selachians and holocephalans. The paraselachian basitrabecular, which was mechanically fundamental to stabilizing the free autodiastylic upper jaw and a hyoid operculum, is shown to correlate with the suborbital basitrabecular of today's chimaerids. Further analyses of both extant and fossil data permit us to conclude that the primordial chondrichthyan palatoquadrate did not extend posteriorly to include a palatoquadrate-derived otic process. Rather, the posteriormost extent of this element is primitively found within the limits of the orbit and is demarcated by the highly conserved basitrabecular element. The collective analyses support autodiastyly as the ancestral condition from which all fundamental suspensorial states are derived. J. Morphol. 239:45-59, 1999. © 1999 Wiley-Liss, Inc. Copyright © 1999 Wiley-Liss, Inc.

  20. In situ hybridization and immunohistochemistry of bone sialoprotein and secreted phosphoprotein 1 (osteopontin) in the developing mouse mandibular condylar cartilage compared with limb bud cartilage

    PubMed Central

    Shibata, Shunichi; Fukada, Kenji; Suzuki, Shoichi; Ogawa, Takuya; Yamashita, Yasuo

    2002-01-01

    Mandibular condylar cartilage is often classified as a secondary cartilage, differing from the primary cartilaginous skeleton in its rapid progress from progenitor cells to hypertrophic chondrocytes. In this study we used in situ hybridization and immunohistochemistry to investigate whether the formation of primary (tibial) and secondary (condylar) cartilage also differs with respect to the expression of two major non-collagenous glycoproteins of bone matrix, bone sialoprotein (BSP) and secreted phosphoprotein 1 (Spp1, osteopontin). The mRNAs for both molecules were never expressed until hypertrophic chondrocytes appeared. In the tibial cartilage, hypertrophic chondrocytes first appeared at E14 and the expression of BSP and Spp1 mRNAs was detected in the lower hypertrophic cell zone, but the expression of BSP mRNA was very weak. In the condylar cartilage, hypertrophic chondrocytes appeared at E15 as soon as cartilage tissue appeared. The mRNAs for both molecules were expressed in the newly formed condylar cartilage, although the proteins were not detected by immunostaining; BSP mRNA in the condylar cartilage was more extensively expressed than that in the tibial cartilage at the corresponding stage (first appearance of hypertrophic cell zone). Endochondral bone formation started at E15 in the tibial cartilage and at E16 in the condylar cartilage. At this stage (first appearance of endochondral bone formation), BSP mRNA was also more extensively expressed in the condylar cartilage than in the tibial cartilage. The hypertrophic cell zone in the condylar cartilage rapidly extended during E15–16. These results indicate that the formation process of the mandibular condylar cartilage differs from that of limb bud cartilage with respect to the extensive expression of BSP mRNA and the rapid extension of the hypertrophic cell zone at early stages of cartilage formation. Furthermore, these results support the hypothesis that, in vivo, BSP promotes the initiation of mineralization. PMID:12033735

  1. High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries

    DOE PAGES

    Zhou, Yong-Ning; Yue, Ji-Li; Hu, Enyuan; ...

    2016-08-08

    Using fast time-resolved in situ X-ray diffraction, charge-rate dependent phase transition processes of layer structured cathode material LiNi 1/3Mn 1/3Co 1/3O 2 for lithium-ion batteries are studied. During first charge, intermediate phases emerge at high rates of 10C, 30C, and 60C, but not at low rates of 0.1C and 1C. These intermediate phases can be continuously observed during relaxation after the charging current is switched off. After half-way charging at high rate, sample studied by scanning transmission electron microscopy shows Li-rich and Li-poor phases' coexistence with tetrahedral occupation of Li in Li-poor phase. Also, the high rate induced overpotential ismore » thought to be the driving force for the formation of this intermediate Li-poor phase. The in situ quick X-ray absorption results show that the oxidation of Ni accelerates with increasing charging rate and the Ni 4+ state can be reached at the end of charge with 30C rate. Finally, these results give new insights in the understanding of the layered cathodes during high-rate charging.« less

  2. Method and apparatus for cartilage reshaping by radiofrequency heating

    DOEpatents

    Wong, Brian J.; Milner, Thomas E.; Sobol, Emil N.; Keefe, Michael W.

    2003-07-08

    A method and apparatus for reshaping cartilage using radiofrequency heating. The cartilage temperature is raised sufficiently for stress relaxation to occur in the cartilage, but low enough so that significant denaturation of the cartilage does not occur. The RF electrodes may be designed to also function as molds, preses, clamps, or mandrills to deform the cartilage tissue. Changes in various properties of the cartilage associated with stress relaxation in the cartilage may be measured in order to provide the control signal to provide effective reshaping without denaturation.

  3. Comparisons of Auricular Cartilage Tissues from Different Species.

    PubMed

    Chiu, Loraine L Y; Giardini-Rosa, Renata; Weber, Joanna F; Cushing, Sharon L; Waldman, Stephen D

    2017-12-01

    Tissue engineering of auricular cartilage has great potential in providing readily available materials for reconstructive surgeries. As the field of tissue engineering moves forward to developing human tissues, there needs to be an interspecies comparison of the native auricular cartilage in order to determine a suitable animal model to assess the performance of engineered auricular cartilage in vivo. Here, we performed interspecies comparisons of auricular cartilage by comparing tissue microstructure, protein localization, biochemical composition, and mechanical properties of auricular cartilage tissues from rat, rabbit, pig, cow, and human. Human, pig, and cow auricular cartilage have smaller lacunae compared to rat and rabbit cartilage ( P < .05). Despite differences in tissue microstructure, human auricular cartilage has similar biochemical composition to both rat and rabbit. Auricular cartilage from pig and cow, alternatively, display significantly higher glycosaminoglycan and collagen contents compared to human, rat, and rabbit ( P < .05). The mechanical properties of human auricular cartilage were comparable to that of all 4 animal species. This is the first study that compares the microstructural, biochemical, and mechanical properties of auricular cartilage from different species. This study showed that different experimental animal models of human auricular cartilage may be suitable in different cases.

  4. Strain-tolerant ceramic coated seal

    DOEpatents

    Schienle, James L.; Strangman, Thomas E.

    1994-01-01

    A metallic regenerator seal is provided having multi-layer coating comprising a NiCrAlY bond layer, a yttria stabilized zirconia (YSZ) intermediate layer, and a ceramic high temperature solid lubricant surface layer comprising zinc oxide, calcium fluoride, and tin oxide. An array of discontinuous grooves is laser machined into the outer surface of the solid lubricant surface layer making the coating strain tolerant.

  5. High-performance ultraviolet detection and visible-blind photodetector based on Cu{sub 2}O/ZnO nanorods with poly-(N-vinylcarbazole) intermediate layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw; Center for Micro/Nano Science and Technology, National Cheng Kung University, One University Road, Tainan 701, Taiwan; Lin, Hsueh-Pin

    This study reports a high-performance hybrid ultraviolet (UV) photodetector with visible-blind sensitivity fabricated by inserting a poly-(N-vinylcarbazole) (PVK) intermediate layer between low-cost processed Cu{sub 2}O film and ZnO nanorods (NRs). The PVK layer acts as an electron-blocking/hole-transporting layer between the n-ZnO and p-Cu{sub 2}O films. The Cu{sub 2}O/PVK/ZnO NR photodetector exhibited a responsivity of 13.28 A/W at 360 nm, a high detectivity of 1.03 × 10{sup 13} Jones at a low bias of −0.1 V under a low UV light intensity of 24.9 μW/cm{sup 2}. The photo-to-dark current ratios of the photodetector with and without the PVK intermediate layer at a bias of −0.5 V are 1.34 × 10{supmore » 2} and 3.99, respectively. The UV-to-visible rejection ratios (R{sub 360 nm}/R{sub 450 nm}) are 350 and 1.735, respectively. Several features are demonstrated: (a) UV photo-generated holes at the ZnO NRs can effectively be transported through the PVK layer to the p-Cu{sub 2}O layer; (b) the insertion of a PVK buffer layer significantly minimizes the reverse-bias leakage current, which leads to a larger amplification of the photocurrent; and (c) the PVK buffer layer greatly improves the UV-to-visible responsivity ratio, allowing the device to achieve high UV detection sensitivity at a low bias voltage using a very low light intensity.« less

  6. Advanced morphological and biochemical magnetic resonance imaging of cartilage repair procedures in the knee joint at 3 Tesla.

    PubMed

    Welsch, Goetz H; Mamisch, Tallal C; Hughes, Timothy; Domayer, Stephan; Marlovits, Stefan; Trattnig, Siegfried

    2008-09-01

    Morphological and biochemical magnetic resonance imaging (MRI) is due to high field MR systems, advanced coil technology, and sophisticated sequence protocols capable of visualizing articular cartilage in vivo with high resolution in clinical applicable scan time. Several conventional two-dimensional (2D) and three-dimensional (3D) approaches show changes in cartilage structure. Furthermore newer isotropic 3D sequences show great promise in improving cartilage imaging and additionally in diagnosing surrounding pathologies within the knee joint. Functional MR approaches are additionally able to provide a specific measure of the composition of cartilage. Cartilage physiology and ultra-structure can be determined, changes in cartilage macromolecules can be detected, and cartilage repair tissue can thus be assessed and potentially differentiated. In cartilage defects and following nonsurgical and surgical cartilage repair, morphological MRI provides the basis for diagnosis and follow-up evaluation, whereas biochemical MRI provides a deeper insight into the composition of cartilage and cartilage repair tissue. A combination of both, together with clinical evaluation, may represent a desirable multimodal approach in the future, also available in routine clinical use.

  7. Advances and Prospects in Stem Cells for Cartilage Regeneration

    PubMed Central

    Wang, Mingjie; Yuan, Zhiguo; Ma, Ning; Hao, Chunxiang; Guo, Weimin; Zou, Gengyi; Zhang, Yu; Chen, Mingxue; Gao, Shuang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Lu, Shibi

    2017-01-01

    The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed. PMID:28246531

  8. [Balloon osteoplasty as reduction technique in the treatment of tibial head fractures].

    PubMed

    Freude, T; Kraus, T M; Sandmann, G H

    2015-10-01

    Tibial plateau fractures requiring surgery are severe injuries of the lower extremities. Depending on the fracture pattern, the age of the patient, the range of activity and the bone quality there is a broad variation in adequate treatment.  This article reports on an innovative treatment concept to address split depression fractures (Schatzker type II) and depression fractures (Schatzker type III) of the tibial head using the balloon osteoplasty technique for fracture reduction. Using the balloon technique achieves a precise and safe fracture reduction. This internal osteoplasty combines a minimal invasive percutaneous approach with a gently rise of the depressed area and the associated protection of the stratum regenerativum below the articular cartilage surface. This article lights up the surgical procedure using the balloon technique in tibia depression fractures. Using the balloon technique a precise and safe fracture reduction can be achieved. This internal osteoplasty combines a minimally invasive percutaneous approach with a gentle raising of the depressed area and the associated protection of the regenerative layer below the articular cartilage surface. Fracture reduction by use of a tamper results in high peak forces over small areas, whereas by using the balloon the forces are distributed over a larger area causing less secondary stress to the cartilage tissue. This less invasive approach might help to achieve a better long-term outcome with decreased secondary osteoarthritis due to the precise and chondroprotective reduction technique.

  9. Canaliculi in the tessellated skeleton of cartilaginous fishes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, M.N.; Socha, J.J.; Hall, B.K.

    2010-08-04

    The endoskeletal elements of sharks and rays are comprised of an uncalcified, hyaline cartilage-like core overlain by a thin fibro-ceramic layer of mineralized hexagonal tiles (tesserae) adjoined by intertesseral fibers. The basic spatial relationships of the constituent tissues (unmineralized cartilage, mineralized cartilage, fibrous tissue) are well-known - endoskeletal tessellation is a long-recognized synapomorphy of elasmobranch fishes - but a high-resolution and three-dimensional (3D) understanding of their interactions has been hampered by difficulties in sample preparation and lack of technologies adequate for visualizing microstructure and microassociations. We used cryo-electron microscopy and synchrotron radiation tomography to investigate tessellated skeleton ultrastructure but withoutmore » damage to the delicate relationships between constituent tissues or to the tesserae themselves. The combination of these techniques allowed visualization of never before appreciated internal structures, namely passages connecting the lacunar spaces within tesserae. These intratesseral 'canaliculi' link consecutive lacunar spaces into long lacunar strings, radiating outward from the center of tesserae. The continuity of extracellular matrix throughout the canalicular network may explain how chondrocytes in tesserae remain vital despite encasement in mineral. Extracellular fluid exchange may also permit transmission of nutrients, and mechanical and mineralization signals among chondrocytes, in a manner similar to the canalicular network in bone. These co-adapted mechanisms for the facilitated exchange of extracellular material suggest a level of parallelism in early chondrocyte and osteocyte evolution.« less

  10. Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.

    PubMed

    Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L

    2017-04-28

    High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO 2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2 /floating gate of single layer of Ge QDs in HfO 2 /tunnel HfO 2 /p-Si wafers. Both Ge and HfO 2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10 15 m -2 is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO 2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO 2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO 2 NCs boundaries, while another part of the Ge atoms is present inside the HfO 2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO 2 , distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

  11. Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage

    PubMed Central

    2014-01-01

    Introduction Cartilage protein distribution and the changes that occur in cartilage ageing and disease are essential in understanding the process of cartilage ageing and age related diseases such as osteoarthritis. The aim of this study was to investigate the peptide profiles in ageing and osteoarthritic (OA) cartilage sections using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Methods The distribution of proteins in young, old and OA equine cartilage was compared following tryptic digestion of cartilage slices and MALDI-MSI undertaken with a MALDI SYNAPT™ HDMS system. Protein identification was undertaken using database searches following multivariate analysis. Peptide intensity differences between young, ageing and OA cartilage were imaged with Biomap software. Analysis of aggrecanase specific cleavage patterns of a crude cartilage proteoglycan extract were used to validate some of the differences in peptide intensity identified. Immunohistochemistry studies validated the differences in protein abundance. Results Young, old and OA equine cartilage was discriminated based on their peptide signature using discriminant analysis. Proteins including aggrecan core protein, fibromodulin, and cartilage oligomeric matrix protein were identified and localised. Fibronectin peptides displayed a stronger intensity in OA cartilage. Age-specific protein markers for collectin-43 and cartilage oligomeric matrix protein were identified. In addition potential fibromodulin and biglycan peptides targeted for degradation in OA were detected. Conclusions MALDI-MSI provided a novel platform to study cartilage ageing and disease enabling age and disease specific peptides in cartilage to be elucidated and spatially resolved. PMID:24886698

  12. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yan; Zhang, Chao; He, Ai

    Membrane fouling is one of the most severe problems restricting membrane separation technology for wastewater treatment. This work reports a photocatalytic nanofiltration membrane (NFM) with self-cleaning property fabricated using a facile biomimetic mineralization process. In this strategy, a polydopamine (PDA)/polyethyleneimine (PEI) intermediate layer is fabricated on an ultrafiltration membrane via a co-deposition method followed by mineralization of a photocatalytic layer consisting of beta-FeOOH nanorods. The PDA-PEI layer acts both as a nanofiltration selective layer and an intermediate layer for anchoring the beta-FeOOH nanorods via strong coordination complexes between Fe3+ and catechol groups. In visible light, the beta-(F)eOOH layer exhibits efficientmore » photocatalytic activity for degrading dyes through the photo-Fenton reaction in the presence of hydrogen peroxide, endowing the NFM concurrently with effective nanofiltration performance and self-cleaning capability. Moreover, the mineralized NFMs exhibit satisfactory stability under simultaneous filtration and photocatalysis processing, showing great potential in advanced wastewater treatment.« less

  13. Inorganic dual-layer microporous supported membranes

    DOEpatents

    Brinker, C. Jeffrey; Tsai, Chung-Yi; Lu, Yungfeng

    2003-03-25

    The present invention provides for a dual-layer inorganic microporous membrane capable of molecular sieving, and methods for production of the membranes. The inorganic microporous supported membrane includes a porous substrate which supports a first inorganic porous membrane having an average pore size of less than about 25 .ANG. and a second inorganic porous membrane coating the first inorganic membrane having an average pore size of less than about 6 .ANG.. The dual-layered membrane is produced by contacting the porous substrate with a surfactant-template polymeric sol, resulting in a surfactant sol coated membrane support. The surfactant sol coated membrane support is dried, producing a surfactant-templated polymer-coated substrate which is calcined to produce an intermediate layer surfactant-templated membrane. The intermediate layer surfactant-templated membrane is then contacted with a second polymeric sol producing a polymeric sol coated substrate which is dried producing an inorganic polymeric coated substrate. The inorganic polymeric coated substrate is then calcined producing an inorganic dual-layered microporous supported membrane in accordance with the present invention.

  14. Formation of thin walled ceramic solid oxide fuel cells

    DOEpatents

    Claar, Terry D.; Busch, Donald E.; Picciolo, John J.

    1989-01-01

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  15. A simple in vitro culture system for tracheal cartilage development.

    PubMed

    Park, Jinhyung; Zhang, Jennifer J R; Choi, Ruth; Trinh, Irene; Kim, Peter C W

    2010-02-01

    Semi-circular tracheal cartilage is a critical determinant of maintaining architectural integrity of the respiratory airway. The current effort to understand the morphogenesis of tracheal cartilage is challenged by the lack of appropriate model systems. Here we report an in vitro tracheal cartilage system using embryonic tracheal–lung explants to recapitulate in vivo tracheal cartilage developmental processes. With modifications of a current lung culture protocol, we report a consistent in vitro technique of culturing tracheal cartilage from primitive mouse embryonic foregut for the first time. This tracheal culture system not only induces the formation of tracheal cartilage from the mouse embryonic foregut but also allows for the proper patterning of the developed tracheal cartilage. Furthermore, we show that this culture technique can be applied to culturing other types of cartilage in vertebrae, limbs, and ribs. We believe that this novel application of our in vitro culture system will facilitate the manipulation of cartilage development under various conditions and thus enabling us to advance our current limited knowledge on cartilage biology and development.

  16. Dmp1 Null Mice Develop a Unique Osteoarthritis-like Phenotype

    PubMed Central

    Zhang, Qi; Lin, Shuxian; Liu, Ying; Yuan, Baozhi; Harris, Steph E; Feng, Jian Q.

    2016-01-01

    Patients with hypophosphatemia rickets (including DMP1 mutations) develop severe osteoarthritis (OA), although the mechanism is largely unknown. In this study, we first identified the expression of DMP1 in hypertrophic chondrocytes using immunohistochemistry (IHC) and X-gal analysis of Dmp1-knockout-lacZ-knockin heterozygous mice. Next, we characterized the OA-like phenotype in Dmp1 null mice from 7-week-old to one-year-old using multiple techniques, including X-ray, micro-CT, H&E staining, Goldner staining, scanning electronic microscopy, IHC assays, etc. We found a classical OA-like phenotype in Dmp1 null mice such as articular cartilage degradation, osteophyte formation, and subchondral osteosclerosis. These Dmp1 null mice also developed unique pathological changes, including a biphasic change in their articular cartilage from the initial expansion of hypertrophic chondrocytes at the age of 1-month to a quick diminished articular cartilage layer at the age of 3-months. Further, these null mice displayed severe enlarged knees and poorly formed bone with an expanded osteoid area. To address whether DMP1 plays a direct role in the articular cartilage, we deleted Dmp1 specifically in hypertrophic chondrocytes by crossing the Dmp1-loxP mice with Col X Cre mice. Interestingly, these conditional knockout mice didn't display notable defects in either the articular cartilage or the growth plate. Because of the hypophosphatemia remained in the entire life span of the Dmp1 null mice, we also investigated whether a high phosphate diet would improve the OA-like phenotype. A 8-week treatment of a high phosphate diet significantly rescued the OA-like defect in Dmp1 null mice, supporting the critical role of phosphate homeostasis in maintaining the healthy joint morphology and function. Taken together, this study demonstrates a unique OA-like phenotype in Dmp1 null mice, but a lack of the direct impact of DMP1 on chondrogenesis. Instead, the regulation of phosphate homeostasis by DMP1 via the axis of “FGF23-renal phosphorus reabsorption” is vital for maintaining a healthy joint. PMID:27766035

  17. The influence of the acetabular labrum seal, intact articular superficial zone and synovial fluid thixotropy on squeeze-film lubrication of a spherical synovial joint.

    PubMed

    Hlavácek, M

    2002-10-01

    A model of synovial fluid (SF) filtration by articular cartilage (AC) in a step-loaded spherical synovial joint at rest is presented. The effects of joint pathology (such as a depleted acetabular labrum, a depleted cartilage superficial zone consistent with early osteoarthritis and an inflammatory SF) on the squeezed synovial film are also investigated. Biphasic mixture models for AC (ideal fluid and elastic porous transversely isotropic two-layer matrix) and for SF (ideal and thixotropic fluids) are applied and the following results are obtained. If the acetabular labrum is able to seal the pressurised SF between the articular surfaces (as in the normal hip joint), the fluid in the synovial film and in the cartilage within the labral ring is homogeneously pressurised. The articular surfaces remain separated by a fluid film for minutes. If the labrum is destroyed or absent and the SF can escape across the contact edge, the fluid pressure is non-homogeneous and with a small jump at the articular surface at the very moment of load application. The ensuing synovial film filtration by porous cartilage is lower for the normal cartilage (with the intact superficial zone) than if this zone is already depleted or rubbed off as in the early stage of primary osteoarthritis. Compared with the inflammatory (Newtonian) SF, the normal (thixotropic) fluid applies favourably in the squeezed film near the contact centre only, yielding a thicker SF film there, but not affecting the minimum thickness in the fluid film profile at a fixed time. For all that, in the unsealed case for both the normal and pathological joint, the macromolecular concentration of the hyaluronic acid-protein complex in the synovial film quickly increases due to the filtration in the greater part of the contact. A stable synovial gel film, thick on the order of 10(-7)m, protecting the articular surfaces from the intimate contact, is formed within a couple of seconds. Boundary lubrication by the synovial gel is established if sliding motion follows until a fresh SF is entrained into the contact. This theoretical prediction is open for experimental verifications.

  18. Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage

    PubMed Central

    Wei, Yiyong; Zhou, Bin; Bernhard, Jonathan; Robinson, Samuel; Burapachaisri, Aonnicha; Guo, X. Edward

    2017-01-01

    Standard isotropic culture fails to recapitulate the spatiotemporal gradients present during native development. Cartilage grown from human mesenchymal stem cells (hMSCs) is poorly organized and unstable in vivo. We report that human cartilage with physiologic organization and in vivo stability can be grown in vitro from self-assembling hMSCs by implementing spatiotemporal regulation during induction. Self-assembling hMSCs formed cartilage discs in Transwell inserts following isotropic chondrogenic induction with transforming growth factor β to set up a dual-compartment culture. Following a switch in the basal compartment to a hypertrophic regimen with thyroxine, the cartilage discs underwent progressive deep-zone hypertrophy and mineralization. Concurrent chondrogenic induction in the apical compartment enabled the maintenance of functional and hyaline cartilage. Cartilage homeostasis, chondrocyte maturation, and terminal differentiation markers were all up-regulated versus isotropic control groups. We assessed the in vivo stability of the cartilage formed under different induction regimens. Cartilage formed under spatiotemporal regulation in vitro resisted endochondral ossification, retained the expression of cartilage markers, and remained organized following s.c. implantation in immunocompromised mice. In contrast, the isotropic control groups underwent endochondral ossification. Cartilage formed from hMSCs remained stable and organized in vivo. Spatiotemporal regulation during induction in vitro recapitulated some aspects of native cartilage development, and potentiated the maturation of self-assembling hMSCs into stable and organized cartilage resembling the native articular cartilage. PMID:28228529

  19. [Experimental study on loading naringin composite scaffolds for repairing rabbit osteochondral defects].

    PubMed

    Huang, Junbo; Wang, Shiyong; Zhang, Xiaomin; Li, Gen; Ji, Puzhong; Zhao, Hongbin

    2017-04-01

    To investigate the performance of loading naringin composite scaffolds and its effects on repair of osteochondral defects. The loading naringin and unloading naringin sustained release microspheres were prepared by W/O/W method; with the materials of the attpulgite and the collagen type I, the loading naringin, unloading naringin, and loading transforming growth factor β 1 (TGF-β 1 ) osteochondral composite scaffolds were constructed respectively by "3 layers sandwich method". The effect of sustained-release of loading naringin microspheres, the morphology of the composite scaffolds, and the biocompatibility were evaluated respectively by releasing in vitro , scanning electron microscope, and cell counting kit 8. Forty Japanese white rabbits were randomly divided into groups A, B, C, and D, 10 rabbits each group. After a osteochondral defect of 4.5 mm in diameter and 4 mm in depth was made in the intercondylar fossa of two femurs. Defect was not repaired in group A (blank control), and defect was repaired with unloading naringin composite scaffolds (negative control group), loading naringin composite scaffolds (experimental group), and loading TGF-β 1 composite scaffolds (positive control group) in groups B, C, and D respectively. At 3 and 6 months after repair, the intercondylar fossa was harvested for the general, HE staining, and toluidine blue staining to observe the repair effect. Western blot was used to detect the expression of collagen type II in the new cartilage. Loading naringin microspheres had good effect of sustained-release; the osteochondral composite scaffolds had good porosity; the cell proliferation rate on loading naringin composite scaffold was increased significantly when compared with unloading naringin scaffold ( P <0.05). General observation revealed that defect range of groups C and D was reduced significantly when compared with groups A and B at 3 months after repair; at 6 months after repair, defects of group C were covered by new cartilage, and new cartilage well integrated with the adjacent cartilage in group D. The results of histological staining revealed that defects were filled with a small amount of fibrous tissue in groups A and B, and a small amount of new cartilage in groups C and D at 3 months after repair; new cartilage of groups C and D was similar to normal cartilage, but defects were filled with a large amount of fibrous tissue in groups A and B at 6 months after repair. The expression of collagen type II in groups C and D was significantly higher than that in groups A and B ( P <0.05), but no significant difference was found between groups C and D ( P >0.05). Loading naringin composite scaffolds have good biocompatibility and effect in repair of rabbit articular osteochondral defects.

  20. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    PubMed

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  1. The junction between hyaline cartilage and engineered cartilage in rabbits.

    PubMed

    Komura, Makoto; Komura, Hiroko; Otani, Yushi; Kanamori, Yutaka; Iwanaka, Tadashi; Hoshi, Kazuto; Tsuyoshi, Takato; Tabata, Yasuhiko

    2013-06-01

    Tracheoplasty using costal cartilage grafts to enlarge the tracheal lumen was performed to treat congenital tracheal stenosis. Fibrotic granulomatous tissue was observed at the edge of grafted costal cartilage. We investigated the junction between the native hyaline cartilage and the engineered cartilage plates that were generated by auricular chondrocytes for fabricating the airway. Controlled, prospecive study. In group 1, costal cartilage from New Zealand white rabbits was collected and implanted into a space created in the cervical trachea. In group 2, chondrocytes from auricular cartilages were seeded on absorbable scaffolds. These constructs were implanted in the subcutaneous space. Engineered cartilage plates were then implanted into the trachea after 3 weeks of implantation of the constructs. The grafts in group 1 and 2 were retrieved after 4 weeks. In group 1, histological studies of the junction between the native hyaline cartilage and the implanted costal cartilage demonstrated chondrogenic tissue in four anastomoses sides out of the 10 examined. In group 2, the junction between the native trachea and the engineered cartilage showed neocartilage tissue in nine anastomoses sides out of 10. Engineered cartilage may be beneficial for engineered airways, based on the findings of the junction between the native and engineered grafts. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Association of CILP2 and ACE Gene Polymorphisms with Cardiovascular Risk Factors in Slovak Midlife Women

    PubMed Central

    Luptáková, Lenka; Benčová, Dominika; Siváková, Daniela; Cvíčelová, Marta

    2013-01-01

    The aim of this study is to assess the association of two polymorphisms, the cartilage intermediate layer protein 2 (CILP2) G/T and angiotensin converting enzyme (ACE) I/D, with blood pressure and anthropometrical and biochemical parameters related to the development of cardiovascular disease. The entire study sample comprised 341 women ranging in age from 39 to 65 years. The CILP2 genotypes were determined by PCR-RFLP and the ACE genotypes by PCR. The Bonferroni pairwise comparisons showed the effect of the CILP2 genotype on high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein B (apoB), apoB-to-apoA1 ratio, the total cholesterol (TC)-to-HDL-C ratio, non-HDL-C, and the LDL-C-to-HDL-C ratio (P < 0.05). Here, higher mean levels of HDL-C and lower mean levels of the remaining above mentioned lipid parameters were registered in the GT/TT genotype carriers than in GG carriers. Statistically significant association was identified between the ACE genotype and the following parameters: TC, LDL-C, and non-HDL-C (P < 0.05). The II genotype can lower serum level of TC (B = 0.40), LDL-C (B = 0.37), and non-HDL-C levels. The results of this study suggest that the minor T allele of CILP2 gene and I allele of ACE gene have a protective effect against elevated serum lipid and lipoprotein levels. PMID:24350279

  3. Articular cartilage tissue engineering: the role of signaling molecules

    PubMed Central

    Kwon, Heenam; Paschos, Nikolaos K.; Hu, Jerry C.; Athanasiou, Kyriacos

    2017-01-01

    Effective early disease modifying options for osteoarthritis remain lacking. Tissue engineering approach to generate cartilage in vitro has emerged as a promising option for articular cartilage repair and regeneration. Signaling molecules and matrix modifying agents, derived from knowledge of cartilage development and homeostasis, have been used as biochemical stimuli toward cartilage tissue engineering and have led to improvements in the functionality of engineered cartilage. Clinical translation of neocartilage faces challenges, such as phenotypic instability of the engineered cartilage, poor integration, inflammation, and catabolic factors in the arthritic environment; these can all contribute to failure of implanted neocartilage. A comprehensive understanding of signaling molecules involved in osteoarthritis pathogenesis and their actions on engineered cartilage will be crucial. Thus, while it is important to continue deriving inspiration from cartilage development and homeostasis, it has become increasing necessary to incorporate knowledge from osteoarthritis pathogenesis into cartilage tissue engineering. PMID:26811234

  4. In-vivo study and histological examination of laser reshaping of cartilage

    NASA Astrophysics Data System (ADS)

    Sviridov, Alexander P.; Sobol, Emil N.; Bagratashvili, Victor N.; Omelchenko, Alexander I.; Ovchinnikov, Yuriy M.; Shekhter, Anatoliy B.; Svistushkin, Valeriy M.; Shinaev, Andrei A.; Nikiforova, G.; Jones, Nicholas

    1999-06-01

    The results of recent study of cartilage reshaping in vivo are reported. The ear cartilage of piglets of 8-12 weeks old have been reshaped in vivo using the radiation of a holmium laser. The stability of the shape and possible side effects have been examined during four months. Histological investigation shown that the healing of irradiated are could accompany by the regeneration of ear cartilage. Finally, elastic type cartilage has been transformed into fibrous cartilage or cartilage of hyaline type.

  5. Lunar properties from transient and steady magnetic field measurements.

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.

    1972-01-01

    The electrical conductivity of the lunar interior has been determined from magnetic field step transients measured on the lunar dark side. The simplest model which best fits the data is a spherically symmetric three layer model having a nonconducting outer crust, an intermediate layer with electrical conductivity of .00035 mhos/m, and an inner core with conductivity of .01 mhos/m. Temperatures calculated from these conductivities in the three regions for an example of an olivine moon are as follows: crust, below 440 K; intermediate layer, 890 K; and core, 1240 K. The whole-moon relative permeability has been calculated from the measurements to be 1.03 plus or minus 0.13.

  6. Injection of Compressed Diced Cartilage in the Correction of Secondary and Primary Rhinoplasty: A New Technique with 12 Years' Experience.

    PubMed

    Erol, O Onur

    2017-11-01

    There are instances where small or large pockets are filled with diced cartilage in the nose, without use of wrapping materials. For this purpose, 1-cc commercial syringes were used. The obtained results were partial and incomplete. For better and improved results, the author designed new syringes, with two different sizes, which compress the diced cartilage for injection. The author presents his experience accrued over the past 12 years with 2366 primary, 749 secondary, 67 cleft lip and nose, and a total of 3182 rhinoplasties, using his new syringe design, which compresses diced cartilage and injects the diced cartilages as a conglutinate mass, simulating carved costal cartilage, but a malleable one. In 3125 patients, the take of cartilage graft was complete (98.2 percent) and a smooth surface was obtained, giving them a natural appearance. In 21 patients (0.65 percent), there was partial resorption of cartilage. Correction was performed with touch-up surgery by reinjection of a small amount of diced cartilage. In 36 patients (1.13 percent), there was overcorrection that, 1 year later, was treated by simple rasping. Compared with diced cartilage wrapped with Surgicel or fascia, the amount of injected cartilage graft is predictable because it consists purely of cartilage. The injected diced cartilage, because it is compressed and becomes a conglutinated mass, resembles a wood chip and simulates carved cartilage. It is superior to carved cartilage in that it is moldable, time saving, and gives a good result with no late show or warping. The injection takes only a few minutes.

  7. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST Study

    PubMed Central

    Crema, Michel D.; Felson, David T.; Roemer, Frank W.; Wang, Ke; Marra, Monica D.; Nevitt, Michael C.; Lynch, John A.; Torner, James; Lewis, Cora E.; Guermazi, Ali

    2012-01-01

    Objective To assess the association of prevalent cartilage damage and cartilage loss over time with incident bone marrow lesions (BMLs) in the same subregion of the tibiofemoral compartments as detected on magnetic resonance imaging (MRI). Methods The Multicenter Osteoarthritis Study is an observational study of individuals with or at risk for knee osteoarthritis (OA). Subjects whose baseline and 30-month follow-up MRIs were read for findings of OA were included. MRI was performed with a 1.0T extremity system. Tibiofemoral compartments were divided into 10 subregions. Cartilage morphology was scored from 0 to 6 and BMLs were scored from 0 to 3. Prevalent cartilage damage and cartilage loss over time were considered predictors of incident BMLs. Associations were assessed using logistic regression, with adjustments for potential confounders. Results Medially, incident BMLs were associated with baseline cartilage damage (adjusted odds ratio (OR) 3.9 [95% CI 3.0, 5.1]), incident cartilage loss (7.3 [95% CI 5.0, 10.7]) and progression of cartilage loss (7.6 [95% CI 5.1, 11.3]) Laterally, incident BMLs were associated with baseline cartilage damage (4.1 [95% CI 2.6, 6.3]), incident cartilage loss (6.0 [95% CI 3.1, 11.8]), and progression of cartilage loss (11.9 [95% CI 6.2, 23.0]). Conclusion Prevalent cartilage damage and cartilage loss over time are strongly associated with incident BMLs in the same subregion, supporting the significance of the close interrelation of the osteochondral unit in the progression of knee OA. PMID:23178289

  8. Decellularization of Human Nasal Septal Cartilage for the Novel Filler Material of Vocal Fold Augmentation.

    PubMed

    Kang, Dae-Woon; Shin, Sung-Chan; Jang, Jeon-Yeob; Park, Hee-Young; Lee, Jin-Choon; Wang, Soo-Geun; Lee, Byung-Joo

    2017-01-01

    The clinical application of allogenic and/or xenogenic cartilage for vocal fold augmentation requires to remove the antigenic cellular component. The objective of this study was to assess the effect of cartilage decellularization and determine the change in immunogenicity after detergent treatment in human nasal septal cartilage flakes made by the freezing and grinding method. Human nasal septal cartilages were obtained from surgical cases. The harvested cartilages were treated by the freezing and grinding technique. The obtained cartilage flakes were treated with 1% Triton X-100 or 2% sodium dodecyl sulfate (SDS) for decellularization of the cartilage flakes. Hematoxylin and eosin stain (H&E stain), surface electric microscopy, immunohistochemical stain for major histocompatibility complex I and II, and ELISA for DNA contents were performed to assess the effect of cartilage decellularization after detergent treatment. A total of 10 nasal septal cartilages were obtained from surgical cases. After detergent treatment, the average size of the cartilage flakes was significantly decreased. With H&E staining, the cell nuclei of decellularized cartilage flakes were not observed. The expression of major histocompatibility complex (MHC)-I and II antigens was not identified in the decellularized cartilage flakes after treatment with detergent. DNA content was removed almost entirely from the decellularized cartilage flakes. Treatment with 2% SDS or 1% Triton X-100 for 1 hour appears to be a promising method for decellularization of human nasal septal cartilage for vocal fold augmentation. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. [Research progress of articular cartilage scaffold for tissue engineering].

    PubMed

    Liu, Qingyu; Wang, Fuyou; Yang, Liu

    2012-10-01

    To review the research progress of articular cartilage scaffold materials and look into the future development prospects. Recent literature about articular cartilage scaffold for tissue engineering was reviewed, and the results from experiments and clinical application about natural and synthetic scaffold materials were analyzed. The design of articular cartilage scaffold for tissue engineering is vital to articular cartilage defects repair. The ideal scaffold can promote the progress of the cartilage repair, but the scaffold materials still have their limitations. It is necessary to pay more attention to the research of the articular cartilage scaffold, which is significant to the repair of cartilage defects in the future.

  10. Locating articular cartilage in MR images

    NASA Astrophysics Data System (ADS)

    Folkesson, Jenny; Dam, Erik; Pettersen, Paola; Olsen, Ole F.; Nielsen, Mads; Christiansen, Claus

    2005-04-01

    Accurate computation of the thickness of the articular cartilage is of great importance when diagnosing and monitoring the progress of joint diseases such as osteoarthritis. A fully automated cartilage assessment method is preferable compared to methods using manual interaction in order to avoid inter- and intra-observer variability. As a first step in the cartilage assessment, we present an automatic method for locating articular cartilage in knee MRI using supervised learning. The next step will be to fit a variable shape model to the cartilage, initiated at the location found using the method presented in this paper. From the model, disease markers will be extracted for the quantitative evaluation of the cartilage. The cartilage is located using an ANN-classifier, where every voxel is classified as cartilage or non-cartilage based on prior knowledge of the cartilage structure. The classifier is tested using leave-one-out-evaluation, and we found the average sensitivity and specificity to be 91.0% and 99.4%, respectively. The center of mass calculated from voxels classified as cartilage are similar to the corresponding values calculated from manual segmentations, which confirms that this method can find a good initial position for a shape model.

  11. The effects of exercise on human articular cartilage

    PubMed Central

    Eckstein, F; Hudelmaier, M; Putz, R

    2006-01-01

    The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass. PMID:16637874

  12. Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes.

    PubMed

    Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H

    2014-05-01

    Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  13. The effects of exercise on human articular cartilage.

    PubMed

    Eckstein, F; Hudelmaier, M; Putz, R

    2006-04-01

    The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass.

  14. Improved conductivity of indium-tin-oxide film through the introduction of intermediate layer

    NASA Astrophysics Data System (ADS)

    Ng, S. W.; Yam, F. K.; Beh, K. P.; Tneh, S. S.; Hassan, Z.

    2016-09-01

    A thin intermediate layer (Ag, AuSn, In, Ni, Sn, SiO2) was individually deposited on glass substrates prior to the deposition of indium-tin-oxide (ITO) thin film by radio-frequency (RF) magnetron sputtering employing ITO target (composition ratio of In2O3:SnO2 = 9:1). The structural, optical and electrical properties were investigated to compare the ITO thin film with and without an intermediate layer. The preferential orientation of all ITO films was along (222) plane. Although all thin films were polycrystalline, the presence of intermediate layer promoted the overall crystallinity. The sheet resistance and resistivity of the ITO film were reduced from ∼68 Ω/□ to ∼29-45 Ω/□, and 16.2 × 10-4 Ω cm up to 7.58 × 10-4 Ω cm, respectively, by inserting a thin metal layer underneath the ITO film, and it is dependent on the degree of crystallization. The optical transmittance in the visible region varies from 40 to 88% for different samples. Based on the evaluation from Tauc plot, the optical band gap falls in the range of 4.02-4.12 eV. Physical film thickness was compared with that evaluated by optical measurement in the visible range and the physical thickness was found to be smaller. Similarly, the carrier concentration/scattering time from Hall effect measurement were also compared with that from optical measurement in the infrared region. Haacke's figure of merit (FOM) was employed to assess the quality of the ITO films, and the highest FOM is credited to ITO/In up to ∼8 × 10-3 Ω-1 in the visible light region.

  15. Investigation of Corrosion Protection in Oil Mineral Reservoirs by Nanocomposites Used as Coating Layers

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Abdulhameed R.; Al-Saaidi, Samer A.

    2018-05-01

    In this study, a number of nanocomposites were prepared by adding magnesium oxide (MgO) with weight percentages (1, 2 & 3)% to cellulose nitrate and sodium silicate as an intermediate layer and other nanocomposites by adding MgO, coal coke and hybrid (MgO & coal coke with ratio 1:1) with weight percentages (1, 2 & 3)% to epoxy resin as final layer. The identity of the used metal is determined by spectrometer OE thermo. The nature and topography of the surface layers were examined by optical microscope and atomic force microscope (AFM). Mechanical properties are indicated by hardness, wear rate, impact strength and adhesion strength. The efficiency of the layers prepared to inhibit corrosion in the oil mineral reservoirs of the oil products distribution company was studied by electrochemical corrosion test in addition to the chemical corrosion test. The used metal is (St-37) according to (ASTM). It was found that the best intermediate layer (cellulose nitrate+3%MgO) and the final layer is the epoxy resin reinforced by 2% hybrid.

  16. Thermal stress analysis of ceramic gas-path seal components for aircraft turbines

    NASA Technical Reports Server (NTRS)

    Kennedy, F. E.; Bill, R. C.

    1979-01-01

    Stress and temperature distributions were evaluated numerically for a blade-tip seal system proposed for gas turbine applications. The seal consists of an abradable ceramic layer on metallic backing with intermediate layers between the ceramic layer and metal substrate. The most severe stresses in the seal, as far as failure is concerned, are tensile stresses at the top of the ceramic layer and shear and normal stresses at the layer interfaces. All these stresses reach their maximum values during the deceleration phase of a test engine cycle. A parametric study was carried out to evaluate the influence of various design parameters on these critical stress values. The influences of material properties and geometric parameters of the ceramic, intermediate, and backing layers were investigated. After the parametric study was completed, a seal system was designed which incorporated materials with beneficial elastic and thermal properties in each layer of the seal. An analysis of the proposed seal design shows an appreciable decrease in the magnitude of the maximum critical stresses over those obtained with earlier configurations.

  17. Chassis integrated control for active suspension, active front steering and direct yaw moment systems using hierarchical strategy

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Wong, Pak Kin; Ma, Xinbo; Xie, Zhengchao

    2017-01-01

    This paper proposes a novel integrated controller with three-layer hierarchical structure to coordinate the interactions among active suspension system (ASS), active front steering (AFS) and direct yaw moment control (DYC). First of all, a 14-degree-of-freedom nonlinear vehicle dynamic model is constructed. Then, an upper layer is designed to calculate the total corrected moment for ASS and intermediate layer based on linear moment distribution. By considering the working regions of the AFS and DYC, the intermediate layer is functionalised to determine the trigger signal for the lower layer with corresponding weights. The lower layer is utilised to separately trace the desired value of each local controller and achieve the local control objectives of each subsystem. Simulation results show that the proposed three-layer hierarchical structure is effective in handling the working region of the AFS and DYC, while the quasi-experimental result shows that the proposed integrated controller is able to improve the lateral and vertical dynamics of the vehicle effectively as compared with a conventional electronic stability controller.

  18. Small, highly oriented Ru grains in intermediate layer realized through suppressing relaxation of low-angle grain boundaries for perpendicular recording media

    NASA Astrophysics Data System (ADS)

    Itagaki, Norikazu; Saito, Shin; Takahashi, Migaku

    2009-04-01

    Through analyzing the growth mechanism of the Ru layer in a nonmagnetic intermediate layer (NMIL) for perpendicular magnetic recording media, a concept for the NMIL is proposed in order to realize a recording layer of small, highly c-plane oriented grains with no intergranular exchange coupling. It was found that (1) fast Fourier transform analysis of plan-view transmission electron microscopy lattice images of Ru layers revealed that hexagonal close packed Ru grains in a c-plane oriented film readily coalesce with each other due to the disappearance of low-angle tilt boundaries. (2) A promising candidate for a NMIL consists of three individual epitaxially grown functional layers: a large-grain seed layer with a highly oriented sheet texture, a first interlayer of small grains, and a second interlayer of nonmagnetic grains isolated by a segregated oxide. (3) The Ru-SiO2/Ru/Mg NMIL based on the proposed concept exhibited small (diameter: 4.8 nm) Ru grains while retaining a narrow orientation distribution of 4.1°.

  19. An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology.

    PubMed

    Klika, Václav; Gaffney, Eamonn A; Chen, Ying-Chun; Brown, Cameron P

    2016-09-01

    There is a long history of mathematical and computational modelling with the objective of understanding the mechanisms governing cartilage׳s remarkable mechanical performance. Nonetheless, despite sophisticated modelling development, simulations of cartilage have consistently lagged behind structural knowledge and thus the relationship between structure and function in cartilage is not fully understood. However, in the most recent generation of studies, there is an emerging confluence between our structural knowledge and the structure represented in cartilage modelling. This raises the prospect of further refinement in our understanding of cartilage function and also the initiation of an engineering-level understanding for how structural degradation and ageing relates to cartilage dysfunction and pathology, as well as informing the potential design of prospective interventions. Aimed at researchers entering the field of cartilage modelling, we thus review the basic principles of cartilage models, discussing the underlying physics and assumptions in relatively simple settings, whilst presenting the derivation of relatively parsimonious multiphase cartilage models consistent with our discussions. We proceed to consider modern developments that start aligning the structure captured in the models with observed complexities. This emphasises the challenges associated with constitutive relations, boundary conditions, parameter estimation and validation in cartilage modelling programmes. Consequently, we further detail how both experimental interrogations and modelling developments can be utilised to investigate and reduce such difficulties before summarising how cartilage modelling initiatives may improve our understanding of cartilage ageing, pathology and intervention. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  1. PEDF Is Associated with the Termination of Chondrocyte Phenotype and Catabolism of Cartilage Tissue.

    PubMed

    Klinger, P; Lukassen, S; Ferrazzi, F; Ekici, A B; Hotfiel, T; Swoboda, B; Aigner, T; Gelse, K

    2017-01-01

    Objective. To investigate the expression and target genes of pigment epithelium-derived factor (PEDF) in cartilage and chondrocytes, respectively. Methods. We analyzed the expression pattern of PEDF in different human cartilaginous tissues including articular cartilage, osteophytic cartilage, and fetal epiphyseal and growth plate cartilage, by immunohistochemistry and quantitative real-time (qRT) PCR. Transcriptome analysis after stimulation of human articular chondrocytes with rhPEDF was performed by RNA sequencing (RNA-Seq) and confirmed by qRT-PCR. Results. Immunohistochemically, PEDF could be detected in transient cartilaginous tissue that is prone to undergo endochondral ossification, including epiphyseal cartilage, growth plate cartilage, and osteophytic cartilage. In contrast, PEDF was hardly detected in healthy articular cartilage and in the superficial zone of epiphyses, regions that are characterized by a permanent stable chondrocyte phenotype. RNA-Seq analysis and qRT-PCR demonstrated that rhPEDF significantly induced the expression of a number of matrix-degrading factors including SAA1, MMP1, MMP3, and MMP13. Simultaneously, a number of cartilage-specific genes including COL2A1, COL9A2, COMP, and LECT were among the most significantly downregulated genes. Conclusions. PEDF represents a marker for transient cartilage during all neonatal and postnatal developmental stages and promotes the termination of cartilage tissue by upregulation of matrix-degrading factors and downregulation of cartilage-specific genes. These data provide the basis for novel strategies to stabilize the phenotype of articular cartilage and prevent its degradation.

  2. Method of making photovoltaic cell

    DOEpatents

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2017-06-20

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  3. Architecture for coated conductors

    DOEpatents

    Foltyn, Stephen R.; Arendt, Paul N.; Wang, Haiyan; Stan, Liliana

    2010-06-01

    Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of epitaxial titanium nitride or upon a intermediate buffer layer upon the layer of epitaxial titanium nitride.

  4. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    PubMed

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  5. Autofluorescence lifetime metrology for label-free detection of cartilage matrix degradation

    NASA Astrophysics Data System (ADS)

    Nickdel, Mohammad B.; Lagarto, João. L.; Kelly, Douglas J.; Manning, Hugh B.; Yamamoto, Kazuhiro; Talbot, Clifford B.; Dunsby, Christopher; French, Paul; Itoh, Yoshifumi

    2014-03-01

    Degradation of articular cartilage extracellular matrix (ECM) by proteolytic enzyme is the hallmark of arthritis that leads to joint destruction. Detection of early biochemical changes in cartilage before irreversible structural damages become apparent is highly desirable. Here we report that the autofluorescence decay profile of cartilage is significantly affected by proteolytic degradation of cartilage ECM and can be characterised by measurements of the autofluorescence lifetime (AFL). A multidimensional fluorometer utilizing ultraviolet excitation at 355 nm or 375 nm coupled to a fibreoptic probe was developed for single point time-resolved AFL measurements of porcine articular cartilage explants treated with different proteinases. Degradation of cartilage matrix components by treating with bacterial collagenase, matrix metalloproteinase 1, or trypsin resulted in significant reduction of AFL of the cartilage in both a dose and time dependent manner. Differences in cartilage AFL were also confirmed by fluorescence lifetime imaging microscopy (FLIM). Our data suggest that AFL of cartilage tissue is a potential non-invasive readout to monitor cartilage matrix integrity that may be utilized for diagnosis of arthritis as well as monitoring the efficacy of anti-arthritic therapeutic agents.

  6. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) ormore » silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.« less

  7. Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.

    PubMed

    Osinga, Rik; Di Maggio, Nunzia; Todorov, Atanas; Allafi, Nima; Barbero, Andrea; Laurent, Frédéric; Schaefer, Dirk Johannes; Martin, Ivan; Scherberich, Arnaud

    2016-08-01

    : Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. Unlike bone marrow-derived stromal cells (also known as bone marrow-derived mesenchymal stromal/stem cells), adipose-derived stromal cells (ASC) have so far failed to form a bone organ by ECO. The goal of the present study was to assess whether priming human ASC to a defined stage of chondrogenesis in vitro allows their autonomous ECO upon ectopic implantation. ASC were cultured either as micromass pellets or into collagen sponges in chondrogenic medium containing transforming growth factor-β3 and bone morphogenetic protein-6 for 4 weeks (early hypertrophic templates) or for two additional weeks in medium supplemented with β-glycerophosphate, l-thyroxin, and interleukin1-β to induce hypertrophic maturation (late hypertrophic templates). Constructs were implanted in vivo and analyzed after 8 weeks. In vitro, ASC deposited cartilaginous matrix positive for glycosaminoglycans, type II collagen, and Indian hedgehog. Hypertrophic maturation induced upregulation of type X collagen, bone sialoprotein, and matrix metalloproteinase13 (MMP13). In vivo, both early and late hypertrophic templates underwent cartilage remodeling, as assessed by MMP13- and tartrate-resistant acid phosphatase-positive staining, and developed bone ossicles, including bone marrow elements, although to variable degrees of efficiency. In situ hybridization for human-specific sequences and staining with a human specific anti-CD146 antibody demonstrated the direct contribution of ASC to bone and stromal tissue formation. In conclusion, despite their debated skeletal progenitor nature, human ASC can generate bone organs through ECO when suitably primed in vitro. Recapitulation of endochondral ossification (ECO) (i.e., generation of marrow-containing ossicles through a cartilage intermediate) has relevance to develop human organotypic models for bone or hematopoietic cells and to engineer grafts for bone regeneration. This study demonstrated that expanded, human adult adipose-derived stromal cells can generate ectopic bone through ECO, as previously reported for bone marrow stromal cells. This system can be used as a model in a variety of settings for mimicking ECO during development, physiology, or pathology (e.g., to investigate the role of BMPs, their receptors, and signaling pathways). The findings have also translational relevance in the field of bone regeneration, which, despite several advances in the domains of materials and surgical techniques, still faces various limitations before being introduced in the routine clinical practice. ©AlphaMed Press.

  8. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect.

    PubMed

    Zhang, Yaqian; Zhang, Min; Jiang, Haoyang; Shi, Jinli; Li, Feibo; Xia, Yanhong; Zhang, Gongzheng; Li, Huanjun

    2017-12-01

    The layered nanocomposite hydrogel films containing chitosan (CS) and graphene oxide (GO) have been prepared by water evaporation induced self-assembly and subsequent physical cross-linking in alkaline solution. The layered CS/GO hydrogel films obtained have a nacre-like brick-and-mortar microstructure, which contributes to their excellent mechanical properties. The tensile strength and elongation at break of the hydrogel films with 5wt% GO are 5.35MPa and 193.5%, respectively, which are comparable to natural costal cartilage. Furthermore, the CS/GO hydrogel films exhibited pH-driven shape memory effect, and this unique phenomenon is mainly attributed to the reversible transition of partial physically cross-linking corresponding to hydrogen bondings and hydrophobic interactions between CS polymer chains due to pH changing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Triiodothyronine stimulates cartilage growth and maturation by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, W.M.; Van Wyk, J.J.

    1987-02-01

    The mechanisms by which triiodothyronine (T3) stimulates growth and maturation of growth-plate cartilage in vitro were studied by incubating embryonic chick pelvic cartilages in serum-free medium in the presence and absence of T3 for 3 days. To determine whether T3 might stimulate production of somatomedins by the cartilage, medium from cartilage incubated with and without T3 was assayed for somatomedin C( Sm-C) by radioimmunoassay. No difference in Sm-C content was found. However, cartilage incubated with T3 and increasing amounts of human Sm-C (0.5-20 ng/ml) weighed more and had greater amounts of glycosaminoglycan that cartilage incubated in the same concentrations ofmore » Sm-C without T3, suggesting that T3 enhances the growth effect of somatomedin. The authors added a monoclonal antibody to Sm-C (anti-Sm-C) to the organ culture to determine whether T3's stimulatory effect on cartilage growth could be blocked. The anti-Sm-C inhibited growth of cartilage incubated in medium alone and blocked the growth response to T3. They propose two different mechanisms by which T3 affects growth-plate cartilage: (1) T3 promotes cartilage growth primarily through enhancing the effect of somatomedin, and (2) T3 stimulates cartilage maturation possibly by accelerating the normal process of cartilage differentiation from proliferative to hypertrophic chondrocytes.« less

  10. Content and synthesis of nucleic acids in the cartilage in chondromalacia patellae.

    PubMed

    Lund, F; Telhag, H

    1978-12-01

    The content and the synthesis of nucleic acids in chondromalacian, osteoarthritis and normal cartilage was compared. The chondromalacian cartilage differed from osteoarthritis in that the content of nucleic acids was less. Also, the cell density was less in chondromalacian than in normal cartilage as opposed to previous findings in osteoarthritis. The synthesis of DNA was greater in chondromalacian than in normal cartilage but less than in osteoarthritis. With regard to the RNA synthesis, however, the chondromalacian cartilage showed a higher rate than both normal and osteoarthritic cartilage.

  11. Chondrosarcoma: A Rare Misfortune in Aging Human Cartilage? The Role of Stem and Progenitor Cells in Proliferation, Malignant Degeneration and Therapeutic Resistance

    PubMed Central

    Boehme, Karen A.; Schleicher, Sabine B.; Rolauffs, Bernd

    2018-01-01

    Unlike other malignant bone tumors including osteosarcomas and Ewing sarcomas with a peak incidence in adolescents and young adults, conventional and dedifferentiated chondrosarcomas mainly affect people in the 4th to 7th decade of life. To date, the cell type of chondrosarcoma origin is not clearly defined. However, it seems that mesenchymal stem and progenitor cells (MSPC) in the bone marrow facing a pro-proliferative as well as predominantly chondrogenic differentiation milieu, as is implicated in early stage osteoarthritis (OA) at that age, are the source of chondrosarcoma genesis. But how can MSPC become malignant? Indeed, only one person in 1,000,000 will develop a chondrosarcoma, whereas the incidence of OA is a thousandfold higher. This means a rare coincidence of factors allowing escape from senescence and apoptosis together with induction of angiogenesis and migration is needed to generate a chondrosarcoma. At early stages, chondrosarcomas are still assumed to be an intermediate type of tumor which rarely metastasizes. Unfortunately, advanced stages show a pronounced resistance both against chemo- and radiation-therapy and frequently metastasize. In this review, we elucidate signaling pathways involved in the genesis and therapeutic resistance of chondrosarcomas with a focus on MSPC compared to signaling in articular cartilage (AC). PMID:29361725

  12. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    PubMed

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  13. Saddle-nose deformity repair with microplate-adapted costal cartilage.

    PubMed

    Eren, Fikret; Öksüz, Sinan; Melikoğlu, Cenk; Karagöz, Hüseyin; Ülkür, Ersin

    2014-08-01

    Nasal deformities affecting the bone and lower two-thirds of the nose due to the loss of septal height and tip support are defined as "saddle-nose" deformity. Reconstruction of a saddle-nose deformity essentially necessitates structural grafting. This article presents an alternative approach for correction of saddle-nose deformity using a microplate and costal cartilage. The results are compared with those of the previously applied costal cartilage repair methods. Between 2004 and 2013, 16 patients were treated with costal cartilage autografts. Of these 16 patients, 7 were treated with a microplate and costal cartilage autograft combination, 4 were treated with a costal cartilage autograft and Kirschner (K)-wire, and 5 were treated with onlay costal cartilage grafts. The mean follow-up periods were 16 months for group treated with microplate-adapted autologous costal cartilage, 12 months for the group treated with K-wire and autologous costal cartilage, and 16 months for the group treated with onlay costal cartilage. The patients treated with K-wire inserted cartilages and the patients treated onlay dorsal costal cartilages encountered complications such as extrusion of the wire and warping, respectively. The seven patients treated with microplate and dorsal onlay costal cartilage graft did not experience any infection, warping, or extrusion complication. The warping tendency of the costal cartilage autograft can be efficiently prevented without a prominent complication risk by using microplate-adapted costal cartilage grafts. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  14. Collagen Type IV and Laminin Expressions during Cartilage Repair and in Late Clinically Failed Repair Tissues from Human Subjects

    PubMed Central

    Foldager, Casper Bindzus; Toh, Wei Seong; Christensen, Bjørn Borsøe; Lind, Martin; Gomoll, Andreas H.; Spector, Myron

    2016-01-01

    Objective To identify the collagen type IV (Col4) isoform in articular cartilage and to evaluate the expressions of Col4 and laminin in the pericellular matrix (PCM) in damaged cartilage and during cartilage repair. Design The Col4 isoform was determined in chondrocytes isolated from 6 patients cultured up to 6 days and in 21% O2 or 1% O2, and the gene expression of Col4 α-chains was investigated. The distribution of Col4 and laminin in traumatically damaged cartilage (n = 7) and clinically failed cartilage repair (microfracture, TruFit, autologous chondrocyte implantation; n = 11) were investigated using immunohistochemistry. Normal human cartilage was used as control (n = 8). The distribution during clinical cartilage repair procedures was investigated in a minipig model with 6-month follow-up (untreated chondral, untreated osteochondral, microfracture, autologous chondrocyte implantation; n = 10). Results The Col4 isoform in articular cartilage was characterized as α1α1α2, which is an isoform containing antiangiogenic domains in the NC1-terminals (arresten and canstatin). In normal cartilage, laminin and Col4 was exclusively found in the PCM. High amounts (>50%) of Col4 in the PCM significantly decreased in damaged cartilage (P = 0.004) and clinically failed repair tissue (P < 0.001). Laminin was only found with high expression (>50%) in 4/8 of the normal samples, which was not statistically significantly different from damaged cartilage (P = 0.15) or failed cartilage repair (P = 0.054). Conclusions Col4 in cartilage contain antiangiogenic domains and may play a role in the hypoxic environment in articular cartilage. Col4 and laminin was not found in the PCM of damaged and clinically failed repair. PMID:26958317

  15. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study.

    PubMed

    Crema, M D; Felson, D T; Roemer, F W; Wang, K; Marra, M D; Nevitt, M C; Lynch, J A; Torner, J; Lewis, C E; Guermazi, A

    2013-02-01

    To assess the association of prevalent cartilage damage and cartilage loss over time with incident bone marrow lesions (BMLs) in the same subregion of the tibiofemoral compartments as detected on magnetic resonance imaging (MRI). The Multicenter Osteoarthritis Study is an observational study of individuals with or at risk for knee osteoarthritis (OA). Subjects whose baseline and 30-month follow-up MRIs were read for findings of OA were included. MRI was performed with a 1.0 T extremity system. Tibiofemoral compartments were divided into 10 subregions. Cartilage morphology was scored from 0 to 6 and BMLs were scored from 0 to 3. Prevalent cartilage damage and cartilage loss over time were considered predictors of incident BMLs. Associations were assessed using logistic regression, with adjustments for potential confounders. Medially, incident BMLs were associated with baseline cartilage damage (adjusted odds ratio (OR) 3.9 [95% confidence interval (CI) 3.0, 5.1]), incident cartilage loss (7.3 [95% CI 5.0, 10.7]) and progression of cartilage loss (7.6 [95% CI 5.1, 11.3]) Laterally, incident BMLs were associated with baseline cartilage damage (4.1 [95% CI 2.6, 6.3]), incident cartilage loss (6.0 [95% CI 3.1, 11.8]), and progression of cartilage loss (11.9 [95% CI 6.2, 23.0]). Prevalent cartilage damage and cartilage loss over time are strongly associated with incident BMLs in the same subregion, supporting the significance of the close interrelation of the osteochondral unit in the progression of knee OA. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Knee Joint Kinematics during Walking Influences the Spatial Cartilage Thickness Distribution in the Knee

    PubMed Central

    Koo, Seungbum; Rylander, Jonathan H.; Andriacchi, Thomas P.

    2010-01-01

    The regional adaptation of knee cartilage morphology to the kinematics of walking has been suggested as an important factor in the evaluation of the consequences of alteration in normal gait leading to osteoarthritis. The purpose of this study was to investigate the association of spatial cartilage thickness distributions of the femur and tibia in the knee to the knee kinematics during walking. Gait data and knee MR images were obtained from 17 healthy volunteers (age 33.2±9.8 years). Cartilage thickness maps were created for the femoral and tibial cartilage. Locations of thickest cartilage in the medial and lateral compartments in the femur and tibia were identified using a numerical method. The flexion-extension (FE) angle associated with the cartilage contact regions on the femur, and the anterior-posterior (AP) translation and internal-external (IE) rotation associated with the cartilage contact regions on the tibia at the heel strike of walking were tested for correlation with the locations of thickest cartilage. The locations of the thickest cartilage had relatively large variation (SD 8.9°) and was significantly associated with the FE angle at heel strike only in the medial femoral condyle (R2=0.41, p<0.01). The natural knee kinematics and contact surface shapes seem to affect the functional adaptation of knee articular cartilage morphology. The sensitivity of cartilage morphology to kinematics at the knee during walking suggests that regional cartilage thickness variations are influenced by both loading and the number of loading cycles. Thus walking is an important consideration in the analysis of the morphological variations of articular cartilage, since it is the dominant cyclic activity of daily living. The sensitivity of cartilage morphology to gait kinematics is also important in understanding the etiology and pathomechanics of osteoarthritis. PMID:21371712

  17. Enhanced cartilage repair in 'healer' mice-New leads in the search for better clinical options for cartilage repair.

    PubMed

    Fitzgerald, Jamie

    2017-02-01

    Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cartilage imaging in children: current indications, magnetic resonance imaging techniques, and imaging findings.

    PubMed

    Ho-Fung, Victor M; Jaramillo, Diego

    2013-07-01

    Evaluation of hyaline cartilage in pediatric patients requires in-depth understanding of normal physiologic changes in the developing skeleton. Magnetic resonance (MR) imaging is a powerful tool for morphologic and functional imaging of the cartilage. In this review article, current imaging indications for cartilage evaluation pertinent to the pediatric population are described. In particular, novel surgical techniques for cartilage repair and MR classification of cartilage injuries are summarized. The authors also provide a review of the normal anatomy and a concise description of the advances in quantitative cartilage imaging (ie, T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage, and T1rho). Copyright © 2013 Elsevier Inc. All rights reserved.

  19. An overlapping region between the two terminal folding units of the outer surface protein A (OspA) controls its folding behavior.

    PubMed

    Makabe, Koki; Nakamura, Takashi; Dhar, Debanjan; Ikura, Teikichi; Koide, Shohei; Kuwajima, Kunihiro

    2018-04-27

    Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding-unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions. Copyright © 2018. Published by Elsevier Ltd.

  20. Impact of synovial fluid flow on temperature regulation in knee cartilage.

    PubMed

    Moghadam, Mohamadreza Nassajian; Abdel-Sayed, Philippe; Camine, Valérie Malfroy; Pioletti, Dominique P

    2015-01-21

    Several studies have reported an increase of temperature in cartilage submitted to cyclic sinusoidal loading. The temperature increase is in part due to the viscous behavior of this tissue, which partially dissipates the input mechanical energy into heat. While the synovial fluid flow within the intra-articular gap and inside the porous cartilage is supposed to play an important role in the regulation of the cartilage temperature, no specific study has evaluated this aspect. In the present numerical study, a poroelastic model of the knee cartilage is developed to evaluate first the temperature increase in the cartilage due to dissipation and second the impact of the synovial fluid flow in the cartilage heat transfer phenomenon. Our results showed that, the local temperature is effectively increased in knee cartilage due to its viscous behavior. The synovial fluid flow cannot significantly preventing this phenomenon. We explain this result by the low permeability of cartilage and the moderate fluid exchange at the surface of cartilage under deformation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Non-Contact Evaluation for Articular Cartilage Using Ultrasound

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Nakagawa, Yasuaki; Kuroki, Hiroshi; Nakashima, Keisuke; Ikeuchi, Ken; Mine, Takatomo; Nakamura, Takashi; Kawai, Shinya; Saito, Takashi

    In orthopedic field, various new treatments of articular cartilage defect, for example autogenous osteochondral grafts, have been developed. With the spread of these treatments, orthopedists began to focus on the mechanical properties of recovered articular cartilage. The quantitative evaluation of articular cartilage before and after these treatments gives orthopedists the important information to improve these treatments and develop new treatments. We have been investigating the non-contact ultrasonic evaluation for articular cartilage under arthroscopy. In this paper, it was hypothesized that the ultrasonic evaluation depended on the collagen fiber in cartilage. The enzymatically degradation of collagen fiber in cartilage surface was performed. The effect of the degradation on sound velocity, attenuation coefficient and signal intensity, which is the index of cartilage stiffness calculated from the proposed method, was measured. The numerical analysis was performed to clear the relation between the cartilage character and ultrasonic parameters. Experimental and numerical results suggest that the present method can be expanded the sensitive evaluation for cartilage disease in clinical field.

  2. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    PubMed

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  3. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    PubMed

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  4. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    PubMed

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Articular cartilage tissue engineering with plasma-rich in growth factors and stem cells with nano scaffolds

    NASA Astrophysics Data System (ADS)

    Montaser, Laila M.; Abbassy, Hadeer A.; Fawzy, Sherin M.

    2016-09-01

    The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich in growth factors (PRGF) and/or stem cells may be effective for tissue repair as well as cartilage regenerative processes. There is a great promise to advance current cartilage therapies toward achieving a consistently successful approach for addressing cartilage afflictions. Tissue engineering may be the best way to reach this objective via the use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology. In this paper, current and emergent approach in the field of cartilage tissue engineering is presented for specific application. In the next years, the development of new strategies using stem cells, in scaffolds, with supplementation of culture medium could improve the quality of new formed cartilage.

  6. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model.

    PubMed

    Jing, Lizhong; Zhang, Jiying; Leng, Huijie; Guo, Qinwei; Hu, Yuelin

    2015-04-01

    To demonstrate that iliac crest cartilage may be used to repair articular cartilage defects in the knees of rabbits. Full-thickness cartilage defects were created in the medial femoral condyle on both knees of 36 New Zealand white rabbits. The 72 defects were randomly assigned to be repaired with ipsilateral iliac crest cartilage (Group I), osteochondral tissues removed at defect creation (Group II), or no treatment (negative control, Group III). Animals were killed at 6, 12, and 24 weeks post-operatively. The repaired tissues were harvested for magnetic resonance imaging (MRI), histological studies (haematoxylin and eosin and immunohistochemical staining), and mechanical testing. At 6 weeks, the iliac crest cartilage graft was not yet well integrated with the surrounding articular cartilage, but at 12 weeks, the graft deep zone had partial ossification. By 24 weeks, the hyaline cartilage-like tissue was completely integrated with the surrounding articular cartilage. Osteochondral autografts showed more rapid healing than Group I at 6 weeks and complete healing at 12 weeks. Untreated defects were concave or partly filled with fibrous tissue throughout the study. MRI showed that Group I had slower integration with surrounding normal cartilage compared with Group II. The mechanical properties of Group I were significantly lower than those of Group II at 12 weeks, but this difference was not significant at 24 weeks. Iliac crest cartilage autografts were able to repair knee cartilage defects with hyaline cartilage and showed comparable results with osteochondral autografts in the rabbit model.

  7. Automatic atlas-based three-label cartilage segmentation from MR knee images

    PubMed Central

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2016-01-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces – for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. PMID:25128683

  8. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    PubMed

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  9. Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell

    NASA Astrophysics Data System (ADS)

    Imran, Ali; Jiang, Jianliang; Eric, Debora; Yousaf, Muhammad

    2018-01-01

    Quantum Dots (QDs) intermediate band solar cells (IBSC) are the most attractive candidates for the next generation of photovoltaic applications. In this paper, theoretical model of InAs/GaAs device has been proposed, where we have calculated the effect of variation in the thickness of intrinsic and IB layer on the efficiency of the solar cell using detailed balance theory. IB energies has been optimized for different IB layers thickness. Maximum efficiency 46.6% is calculated for IB material under maximum optical concentration.

  10. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.

    2010-05-01

    Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.

  11. Repair of massively defected hemi-joints using demineralized osteoarticular allografts with protected cartilage.

    PubMed

    Li, Siming; Yang, Xiaohong; Tang, Shenghui; Zhang, Xunmeng; Feng, Zhencheng; Cui, Shuliang

    2015-08-01

    Surgical replacement of massively defected joints necessarily relies on osteochondral grafts effective to both of bone and cartilage. Demineralized bone matrix (DBM) retains the osteoconductivity but destroys viable chondrocytes in the cartilage portion essential for successful restoration of defected joints. This study prepared osteochondral grafts of DBM with protected cartilage. Protected cartilage portions was characterized by cellular and molecular biology and the grafts were allogenically used for grafting. Protected cartilage showed similar histomorphological structure and protected proteins estimated by total proteins and cartilage specific proteins as in those of fresh controls when DBMs were generated in bone portions. Such grafts were successfully used for simultaneously repair of bone and cartilage in massively defected osteoarticular joints within 16 weeks post-surgery. These results present an allograft with clinical potential for simultaneous restoration of bone and cartilage in defected joints.

  12. Phase portrait analysis of super solitary waves and flat top solutions

    NASA Astrophysics Data System (ADS)

    Steffy, S. V.; Ghosh, S. S.

    2018-06-01

    The phase portrait analysis of super solitary waves has revealed a new kind of intermediate solution which defines the boundary between the two types of super solitary waves, viz., Type I and Type II. A Type I super solitary wave is known to be associated with an intermediate double layer while a Type II solution has no such association. The intermediate solution at the boundary has a flat top structure and is called a flat top solitary wave. Its characteristics resemble an amalgamation of a solitary wave and a double layer. It was found that, mathematically, such kinds of structures may emerge due to the presence of an extra nonlinearity. Although they are relatively unfamiliar in the realm of plasma physics, they have much wider applications in other physical systems.

  13. Co-culture systems-based strategies for articular cartilage tissue engineering.

    PubMed

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  14. Ex vivo culture platform for assessment of cartilage repair treatment strategies.

    PubMed

    Schwab, Andrea; Meeuwsen, Annick; Ehlicke, Franziska; Hansmann, Jan; Mulder, Lars; Smits, Anthal; Walles, Heike; Kock, Linda

    2017-01-01

    There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors specific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we evaluated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, matrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivo testing.

  15. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures

    PubMed Central

    Baum, T.; Joseph, G.B.; Karampinos, D.C.; Jungmann, P.M.; Link, T.M.; Bauer, J.S.

    2014-01-01

    SUMMARY Objective The purpose of this work was to review the current literature on cartilage and meniscal T2 relaxation time. Methods Electronic searches in PubMed were performed to identify relevant studies about T2 relaxation time measurements as non-invasive biomarker for knee osteoarthritis (OA) and cartilage repair procedures. Results Initial osteoarthritic changes include proteoglycan loss, deterioration of the collagen network, and increased water content within the articular cartilage and menisci. T2 relaxation time measurements are affected by these pathophysiological processes. It was demonstrated that cartilage and meniscal T2 relaxation time values were significantly increased in subjects with compared to those without radiographic OA and focal knee lesions, respectively. Subjects with OA risk factors such as overweight/obesity showed significantly greater cartilage T2 values than normal controls. Elevated cartilage and meniscal T2 relaxation times were found in subjects with vs without knee pain. Increased cartilage T2 at baseline predicted morphologic degeneration in the cartilage, meniscus, and bone marrow over 3 years. Furthermore, cartilage repair tissue could be non-invasively assessed by using T2 mapping. Reproducibility errors for T2 measurements were reported to be smaller than the T2 differences in healthy and diseased cartilage indicating that T2 relaxation time may be a reliable discriminatory biomarker. Conclusions Cartilage and meniscal T2 mapping may be suitable as non-invasive biomarker to diagnose early stages of knee OA and to monitor therapy of OA. PMID:23896316

  16. Osteochondral integration of multiply incised pure cartilage allograft: repair method of focal chondral defects in a porcine model.

    PubMed

    Bardos, Tamas; Farkas, Boglarka; Mezes, Beata; Vancsodi, Jozsef; Kvell, Krisztian; Czompoly, Tamas; Nemeth, Peter; Bellyei, Arpad; Illes, Tamas

    2009-11-01

    A focal cartilage lesion has limited capacity to heal, and the repair modalities used at present are still unable to provide a universal solution. Pure cartilage graft implantation appears to be a simple option, but it has not been applied widely as cartilage will not reattach easily to the subchondral bone. We used a multiple-incision technique (processed chondrograft) to increase cartilage graft surface. We hypothesized that pure cartilage graft with augmented osteochondral fusion capacity may be used for cartilage repair and we compared this method with other repair techniques. Controlled laboratory study. Full-thickness focal cartilage defects were created on the medial femoral condyle of 9-month-old pigs; defects were repaired using various methods including bone marrow stimulation, autologous chondrocyte implantation, and processed chondrograft. After the repair, at weeks 6 and 24, macroscopic and histologic evaluation was carried out. Compared with other methods, processed chondrograft was found to be similarly effective in cartilage repair. Defects without repair and defects treated with bone marrow stimulation appeared slightly irregular with fibrocartilage filling. Autologous chondrocyte implantation produced hyalinelike cartilage, although its cellular organization was distinguishable from the surrounding articular cartilage. Processed chondrograft demonstrated good osteochondral integration, and the resulting tissue appeared to be hyaline cartilage. The applied cartilage surface processing method allows acceptable osteochondral integration, and the repair tissue appears to have good macroscopic and histologic characteristics. If further studies confirm its efficacy, this technique could be considered for human application in the future.

  17. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold

    PubMed Central

    Musumeci, G.; Loreto, C.; Carnazza, M.L.; Coppolino, F.; Cardile, V.; Leonardi, R.

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. PMID:22073377

  18. Effects of Hydrostatic Loading on a Self-Aggregating, Suspension Culture–Derived Cartilage Tissue Analog

    PubMed Central

    Kraft, Jeffrey J.; Jeong, Changhoon; Novotny, John E.; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M.; Richardson, Dean W.; Dodge, George R.

    2011-01-01

    Objective: Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Design: Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture–derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. Results: In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. Conclusions: This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair. PMID:26069584

  19. Effects of Hydrostatic Loading on a Self-Aggregating, Suspension Culture-Derived Cartilage Tissue Analog.

    PubMed

    Kraft, Jeffrey J; Jeong, Changhoon; Novotny, John E; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M; Richardson, Dean W; Dodge, George R

    2011-07-01

    Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture-derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair.

  20. Use magnetic resonance imaging to assess articular cartilage

    PubMed Central

    Wang, Yuanyuan; Wluka, Anita E.; Jones, Graeme; Ding, Changhai

    2012-01-01

    Magnetic resonance imaging (MRI) enables a noninvasive, three-dimensional assessment of the entire joint, simultaneously allowing the direct visualization of articular cartilage. Thus, MRI has become the imaging modality of choice in both clinical and research settings of musculoskeletal diseases, particular for osteoarthritis (OA). Although radiography, the current gold standard for the assessment of OA, has had recent significant technical advances, radiographic methods have significant limitations when used to measure disease progression. MRI allows accurate and reliable assessment of articular cartilage which is sensitive to change, providing the opportunity to better examine and understand preclinical and very subtle early abnormalities in articular cartilage, prior to the onset of radiographic disease. MRI enables quantitative (cartilage volume and thickness) and semiquantitative assessment of articular cartilage morphology, and quantitative assessment of cartilage matrix composition. Cartilage volume and defects have demonstrated adequate validity, accuracy, reliability and sensitivity to change. They are correlated to radiographic changes and clinical outcomes such as pain and joint replacement. Measures of cartilage matrix composition show promise as they seem to relate to cartilage morphology and symptoms. MRI-derived cartilage measurements provide a useful tool for exploring the effect of modifiable factors on articular cartilage prior to clinical disease and identifying the potential preventive strategies. MRI represents a useful approach to monitoring the natural history of OA and evaluating the effect of therapeutic agents. MRI assessment of articular cartilage has tremendous potential for large-scale epidemiological studies of OA progression, and for clinical trials of treatment response to disease-modifying OA drugs. PMID:22870497

  1. Quadriceps Function and Knee Joint Ultrasonography after ACL Reconstruction.

    PubMed

    Pamukoff, Derek N; Montgomery, Melissa M; Moffit, Tyler J; Vakula, Michael N

    2018-02-01

    Individuals with anterior cruciate ligament reconstruction (ACLR) are at greater risk for knee osteoarthritis, partially because of chronic quadriceps dysfunction. Articular cartilage is commonly assessed using magnetic resonance imaging and radiography, but these methods are expensive and lack portability. Ultrasound imaging may provide a cost-effective and portable alternative for imaging the femoral cartilage. The purpose of this study was to compare ultrasonography of the femoral cartilage between the injured and uninjured limbs of individuals with unilateral ACLR, and to examine the association between quadriceps function and ultrasonographic measures of femoral cartilage. Bilateral femoral cartilage thickness and quadriceps function were assessed in 44 individuals with unilateral ACLR. Quadriceps function was assessed using peak isometric strength, and early (RTD100) and late (RTD200) rate of torque development. Cartilage thickness at the medial femoral condyle (P < 0.001) and femoral cartilage cross-sectional area (P = 0.007) were smaller in the injured compared with the uninjured limb. After accounting for time since ACLR, quadriceps peak isometric strength was associated with cartilage thickness at the medial femoral condyle (r = 0.35, P = 0.02) and femoral cartilage cross-sectional area (r = 0.28, P = 0.04). RTD100 and RTD200 were not associated with femoral cartilage thickness or cross-sectional area. Individuals with ACLR have thinner cartilage in their injured limb compared with uninjured limb, and cartilage thickness is associated with quadriceps function. These results indicate that ultrasonography may be useful for monitoring cartilage health and osteoarthritis progression after ACLR.

  2. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model.

    PubMed

    Qi, Yiying; Du, Yi; Li, Weixu; Dai, Xuesong; Zhao, Tengfei; Yan, Weiqi

    2014-06-01

    The integration of regenerated cartilage with surrounding native cartilage is a major challenge for the success of cartilage tissue-engineering strategies. The purpose of this study is to investigate whether incorporation of the power of mesenchymal stem cell (MSC) sheet to MSCs-loaded bilayer poly-(lactic-co-glycolic acid) (PLGA) scaffolds can improve the integration and repair of cartilage defects in a rabbit model. Rabbit bone marrow-derived MSCs were cultured and formed cell sheet. Full-thickness cylindrical osteochondral defects (4 mm in diameter, 3 mm in depth) were created in the patellar groove of 18 New Zealand white rabbits and the osteochondral defects were treated with PLGA scaffold (n = 6), PLGA/MSCs (n = 6) or MSC sheet-encapsulated PLGA/MSCs (n = 6). After 6 and 12 weeks, the integration and tissue response were evaluated histologically. The MSC sheet-encapsulated PLGA/MCSs group showed significantly more amounts of hyaline cartilage and higher histological scores than PLGA/MSCs group and PLGA group (P < 0.05). In addition, the MSC sheet-encapsulated PLGA/MCSs group showed the best integration between the repaired cartilage and surrounding normal cartilage and subchondral bone compared to other two groups. The novel method of incorporation of MSC sheet to PLGA/MCSs could enhance the ability of cartilage regeneration and integration between repair cartilage and the surrounding cartilage. Transplantation of autologous MSC sheet combined with traditional strategies or cartilage debris might provide therapeutic opportunities for improving cartilage regeneration and integration in humans.

  3. The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria.

    PubMed

    Taylor, A M; Boyde, A; Wilson, P J M; Jarvis, J C; Davidson, J S; Hunt, J A; Ranganath, L R; Gallagher, J A

    2011-12-01

    Alkaptonuria is a genetic disorder of tyrosine metabolism, resulting in elevated circulating concentrations of homogentisic acid. Homogentisic acid is deposited as a polymer, termed ochronotic pigment, in collagenous tissues, especially cartilages of weight-bearing joints, leading to a severe osteoarthropathy. We undertook this study to investigate the initiation and progression of ochronosis from the earliest detection of pigment through complete joint failure. Nine joint samples with varying severities of ochronosis were obtained from alkaptonuria patients undergoing surgery and compared to joint samples obtained from osteoarthritis (OA) patients. Samples were analyzed by light and fluorescence microscopy, 3-dimensional scanning electron microscopy (SEM), and the quantitative backscattered electron mode of SEM. Cartilage samples were mechanically tested by compression to determine Young's modulus of pigmented, nonpigmented, and OA cartilage samples. In alkaptonuria samples with the least advanced ochronosis, pigment was observed intracellularly and in the territorial matrix of individual chondrocytes at the boundary of the subchondral bone and calcified cartilage. In more advanced ochronosis, pigmentation was widespread throughout the hyaline cartilage in either granular composition or as blanket pigmentation in which there is complete and homogenous pigmentation of cartilage matrix. Once hyaline cartilage was extensively pigmented, there was aggressive osteoclastic resorption of the subchondral plate. Pigmented cartilage became impacted on less highly mineralized trabeculae and embedded in the marrow space. Pigmented cartilage samples were much stiffer than nonpigmented or OA cartilage as revealed by a significant difference in Young's modulus. Using alkaptonuria cartilage specimens with a wide spectrum of pigmentation, we have characterized the progression of ochronosis. Intact cartilage appears to be resistant to pigmentation but becomes susceptible following focal changes in calcified cartilage. Ochronosis spreads throughout the cartilage, altering the mechanical properties. In advanced ochronosis, there is aggressive resorption of the underlying calcified cartilage leading to an extraordinary phenotype in which there is complete loss of the subchondral plate. These findings should contribute to better understanding of cartilage-subchondral interactions in arthropathies. Copyright © 2011 by the American College of Rheumatology.

  4. CCN Family Member 2/Connective Tissue Growth Factor (CCN2/CTGF) Has Anti-Aging Effects That Protect Articular Cartilage from Age-Related Degenerative Changes

    PubMed Central

    Itoh, Shinsuke; Hattori, Takako; Tomita, Nao; Aoyama, Eriko; Yutani, Yasutaka; Yamashiro, Takashi; Takigawa, Masaharu

    2013-01-01

    To examine the role of connective tissue growth factor CCN2/CTGF (CCN2) in the maintenance of the articular cartilaginous phenotype, we analyzed knee joints from aging transgenic mice (TG) overexpressing CCN2 driven by the Col2a1 promoter. Knee joints from 3-, 14-, 40-, and 60-day-old and 5-, 12-, 18-, 21-, and 24-month-old littermates were analyzed. Ccn2-LacZ transgene expression in articular cartilage was followed by X-gal staining until 5 months of age. Overexpression of CCN2 protein was confirmed through all ages in TG articular cartilage and in growth plates. Radiographic analysis of knee joints showed a narrowing joint space and other features of osteoarthritis in 50% of WT, but not in any of the TG mice. Transgenic articular cartilage showed enhanced toluidine blue and safranin-O staining as well as chondrocyte proliferation but reduced staining for type X and I collagen and MMP-13 as compared with those parameters for WT cartilage. Staining for aggrecan neoepitope, a marker of aggrecan degradation in WT articular cartilage, increased at 5 and 12 months, but disappeared at 24 months due to loss of cartilage; whereas it was reduced in TG articular cartilage after 12 months. Expression of cartilage genes and MMPs under cyclic tension stress (CTS) was measured by using primary cultures of chondrocytes obtained from wild-type (WT) rib cartilage and TG or WT epiphyseal cartilage. CTS applied to primary cultures of mock-transfected rib chondrocytes from WT cartilage and WT epiphyseal cartilage induced expression of Col1a1, ColXa1, Mmp-13, and Mmp-9 mRNAs; however, their levels were not affected in CCN2-overexpressing chondrocytes and TG epiphyseal cartilage. In conclusion, cartilage-specific overexpression of CCN2 during the developmental and growth periods reduced age-related changes in articular cartilage. Thus CCN2 may play a role as an anti-aging factor by stabilizing articular cartilage. PMID:23951098

  5. Treatment of Articular Cartilage Defects in the Goat with Frozen Versus Fresh Osteochondral Allografts: Effects on Cartilage Stiffness, Zonal Composition, and Structure at Six Months

    PubMed Central

    Pallante, Andrea L.; Görtz, Simon; Chen, Albert C.; Healey, Robert M.; Chase, Derek C.; Ball, Scott T.; Amiel, David; Sah, Robert L.; Bugbee, William D.

    2012-01-01

    Background: Understanding the effectiveness of frozen as compared with fresh osteochondral allografts at six months after surgery and the resultant consequences of traditional freezing may facilitate in vivo maintenance of cartilage integrity. Our hypothesis was that the state of the allograft at implantation affects its performance after six months in vivo. Methods: The effect of frozen as compared with fresh storage on in vivo allograft performance was determined for osteochondral allografts that were transplanted into seven recipient goats and analyzed at six months. Allograft performance was assessed by examining osteochondral structure (cartilage thickness, fill, surface location, surface degeneration, and bone-cartilage interface location), zonal cartilage composition (cellularity, matrix content), and cartilage biomechanical function (stiffness). Relationships between cartilage stiffness or cartilage composition and surface degeneration were assessed with use of linear regression. Results: Fresh allografts maintained cartilage load-bearing function, while also maintaining zonal organization of cartilage cellularity and matrix content, compared with frozen allografts. Overall, allograft performance was similar between fresh allografts and nonoperative controls. However, cartilage stiffness was approximately 80% lower (95% confidence interval [CI], 73% to 87%) in the frozen allografts than in the nonoperative controls or fresh allografts. Concomitantly, in frozen allografts, matrix content and cellularity were approximately 55% (95% CI, 22% to 92%) and approximately 96% (95% CI, 94% to 99%) lower, respectively, than those in the nonoperative controls and fresh allografts. Cartilage stiffness correlated positively with cartilage cellularity and matrix content, and negatively with surface degeneration. Conclusions: Maintenance of cartilage load-bearing function in allografts is associated with zonal maintenance of cartilage cellularity and matrix content. In this animal model, frozen allografts displayed signs of failure at six months, with cartilage softening, loss of cells and matrix, and/or graft subsidence, supporting the importance of maintaining cell viability during allograft storage and suggesting that outcomes at six months may be indicative of long-term (dys)function. Clinical Relevance: Fresh versus frozen allografts represent the “best versus worst” conditions with respect to chondrocyte viability, but “difficult versus simple” with respect to acquisition and distribution. The outcomes described from these two conditions expand the current understanding of in vivo cartilage remodeling and describe structural properties (initial graft subsidence), which may have implications for impending graft failure. PMID:23138239

  6. Upregulation of miR-98 Inhibits Apoptosis in Cartilage Cells in Osteoarthritis.

    PubMed

    Wang, Gui-Long; Wu, Yu-Bo; Liu, Jia-Tian; Li, Cui-Yun

    2016-11-01

    We aimed to investigate the effects of microRNA-98 (miR-98) on apoptosis in cartilage cells of osteoarthritis (OA) patients. Knee cartilage tissue samples were collected from 31 OA patients, 21 autopsies, and 26 amputation patients due to trauma. The clinicopathological data were recorded. Quantitative real-time polymerase chain reaction was performed to compare the miR-98 expression levels from cartilage cells obtained from the OA and non-OA patients. Clinicopathological characteristics of the patients were also analyzed. Primary chondrocytes were separated from cartilage tissues and transfected with plasmids or siRNA to overexpress or inhibit miR-98. Annexin V-PI double staining and TUNEL assays were used to examine apoptosis in the primary chondrocytes after transfection. Finally, a rat OA model was used to confirm the effects of miR-98 on apoptosis in cartilage cells in vivo. Compared with the normal cartilage tissues, miR-98 expression was reduced in the OA cartilage tissues (p < 0.01). The miR-98 expression levels were also significantly correlated with the OA stage (p < 0.05). In vitro, transfection with the miR-98 inhibitor increased apoptosis in the cartilage cells (p < 0.05), and transfection with a miR-98 mimic inhibited apoptosis in cartilage cells (p < 0.05). In the OA rat model, exogenous injection of the miR-98 mimic inhibited apoptosis in the rat cartilage cells thus alleviating OA. MiR-98 expression is reduced in the cartilage cells of OA patients and the overexpression of miR-98 inhibits cartilage cell apoptosis, while inhibition of microRNA-98 leads to cartilage cell apoptosis. These findings provide a theoretical basis for the development of novel targeted therapies for OA.

  7. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model.

    PubMed

    Horbert, Victoria; Xin, Long; Foehr, Peter; Brinkmann, Olaf; Bungartz, Matthias; Burgkart, Rainer H; Graeve, T; Kinne, Raimund W

    2018-02-01

    Objective Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. Methods Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. Results Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. Conclusion Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.

  8. Nanoparticles for diagnostics and laser medical treatment of cartilage in orthopaedics

    NASA Astrophysics Data System (ADS)

    Baum, O. I.; Soshnikova, Yu. M.; Omelchenko, A. I.; Sobol, Emil

    2013-02-01

    Laser reconstruction of intervertebral disc (LRD) is a new technique which uses local, non-destructive laser irradiation for the controlled activation of regenerative processes in a targeted zone of damaged disc cartilage. Despite pronounced advancements of LRD, existing treatments may be substantially improved if laser radiation is absorbed near diseased and/or damaged regions in cartilage so that required thermomechanical stress and strain at chondrocytes may be generated and non-specific injury reduced or eliminated. The aims of the work are to study possibility to use nanoparticles (NPs) to provide spatial specificity for laser regeneration of cartilage. Two types of porcine joint cartilage have been impregnated with magnetite NPs: 1) fresh cartilage; 2) mechanically damaged cartilage. NPs distribution was studied using transition electron microscopy, dynamic light scattering and analytical ultracentrifugation techniques. Laser radiation and magnetic field have been applied to accelerate NPs impregnation. It was shown that NPs penetrate by diffusion into the mechanically damaged cartilage, but do not infiltrate healthy cartilage. Temperature dynamics in cartilage impregnated with NPs have been theoretically calculated and measurements using an IR thermo vision system have been performed. Laser-induced alterations of cartilage structure and cellular surviving have been studied for cartilage impregnated with NPs using histological and histochemical techniques. Results of our study suggest that magnetite NPs might be used to provide spatial specificity of laser regeneration. When damaged, the regions of cartilage impreganted with NPs have higher absorption of laser radiation than that for healthy areas. Regions containing NPs form target sites that can be used to generate laser-induced thermo mechanical stress leading to regeneration of cartilage of hyaline type.

  9. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    PubMed

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  10. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of humeral articular cartilage--a histologically controlled study.

    PubMed

    Bittersohl, Bernd; Kircher, Jörn; Miese, Falk R; Dekkers, Christin; Habermeyer, Peter; Fröbel, Julia; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph

    2015-10-01

    Cartilage biochemical imaging modalities that include the magnetic resonance imaging (MRI) techniques of T2* mapping (sensitive to water content and collagen fiber network) and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, sensitive to the glycosaminoglycan content) can be effective instruments for early diagnosis and reliable follow-up of cartilage damage. The purpose of this study was to provide T2* mapping and dGEMRIC values in various histologic grades of cartilage degeneration in humeral articular cartilage. A histologically controlled in vitro study was conducted that included human humeral head cartilage specimens with various histologic grades of cartilage degeneration. High-resolution, 3-dimensional (3D) T2* mapping and dGEMRIC were performed that enabled the correlation of MRI and histology data. Cartilage degeneration was graded according to the Mankin score, which evaluates surface morphology, cellularity, toluidine blue staining, and tidemark integrity. SPSS software was used for statistical analyses. Both MRI mapping values decreased significantly (P < .001) with increasing cartilage degeneration. Spearman rank analysis revealed a significant correlation (correlation coefficients ranging from -0.315 to 0.784; P < .001) between the various histologic parameters and the T2* and T1Gd mapping values. This study demonstrates the feasibility of 3D T2* and dGEMRIC to identify various histologic grades of cartilage damage of humeral articular cartilage. With regard to the advantages of these mapping techniques with high image resolution and the ability to accomplish a 3D biochemically sensitive imaging, we consider that these imaging techniques can make a positive contribution to the currently evolving science and practice of cartilage biochemical imaging. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  11. Engineering Lubrication in Articular Cartilage

    PubMed Central

    McNary, Sean M.; Athanasiou, Kyriacos A.

    2012-01-01

    Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional tissue engineering of articular cartilage that begins to explore and incorporate methods of lubrication. PMID:21955119

  12. The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration

    PubMed Central

    Sutherland, Amanda J.; Converse, Gabriel L.; Hopkins, Richard A.; Detamore, Michael S.

    2014-01-01

    Cartilage matrix is a particularly promising acellular material for cartilage regeneration given the evidence supporting its chondroinductive character. The ‘raw materials’ of cartilage matrix can serve as building blocks and signals for enhanced tissue regeneration. These matrices can be created by chemical or physical methods: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods when combined with physical methods are particularly effective in fully decellularizing such materials. Critical endpoints include no detectable residual DNA or immunogenic antigens. It is important to first delineate between the sources of the cartilage matrix, i.e., derived from matrix produced by cells in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, i.e., decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell derived matrix (DCCM), and devitalized cell derived matrix (DVCM). Delivery of cartilage matrix may be a straightforward approach without the need for additional cells or growth factors. Without additional biological additives, cartilage matrix may be attractive from a regulatory and commercialization standpoint. Source and delivery method are important considerations for clinical translation. Only one currently marketed cartilage matrix medical device is decellularized, although trends in filed patents suggest additional decellularized products may be available in the future. To choose the most relevant source and processing for cartilage matrix, qualifying testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of raw materials, and immunogenic properties of the product. PMID:25044502

  13. HIF-2α-induced chemokines stimulate motility of fibroblast-like synoviocytes and chondrocytes into the cartilage-pannus interface in experimental rheumatoid arthritis mouse models.

    PubMed

    Huh, Yun Hyun; Lee, Gyuseok; Lee, Keun-Bae; Koh, Jeong-Tae; Chun, Jang-Soo; Ryu, Je-Hwang

    2015-10-29

    Pannus formation and resulting cartilage destruction during rheumatoid arthritis (RA) depends on the migration of synoviocytes to cartilage tissue. Here, we focused on the role of hypoxia-inducible factor (HIF)-2α-induced chemokines by chondrocytes in the regulation of fibroblast-like synoviocyte (FLS) migration into the cartilage-pannus interface and cartilage erosion. Collagen-induced arthritis (CIA), K/BxN serum transfer, and tumor necrosis factor-α transgenic mice were used as experimental RA models. Expression patterns of HIF-2α and chemokines were determined via immunostaining, Western blotting and RT-PCR. FLS motility was evaluated using transwell migration and invasion assays. The specific role of HIF-2α was determined via local deletion of HIF-2α in joint tissues or using conditional knockout (KO) mice. Cartilage destruction, synovitis and pannus formation were assessed via histological analysis. HIF-2α and various chemokines were markedly upregulated in degenerating cartilage and pannus of RA joints. HIF-2α induced chemokine expression by chondrocytes in both primary culture and cartilage tissue. HIF-2α -induced chemokines by chondrocytes regulated the migration and invasion of FLS. Local deletion of HIF-2α in joint tissues inhibited pannus formation adjacent to cartilage tissue and cartilage destruction caused by K/BxN serum transfer. Furthermore, conditional knockout of HIF-2α in cartilage blocked pannus formation in adjacent cartilage but not bone tissue, along with inhibition of cartilage erosion caused by K/BxN serum transfer. Our findings suggest that chemokines induced by IL-1β or HIF-2α in chondrocytes regulate pannus expansion by stimulating FLS migration and invasion, leading to cartilage erosion during RA pathogenesis.

  14. The interaction between physical activity and amount of baseline knee cartilage.

    PubMed

    Teichtahl, Andrew J; Wang, Yuanyuan; Heritier, Stephane; Wluka, Anita E; Strauss, Boyd J; Proietto, Joseph; Dixon, John B; Jones, Graeme; Cicuttini, Flavia M

    2016-07-01

    Conflicting reports of the effect of physical activity on knee cartilage may be due to the heterogeneity of populations examined and, in particular, the underlying health of the knee joint. This study examined the influence of recreational and occupational physical activity on cartilage volume loss. A total of 250 participants with no significant musculoskeletal disease were recruited. A gender-specific median cartilage volume split was used to define people in the lowest and highest 50% of baseline cartilage volume. Baseline recreational and occupational activity was examined by questionnaire, while cartilage volume was assessed by MRI at baseline and 2.4 years later. Significant interactions were demonstrable between physical activity and cartilage volume loss based on stratification of baseline cartilage volume (all P ⩽ 0.03). There was a dose-response relationship between frequently performed baseline occupational activities and medial cartilage volume loss in both the low (B = 0.2% per annum, 95% CI: 0.0, 0.04% per annum) and high (B = -0.2% per annum, 95% CI: -0.4, 0.0% per annum) baseline cartilage volume groups (P = 0.001 for interaction). Individuals with low baseline cartilage volume who were active in their occupation and/or recreational activity had greater medial cartilage volume loss than their more inactive counterparts (2.4% per annum vs 1.5% per annum, P = 0.02). Whereas people with less baseline cartilage volume are more at risk of structural knee damage with either heavy occupational or recreational workloads or both, individuals with high baseline cartilage volume may advantageously modify their risk for knee OA by participating in more frequent occupational physical activities. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    NASA Astrophysics Data System (ADS)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  16. Automatic detection of diseased regions in knee cartilage

    NASA Astrophysics Data System (ADS)

    Qazi, Arish A.; Dam, Erik B.; Olsen, Ole F.; Nielsen, Mads; Christiansen, Claus

    2007-03-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. A central problem in clinical trials is quantification of progression and early detection of the disease. The accepted standard for evaluating OA progression is to measure the joint space width from radiographs however; there the cartilage is not visible. Recently cartilage volume and thickness measures from MRI are becoming popular, but these measures don't account for the biochemical changes undergoing in the cartilage before cartilage loss even occurs and therefore are not optimal for early detection of OA. As a first step, we quantify cartilage homogeneity (computed as the entropy of the MR intensities) from 114 automatically segmented medial compartments of tibial cartilage sheets from Turbo 3D T 1 sequences, from subjects with no, mild or severe OA symptoms. We show that homogeneity is a more sensitive technique than volume quantification for detecting early OA and for separating healthy individuals from diseased. During OA certain areas of the cartilage are affected more and it is believed that these are the load-bearing regions located at the center of the cartilage. Based on the homogeneity framework we present an automatic technique that partitions the region on the cartilage that contributes to maximum homogeneity discrimination. These regions however, are more towards the noncentral regions of the cartilage. Our observation will provide valuable clues to OA research and may lead to improving treatment efficacy.

  17. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    PubMed

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  18. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates

    PubMed Central

    Tsiourvas, D.; Arkas, M.; Diplas, S.; Mastrogianni, E.

    2010-01-01

    This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid. PMID:21069559

  19. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates.

    PubMed

    Tsiourvas, D; Tsetsekou, A; Arkas, M; Diplas, S; Mastrogianni, E

    2011-01-01

    This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid.

  20. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.

    PubMed

    Vinatier, C; Guicheux, J

    2016-06-01

    Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Understanding Magnetic Resonance Imaging of Knee Cartilage Repair: A Focus on Clinical Relevance.

    PubMed

    Hayashi, Daichi; Li, Xinning; Murakami, Akira M; Roemer, Frank W; Trattnig, Siegfried; Guermazi, Ali

    2017-06-01

    The aims of this review article are (a) to describe the principles of morphologic and compositional magnetic resonance imaging (MRI) techniques relevant for the imaging of knee cartilage repair surgery and their application to longitudinal studies and (b) to illustrate the clinical relevance of pre- and postsurgical MRI with correlation to intraoperative images. First, MRI sequences that can be applied for imaging of cartilage repair tissue in the knee are described, focusing on comparison of 2D and 3D fast spin echo and gradient recalled echo sequences. Imaging features of cartilage repair tissue are then discussed, including conventional (morphologic) MRI and compositional MRI techniques. More specifically, imaging techniques for specific cartilage repair surgery techniques as described above, as well as MRI-based semiquantitative scoring systems for the knee cartilage repair tissue-MR Observation of Cartilage Repair Tissue and Cartilage Repair OA Knee Score-are explained. Then, currently available surgical techniques are reviewed, including marrow stimulation, osteochondral autograft, osteochondral allograft, particulate cartilage allograft, autologous chondrocyte implantation, and others. Finally, ongoing research efforts and future direction of cartilage repair tissue imaging are discussed.

  2. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration.

    PubMed

    Liu, Xiaolin; Yang, Yunlong; Li, Yan; Niu, Xin; Zhao, Bizeng; Wang, Yang; Bao, Chunyan; Xie, Zongping; Lin, Qiuning; Zhu, Linyong

    2017-03-30

    The regeneration of articular cartilage, which scarcely shows innate self-healing ability, is a great challenge in clinical treatment. Stem cell-derived exosomes (SC-Exos), an important type of extracellular nanovesicle, exhibit great potential for cartilage regeneration to replace stem cell-based therapy. Cartilage regeneration often takes a relatively long time and there is currently no effective administration method to durably retain exosomes at cartilage defect sites to effectively exert their reparative effect. Therefore, in this study, we exploited a photoinduced imine crosslinking hydrogel glue, which presents excellent operation ability, biocompatibility and most importantly, cartilage-integration, as an exosome scaffold to prepare an acellular tissue patch (EHG) for cartilage regeneration. It was found that EHG can retain SC-Exos and positively regulate both chondrocytes and hBMSCs in vitro. Furthermore, EHG can integrate with native cartilage matrix and promote cell deposition at cartilage defect sites, finally resulting in the promotion of cartilage defect repair. The EHG tissue patch therefore provides a novel, cell-free scaffold material for wound repair.

  3. Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration

    PubMed Central

    Griffin, MF; Szarko, M; Seifailan, A; Butler, PE

    2016-01-01

    Background: Natural cartilage regeneration is limited after trauma or degenerative processes. Due to the clinical challenge of reconstruction of articular cartilage, research into developing biomaterials to support cartilage regeneration have evolved. The structural architecture of composition of the cartilage extracellular matrix (ECM) is vital in guiding cell adhesion, migration and formation of cartilage. Current technologies have tried to mimic the cell’s nanoscale microenvironment to improve implants to improve cartilage tissue repair. Methods: This review evaluates nanoscale techniques used to modify the implant surface for cartilage regeneration. Results: The surface of biomaterial is a vital parameter to guide cell adhesion and consequently allow for the formation of ECM and allow for tissue repair. By providing nanosized cues on the surface in the form of a nanotopography or nanosized molecules, allows for better control of cell behaviour and regeneration of cartilage. Chemical, physical and lithography techniques have all been explored for modifying the nanoscale surface of implants to promote chondrocyte adhesion and ECM formation. Conclusion: Future studies are needed to further establish the optimal nanoscale modification of implants for cartilage tissue regeneration. PMID:28217208

  4. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    PubMed Central

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  5. Apatite mineralization in elasmobranch skeletons via a polyphosphate intermediate

    NASA Astrophysics Data System (ADS)

    Omelon, Sidney; Lacroix, Nicolas; Lildhar, Levannia; Variola, Fabio; Dean, Mason

    2014-05-01

    All vertebrate skeletons are stiffened with apatite, a calcium phosphate mineral. Control of apatite mineralization is essential to the growth and repair of the biology of these skeletons, ensuring that apatite is deposited in the correct tissue location at the desired time. The mechanism of this biochemical control remains debated, but must involve increasing the localized apatite saturation state. It was theorized in 1923 that alkaline phosphatase (ALP) activity provides this control mechanism by increasing the inorganic phosphate (Pi) concentration via dephosphorylation of phosphorylated molecules. The ALP substrate for biological apatite is not known. We propose that polyphosphates (polyPs) produced by mitochondria may be the substrate for biological apatite formation by ALP activity. PolyPs (PO3-)n, also known as condensed phosphates, represent a concentrated, bioavailable Pi-storage strategy. Mitochondria import Pi and synthesize phosphate polymers through an unknown biochemical mechanism. When chelated with calcium and/or other cations, the effective P-concentration of these neutrally charged, amorphous, polyP species can be very high (~ 0.5 M), without inducing phosphate mineral crystallization. This P-concentration in the low Pi-concentration biological environment offers a method of concentrating P well above an apatite supersaturation required for nucleation. Bone is the most studied mineralized skeletal tissue. However, locating and analyzing active mineralizing areas is challenging. We studied calcified cartilage skeletons of elasmobranch fishes (sharks, stingrays and relatives) to analyse the phosphate chemistry in this continually mineralizing skeleton. Although the majority of the elasmobranch skeleton is unmineralized cartilage, it is wrapped in an outer layer of mineralized tissue comprised of small tiles called tesserae. These calcified tesserae continually grow through the formation of new mineral on their borders. Co-localization of ALP and polyPs were identified at the mineralizing tessera borders using Raman spectroscopy, fluorescence microscopy and histological methods. Application of exogenous ALP to skeletal tissue cross-sections resulted in polyP disappearance, and Pi production. It is proposed that elasmobranch skeletal cells produce polyP-containing granules as a concentrated P-source, while ALP activity controls when and where Pi is cleaved from polyP, increasing the apatite supersaturation to nucleate apatite minerals in the skeleton. These data support not only interaction of polyP and ALP as a cell-mediated apatite mineralization control mechanism, but also suggest that this mechanism arose millions of years ago and is common to both bony and cartilaginous skeletal systems.

  6. [Current overview of cartilage regeneration procedures].

    PubMed

    Schenker, H; Wild, M; Rath, B; Tingart, M; Driessen, A; Quack, V; Betsch, M

    2017-11-01

    Cartilage is an avascular, alymphatic and non-innervated tissue with limited intrinsic repair potential. The high prevalence of cartilage defects and their tremendous clinical importance are a challenge for all treating physicians. This article provides the reader with an overview about current cartilage treatment options and their clinical outcome. Microfracture is still considered the gold standard in the treatment of small cartilage lesions. Small osteochondral defects can be effectively treated with the autologous osteochondral transplantation system. Larger cartilage defects are successfully treated by autologous membrane-induced chondrogenesis (AMIC) or by membrane-assisted autologous chondrocyte implantation (MACI). Despite limitations of current cartilage repair strategies, such procedures can result in short- and mid-term clinical improvement of the patients. Further developments and clinical studies are necessary to improve the long-term outcome following cartilage repair.

  7. Microstructural and Compositional Features of the Fibrous and Hyaline Cartilage on the Medial Tibial Plateau Imply a Unique Role for the Hopping Locomotion of Kangaroo

    PubMed Central

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E.; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos. PMID:24058543

  8. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    PubMed

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  9. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    NASA Technical Reports Server (NTRS)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  10. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  11. Method to grow group III-nitrides on copper using passivation layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiming; Wang, George T; Figiel, Jeffrey T

    Group III-nitride epilayers can be grown directly on copper substrates using intermediate passivation layers. For example, single crystalline c-plane GaN can be grown on Cu (110) substrates with MOCVD. The growth relies on a low temperature AlN passivation layer to isolate any alloying reaction between Ga and Cu.

  12. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy.

    PubMed

    Li, Kuei-Chang; Hu, Yu-Chen

    2015-05-01

    Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tissue engineering strategies to study cartilage development, degeneration and regeneration.

    PubMed

    Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh

    2015-04-01

    Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cartilage Health in Knees Treated with Metal Resurfacing Implants or Untreated Focal Cartilage Lesions: A Preclinical Study in Sheep.

    PubMed

    Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E

    2017-07-01

    Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.

  15. Photovoltaic cell with nano-patterned substrate

    DOEpatents

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2016-10-18

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  16. Xiphoid Process-Derived Chondrocytes: A Novel Cell Source for Elastic Cartilage Regeneration

    PubMed Central

    Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun

    2014-01-01

    Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage. PMID:25205841

  17. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage

    PubMed Central

    Beddoes, Charlotte M.; Whitehouse, Michael R.; Briscoe, Wuge H.; Su, Bo

    2016-01-01

    Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour. PMID:28773566

  18. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function.

    PubMed

    Schwarz, Silke; Elsaesser, Alexander F; Koerber, Ludwig; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Bermueller, Christian; Dürselen, Lutz; Ignatius, Anita; Breiter, Roman; Rotter, Nicole

    2015-12-01

    One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Age-related differences in articular cartilage wound healing: a potential role for transforming growth factor beta1 in adult cartilage repair.

    PubMed

    Bos, P K; Verhaar, J A N; van Osch, G J V M

    2006-01-01

    Objective of this study was to investigate the early wound healing reactions of immature and mature articular cartilage on experimental wound healing in the New Zealand White rabbit. The proliferation potential and glycosaminoglycan production of isolated chondrocytes of these animals was studied in an alginate culture system. A band of tissue with death chondrocytes was observed at wound edges of immature articular cartilage, whereas mature cartilage showed a significant smaller amount of dead chondrocytes. A general increase in TGFbeta1, FGF2 and IGF1 was observed throughout cartilage tissue with the exception of lesion edges. The observed immunonegative area appeared to correlate with the observed cell death in lesion edges. Repair in immature cartilage was indicated by chondrocyte proliferation in clusters and a decrease in defect size. No repair response was observed in mature articular cartilage defects. The alginate culture experiment demonstrated a higher proliferation rate of immature chondrocytes. Addition of recombinant TGFbeta1 increased proliferation rate and GAG production of mature chondrocytes. We were not able to further stimulate immature chondrocytes. These results indicate that TGFbeta1 addition may contribute to induce cartilage repair responses in mature cartilage as observed in immature, developing cartilage.

  20. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage.

    PubMed

    Beddoes, Charlotte M; Whitehouse, Michael R; Briscoe, Wuge H; Su, Bo

    2016-06-03

    Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.

  1. [Influence of different surgeries on growth and development of alar cartilage in young-rabbit].

    PubMed

    Jiang, Lian; Dong, Xiqian; Song, Qinggao; Chen, Shang; Zou, Sihai

    2011-01-01

    The purpose of this study is to observe the affection of different clinical surgeries on alar nasal cartilages' growth and development. The experimental results can provide some theory basis for clinical surgeries. Twenty-eight New Zealand immature rabbits were used in this study, and divided into normal control group, hidden dissection group and cutting off alar nasal cartilages group randomly, which included 4,12 and 12 rabbits, separately. Arc incision were made on the mucous membrane of nasal cavity,and then dissect the alar nasal cartilages hidden or cut off the alar nasal cartilages, separately. The growth and development of the alar cartilage were observed at different stages after the surgery using histological and immuno-histochemical methods. Four weeks, eight weeks, twelve weeks and sixteen weeks after surgery, there were no significant differences in the indexes of chondrocytes between hidden dissection group and control group. In cutting off alar nasal cartilages group, fiber tissue were observed in the vacancy left after being cut off cartilages, and even mucous membrane tissue could be seen in some slices. There is no adverse influence on the growth and development of the alar cartilage after being hidden dissected. Contrarily, the restoring capability of transparent cartilage cannot counteract the injury resulted form the surgery after the alar nasal cartilages being cut off.

  2. Devitalisation of human cartilage by high hydrostatic pressure treatment: Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue

    PubMed Central

    Hiemer, B.; Genz, B.; Jonitz-Heincke, A.; Pasold, J.; Wree, A.; Dommerich, S.; Bader, R.

    2016-01-01

    The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage-specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair. PMID:27671122

  3. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.

    PubMed

    Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng

    2017-08-01

    Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.

  4. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration

    PubMed Central

    Zhang, Qian-Shi; Kurpad, Deepa S.; Mahoney, My G.; Steinbeck, Marla J.

    2017-01-01

    Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration. PMID:29045420

  5. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration.

    PubMed

    Zhang, Qian-Shi; Kurpad, Deepa S; Mahoney, My G; Steinbeck, Marla J; Freeman, Theresa A

    2017-01-01

    Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration.

  6. Arthritis in hip (image)

    MedlinePlus

    Cartilage normally protects the joint, allowing for smooth movement. Cartilage also absorbs shock when pressure is placed on ... like when walking. Arthritis involves the breakdown of cartilage. Without the usual amount of cartilage, the bones ...

  7. Crustal structure between Lake Mead, Nevada, and Mono Lake, California

    USGS Publications Warehouse

    Johnson, Lane R.

    1964-01-01

    Interpretation of a reversed seismic-refraction profile between Lake Mead, Nevada, and Mono Lake, California, indicates velocities of 6.15 km/sec for the upper layer of the crust, 7.10 km/sec for an intermediate layer, and 7.80 km/sec for the uppermost mantle. Phases interpreted to be reflections from the top of the intermediate layer and the Mohorovicic discontinuity were used with the refraction data to calculate depths. The depth to the Moho increases from about 30 km near Lake Mead to about 40 km near Mono Lake. Variations in arrival times provide evidence for fairly sharp flexures in the Moho. Offsets in the Moho of 4 km at one point and 2 1/2 km at another correspond to large faults at the surface, and it is suggested that fracture zones in the upper crust may displace the Moho and extend into the upper mantle. The phase P appears to be an extension of the reflection from the top of the intermediate layer beyond the critical angle. Bouguer gravity, computed for the seismic model of the crust, is in good agreement with the measured Bouguer gravity. Thus a model of the crustal structure is presented which is consistent with three semi-independent sources of geophysical data: seismic-refraction, seismic-reflection, and gravity.

  8. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  9. New trends in articular cartilage repair.

    PubMed

    Cucchiarini, Magali; Henrionnet, Christel; Mainard, Didier; Pinzano, Astrid; Madry, Henning

    2015-12-01

    Damage to the articular cartilage is an important, prevalent, and unsolved clinical issue for the orthopaedic surgeon. This review summarizes innovative basic research approaches that may improve the current understanding of cartilage repair processes and lead to novel therapeutic options. In this regard, new aspects of cartilage tissue engineering with a focus on the choice of the best-suited cell source are presented. The importance of non-destructive cartilage imaging is highlighted with the recent availability of adapted experimental tools such as Second Harmonic Generation (SHG) imaging. Novel insights into cartilage pathophysiology based on the involvement of the infrapatellar fat pad in osteoarthritis are also described. Also, recombinant adeno-associated viral vectors are discussed as clinically adapted, efficient tools for potential gene-based medicines in a variety of articular cartilage disorders. Taken as a whole, such advances in basic research in diverse fields of articular cartilage repair may lead to the development of improved therapies in the clinics for an improved, effective treatment of cartilage lesions in a close future.

  10. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    PubMed

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  11. Functional regeneration of ligament-bone interface using a triphasic silk-based graft.

    PubMed

    Li, Hongguo; Fan, Jiabing; Sun, Liguo; Liu, Xincheng; Cheng, Pengzhen; Fan, Hongbin

    2016-11-01

    The biodegradable silk-based scaffold with unique mechanical property and biocompatibility represents a favorable ligamentous graft for tissue-engineering anterior cruciate ligament (ACL) reconstruction. However, the low efficiency of ligament-bone interface restoration barriers the isotropic silk graft to common ACL therapeutics. To enhance the regeneration of the silk-mediated interface, we developed a specialized stratification approach implementing a sequential modification on isotropic silk to constitute a triphasic silk-based graft in which three regions respectively referring to ligament, cartilage and bone layers of interface were divided, followed by respective biomaterial coating. Furthermore, three types of cells including bone marrow mesenchymal stem cells (BMSCs), chondrocytes and osteoblasts were respectively seeded on the ligament, cartilage and bone region of the triphasic silk graft, and the cell/scaffold complex was rolled up as a multilayered graft mimicking the stratified structure of native ligament-bone interface. In vitro, the trilineage cells loaded on the triphasic silk scaffold revealed a high proliferative capacity as well as enhanced differentiation ability into their corresponding cell lineage. 24 weeks postoperatively after the construct was implanted to repair the ACL defect in rabbit model, the silk-based ligamentous graft exhibited the enhancement of osseointegration detected by a robust pullout force and formation of three-layered structure along with conspicuously corresponding matrix deposition via micro-CT and histological analysis. These findings potentially broaden the application of silk-based ligamentous graft for ACL reconstruction and further large animal study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hydrogen-isotope permeation barrier

    DOEpatents

    Maroni, Victor A.; Van Deventer, Erven H.

    1977-01-01

    A composite including a plurality of metal layers has a Cu-Al-Fe bronze layer and at least one outer layer of a heat and corrosion resistant metal alloy. The bronze layer is ordinarily intermediate two outer layers of metal such as austenitic stainless steel, nickel alloys or alloys of the refractory metals. The composite provides a barrier to hydrogen isotopes, particularly tritium that can reduce permeation by at least about 30 fold and possibly more below permeation through equal thicknesses of the outer layer material.

  13. Genetics Home Reference: cartilage-hair hypoplasia

    MedlinePlus

    ... Twitter Home Health Conditions Cartilage-hair hypoplasia Cartilage-hair hypoplasia Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Cartilage-hair hypoplasia is a disorder of bone growth characterized ...

  14. Efficacy of platelet-rich fibrin matrix on viability of diced cartilage grafts in a rabbit model.

    PubMed

    Güler, İsmail; Billur, Deniz; Aydin, Sevim; Kocatürk, Sinan

    2015-03-01

    The objective of this study was to compare the viability of cartilage grafts embedded in platelet-rich fibrin matrix (PRFM) wrapped with no material (bare diced cartilage grafts), oxidized methylcellulose (Surgicel), or acellular dermal tissue (AlloDerm). Experimental study. In this study, six New Zealand rabbits were used. Cartilage grafts including perichondrium were excised from each ear and diced into 2-mm-by 2-mm pieces. There were four comparison groups: 1) group A, diced cartilage (not wrapped with any material); 2) group B, diced cartilage wrapped with AlloDerm; 3) group C, diced cartilage grafts wrapped with Surgicel; and 4) group D, diced cartilage wrapped with PRFM. Four cartilage grafts were implanted under the skin at the back of each rabbit. All rabbits were sacrificed at the end of 10 weeks. The cartilages were stained with hematoxylin-eosin, Masson's Trichrome, and Orcein. After that, they were evaluated for the viability of chondrocytes, collagen content, fibrillar structure of matrix, and changes in peripheral tissues. When the viability of chondrocytes, the content of fiber in matrix, and changes in peripheral tissues were compared, the cartilage embedded in the PRFM group was statistically significantly higher than in the other groups (P < 0.05). We concluded that PRFM has significant advantages in ensuring the chondrocyte viability of diced cartilage grafts. It is also biocompatible, with relatively lesser inflammation and fibrosis. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.

    PubMed

    Dabiri, Yaghoub; Li, LePing

    2015-06-01

    A focal cartilage defect involves tissue loss or rupture. Altered mechanics in the affected joint may play an essential role in the onset and progression of osteoarthritis. The objective of the present study was to determine the compromised load support in the human knee joint during defect progression from the cartilage surface to the cartilage-bone interface. Ten normal and defect cases were simulated with a previously tested 3D finite element model of the knee. The focal defects were considered in both condyles within high load-bearing regions. Fluid pressurization, anisotropic fibril-reinforcement, and depth-dependent mechanical properties were considered for the articular cartilages and menisci. The results showed that a small cartilage defect could cause 25% reduction in the load support of the knee joint due to a reduced capacity of fluid pressurization in the defect cartilage. A partial-thickness defect could cause a fluid pressure decrease or increase in the remaining underlying cartilage depending on the defect depth. A cartilage defect also increased the shear strain at the cartilage-bone interface, which was more significant with a full-thickness defect. The effect of cartilage defect on the fluid pressurization also depended on the defect sites and contact conditions. In conclusion, a focal cartilage defect causes a fluid-pressure dependent load reallocation and a compromised load support in the joint, which depend on the defect depth, site, and contact condition. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination.

    PubMed

    Zaragoza, Edward; Lattanzio, Pierre-Jean; Beaule, Paul E

    2009-01-01

    Recent reports have demonstrated magnetic resonance imaging (MRI) as a promising technique in detecting articular cartilage lesions of the hip joint. The purpose of our study was to evaluate the diagnostic performance of MRI with gadolinium arthrography in detecting acetabular cartilage delamination in patients with pre-arthritic hip pain. 46 patients (48 hips) underwent surgical dislocation of the hip. Mean age was 38.8 (range 17-56). There were 26 males and 20 females. All patients had Magnetic Resonance Imaging with gadolinium arthrography (MRA) before undergoing open hip surgery where the acetabular cartilage was inspected. Acetabular cartilage delamination on MRA was seen on sagittal images as a linear intra-articular filling defect of low signal intensity >1mm in thickness on T1 weighted images and surrounded by contrast. On MRA all hips had a labral tear confirmed at surgery. At surgery 30 hips had evidence of acetabular cartilage delamination, 4 hips had ulceration and 14 had no articular cartilage damage. The majority of labral tears and cartilage damage were located in the antero-superior quadrant. The sensitivity and specificity of MRA detection of cartilage delamination confirmed at surgery were 97% and 84%, respectively. The positive and negative predictive values of the MRA finding were 90% and 94%, respectively. The presence of the acetabular cartilage delamination represents an early stage of articular cartilage degeneration. When evaluating a young adult with hip pain, labral tears in association with cartilage delamination should be considered. MRA represents an effective diagnostic tool.

  17. Optimization of the arthroscopic indentation instrument for the measurement of thin cartilage stiffness

    NASA Astrophysics Data System (ADS)

    Lyyra-Laitinen, Tiina; Niinimäki, Mia; Töyräs, Juha; Lindgren, Reijo; Kiviranta, Ilkka; Jurvelin, Jukka S.

    1999-10-01

    Structural alterations associated with early, mostly reversible, degeneration of articular cartilage induce tissue softening, generally preceding fibrillation and, thus, visible changes of the cartilage surface. We have already developed an indentation instrument for measuring arthroscopic stiffness of cartilage with typical thickness >2 mm. The aim of this study was to extend the applicability of the instrument for the measurement of thin (<2 mm) cartilage stiffness. Variations in cartilage thickness, which will not be known during arthroscopy, can nonetheless affect the indentation measurement, and therefore optimization of the indenter dimensions is necessary. First, we used theoretical and finite element models to compare plane-ended and spherical-ended indenters and, then, altered the dimensions to determine the optimal indenter for thin cartilage measurements. Finally, we experimentally validated the optimized indenter using bovine humeral head cartilage. Reference unconfined compression measurements were carried out with a material testing device. The spherical-ended indenter was more insensitive to the alterations in cartilage thickness (20% versus 39% in the thickness range 1.5-5 mm) than the plane-ended indenter. For thin cartilage, the optimal dimensions for the spherical-ended indenter were 0.5 mm for diameter and 0.1 mm for height. The experimental stiffness measurements with this indenter correlated well with the reference measurements (r = 0.811, n = 31, p<0.0001) in the cartilage thickness range 0.7-1.8 mm. We conclude that the optimized indenter is reliable and well suited for the measurement of thin cartilage stiffness.

  18. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.

  19. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  20. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  1. Do changing toll-like receptor profiles in different layers and grades of osteoarthritis cartilage reflect disease severity?

    PubMed

    Barreto, Gonçalo; Sillat, Tarvo; Soininen, Antti; Ylinen, Pekka; Salem, Abdelhakim; Konttinen, Yrjö T; Al-Samadi, Ahmed; Nordström, Dan C E

    2013-05-01

    Cartilage degeneration in osteoarthritis (OA) leads to release of potential danger signals. The aim of our study was to profile OA cartilage for the Toll-like receptor (TLR) danger signal receptors. Osteochondral cylinders from total knee replacements were graded using OA Research Society International score and stained for proteoglycans, collagenase-cleaved type II collagen, and TLR 1-10, which were analyzed histomorphometrically. Grade 1 OA lesions contained 22%-55% TLR 1-9-positive cells in the surface zone, depending on the TLR type. In Grade 2 TLR, immunoreactivity was 60%-100% (p < 0.01) and it was even higher in Grades 3 and 4 (p < 0.01 vs Grade 1). TLR-positive cells in Grade 1 middle zone were low, 0-19.9%, but were 5.1%-32.7% in Grade 2 (p < 0.01) and 34%-83% in Grades 3-4 samples (p < 0.001). TLR values in Grade 5 were low (14.3%-28.7%; p < 0.001). In Grades 3-4 OA, cartilage matrix stained strongly for TLR. In Grade 1, COL2-3/4M was restricted to chondrocytes, but was increasingly seen in matrix upon progress of OA to Grade 4, and then declined. Cells in the gliding surface zone are fully equipped with TLR in mild OA. Their proportion increases and extends to the middle or even the deep zone, reflecting OA progression. COL2A-3/4M staining suggests Endo180-mediated intake for intralysosomal degradation by cathepsins in Grade 1, but in higher grades this chondrocyte-mediated clearance fails and the matrix demonstrates extensive collagenase-induced damage. Detached and/or partially degraded matrix components can then act as endogenous danger signals (damage-associated molecular patterns or DAMP) and stimulate increasingly TLR-equipped chondrocytes to inflammation. At the peak inflammatory response, soluble TLR may exert negative feedback, explaining in part the low TLR levels in Grade 5 OA.

  2. High-Fidelity Tissue Engineering of Patient-Specific Auricles for Reconstruction of Pediatric Microtia and Other Auricular Deformities

    PubMed Central

    Reiffel, Alyssa J.; Kafka, Concepcion; Hernandez, Karina A.; Popa, Samantha; Perez, Justin L.; Zhou, Sherry; Pramanik, Satadru; Brown, Bryan N.; Ryu, Won Seuk; Bonassar, Lawrence J.; Spector, Jason A.

    2013-01-01

    Introduction Autologous techniques for the reconstruction of pediatric microtia often result in suboptimal aesthetic outcomes and morbidity at the costal cartilage donor site. We therefore sought to combine digital photogrammetry with CAD/CAM techniques to develop collagen type I hydrogel scaffolds and their respective molds that would precisely mimic the normal anatomy of the patient-specific external ear as well as recapitulate the complex biomechanical properties of native auricular elastic cartilage while avoiding the morbidity of traditional autologous reconstructions. Methods Three-dimensional structures of normal pediatric ears were digitized and converted to virtual solids for mold design. Image-based synthetic reconstructions of these ears were fabricated from collagen type I hydrogels. Half were seeded with bovine auricular chondrocytes. Cellular and acellular constructs were implanted subcutaneously in the dorsa of nude rats and harvested after 1 and 3 months. Results Gross inspection revealed that acellular implants had significantly decreased in size by 1 month. Cellular constructs retained their contour/projection from the animals' dorsa, even after 3 months. Post-harvest weight of cellular constructs was significantly greater than that of acellular constructs after 1 and 3 months. Safranin O-staining revealed that cellular constructs demonstrated evidence of a self-assembled perichondrial layer and copious neocartilage deposition. Verhoeff staining of 1 month cellular constructs revealed de novo elastic cartilage deposition, which was even more extensive and robust after 3 months. The equilibrium modulus and hydraulic permeability of cellular constructs were not significantly different from native bovine auricular cartilage after 3 months. Conclusions We have developed high-fidelity, biocompatible, patient-specific tissue-engineered constructs for auricular reconstruction which largely mimic the native auricle both biomechanically and histologically, even after an extended period of implantation. This strategy holds immense potential for durable patient-specific tissue-engineered anatomically proper auricular reconstructions in the future. PMID:23437148

  3. Assessment of strategies to increase chondrocyte viability in cryopreserved human osteochondral allografts: evaluation of the glycosylated hydroquinone, arbutin.

    PubMed

    Rosa, S C; Gonçalves, J; Judas, F; Lopes, C; Mendes, A F

    2009-12-01

    Allogeneic cartilage is used to repair damaged areas of articular cartilage, requiring the presence of living chondrocytes. So far, no preservation method can effectively meet that purpose. Identification of more effective cryoprotective agents (CPAs) can contribute to this goal. The aim of this study was to determine whether the glycosylated hydroquinone, arbutin, alone or in combination with low concentrations of other CPAs, has cryoprotective properties towards human articular cartilage. Human tibial plateaus were procured from multi-organ donors, with the approval of the Ethics Committee of the University Hospital of Coimbra. The tibial plateaus were treated with or without arbutin (50 or 100mM), alone or in combination with various concentrations of dimethyl sulfoxide (DMSO) and glycerol, for 0.5-1.5h/37 degrees C, then frozen at -20 degrees C and 24h later transferred to a biofreezer at -80 degrees C. Two to 3 months later, thawing was achieved by immersion in cell culture medium at 37 degrees C/1h. Chondrocyte viability was assessed before and after freeze-thawing using a colorimetric assay based on the cell's metabolic activity and fluorescent dyes to evaluate cell membrane integrity. Before freezing, chondrocyte metabolic activity was identical in all the conditions tested. After freeze-thawing, the highest activity, corresponding to 34.2+/-2.1% of that in the Fresh Control, was achieved in tibial plateaus incubated in 50mM arbutin for 1h whereas in those left untreated it was 11.1+/-4.7. Addition of DMSO and glycerol to arbutin did not increase chondrocyte viability any further. Fluorescence microscopy confirmed these results and showed that living chondrocytes were mainly restricted to the superficial cartilage layers. Arbutin seems to be an effective cryoprotective agent for osteochondral allografts with potential benefits over DMSO and glycerol.

  4. Talbot phase-contrast X-ray imaging for the small joints of the hand

    PubMed Central

    Stutman, Dan; Beck, Thomas J; Carrino, John A; Bingham, Clifton O

    2011-01-01

    A high resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of Rheumatoid Arthritis (RA) and Osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 μm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast or refraction based X-ray imaging (DPC) with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and it can be implemented with conventional X-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high resolution bench-top interferometer using 10 μm period gratings, a W anode tube and a CCD based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging comes thus mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long ‘symmetric’ interferometer operated in a high Talbot order. PMID:21841214

  5. Talbot phase-contrast x-ray imaging for the small joints of the hand

    NASA Astrophysics Data System (ADS)

    Stutman, Dan; Beck, Thomas J.; Carrino, John A.; Bingham, Clifton O.

    2011-09-01

    A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 µm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 µm period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long 'symmetric' interferometer operated in a high Talbot order.

  6. Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs.

    PubMed

    Rowland, Christopher R; Glass, Katherine A; Ettyreddy, Adarsh R; Gloss, Catherine C; Matthews, Jared R L; Huynh, Nguyen P T; Guilak, Farshid

    2018-05-30

    Cartilage-derived matrix (CDM) has emerged as a promising scaffold material for tissue engineering of cartilage and bone due to its native chondroinductive capacity and its ability to support endochondral ossification. Because it consists of native tissue, CDM can undergo cellular remodeling, which can promote integration with host tissue and enables it to be degraded and replaced by neotissue over time. However, enzymatic degradation of decellularized tissues can occur unpredictably and may not allow sufficient time for mechanically competent tissue to form, especially in the harsh inflammatory environment of a diseased joint. The goal of the current study was to engineer cartilage and bone constructs with the ability to inhibit aberrant inflammatory processes caused by the cytokine interleukin-1 (IL-1), through scaffold-mediated delivery of lentiviral particles containing a doxycycline-inducible IL-1 receptor antagonist (IL-1Ra) transgene on anatomically-shaped CDM constructs. Additionally, scaffold-mediated lentiviral gene delivery was used to facilitate spatial organization of simultaneous chondrogenic and osteogenic differentiation via site-specific transduction of a single mesenchymal stem cell (MSC) population to overexpress either chondrogenic, transforming growth factor-beta 3 (TGF-β3), or osteogenic, bone morphogenetic protein-2 (BMP-2), transgenes. Controlled induction of IL-1Ra expression protected CDM hemispheres from inflammation-mediated degradation, and supported robust bone and cartilage tissue formation even in the presence of IL-1. In the absence of inflammatory stimuli, controlled cellular remodeling was exploited as a mechanism for fusing concentric CDM hemispheres overexpressing BMP-2 and TGF-β3 into a single bi-layered osteochondral construct. Our findings demonstrate that site-specific delivery of inducible and tunable transgenes confers spatial and temporal control over both CDM scaffold remodeling and neotissue composition. Furthermore, these constructs provide a microphysiological in vitro joint organoid model with site-specific, tunable, and inducible protein delivery systems for examining the spatiotemporal response to pro-anabolic and/or inflammatory signaling across the osteochondral interface. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Tissue Engineering Strategies for Promoting Vascularized Bone Regeneration

    PubMed Central

    Almubarak, Sarah; Nethercott, Hubert; Freeberg, Marie; Beaudon, Caroline; Jha, Amit; Jackson, Wesley; Marcucio, Ralph; Miclau, Theodore; Healy, Kevin; Bahney, Chelsea

    2016-01-01

    This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods. PMID:26608518

  8. [Morphological and functional cartilage imaging].

    PubMed

    Rehnitz, C; Weber, M-A

    2014-06-01

    Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.

  9. [Morphological and functional cartilage imaging].

    PubMed

    Rehnitz, C; Weber, M-A

    2015-04-01

    Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.

  10. From gristle to chondrocyte transplantation: treatment of cartilage injuries

    PubMed Central

    Lindahl, Anders

    2015-01-01

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. PMID:26416680

  11. The Application of Sheet Technology in Cartilage Tissue Engineering.

    PubMed

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.

  12. The development of hyaline-cell cartilage in the head of the black molly, Poecilia sphenops. Evidence for secondary cartilage in a teleost.

    PubMed Central

    Benjamin, M

    1989-01-01

    The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cartilage according to current concepts. It is also argued that the hyaline-cell cartilage attached to the perichondral bone of the basioccipital (a cartilage bone), could also be viewed as secondary. The status of the cartilage on the nasal and lacrimal bones is less clear, for it develops, at least in part, from mucochondroid (mucous connective) tissue. This is the first definitive report of secondary cartilage in any lower vertebrate. The tissue is therefore not restricted to birds and mammals as hitherto believed, and a multipotential periosteum must have arisen early in vertebrate evolution. Images Fig. 1 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:2481666

  13. Link Protein N-Terminal Peptide as a Potential Stimulating Factor for Stem Cell-Based Cartilage Regeneration

    PubMed Central

    Xiong, Zekang; Lin, Hui; Zhao, Lei; Li, Zhiliang; Wang, Zhe; Peggrem, Shaun; Xia, Zhidao

    2018-01-01

    Background Link protein N-terminal peptide (LPP) in extracellular matrix (ECM) of cartilage could induce synthesis of proteoglycans and collagen type II in cartilaginous cells. Cartilage stem/progenitor cells (CSPCs), the endogenous stem cells in cartilage, are important in cartilage degeneration and regeneration. We hypothesized that LPP could be a stimulator for stem cell-based cartilage regeneration by affecting biological behaviors of CSPC. Methods CSPCs were isolated from rat knee cartilage. We evaluated the promoting effect of LPP on proliferation, migration, and chondrogenic differentiation of CSPCs. The chondrogenic differentiation-related genes and proteins were quantitated. Three-dimensional culture of CSPC was conducted in the presence of TGF-β3 or LPP, and the harvested pellets were analyzed to assess the function of LPP on cartilage regeneration. Results LPP stimulated the proliferation of CSPC and accelerated the site-directional migration. Higher expression of SOX9, collagen II, and aggrecan were demonstrated in CSPCs treated with LPP. The pellets treated with LPP showed more distinct characteristics of chondroid differentiation than those with TGF-β3. Conclusion LPP showed application prospect in cartilage regeneration medicine by stimulating proliferation, migration, and chondrogenic differentiation of cartilage stem/progenitor cells. PMID:29531532

  14. Electromechanical properties of human osteoarthritic and asymptomatic articular cartilage are sensitive and early detectors of degeneration.

    PubMed

    Hadjab, I; Sim, S; Karhula, S S; Kauppinen, S; Garon, M; Quenneville, E; Lavigne, P; Lehenkari, P P; Saarakkala, S; Buschmann, M D

    2018-03-01

    To evaluate cross-correlations of ex vivo electromechanical properties with cartilage and subchondral bone plate thickness, as well as their sensitivity and specificity regarding early cartilage degeneration in human tibial plateau. Six pairs of tibial plateaus were assessed ex vivo using an electromechanical probe (Arthro-BST) which measures a quantitative parameter (QP) reflecting articular cartilage compression-induced streaming potentials. Cartilage thickness was then measured with an automated thickness mapping technique using Mach-1 multiaxial mechanical tester. Subsequently, a visual assessment was performed by an experienced orthopedic surgeon using the International Cartilage Repair Society (ICRS) grading system. Each tibial plateau was finally evaluated with μCT scanner to determine the subchondral-bone plate thickness over the entire surface. Cross-correlations between assessments decreased with increasing degeneration level. Moreover, electromechanical QP and subchondral-bone plate thickness increased strongly with ICRS grade (ρ = 0.86 and ρ = 0.54 respectively), while cartilage thickness slightly increased (ρ = 0.27). Sensitivity and specificity analysis revealed that the electromechanical QP is the most performant to distinguish between different early degeneration stages, followed by subchondral-bone plate thickness and then cartilage thickness. Lastly, effect sizes of cartilage and subchondral-bone properties were established to evaluate whether cartilage or bone showed the most noticeable changes between normal (ICRS 0) and each early degenerative stage. Thus, the effect sizes of cartilage electromechanical QP were almost twice those of the subchondral-bone plate thickness, indicating greater sensitivity of electromechanical measurements to detect early osteoarthritis. The potential of electromechanical properties for the diagnosis of early human cartilage degeneration was highlighted and supported by cartilage thickness and μCT assessments. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. MRI based knee cartilage assessment

    NASA Astrophysics Data System (ADS)

    Kroon, Dirk-Jan; Kowalski, Przemyslaw; Tekieli, Wojciech; Reeuwijk, Els; Saris, Daniel; Slump, Cornelis H.

    2012-03-01

    Osteoarthritis is one of the leading causes of pain and disability worldwide and a major health problem in developed countries due to the gradually aging population. Though the symptoms are easily recognized and described by a patient, it is difficult to assess the level of damage or loss of articular cartilage quantitatively. We present a novel method for fully automated knee cartilage thickness measurement and subsequent assessment of the knee joint. First, the point correspondence between a pre-segmented training bone model is obtained with use of Shape Context based non-rigid surface registration. Then, a single Active Shape Model (ASM) is used to segment both Femur and Tibia bone. The surfaces obtained are processed to extract the Bone-Cartilage Interface (BCI) points, where the proper segmentation of cartilage begins. For this purpose, the cartilage ASM is trained with cartilage edge positions expressed in 1D coordinates at the normals in the BCI points. The whole cartilage model is then constructed from the segmentations obtained in the previous step. An absolute thickness of the segmented cartilage is measured and compared to the mean of all training datasets, giving as a result the relative thickness value. The resulting cartilage structure is visualized and related to the segmented bone. In this way the condition of the cartilage is assessed over the surface. The quality of bone and cartilage segmentation is validated and the Dice's coefficients 0.92 and 0.86 for Femur and Tibia bones and 0.45 and 0.34 for respective cartilages are obtained. The clinical diagnostic relevance of the obtained thickness mapping is being evaluated retrospectively. We hope to validate it prospectively for prediction of clinical outcome the methods require improvements in accuracy and robustness.

  16. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.

    PubMed

    Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C

    2013-12-01

    Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Inhibition of integrative cartilage repair by proteoglycan 4 in synovial fluid.

    PubMed

    Englert, Carsten; McGowan, Kevin B; Klein, Travis J; Giurea, Alexander; Schumacher, Barbara L; Sah, Robert L

    2005-04-01

    To determine the effects of the articular cartilage surface, as well as synovial fluid (SF) and its components, specifically proteoglycan 4 (PRG4) and hyaluronic acid (HA), on integrative cartilage repair in vitro. Blocks of calf articular cartilage were harvested, some with the articular surface intact and others without. Some of the latter types of blocks were pretreated with trypsin, and then with bovine serum albumin, SF, PRG4, or HA. Immunolocalization of PRG4 on cartilage surfaces was performed after treatment. Pairs of similarly treated cartilage blocks were incubated in partial apposition for 2 weeks in medium supplemented with serum and (3)H-proline. Following culture, mechanical integration between apposed cartilage blocks was assessed by measuring adhesive strength, and protein biosynthesis and deposition were determined by incorporated (3)H-proline. Samples with articular surfaces in apposition exhibited little integrative repair compared with samples with cut surfaces in apposition. PRG4 was immunolocalized at the articular cartilage surface, but not in deeper, cut surfaces (without treatment). Cartilage samples treated with trypsin and then with SF or PRG4 exhibited an inhibition of integrative repair and positive immunostaining for PRG4 at treated surfaces compared with normal cut cartilage samples, while samples treated with HA exhibited neither inhibited integrative repair nor PRG4 at the tissue surfaces. Deposition of newly synthesized protein was relatively similar under conditions in which integration differed significantly. These results support the concept that PRG4 in SF, which normally contributes to cartilage lubrication, can inhibit integrative cartilage repair. This has the desirable effect of preventing fusion of apposing surfaces of articulating cartilage, but has the undesirable effect of inhibiting integrative repair.

  18. Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth.

    PubMed

    Rose, Christopher S; Murawinski, Danny; Horne, Virginia

    2015-06-01

    Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity. © 2015 Anatomical Society.

  19. Deconstructing cartilage shape and size into contributions from embryogenesis, metamorphosis, and tadpole and frog growth

    PubMed Central

    Rose, Christopher S; Murawinski, Danny; Horne, Virginia

    2015-01-01

    Understanding skeletal diversification involves knowing not only how skeletal rudiments are shaped embryonically, but also how skeletal shape changes throughout life. The pharyngeal arch (PA) skeleton of metamorphosing amphibians persists largely as cartilage and undergoes two phases of development (embryogenesis and metamorphosis) and two phases of growth (larval and post-metamorphic). Though embryogenesis and metamorphosis produce species-specific features of PA cartilage shape, the extents to which shape and size change during growth and metamorphosis remain unaddressed. This study uses allometric equations and thin-plate spline, relative warp and elliptic Fourier analyses to describe shape and size trajectories for the ventral PA cartilages of the frog Xenopus laevis in tadpole and frog growth and metamorphosis. Cartilage sizes scale negatively with body size in both growth phases and cartilage shapes scale isometrically or close to it. This implies that most species-specific aspects of cartilage shape arise in embryogenesis and metamorphosis. Contributions from growth are limited to minor changes in lower jaw (LJ) curvature that produce relative gape narrowing and widening in tadpoles and frogs, respectively, and most cartilages becoming relatively thinner. Metamorphosis involves previously unreported decreases in cartilage size as well as changes in cartilage shape. The LJ becomes slightly longer, narrower and more curved, and the adult ceratohyal emerges from deep within the resorbing tadpole ceratohyal. This contrast in shape and size changes suggests a fundamental difference in the underlying cellular pathways. The observation that variation in PA cartilage shape decreases with tadpole growth supports the hypothesis that isometric growth is required for the metamorphic remodeling of PA cartilages. It also supports the existence of shape-regulating mechanisms that are specific to PA cartilages and that resist local adaptation and phenotypic plasticity. PMID:25913729

  20. Co-culture with infrapatellar fat pad differentially stimulates proteoglycan synthesis and accumulation in cartilage and meniscus tissues.

    PubMed

    Nishimuta, James F; Bendernagel, Monica F; Levenston, Marc E

    2017-09-01

    Although osteoarthritis is widely viewed as a disease of the whole joint, relatively few studies have focused on interactions among joint tissues in joint homeostasis and degeneration. In particular, few studies have examined the effects of the infrapatellar fat pad (IFP) on cartilaginous tissues. The aim of this study was to test the hypothesis that co-culture with healthy IFP would induce degradation of cartilage and meniscus tissues. Bovine articular cartilage, meniscus, and IFP were cultured isolated or as cartilage-fat or meniscus-fat co-cultures for up to 14 days. Conditioned media were assayed for sulfated glycosaminoglycan (sGAG) content, nitrite content, and matrix metalloproteinase (MMP) activity, and explants were assayed for sGAG and DNA contents. Co-cultures exhibited increased cumulative sGAG release and sGAG release rates for both cartilage and meniscus, and the cartilage (but not meniscus) exhibited a substantial synergistic effect of co-culture (sGAG release in co-culture was significantly greater than the summed release from isolated cartilage and fat). Fat co-culture did not significantly alter the sGAG content of either cartilage or meniscus explants, indicating that IFP co-culture stimulated net sGAG production by cartilage. Nitrite release was increased relative to isolated tissue controls in co-cultured meniscus, but not the cartilage, with no synergistic effect of co-culture. Interestingly, MMP-2 production was decreased by co-culture for both cartilage and meniscus. This study demonstrates that healthy IFP may modulate joint homeostasis by stimulating sGAG production in cartilage. Counter to our hypothesis, healthy IFP did not promote degradation of either cartilage or meniscus tissues.

Top