Model and Study on Cascade Control System Based on IGBT Chopping Control
NASA Astrophysics Data System (ADS)
Niu, Yuxin; Chen, Liangqiao; Wang, Shuwen
2018-01-01
Thyristor cascade control system has a wide range of applications in the industrial field, but the traditional cascade control system has some shortcomings, such as a low power factor, serious harmonic pollution. In this paper, not only analyzing its system structure and working principle, but also discussing the two main factors affecting the power factor. Chopping-control cascade control system, adopted a new power switching device IGBT, which could overcome traditional cascade control system’s two main drawbacks efficiently. The basic principle of this cascade control system is discussed in this paper and the model of speed control system is built by using MATLAB/Simulink software. Finally, the simulation results of the system shows that the system works efficiently. This system is worthy to be spread widely in engineering application.
NASA Astrophysics Data System (ADS)
Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying
2017-09-01
As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.
Cooper, Lauren A; Stringer, Anne M; Wade, Joseph T
2018-04-17
In clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) immunity systems, short CRISPR RNAs (crRNAs) are bound by Cas proteins, and these complexes target invading nucleic acid molecules for degradation in a process known as interference. In type I CRISPR-Cas systems, the Cas protein complex that binds DNA is known as Cascade. Association of Cascade with target DNA can also lead to acquisition of new immunity elements in a process known as primed adaptation. Here, we assess the specificity determinants for Cascade-DNA interaction, interference, and primed adaptation in vivo , for the type I-E system of Escherichia coli Remarkably, as few as 5 bp of crRNA-DNA are sufficient for association of Cascade with a DNA target. Consequently, a single crRNA promotes Cascade association with numerous off-target sites, and the endogenous E. coli crRNAs direct Cascade binding to >100 chromosomal sites. In contrast to the low specificity of Cascade-DNA interactions, >18 bp are required for both interference and primed adaptation. Hence, Cascade binding to suboptimal, off-target sites is inert. Our data support a model in which the initial Cascade association with DNA targets requires only limited sequence complementarity at the crRNA 5' end whereas recruitment and/or activation of the Cas3 nuclease, a prerequisite for interference and primed adaptation, requires extensive base pairing. IMPORTANCE Many bacterial and archaeal species encode CRISPR-Cas immunity systems that protect against invasion by foreign DNA. In the Escherichia coli CRISPR-Cas system, a protein complex, Cascade, binds 61-nucleotide (nt) CRISPR RNAs (crRNAs). The Cascade complex is directed to invading DNA molecules through base pairing between the crRNA and target DNA. This leads to recruitment of the Cas3 nuclease, which destroys the invading DNA molecule and promotes acquisition of new immunity elements. We made the first in vivo measurements of Cascade binding to DNA targets. Thus, we show that Cascade binding to DNA is highly promiscuous; endogenous E. coli crRNAs can direct Cascade binding to >100 chromosomal locations. In contrast, we show that targeted degradation and acquisition of new immunity elements require highly specific association of Cascade with DNA, limiting CRISPR-Cas function to the appropriate targets. Copyright © 2018 Cooper et al.
Coagulation cascade and complement system in systemic lupus erythematosus
Liang, Yan; Xie, Shang-Bo; Wu, Chang-Hao; Hu, Yuan; Zhang, Qin; Li, Si; Fan, Yin-Guang; Leng, Rui-Xue; Pan, Hai-Feng; Xiong, Hua-Bao; Ye, Dong-Qing
2018-01-01
This study was conducted to (1) characterize coagulation cascade and complement system in systemic lupus erythematosus (SLE); (2) evaluate the associations between coagulation cascade, complement system, inflammatory response and SLE disease severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE patients and 24 healthy controls. The levels of ten coagulations, seven complements and three cytokines were measured in 112 SLE patients. Clinical data were collected from 2025 SLE patients. The analysis of multi-omics data revealed the common links for the components of coagulation cascade and complement system. The results of ELISA showed coagulation cascade and complement system had an interaction effect on SLE disease severity, this effect was pronounced among patients with excess inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 provided good diagnostic performance for lupus activity. This study suggested that coagulation cascade and complement system become ‘partners in crime’, contributing to SLE disease severity and identified the diagnostic value of D-dimer combined with C4for lupus activity. PMID:29599912
Placement of Synchronized Measurements for Power System Observability during Cascaded Outages
NASA Astrophysics Data System (ADS)
Thirugnanasambandam, Venkatesh; Jain, Trapti
2017-11-01
Cascaded outages often result in power system islanding followed by a blackout and therefore considered as a severe disturbance. Maintaining the observability of each island may help in taking proper control actions to preserve the stability of individual islands thus, averting system collapse. With this intent, a strategy for placement of synchronized measurements, which can be obtained from phasor measurement units (PMU), has been proposed in this paper to keep the system observable during cascaded outages also. Since, all the cascaded failures may not lead to islanding situations, therefore, failures leading to islanding as well as non-islanding situations have been considered. A topology based algorithm has been developed to identify the islanding/non-islanding condition created by a particular cascaded event. Additional contingencies such as single line loss and single PMU failure have also been considered after the occurrence of cascaded events. The proposed method is further extended to incorporate the measurement redundancy, which is desirable for a reliable state estimation. The proposed scheme is tested on IEEE 14-bus, IEEE 30-bus and a practical Indian 246-bus networks. The numerical results ensure the observability of the power system under system intact as well as during cascaded islanding and non-islanding disturbances.
Global stabilisation of a class of generalised cascaded systems by homogeneous method
NASA Astrophysics Data System (ADS)
Ding, Shihong; Zheng, Wei Xing
2016-04-01
This paper considers the problem of global stabilisation of a class of generalised cascaded systems. By using the extended adding a power integrator technique, a global controller is first constructed for the driving subsystem. Then based on the homogeneous properties and polynomial assumption, it is shown that the stabilisation of the driving subsystem implies the stabilisation of the overall cascaded system. Meanwhile, by properly choosing some control parameters, the global finite-time stability of the closed-loop cascaded system is also established. The proposed control method has several new features. First, the nonlinear cascaded systems considered in the paper are more general than the conventional ones, since the powers in the nominal part of the driving subsystem are not required to be restricted to ratios of positive odd numbers. Second, the proposed method has some flexible parameters which provide the possibility for designing continuously differentiable controllers for cascaded systems, while the existing designed controllers for such kind of cascaded systems are only continuous. Third, the homogenous and polynomial conditions adopted for the driven subsystem are easier to verify when compared with the matching conditions that are widely used previously. Furthermore, the efficiency of the proposed control method is validated by its application to finite-time tracking control of non-holonomic wheeled mobile robot.
Cooper, Lauren A.; Stringer, Anne M.
2018-01-01
ABSTRACT In clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) immunity systems, short CRISPR RNAs (crRNAs) are bound by Cas proteins, and these complexes target invading nucleic acid molecules for degradation in a process known as interference. In type I CRISPR-Cas systems, the Cas protein complex that binds DNA is known as Cascade. Association of Cascade with target DNA can also lead to acquisition of new immunity elements in a process known as primed adaptation. Here, we assess the specificity determinants for Cascade-DNA interaction, interference, and primed adaptation in vivo, for the type I-E system of Escherichia coli. Remarkably, as few as 5 bp of crRNA-DNA are sufficient for association of Cascade with a DNA target. Consequently, a single crRNA promotes Cascade association with numerous off-target sites, and the endogenous E. coli crRNAs direct Cascade binding to >100 chromosomal sites. In contrast to the low specificity of Cascade-DNA interactions, >18 bp are required for both interference and primed adaptation. Hence, Cascade binding to suboptimal, off-target sites is inert. Our data support a model in which the initial Cascade association with DNA targets requires only limited sequence complementarity at the crRNA 5′ end whereas recruitment and/or activation of the Cas3 nuclease, a prerequisite for interference and primed adaptation, requires extensive base pairing. PMID:29666291
Environmental solid particle effects on compressor cascade performance
NASA Technical Reports Server (NTRS)
Tabakoff, W.; Balan, C.
1982-01-01
The effect of suspended solid particles on the performance of the compressor cascade was investigated experimentally in a specially built cascade tunnel, using quartz sand particles. The cascades were made of NACA 65(10)10 airfoils. Three cascades were tested, one accelerating cascade and two diffusing cascades. The theoretical analysis assumes inviscid and incompressible two dimensional flow. The momentum exchange between the fluid and the particle is accounted for by the interphase force terms in the fluid momentum equation. The modified fluid phase momentum equations and the continuity equation are reduced to the conventional stream function vorticity formulation. The method treats the fluid phase in the Eulerian system and the particle phase in Lagrangian system. The experimental results indicate a small increase in the blade surface static pressures, while the theoretical results indicate a small decrease. The theoretical analysis, also predicts the loss in total pressure associated with the particulate flow through the cascade.
Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors.
Gruber, Pia; Marques, Marco P C; O'Sullivan, Brian; Baganz, Frank; Wohlgemuth, Roland; Szita, Nicolas
2017-07-01
The continuous production of high value or difficult to synthesize products is of increasing interest to the pharmaceutical industry. Cascading reaction systems have already been employed for chemical synthesis with great success, allowing a quick change in reaction conditions and addition of new reactants as well as removal of side products. A cascading system can remove the need for isolating unstable intermediates, increasing the yield of a synthetic pathway. Based on the success for chemical synthesis, the question arises how cascading systems could be beneficial to chemo-enzymatic or biocatalytic synthesis. Microreactors, with their rapid mass and heat transfer, small reaction volumes and short diffusion pathways, are promising tools for the development of such processes. In this mini-review, the authors provide an overview of recent examples of cascaded microreactors. Special attention will be paid to how microreactors are combined and the challenges as well as opportunities that arise from such combinations. Selected chemical reaction cascades will be used to illustrate this concept, before the discussion is widened to include chemo-enzymatic and multi-enzyme cascades. The authors also present the state of the art of online and at-line monitoring for enzymatic microreactor cascades. Finally, the authors review work-up and purification steps and their integration with microreactor cascades, highlighting the potential and the challenges of integrated cascades. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crossover from localized to cascade relaxations in metallic glasses
Fan, Yue; Iwashita, Takuya; Egami, Takeshi
2015-07-21
Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. As a result, the origin of the cascade process in the fast quenched system is attributed to the higher density of localmore » minima on the underlying potential energy landscape.« less
DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter
NASA Astrophysics Data System (ADS)
Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi
2013-06-01
Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.
Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)
NASA Technical Reports Server (NTRS)
Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda
2012-01-01
NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1
Cascade defense via routing in complex networks
NASA Astrophysics Data System (ADS)
Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen
2015-05-01
As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.
Mehdi, Niaz; Rehan, Muhammad; Malik, Fahad Mumtaz; Bhatti, Aamer Iqbal; Tufail, Muhammad
2014-05-01
This paper describes the anti-windup compensator (AWC) design methodologies for stable and unstable cascade plants with cascade controllers facing actuator saturation. Two novel full-order decoupling AWC architectures, based on equivalence of the overall closed-loop system, are developed to deal with windup effects. The decoupled architectures have been developed, to formulate the AWC synthesis problem, by assuring equivalence of the coupled and the decoupled architectures, instead of using an analogy, for cascade control systems. A comparison of both AWC architectures from application point of view is provided to consolidate their utilities. Mainly, one of the architecture is better in terms of computational complexity for implementation, while the other is suitable for unstable cascade systems. On the basis of the architectures for cascade systems facing stability and performance degradation problems in the event of actuator saturation, the global AWC design methodologies utilizing linear matrix inequalities (LMIs) are developed. These LMIs are synthesized by application of the Lyapunov theory, the global sector condition and the ℒ2 gain reduction of the uncertain decoupled nonlinear component of the decoupled architecture. Further, an LMI-based local AWC design methodology is derived by utilizing a local sector condition by means of a quadratic Lyapunov function to resolve the windup problem for unstable cascade plants under saturation. To demonstrate effectiveness of the proposed AWC schemes, an underactuated mechanical system, the ball-and-beam system, is considered, and details of the simulation and practical implementation results are described. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Cascade redox flow battery systems
Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak
2014-07-22
A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.
Small vulnerable sets determine large network cascades in power grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.
The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less
Small vulnerable sets determine large network cascades in power grids
Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.
2017-11-17
The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less
Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System
NASA Astrophysics Data System (ADS)
Revana, Guruswamy; Kota, Venkata Reddy
2018-04-01
Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.
Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System
NASA Astrophysics Data System (ADS)
Revana, Guruswamy; Kota, Venkata Reddy
2017-12-01
Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vyakaranam, Bharat GNVSR; Vallem, Mallikarjuna R.; Nguyen, Tony B.
The vulnerability of large power systems to cascading failures and major blackouts has become evident since the Northeast blackout in 1965. Based on analyses of the series of cascading blackouts in the past decade, the research community realized the urgent need to develop better methods, tools, and practices for performing cascading-outage analysis and for evaluating mitigations that are easily accessible by utility planning engineers. PNNL has developed the Dynamic Contingency Analysis Tool (DCAT) as an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power planning engineers to assess the impact and likelihoodmore » of extreme contingencies and potential cascading events across their systems and interconnections. DCAT analysis will help identify potential vulnerabilities and allow study of mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. Using the DCAT capability, we examined the impacts of various load conditions to identify situations in which the power grid may encounter cascading outages that could lead to potential blackouts. This paper describes the usefulness of the DCAT tool and how it helps to understand potential impacts of load demand on cascading failures on the power system.« less
Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.
2017-10-19
Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less
Output control using feedforward and cascade controllers
NASA Technical Reports Server (NTRS)
Seraji, H.
1987-01-01
An open-loop solution to the output control problem in SISO (single-input, single-output) systems by means of feedforward and cascade controllers is investigated. A simple characterization of feedforward controllers, which achieve steady-state disturbance rejection, is given in a transfer-function setting. Cascade controllers which cause steady-state command tracking are characterized. Disturbance decoupling and command matching controllers are identified. Conditions for existence of feedforward and cascade controllers are given. For unstable systems, it is shown that a stabilizing feedback controller can be used without affecting the feedforward and cascade controllers used for output control; hence, the three controllers can be designed independently. Output control by a combination of feedforward and feedback is discussed.
Cascading Failures as Continuous Phase-Space Transitions
Yang, Yang; Motter, Adilson E.
2017-12-14
In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-scale cascading failure. We derive a continuous model to advance our understanding of cascading failures in power-grid networks. The model accounts for both the failure of transmission lines and the desynchronization of power generators and incorporates the transient dynamics between successive steps of the cascade. In this framework, we show that a cascade event is a phase-space transition from an equilibrium state with high energy to an equilibrium state with lower energy, which can be suitably described in a closed form using a global Hamiltonian-likemore » function. From this function, we show that a perturbed system cannot always reach the equilibrium state predicted by quasi-steady-state cascade models, which would correspond to a reduced number of failures, and may instead undergo a larger cascade. We also show that, in the presence of two or more perturbations, the outcome depends strongly on the order and timing of the individual perturbations. These results offer new insights into the current understanding of cascading dynamics, with potential implications for control interventions.« less
Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.
Cascading Failures as Continuous Phase-Space Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Motter, Adilson E.
In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-scale cascading failure. We derive a continuous model to advance our understanding of cascading failures in power-grid networks. The model accounts for both the failure of transmission lines and the desynchronization of power generators and incorporates the transient dynamics between successive steps of the cascade. In this framework, we show that a cascade event is a phase-space transition from an equilibrium state with high energy to an equilibrium state with lower energy, which can be suitably described in a closed form using a global Hamiltonian-likemore » function. From this function, we show that a perturbed system cannot always reach the equilibrium state predicted by quasi-steady-state cascade models, which would correspond to a reduced number of failures, and may instead undergo a larger cascade. We also show that, in the presence of two or more perturbations, the outcome depends strongly on the order and timing of the individual perturbations. These results offer new insights into the current understanding of cascading dynamics, with potential implications for control interventions.« less
Emergence of event cascades in inhomogeneous networks
NASA Astrophysics Data System (ADS)
Onaga, Tomokatsu; Shinomoto, Shigeru
2016-09-01
There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network.
Cascading failure in scale-free networks with tunable clustering
NASA Astrophysics Data System (ADS)
Zhang, Xue-Jun; Gu, Bo; Guan, Xiang-Min; Zhu, Yan-Bo; Lv, Ren-Li
2016-02-01
Cascading failure is ubiquitous in many networked infrastructure systems, such as power grids, Internet and air transportation systems. In this paper, we extend the cascading failure model to a scale-free network with tunable clustering and focus on the effect of clustering coefficient on system robustness. It is found that the network robustness undergoes a nonmonotonic transition with the increment of clustering coefficient: both highly and lowly clustered networks are fragile under the intentional attack, and the network with moderate clustering coefficient can better resist the spread of cascading. We then provide an extensive explanation for this constructive phenomenon via the microscopic point of view and quantitative analysis. Our work can be useful to the design and optimization of infrastructure systems.
Signal transduction in a covalent post-assembly modification cascade
NASA Astrophysics Data System (ADS)
Pilgrim, Ben S.; Roberts, Derrick A.; Lohr, Thorsten G.; Ronson, Tanya K.; Nitschke, Jonathan R.
2017-12-01
Natural reaction cascades control the movement of biomolecules between cellular compartments. Inspired by these systems, we report a synthetic reaction cascade employing post-assembly modification reactions to direct the partitioning of supramolecular complexes between phases. The system is composed of a self-assembled tetrazine-edged FeII8L12 cube and a maleimide-functionalized FeII4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, beginning with the inverse-electron-demand Diels-Alder reaction of NBD with the tetrazine moieties of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal that subsequently undergoes a Diels-Alder reaction with the maleimide-functionalized tetrahedron. Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Initiating the cascade with 2-octadecyl NBD leads to selective alkylation of the tetrahedron upon cascade completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-polar phase, allowing its isolation from the initially inseparable mixture of complexes.
Quantifying radionuclide signatures from a γ-γ coincidence system.
Britton, Richard; Jackson, Mark J; Davies, Ashley V
2015-11-01
A method for quantifying gamma coincidence signatures has been developed, and tested in conjunction with a high-efficiency multi-detector system to quickly identify trace amounts of radioactive material. The γ-γ system utilises fully digital electronics and list-mode acquisition to time-stamp each event, allowing coincidence matrices to be easily produced alongside typical 'singles' spectra. To quantify the coincidence signatures a software package has been developed to calculate efficiency and cascade summing corrected branching ratios. This utilises ENSDF records as an input, and can be fully automated, allowing the user to quickly and easily create/update a coincidence library that contains all possible γ and conversion electron cascades, associated cascade emission probabilities, and true-coincidence summing corrected γ cascade detection probabilities. It is also fully searchable by energy, nuclide, coincidence pair, γ multiplicity, cascade probability and half-life of the cascade. The probabilities calculated were tested using measurements performed on the γ-γ system, and found to provide accurate results for the nuclides investigated. Given the flexibility of the method, (it only relies on evaluated nuclear data, and accurate efficiency characterisations), the software can now be utilised for a variety of systems, quickly and easily calculating coincidence signature probabilities. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.
Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H
2017-03-20
Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
NASA Astrophysics Data System (ADS)
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.
2017-03-01
Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.
2017-01-01
Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835
Cascades on a stochastic pulse-coupled network
NASA Astrophysics Data System (ADS)
Wray, C. M.; Bishop, S. R.
2014-09-01
While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.
Cascades on a stochastic pulse-coupled network
Wray, C. M.; Bishop, S. R.
2014-01-01
While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided. PMID:25213626
Continuous pressure letdown system
Sprouse, Kenneth M.; Matthews, David R.; Langowski, Terry
2010-06-08
A continuous pressure letdown system connected to a hopper decreases a pressure of a 2-phase (gas and solid) dusty gas stream flowing through the system. The system includes a discharge line for receiving the dusty gas from the hopper, a valve, a cascade nozzle assembly positioned downstream of the discharge line, a purge ring, an inert gas supply connected to the purge ring, an inert gas throttle, and a filter. The valve connects the hopper to the discharge line and controls introduction of the dusty gas stream into the discharge line. The purge ring is connected between the discharge line and the cascade nozzle assembly. The inert gas throttle controls a flow rate of an inert gas into the cascade nozzle assembly. The filter is connected downstream of the cascade nozzle assembly.
Assessment of Critical Events Corridors through Multivariate Cascading Outages Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Samaan, Nader A.; Diao, Ruisheng
2011-10-17
Massive blackouts of electrical power systems in North America over the past decade has focused increasing attention upon ways to identify and simulate network events that may potentially lead to widespread network collapse. This paper summarizes a method to simulate power-system vulnerability to cascading failures to a supplied set of initiating events synonymously termed as Extreme Events. The implemented simulation method is currently confined to simulating steady state power-system response to a set of extreme events. The outlined method of simulation is meant to augment and provide a new insight into bulk power transmission network planning that at present remainsmore » mainly confined to maintaining power system security for single and double component outages under a number of projected future network operating conditions. Although one of the aims of this paper is to demonstrate the feasibility of simulating network vulnerability to cascading outages, a more important goal has been to determine vulnerable parts of the network that may potentially be strengthened in practice so as to mitigate system susceptibility to cascading failures. This paper proposes to demonstrate a systematic approach to analyze extreme events and identify vulnerable system elements that may be contributing to cascading outages. The hypothesis of critical events corridors is proposed to represent repeating sequential outages that can occur in the system for multiple initiating events. The new concept helps to identify system reinforcements that planners could engineer in order to 'break' the critical events sequences and therefore lessen the likelihood of cascading outages. This hypothesis has been successfully validated with a California power system model.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
... configuration to maintain system stability, acceptable voltage or power flows.\\12\\ \\12\\ In the Western... prevent system instability or cascading outages, and protect other facilities in response to transmission... nature used to address system reliability vulnerabilities to prevent system instability, cascading...
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2013-12-01
A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... (MW and MVAR), or system configuration to maintain system stability, acceptable voltage or power flows... identified system conditions to prevent system instability or cascading outages, and protect other facilities... instability, cascading outages, and protect other facilities in response to contingencies. Therefore, a...
A framework for analyzing contagion in assortative banking networks
Hurd, Thomas R.; Gleeson, James P.; Melnik, Sergey
2017-01-01
We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large banks). We analyze default cascades triggered by shocking the network and find that the cascade can be understood as an explicit iterated mapping on a set of edge probabilities that converges to a fixed point. We derive a cascade condition, analogous to the basic reproduction number R0 in epidemic modelling, that characterizes whether or not a single initially defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network. This cascade condition is an easily computed measure of the systemic risk inherent in a given banking network topology. We use percolation theory for random networks to derive a formula for the frequency of global cascades. These analytical results are shown to provide limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks. We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can have a strong effect on the level of systemic risk as measured by the cascade condition. However, the effect of assortativity on systemic risk is subtle, and we propose a simple graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used to assess systemic risk. PMID:28231324
A framework for analyzing contagion in assortative banking networks.
Hurd, Thomas R; Gleeson, James P; Melnik, Sergey
2017-01-01
We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large banks). We analyze default cascades triggered by shocking the network and find that the cascade can be understood as an explicit iterated mapping on a set of edge probabilities that converges to a fixed point. We derive a cascade condition, analogous to the basic reproduction number R0 in epidemic modelling, that characterizes whether or not a single initially defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network. This cascade condition is an easily computed measure of the systemic risk inherent in a given banking network topology. We use percolation theory for random networks to derive a formula for the frequency of global cascades. These analytical results are shown to provide limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks. We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can have a strong effect on the level of systemic risk as measured by the cascade condition. However, the effect of assortativity on systemic risk is subtle, and we propose a simple graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used to assess systemic risk.
Vulnerability and cosusceptibility determine the size of network cascades
Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.
2017-01-27
In a network, a local disturbance can propagate and eventually cause a substantial part of the system to fail in cascade events that are easy to conceptualize but extraordinarily difficult to predict. Furthermore, we develop a statistical framework that can predict cascade size distributions by incorporating two ingredients only: the vulnerability of individual components and the cosusceptibility of groups of components (i.e., their tendency to fail together). Using cascades in power grids as a representative example, we show that correlations between component failures define structured and often surprisingly large groups of cosusceptible components. Aside from their implications for blackout studies,more » these results provide insights and a new modeling framework for understanding cascades in financial systems, food webs, and complex networks in general.« less
LCA-based optimization of wood utilization under special consideration of a cascading use of wood.
Höglmeier, Karin; Steubing, Bernhard; Weber-Blaschke, Gabriele; Richter, Klaus
2015-04-01
Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications - both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.
Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less
Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence
Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...
2017-03-20
Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less
Kardaş, Fatih; Cetin, Aysun; Solmaz, Musa; Büyükoğlan, Rüksan; Kaynar, Leylagül; Kendirci, Mustafa; Eser, Bülent; Unal, Ali
2012-12-01
The aim of this study was to report the efficacy of low-density lipoprotein cholesterol (LDL-C) apheresisusing a cascade filtration system in pediatric patients with homozygous familial hypercholesterolemia (FH), and toclarify the associated adverse effects and difficulties. LDL-C apheresis using a cascade filtration system was performed in 3 pediatric patientswith homozygous FH; in total, 120 apheresis sessions were performed. Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dL to 145 ± 43 mg/dL (p= 0.011). We observed an acute mean reduction in the plasma level of total cholesterol (57.9%), LDL-C (70.8%),and high-density lipoprotein cholesterol (HDL-C) (40.7%). Treatments were well tolerated. The most frequent clinicaladverse effects were hypotension in 3 sessions (2.5%), chills (1.7%) in 2 sessions, and nausea/vomiting in 3 sessions(2.5%). Our experience using the cascade filtration system with 3 patients included good clinical outcomes andlaboratory findings, safe usage, and minor adverse effects and technical problems. None declared.
A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.
Catozzi, S; Sepulchre, J-A
2017-08-01
In living organisms, cascades of covalent modification cycles are one of the major intracellular signaling mechanisms, allowing to transduce physical or chemical stimuli of the external world into variations of activated biochemical species within the cell. In this paper, we develop a novel method to study the stimulus-response of signaling cascades and overall the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade. Our approach is based on a correspondence that we establish between the stationary states of a cascade and pieces of orbits of a 2D discrete dynamical system. The study of its possible phase portraits in function of the biochemical parameters, and in particular of the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations, yields a classification of the cascade tiers into three main types, whose biological impact within a signaling network is examined. In particular, our approach enables to discuss quantitatively the notion of cascade amplification/attenuation from this new perspective. The method allows also to study the interplay between forward and "retroactive" signaling, i.e., the upstream influence of an inhibiting drug bound to the last tier of the cascade.
Cascaded Microinverter PV System for Reduced Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellus, Daniel R.; Ely, Jeffrey A.
2013-04-29
In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with anmore » embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.« less
Optimization and resilience of complex supply-demand networks
NASA Astrophysics Data System (ADS)
Zhang, Si-Ping; Huang, Zi-Gang; Dong, Jia-Qi; Eisenberg, Daniel; Seager, Thomas P.; Lai, Ying-Cheng
2015-06-01
Supply-demand processes take place on a large variety of real-world networked systems ranging from power grids and the internet to social networking and urban systems. In a modern infrastructure, supply-demand systems are constantly expanding, leading to constant increase in load requirement for resources and consequently, to problems such as low efficiency, resource scarcity, and partial system failures. Under certain conditions global catastrophe on the scale of the whole system can occur through the dynamical process of cascading failures. We investigate optimization and resilience of time-varying supply-demand systems by constructing network models of such systems, where resources are transported from the supplier sites to users through various links. Here by optimization we mean minimization of the maximum load on links, and system resilience can be characterized using the cascading failure size of users who fail to connect with suppliers. We consider two representative classes of supply schemes: load driven supply and fix fraction supply. Our findings are: (1) optimized systems are more robust since relatively smaller cascading failures occur when triggered by external perturbation to the links; (2) a large fraction of links can be free of load if resources are directed to transport through the shortest paths; (3) redundant links in the performance of the system can help to reroute the traffic but may undesirably transmit and enlarge the failure size of the system; (4) the patterns of cascading failures depend strongly upon the capacity of links; (5) the specific location of the trigger determines the specific route of cascading failure, but has little effect on the final cascading size; (6) system expansion typically reduces the efficiency; and (7) when the locations of the suppliers are optimized over a long expanding period, fewer suppliers are required. These results hold for heterogeneous networks in general, providing insights into designing optimal and resilient complex supply-demand systems that expand constantly in time.
Very high volume hemofiltration with the Cascade system in septic shock patients.
Quenot, Jean-Pierre; Binquet, Christine; Vinsonneau, Christophe; Barbar, Saber-David; Vinault, Sandrine; Deckert, Valerie; Lemaire, Stéphanie; Hassain, Ali Ait; Bruyère, Rémi; Souweine, Bertrand; Lagrost, Laurent; Adrie, Christophe
2015-12-01
We compared hemodynamic and biological effects of the Cascade system, which uses very high volume hemofiltration (HVHF) (120 mL kg(-1) h(-1)), with those of usual care in patients with septic shock. Multicenter, prospective, randomized, open-label trial in three intensive care units (ICU). Adults with septic shock with administration of epinephrine/norepinephrine were eligible. Patients were randomized to usual care plus HVHF (Cascade group), or usual care alone (control group). Primary end point was the number of catecholamine-free days up to 28 days after randomization. Secondary end points were number of days free of mechanical ventilation, renal replacement therapy (RRT) or ICU up to 90 days, and 7-, 28-, and 90-day mortality. We included 60 patients (29 Cascade, 31 usual care). Baseline characteristics were comparable. Median number of catecholamine-free days was 22 [IQR 11-23] vs 20 [0-25] for Cascade vs control; there was no significant difference even after adjustment. There was no significant difference in number of mechanical ventilation-free days or ICU requirement. Median number of RRT-free days was 85 [46-90] vs 74 [0-90] for Cascade vs control groups, p = 0.42. By multivariate analysis, the number of RRT-free days was significantly higher in the Cascade group (up to 25 days higher after adjustment). There was no difference in mortality at 7, 28, or 90 days. Very HVHF using the Cascade system can safely be used in patients presenting with septic shock, but it was not associated with a reduction in the need for catecholamines during the first 28 days.
36 CFR 7.66 - North Cascades National Park.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...
36 CFR 7.66 - North Cascades National Park.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...
36 CFR 7.66 - North Cascades National Park.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...
36 CFR 7.66 - North Cascades National Park.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...
36 CFR 7.66 - North Cascades National Park.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...
A simple model of global cascades on random networks
NASA Astrophysics Data System (ADS)
Watts, Duncan J.
2002-04-01
The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.
Cascading failures in interdependent systems under a flow redistribution model
NASA Astrophysics Data System (ADS)
Zhang, Yingrui; Arenas, Alex; Yaǧan, Osman
2018-02-01
Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {LA,i,CA ,i} i =1 n and {LB,i,CB ,i} i =1 n, respectively. When a line fails in system A , a fraction of its load is redistributed to alive lines in B , while remaining (1 -a ) fraction is redistributed equally among all functional lines in A ; a line failure in B is treated similarly with b giving the fraction to be redistributed to A . We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p1 fraction of lines in A and p2 fraction in B . We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b , and robustness is maximized at non-trivial a ,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.
Cascading failures in interdependent systems under a flow redistribution model.
Zhang, Yingrui; Arenas, Alex; Yağan, Osman
2018-02-01
Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {L_{A,i},C_{A,i}}_{i=1}^{n} and {L_{B,i},C_{B,i}}_{i=1}^{n}, respectively. When a line fails in system A, a fraction of its load is redistributed to alive lines in B, while remaining (1-a) fraction is redistributed equally among all functional lines in A; a line failure in B is treated similarly with b giving the fraction to be redistributed to A. We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p_{1} fraction of lines in A and p_{2} fraction in B. We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b, and robustness is maximized at non-trivial a,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.
Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
Pausch, Patrick; Müller-Esparza, Hanna; Gleditzsch, Daniel; Altegoer, Florian; Randau, Lennart; Bange, Gert
2017-08-17
CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids. Type I CRISPR-Cas systems employ highly diverse, multi-subunit surveillance Cascade complexes that facilitate duplex formation between crRNA and complementary target DNA for R-loop formation, retention, and DNA degradation by the subsequently recruited nuclease Cas3. Typically, the large subunit recognizes bona fide targets through the PAM (protospacer adjacent motif), and the small subunit guides the non-target DNA strand. Here, we present the Apo- and target-DNA-bound structures of the I-Fv (type I-F variant) Cascade lacking the small and large subunits. Large and small subunits are functionally replaced by the 5' terminal crRNA cap Cas5fv and the backbone protein Cas7fv, respectively. Cas5fv facilitates PAM recognition from the DNA major groove site, in contrast to all other described type I systems. Comparison of the type I-Fv Cascade with an anti-CRISPR protein-bound I-F Cascade reveals that the type I-Fv structure differs substantially at known anti-CRISPR protein target sites and might therefore be resistant to viral Cascade interception. Copyright © 2017 Elsevier Inc. All rights reserved.
Cascading events in linked ecological and socioeconomic systems
Peters, Debra P.C.; Sala, O.E.; Allen, Craig D.; Covich, A.; Brunson, M.
2007-01-01
Cascading events that start at small spatial scales and propagate non-linearly through time to influence larger areas often have major impacts on ecosystem goods and services. Events such as wildfires and hurricanes are increasing in frequency and magnitude as systems become more connected through globalization processes. We need to improve our understanding of these events in order to predict their occurrence, minimize potential impacts, and allow for strategic recovery. Here, we synthesize information about cascading events in systems located throughout the Americas. We discuss a variety of examples of cascading events that share a common feature: they are often driven by linked ecological and human processes across scales. In this era of globalization, we recommend studies that explicitly examine connections across scales and examine the role of connectivity among non-contiguous as well as contiguous areas.
Altszyler, Edgar; Ventura, Alejandra C; Colman-Lerner, Alejandro; Chernomoretz, Ariel
2017-01-01
Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O'Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models.
Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Phillips, Mark C.
2015-07-01
A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.
Royo, Jose Luis; Moreno-Ruiz, Emilia; Cebolla, Angel; Santero, Eduardo
2005-03-16
In our laboratory we have analyzed different factors to maximize the yield in heterologous protein expression for long-term cultivation, by combination of an efficient cascade expression system and stable integration in the bacterial chromosome. In this work, we have explored this system for the production of indigo dye as a model for biotechnological production, by expressing in Escherichia coli the thnA1A2A3A4 genes from Sphingomonas macrogolitabida strain TFA, which encode the components of a tetralin dioxygenase activity. We compared Ptac, and the Pm-based cascade expression circuit in a multicopy plasmid and stably integrated into the bacterial chromosome. Plasmid-based expression systems resulted in instability of indigo production when serially diluted batch experiments were performed without a selective pressure. This problem was solved by integrating the expression module in the chromosome. Despite the gene dosage reduction, the synergic effect of the cascade expression system produced comparable expression to the dioxygenase activity in the plasmid configuration but could be stably maintained for at least 5 days. Here, we show that the cascade amplification circuit integrated in the chromosome could be an excellent system for tight control and stable production of recombinant products.
Belenko, Steven; Knight, Danica; Wasserman, Gail A; Dennis, Michael L; Wiley, Tisha; Taxman, Faye S; Oser, Carrie; Dembo, Richard; Robertson, Angela A; Sales, Jessica
2017-03-01
Substance use and substance use disorders are highly prevalent among youth under juvenile justice (JJ) supervision, and related to delinquency, psychopathology, social problems, risky sex and sexually transmitted infections, and health problems. However, numerous gaps exist in the identification of behavioral health (BH) problems and in the subsequent referral, initiation and retention in treatment for youth in community justice settings. This reflects both organizational and systems factors, including coordination between justice and BH agencies. This paper presents a new framework, the Juvenile Justice Behavioral Health Services Cascade ("Cascade"), for measuring unmet substance use treatment needs to illustrate how the cascade approach can be useful in understanding service delivery issues and identifying strategies to improve treatment engagement and outcomes for youth under community JJ supervision. We discuss the organizational and systems barriers for linking delinquent youth to BH services, and explain how the Cascade can help understand and address these barriers. We provide a detailed description of the sequential steps and measures of the Cascade, and then offer an example of its application from the Juvenile Justice - Translational Research on Interventions for Adolescents in the Legal System project (JJ-TRIALS), a multi-site research cooperative funded by the National Institute on Drug Abuse. As illustrated with substance abuse treatment, the Cascade has potential for informing and guiding efforts to improve behavioral health service linkages for adolescent offenders, developing and testing interventions and policies to improve interagency and cross-systems coordination, and informing the development of measures and interventions for improving the implementation of treatment in complex multisystem service settings. Clinical Trials Registration number - NCT02672150. Copyright © 2017 Elsevier Inc. All rights reserved.
Possible explanation of the atmospheric kinetic and potential energy spectra.
Vallgren, Andreas; Deusebio, Enrico; Lindborg, Erik
2011-12-23
We hypothesize that the observed wave number spectra of kinetic and potential energy in the atmosphere can be explained by assuming that there are two related cascade processes emanating from the same large-scale energy source, a downscale cascade of potential enstrophy, giving rise to the k(-3) spectrum at synoptic scales and a downscale energy cascade giving rise to the k(-5/3) spectrum at mesoscales. The amount of energy which is going into the downscale energy cascade is determined by the rate of system rotation, with negligible energy going downscale in the limit of very fast rotation. We present a set of simulations of a system with strong rotation and stratification, supporting these hypotheses and showing good agreement with observations.
Digital redesign of anti-wind-up controller for cascaded analog system.
Chen, Y S; Tsai, J S H; Shieh, L S; Moussighi, M M
2003-01-01
The cascaded conventional anti-wind-up (CAW) design method for integral controller is discussed. Then, the prediction-based digital redesign methodology is utilized to find the new pulse amplitude modulated (PAM) digital controller for effective digital control of the analog plant with input saturation constraint. The desired digital controller is determined from existing or pre-designed CAW analog controller. The proposed method provides a novel methodology for indirect digital design of a continuous-time unity output-feedback system with a cascaded analog controller as in the case of PID controllers for industrial control processes with the presence of actuator saturations. It enables us to implement an existing or pre-designed cascaded CAW analog controller via a digital controller effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant withmore » a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.« less
The blue light indicator in rubidium 5S-5P-5D cascade excitation
NASA Astrophysics Data System (ADS)
Raja, Waseem; Ali, Md. Sabir; Chakrabarti, Alok; Ray, Ayan
2017-07-01
The cascade system has played an important role in contemporary research areas related to fields like Rydberg excitation, four wave mixing and non-classical light generation, etc. Depending on the specific objective, co or counter propagating pump-probe laser experimental geometry is followed. However, the stepwise excitation of atoms to states higher than the first excited state deals with increasingly much fewer number of atoms even compared to the population at first excited level. Hence, one needs a practical indicator to study the complex photon-atom interaction of the cascade system. Here, we experimentally analyze the case of rubidium 5S → 5P → 5D as a specimen of two-step excitation and highlight the efficacy of monitoring one branch, which emits 420 nm, of associated cascade decay route 5D → 6P → 5S, as an effective monitor of the coherence in the system.
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-06-10
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
NASA Technical Reports Server (NTRS)
Springer, P.
1993-01-01
This paper discusses the method in which the Cascade-Correlation algorithm was parallelized in such a way that it could be run using the Time Warp Operating System (TWOS). TWOS is a special purpose operating system designed to run parellel discrete event simulations with maximum efficiency on parallel or distributed computers.
Systems and Cascades in Cognitive Development and Academic Achievement
ERIC Educational Resources Information Center
Bornstein, Marc H.; Hahn, Chun-Shin; Wolke, Dieter
2013-01-01
A large-scale ("N" = 552) controlled multivariate prospective 14-year longitudinal study of a developmental cascade embedded in a developmental system showed that information-processing efficiency in infancy (4 months), general mental development in toddlerhood (18 months), behavior difficulties in early childhood (36 months),…
Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor
NASA Astrophysics Data System (ADS)
Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji
1994-07-01
A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.
NASA Astrophysics Data System (ADS)
Wen, X.; Lei, X.; Fang, G.; Huang, X.
2017-12-01
Extensive cascading hydropower exploitation in southwestern China has been the subject of debate and conflict in recent years. Introducing limited ecological curves, a novel approach for derivation of hydropower-ecological joint operation chart of cascaded hydropower system was proposed, aiming to optimize the general hydropower and ecological benefits, and to alleviate the ecological deterioration in specific flood/dry conditions. The physical habitat simulation model is proposed initially to simulate the relationship between streamflow and physical habitat of target fish species and to determine the optimal ecological flow range of representative reach. The ecological—hydropower joint optimization model is established to produce the multi-objective operation chart of cascaded hydropower system. Finally, the limited ecological guiding curves were generated and added into the operation chart. The JS-MDS cascaded hydropower system on the Yuan River in southwestern China is employed as the research area. As the result, the proposed guiding curves could increase the hydropower production amount by 1.72% and 5.99% and optimize ecological conservation degree by 0.27% and 1.13% for JS and MDS Reservoir, respectively. Meanwhile, the ecological deterioration rate also sees a decrease from 6.11% to 1.11% for JS Reservoir and 26.67% to 3.89% for MDS Reservoir.
Overload-based cascades on multiplex networks and effects of inter-similarity
Zhou, Dong
2017-01-01
Although cascading failures caused by overload on interdependent/interconnected networks have been studied in the recent years, the effect of overlapping links (inter-similarity) on robustness to such cascades in coupled networks is not well understood. This is an important issue since shared links exist in many real-world coupled networks. In this paper, we propose a new model for load-based cascading failures in multiplex networks. We leverage it to compare different network structures, coupling schemes, and overload rules. More importantly, we systematically investigate the impact of inter-similarity on the robustness of the whole system under an initial intentional attack. Surprisingly, we find that inter-similarity can have a negative impact on robustness to overload cascades. To the best of our knowledge, we are the first to report the competition between the positive and the negative impacts of overlapping links on the robustness of coupled networks. These results provide useful suggestions for designing robust coupled traffic systems. PMID:29252988
Cascaded thermoacoustic devices
Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.
2003-12-09
A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.
Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.
Kartashova, Elena
2012-10-01
A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
Comprehensive Experiments on Subcritical Assemblies of Cascade Reactor Systems
NASA Astrophysics Data System (ADS)
Zavyalov, N. V.; Il'kaev, R. I.; Kolesov, V. F.; Ivanin, I. A.; Zhitnik, A. K.; Kuvshinov, M. I.; Nefedov, Yu. Ya.; Punin, V. T.; Tel'nov, A. V.; Khoruzhi, V. Kh.
2017-12-01
Cascade reactors attract particular attention because of their capability of improving the parameters of pulsed reactors and achieving the feasibility of electronuclear facilities. The paper presents the results of three series of experiments on uranium-neptunium cascade assemblies at the Institute of Nuclear and Radiation Physics of the All-Russian Research Institute of Experimental Physics conducted in 2003-2004. The experiments confirmed theoretical conclusions on positive properties of cascade blankets and effectiveness of using neptunium-237 as a means of creating a one-sided connection between the sections.
Molecular dynamics studies of displacement cascades in Fe-Y{sub 2}TiO{sub 5} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dholakia, Manan, E-mail: manan@igcar.gov.in; Chandra, Sharat; Jaya, S. Mathi
The effect of displacement cascade on Fe-Y{sub 2}TiO{sub 5} bilayer is studied using classical molecular dynamics simulations. Different PKA species – Fe, Y, Ti and O – with the same PKA energy of 8 keV are used to produce displacement cascades that encompass the interface. It is shown that Ti atom has the highest movement in the ballistic regime of cascades which can lead to Ti atoms moving out of the oxide clusters into the Fe matrix in ODS alloys.
Cascading costs: an economic nitrogen cycle.
Moomaw, William R; Birch, Melissa B L
2005-09-01
The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.
Cascading costs: an economic nitrogen cycle.
Moomaw, William R; Birch, Melissa B L
2005-12-01
The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N2. We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single tonne of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a tonne of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that tonne would cascade. The analysis reveals that it is most cost effective to remove a tonne of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.
Moussawi, A; Derzsy, N; Lin, X; Szymanski, B K; Korniss, G
2017-09-15
Cascading failures are a critical vulnerability of complex information or infrastructure networks. Here we investigate the properties of load-based cascading failures in real and synthetic spatially-embedded network structures, and propose mitigation strategies to reduce the severity of damages caused by such failures. We introduce a stochastic method for optimal heterogeneous distribution of resources (node capacities) subject to a fixed total cost. Additionally, we design and compare the performance of networks with N-stable and (N-1)-stable network-capacity allocations by triggering cascades using various real-world node-attack and node-failure scenarios. We show that failure mitigation through increased node protection can be effectively achieved against single-node failures. However, mitigating against multiple node failures is much more difficult due to the combinatorial increase in possible sets of initially failing nodes. We analyze the robustness of the system with increasing protection, and find that a critical tolerance exists at which the system undergoes a phase transition, and above which the network almost completely survives an attack. Moreover, we show that cascade-size distributions measured in this region exhibit a power-law decay. Finally, we find a strong correlation between cascade sizes induced by individual nodes and sets of nodes. We also show that network topology alone is a weak predictor in determining the progression of cascading failures.
Forward design of a complex enzyme cascade reaction
Hold, Christoph; Billerbeck, Sonja; Panke, Sven
2016-01-01
Enzymatic reaction networks are unique in that one can operate a large number of reactions under the same set of conditions concomitantly in one pot, but the nonlinear kinetics of the enzymes and the resulting system complexity have so far defeated rational design processes for the construction of such complex cascade reactions. Here we demonstrate the forward design of an in vitro 10-membered system using enzymes from highly regulated biological processes such as glycolysis. For this, we adapt the characterization of the biochemical system to the needs of classical engineering systems theory: we combine online mass spectrometry and continuous system operation to apply standard system theory input functions and to use the detailed dynamic system responses to parameterize a model of sufficient quality for forward design. This allows the facile optimization of a 10-enzyme cascade reaction for fine chemical production purposes. PMID:27677244
A Fiber-Optic System Generating Pulses of High Spectral Density
NASA Astrophysics Data System (ADS)
Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.
2018-03-01
A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.
CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models
Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.
2013-01-01
The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.
Obscenity detection using haar-like features and Gentle Adaboost classifier.
Mustafa, Rashed; Min, Yang; Zhu, Dingju
2014-01-01
Large exposure of skin area of an image is considered obscene. This only fact may lead to many false images having skin-like objects and may not detect those images which have partially exposed skin area but have exposed erotogenic human body parts. This paper presents a novel method for detecting nipples from pornographic image contents. Nipple is considered as an erotogenic organ to identify pornographic contents from images. In this research Gentle Adaboost (GAB) haar-cascade classifier and haar-like features used for ensuring detection accuracy. Skin filter prior to detection made the system more robust. The experiment showed that, considering accuracy, haar-cascade classifier performs well, but in order to satisfy detection time, train-cascade classifier is suitable. To validate the results, we used 1198 positive samples containing nipple objects and 1995 negative images. The detection rates for haar-cascade and train-cascade classifiers are 0.9875 and 0.8429, respectively. The detection time for haar-cascade is 0.162 seconds and is 0.127 seconds for train-cascade classifier.
Energy Cascade in Fermi-Pasta Models
NASA Astrophysics Data System (ADS)
Ponno, A.; Bambusi, D.
We show that, for long-wavelength initial conditions, the FPU dynamics is described, up to a certain time, by two KdV-like equations, which represent the resonant Hamiltonian normal form of the system. The energy cascade taking place in the system is then quantitatively characterized by arguments of dimensional analysis based on such equations.
The cascade high productivity language
NASA Technical Reports Server (NTRS)
Callahan, David; Chamberlain, Branford L.; Zima, Hans P.
2004-01-01
This paper describes the design of Chapel, the Cascade High Productivity Language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface.
Thermal Management of Quantum Cascade Lasers in an individually Addressable Array Architecture
2016-02-08
Thermal Management of Quantum Cascade Lasers in an Individually Addressable Monolithic Array Architecture Leo Missaggia, Christine Wang, Michael...power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity...quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest
A bacterial genetic selection system for ubiquitylation cascade discovery.
Levin-Kravets, Olga; Tanner, Neta; Shohat, Noa; Attali, Ilan; Keren-Kaplan, Tal; Shusterman, Anna; Artzi, Shay; Varvak, Alexander; Reshef, Yael; Shi, Xiaojing; Zucker, Ori; Baram, Tamir; Katina, Corine; Pilzer, Inbar; Ben-Aroya, Shay; Prag, Gali
2016-11-01
About one-third of the eukaryotic proteome undergoes ubiquitylation, but the enzymatic cascades leading to substrate modification are largely unknown. We present a genetic selection tool that utilizes Escherichia coli, which lack deubiquitylases, to identify interactions along ubiquitylation cascades. Coexpression of split antibiotic resistance protein tethered to ubiquitin and ubiquitylation target together with a functional ubiquitylation apparatus results in a covalent assembly of the resistance protein, giving rise to bacterial growth on selective media. We applied the selection system to uncover an E3 ligase from the pathogenic bacteria EHEC and to identify the epsin ENTH domain as an ultraweak ubiquitin-binding domain. The latter was complemented with a structure-function analysis of the ENTH-ubiquitin interface. We also constructed and screened a yeast fusion library, discovering Sem1 as a novel ubiquitylation substrate of Rsp5 E3 ligase. Collectively, our selection system provides a robust high-throughput approach for genetic studies of ubiquitylation cascades and for small-molecule modulator screening.
A multi-view face recognition system based on cascade face detector and improved Dlib
NASA Astrophysics Data System (ADS)
Zhou, Hongjun; Chen, Pei; Shen, Wei
2018-03-01
In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.
NASA Technical Reports Server (NTRS)
Akashi, M.; Kawaguchi, S.; Watanabe, Z.; Misaki, A.; Niwa, M.; Okamoto, Y.; Fujinaga, T.; Ichimura, M.; Shibata, T.; Dake, S.
1985-01-01
A reader system for the detection of cascade showers via luminescence induced by heating sensitive material (BaSO4:Eu) is developed. The reader system is composed of following six instruments: (1) heater, (2) light guide, (3) image intensifier, (4) CCD camera, (5) image processor, (6) microcomputer. The efficiency of these apparatuses and software application for image analysis is reported.
NASA Astrophysics Data System (ADS)
Liu, Na; Ju, Cheng
2018-02-01
Nyquist-SCM signal after fiber transmission, direct detection (DD), and analog down-conversion suffers from linear ISI, nonlinear ISI, and I/Q imbalance, simultaneously. Theoretical analysis based on widely linear (WL) and Volterra series is given to explain the relationship and interaction of these three interferences. A blind equalization algorithm, cascaded WL and Volterra equalizer, is designed to mitigate these three interferences. Furthermore, the feasibility of the proposed cascaded algorithm is experimentally demonstrated based on a 40-Gbps data rate 16-quadrature amplitude modulation (QAM) virtual single sideband (VSSB) Nyquist-SCM DD system over 100-km standard single mode fiber (SSMF) transmission. In addition, the performances of conventional strictly linear equalizer, WL equalizer, Volterra equalizer, and cascaded WL and Volterra equalizer are experimentally evaluated, respectively.
Cascading Failures in Bi-partite Graphs: Model for Systemic Risk Propagation
Huang, Xuqing; Vodenska, Irena; Havlin, Shlomo; Stanley, H. Eugene
2013-01-01
As economic entities become increasingly interconnected, a shock in a financial network can provoke significant cascading failures throughout the system. To study the systemic risk of financial systems, we create a bi-partite banking network model composed of banks and bank assets and propose a cascading failure model to describe the risk propagation process during crises. We empirically test the model with 2007 US commercial banks balance sheet data and compare the model prediction of the failed banks with the real failed banks after 2007. We find that our model efficiently identifies a significant portion of the actual failed banks reported by Federal Deposit Insurance Corporation. The results suggest that this model could be useful for systemic risk stress testing for financial systems. The model also identifies that commercial rather than residential real estate assets are major culprits for the failure of over 350 US commercial banks during 2008–2011. PMID:23386974
Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis
NASA Astrophysics Data System (ADS)
Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang
2017-07-01
In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.
NASA Astrophysics Data System (ADS)
Arbuzov, Yuri D.; Evdokimov, Vladimir M.; Shepovalova, Olga V.
2018-05-01
Angle-dependent spectral photoresponse characteristics for theoretically perfect and physically implementable tunnel cascade (multi-junction) photoelectric converters (PC), for example high-voltage planar PV cells, have been studied as functions of technological parameters and number of single PCs in cascade. Angle-dependent spectral photoresponse characteristics values for real cascade silicon structures have been determined in visible and ultraviolet radiation spectra. Characteristic values of radiation incidence angle corresponding to the twofold photocurrent reduction in relation to normal incidence have been found depending on the number of single PCs in cascade, `dead' layer thickness of tunnel junction and photosensitivity of the base PC. The possibility and practicability of solar trackers use in PV systems with proposed PCs under study have been evaluated.
Spatio-temporal propagation of cascading overload failures in spatially embedded networks
NASA Astrophysics Data System (ADS)
Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo
2016-01-01
Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems.
Spatio-temporal propagation of cascading overload failures in spatially embedded networks
Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo
2016-01-01
Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems. PMID:26754065
Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E
2007-06-01
We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.
Modulation response characteristics of optical injection-locked cascaded microring laser
NASA Astrophysics Data System (ADS)
Yu, Shaowei; Pei, Li; Liu, Chao; Wang, Yiqun; Weng, Sijun
2014-09-01
Modulation bandwidth and frequency chirping of the optical injection-locked (OIL) microring laser (MRL) in the cascaded configuration are investigated. The unidirectional operation of the MRL under strong injection allows simple and cost-saving monolithic integration of the OIL system on one chip as it does not need the use of isolators between the master and slave lasers. Two cascading schemes are discussed in detail by focusing on the tailorable modulation response. The chip-to-power ratio of the cascaded optical injection-locked configuration has decreased by up to two orders of magnitude, compared with the single optical injection-locked configuration.
Knight, Danica; Wasserman, Gail A.; Dennis, Michael L.; Wiley, Tisha; Taxman, Faye S.; Oser, Carrie; Dembo, Richard; Robertson, Angela A.; Sales, Jessica
2017-01-01
Overview Substance use and substance use disorders are highly prevalent among youth under juvenile justice (JJ) supervision, and related to delinquency, psychopathology, social problems, risky sex and sexually transmitted infections, and health problems. However, numerous gaps exist in the identification of behavioral health (BH) problems and in the subsequent referral, initiation and retention in treatment for youth in community justice settings. This reflects both organizational and systems factors, including coordination between justice and BH agencies. Methods and Results This paper presents a new framework, the Juvenile Justice Behavioral Health Services Cascade (“Cascade”), for measuring unmet substance use treatment needs to illustrate how the cascade approach can be useful in understanding service delivery issues and identifying strategies to improve treatment engagement and outcomes for youth under community JJ supervision. We discuss the organizational and systems barriers for linking delinquent youth to BH services, and explain how the Cascade can help understand and address these barriers. We provide a detailed description of the sequential steps and measures of the Cascade, and then offer an example of its application from the Juvenile Justice – Translational Research on Interventions for Adolescents in the Legal System project (JJ-TRIALS), a multi-site research cooperative funded by the National Institute on Drug Abuse. Conclusion As illustrated with substance abuse treatment, the Cascade has potential for informing and guiding efforts to improve behavioral health service linkages for adolescent offenders, developing and testing interventions and policies to improve interagency and cross-systems coordination, and informing the development of measures and interventions for improving the implementation of treatment in complex multisystem service settings. PMID:28132705
Thermionic/AMTEC cascade converter concept for high-efficiency space power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.
1996-12-31
This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less
NASA Astrophysics Data System (ADS)
Bi, Weihong; Lin, Hang; Fu, Xinghu; Fu, Guangwei
2013-12-01
Fiber amplifiers such as Erbium-doped fiber amplifier (EDFA) played a key role in developing long-haul transmission system and have been an important element for enabling the development of optical communication system. EDFA amplifies the optical signal directly, without the optical-electric-optical switch and has the advantages such as high gain, broad band, low noise figure. It is widely used in repeaterless submarine system, smart grid and community antenna television system. This article describe the application of optical-fiber amplifiers in distributed optical fiber sensing system, focusing on erbium-doped fiber preamplifiers in modern transmission optical systems. To enhance the measurement range of a spontaneous Brillouin intensity based distributed fiber optical sensor and improve the receiver sensitivity, a two cascaded EDFAs C-band preamplifier with an optical bridge structure is proposed in this paper. The first cascaded EDFA is consisted of a length of 4.3m erbium-doped fiber and pumped in a forward pump light using a laser operating at 975nm. The second one made by using a length of 16m erbium-doped fiber is pumped in a forward pump light which is the remnant pump light of the first cascaded EDFA. At the preamplifier output, DWDM, centered at the signal wavelength, is used to suppress unwanted amplified spontaneous emission. The experimental results show that the two cascade preamplifier with a bridge structure can be used to amplify for input Brillouin backscattering light greater than about -43dBm. The optical gain is characterized and more than 26dB is obtained at 1549.50nm with 300mW pump power.
James F. Weigand
1998-01-01
Experimental prescriptions compare agroforestry systems designed to increase financial returns from high-elevation stands in the southern Oregon Cascade Range. The prescriptions emphasize alternative approaches for joint production of North American matsutake mushrooms (also known as North American pine mushrooms; Tricholoma magnivelare) and high-...
NASA Astrophysics Data System (ADS)
He, Yaoyao; Yang, Shanlin; Xu, Qifa
2013-07-01
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.
Universal fieldable assay with unassisted visual detection
NASA Technical Reports Server (NTRS)
Chelyapov, Nicolas (Inventor)
2012-01-01
A universal detection system based on allosteric aptamers, signal amplification cascade, and eye-detectable phrase transition. A broadly applicable homogeneous detection system is provided. It utilizes components of the blood coagulation cascade in the presence of polystyrene microspheres (MS) as a signal amplifier. Russell's viper venom factor X activator (RVV-X) triggers the cascade, which results in an eye-visible phase transition--precipitation of MS bound to clotted fibrin. An allosteric RNA aptamer, RNA132, with affinity for RVV-X and human vascular endothelial growth factor (VEGF.sub.165) was created. RNA132 inhibits enzymatic activity of RVV-X. The effector molecule, VEGF.sub.165, reverses the inhibitory activity of RNA132 on RVV-X and restores its enzymatic activity, thus triggering the cascade and enabling the phase transition. Similar results were obtained for another allosteric aptamer modulated by a protein tyrosine phosphatase. The assay is instrumentation-free for both processing and readout.
Cascaded recompression closed brayton cycle system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasch, James J.
The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.
Cascaded recompression closed Brayton cycle system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasch, James Jay
The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.
Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids
Słomka, Jonasz; Dunkel, Jörn
2017-01-01
Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853
Obscenity Detection Using Haar-Like Features and Gentle Adaboost Classifier
Min, Yang; Zhu, Dingju
2014-01-01
Large exposure of skin area of an image is considered obscene. This only fact may lead to many false images having skin-like objects and may not detect those images which have partially exposed skin area but have exposed erotogenic human body parts. This paper presents a novel method for detecting nipples from pornographic image contents. Nipple is considered as an erotogenic organ to identify pornographic contents from images. In this research Gentle Adaboost (GAB) haar-cascade classifier and haar-like features used for ensuring detection accuracy. Skin filter prior to detection made the system more robust. The experiment showed that, considering accuracy, haar-cascade classifier performs well, but in order to satisfy detection time, train-cascade classifier is suitable. To validate the results, we used 1198 positive samples containing nipple objects and 1995 negative images. The detection rates for haar-cascade and train-cascade classifiers are 0.9875 and 0.8429, respectively. The detection time for haar-cascade is 0.162 seconds and is 0.127 seconds for train-cascade classifier. PMID:25003153
Computation of inverse magnetic cascades
NASA Technical Reports Server (NTRS)
Montgomery, D.
1981-01-01
Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.
Fujiwara, T
2012-01-01
Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources.
NASA Astrophysics Data System (ADS)
Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.
2018-01-01
The technique of designing, optimizing, and fabricating broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting applications. The spectrum-splitting photovoltaic (PV) system uses a series of single-bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high-performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. A methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cutoff wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is then developed to optimize both single- and two-layer cascaded holographic spectrum-splitting elements for the best bandgap combinations of two- and three-junction spectrum-splitting photovoltaic (SSPV) systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems are found to be 42.56% and 48.41%, respectively, using the detailed balance method, and show an improvement compared with a tandem multijunction system. A fabrication method for cascaded DCG holographic filters is also described and used to prototype the optimized filter for the three-junction SSPV system.
Special cascade LMS equalization scheme suitable for 60-GHz RoF transmission system.
Liu, Siming; Shen, Guansheng; Kou, Yanbin; Tian, Huiping
2016-05-16
We design a specific cascade least mean square (LMS) equalizer and to the best of our knowledge, it is the first time this kind of equalizer has been employed for 60-GHz millimeter-wave (mm-wave) radio over fiber (RoF) system. The proposed cascade LMS equalizer consists of two sub-equalizers which are designated for optical and wireless channel compensations, respectively. We control the linear and nonlinear factors originated from optical link and wireless link separately. The cascade equalization scheme can keep the nonlinear distortions of the RoF system in a low degree. We theoretically and experimentally investigate the parameters of the two sub-equalizers to reach their best performances. The experiment results show that the cascade equalization scheme has a faster convergence speed. It needs a training sequence with a length of 10000 to reach its stable status, which is only half as long as the traditional LMS equalizer needs. With the utility of a proposed equalizer, the 60-GHz RoF system can successfully transmit 5-Gbps BPSK signal over 10-km fiber and 1.2-m wireless link under forward error correction (FEC) limit 10-3. An improvement of 4dBm and 1dBm in power sensitivity at BER 10-3 over traditional LMS equalizer can be observed when the signals are transmitted through Back-to-Back (BTB) and 10-km fiber 1.2-m wireless links, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin
2017-12-01
Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.
Lenzenweger, Mark F
2010-11-01
It is argued that personality pathology represents the final emergent product of a complex interaction of underlying neurobehavioral systems as well as environment inputs. A number of factors may be involved in the developmental pathway and a cascading of effects is plausible, although a unifying cascade for all personality disorders is not likely. The present study suggests a possible cascade relevant to one personality disorder: schizoid personality disorder in emerging adulthood. In brief, it is hypothesized that the absence of a relationship characterized by a rich degree of psychological proximal process in early childhood, which is associated with nurturance and the facilitation of more complex development, predicts impairment in the actualization of the affiliation system (i.e., that system that facilitates interpersonal connectedness and social bonds in human beings and is under substantial genetic influence), and this impairment in the affiliation system predicts the appearance of schizoid personality disorder symptoms in emerging adulthood (late teens/early 20s), which persists over time into emerging adulthood. The impairment in the affiliation system is argued to proceed through childhood sociality as reflected in temperament on through adult personality as reflected in communal positive emotion. Furthermore, it is also hypothesized that the relationship between proximal processes and the affiliation system maintains irrespective of other childhood temperament factors that might adversely impact early parent/caregiver and child relations. The data for a preliminary illustration of this possible cascade are drawn from The Longitudinal Study of Personality Disorders, which is a prospective, multiwave study of personality disorders, personality, and temperament in a large sample of adults drawn from a nonclinical population.
NASA Astrophysics Data System (ADS)
Xiang, Yang; Luo, Yiyang; Zhang, Wei; Liu, Deming; Sun, Qizhen
2017-04-01
We propose and demonstrate a distributed fiber sensor based on cascaded microfiber Fabry-Perot interferometers (MFPI) for simultaneous refractive index (SRI) and temperature measurement. By employing MFPI which is fabricated by taper-drawing the center of a uniform fiber Bragg grating (FBG) on standard fiber into a section of microfiber, dual parameters including SRI and temperature can be detected through demodulating the reflection spectrum of the MFPI. Further, wavelength-division-multiplexing (WDM) is applied to realize distributed dual-parameter fiber sensor by using cascaded MFPIs with different Bragg wavelengths. A prototype sensor system with 5 cascaded MFPIs is constructed to experimentally demonstrate the sensing performance.
Cascade generalized predictive control strategy for boiler drum level.
Xu, Min; Li, Shaoyuan; Cai, Wenjian
2005-07-01
This paper proposes a cascade model predictive control scheme for boiler drum level control. By employing generalized predictive control structures for both inner and outer loops, measured and unmeasured disturbances can be effectively rejected, and drum level at constant load is maintained. In addition, nonminimum phase characteristic and system constraints in both loops can be handled effectively by generalized predictive control algorithms. Simulation results are provided to show that cascade generalized predictive control results in better performance than that of well tuned cascade proportional integral differential controllers. The algorithm has also been implemented to control a 75-MW boiler plant, and the results show an improvement over conventional control schemes.
The role of Cas8 in type I CRISPR interference.
Cass, Simon D B; Haas, Karina A; Stoll, Britta; Alkhnbashi, Omer S; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L
2015-05-05
CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA. © 2015 Authors.
He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin
2017-01-01
Abstract CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. PMID:27980065
Miller, B.; Jimenez, M.; Bridle, H.
2016-01-01
Inertial focusing is a microfluidic based separation and concentration technology that has expanded rapidly in the last few years. Throughput is high compared to other microfluidic approaches although sample volumes have typically remained in the millilitre range. Here we present a strategy for achieving rapid high volume processing with stacked and cascaded inertial focusing systems, allowing for separation and concentration of particles with a large size range, demonstrated here from 30 μm–300 μm. The system is based on curved channels, in a novel toroidal configuration and a stack of 20 devices has been shown to operate at 1 L/min. Recirculation allows for efficient removal of large particles whereas a cascading strategy enables sequential removal of particles down to a final stage where the target particle size can be concentrated. The demonstration of curved stacked channels operating in a cascaded manner allows for high throughput applications, potentially replacing filtration in applications such as environmental monitoring, industrial cleaning processes, biomedical and bioprocessing and many more. PMID:27808244
Morgado, Gaspar; Gerngross, Daniel; Roberts, Tania M; Panke, Sven
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).
Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo
2014-01-01
As a mean of supplying water, Water distribution system (WDS) is one of the most important complex infrastructures. The stability and reliability are critical for urban activities. WDSs can be characterized by networks of multiple nodes (e.g. reservoirs and junctions) and interconnected by physical links (e.g. pipes). Instead of analyzing highest failure rate or highest betweenness, reliability of WDS is evaluated by introducing hydraulic analysis and cascading failures (conductive failure pattern) from complex network. The crucial pipes are identified eventually. The proposed methodology is illustrated by an example. The results show that the demand multiplier has a great influence on the peak of reliability and the persistent time of the cascading failures in its propagation in WDS. The time period when the system has the highest reliability is when the demand multiplier is less than 1. There is a threshold of tolerance parameter exists. When the tolerance parameter is less than the threshold, the time period with the highest system reliability does not meet minimum value of demand multiplier. The results indicate that the system reliability should be evaluated with the properties of WDS and the characteristics of cascading failures, so as to improve its ability of resisting disasters. PMID:24551102
Increase of transient lower esophageal sphincter relaxation associated with cascade stomach
Kawada, Akiyo; Kusano, Motoyasu; Hosaka, Hiroko; Kuribayashi, Shiko; Shimoyama, Yasuyuki; Kawamura, Osamu; Akiyama, Junichi; Yamada, Masanobu; Akuzawa, Masako
2017-01-01
We previously reported that cascade stomach was associated with reflux symptoms and esophagitis. Delayed gastric emptying has been believed to initiate transient lower esophageal sphincter relaxation (TLESR). We hypothesized that cascade stomach may be associated with frequent TLESR with delayed gastric emptying. Eleven subjects with cascade stomach and 11 subjects without cascade stomach were enrolled. Postprandial gastroesophageal manometry and gastric emptying using a continuous 13C breath system were measured simultaneously after a liquid test meal. TLESR events were counted in early period (0–60 min), late period (60–120 min), and total monitoring period. Three parameters of gastric emptying were calculated: the half emptying time, lag time, and gastric emptying coefficient. The median frequency of TLESR events in the cascade stomach and non-cascade stomach groups was 6.0 (median), 4.6 (interquartile range) vs 5.0, 3.0 in the early period, 5.0, 3.2 vs 3.0, 1.8 in the late period, and 10.0, 6.2 vs 8.0, 5.0 in the total monitoring period. TLESR events were significantly more frequent in the cascade stomach group during the late and total monitoring periods. In contrast, gastric emptying parameters showed no significant differences between the two groups. We concluded that TLESR events were significantly more frequent in persons with cascade stomach without delayed gastric emptying. PMID:28584403
Efficient collective influence maximization in cascading processes with first-order transitions
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-01-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988
NASA Astrophysics Data System (ADS)
Bennett, Kochise; Chernyak, Vladimir Y.; Mukamel, Shaul
2017-03-01
The nonlinear optical response of a system of molecules often contains contributions whereby the products of lower-order processes in two separate molecules give signals that appear on top of a genuine direct higher-order process with a single molecule. These many-body contributions are known as cascading and complicate the interpretation of multidimensional stimulated Raman and other nonlinear signals. In a quantum electrodynamic treatment, these cascading processes arise from second-order expansion in the molecular coupling to vacuum modes of the radiation field, i.e., single-photon exchange between molecules, which also gives rise to other collective effects. We predict the relative phase of the direct and cascading nonlinear signals and its dependence on the microscopic dynamics as well as the sample geometry. This phase may be used to identify experimental conditions for distinguishing the direct and cascading signals by their phase. Higher-order cascading processes involving the exchange of several photons between more than two molecules are discussed.
Efficient collective influence maximization in cascading processes with first-order transitions
NASA Astrophysics Data System (ADS)
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-03-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.
NASA Astrophysics Data System (ADS)
Xuejiao, M.; Chang, J.; Wang, Y.
2017-12-01
Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.
Cascade process modeling with mechanism-based hierarchical neural networks.
Cong, Qiumei; Yu, Wen; Chai, Tianyou
2010-02-01
Cascade process, such as wastewater treatment plant, includes many nonlinear sub-systems and many variables. When the number of sub-systems is big, the input-output relation in the first block and the last block cannot represent the whole process. In this paper we use two techniques to overcome the above problem. Firstly we propose a new neural model: hierarchical neural networks to identify the cascade process; then we use serial structural mechanism model based on the physical equations to connect with neural model. A stable learning algorithm and theoretical analysis are given. Finally, this method is used to model a wastewater treatment plant. Real operational data of wastewater treatment plant is applied to illustrate the modeling approach.
Fu, Becky Xu Hua; Wainberg, Michael; Kundaje, Anshul; Fire, Andrew Z
2017-08-01
Interactions between Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs and CRISPR-associated (Cas) proteins form an RNA-guided adaptive immune system in prokaryotes. The adaptive immune system utilizes segments of the genetic material of invasive foreign elements in the CRISPR locus. The loci are transcribed and processed to produce small CRISPR RNAs (crRNAs), with degradation of invading genetic material directed by a combination of complementarity between RNA and DNA and in some cases recognition of adjacent motifs called PAMs (Protospacer Adjacent Motifs). Here we describe a general, high-throughput procedure to test the efficacy of thousands of targets, applying this to the Escherichia coli type I-E Cascade (CRISPR-associated complex for antiviral defense) system. These studies were followed with reciprocal experiments in which the consequence of CRISPR activity was survival in the presence of a lytic phage. From the combined analysis of the Cascade system, we found that (i) type I-E Cascade PAM recognition is more expansive than previously reported, with at least 22 distinct PAMs, with many of the noncanonical PAMs having CRISPR-interference abilities similar to the canonical PAMs; (ii) PAM positioning appears precise, with no evidence for tolerance to PAM slippage in interference; and (iii) while increased guanine-cytosine (GC) content in the spacer is associated with higher CRISPR-interference efficiency, high GC content (>62.5%) decreases CRISPR-interference efficiency. Our findings provide a comprehensive functional profile of Cascade type I-E interference requirements and a method to assay spacer efficacy that can be applied to other CRISPR-Cas systems. Copyright © 2017 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi
2018-03-01
In fusion applications, helium, implanted or created by transmutation, plays an important role in the response of reduced-activation ferritic/martensitic steels to neutron radiation damage. The effects of helium concentration and radiation temperature on interaction of interstitial helium atoms with displacement cascades have been studied in Fe-He system using molecular dynamics with recently developed Fe-He potential. Results indicate that interstitial helium atoms produce no additional defects at peak time and promote recombination of Frenkel pairs at lower helium concentrations, but suppress recombination of Frenkel pairs at larger helium concentrations. Moreover, large helium concentrations promote the production of defects at the end of cascades. The number of substitutional helium atoms increases with helium concentration at peak time and the end of cascades, but the number of substitutional helium atoms at peak time is smaller than that at the end of displacement cascades. High radiation temperatures promote the production at peak time and the recombination of defects at the end of cascades. The number of substitutional helium atoms increases with radiation temperature, but that at peak time is smaller than that at the end of cascades.
Direct and inverse energy cascades in a forced rotating turbulence experiment
NASA Astrophysics Data System (ADS)
Campagne, Antoine; Gallet, Basile; Moisy, Frédéric; Cortet, Pierre-Philippe
2014-11-01
Turbulence in a rotating frame provides a remarkable system where 2D and 3D properties may coexist, with a possible tuning between direct and inverse cascades. We present here experimental evidence for a double cascade of kinetic energy in a statistically stationary rotating turbulence experiment. Turbulence is generated by a set of vertical flaps which continuously injects velocity fluctuations towards the center of a rotating water tank. The energy transfers are evaluated from two-point third-order three-component velocity structure functions, which we measure using stereoscopic PIV in the rotating frame. Without global rotation, the energy is transferred from large to small scales, as in classical 3D turbulence. For nonzero rotation rates, the horizontal kinetic energy presents a double cascade: a direct cascade at small horizontal scales and an inverse cascade at large horizontal scales. By contrast, the vertical kinetic energy is always transferred from large to small horizontal scales, a behavior reminiscent of the dynamics of a passive scalar in 2D turbulence. At the largest rotation rate, the flow is nearly 2D and a pure inverse energy cascade is found for the horizontal energy.
Systemic risk in a unifying framework for cascading processes on networks
NASA Astrophysics Data System (ADS)
Lorenz, J.; Battiston, S.; Schweitzer, F.
2009-10-01
We introduce a general framework for models of cascade and contagion processes on networks, to identify their commonalities and differences. In particular, models of social and financial cascades, as well as the fiber bundle model, the voter model, and models of epidemic spreading are recovered as special cases. To unify their description, we define the net fragility of a node, which is the difference between its fragility and the threshold that determines its failure. Nodes fail if their net fragility grows above zero and their failure increases the fragility of neighbouring nodes, thus possibly triggering a cascade. In this framework, we identify three classes depending on the way the fragility of a node is increased by the failure of a neighbour. At the microscopic level, we illustrate with specific examples how the failure spreading pattern varies with the node triggering the cascade, depending on its position in the network and its degree. At the macroscopic level, systemic risk is measured as the final fraction of failed nodes, X*, and for each of the three classes we derive a recursive equation to compute its value. The phase diagram of X* as a function of the initial conditions, thus allows for a prediction of the systemic risk as well as a comparison of the three different model classes. We could identify which model class leads to a first-order phase transition in systemic risk, i.e. situations where small changes in the initial conditions determine a global failure. Eventually, we generalize our framework to encompass stochastic contagion models. This indicates the potential for further generalizations.
The HIV care cascade: a systematic review of data sources, methodology and comparability.
Medland, Nicholas A; McMahon, James H; Chow, Eric P F; Elliott, Julian H; Hoy, Jennifer F; Fairley, Christopher K
2015-01-01
The cascade of HIV diagnosis, care and treatment (HIV care cascade) is increasingly used to direct and evaluate interventions to increase population antiretroviral therapy (ART) coverage, a key component of treatment as prevention. The ability to compare cascades over time, sub-population, jurisdiction or country is important. However, differences in data sources and methodology used to construct the HIV care cascade might limit its comparability and ultimately its utility. Our aim was to review systematically the different methods used to estimate and report the HIV care cascade and their comparability. A search of published and unpublished literature through March 2015 was conducted. Cascades that reported the continuum of care from diagnosis to virological suppression in a demographically definable population were included. Data sources and methods of measurement or estimation were extracted. We defined the most comparable cascade elements as those that directly measured diagnosis or care from a population-based data set. Thirteen reports were included after screening 1631 records. The undiagnosed HIV-infected population was reported in seven cascades, each of which used different data sets and methods and could not be considered to be comparable. All 13 used mandatory HIV diagnosis notification systems to measure the diagnosed population. Population-based data sets, derived from clinical data or mandatory reporting of CD4 cell counts and viral load tests from all individuals, were used in 6 of 12 cascades reporting linkage, 6 of 13 reporting retention, 3 of 11 reporting ART and 6 of 13 cascades reporting virological suppression. Cascades with access to population-based data sets were able to directly measure cascade elements and are therefore comparable over time, place and sub-population. Other data sources and methods are less comparable. To ensure comparability, countries wishing to accurately measure the cascade should utilize complete population-based data sets from clinical data from elements of a centralized healthcare setting, where available, or mandatory CD4 cell count and viral load test result reporting. Additionally, virological suppression should be presented both as percentage of diagnosed and percentage of estimated total HIV-infected population, until methods to calculate the latter have been standardized.
Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly
Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi
2015-12-28
For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current—this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electricmore » and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. In conclusion, we devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems.« less
The impact of the topology on cascading failures in a power grid model
NASA Astrophysics Data System (ADS)
Koç, Yakup; Warnier, Martijn; Mieghem, Piet Van; Kooij, Robert E.; Brazier, Frances M. T.
2014-05-01
Cascading failures are one of the main reasons for large scale blackouts in power transmission grids. Secure electrical power supply requires, together with careful operation, a robust design of the electrical power grid topology. Currently, the impact of the topology on grid robustness is mainly assessed by purely topological approaches, that fail to capture the essence of electric power flow. This paper proposes a metric, the effective graph resistance, to relate the topology of a power grid to its robustness against cascading failures by deliberate attacks, while also taking the fundamental characteristics of the electric power grid into account such as power flow allocation according to Kirchhoff laws. Experimental verification on synthetic power systems shows that the proposed metric reflects the grid robustness accurately. The proposed metric is used to optimize a grid topology for a higher level of robustness. To demonstrate its applicability, the metric is applied on the IEEE 118 bus power system to improve its robustness against cascading failures.
Cascaded spintronic logic with low-dimensional carbon
NASA Astrophysics Data System (ADS)
Friedman, Joseph S.; Girdhar, Anuj; Gelfand, Ryan M.; Memik, Gokhan; Mohseni, Hooman; Taflove, Allen; Wessels, Bruce W.; Leburton, Jean-Pierre; Sahakian, Alan V.
2017-06-01
Remarkable breakthroughs have established the functionality of graphene and carbon nanotube transistors as replacements to silicon in conventional computing structures, and numerous spintronic logic gates have been presented. However, an efficient cascaded logic structure that exploits electron spin has not yet been demonstrated. In this work, we introduce and analyse a cascaded spintronic computing system composed solely of low-dimensional carbon materials. We propose a spintronic switch based on the recent discovery of negative magnetoresistance in graphene nanoribbons, and demonstrate its feasibility through tight-binding calculations of the band structure. Covalently connected carbon nanotubes create magnetic fields through graphene nanoribbons, cascading logic gates through incoherent spintronic switching. The exceptional material properties of carbon materials permit Terahertz operation and two orders of magnitude decrease in power-delay product compared to cutting-edge microprocessors. We hope to inspire the fabrication of these cascaded logic circuits to stimulate a transformative generation of energy-efficient computing.
Tripartite correlations over two octaves from cascaded harmonic generation
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2018-03-01
We analyse the output quantum tripartite correlations from an intracavity nonlinear optical system which uses cascaded nonlinearities to produce both second and fourth harmonic outputs from an input field at the fundamental frequency. Using fully quantum equations of motion, we investigate two parameter regimes and show that the system produces tripartite inseparability, entanglement and EPR steering, with the detection of these depending on the correlations being considered.
NASA Astrophysics Data System (ADS)
Chien, Pie-Yau; Chao, Chen-Hsing
1993-03-01
An optical phase-locked loop system based on a triangular phase-modulated cascade Mach-Zehnder modulator is demonstrated. A reference oscillator of 10 MHz is multiplied such that it can be used to lock a target oscillator of 120 MHz. The phase error of \\varDeltaθe≤2.0× 10-4 rad/Hz1/2 has been implemented in this system.
Cascades in the Threshold Model for varying system sizes
NASA Astrophysics Data System (ADS)
Karampourniotis, Panagiotis; Sreenivasan, Sameet; Szymanski, Boleslaw; Korniss, Gyorgy
2015-03-01
A classical model in opinion dynamics is the Threshold Model (TM) aiming to model the spread of a new opinion based on the social drive of peer pressure. Under the TM a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. Cascades in the TM depend on multiple parameters, such as the number and selection strategy of the initially active nodes (initiators), and the threshold distribution of the nodes. For a uniform threshold in the network there is a critical fraction of initiators for which a transition from small to large cascades occurs, which for ER graphs is largerly independent of the system size. Here, we study the spread contribution of each newly assigned initiator under the TM for different initiator selection strategies for synthetic graphs of various sizes. We observe that for ER graphs when large cascades occur, the spread contribution of the added initiator on the transition point is independent of the system size, while the contribution of the rest of the initiators converges to zero at infinite system size. This property is used for the identification of large transitions for various threshold distributions. Supported in part by ARL NS-CTA, ARO, ONR, and DARPA.
Artificial “ping-pong” cascade of PIWI-interacting RNA in silkworm cells
Shoji, Keisuke; Suzuki, Yutaka; Sugano, Sumio; Shimada, Toru; Katsuma, Susumu
2017-01-01
PIWI-interacting RNAs (piRNAs) play essential roles in the defense system against selfish elements in animal germline cells by cooperating with PIWI proteins. A subset of piRNAs is predicted to be generated via the “ping-pong” cascade, which is mainly controlled by two different PIWI proteins. Here we established a cell-based artificial piRNA production system using a silkworm ovarian cultured cell line that is believed to possess a complete piRNA pathway. In addition, we took advantage of a unique silkworm sex-determining one-to-one ping-pong piRNA pair, which enabled us to precisely monitor the behavior of individual artificial piRNAs. With this novel strategy, we successfully generated artificial piRNAs against endogenous protein-coding genes via the expected back-and-forth traveling mechanism. Furthermore, we detected “primary” piRNAs from the upstream region of the artificial “ping-pong” site in the endogenous gene. This artificial piRNA production system experimentally confirms the existence of the “ping-pong” cascade of piRNAs. Also, this system will enable us to identify the factors involved in both, or each, of the “ping” and “pong” cascades and the sequence features that are required for efficient piRNA production. PMID:27777367
Fish predators reduce kelp frond loss via a trait-mediated trophic cascade.
Haggerty, Miranda B; Anderson, Todd W; Long, Jeremy D
2018-05-05
Although trophic cascades were originally believed to be driven only by predators eating prey, there is mounting evidence that such cascades can be generated in large part via non-consumptive effects. This is especially important in cascades affecting habitat-forming foundation species that in turn, influence associated communities. Here, we use laboratory and field experiments to identify a trait-mediated indirect interaction between predators and an abundant kelp in a marine temperate reef system. Predation risk from a microcarnivorous fish, the señorita, suppressed grazing by the host-specific seaweed limpet, which in turn, influenced frond loss of the habitat-forming feather boa kelp. This trophic cascade was pronounced because minor amounts of limpet grazing decreased the strength required to break kelp fronds. Cues from fish predators mitigated kelp loss by decreasing limpet grazing; we found 86% of this indirect interaction between predator and kelp was attributed to the non-consumptive effect in the laboratory and 56% when applying the same effect size calculations to the field. In field manipulations, the non-consumptive effect of señorita was as strong as the total predator effect and most importantly, as strong as the uncaged, "open" treatment with natural levels of predators. Our findings demonstrate that the mere presence of this fish reduces frond loss of the feather boa kelp through a trait-mediated trophic cascade. Moreover, despite large volumes of water, current flow, and wave energy, we clearly demonstrate a strong non-consumptive effect via an apparent chemical cue from señorita, suggesting that chemically mediated trait-driven cascades may be more prevalent in subtidal marine systems than we are currently aware. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sadaghzadeh N, Nargess; Poshtan, Javad; Wagner, Achim; Nordheimer, Eugen; Badreddin, Essameddin
2014-03-01
Based on a cascaded Kalman-Particle Filtering, gyroscope drift and robot attitude estimation method is proposed in this paper. Due to noisy and erroneous measurements of MEMS gyroscope, it is combined with Photogrammetry based vision navigation scenario. Quaternions kinematics and robot angular velocity dynamics with augmented drift dynamics of gyroscope are employed as system state space model. Nonlinear attitude kinematics, drift and robot angular movement dynamics each in 3 dimensions result in a nonlinear high dimensional system. To reduce the complexity, we propose a decomposition of system to cascaded subsystems and then design separate cascaded observers. This design leads to an easier tuning and more precise debugging from the perspective of programming and such a setting is well suited for a cooperative modular system with noticeably reduced computation time. Kalman Filtering (KF) is employed for the linear and Gaussian subsystem consisting of angular velocity and drift dynamics together with gyroscope measurement. The estimated angular velocity is utilized as input of the second Particle Filtering (PF) based observer in two scenarios of stochastic and deterministic inputs. Simulation results are provided to show the efficiency of the proposed method. Moreover, the experimental results based on data from a 3D MEMS IMU and a 3D camera system are used to demonstrate the efficiency of the method. © 2013 ISA Published by ISA All rights reserved.
Szczupak, Alon; Aizik, Dror; Moraïs, Sarah; Vazana, Yael; Barak, Yoav; Bayer, Edward A.; Alfonta, Lital
2017-01-01
The limitation of surface-display systems in biofuel cells to a single redox enzyme is a major drawback of hybrid biofuel cells, resulting in a low copy-number of enzymes per yeast cell and a limitation in displaying enzymatic cascades. Here we present the electrosome, a novel surface-display system based on the specific interaction between the cellulosomal scaffoldin protein and a cascade of redox enzymes that allows multiple electron-release by fuel oxidation. The electrosome is composed of two compartments: (i) a hybrid anode, which consists of dockerin-containing enzymes attached specifically to cohesin sites in the scaffoldin to assemble an ethanol oxidation cascade, and (ii) a hybrid cathode, which consists of a dockerin-containing oxygen-reducing enzyme attached in multiple copies to the cohesin-bearing scaffoldin. Each of the two compartments was designed, displayed, and tested separately. The new hybrid cell compartments displayed enhanced performance over traditional biofuel cells; in the anode, the cascade of ethanol oxidation demonstrated higher performance than a cell with just a single enzyme. In the cathode, a higher copy number per yeast cell of the oxygen-reducing enzyme copper oxidase has reduced the effect of competitive inhibition resulting from yeast oxygen consumption. This work paves the way for the assembly of more complex cascades using different enzymes and larger scaffoldins to further improve the performance of hybrid cells. PMID:28644390
He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin; Peng, Xu
2017-02-28
CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Luo, Jianquan; Meyer, Anne S; Mateiu, R V; Pinelo, Manuel
2015-05-25
Facile co-immobilization of enzymes is highly desirable for bioconversion methods involving multi-enzymatic cascade reactions. Here we show for the first time that three enzymes can be immobilized in flat-sheet polymeric membranes simultaneously or separately by simple pressure-driven filtration (i.e. by directing membrane fouling formation), without any addition of organic solvent. Such co-immobilization and sequential immobilization systems were examined for the production of methanol from CO2 with formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (ADH). Enzyme activity was fully retained by this non-covalent immobilization strategy. The two immobilization systems had similar catalytic efficiencies because the second reaction (formic acid→formaldehyde) catalyzed by FaldDH was found to be the cascade bottleneck (a threshold substrate concentration was required). Moreover, the trade-off between the mitigation of product inhibition and low substrate concentration for the adjacent enzymes probably made the co-immobilization meaningless. Thus, sequential immobilization could be used for multi-enzymatic cascade reactions, as it allowed the operational conditions for each single step to be optimized, not only during the enzyme immobilization but also during the reaction process, and the pressure-driven mass transfer (flow-through mode) could overcome the diffusion resistance between enzymes. This study not only offers a green and facile immobilization method for multi-enzymatic cascade systems, but also reveals the reaction bottleneck and provides possible solutions for the bioconversion of CO2 to methanol. Copyright © 2015 Elsevier B.V. All rights reserved.
Cascade Distillation System Development
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah
2014-01-01
NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.
Emergence of a turbulent cascade in a quantum gas
NASA Astrophysics Data System (ADS)
Navon, Nir; Gaunt, Alexander L.; Smith, Robert P.; Hadzibabic, Zoran
2016-11-01
A central concept in the modern understanding of turbulence is the existence of cascades of excitations from large to small length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov, and such cascades have since been observed in various systems, including interplanetary plasmas, supernovae, ocean waves and financial markets. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas—a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose-Einstein condensate in an optical box, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross-Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.
Rubio-Ferrera, Irene; Millán-Crespo, Irene; Contero-García, Patricia; Bahrampour, Shahrzad
2016-01-01
Specification of the myriad of unique neuronal subtypes found in the nervous system depends upon spatiotemporal cues and terminal selector gene cascades, often acting in sequential combinatorial codes to determine final cell fate. However, a specific neuronal cell subtype can often be generated in different parts of the nervous system and at different stages, indicating that different spatiotemporal cues can converge on the same terminal selectors to thereby generate a similar cell fate. However, the regulatory mechanisms underlying such convergence are poorly understood. The Nplp1 neuropeptide neurons in the Drosophila ventral nerve cord can be subdivided into the thoracic-ventral Tv1 neurons and the dorsal-medial dAp neurons. The activation of Nplp1 in Tv1 and dAp neurons depends upon the same terminal selector cascade: col>ap/eya>dimm>Nplp1. However, Tv1 and dAp neurons are generated by different neural progenitors (neuroblasts) with different spatiotemporal appearance. Here, we find that the same terminal selector cascade is triggered by Kr/pdm>grn in dAp neurons, but by Antp/hth/exd/lbe/cas in Tv1 neurons. Hence, two different spatiotemporal combinations can funnel into a common downstream terminal selector cascade to determine a highly related cell fate. PMID:27148744
CARBON AND NITROGEN POOLS IN OREGON CASCADES FORESTS OVER A SUCCESSIONAL GRADIENT
In a study to examine impacts of successional and disturbance history on N export from 20 headwater stream systems in the west central Cascades of Oregon, a region of low anthropogenic N inputs, watersheds of differing ages showed a number of significant difference in nutrient ...
Interferometric phase locking of two electronic oscillators with a cascade electro-optic modulator
NASA Astrophysics Data System (ADS)
Chao, C. H.; Chien, P. Y.; Chang, L. W.; Juang, F. Y.; Hsia, C. H.; Chang, C. C.
1993-01-01
An optical-type electrical phase-locked-loop system based on a cascade electro-optic modulator has been demonstrated. By using this technique, a set of optical-type phase detectors, operating at any harmonic frequencies of two applied phase-modulation signals, has been implemented.
NASA Technical Reports Server (NTRS)
Friedman, J. D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Significant results of the thermal surveillance of volcanoes experiment during 1972 included the design, construction, emplacement, and successful operation at volcanic sites in the Cascade Range, North America and on Surtsey, Iceland, of automated thermistor arrays which transmit ground and fumarole temperatures via the ERTS-1 data communication system to Goddard Space Flight Center. Temperature, radiance, and anomalous heat flow variations are being plotted by a U.S. Geological Survey IBM 360/65 computer program to show daily fluctuations at each of the sites. Results are being compiled in conjunction with NASA and USGS aircraft infrared survey data to provide thermal energy yield estimates during the current repose period of several Cascade Range volcanic systems. ERTS-1 MSS images have provided new information on the extent of structural elements controlling thermal emission at Lassen Volcanic National Park.
Enzymes containing porous polymersomes as nano reaction vessels for cascade reactions.
Kuiper, Suzanne M; Nallani, Madhavan; Vriezema, Dennis M; Cornelissen, Jeroen J L M; van Hest, Jan C M; Nolte, Roeland J M; Rowan, Alan E
2008-12-07
Polystyrene(40)-b-poly(isocyanoalanine(2-thiophen-3-yl-ethyl)amide)(50) (PS-PIAT) polymersomes have the unique property of being sufficiently porous to allow diffusion of small (organic) substrates while retaining large biomolecules such as enzymes inside. Herein we report on the encapsulation and protection of glucose oxidase (GOx) and horse radish peroxidase (HRP) in PS-PIAT polymersomes and the successful employment of these functionalised nanoreactors in a cascade reaction. The demonstrated concept allows for further application in other enzymatic cascade reactions, bio-organic hybrid systems and biosensing devices.
A multiscale numerical study into the cascade of kinetic energy leading to severe local storms
NASA Technical Reports Server (NTRS)
Paine, D. A.; Kaplan, M. L.
1977-01-01
The cascade of kinetic energy from macro- through mesoscales is studied on the basis of a nested grid system used to solve a set of nonlinear differential equations. The kinetic energy cascade and the concentration of vorticity through the hydrodynamic spectrum provide a means for predicting the location and intensity of severe weather from large-scale data sets. A mechanism described by the surface pressure tendency equation proves to be important in explaining how initial middle-tropospheric mass-momentum imbalances alter the low-level pressure field.
Yildiz, Ali; Quetscher, Clara; Dharmadhikari, Shalmali; Chmielewski, Witold; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Edden, Richard; Dydak, Ulrike; Beste, Christian
2014-10-01
In day-to-day life, we need to apply strategies to cascade different actions for efficient unfolding of behavior. While deficits in action cascading are examined extensively, almost nothing is known about the neuronal mechanisms mediating superior performance above the normal level. To examine this question, we investigate action control in airplane pilot trainees. We use a stop-change paradigm that is able to estimate the efficiency of action cascading on the basis of mathematical constraints. Behavioral and EEG data is analyzed along these constraints and integrated with neurochemical data obtained using Magnetic Resonance Spectroscopy (MRS) from the striatal gamma-aminobutyric acid (GABA) -ergic system. We show that high performance in action cascading, as exemplified in airplane pilot trainees, can be driven by intensified attentional processes, circumventing response selection processes. The results indicate that the efficiency of action cascading and hence the speed of responding as well as attentional gating functions are modulated by striatal GABA and Glutamate + Glutamine concentrations. In superior performance in action cascading similar increases in the concentrations of GABA and Glutamate + Glutamine lead to stronger neurophysiological and behavioral effects as compared to subjects with normal performance in action cascading. Copyright © 2014 Wiley Periodicals, Inc.
Scale-invariant cascades in turbulence and evolution
NASA Astrophysics Data System (ADS)
Guttenberg, Nicholas Ryan
In this dissertation, I present work addressing three systems which are traditionally considered to be unrelated: turbulence, evolution, and social organization. The commonality between these systems is that in each case, microscopic interaction rules give rise to an emergent behavior that in some way makes contact with the macroscopic scale of the problem. The open-ended evolution of complexity in evolving systems is analogous to the scale-free structure established in turbulent flows through local transportation of energy. In both cases, an invariance is required for the cascading behavior to occur, and in both cases the scale-free structure is built up from some initial scale from which the behavior is fed. In turbulence, I examine the case of two-dimensional turbulence in order to support the hypothesis that the friction factor and velocity profile of turbulent pipe flows depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl theory. By simulating two-dimensional flows in controlled geometries, either an inverse energy cascade or forward enstrophy cascade can be produced. The friction factor scaling of the flow changes depending on which cascade is present, in a way consistent with momentum transfer theory and roughness-induced criticality. In the problem of evolution, I show that open-ended growth of complexity can be obtained by ensuring that the evolutionary dynamics are invariant with respect to changes in complexity. Finite system size, finite point mutation rate, and fixed points in the fitness landscape can all interrupt this cascade behavior, producing an analogue to the integral scale of turbulence. This complexity cascade can exist both for competing and for symbiotic sets of organisms. Extending this picture to the qualitatively-different levels of organization of real lifeforms (viruses, unicellular, biofilms, multicellular) requires an understanding of how the processes of evolution themselves evolve. I show that a separation of spatial or temporal scales can enhance selection pressure on parameters that only matter several generations down the line. Because of this, I conclude that the prime candidates for the emergence of novel evolutionary mechanisms are biofilms and things living in oscillating environments. Finally, in the problem of social organization, I show that different types of control hierarchies - leaders or communal decision making - can emerge depending on the relationship between the environment in which members of the social group act and the development and exchange of information.
A decentralized approach to reducing the social costs of cascading failures
NASA Astrophysics Data System (ADS)
Hines, Paul
Large cascading failures in electrical power networks come with enormous social costs. These can be direct financial costs, such as the loss of refrigerated foods in grocery stores, or more indirect social costs, such as the traffic congestion that results from the failure of traffic signals. While engineers and policy makers have made numerous technical and organizational changes to reduce the frequency and impact of large cascading failures, the existing data, as described in Chapter 2 of this work, indicate that the overall frequency and impact of large electrical blackouts in the United States are not decreasing. Motivated by the cascading failure problem, this thesis describes a new method for Distributed Model Predictive Control and a power systems application. The central goal of the method, when applied to power systems, is to reduce the social costs of cascading failures by making small, targeted reductions in load and generation and changes to generator voltage set points. Unlike some existing schemes that operate from centrally located control centers, the method is operated by software agents located at substations distributed throughout the power network. The resulting multi-agent control system is a new approach to decentralized control, combining Distributed Model Predictive Control and Reciprocal Altruism. Experimental results indicate that this scheme can in fact decrease the average size, and thus social costs, of cascading failures. Over 100 randomly generated disturbances to a model of the IEEE 300 bus test network, the method resulted in nearly an order of magnitude decrease in average event size (measured in cost) relative to cascading failure simulations without remedial control actions. Additionally, the communication requirements for the method are measured, and found to be within the bandwidth capabilities of current communications technology (on the order of 100kB/second). Experiments on several resistor networks with varying structures, including a random graph, a scale-free network and a power grid indicate that the effectiveness of decentralized control schemes, like the method proposed here, is a function of the structure of the network that is to be controlled.
Dual-lasing channel quantum cascade laser based on scattering-assisted injection design.
Wen, Boyu; Xu, Chao; Wang, Siyi; Wang, Kaixi; Tam, Man Chun; Wasilewski, Zbig; Ban, Dayan
2018-04-02
A dual lasing channel Terahertz Quantum Cascade laser (THz QCL) based on GaAs/Al 0.17 Ga 0.83 As material system is demonstrated. The device shows the lowest reported threshold current density (550A/cm 2 at 50K) of GaAs/Al x Ga 1-x As material system based scattering-assisted (SA) structures and operates up to a maximum lasing temperature of 144K. Dual lasing channel operation is investigated theoretically and experimentally. The combination of low frequency emission, dual lasing channel operation, low lasing threshold current density and high temperature performance make such devices ideal candidates for low frequency applications, and initiates the design strategy for achieving high-temperature performance terahertz quantum cascade laser with wide frequency coverage at low frequency.
Guz, Nataliia; Halámek, Jan; Rusling, James F.; Katz, Evgeny
2014-01-01
The biocatalytic cascade based on enzyme-catalyzed reactions activated by several biomolecular input signals and producing output signal after each reaction step was developed as an example of a logically reversible information processing system. The model system was designed to mimic the operation of concatenated AND logic gates with optically readable output signals generated at each step of the logic operation. Implications include concurrent bioanalyses and data interpretation for medical diagnostics. PMID:24748446
Wang, Ming-Jie; Cai, Wen-Jie; Zhu, Yi-Chun
2016-05-15
As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Xing; Wu, Hui; Huang, Bing; Li, Zhimin; Ye, Qin
2017-01-10
In vitro cascade catalysis using enzyme-based system is becoming a promising biomanufacturing platform for biofuels and biochemicals production. Glutathione is a pivotal non-protein thiol compound and widely applied in food and pharmaceutical industries. In this study, glutathione was synthesized by a bifunctional glutathione synthetase together with a thermophilic ATP regeneration system through a two-enzyme cascade in vitro. Four bifunctional glutathione synthetases from Streptococcus sanguinis, S. gordonii, S. uberis and Bacillus cereus were applied for glutathione synthesis. The bifunctional glutathione synthetase from S. sanguinis was selected and coupled with the polyphosphate kinase from Thermosynechococcus elongatus BP-1 for regenerating ATP to produce glutathione in one pot. In the optimized system, 28.5mM glutathione was produced within 5h due to efficient ATP regeneration from low-cost polyphosphate. The yield based on added l-cysteine reached 81.4% and the productivity of glutathione achieved 5.7mM/h. The one-pot system indicated a potential biotransformation platform for industrial production of glutathione. Copyright © 2016 Elsevier B.V. All rights reserved.
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Cheng; Zhang, Kai; Xiong, Jian
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
An Efficient Modulation Strategy for Cascaded Photovoltaic Systems Suffering From Module Mismatch
Wang, Cheng; Zhang, Kai; Xiong, Jian; ...
2017-09-26
Modular multilevel cascaded converter (MMCC) is a promising technique for medium/high-voltage high-power photovoltaic systems due to its modularity, scalability, and capability of distributed maximum power point tracking (MPPT) etc. However, distributed MPPT under module-mismatch might polarize the distribution of ac output voltages as well as the dc-link voltages among the modules, distort grid currents, and even cause system instability. For the better acceptance in practical applications, such issues need to be well addressed. Based on mismatch degree that is defined to consider both active power distribution and maximum modulation index, this paper presents an efficient modulation strategy for a cascaded-H-bridge-basedmore » MMCC under module mismatch. It can operate in loss-reducing mode or range-extending mode. By properly switching between the two modes, performance indices such as system efficiency, grid current quality, and balance of dc voltages, can be well coordinated. In this way, the MMCC system can maintain high-performance over a wide range of operating conditions. As a result, effectiveness of the proposed modulation strategy is proved with experiments.« less
Systemic risk in multiplex networks with asymmetric coupling and threshold feedback
NASA Astrophysics Data System (ADS)
Burkholz, Rebekka; Leduc, Matt V.; Garas, Antonios; Schweitzer, Frank
2016-06-01
We study cascades on a two-layer multiplex network, with asymmetric feedback that depends on the coupling strength between the layers. Based on an analytical branching process approximation, we calculate the systemic risk measured by the final fraction of failed nodes on a reference layer. The results are compared with the case of a single layer network that is an aggregated representation of the two layers. We find that systemic risk in the two-layer network is smaller than in the aggregated one only if the coupling strength between the two layers is small. Above a critical coupling strength, systemic risk is increased because of the mutual amplification of cascades in the two layers. We even observe sharp phase transitions in the cascade size that are less pronounced on the aggregated layer. Our insights can be applied to a scenario where firms decide whether they want to split their business into a less risky core business and a more risky subsidiary business. In most cases, this may lead to a drastic increase of systemic risk, which is underestimated in an aggregated approach.
The land-cover cascade: relationships coupling land and water
C.L. Burcher; H.M. Valett; E.F. Benfield
2007-01-01
We introduce the land-cover cascade (LCC) as a conceptual framework to quantify the transfer of land-cover-disturbance effects to stream biota. We hypothesize that disturbance is propagated through multivariate systems through key variables that transform a disturbance and pass a reorganized disturbance effect to the next hierarchical level where the process repeats...
Design and analysis of linear cascade DNA hybridization chain reactions using DNA hairpins
NASA Astrophysics Data System (ADS)
Bui, Hieu; Garg, Sudhanshu; Miao, Vincent; Song, Tianqi; Mokhtar, Reem; Reif, John
2017-01-01
DNA self-assembly has been employed non-conventionally to construct nanoscale structures and dynamic nanoscale machines. The technique of hybridization chain reactions by triggered self-assembly has been shown to form various interesting nanoscale structures ranging from simple linear DNA oligomers to dendritic DNA structures. Inspired by earlier triggered self-assembly works, we present a system for controlled self-assembly of linear cascade DNA hybridization chain reactions using nine distinct DNA hairpins. NUPACK is employed to assist in designing DNA sequences and Matlab has been used to simulate DNA hairpin interactions. Gel electrophoresis and ensemble fluorescence reaction kinetics data indicate strong evidence of linear cascade DNA hybridization chain reactions. The half-time completion of the proposed linear cascade reactions indicates a linear dependency on the number of hairpins.
NASA Technical Reports Server (NTRS)
Yang, R. J.; Weinberg, B. C.; Shamroth, S. J.; Mcdonald, H.
1985-01-01
The application of the time-dependent ensemble-averaged Navier-Stokes equations to transonic turbine cascade flow fields was examined. In particular, efforts focused on an assessment of the procedure in conjunction with a suitable turbulence model to calculate steady turbine flow fields using an O-type coordinate system. Three cascade configurations were considered. Comparisons were made between the predicted and measured surface pressures and heat transfer distributions wherever available. In general, the pressure predictions were in good agreement with the data. Heat transfer calculations also showed good agreement when an empirical transition model was used. However, further work in the development of laminar-turbulent transitional models is indicated. The calculations showed most of the known features associated with turbine cascade flow fields. These results indicate the ability of the Navier-Stokes analysis to predict, in reasonable amounts of computation time, the surface pressure distribution, heat transfer rates, and viscous flow development for turbine cascades operating at realistic conditions.
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia; ...
2016-10-13
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
Tunable signal processing in synthetic MAP kinase cascades.
O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A
2011-01-07
The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Cascaded Optimization for a Persistent Data Ferrying Unmanned Aircraft
NASA Astrophysics Data System (ADS)
Carfang, Anthony
This dissertation develops and assesses a cascaded method for designing optimal periodic trajectories and link schedules for an unmanned aircraft to ferry data between stationary ground nodes. This results in a fast solution method without the need to artificially constrain system dynamics. Focusing on a fundamental ferrying problem that involves one source and one destination, but includes complex vehicle and Radio-Frequency (RF) dynamics, a cascaded structure to the system dynamics is uncovered. This structure is exploited by reformulating the nonlinear optimization problem into one that reduces the independent control to the vehicle's motion, while the link scheduling control is folded into the objective function and implemented as an optimal policy that depends on candidate motion control. This formulation is proven to maintain optimality while reducing computation time in comparison to traditional ferry optimization methods. The discrete link scheduling problem takes the form of a combinatorial optimization problem that is known to be NP-Hard. A derived necessary condition for optimality guides the development of several heuristic algorithms, specifically the Most-Data-First Algorithm and the Knapsack Adaptation. These heuristics are extended to larger ferrying scenarios, and assessed analytically and through Monte Carlo simulation, showing better throughput performance in the same order of magnitude of computation time in comparison to other common link scheduling policies. The cascaded optimization method is implemented with a novel embedded software system on a small, unmanned aircraft to validate the simulation results with field experiments. To address the sensitivity of results on trajectory tracking performance, a system that combines motion and link control with waypoint-based navigation is developed and assessed through field experiments. The data ferrying algorithms are further extended by incorporating a Gaussian process to opportunistically learn the RF environment. By continuously improving RF models, the cascaded planner can continually improve the ferrying system's overall performance.
NASA Astrophysics Data System (ADS)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-05-01
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvénic fluctuations and a passive cascade of density and magnetic-field-strength fluctuations. The former are governed by the reduced magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvénic component (in the collisional limit, these compressive fluctuations become the slow and entropy modes of the conventional MHD). In the "dissipation range" below ion gyroscale, there are again two cascades: the kinetic-Alfvén-wave (KAW) cascade governed by two fluid-like electron reduced magnetohydrodynamic (ERMHD) equations and a passive cascade of ion entropy fluctuations both in space and velocity. The latter cascade brings the energy of the inertial-range fluctuations that was Landau-damped at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for all of these cascades. The relationship between the theoretical models proposed in this paper and astrophysical applications and observations is discussed in detail.
Identification of cascade water tanks using a PWARX model
NASA Astrophysics Data System (ADS)
Mattsson, Per; Zachariah, Dave; Stoica, Petre
2018-06-01
In this paper we consider the identification of a discrete-time nonlinear dynamical model for a cascade water tank process. The proposed method starts with a nominal linear dynamical model of the system, and proceeds to model its prediction errors using a model that is piecewise affine in the data. As data is observed, the nominal model is refined into a piecewise ARX model which can capture a wide range of nonlinearities, such as the saturation in the cascade tanks. The proposed method uses a likelihood-based methodology which adaptively penalizes model complexity and directly leads to a computationally efficient implementation.
Interferometric modulation of quantum cascade interactions
NASA Astrophysics Data System (ADS)
Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio
2018-05-01
We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.
A Terahertz VRT spectrometer employing quantum cascade lasers
NASA Astrophysics Data System (ADS)
Cole, William T. S.; Hlavacek, Nik C.; Lee, Alan W. M.; Kao, Tsung-Yu; Hu, Qing; Reno, John L.; Saykally, Richard J.
2015-10-01
The first application of a commercial Terahertz quantum cascade laser (QCL) system for high resolution spectroscopy of supersonic beams is presented. The QCLs exhibited continuous linear voltage tuning over a 2 GHz range about a center frequency of 3.762 THz with ∼1 ppm resolution. A sensitivity of ∼1 ppm fractional absorption was measured with a single pass optical system. Multipass operation at the quantum noise limit of the stressed photoconductor detector would produce a 100-fold improvement.
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2012-10-01
We review a model that was developed to take into account all possible microscopic cascading schemes in a single species system out to the fifth order using a self-consistent field approach. This model was designed to study the effects of boundaries in mesoscopic systems with constrained boundaries. These geometric constraints on the macroscopic structure show how the higher-ordered susceptibilities are manipulated by increasing the surface to volume ratio, while the microscopic structure influences the local field from all other molecules in the system. In addition to the review, we discuss methods of modeling real systems of molecules, where efforts are currently underway.
Hydrogeology of the Cascade Springs area near Tullahoma, Tennessee
Johnson, S.E.
1995-01-01
The ground-water-flow system contributing to Cascade Springs near Tullahoma, Tennessee, was investigated from September 1991 to May 1992. Cascade Springs, consisting of Left Cascade and Right Cascade Springs, are located on the escarpment of the Highland Rim and discharge immediately above the Chattanooga Shale from the cherty Fort Payne Formation. Left Cascade Spring is the sole source of water for the Town of Wartrace and for a local whiskey distillery. Two major aquifers, the Manchester and the Fort Payne aquifers, contribute ground-water flow to Cascade Springs. The Manchester aquifer is composed of unconsolidated chert gravel with minimal clay content and the upper, well- fractured interval of the Fort Payne Formation. The Fort Payne aquifer consists of dense, bedded, cherty limestone with few fractures. Where present, the fractures of the Fort Payne aquifer are concentrated immediately above the Chattanooga Shale along horizontal bedding planes. The Manchester and the Fort Payne aquifers are hydraulically connected. However, the dense cherty limestone of the Fort Payne Formation, where unfractured, can impede the downward flow of ground water from the Manchester aquifer. Near the Highland Rime escarpment, as a result of this local confinement, the potentiometric head of wells completed in the Manchester aquifer is 36- to 80-feet higher than the head of wells completed in the Fort Payne aquifer. The primary recharge area for Cascade Springs is located southeast of the springs. The estimated recharge area for the Manchester aquifer encompaasses approximately 1 square mile. The lateral extent of the recharge area for the Fort Payne aquifer cannot be delineated because few wells completed in the Fort Payne aquifer are located southeast of Cascade Springs. The water quality of Left Cascade Spring is dominated by calcium and bicarbonate ions with low concentrations of inorganic constituents and dissolved solids. Two volatile organic compounds (1.3 micrograms per liter of 1,2-transdichloroethene and 0.2 micrograms per liter of trichloroethylene) were detected in a recent analysis of water from Left Casade Spring.
A secure communication using cascade chaotic computing systems on clinical decision support.
Koksal, Ahmet Sertol; Er, Orhan; Evirgen, Hayrettin; Yumusak, Nejat
2016-06-01
Clinical decision support systems (C-DSS) provide supportive tools to the expert for the determination of the disease. Today, many of the support systems, which have been developed for a better and more accurate diagnosis, have reached a dynamic structure due to artificial intelligence techniques. However, in cases when important diagnosis studies should be performed in secret, a secure communication system is required. In this study, secure communication of a DSS is examined through a developed double layer chaotic communication system. The developed communication system consists of four main parts: random number generator, cascade chaotic calculation layer, PCM, and logical mixer layers. Thanks to this system, important patient data created by DSS will be conveyed to the center through a secure communication line.
The Transfer of Content Knowledge in a Cascade Model of Professional Development
ERIC Educational Resources Information Center
Turner, Fay; Brownhill, Simon; Wilson, Elaine
2017-01-01
A cascade model of professional development presents a particular risk that "knowledge" promoted in a programme will be diluted or distorted as it passes from originators of the programme to local trainers and then to the target teachers. Careful monitoring of trainers' and teachers' knowledge as it is transferred through the system is…
The Futures Wheel: A method for exploring the implications of social-ecological change
D.N. Bengston
2015-01-01
Change in social-ecological systems often produces a cascade of unanticipated consequences. Natural resource professionals and other stakeholders need to understand the possible implications of cascading change to prepare for it. The Futures Wheel is a "smart group" method that uses a structured brainstorming process to uncover and evaluate multiple levels of...
Bankruptcy cascades in interbank markets.
Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk
2012-01-01
We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.
Cascade-based attacks on complex networks
NASA Astrophysics Data System (ADS)
Motter, Adilson E.; Lai, Ying-Cheng
2002-12-01
We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.
NASA Technical Reports Server (NTRS)
Goldman, Louis J.; Seasholtz, Richard G.
1988-01-01
The three mean velocity components were measured in a full-scale annular turbine stator cascade with contoured hub end wall using a newly developed laser anemometer system. The anemometer consists of a standard fringe configuration using fluorescent seed particles to measure the axial and tangential components. The radial component is measured with a scanning confocal Fabry-Perot interferometer. These two configurations are combined in a single optical system that can operate simultaneously in a backscatter mode through a single optical access port. Experimental measurements were obtained both within and downstream of the stator vane row and compared with calculations from a three-dimensional inviscid computer program. In addition, detailed calibration procedures are described that were used, prior to the experiment, to accurately determine the laser beam probe volume location relative to the cascade hardware.
Bankruptcy Cascades in Interbank Markets
Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk
2012-01-01
We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank’s liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760
Transient control for cascaded EDFAs by using a multi-objective optimization approach
NASA Astrophysics Data System (ADS)
Freitas, Marcio; Givigi, Sidney N., Jr.; Klein, Jackson; Calmon, Luiz C.; de Almeida, Ailson R.
2004-11-01
Erbium-doped fiber amplifiers (EDFA) have been used for some years now in building effective optical systems for the most diverse applications. For some applications, it is necessary to introduce some feedback control laws in order to avoid the generation of transients that could create impairments in the system. In this paper, we use a multi-objective optimization approach based on genetic algorithms, to study the introduction of proportional-derivative (PD) controllers into systems of cascaded EDFAs. We compare the use of individual controllers for each amplifier to the use of controllers to sets of amplifiers.
Sample Selection for Training Cascade Detectors.
Vállez, Noelia; Deniz, Oscar; Bueno, Gloria
2015-01-01
Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.
Online boosting for vehicle detection.
Chang, Wen-Chung; Cho, Chih-Wei
2010-06-01
This paper presents a real-time vision-based vehicle detection system employing an online boosting algorithm. It is an online AdaBoost approach for a cascade of strong classifiers instead of a single strong classifier. Most existing cascades of classifiers must be trained offline and cannot effectively be updated when online tuning is required. The idea is to develop a cascade of strong classifiers for vehicle detection that is capable of being online trained in response to changing traffic environments. To make the online algorithm tractable, the proposed system must efficiently tune parameters based on incoming images and up-to-date performance of each weak classifier. The proposed online boosting method can improve system adaptability and accuracy to deal with novel types of vehicles and unfamiliar environments, whereas existing offline methods rely much more on extensive training processes to reach comparable results and cannot further be updated online. Our approach has been successfully validated in real traffic environments by performing experiments with an onboard charge-coupled-device camera in a roadway vehicle.
Interatomic Coulombic decay cascades in multiply excited neon clusters
Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.
2016-01-01
In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867
Cascade Distiller System Performance Testing Interim Results
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.
2014-01-01
The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.
Castillo, Tiffany N; Pouliot, Michael A; Kim, Hyeon Joo; Dragoo, Jason L
2011-02-01
Clinical studies claim that platelet-rich plasma (PRP) shortens recovery times because of its high concentration of growth factors that may enhance the tissue repair process. Most of these studies obtained PRP using different separation systems, and few analyzed the content of the PRP used as treatment. This study characterized the composition of single-donor PRP produced by 3 commercially available PRP separation systems. Controlled laboratory study. Five healthy humans donated 100 mL of blood, which was processed to produce PRP using 3 PRP concentration systems (MTF Cascade, Arteriocyte Magellan, Biomet GPS III). Platelet, white blood cell (WBC), red blood cell, and fibrinogen concentrations were analyzed by automated systems in a clinical laboratory, whereas ELISA determined the concentrations of platelet-derived growth factor αβ and ββ (PDGF-αβ, PDGF-ββ), transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor (VEGF). There was no significant difference in mean PRP platelet, red blood cell, active TGF-β1, or fibrinogen concentrations among PRP separation systems. There was a significant difference in platelet capture efficiency. The highest platelet capture efficiency was obtained with Cascade, which was comparable with Magellan but significantly higher than GPS III. There was a significant difference among all systems in the concentrations of WBC, PDGF-αβ, PDGF-ββ, and VEGF. The Cascade system concentrated leukocyte-poor PRP, compared with leukocyte-rich PRP from the GPS III and Magellan systems. The GPS III and Magellan concentrate leukocyte-rich PRP, which results in increased concentrations of WBCs, PDGF-αβ, PDGF-ββ, and VEGF as compared with the leukocyte-poor PRP from Cascade. Overall, there was no significant difference among systems in the platelet concentration, red blood cell, active TGF-β1, or fibrinogen levels. Products from commercially available PRP separation systems produce differing concentrations of growth factors and WBCs. Further research is necessary to determine the clinical relevance of these findings.
NASA Technical Reports Server (NTRS)
Volk, Tyler
1993-01-01
During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.
NASA Astrophysics Data System (ADS)
Prasetya, Novrisal; Erwinsyah Umra Lubis, Defry; Raharjo, Dharmawan; Miryani Saptadji, Nenny; Pratama, Heru Berian
2017-12-01
West Sumatera is a province which has a huge geothermal potential - approximately 6% of Indonesia’s total geothermal potential which equals to 1,656 MWe. One of the significant reserves located in Bonjol subdistrict which accounts for more than 50 MWe. The energy from geothermal manifestation in Bonjol can be utilized prior to indirect development. Manifestation at the rate 3 kg/s and 87 °C will flow to cascading system consisting several applications, arranged in order from high to low temperature to efficiently use the excessive energy. The direct use application selected is based on the best potential commodities as well as temperature constraint of heat source. The objective of this paper is to perform a conceptual design for the first cascade direct use of geothermal energy in Indonesia to establish Bonjol Smart Geo-Energy Village which will be transformed as the center of agricultural, stockbreeding, tourism as well as cultural site. A comprehenssive research was performed through remote survey area, evaluation featured product, analysis of heat loss and heat exchange in cascade system. From potential commodities, the three applications selected are cocoa drying and egg hatching incubation machine as well as new tourism site called Terapi Panas Bumi. The optimum temperature for cocoa drying is 62°C with the moisture content 7% which consumes 78 kW for one tones cocoa dried. Whereas, egg incubation system consists of two chamber with the same temperature 40°C for each room and relative humidity 55% and 70%. For the last stage, Terapi Panas Bumi works in temperature 40°C. Based on the result technical and economical aspect, it exhibits cascade direct use of geothermal energy is very recommended to develop.
Wang, Yi-Xiao; Chen, Wei-Ming; Wu, Chung-Yu
2014-01-01
This paper presents a low-power MedRadio-band integer-N phase-locked Loop (PLL) system which is composed of two charge-pump PLLs cascade connected. The PLL provides the operation clock and local carrier signals for an implantable medical electronic system. In addition, to avoid the off-chip crystal oscillator, the 13.56 MHz Industrial, Scientific and Medical (ISM) band signal from the wireless power transmission system is adopted as the input reference signal for the PLL. Ring-based voltage controlled oscillators (VCOs) with current control units are adopted to reduce chip area and power dissipation. The proposed cascaded PLL system is designed and implemented in TSMC 65-nm CMOS technology. The measured jitter for 216.96 MHz signal is 12.23 ps and the phase noise is -65.9 dBc/Hz at 100 kHz frequency offset under 402.926 MHz carrier frequency. The measured power dissipations are 66 μW in the first PLL and 195 μW in the whole system under 1-V supply voltage. The chip area is 0.1088 mm(2) and no off-chip component is required which is suitable for the integration of the implantable medical electronic system.
Second order nonlinear QED processes in ultra-strong laser fields
NASA Astrophysics Data System (ADS)
Mackenroth, Felix
2017-10-01
In the interaction of ultra-intense laser fields with matter the ever increasing peak laser intensities render nonlinear QED effects ever more important. For long, ultra-intense laser pulses scattering large systems, like a macroscopic plasma, the interaction time can be longer than the scattering time, leading to multiple scatterings. These are usually approximated as incoherent cascades of single-vertex processes. Under certain conditions, however, this common cascade approximation may be insufficient, as it disregards several effects such as coherent processes, quantum interferences or pulse shape effects. Quantifying deviations of the full amplitude of multiple scatterings from the commonly employed cascade approximations is a formidable, yet unaccomplished task. In this talk we are going to discuss how to compute second order nonlinear QED amplitudes and relate them to the conventional cascade approximation. We present examples for typical second order processes and benchmark the full result against common approximations. We demonstrate that the approximation of multiple nonlinear QED scatterings as a cascade of single interactions has certain limitations and discuss these limits in light of upcoming experimental tests.
Pierce, Richard D; Hegle, Jennifer; Sabin, Keith; Agustian, Edo; Johnston, Lisa G; Mills, Stephen; Todd, Catherine S
2015-10-16
People who inject drugs (PWID) are at increased HIV transmission risk because of unsafe injecting practices and a host of other individual, network, and structural factors. Thus, PWID have a great need for services within the Cascade of HIV prevention, diagnosis, care, and treatment (HIV Cascade). Yet the systems that monitor their progress through the Cascade are often lacking. Subsequently, fewer reliable data are available to guide programs targeting this key population (KP). Programmatic data, which are helpful in tracking PWID through the Cascade, also are limited because not all countries have harm reduction programming from which to estimate Cascade indicators. Also, due to stigma and the illegal nature of drug use, PWID may not disclose their drug use behavior or HIV status when accessing services. Consequently, PWID appear to have low HIV testing rates and, for those living with HIV, lower access to health services and lower viral suppression rates than do other KP groups. This commentary, based on outcomes from an international stakeholder meeting, identifies data gaps and proposes solutions to strengthen strategic information (SI), the systematic collection, analysis, and dissemination of information, to optimize HIV prevention, care, and treatment programming for PWID.
Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U
2013-01-14
A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.
Kathleen A. Farley; Christina Tague; Gordon E. Grant
2011-01-01
Despite improvements in understanding biophysical response to climate change, a better understanding of how such changes will affect societies is still needed. We evaluated effects of climate change on the coupled human-environmental system of the McKenzie River watershed in the Oregon Cascades in order to assess its vulnerability. Published empirical and modeling...
Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades.
A. Jefferson; G. Grant; T. Rose
2006-01-01
Spring systems on the west slope of the Oregon High Cascades exhibit complex relationships among modern topography, lava flow geometries, and groundwater flow patterns. Seven cold springs were continuously monitored for discharge and temperature in the 2004 water year, and they were periodically sampled for ?18O, ?D, tritium, and dissolved noble gases. Anomalously high...
Tri-channel single-mode terahertz quantum cascade laser.
Wang, Tao; Liu, Jun-Qi; Liu, Feng-Qi; Wang, Li-Jun; Zhang, Jin-Chuan; Wang, Zhan-Guo
2014-12-01
We report on a compact THz quantum cascade laser source emitting at, individually controllable, three different wavelengths (92.6, 93.9, and 95.1 μm). This multiwavelength laser array can be used as a prototype of the emission source of THz wavelength division multiplex (WDM) wireless communication system. The source consists of three tapered single-mode distributed feedback (DFB) terahertz quantum cascade lasers fabricated monolithically on a single chip. All array elements feature longitudinal as well as lateral single-mode in the entire injection range. The peak output powers of individual lasers are 42, 73, and 37 mW at 10 K, respectively.
The Southern Washington Cascades magmatic system imaged with magnetotellurics
NASA Astrophysics Data System (ADS)
Bowles-martinez, E.; Bedrosian, P.; Schultz, A.; Hill, G. J.; Peacock, J.
2016-12-01
The goal of the interdisciplinary iMUSH project (Imaging Magma Under Saint Helens) is to image the magmatic system of Mount Saint Helens (MSH), and to determine the relationship of this system to the greater Cascades volcanic arc. We are especially interested in an anomalously conductive crustal zone between MSH and Mount Adams known as the Southern Washington Cascades Conductor (SWCC), which early studies interpreted as accreted sediments, but more recently has been interpreted as a broad region of partial melt. MSH is located 50 km west of the main arc and is the most active of the Cascade volcanoes. Its 1980 eruption highlighted the need to understand this potentially hazardous volcanic system. We use wideband magnetotelluric (MT) data collected in 2014-2015 along with data from earlier studies to create a 3D model of the electrical resistivity throughout the region, covering MSH as well as Mount Adams and Mount Rainier along the main volcanic arc. We look at not only the volcanoes themselves, but also their relationship to one another and to regional geologic structures. Preliminary modeling identifies several conductive features, including a mid-crustal conductive region between MSH and Mount Adams that passes below Indian Heaven Volcanic Field and coincides with a region with a high Vp/Vs ratio identified in the seismic component of iMUSH. This suggests that it could be magmatic, but does not preclude the possibility of conductive sediments. Synthesis of seismic and MT data to address this question is ongoing. We also note a conductive zone running north-south just west of MSH that is likely associated with fluids within faults of the Saint Helens Seismic Zone. We finally note that curvature of the conductive lineament that defines the main Cascade arc suggests that the boundary of magmatism is influenced by compression within the Yakima Fold and Thrust Belt, east and southeast of Mount Adams.
Adaptive evolution of body size subject to indirect effect in trophic cascade system.
Wang, Xin; Fan, Meng; Hao, Lina
2017-09-01
Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chiu, YenTing
This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further experimentally prove the importance of interface roughness on intersubband scattering by measuring the electron transit time of different quantum cascade lasers and comparing them to the calculated upper laser level lifetimes with and without taking into account interface roughness induced intersubband scattering. A significantly better correlation is found between the experimental results and the calculation when the interface roughness scattering is included. Lastly, we study the effect of growth asymmetry on scattering mechanisms in mid-infrared Quantum Cascade lasers. Due to the dopant migration of around 10 nm along the growth direction of InGaAs/InAlAs Quantum Cascade laser structures, ionized impurity scattering is found to have a non-negligible influence on the lifetime of the upper laser level when the laser is biased in the polarity that electrons flow along the growth direction, in sharp contrast to the situation for the opposite polarity.
Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang
2013-04-01
A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-02-17
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.
Spatial correlation analysis of cascading failures: Congestions and Blackouts
Daqing, Li; Yinan, Jiang; Rui, Kang; Havlin, Shlomo
2014-01-01
Cascading failures have become major threats to network robustness due to their potential catastrophic consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading via direct contacts due to structural interdependencies, overload failures usually propagate through collective interactions among system components. Despite the critical need in developing protection or mitigation strategies in networks such as power grids and transportation, the propagation behavior of cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards improving actively system resilience ranging from evaluation of design schemes, development of protection strategies to implementation of mitigation programs. PMID:24946927
Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Joyce, G.; Montgomery, D.
1976-01-01
Two-dimensional magnetohydrodynamic turbulence is explored by means of numerical simulation. Previous analytical theory, based on non-dissipative constants of the motion in a truncated Fourier representation, is verified by following the evolution of highly non-equilibrium initial conditions numerically. Dynamo action (conversion of a significant fraction of turbulent kinetic energy into long-wavelength magnetic field energy) is observed. It is conjectured that in the presence of dissipation and external forcing, a dual cascade will be observed for zero-helicity situations. Energy will cascade to higher wave numbers simultaneously with a cascade of mean square vector potential to lower wave numbers, leading to an omni-directional magnetic energy spectrum which varies as 1/k 3 at lower wave numbers, simultaneously with a buildup of magnetic excitation at the lowest wave number of the system. Equipartition of kinetic and magnetic energies is expected at the highest wave numbers in the system.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-01-01
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199
Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.
Chen, Jinmiao; Chaudhari, Narendra
2007-01-01
Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.
Experimental investigation of terahertz quantum cascade laser with variable barrier heights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu
2014-04-28
We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition.more » Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.« less
NASA Astrophysics Data System (ADS)
Zhang, Yifei; Tsitkov, Stanislav; Hess, Henry
2016-12-01
A proximity effect has been invoked to explain the enhanced activity of enzyme cascades on DNA scaffolds. Using the cascade reaction carried out by glucose oxidase and horseradish peroxidase as a model system, here we study the kinetics of the cascade reaction when the enzymes are free in solution, when they are conjugated to each other and when a competing enzyme is present. No proximity effect is found, which is in agreement with models predicting that the rapidly diffusing hydrogen peroxide intermediate is well mixed. We suggest that the reason for the activity enhancement of enzymes localized by DNA scaffolds is that the pH near the surface of the negatively charged DNA nanostructures is lower than that in the bulk solution, creating a more optimal pH environment for the anchored enzymes. Our findings challenge the notion of a proximity effect and provide new insights into the role of DNA scaffolds.
The isentropic light piston annular cascade facil ity at RAE Pyestock
NASA Astrophysics Data System (ADS)
Brooks, A. J.; Colbourne, D. E.; Wedlake, E. T.; Jones, T. V.; Oldfield, M. L. G.; Schultz, D. L.; Loftus, P. J.
1985-09-01
An accurate assessment of heat transfer rates to turbine vanes and blades is an important aspect of efficient cooling system design and component life prediction in gas turbines. Techniques have been developed at Oxford University which permit such measurements to be obtained in test rigs which provide short duration steady flow through a turbine cascade. The temperature ratio between the gas stream and the turbine correctly models that found in an engine environment. Reynolds number and Mach numaber can be varied over a wide range to match engine conditions. The design, construction and operation of a new facility at Royal Aircraft Establishment (RAE) Pyestock, incorporating these techniques, is described. Heat transfer and aerodynamic measurements have been made on airfoil surfaces and endwalls of a fully annular cascade of nozzle guide vanes. These results are discussed and compared with those obtained from the same profile in 2-D cascade tests, and with computed 3-D flow predictions.
Karayiannis, Nicolaos B; Mukherjee, Amit; Glover, John R; Ktonas, Periklis Y; Frost, James D; Hrachovy, Richard A; Mizrahi, Eli M
2006-04-01
This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.
Teper, Doron; Sunitha, Sukumaran; Martin, Gregory B; Sessa, Guido
2015-01-01
Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades. PMID:26237448
Passive containment cooling water distribution device
Conway, Lawrence E.; Fanto, Susan V.
1994-01-01
A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.
Spintronic logic: from switching devices to computing systems
NASA Astrophysics Data System (ADS)
Friedman, Joseph S.
2017-09-01
Though numerous spintronic switching devices have been proposed or demonstrated, there has been significant difficulty in translating these advances into practical computing systems. The challenge of cascading has impeded the integration of multiple devices into a logic family, and several proposed solutions potentially overcome these challenges. Here, the cascading techniques by which the output of each spintronic device can drive the input of another device are described for several logic families, including spin-diode logic (in particular, all-carbon spin logic), complementary magnetic tunnel junction logic (CMAT), and emitter-coupled spin-transistor logic (ECSTL).
An Evolutionary Cascade Model for Sauropod Dinosaur Gigantism - Overview, Update and Tests
Sander, P. Martin
2013-01-01
Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades (“Reproduction”, “Feeding”, “Head and neck”, “Avian-style lung”, and “Metabolism”). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait “Very high body mass”. Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size. PMID:24205267
An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.
Sander, P Martin
2013-01-01
Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism"). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.
Saving Human Lives: What Complexity Science and Information Systems can Contribute
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Brockmann, Dirk; Chadefaux, Thomas; Donnay, Karsten; Blanke, Ulf; Woolley-Meza, Olivia; Moussaid, Mehdi; Johansson, Anders; Krause, Jens; Schutte, Sebastian; Perc, Matjaž
2015-02-01
We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.
Saving Human Lives: What Complexity Science and Information Systems can Contribute.
Helbing, Dirk; Brockmann, Dirk; Chadefaux, Thomas; Donnay, Karsten; Blanke, Ulf; Woolley-Meza, Olivia; Moussaid, Mehdi; Johansson, Anders; Krause, Jens; Schutte, Sebastian; Perc, Matjaž
We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.
NASA Astrophysics Data System (ADS)
Waldman, Jerry; Danylov, Andriy A.; Goyette, Thomas M.; Coulombe, Michael J.; Giles, Robert H.; Gatesman, Andrew J.; Goodhue, William D.; Li, Jin; Linden, Kurt J.; Nixon, William E.
2009-02-01
Coherent terahertz radar systems, using CO2 laser-pumped molecular lasers have been used during the past decade for radar scale modeling applications, as well as proof-of-principle demonstrations of remote detection of concealed weapons. The presentation will consider the potential for replacement of molecular laser sources by quantum cascade lasers. While the temporal and spatial characteristics of current THz QCLs limit their applicability, rapid progress is being made in resolving these issues. Specifications for satisfying the requirements of coherent short-range THz radars will be reviewed and the feasibility of incorporating existing QCL devices into such systems will be described.
NASA Astrophysics Data System (ADS)
Yu, Jiang-Bo; Zhao, Yan; Wu, Yu-Qiang
2014-04-01
This article considers the global robust output regulation problem via output feedback for a class of cascaded nonlinear systems with input-to-state stable inverse dynamics. The system uncertainties depend not only on the measured output but also all the unmeasurable states. By introducing an internal model, the output regulation problem is converted into a stabilisation problem for an appropriately augmented system. The designed dynamic controller could achieve the global asymptotic tracking control for a class of time-varying reference signals for the system output while keeping all other closed-loop signals bounded. It is of interest to note that the developed control approach can be applied to the speed tracking control of the fan speed control system. The simulation results demonstrate its effectiveness.
Cascading process in the flute-mode turbulence of a plasma
NASA Technical Reports Server (NTRS)
Gonzalez, R.; Gomez, D.; Fontan, C. F.; Schifino, A. C. S.; Montagne, R.
1993-01-01
The cascades of ideal invariants in the flute-mode turbulence are analyzed by considering a statistics based on an elementary three-mode coupling process. The statistical dynamics of the system is investigated on the basis of the existence of the physically most important (PMI) triad. When finite ion Larmor radius effects are considered, the PMI triad describes the formation of zonal flows.
Robert O. Curtis; Nancy M. Diaz; Gary W. Clendenen
1990-01-01
Height growth and site index curves were constructed from stem analyses of mature western white pine (Pinus monticola Dougl. ex D. Don) growing in high-elevation forests of the Cascade Range in the Mount Hood and Gifford Pinchot National Forests of Oregon and Washington, respectively. Alternate systems using reference ages for site index of 50 and...
Output Control Using Feedforward And Cascade Controllers
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Report presents theoretical study of open-loop control elements in single-input, single-output linear system. Focus on output-control (servomechanism) problem, in which objective is to find control scheme that causes output to track certain command inputs and to reject certain disturbance inputs in steady state. Report closes with brief discussion of characteristics and relative merits of feedforward, cascade, and feedback controllers and combinations thereof.
Cascaded Converters for Integration and Management of Grid Level Energy Storage Systems
NASA Astrophysics Data System (ADS)
Alaas, Zuhair
This research work proposes two cascaded multilevel inverter structures for BESS. The gating and switching control of switching devices in both inverter typologies are done by using a phase-shifted PWM scheme. The first proposed isolated multilevel inverter is made up of three-phase six-switch inverter blocks with a reduced number of power components compared with traditional isolated CHB. The suggested isolated converter has only one battery string for three-phase system that can be used for high voltage and high power applications such as grid connected BESS and alternative energy systems. The isolated inverter enables dq frame based simple control and eliminates the issues of single-phase pulsating power, which can cause detrimental impacts on certain dc sources. Simulation studies have been carried out to compare the proposed isolated multi-level inverter with an H-bridge cascaded transformer inverter. The simulation results verified the performance of the isolated inverter. The second proposed topology is a Hierarchal Cascaded Multilevel Converter (HCMC) with phase to phase SOC balancing capability which also for high voltage and high power battery energy storage systems. The HCMC has a hybrid structure of half-bridge converters and H-bridge inverters and the voltage can be hierarchically cascaded to reach the desired value at the half-bridge and the H-bridge levels. The uniform SOC battery management is achieved by controlling the half-bridge converters that are connected to individual battery modules/cells. Simulation studies and experimental results have been carried on a large scale battery system under different operating conditions to verify the effectiveness of the proposed inverters. Moreover, this dissertation presents a new three-phase SOC equalizing circuit, called six-switch energy-level balancing circuit (SSBC), which can be used to realize uniform SOC operation for full utilization of the battery capacity in proposed HCMC or any CMI inverter while keeping balanced three-phase operation. A sinusoidal PWM modulation technique is used to control power transferring between phases. Simulation results have been carried out to verify the performance of the proposed SSBC circuit of uniform three-phase SOC balancing.
Solar System Evolution through Planetesmial Collisions
NASA Astrophysics Data System (ADS)
Trierweiler, Isabella; Laughlin, Greg
2018-01-01
Understanding planet formation is crucial to unraveling the history of our Solar System. Refining our theory of planet formation has become particularly important as the discovery of exoplanet systems through missions like Kepler have indicated that our system is incredibly unique. Compared to other systems around Sun-like stars, we are missing a significant amount of mass in the inner region of our solar system.A leading explanation for the low mass of the terrestrial planets is Jupiter’s Grand Tack. In this theory, the existence of the rocky planets is thought to be the result of the migration of Jupiter through the inner solar system. This migration could spark a collisional cascade of planetesimals, allowing planetesimals to drift inwards and shepherd an original set of massive planets into the Sun, thus explaining the absence of massive planets in our current system. The remnants of the planetesimals would them become the building blocks for a new generation of smaller, rocky planets.Using the N-body simulator REBOUND, we investigate the dynamics of the Grand Tack. We focus in particular on collisional cascades, which are thought to cause the inward planetesimal drift. We first modify the simulator to account for fragmentation outcomes in planetesimal collisions. Modeling disks of varying initial conditions, we then characterize the disk conditions needed to begin a cascade and shed light on the solar system’s dynamics just prior to the formation of the terrestrial planets.
Application of cascade lasers to detection of trace gaseous atmospheric pollutants
NASA Astrophysics Data System (ADS)
Miczuga, Marcin; Kopczyński, Krzysztof
2016-12-01
Understanding the impact of gaseous pollutants on the earth's atmosphere, as well as more and more felt by mankind negative effects of its contamination, result in increasing the level of environmental awareness and contribute to the intensification of actions aimed at reducing the emission of harmful gases into the atmosphere. At the same time, the extensive studies are conducted in order to continuously monitor the level of air contamination with harmful gases and the industry compliance with the standards limited the amount of emitted pollutants. Over recent years, there has been increasing use of cascade lasers and multi-pass cells in optical systems detecting the gaseous atmospheric pollutants and measuring the gas concentrations. The paper presents the use of a tunable quantum cascade laser as a source of the IR radiation in an advanced detection system enabling the trace gaseous atmospheric pollutants to be identified. Apart from the laser, the main elements of the system are: a multi-pass cell, an IR detector and a module for control and analysis. Operation of the system is exemplified by measuring the level of the air pollution with ammonia, carbon oxide and nitrous oxide.
Prophenoloxidase system and its role in shrimp immune responses against major pathogens.
Amparyup, Piti; Charoensapsri, Walaiporn; Tassanakajon, Anchalee
2013-04-01
The global shrimp industry still faces various serious disease-related problems that are mainly caused by pathogenic bacteria and viruses. Understanding the host defense mechanisms is likely to be beneficial in designing and implementing effective strategies to solve the current and future pathogen-related problems. Melanization, which is performed by phenoloxidase (PO) and controlled by the prophenoloxidase (proPO) activation cascade, plays an important role in the invertebrate immune system in allowing a rapid response to pathogen infection. The activation of the proPO system, by the specific recognition of microorganisms by pattern-recognition proteins (PRPs), triggers a serine proteinase cascade, eventually leading to the cleavage of the inactive proPO to the active PO that functions to produce the melanin and toxic reactive intermediates against invading pathogens. This review highlights the recent discoveries of the critical roles of the proPO system in the shrimp immune responses against major pathogens, and emphasizes the functional characterizations of four major groups of genes and proteins in the proPO cascade in penaeid shrimp, that is the PRPs, serine proteinases, proPO and inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xiao, Yibei; Luo, Min; Hayes, Robert P; Kim, Jonathan; Ng, Sherwin; Ding, Fang; Liao, Maofu; Ke, Ailong
2017-06-29
Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Huang, Chi-Fang; Chao, Hsuan-Yi; Chang, Hsun-Hao; Lin, Xi-Zhang
2016-01-01
Based on the characteristics of cancer cells that cannot survive in an environment with temperature over 42 °C, a magnetic induction heating system for cancer treatment is developed in this work. First, the methods and analyses for designing the multi-cascaded coils magnetic induction hyperthermia system are proposed, such as internal impedance measurement of power generator, impedance matching of coils, and analysis of the system. Besides, characteristics of the system are simulated by a full-wave package for engineering optimization. Furthermore, by considering the safety factor of patients, a two-sectional needle is designed for hyperthermia. Finally, this system is employed to test the liver of swine in ex-vivo experiments, and through Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay, the feasibility of this system is verified.
Gradients in Catostomid assemblages along a reservoir cascade
Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.
2017-01-01
Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions
Honeywell Cascade Distiller System Performance Testing Interim Results
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargusingh, Miriam
2014-01-01
The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. The Cascade Distillation System (CDS) is a vacuum rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. The CDS was previously under development through Honeywell and NASA. In 2009, an assessment was performed to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. Based on the results of this testing, an expert panel concluded that the CDS showed adequate development maturity, TRL-4, together with the best product water quality and competitive weight and power estimates to warrant further development. The Advanced Exploration Systems (AES) Water Recovery Project (WRP) worked to address weaknesses identified by The Panel; namely bearing design and heat pump power efficiency. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades. The CDS will also have been challenged with ISS analog waste streams and a subset of those being considered for Exploration architectures. This paper details interim results of the AES WRP CDS performance testing.
Exploration of two-enzyme coupled catalysis system using scanning electrochemical microscopy.
Wu, Zeng-Qiang; Jia, Wen-Zhi; Wang, Kang; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua
2012-12-18
In biological metabolism, a given metabolic process usually occurs via a group of enzymes working together in sequential pathways. To explore the metabolism mechanism requires the understanding of the multienzyme coupled catalysis systems. In this paper, an approach has been proposed to study the kinetics of a two-enzyme coupled reaction using SECM combining numerical simulations. Acetylcholine esterase and choline oxidase are immobilized on cysteamine self-assembled monolayers on tip and substrate gold electrodes of SECM via electrostatic interactions, respectively. The reaction kinetics of this two-enzyme coupled system upon various separation distance precisely regulated by SECM are measured. An overall apparent Michaelis-Menten constant of this enzyme cascade is thus measured as 2.97 mM at an optimal tip-substrate gap distance of 18 μm. Then, a kinetic model of this enzyme cascade is established for evaluating the kinetic parameters of individual enzyme by using the finite element method. The simulated results demonstrate the choline oxidase catalytic reaction is the rate determining step of this enzyme cascade. The Michaelis-Menten constant of acetylcholine esterase is evaluated as 1.8 mM. This study offers a promising approach to exploring mechanism of other two-enzyme coupled reactions in biological system and would promote the development of biosensors and enzyme-based logic systems.
Supersonic Stall Flutter of High Speed Fans. [in turbofan engines
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Stevens, W.; Jutras, R.
1981-01-01
An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.
Proposal for Monitoring Within the Centrifuge Cascades of Uranium Enrichment Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, David R.
2017-04-01
Safeguards are technical measures implemented by the International Atomic Energy Agency (IAEA) to independently verify that nuclear material is not diverted from peaceful purposes to weapons (IAEA, 2017a). Safeguards implemented at uranium enrichment facilities (facilities hereafter) include enrichment monitors (IAEA, 2011). Figure 1 shows a diagram of how a facility could be monitored. The use of a system for monitoring within centrifuge cascades is proposed.
Optimizing spread dynamics on graphs by message passing
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.
2013-09-01
Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).
Fast gas spectroscopy using pulsed quantum cascade lasers
NASA Astrophysics Data System (ADS)
Beyer, T.; Braun, M.; Lambrecht, A.
2003-03-01
Laser spectroscopy has found many industrial applications, e.g., control of automotive exhaust and process monitoring. The midinfrared region is of special interest because it has stronger absorption lines compared to the near infrared (NIR). However, in the NIR high quality reliable laser sources, detectors, and passive optical components are available. A quantum cascade laser could change this situation if fundamental advantages can be exploited with compact and reliable systems. It will be shown that, using pulsed lasers and available fast detectors, lower residual sensitivity levels than in corresponding NIR systems can be achieved. The stability is sufficient for industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-02-13
A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.
Discontinuous Transition from Direct to Inverse Cascade in Three-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Sahoo, Ganapati; Alexakis, Alexandros; Biferale, Luca
2017-04-01
Inviscid invariants of flow equations are crucial in determining the direction of the turbulent energy cascade. In this work we investigate a variant of the three-dimensional Navier-Stokes equations that shares exactly the same ideal invariants (energy and helicity) and the same symmetries (under rotations, reflections, and scale transforms) as the original equations. It is demonstrated that the examined system displays a change in the direction of the energy cascade when varying the value of a free parameter which controls the relative weights of the triadic interactions between different helical Fourier modes. The transition from a forward to inverse cascade is shown to occur at a critical point in a discontinuous manner with diverging fluctuations close to criticality. Our work thus supports the observation that purely isotropic and three-dimensional flow configurations can support inverse energy transfer when interactions are altered and that inside all turbulent flows there is a competition among forward and backward transfer mechanisms which might lead to multiple energy-containing turbulent states.
Xiao, Bailu; Hang, Lijun; Mei, Jun; ...
2014-09-04
This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less
A cascade feedback control approach for hypnosis.
Puebla, Hector; Alvarez-Ramírez, José
2005-10-01
This article studies the problem of controlling the drug administration during an anesthesia process, where muscle relaxation, analgesia, and hypnosis are regulated by means of monitored administration of specific drugs. On the basis of a seventh-order nonlinear pharmacokinetic-pharmacodynamic representation of the hypnosis process dynamics, a cascade (master/slave) feedback control structure for controlling the bispectral index (BIS) is proposed. The master controller compares the measured BIS with its reference value to provide the expired isoflurane concentration reference to the slave controller. In turn, the slave controller manipulates the anesthetic isoflurane concentration entering the anesthetic system to achieve the reference from the master controller. The advantage of the proposed cascade control structure with respect to its noncascade counterpart is that the former provides operation protection against BIS measurement failures. In fact, under a BIS measurement fault, the master control feedback is broken and the slave controller operates under a safe reference value. Extensive numerical simulations are used to illustrate the functioning of the proposed cascade control structure.
Mechanism of foreign DNA selection in a bacterial adaptive immune system
Sashital, Dipali G.; Wiedenheft, Blake; Doudna, Jennifer A.
2012-01-01
Summary In bacterial and archaeal CRISPR immune pathways, DNA sequences from invading bacteriophage or plasmids are integrated into CRISPR loci within the host genome, conferring immunity against subsequent infections. The ribonucleoprotein complex Cascade utilizes RNAs generated from these loci to target complementary “non-self” DNA sequences for destruction, while avoiding binding to “self” sequences within the CRISPR locus. Here we show that CasA, the largest protein subunit of Cascade, is required for non-self target recognition and binding. Combining a 2.3 Å crystal structure of CasA with cryo-EM structures of Cascade, we have identified a loop that is required for viral defense. This loop contacts a conserved 3-base pair motif that is required for non-self target selection. Our data suggest a model in which the CasA loop scans DNA for this short motif prior to target destabilization and binding, maximizing the efficiency of DNA surveillance by Cascade. PMID:22521690
Multiple roles of the coagulation protease cascade during virus infection.
Antoniak, Silvio; Mackman, Nigel
2014-04-24
The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.
Contagion on complex networks with persuasion
NASA Astrophysics Data System (ADS)
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-03-01
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
Contagion on complex networks with persuasion
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-01-01
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense. PMID:27029498
Contagion on complex networks with persuasion.
Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu
2016-03-31
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
Degree-of-Freedom Strengthened Cascade Array for DOD-DOA Estimation in MIMO Array Systems.
Yao, Bobin; Dong, Zhi; Zhang, Weile; Wang, Wei; Wu, Qisheng
2018-05-14
In spatial spectrum estimation, difference co-array can provide extra degrees-of-freedom (DOFs) for promoting parameter identifiability and parameter estimation accuracy. For the sake of acquiring as more DOFs as possible with a given number of physical sensors, we herein design a novel sensor array geometry named cascade array. This structure is generated by systematically connecting a uniform linear array (ULA) and a non-uniform linear array, and can provide more DOFs than some exist array structures but less than the upper-bound indicated by minimum redundant array (MRA). We further apply this cascade array into multiple input multiple output (MIMO) array systems, and propose a novel joint direction of departure (DOD) and direction of arrival (DOA) estimation algorithm, which is based on a reduced-dimensional weighted subspace fitting technique. The algorithm is angle auto-paired and computationally efficient. Theoretical analysis and numerical simulations prove the advantages and effectiveness of the proposed array structure and the related algorithm.
Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter
2011-09-01
We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.
NASA Astrophysics Data System (ADS)
Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter
2011-09-01
We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.
NASA Astrophysics Data System (ADS)
Qin, Zhongzhong; Cao, Leiming; Jing, Jietai
2015-05-01
Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.
Cell-free metabolic engineering: production of chemicals by minimized reaction cascades.
Guterl, Jan-Karl; Garbe, Daniel; Carsten, Jörg; Steffler, Fabian; Sommer, Bettina; Reiße, Steven; Philipp, Anja; Haack, Martina; Rühmann, Broder; Koltermann, Andre; Kettling, Ulrich; Brück, Thomas; Sieber, Volker
2012-11-01
The limited supply of fossil resources demands the development of renewable alternatives to petroleum-based products. Here, biobased higher alcohols such as isobutanol are versatile platform molecules for the synthesis of chemical commodities and fuels. Currently, their fermentation-based production is limited by the low tolerance of microbial production systems to the end products and also by the low substrate flux into cell metabolism. We developed an innovative cell-free approach, utilizing an artificial minimized glycolytic reaction cascade that only requires one single coenzyme. Using this toolbox the cell-free production of ethanol and isobutanol from glucose was achieved. We also confirmed that these streamlined cascades functioned under conditions at which microbial production would have ceased. Our system can be extended to an array of industrially-relevant molecules. Application of solvent-tolerant biocatalysts potentially allows for high product yields, which significantly simplifies downstream product recovery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Slow relaxation of cascade-induced defects in Fe
Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...
2015-02-17
On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Zhongzhong; Cao, Leiming; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn
2015-05-25
Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiportmore » nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.« less
A high-density remote reference magnetic variation profile in the Pacific northwest of North America
Hermance, J.F.; Lusi, S.; Slocum, W.; Neumann, G.A.; Green, A.W.
1989-01-01
During the summer of 1985, as part of the EMSLAB Project, Brown University conducted a detailed magnetic variation study of the Oregon Coast Range and Cascades volcanic system along an E-W profile in central Oregon. Comprised of a sequence of 75 remote reference magnetic variation (MV) stations spaced 3-4 km apart, the profile stretched for 225 km from Newport, on the Oregon coast, across the Coast Range, the Willamette Valley, and the High Cascades to a point ??? 50 km east of Santiam Pass. At all of the MV stations, data were collected for short periods (16-100 s), and at 17 of these stations data were also obtained at longer periods (100-1600 s). Data were monitored with a three-component ring core fluxgate magnetometer (Nanotesla), and were recorded with a microcomputer (DEC PDP 11/73) based data acquisition system. A 2-D generalized inversion of the magnetic transfer coefficients over the period range of 16-1600 s indicates four distinct conductors. First, we see the coast effect caused by a large sedimentary wedge offshore. Second, we see the effect of currents flowing in the conductive sediments of the Willamette Valley. Our inversion suggests that the Willamette Valley consists of two electrically distinct features, due perhaps to a horst-like structure imprinted on the valley sediments. Next we note an electric current system centered beneath the High Cascades. This latter feature may be associated with a sediment-filled graben beneath Santiam Pass as suggested by some of the gravity and MT results reported to date. Finally, we detect the presence of a deep conductor at mid-crustal depths which laterally extends westward from beneath the Basin and Range Province, and terminates beneath the western Cascades. One view of this last result is that it appears that modern Basin and Range structure is being imprinted on pre-existing Cascade structure. ?? 1989.
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargusingh, Miriam J.
2015-01-01
The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.
Heat cascading regenerative sorption heat pump
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
1995-01-01
A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.
NASA Astrophysics Data System (ADS)
Fan, Xiang
2017-10-01
Concerns central to understanding turbulence and transport include: 1) Dynamics of dual cascades in EM turbulence; 2) Understanding `negative viscosity phenomena' in drift-ZF systems; 3) The physics of blobby turbulence (re: SOL). Here, we present a study of a simple model - that of Cahn-Hilliard Navier-Stokes (CHNS) Turbulence - which sheds important new light on these issues. The CHNS equations describe the motion of binary fluid undergoing a second order phase transition and separation called spinodal decomposition. The CHNS system and 2D MHD are analogous, as they both contain a vorticity equation and a ``diffusion'' equation. The CHNS system differs from 2D MHD by the appearance of negative diffusivity, and a nonlinear dissipative flux. An analogue of the Alfven wave exists in the 2D CHNS system. DNS shows that mean square concentration spectrum Hkψ scales as k - 7 / 3 in the elastic range. This suggests an inverse cascade of Hψ . However, the kinetic energy spectrum EkK scales as k-3 , as in the direct enstrophy cascade range for a 2D fluid (not MHD!). The resolution is that the feedback of capillarity acts only at blob interfaces. Thus, as blob merger progresses, the packing fraction of interfaces decreases, thus explaining the weakened surface tension feedback and the outcome for EkK. We also examine the evolution of scalar concentration in a single eddy in the Cahn-Hilliard system. This extends the classic problem of flux expulsion in 2D MHD. The simulation results show that a target pattern is formed. Target pattern is a meta stable state, since the band merger process continues on a time scale exponentially long relative to the eddy turnover time. Band merger resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.
Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters
Roy, Dibyendu
2013-01-01
We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782
The Use of Multi-Reactor Cascade Plasma Electrolysis for Linear Alkylbenzene Sulfonate Degradation
NASA Astrophysics Data System (ADS)
Saksono, Nelson; Ibrahim; Zainah; Budikania, Trisutanti
2018-03-01
Plasma electrolysis is a method that can produce large amounts of hydroxyl radicals to degrade organic waste. The purpose of this study is to improve the effectiveness of Linear alkylbenzene sulfonate (LAS) degradation by using multi-reactor cascade plasma electrolysis. The reactor which operated in circulation system, using 3 reactors series flow and 6 L of LAS with initial concentration of 100 ppm. The results show that the LAS degradation can be improved multi-reactor cascade plasma electrolysis. The greatest LAS degradation is achieved up to 81.91% with energy consumption of 2227.34 kJ/mmol that is obtained during 120 minutes by using 600 Volt, 0.03 M of KOH, and 0.5 cm of the anode depth.
Sato, Takuya; Watanabe, Katsutoshi
2014-07-01
Resource subsidies often weaken trophic cascades in recipient communities via consumers' functional response to the subsidies. Consumer populations are commonly stage-structured and may respond to the subsidies differently among the stages yet less is known about how this might impact the subsidy effects on the strength of trophic cascades in recipient systems. We show here, using a large-scale field experiment, that the stage structure of a recipient consumer would dampen the effects of terrestrial invertebrate subsidies on the strength of trophic cascade in streams. When a high input rate of the terrestrial invertebrates was available, both large and small fish stages switched their diet to the terrestrial subsidy, which weakened the trophic cascade in streams. However, when the input rate of the terrestrial invertebrates was at a moderate level, the terrestrial subsidy did not weaken the trophic cascade. This discrepancy was likely due to small fish stages being competitively excluded from feeding on the subsidy by larger stages of fish and primarily foraging on benthic invertebrates under the moderate input level. Although previous studies using single fish stages have clearly demonstrated that the terrestrial invertebrate input equivalent to our moderate input rate weakened the trophic cascade in streams, this subsidy effect might be overestimated given small fish stage may not switch their diet to the subsidy under competition with large fish stage. Given the ubiquity of consumer stage structure and interaction among consumer stages, the effects we saw might be widespread in nature, requiring future studies that explicitly involve consumer's stage structure into community ecology. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Gimbel, Sarah; Voss, Joachim; Mercer, Mary Anne; Zierler, Brenda; Gloyd, Stephen; Coutinho, Maria de Joana; Floriano, Florencia; Cuembelo, Maria de Fatima; Einberg, Jennifer; Sherr, Kenneth
2014-10-21
The objective of the prevention of Mother-to-Child Transmission (pMTCT) cascade analysis tool is to provide frontline health managers at the facility level with the means to rapidly, independently and quantitatively track patient flows through the pMTCT cascade, and readily identify priority areas for clinic-level improvement interventions. Over a period of six months, five experienced maternal-child health managers and researchers iteratively adapted and tested this systems analysis tool for pMTCT services. They prioritized components of the pMTCT cascade for inclusion, disseminated multiple versions to 27 health managers and piloted it in five facilities. Process mapping techniques were used to chart PMTCT cascade steps in these five facilities, to document antenatal care attendance, HIV testing and counseling, provision of prophylactic anti-retrovirals, safe delivery, safe infant feeding, infant follow-up including HIV testing, and family planning, in order to obtain site-specific knowledge of service delivery. Seven pMTCT cascade steps were included in the Excel-based final tool. Prevalence calculations were incorporated as sub-headings under relevant steps. Cells not requiring data inputs were locked, wording was simplified and stepwise drop-offs and maximization functions were included at key steps along the cascade. While the drop off function allows health workers to rapidly assess how many patients were lost at each step, the maximization function details the additional people served if only one step improves to 100% capacity while others stay constant. Our experience suggests that adaptation of a cascade analysis tool for facility-level pMTCT services is feasible and appropriate as a starting point for discussions of where to implement improvement strategies. The resulting tool facilitates the engagement of frontline health workers and managers who fill out, interpret, apply the tool, and then follow up with quality improvement activities. Research on adoption, interpretation, and sustainability of this pMTCT cascade analysis tool by frontline health managers is needed. ClinicalTrials.gov NCT02023658, December 9, 2013.
Rai, Ashutosh Kumar; Dubey, Ashutosh Prakash; Kumar, Santosh; Dutta, Debashis; Mishra, Mukti Nath; Singh, Bhupendra Narain; Tripathi, Anil Kumar
2016-11-01
Carotenoids constitute an important component of the defense system against photooxidative stress in bacteria. In Azospirillum brasilense Sp7, a nonphotosynthetic rhizobacterium, carotenoid synthesis is controlled by a pair of extracytoplasmic function sigma factors (RpoEs) and their cognate zinc-binding anti-sigma factors (ChrRs). Its genome harbors two copies of the gene encoding geranylgeranyl pyrophosphate synthase (CrtE), the first critical step in the carotenoid biosynthetic pathway in bacteria. Inactivation of each of two crtE paralogs found in A. brasilense caused reduction in carotenoid content, suggesting their involvement in carotenoid synthesis. However, the effect of crtE1 deletion was more pronounced than that of crtE2 deletion. Out of the five paralogs of rpoH in A. brasilense, overexpression of rpoH1 and rpoH2 enhanced carotenoid synthesis. Promoters of crtE2 and rpoH2 were found to be dependent on RpoH2 and RpoE1, respectively. Using a two-plasmid system in Escherichia coli, we have shown that the crtE2 gene of A. brasilense Sp7 is regulated by two cascades of sigma factors: one consisting of RpoE1and RpoH2 and the other consisting of RpoE2 and RpoH1. In addition, expression of crtE1 was upregulated indirectly by RpoE1 and RpoE2. This study shows, for the first time in any carotenoid-producing bacterium, that the regulation of carotenoid biosynthetic pathway involves a network of multiple cascades of alternative sigma factors. Carotenoids play a very important role in coping with photooxidative stress in prokaryotes and eukaryotes. Although extracytoplasmic function (ECF) sigma factors are known to directly regulate the expression of carotenoid biosynthetic genes in bacteria, regulation of carotenoid biosynthesis by one or multiple cascades of sigma factors had not been reported. This study provides the first evidence of the involvement of multiple cascades of sigma factors in the regulation of carotenoid synthesis in any bacterium by showing the regulation of a gene encoding geranylgeranyl pyrophosphate synthase (crtE2) by RpoE1→RpoH2→CrtE2 and RpoE2→RpoH1→CrtE2 cascades in A. brasilense It also provides an insight into existence of an additional cascade or cascades regulating expression of another paralog of crtE. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Rai, Ashutosh Kumar; Dubey, Ashutosh Prakash; Kumar, Santosh; Dutta, Debashis; Mishra, Mukti Nath; Singh, Bhupendra Narain
2016-01-01
ABSTRACT Carotenoids constitute an important component of the defense system against photooxidative stress in bacteria. In Azospirillum brasilense Sp7, a nonphotosynthetic rhizobacterium, carotenoid synthesis is controlled by a pair of extracytoplasmic function sigma factors (RpoEs) and their cognate zinc-binding anti-sigma factors (ChrRs). Its genome harbors two copies of the gene encoding geranylgeranyl pyrophosphate synthase (CrtE), the first critical step in the carotenoid biosynthetic pathway in bacteria. Inactivation of each of two crtE paralogs found in A. brasilense caused reduction in carotenoid content, suggesting their involvement in carotenoid synthesis. However, the effect of crtE1 deletion was more pronounced than that of crtE2 deletion. Out of the five paralogs of rpoH in A. brasilense, overexpression of rpoH1 and rpoH2 enhanced carotenoid synthesis. Promoters of crtE2 and rpoH2 were found to be dependent on RpoH2 and RpoE1, respectively. Using a two-plasmid system in Escherichia coli, we have shown that the crtE2 gene of A. brasilense Sp7 is regulated by two cascades of sigma factors: one consisting of RpoE1and RpoH2 and the other consisting of RpoE2 and RpoH1. In addition, expression of crtE1 was upregulated indirectly by RpoE1 and RpoE2. This study shows, for the first time in any carotenoid-producing bacterium, that the regulation of carotenoid biosynthetic pathway involves a network of multiple cascades of alternative sigma factors. IMPORTANCE Carotenoids play a very important role in coping with photooxidative stress in prokaryotes and eukaryotes. Although extracytoplasmic function (ECF) sigma factors are known to directly regulate the expression of carotenoid biosynthetic genes in bacteria, regulation of carotenoid biosynthesis by one or multiple cascades of sigma factors had not been reported. This study provides the first evidence of the involvement of multiple cascades of sigma factors in the regulation of carotenoid synthesis in any bacterium by showing the regulation of a gene encoding geranylgeranyl pyrophosphate synthase (crtE2) by RpoE1→RpoH2→CrtE2 and RpoE2→RpoH1→CrtE2 cascades in A. brasilense. It also provides an insight into existence of an additional cascade or cascades regulating expression of another paralog of crtE. PMID:27551017
Determinants of cell-to-cell variability in protein kinase signaling.
Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan
2013-01-01
Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.
Orbach, Ron; Willner, Bilha; Willner, Itamar
2015-03-11
This feature article addresses the implementation of catalytic nucleic acids as functional units for the construction of logic gates and computing circuits, and discusses the future applications of these systems. The assembly of computational modules composed of DNAzymes has led to the operation of a universal set of logic gates, to field programmable logic gates and computing circuits, to the development of multiplexers/demultiplexers, and to full-adder systems. Also, DNAzyme cascades operating as logic gates and computing circuits were demonstrated. DNAzyme logic systems find important practical applications. These include the use of DNAzyme-based systems for sensing and multiplexed analyses, for the development of controlled release and drug delivery systems, for regulating intracellular biosynthetic pathways, and for the programmed synthesis and operation of cascades.
Haber, Noah; Tanser, Frank; Bor, Jacob; Naidu, Kevindra; Mutevedzi, Tinofa; Herbst, Kobus; Porter, Kholoud; Pillay, Deenan; Bärnighausen, Till
2017-05-01
Standard approaches to estimation of losses in the HIV cascade of care are typically cross-sectional and do not include the population stages before linkage to clinical care. We used indiviual-level longitudinal cascade data, transition by transition, including population stages, both to identify the health-system losses in the cascade and to show the differences in inference between standard methods and the longitudinal approach. We used non-parametric survival analysis to estimate a longitudinal HIV care cascade for a large population of people with HIV residing in rural KwaZulu-Natal, South Africa. We linked data from a longitudinal population health surveillance (which is maintained by the Africa Health Research Institute) with patient records from the local public-sector HIV treatment programme (contained in an electronic clinical HIV treatment and care database, ARTemis). We followed up all people who had been newly detected as having HIV between Jan 1, 2006, and Dec 31, 2011, across six cascade stages: three population stages (first positive HIV test, HIV status knowledge, and linkage to care) and three clinical stages (eligibility for antiretroviral therapy [ART], initiation of ART, and therapeutic response). We compared our estimates to cross-sectional cascades in the same population. We estimated the cumulative incidence of reaching a particular cascade stage at a specific time with Kaplan-Meier survival analysis. Our population consisted of 5205 individuals with HIV who were followed up for 24 031 person-years. We recorded 598 deaths. 4539 individuals gained knowledge of their positive HIV status, 2818 were linked to care, 2151 became eligible for ART, 1839 began ART, and 1456 had successful responses to therapy. We used Kaplan-Meier survival analysis to adjust for censorship due to the end of data collection, and found that 8 years after testing positive in the population health surveillance, 16% had died. Among living patients, 82% knew their HIV status, 45% were linked to care, 39% were eligible for ART, 35% initiated ART, and 33% had reached therapeutic response. Median times to transition for these cascade stages were 52 months, 52 months, 20 months, 3 months, and 9 months, respectively. Compared with the population stages in the cascade, the transitions across the clinical stages were fast. Over calendar time, rates of linkage to care have decreased and patients presenting for the first time for care were, on average, healthier. HIV programmes should focus on linkage to care as the most important bottleneck in the cascade. Cascade estimation should be longitudinal rather than cross-sectional and start with the population stages preceding clinical care. Wellcome Trust, PEPFAR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gao, Pengfei; Wu, Shuke; Praveen, Prashant; Loh, Kai-Chee; Li, Zhi
2017-03-01
Biotransformation is a green and useful tool for sustainable and selective chemical synthesis. However, it often suffers from the toxicity and inhibition from organic substrates or products. Here, we established a hollow fiber membrane bioreactor (HFMB)-based aqueous/organic biphasic system, for the first time, to enhance the productivity of a cascade biotransformation with strong substrate toxicity and inhibition. The enantioselective trans-dihydroxylation of styrene to (S)-1-phenyl-1,2-ethanediol, catalyzed by Escherichia coli (SSP1) coexpressing styrene monooxygenase and an epoxide hydrolase, was performed in HFMB with organic solvent in the shell side and aqueous cell suspension in the lumen side. Various organic solvents were investigated, and n-hexadecane was found as the best for the HFMB-based biphasic system. Comparing to other reported biphasic systems assisted by HFMB, our system not only shield much of the substrate toxicity but also deflate the product recovery burden in downstream processing as the majority of styrene stayed in organic phase while the diol product mostly remained in the aqueous phase. The established HFMB-based biphasic system enhanced the production titer to 143 mM, being 16-fold higher than the aqueous system and 1.6-fold higher than the traditional dispersive partitioning biphase system. Furthermore, the combination of biphasic system with HFMB prevents the foaming and emulsification, thus reducing the burden in downstream purification. HFMB-based biphasic system could serve as a suitable platform for enhancing the productivity of single-step or cascade biotransformation with toxic substrates to produce useful and valuable chemicals.
High-resolution terahertz inline digital holography based on quantum cascade laser
NASA Astrophysics Data System (ADS)
Deng, Qinghua; Li, Weihua; Wang, Xuemin; Li, Zeyu; Huang, Haochong; Shen, Changle; Zhan, Zhiqiang; Zou, Ruijiao; Jiang, Tao; Wu, Weidong
2017-11-01
A key requirement to put terahertz (THz) imaging systems into applications is high resolution. Based on a self-developed THz quantum cascade laser (QCL), we demonstrate a THz inline digital holography imaging system with high lateral resolution. In our case, the lateral resolution of this holography imaging system is pushed to about 70 μm, which is close to the intrinsic resolution limit of this system. To the best of our knowledge, this is much smaller than what has been reported up to now. This is attributed to a series of improvements, such as shortening the QCL wavelength, increasing Nx and Ny by the synthetic aperture method, smoothing the source beam profile, and diminishing vibration due to the cryorefrigeration device. This kind of holography system with a resolution smaller than 100 μm opens the door for many imaging experiments. It will turn the THz imaging systems into applications.
NASA Astrophysics Data System (ADS)
Fryirs, K.
2010-12-01
Fluvial systems are key elements that drive Earth surface change because they convey most of the global fluxes of water and sediment from land to oceans. Fluvial fluxes of water and sediment also drive a significant proportion of the terrestrial biochemical cycling of carbon, nutrients and pollutants. Understanding the internal dynamics of the sediment cascade is therefore critical to forecasting how environmental change, whether driven by extrinsic climate change, or intrinsic human-disturbance, might affect biochemical fluxes. To understand the internal dynamics of sediment flux requires a framework that can incorporate the various processes involved in the movement of sediment from the source area through the basin system to the outlet, and can take account of spatial variability within the system and the timeframes over which these processes operate. Traditionally a sediment budget approach has been used to quantify the sediment being supplied, transported and stored in various parts of catchments. In more recent years, a more sophisticated approach to analysis of catchment linkages and (dis)connectivity has been developed that incorporates both spatial and temporal variability in the operation of the sediment cascade. This framework is based on an understanding of longitudinal, lateral and vertical linkages in sediment flux in catchments, and where blockages occur to disrupt these linkages. These blockages have been termed buffers, barriers and blankets (Fryirs et al 2007). Depending on the position of these blockages, and their sediment residence time, various parts of catchment may be actively contributing sediment to the catchment sediment cascade and be switched on, or inactive and switched off. The degree of spatial connectivity determines the effective catchment area. The breaching capacity of buffers, barriers and blankets determines the effective timescale over which certain parts of a catchment are switched on. The sediment residence time and thresholds of stability dictate the timeframe over which certain parts of catchments are actively contributing sediment to the cascade. The manifestation of geomorphic change, and response times to disturbance can be modeled within such a framework. The notion that certain sediment sources and transport mechanisms may be switched on or switched off under various climate change scenarios can also be examined using this framework. Fryirs, K., Brierley, G. J., Preston, N. J. and Kasai, M. 2007. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70, 49-67
Cascading Policies Provide Fault Tolerance for Pervasive Clinical Communications.
Williams, Rose; Jalan, Srikant; Stern, Edie; Lussier, Yves A
2005-03-21
We implemented an end-to-end notification system that pushed urgent clinical laboratory results to Blackberry 7510 devices over the Nextel cellular network. We designed our system to use user roles and notification policies to abstract and execute clinical notification procedures. We anticipated some problems with dropped and non-delivered messages when the device was out-of-network, however, we did not expect the same problems in other situations like device reconnection to the network. We addressed these problems by creating cascading "fault tolerance" policies to drive notification escalation when messages timed-out or delivery failed. This paper describes our experience in providing an adaptable, fault tolerant pervasive notification system for delivering secure, critical, time-sensitive patient laboratory results.
An optical system to transform the output beam of a quantum cascade laser to be uniform
NASA Astrophysics Data System (ADS)
Jacobson, Jordan M.
Quantum cascade lasers (QCLs) are a candidate for calibration sources in space-based remote sensing applications. However, the output beam from a QCL has some characteris- tics that are undesirable in a calibration source. The output beam from a QCL is polarized, both temporally and spatially coherent, and has a non-uniform bivariate Gaussian prole. These characteristics need to be mitigated before QCLs can be used as calibration sources. This study presents the design and implementation of an optical system that manipulates the output beam from a QCL so that it is spatially and angularly uniform with reduced coherence and polarization. (85 pages).
External-cavity beam combining of 4-channel quantum cascade lasers
NASA Astrophysics Data System (ADS)
Zhao, Yue; Zhang, Jin-Chuan; Zhou, Yu-Hong; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2017-09-01
We demonstrate an external-cavity (EC) beam combining of 4-channel quantum cascade lasers (QCLs) with an output coupler which makes different QCL beams propagating coaxially. A beam combining efficiency of 35% (up to 75% near threshold) is obtained with a beam quality M2 of 5.5. A peak power of 0.64 W is achieved at a wavelength of 4.7 μm. The differences of spot characteristic between coupled and uncoupled are also showed in this letter. The QCLs in this EC system do not have heat crosstalk so that the system can be used for high power beam combining of QCLs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi
Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing,more » Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.« less
Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang
2018-06-01
The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.
Enzyme cascades activated on topologically programmed DNA scaffolds
NASA Astrophysics Data System (ADS)
Wilner, Ofer I.; Weizmann, Yossi; Gill, Ron; Lioubashevski, Oleg; Freeman, Ronit; Willner, Itamar
2009-04-01
The ability of DNA to self-assemble into one-, two- and three-dimensional nanostructures, combined with the precision that is now possible when positioning nanoparticles or proteins on DNA scaffolds, provide a promising approach for the self-organization of composite nanostructures. Predicting and controlling the functions that emerge in self-organized biomolecular nanostructures is a major challenge in systems biology, and although a number of innovative examples have been reported, the emergent properties of systems in which enzymes are coupled together have not been fully explored. Here, we report the self-assembly of a DNA scaffold made of DNA strips that include `hinges' to which biomolecules can be tethered. We attach either two enzymes or a cofactor-enzyme pair to the scaffold, and show that enzyme cascades or cofactor-mediated biocatalysis can proceed effectively; similar processes are not observed in diffusion-controlled homogeneous mixtures of the same components. Furthermore, because the relative position of the two enzymes or the cofactor-enzyme pair is determined by the topology of the DNA scaffold, it is possible to control the reactivity of the system through the design of the individual DNA strips. This method could lead to the self-organization of complex multi-enzyme cascades.
CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.
Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj
2018-01-01
Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.
Systems theory and cascades in developmental psychopathology.
Cox, Martha J; Mills-Koonce, Roger; Propper, Cathi; Gariépy, Jean-Louis
2010-08-01
In the wake of prominent theoreticians in developmental science, whose contributions we review in this article, many developmental psychologists came to endorse a systems approach to understanding how the individual, as it develops, establishes functional relationships to social ecological contexts that from birth to school entry rapidly increase in complexity. The concept of developmental cascade has been introduced in this context to describe lawful processes by which antecedent conditions may be related with varying probabilities to specified outcomes. These are understood as processes by which function at one level or in one domain of behavior affect the organization of competency in later developing domains of general adaptation. Here we propose a developmental sequence by which the developing child acquires regulative capacities that are key to adjustment to a society that demands considerable control of emotional and cognitive functions early in life. We report empirical evidence showing that the acquisition of regulative capacities may be understood as a cascade of shifts in control parameters induced by the progressive integration of biological, transactional, and socioaffective systems over development. We conclude by suggesting how the developmental process may be accessed for effective intervention in populations deemed "at risk" for later problems of psychosocial adjustment.
One-dimensional optical wave turbulence: Experiment and theory
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
2012-05-01
We present a review of the latest developments in one-dimensional (1D) optical wave turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent waves leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-wave interaction, and that this is the basic mechanism of nonlinear wave coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two wave limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-wave limit corresponds to waves with wave numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when wave numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by wave turbulence (WT) theory, and conclude that the cascades are induced by a six-wave resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-wave systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-wave system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low wave numbers becomes strong. Subsequently, due to the focusing nature of the nonlinearity, this leads to modulational instability (MI) of the condensate and the formation of solitons. Finally, with the aid of the probability density function (PDF) description of WT theory, we explain the coexistence and mutual interactions between solitons and the weakly nonlinear random wave background in the form of a wave turbulence life cycle (WTLC).
Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems
Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise
2015-01-01
In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.
NASA Technical Reports Server (NTRS)
Seasholtz, R. G.
1977-01-01
A laser Doppler velocimeter (LDV) built for use in the Lewis Research Center's turbine stator cascade facilities is described. The signal processing and self contained data processing are based on a computing counter. A procedure is given for mode matching the laser to the probe volume. An analysis is presented of biasing errors that were observed in turbulent flow when the mean flow was not normal to the fringes.
Shi, Y. B.; Mei, S.; Jonasson, O.; ...
2016-12-28
Quantum cascade lasers (QCLs) are high-power coherent light sources in the midinfrared and terahertz parts of the electromagnetic spectrum. They are devices in which the electronic and lattice systems are far from equilibrium, strongly coupled to one another, and the problem bridges disparate spatial scales. Here, we present our ongoing work on the multiphysics and multiscale simulation of far-from-equilibrium transport of charge and heat in midinfrared QCLs.
MacNamara, Shev; Baker, Ruth E; Maini, Philip K
2011-09-21
Recently, signalling gradients in cascades of two-state reaction-diffusion systems were described as a model for understanding key biochemical mechanisms that underlie development and differentiation processes in the Drosophila embryo. Diffusion-trapping at the exterior of the cell membrane triggers the mitogen-activated protein kinase (MAPK) cascade to relay an appropriate signal from the membrane to the inner part of the cytosol, whereupon another diffusion-trapping mechanism involving the nucleus reads out this signal to trigger appropriate changes in gene expression. Proposed mathematical models exhibit equilibrium distributions consistent with experimental measurements of key spatial gradients in these processes. A significant property of the formulation is that the signal is assumed to be relayed from one system to the next in a linear fashion. However, the MAPK cascade often exhibits nonlinear dose-response properties and the final remark of Berezhkovskii et al. (2009) is that this assumption remains an important property to be tested experimentally, perhaps via a new quantitative assay across multiple genetic backgrounds. In anticipation of the need to be able to sensibly interpret data from such experiments, here we provide a complementary analysis that recovers existing formulae as a special case but is also capable of handling nonlinear functional forms. Predictions of linear and nonlinear signal relays and, in particular, graded and ultrasensitive MAPK kinetics, are compared. Copyright © 2011 Elsevier Ltd. All rights reserved.
Forest-rainfall cascades buffer against drought across the Amazon
NASA Astrophysics Data System (ADS)
Staal, Arie; Tuinenburg, Obbe A.; Bosmans, Joyce H. C.; Holmgren, Milena; van Nes, Egbert H.; Scheffer, Marten; Zemp, Delphine Clara; Dekker, Stefan C.
2018-06-01
Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired. Forests in the southern half of the basin contribute most to the stability of other forests in this way, whereas forests in the south-western Amazon are particularly dependent on transpired-water subsidies. These forest-rainfall cascades buffer the effects of drought and reveal a mechanism by which deforestation can compromise the resilience of the Amazon forest system in the face of future climatic extremes.
Thermochemical nonequilibrium in atomic hydrogen at elevated temperatures
NASA Technical Reports Server (NTRS)
Scott, R. K.
1972-01-01
A numerical study of the nonequilibrium flow of atomic hydrogen in a cascade arc was performed to obtain insight into the physics of the hydrogen cascade arc. A rigorous mathematical model of the flow problem was formulated, incorporating the important nonequilibrium transport phenomena and atomic processes which occur in atomic hydrogen. Realistic boundary conditions, including consideration of the wall electrostatic sheath phenomenon, were included in the model. The governing equations of the asymptotic region of the cascade arc were obtained by writing conservation of mass and energy equations for the electron subgas, an energy conservation equation for heavy particles and an equation of state. Finite-difference operators for variable grid spacing were applied to the governing equations and the resulting system of strongly coupled, stiff equations were solved numerically by the Newton-Raphson method.
Cascade Helps JPL Explore the Solar System
NASA Technical Reports Server (NTRS)
Burke, G. R.
1996-01-01
At Jet Propulsion Laboratory (JPL), we are involved with the unmanned exploration of the solar system. Unmanned probes observe the planet surfaces using radar and optical cameras to take a variety of measurements.
NASA Astrophysics Data System (ADS)
Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.
2018-03-01
This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.
Gene regulation by the VirS/VirR system in Clostridium perfringens.
Ohtani, Kaori
2016-10-01
The Gram-positive anaerobic spore-forming rod, Clostridium perfringens, is widely distributed in nature, especially in soil and the gastrointestinal tract of humans and animals. C. perfringens produces many secreted toxins and enzymes that are involved in the pathogenesis of gas gangrane and gastrointestinal disease. One of the most important systems regulating the production of these proteins in C. perfringens is the VirS/VirR-VR-RNA signal transduction cascade. The Agr system also important for the regulation of toxin genes. VirS appears to sense the peptide produced by the Agr (accessory gene regulator) system. The VirS/VirR-VR-RNA cascade controls the pathogenesis of C. perfringens infections by regulating virulence related genes and genes for energy metabolism. These systems are important for the host cell-induced upregulation of toxin production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modulation transfer function cascade model for a sampled IR imaging system.
de Luca, L; Cardone, G
1991-05-01
The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.
Endogenous versus Exogenous Origins of Crises
NASA Astrophysics Data System (ADS)
Sornette, Didier
Are large biological extinctions such as the Cretaceous/Tertiary KT boundary due to a meteorite, extreme volcanic activity or self-organized critical extinction cascades? Are commercial successes due to a progressive reputation cascade or the result of a well orchestrated advertisement? Determining the chain of causality for Xevents in complex systems requires disentangling interwoven exogenous and endogenous contributions with either no clear signature or too many signatures. Here, I review several efforts carried out with collaborators which suggest a general strategy for understanding the organizations of several complex systems under the dual effect of endogenous and exogenous fluctuations. The studied examples are: internet download shocks, book sale shocks, social shocks, financial volatility shocks, and financial crashes. Simple models are offered to quantitatively relate the endogenous organization to the exogenous response of the system. Suggestions for applications of these ideas to many other systems are offered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Ouliang; Gary, S. Peter; Wang, Joseph, E-mail: ouliang@usc.edu, E-mail: pgary@lanl.gov, E-mail: josephjw@usc.edu
2015-02-20
We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inversemore » cascade regime is much weaker than that in the forward cascade regime.« less
NASA Technical Reports Server (NTRS)
Bergsten, D. E.; Fleeter, S.
1983-01-01
To be of quantitative value to the designer and analyst, it is necessary to experimentally verify the flow modeling and the numerics inherent in calculation codes being developed to predict the three dimensional flow through turbomachine blade rows. This experimental verification requires that predicted flow fields be correlated with three dimensional data obtained in experiments which model the fundamental phenomena existing in the flow passages of modern turbomachines. The Purdue Annular Cascade Facility was designed specifically to provide these required three dimensional data. The overall three dimensional aerodynamic performance of an instrumented classical airfoil cascade was determined over a range of incidence angle values. This was accomplished utilizing a fully automated exit flow data acquisition and analysis system. The mean wake data, acquired at two downstream axial locations, were analyzed to determine the effect of incidence angle, the three dimensionality of the cascade exit flow field, and the similarity of the wake profiles. The hub, mean, and tip chordwise airfoil surface static pressure distributions determined at each incidence angle are correlated with predictions from the MERIDL and TSONIC computer codes.
Jets or vortices - what flows are generated by an inverse turbulent cascade?
NASA Astrophysics Data System (ADS)
Frishman, Anna; Laurie, Jason; Falkovich, Gregory
An inverse cascade-energy transfer to progressively larger scales - is a salient feature of two-dimensional turbulence. If the cascade reaches the system scale, it creates a coherent flow expected to have the largest available scale and conform with the symmetries of the domain. In a doubly periodic rectangle, the mean flow with zero total momentum was therefore believed to be unidirectional, with two jets along the short side; while for an aspect ratio close to unity, a vortex dipole was expected. Using direct numerical simulations, we show that in fact neither the box symmetry is respected nor the largest scale is realized: the flow is never purely unidirectional since the inverse cascade produces coherent vortices, whose number and relative motion are determined by the aspect ratio. This spontaneous symmetry breaking is closely related to the hierarchy of averaging times. Long-time averaging restores translational invariance due to vortex wandering along one direction, and gives jets whose profile, however, can be deduced neither from the largest-available-scale argument, nor from the often employed maximum-entropy principle or quasi-linear approximation.
Jets or vortices—What flows are generated by an inverse turbulent cascade?
NASA Astrophysics Data System (ADS)
Frishman, Anna; Laurie, Jason; Falkovich, Gregory
2017-03-01
An inverse cascade, energy transfer to progressively larger scales, is a salient feature of two-dimensional turbulence. If the cascade reaches the system scale, it creates a coherent flow expected to have the largest available scale and conform with the symmetries of the domain. In a doubly periodic rectangle, the mean flow with zero total momentum was therefore believed to be unidirectional, with two jets along the short side; while for an aspect ratio close to unity, a vortex dipole is expected. Using direct numerical simulations, we show that in fact neither is the box symmetry respected nor the largest scale realized: the flow is never purely unidirectional since the inverse cascade produces coherent vortices, whose number and relative motion are determined by the aspect ratio. This spontaneous symmetry breaking is closely related to the hierarchy of averaging times. Long-time averaging restores translational invariance due to vortex wandering along one direction, and gives jets whose profile, however, can neither be deduced from the largest-available-scale argument, nor from the often employed maximum-entropy principle or quasilinear approximation.
Postural Control During Cascade Ball Juggling: Effects of Expertise and Base of Support.
Rodrigues, Sérgio T; Polastri, Paula F; Gotardi, Gisele C; Aguiar, Stefane A; Mesaros, Marcelo R; Pestana, Mayara B; Barbieri, Fabio A
2016-08-01
Cascade ball juggling is a complex perceptual motor skill which requires efficient postural stabilization. The aim of this study was to investigate effects of experience (expert and intermediate groups) and foot distance (wide and narrow stances) on body sway of jugglers during three ball cascade juggling. A total of 10 expert jugglers and 11 intermediate jugglers participated in this study. Participants stood barefoot on the force plate (some participants wore a gaze tracking system), with feet maintained in wide and narrow conditions and performed three 40-seconds trials of the three-ball juggling task. Dependent variables were sway mean velocity, amplitude, mean frequency, number of ball cycles, fixation number, mean duration and its variability, and area of gaze displacement. Two-way analyses of variance with factors for group and condition were conducted. Experts' body sway was characterized by lower velocity and smaller amplitude as compared to intermediate group. Interestingly, the more challenging (narrow) basis of support caused significant attenuation in body sway only for the intermediate group. These data suggest that expertise in cascade juggling was associated with refined postural control. © The Author(s) 2016.
Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie
2015-01-01
Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.
Overload cascading failure on complex networks with heterogeneous load redistribution
NASA Astrophysics Data System (ADS)
Hou, Yueyi; Xing, Xiaoyun; Li, Menghui; Zeng, An; Wang, Yougui
2017-09-01
Many real systems including the Internet, power-grid and financial networks experience rare but large overload cascading failures triggered by small initial shocks. Many models on complex networks have been developed to investigate this phenomenon. Most of these models are based on the load redistribution process and assume that the load on a failed node shifts to nearby nodes in the networks either evenly or according to the load distribution rule before the cascade. Inspired by the fact that real power-grid tends to place the excess load on the nodes with high remaining capacities, we study a heterogeneous load redistribution mechanism in a simplified sandpile model in this paper. We find that weak heterogeneity in load redistribution can effectively mitigate the cascade while strong heterogeneity in load redistribution may even enlarge the size of the final failure. With a parameter θ to control the degree of the redistribution heterogeneity, we identify a rather robust optimal θ∗ = 1. Finally, we find that θ∗ tends to shift to a larger value if the initial sand distribution is homogeneous.
Cusp Guns for Helical-Waveguide Gyro-TWTs of a High-Gain High-Power W-Band Amplifier Cascade
NASA Astrophysics Data System (ADS)
Manuilov, V. N.; Samsonov, S. V.; Mishakin, S. V.; Klimov, A. V.; Leshcheva, K. A.
2018-02-01
The evaluation, design, and simulations of two different electron guns generating the beams for W-band second cyclotron harmonic gyro-TWTs forming a high-gain powerful amplifier cascade are presented. The optimum configurations of the systems creating nearly axis-encircling electron beams having velocity pitch-factor up to 1.5, voltage/current of 40 kV/0.5 A, and 100 kV/13 A with acceptable velocity spreads have been found and are presented.
2009-06-25
51F-37-097 (29 July-6 Aug 1985) --- The snow capped peaks of the Oregon Cascades are clearly seen. From bottom to top we see Mount Hood, Mount Jefferson, and the Three Sisters volcanos. The Columbia River is at the bottom. The Deschutes River system and canyon, the scene of railroad wars nearly a century ago, is at the left side. The Cascades make a very distinct rain shadow between the moist forests to the right and the semiario lands to the east (left) of these great mountains.
2006-04-14
the EOPM (~1 mW) was amplified by injection locking of a high power diode laser and further amplified to ~300 mW with a semiconductor optical ...The spectra of 8 GHz CW phase modulated signals in cascaded injection locking system from (a) master laser ; (b) the first slave, and (c) the second...cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients, Spatial
Gold(I)-Catalyzed Cascade Cyclization of Allenyl Epoxides
Tarselli, Michael A.; Lucas Zuccarello, J
2009-01-01
Cationic gold(I) phosphite catalysts activate allenes for epoxide cascade reactions. The system is tolerant of numerous functional groups (sulfones, esters, ethers, sulfonamides) and proceeds at room temperature in dichloromethane. The cyclization pathway is sensitive to the substitution pattern of the epoxide, and the backbone structure of the A-ring. It is capable of producing medium-ring ethers, fused 6-5 bicyclic, and linked pyran-furan structures. The resulting cycloisomers are reminiscent of structures found in numerous polyether natural products. PMID:19588972
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Ian; Hiskens, Ian; Linderoth, Jeffrey
Building on models of electrical power systems, and on powerful mathematical techniques including optimization, model predictive control, and simluation, this project investigated important issues related to the stable operation of power grids. A topic of particular focus was cascading failures of the power grid: simulation, quantification, mitigation, and control. We also analyzed the vulnerability of networks to component failures, and the design of networks that are responsive to and robust to such failures. Numerous other related topics were investigated, including energy hubs and cascading stall of induction machines
Molecular dispersion spectroscopy based on Fabry-Perot quantum cascade lasers.
Sterczewski, Lukasz A; Westberg, Jonas; Wysocki, Gerard
2017-01-15
Two Fabry-Perot quantum cascade lasers are used in a differential dual comb configuration to perform rapidly swept dispersion spectroscopy of low-pressure nitrous oxide with <1 ms acquisition time. Active feedback control of the laser injection current enables simultaneous wavelength modulation of both lasers at kilohertz rates. The system demonstrates similar performance in both absorption and dispersion spectroscopy modes and achieves a noise-equivalent absorption figure of merit in the low 10-4/Hz range.
Integrated heterodyne terahertz transceiver
Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM
2009-06-23
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
Gao, Jinting; Liu, Yaqing; Lin, Xiaodong; Deng, Jiankang; Yin, Jinjin; Wang, Shuo
2017-10-25
Wiring a series of simple logic gates to process complex data is significantly important and a large challenge for untraditional molecular computing systems. The programmable property of DNA endows its powerful application in molecular computing. In our investigation, it was found that DNA exhibits excellent peroxidase-like activity in a colorimetric system of TMB/H 2 O 2 /Hemin (TMB, 3,3', 5,5'-Tetramethylbenzidine) in the presence of K + and Cu 2+ , which is significantly inhibited by the addition of an antioxidant. According to the modulated catalytic activity of this DNA-based catalyst, three cascade logic gates including AND-OR-INH (INHIBIT), AND-INH and OR-INH were successfully constructed. Interestingly, by only modulating the concentration of Cu 2+ , a majority logic gate with a single-vote veto function was realized following the same threshold value as that of the cascade logic gates. The strategy is quite straightforward and versatile and provides an instructive method for constructing multiple logic gates on a simple platform to implement complex molecular computing.
Defect structures induced by high-energy displacement cascades in γ uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Beeler, Benjamin; Deo, Chaitanya
Displacement cascade simulations were conducted for the c uranium system based on molecular dynamics. A recently developed modified embedded atom method (MEAM) potential was employed to replicate the atomic interactions while an embedded atom method (EAM) potential was adopted to help characterize the defect structures induced by the displacement cascades. The atomic displacement process was studied by providing primary knock-on atoms (PKAs) with kinetic energies from 1 keV to 50 keV. The influence of the PKA incident direction was examined. The defect structures were analyzed after the systems were fully relaxed. The states of the self-interstitial atoms (SIAs) were categorizedmore » into various types of dumbbells, the crowdion, and the octahedral interstitial. The voids were determined to have a polyhedral shape with {110} facets. The size distribution of the voids was also obtained. The results of this study not only expand the knowledge of the microstructural evolution in irradiated c uranium, but also provide valuable references for the radiation-induced defects in uranium alloy fuels.« less
Two-dimensional turbulent convection
NASA Astrophysics Data System (ADS)
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Cascading biomethane energy systems for sustainable green gas production in a circular economy.
Wall, David M; McDonagh, Shane; Murphy, Jerry D
2017-11-01
Biomethane is a flexible energy vector that can be used as a renewable fuel for both the heat and transport sectors. Recent EU legislation encourages the production and use of advanced, third generation biofuels with improved sustainability for future energy systems. The integration of technologies such as anaerobic digestion, gasification, and power to gas, along with advanced feedstocks such as algae will be at the forefront in meeting future sustainability criteria and achieving a green gas supply for the gas grid. This paper explores the relevant pathways in which an integrated biomethane industry could potentially materialise and identifies and discusses the latest biotechnological advances in the production of renewable gas. Three scenarios of cascading biomethane systems are developed. Copyright © 2017 Elsevier Ltd. All rights reserved.
John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.
2003-01-01
The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs. The morning of the trip will examine the White River altered area, which includes high-level alteration related to a large, early Miocene magmatic-hydrothermal system exposed about 10 km east of Enumclaw, Washington. Here, vuggy silica alteration is being quarried for silica and advanced argillic alteration has been prospected for alunite. Clay-filled fractures and sulfide-rich, fine-grained sedimentary rocks of hydrothermal origin locally are enriched in precious metals. Many hydrothermal features common in high-sulfidation gold-silver deposits and in advanced argillic alteration zones overlying porphyry copper deposits (for example, Gustafson and Hunt, 1975; Hedenquist and others, 2000; Sillitoe, 2000) are exposed, although no economic base or precious metal mineralized rock has been discovered to date. The afternoon will be spent examining two exposures of the Osceola Mudflow along the White River. The Osceola Mudflow contains abundant clasts of altered Quaternary rocks from Mount Rainier that show various types of hydrothermal alteration and hydrothermal features. The mudflow matrix contains abundant hydrothermal clay minerals that added cohesiveness to the debris flow and helped allow it to travel much farther down valley than other, noncohesive debris flows from Mount Rainier (Crandell, 1971; Vallance and Scott, 1997). The White River altered area is the subject of ongoing studies by geoscientists from Weyerhaeuser Company and the U.S. Geological Survey (USGS). The generalized descriptions of the geology, geophysics, alteration, and mineralization presented here represent the preliminary results of this study (Ashley and others, 2003). Additional field, geochemical, geochronologic, and geophysical studies are underway. The Osceola Mudflow and other Holocene debris flows from Mount Rainier also are the subject of ongoing studies by the USGS (for example, Breit and others, 2003; John and others, 2003; Plumlee and others, 2003, Sisson and others, 2003; Vallance and others, 2003). Studies of hydrothermal alteration in the Osceola Mudflow are being used to better understand fossil hydrothermal systems on Mount Rainier and potential hazards associated with this alteration.
Alemnji, George; Fonjungo, Peter; Van Der Pol, Barbara; Peter, Trevor; Kantor, Rami; Nkengasong, John
2014-05-01
Strong laboratory services and systems are critical for delivering timely and quality health services that are vital to reduce patient attrition in the HIV treatment and prevention cascade. However, challenges exist in ensuring effective laboratory health systems strengthening and linkages. In particular, linkages and referrals between laboratory testing and other services need to be considered in the context of an integrated health system that includes prevention, treatment, and strategic information. Key components of laboratory health systems that are essential for effective linkages include an adequate workforce, appropriate point-of-care (POC) technology, available financing, supply chain management systems, and quality systems improvement, including accreditation. In this review, we highlight weaknesses of and gaps between laboratory testing and other program services. We propose a model for strengthening these systems to ensure effective linkages of laboratory services for improved access and retention in care of HIV/AIDS patients, particularly in low- and middle-income countries.
Cascades in interdependent flow networks
NASA Astrophysics Data System (ADS)
Scala, Antonio; De Sanctis Lucentini, Pier Giorgio; Caldarelli, Guido; D'Agostino, Gregorio
2016-06-01
In this manuscript, we investigate the abrupt breakdown behavior of coupled distribution grids under load growth. This scenario mimics the ever-increasing customer demand and the foreseen introduction of energy hubs interconnecting the different energy vectors. We extend an analytical model of cascading behavior due to line overloads to the case of interdependent networks and find evidence of first order transitions due to the long-range nature of the flows. Our results indicate that the foreseen increase in the couplings between the grids has two competing effects: on the one hand, it increases the safety region where grids can operate without withstanding systemic failures; on the other hand, it increases the possibility of a joint systems' failure.
NASA Astrophysics Data System (ADS)
Butschek, Lorenz; Hugger, Stefan; Jarvis, Jan; Haertelt, Marko; Merten, André; Schwarzenberg, Markus; Grahmann, Jan; Stothard, David; Warden, Matthew; Carson, Christopher; Macarthur, John; Fuchs, Frank; Ostendorf, Ralf; Wagner, Joachim
2018-01-01
We report on mid-IR spectroscopic measurements performed with rapidly tunable external cavity quantum cascade lasers (EC-QCLs). Fast wavelength tuning in the external cavity is realized by a microoptoelectromechanical systems (MOEMS) grating oscillating at a resonance frequency of about 1 kHz with a deflection amplitude of up to 10 deg. The entire spectral range of the broadband QCL can therefore be covered in just 500 μs, paving the way for real-time spectroscopy in the mid-IR region. In addition to its use in spectroscopic measurements conducted in backscattering and transmission geometry, the MOEMS-based laser source is characterized regarding pulse intensity noise, wavelength reproducibility, and spectral resolution.
Cascading failures in interdependent networks with finite functional components
NASA Astrophysics Data System (ADS)
Di Muro, M. A.; Buldyrev, S. V.; Stanley, H. E.; Braunstein, L. A.
2016-10-01
We present a cascading failure model of two interdependent networks in which functional nodes belong to components of size greater than or equal to s . We find theoretically and via simulation that in complex networks with random dependency links the transition is first order for s ≥3 and continuous for s =2 . We also study interdependent lattices with a distance constraint r in the dependency links and find that increasing r moves the system from a regime without a phase transition to one with a second-order transition. As r continues to increase, the system collapses in a first-order transition. Each regime is associated with a different structure of domain formation of functional nodes.
Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.
2015-12-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred
2016-05-01
Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.
Ecosystem services classification: A systems ecology perspective of the cascade framework.
La Notte, Alessandra; D'Amato, Dalia; Mäkinen, Hanna; Paracchini, Maria Luisa; Liquete, Camino; Egoh, Benis; Geneletti, Davide; Crossman, Neville D
2017-03-01
Ecosystem services research faces several challenges stemming from the plurality of interpretations of classifications and terminologies. In this paper we identify two main challenges with current ecosystem services classification systems: i) the inconsistency across concepts, terminology and definitions, and; ii) the mix up of processes and end-state benefits, or flows and assets. Although different ecosystem service definitions and interpretations can be valuable for enriching the research landscape, it is necessary to address the existing ambiguity to improve comparability among ecosystem-service-based approaches. Using the cascade framework as a reference, and Systems Ecology as a theoretical underpinning, we aim to address the ambiguity across typologies. The cascade framework links ecological processes with elements of human well-being following a pattern similar to a production chain. Systems Ecology is a long-established discipline which provides insight into complex relationships between people and the environment. We present a refreshed conceptualization of ecosystem services which can support ecosystem service assessment techniques and measurement. We combine the notions of biomass, information and interaction from system ecology, with the ecosystem services conceptualization to improve definitions and clarify terminology. We argue that ecosystem services should be defined as the interactions (i.e. processes) of the ecosystem that produce a change in human well-being, while ecosystem components or goods, i.e. countable as biomass units, are only proxies in the assessment of such changes. Furthermore, Systems Ecology can support a re-interpretation of the ecosystem services conceptualization and related applied research, where more emphasis is needed on the underpinning complexity of the ecological system.
Lu, Li-Min; Zhang, Xiao-Bing; Kong, Rong-Mei; Yang, Bin; Tan, Weihong
2011-08-03
Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.
Nguyen, Le Truc; Yang, Kun-Lin
2017-05-01
Cascade reactions involved unstable intermediates are often encountered in biological systems. In this study, we developed combined cross-linked enzyme aggregates (combi-CLEA) to catalyze a cascade reaction which involves unstable hydrogen peroxide as an intermediate. The combi-CLEA contains two enzymes̶ glucose oxidase (GOx) and horseradish peroxidase (HRP) which are cross-linked together as solid aggregates. The first enzyme GOx catalyzes the oxidation of glucose and produces hydrogen peroxide, which is used by the second enzyme HRP to oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The apparent reaction rate of the cascade reaction reaches 10.5±0.5μM/min when the enzyme ratio is 150:1 (GOx:HRP). Interestingly, even in the presence of catalase, an enzyme that quickly decomposes hydrogen peroxide, the reaction rate only decreases by 18.7% to 8.3±0.3μM/min. This result suggests that the intermediate hydrogen peroxide is not decomposed by catalase due to a short diffusion distance between GOx and HRP in the combi-CLEA. Scanning electron microscopy images suggest that combi-CLEA particles are hollow spheres and have an average diameter around 250nm. Because of their size, combi-CLEA particles can be entrapped inside a nylon membrane for detecting glucose by using the cascade reaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Critical Transitions in Thin Layer Turbulence
NASA Astrophysics Data System (ADS)
Benavides, Santiago; Alexakis, Alexandros
2017-11-01
We investigate a model of thin layer turbulence that follows the evolution of the two-dimensional motions u2 D (x , y) along the horizontal directions (x , y) coupled to a single Fourier mode along the vertical direction (z) of the form uq (x , y , z) = [vx (x , y) sin (qz) ,vy (x , y) sin (qz) ,vz (x , y) cos (qz) ] , reducing thus the system to two coupled, two-dimensional equations. Its reduced dimensionality allows a thorough investigation of the transition from a forward to an inverse cascade of energy as the thickness of the layer H = π / q is varied.Starting from a thick layer and reducing its thickness it is shown that two critical heights are met (i) one for which the forward unidirectional cascade (similar to three-dimensional turbulence) transitions to a bidirectional cascade transferring energy to both small and large scales and (ii) one for which the bidirectional cascade transitions to a unidirectional inverse cascade when the layer becomes very thin (similar to two-dimensional turbulence). The two critical heights are shown to have different properties close to criticality that we are able to analyze with numerical simulations for a wide range of Reynolds numbers and aspect ratios. This work was Granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan Luqi; Das, Sumanta
2011-06-15
We study the polarization-dependent second-order correlation of a pair of photons emitted in a four-level radiative cascade driven by an external field. It is found that the quantum correlations of the emitted photons, degraded by the energy splitting of the intermediate levels in the radiative cascade, can be efficiently revived by a far-detuned external field. The physics of this revival is linked to an induced Stark shift and the formation of dressed states in the system by the nonresonant external field. Furthermore, we investigated the competition between the effect of the coherent external field and incoherent dephasing of the intermediatemore » levels. We find that the degradation of quantum correlations due to the incoherent dephasing can be contained for small dephasing with the external field. We also studied the nonlocality of the correlations by evaluating the Bell inequality in the linear polarization basis for the radiative cascade. We find that the Bell parameter decreases rapidly with increase in the intermediate-level energy splitting or incoherent dephasing rate to the extent that there is no violation. However, the presence of an external field leads to control over the degrading mechanisms and preservation of nonlocal correlation among the photons. This in turn can induce a violation of Bell's inequality in the radiative cascade for arbitrary intermediate-level splitting and small incoherent dephasing.« less
New Challenges in Computational Thermal Hydraulics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadigaroglu, George; Lakehal, Djamel
New needs and opportunities drive the development of novel computational methods for the design and safety analysis of light water reactors (LWRs). Some new methods are likely to be three dimensional. Coupling is expected between system codes, computational fluid dynamics (CFD) modules, and cascades of computations at scales ranging from the macro- or system scale to the micro- or turbulence scales, with the various levels continuously exchanging information back and forth. The ISP-42/PANDA and the international SETH project provide opportunities for testing applications of single-phase CFD methods to LWR safety problems. Although industrial single-phase CFD applications are commonplace, computational multifluidmore » dynamics is still under development. However, first applications are appearing; the state of the art and its potential uses are discussed. The case study of condensation of steam/air mixtures injected from a downward-facing vent into a pool of water is a perfect illustration of a simulation cascade: At the top of the hierarchy of scales, system behavior can be modeled with a system code; at the central level, the volume-of-fluid method can be applied to predict large-scale bubbling behavior; at the bottom of the cascade, direct-contact condensation can be treated with direct numerical simulation, in which turbulent flow (in both the gas and the liquid), interfacial dynamics, and heat/mass transfer are directly simulated without resorting to models.« less
Interference activity of a minimal Type I CRISPR–Cas system from Shewanella putrefaciens
Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart
2015-01-01
Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. PMID:26350210
Cascading Failures and Recovery in Networks of Networks
NASA Astrophysics Data System (ADS)
Havlin, Shlomo
Network science have been focused on the properties of a single isolated network that does not interact or depends on other networks. In reality, many real-networks, such as power grids, transportation and communication infrastructures interact and depend on other networks. I will present a framework for studying the vulnerability and the recovery of networks of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes like certain locations play a role in two networks -multiplex. This may happen recursively and can lead to a cascade of failures and to a sudden fragmentation of the system. I will present analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. I will show, that the general theory has many novel features that are not present in the classical network theory. When recovery of components is possible global spontaneous recovery of the networks and hysteresis phenomena occur and the theory suggests an optimal repairing strategy of system of systems. I will also show that interdependent networks embedded in space are significantly more vulnerable compared to non embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences.Thus, analyzing data of real network of networks is highly required to understand the system vulnerability. DTRA, ONR, Israel Science Foundation.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.; Yetter, Jeffrey A.
2000-01-01
The NASA Langley Configuration Aerodynamics Branch has conducted an experimental investigation to study the static performance of innovative thrust reverser concepts applicable to high-bypass-ratio turbofan engines. Testing was conducted on a conventional separate-flow exhaust system configuration, a conventional cascade thrust reverser configuration, and six innovative thrust reverser configurations. The innovative thrust reverser configurations consisted of a cascade thrust reverser with porous fan-duct blocker, a blockerless thrust reverser, two core-mounted target thrust reversers, a multi-door crocodile thrust reverser, and a wing-mounted thrust reverser. Each of the innovative thrust reverser concepts offer potential weight savings and/or design simplifications over a conventional cascade thrust reverser design. Testing was conducted in the Jet-Exit Test Facility at NASA Langley Research Center using a 7.9%-scale exhaust system model with a fan-to-core bypass ratio of approximately 9.0. All tests were conducted with no external flow and cold, high-pressure air was used to simulate core and fan exhaust flows. Results show that the innovative thrust reverser concepts achieved thrust reverser performance levels which, when taking into account the potential for system simplification and reduced weight, may make them competitive with, or potentially more cost effective than current state-of-the-art thrust reverser systems.
Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region
Siler, Drew; Zhang, Yingqi; Spycher, Nicolas F.; Dobson, Patrick; McClain, James S.; Gasperikova, Erika; Zierenberg, Robert A.; Schiffman, Peter; Ferguson, Colin; Fowler, Andrew; Cantwell, Carolyn
2017-01-01
The region surrounding the Modoc Plateau, encompassing parts of northeastern California, southern Oregon, and northwestern Nevada, lies at an intersection between two tectonic provinces; the Basin and Range province and the Cascade volcanic arc. Both of these provinces have substantial geothermal resource base and resource potential. Geothermal systems with evidence of magmatic heat, associated with Cascade arc magmatism, typify the western side of the region. Systems on the eastern side of the region appear to be fault controlled with heat derived from high crustal heat flow, both of which are typical of the Basin and Range. As it has the potential to host Cascade arc-type geothermal resources, Basin and Range-type geothermal resources, and/or resources with characteristics of both provinces, and because there is relatively little current development, the Modoc Plateau region represents an intriguing potential for undiscovered geothermal resources. It remains unclear however, what specific set(s) of characteristics are diagnostic of Modoc-type geothermal systems and how or if those characteristics are distinct from Basin and Range-type or Cascade arc-type geothermal systems. In order to evaluate the potential for undiscovered geothermal resources in the Modoc area, we integrate a wide variety of existing data in order to evaluate geothermal resource potential and exploration risk utilizing ‘play-fairway’ analysis. We consider that the requisite parameters for hydrothermal circulation are: 1) heat that is sufficient to drive circulation, and 2) permeability that is sufficient to allow for fluid circulation in the subsurface. We synthesize data that indicate the extent and distribution of these parameters throughout the Modoc region. ‘Fuzzy logic’ is used to incorporate expert opinion into the utility of each dataset as an indicator of either heat or permeability, and thus geothermal favorability. The results identify several geothermal prospects, areas that are highly favorable for the occurrence of both heat and permeability. These are also areas where there is sufficient data coverage, quality, and consistency that the exploration risk is relatively low. These unknown, undeveloped, and under-developed prospects are well-suited for continued exploration efforts. The results also indicate to what degree the two ‘play-types,’ i.e. Cascade arc-type or Basin and Range-type, apply to each of the geothermal prospects, a useful guide in exploration efforts.
Liu, Huijie; Li, Nianqiang; Zhao, Qingchun
2015-05-10
Optical chaos generated by chaotic lasers has been widely used in several important applications, such as chaos-based communications and high-speed random-number generators. However, these applications are susceptible to degradation by the presence of time-delay (TD) signature identified from the chaotic output. Here we propose to achieve the concealment of TD signature, along with the enhancement of chaos bandwidth, in three-cascaded vertical-cavity surface-emitting lasers (VCSELs). The cascaded system is composed of an external-cavity master VCSEL, a solitary intermediate VCSEL, and a solitary slave VCSEL. Through mapping the evolutions of TD signature and chaos bandwidth in the parameter space of the injection strength and frequency detuning, photonic generation of polarization-resolved wideband chaos with TD concealment is numerically demonstrated for wide regions of the injection parameters.
Reliability analysis in interdependent smart grid systems
NASA Astrophysics Data System (ADS)
Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong
2018-06-01
Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.
Ignaciuk, Adriana M; Sanders, Johan
2007-12-01
Due to more stringent energy and climate policies, it is expected that many traditional chemicals will be replaced by their biomass-based substitutes, bio-chemicals. These innovations, however, can influence land allocation since the demand for land dedicated to specific crops might increase. Moreover, it can have an influence on traditional agricultural production. In this paper, we use an applied general equilibrium framework, in which we include two different bio-refinery processes and incorporate so-called cascading mechanisms. The bio-refinery processes use grass, as one of the major inputs, to produce bio-nylon and propane-diol (1,3PDO) to substitute currently produced fossil fuel-based nylon and ethane-diol. We examine the impact of specific climate policies on the bioelectricity share in total electricity production, land allocation, and production quantities and prices of selected commodities. The novel technologies become competitive, with an increased stringency of climate policies. This switch, however, does not induce a higher share of bioelectricity. The cascade does stimulate the production of bioelectricity, but it induces more of a shift in inputs in the bioelectricity sector (from biomass to the cascaded bio-nylon and 1, 3PDO) than an increase in production level of bioelectricity. We conclude that dedicated biomass crops will remain the main option for bioelectricity production: the contribution of the biomass systems remains limited. Moreover, the bioelectricity sector looses a competition for land for biomass production with bio-refineries.
Design and optimization of cascaded DCG based holographic elements for spectrum-splitting PV systems
NASA Astrophysics Data System (ADS)
Wu, Yuechen; Chrysler, Benjamin; Pelaez, Silvana Ayala; Kostuk, Raymond K.
2017-09-01
In this work, the technique of designing and optimizing broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting application. Spectrum splitting photovoltaic system uses a series of single bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. DCG is a near ideal holographic material for solar applications as it can achieve high refractive index modulation, low absorption and scattering properties and long-term stability to solar exposure after sealing. In this research, a methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cut-off wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is also developed to optimize both single and two-layer cascaded holographic spectrum splitters for the best bandgap combinations of two- and three-junction SSPV systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems under the AM1.5 solar spectrum are then calculated using the detailed balance method, and shows an improvement compared with tandem structure.
Tien, Kai-Wen; Kulvatunyou, Boonserm; Jung, Kiwook; Prabhu, Vittaldas
2017-01-01
As cloud computing is increasingly adopted, the trend is to offer software functions as modular services and compose them into larger, more meaningful ones. The trend is attractive to analytical problems in the manufacturing system design and performance improvement domain because 1) finding a global optimization for the system is a complex problem; and 2) sub-problems are typically compartmentalized by the organizational structure. However, solving sub-problems by independent services can result in a sub-optimal solution at the system level. This paper investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization of loosely-coupled sub-problems, each may be modularly formulated by differing departments and be solved by modular analytical services. The result demonstrates that ATC is a promising method in that it offers system-level optimal solutions that can scale up by exploiting distributed and modular executions while allowing easier management of the problem formulation.
Cascade Distillation System Design for Safety and Mission Assurance
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.; Callahan, Michael R.
2015-01-01
Per the NASA Human Health, Life Support and Habitation System Technology Area 06 report "crewed missions venturing beyond Low-Earth Orbit (LEO) will require technologies with improved reliability, reduced mass, self-sufficiency, and minimal logistical needs as an emergency or quick-return option will not be feasible." To meet this need, the development team of the second generation Cascade Distillation System (CDS 2.0) opted a development approach that explicitely incorporate consideration of safety, mission assurance, and autonomy. The CDS 2.0 prelimnary design focused on establishing a functional baseline that meets the CDS core capabilities and performance. The critical design phase is now focused on incorporating features through a deliberative process of establishing the systems failure modes and effects, identifying mitigative strategies, and evaluating the merit of the proposed actions through analysis and test. This paper details results of this effort on the CDS 2.0 design.
Cascade Distillation System Design for Safety and Mission Assurance
NASA Technical Reports Server (NTRS)
Sarguisingh, Miriam; Callahan, Michael R.; Okon, Shira
2015-01-01
Per the NASA Human Health, Life Support and Habitation System Technology Area 06 report "crewed missions venturing beyond Low-Earth Orbit (LEO) will require technologies with improved reliability, reduced mass, self-sufficiency, and minimal logistical needs as an emergency or quick-return option will not be feasible".1 To meet this need, the development team of the second generation Cascade Distillation System (CDS 2.0) chose a development approach that explicitly incorporate consideration of safety, mission assurance, and autonomy. The CDS 2.0 preliminary design focused on establishing a functional baseline that meets the CDS core capabilities and performance. The critical design phase is now focused on incorporating features through a deliberative process of establishing the systems failure modes and effects, identifying mitigation strategies, and evaluating the merit of the proposed actions through analysis and test. This paper details results of this effort on the CDS 2.0 design.
Systemic trade risk of critical resources.
Klimek, Peter; Obersteiner, Michael; Thurner, Stefan
2015-11-01
In the wake of the 2008 financial crisis, the role of strongly interconnected markets in causing systemic instability has been increasingly acknowledged. Trade networks of commodities are susceptible to cascades of supply shocks that increase systemic trade risks and pose a threat to geopolitical stability. We show that supply risk, scarcity, and price volatility of nonfuel mineral resources are intricately connected with the structure of the worldwide trade networks spanned by these resources. At the global level, we demonstrate that the scarcity of a resource is closely related to the susceptibility of the trade network with respect to cascading shocks. At the regional level, we find that, to some extent, region-specific price volatility and supply risk can be understood by centrality measures that capture systemic trade risk. The resources associated with the highest systemic trade risk indicators are often those that are produced as by-products of major metals. We identify significant strategic shortcomings in the management of systemic trade risk, in particular in the European Union.
Systemic trade risk of critical resources
Klimek, Peter; Obersteiner, Michael; Thurner, Stefan
2015-01-01
In the wake of the 2008 financial crisis, the role of strongly interconnected markets in causing systemic instability has been increasingly acknowledged. Trade networks of commodities are susceptible to cascades of supply shocks that increase systemic trade risks and pose a threat to geopolitical stability. We show that supply risk, scarcity, and price volatility of nonfuel mineral resources are intricately connected with the structure of the worldwide trade networks spanned by these resources. At the global level, we demonstrate that the scarcity of a resource is closely related to the susceptibility of the trade network with respect to cascading shocks. At the regional level, we find that, to some extent, region-specific price volatility and supply risk can be understood by centrality measures that capture systemic trade risk. The resources associated with the highest systemic trade risk indicators are often those that are produced as by-products of major metals. We identify significant strategic shortcomings in the management of systemic trade risk, in particular in the European Union. PMID:26702431
Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J
2017-03-07
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
NASA Astrophysics Data System (ADS)
Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.
2017-03-01
High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g. ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.
Search for extended γ-ray emission around AGN with H.E.S.S. and Fermi-LAT
NASA Astrophysics Data System (ADS)
H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Atäı, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemie`re, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Malyshev, D.
2014-02-01
Context. Very-high-energy (VHE; E > 100 GeV) γ-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these γ-rays with the extragalactic background light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair-halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 were searched for using VHE γ-ray data taken with the High Energy Stereoscopic System (H.E.S.S.) and high-energy (HE; 100 MeV < E < 100 GeV) γ-ray data with the Fermi Large Area Telescope (LAT). Methods: By comparing the angular distributions of the reconstructed γ-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results: Upper limits on the extended emission around 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 are found to be at a level of a few per cent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong extra-Galactic magnetic field (EGMF) values, >10-12 G, this limits the production of pair haloes developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in MBCs, EGMF strengths in the range (0.3-3)× 10-15 G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.
Levi, Jacob; Pozniak, Anton; Heath, Katherine; Hill, Andrew
2018-04-01
In 2014, UNAIDS and partners set the 90-90-90 targets for the HIV treatment cascade. Multiple social, political and structural factors might influence progress towards these targets. We assessed how close countries and regions are to reaching these targets, and compared cascade outcomes with HIV prevalence, gross domestic product (GDP)/capita, conflict and corruption. Country-level HIV cascade data on diagnosis, ART coverage and viral suppression, from 2010 to 2016 were extracted from national reports, published papers and the www.AIDSinfoOnline database, and analysed. Weighted least-squares regression was used to assess predictors of cascade achievement: region, HIV prevalence, GDP/capita, the 2016 Corruption Perceptions Index (CPI), which is an international ranking system, and the 2016 Global Peace Index (GPI), which ranks all countries based on three main categories: societal safety, militarisation and conflict. Data were available for diagnosis for 84 countries, ART coverage for 137 countries, and viral suppression for 94 countries. Regions with the lowest ART coverage were South-east Asia and Pacific (36%), Eastern Europe and Central Asia (17%), and Middle East and North Africa (13%). Lower HIV prevalence was associated with poorer cascade results. Countries with higher GDP/capita achieved higher ART coverage ( P <0.001). Furthermore, countries with lower levels of peace and higher corruption had lower ART coverage ( P <0.001). Countries with a GPI >2.5 all had ART coverage of <40%. Only one country has reached the UNAIDS 90-90-90 targets. International comparison remains difficult due to heterogeneous data reporting. Difficulty meeting UNAIDS targets is associated with lower GDP/capita, lower HIV prevalence, higher corruption and conflict levels.
The Potential of a Cascaded TEG System for Waste Heat Usage in Railway Vehicles
NASA Astrophysics Data System (ADS)
Wilbrecht, Sebastian; Beitelschmidt, Michael
2018-02-01
This work focuses on the conceptual design and optimization of a near series prototype of a high-power thermoelectric generator system (TEG system) for diesel-electric locomotives. The replacement of the silencer in the exhaust line enables integration with already existing vehicles. However, compliance with the technical and legal frameworks and the assembly space requirements is just as important as the limited exhaust back pressure, the high power density and the low life cycle costs. A special emphasis is given to the comparison of cascaded two-stage Bi2Te3 and Mg2Si0.4Sn0.6/MnSi1.81 modules with single-stage Bi2Te3 modules, both manufactured in lead-frame technology. In addition to the numerous, partly competing boundary conditions for the use in rail vehicles, the additional degree of freedom from the cascaded thermoelectric modules (TEM) is considered. The problem is investigated by coupling one-dimensional multi-domain simulations with an optimization framework using a genetic algorithm. The achievable electrical power of the single-stage system is significantly higher, at 3.2 kW, than the performance of the two-stage system (2.5 kW). Although the efficiency of the two-stage system is 44.2% higher than the single-stage system, the overall power output is 22.8% lower. This is because the lower power density and the lower number of TEM more than compensates the better efficiency. Hence, the available installation space, and thus the power density, is a critical constraint for the design of TEG systems. Furthermore, for applications recovering exhaust gas enthalpy, the large temperature drop across the heat exchanger is characteristic and must be considered carefully within the design process.
The Potential of a Cascaded TEG System for Waste Heat Usage in Railway Vehicles
NASA Astrophysics Data System (ADS)
Wilbrecht, Sebastian; Beitelschmidt, Michael
2018-06-01
This work focuses on the conceptual design and optimization of a near series prototype of a high-power thermoelectric generator system (TEG system) for diesel-electric locomotives. The replacement of the silencer in the exhaust line enables integration with already existing vehicles. However, compliance with the technical and legal frameworks and the assembly space requirements is just as important as the limited exhaust back pressure, the high power density and the low life cycle costs. A special emphasis is given to the comparison of cascaded two-stage Bi2Te3 and Mg2Si0.4Sn0.6/MnSi1.81 modules with single-stage Bi2Te3 modules, both manufactured in lead-frame technology. In addition to the numerous, partly competing boundary conditions for the use in rail vehicles, the additional degree of freedom from the cascaded thermoelectric modules (TEM) is considered. The problem is investigated by coupling one-dimensional multi-domain simulations with an optimization framework using a genetic algorithm. The achievable electrical power of the single-stage system is significantly higher, at 3.2 kW, than the performance of the two-stage system (2.5 kW). Although the efficiency of the two-stage system is 44.2% higher than the single-stage system, the overall power output is 22.8% lower. This is because the lower power density and the lower number of TEM more than compensates the better efficiency. Hence, the available installation space, and thus the power density, is a critical constraint for the design of TEG systems. Furthermore, for applications recovering exhaust gas enthalpy, the large temperature drop across the heat exchanger is characteristic and must be considered carefully within the design process.
Komatsu, Ken; Hashimoto, Masayoshi; Ozeki, Johji; Yamaji, Yasuyuki; Maejima, Kensaku; Senshu, Hiroko; Himeno, Misako; Okano, Yukari; Kagiwada, Satoshi; Namba, Shigetou
2010-03-01
Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKalpha and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKalpha-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKalpha-MEK2 cascade. Similarly, although both SGT1 and MAPKKKalpha were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKalpha was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.
A smart phone-based pocket fall accident detection, positioning, and rescue system.
Kau, Lih-Jen; Chen, Chih-Sheng
2015-01-01
We propose in this paper a novel algorithm as well as architecture for the fall accident detection and corresponding wide area rescue system based on a smart phone and the third generation (3G) networks. To realize the fall detection algorithm, the angles acquired by the electronic compass (ecompass) and the waveform sequence of the triaxial accelerometer on the smart phone are used as the system inputs. The acquired signals are then used to generate an ordered feature sequence and then examined in a sequential manner by the proposed cascade classifier for recognition purpose. Once the corresponding feature is verified by the classifier at current state, it can proceed to next state; otherwise, the system will reset to the initial state and wait for the appearance of another feature sequence. Once a fall accident event is detected, the user's position can be acquired by the global positioning system (GPS) or the assisted GPS, and sent to the rescue center via the 3G communication network so that the user can get medical help immediately. With the proposed cascaded classification architecture, the computational burden and power consumption issue on the smart phone system can be alleviated. Moreover, as we will see in the experiment that a distinguished fall accident detection accuracy up to 92% on the sensitivity and 99.75% on the specificity can be obtained when a set of 450 test actions in nine different kinds of activities are estimated by using the proposed cascaded classifier, which justifies the superiority of the proposed algorithm.
Sensitivity-enhanced optical temperature sensor with cascaded LPFGs
NASA Astrophysics Data System (ADS)
Tsutsumi, Yasuhiro; Miyoshi, Yuji; Ohashi, Masaharu
2011-12-01
We propose a new structure of optical fiber temperature sensor with cascaded long-period fiber gratings (LPFGs) and investigate the temperature dependent loss of cascaded LFPGs. Each of the cascaded LPFGs has the same resonance wavelength with the same temperature change, because the cascaded LPFGs are made of a heat-shrinkable tube and a screw. The total resonance loss of proposed cascaded LPFGs shows higher temperature sensitivity than that of a single LPFG. The thermal coefficient of 4-cascaded LPFG also shows more than 4 times larger than that of a single one.
Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems.
Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong
2016-07-25
The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 10⁵. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications.
A 2.5 kW cascaded Schwarz converter for 20 kHz power distribution
NASA Technical Reports Server (NTRS)
Shetler, Russell E.; Stuart, Thomas A.
1989-01-01
Because it avoids the high currents in a parallel loaded capacitor, the cascaded Schwarz converter should offer better component utilization than converters with sinusoidal output voltages. The circuit is relatively easy to protect, and it provides a predictable trapezoidal voltage waveform that should be satisfactory for 20-kHz distribution systems. Analysis of the system is enhanced by plotting curves of normalized variables vs. gamma(1), where gamma(1) is proportional to the variable frequency of the first stage. Light-load operation is greatly improved by the addition of a power recycling rectifier bridge that is back biased at medium to heavy loads. Operation has been verified on a 2.5-kW circuit that uses input and output voltages in the same range as those anticipated for certain future spacecraft power systems.
Artificial Bee Colony Optimization for Short-Term Hydrothermal Scheduling
NASA Astrophysics Data System (ADS)
Basu, M.
2014-12-01
Artificial bee colony optimization is applied to determine the optimal hourly schedule of power generation in a hydrothermal system. Artificial bee colony optimization is a swarm-based algorithm inspired by the food foraging behavior of honey bees. The algorithm is tested on a multi-reservoir cascaded hydroelectric system having prohibited operating zones and thermal units with valve point loading. The ramp-rate limits of thermal generators are taken into consideration. The transmission losses are also accounted for through the use of loss coefficients. The algorithm is tested on two hydrothermal multi-reservoir cascaded hydroelectric test systems. The results of the proposed approach are compared with those of differential evolution, evolutionary programming and particle swarm optimization. From numerical results, it is found that the proposed artificial bee colony optimization based approach is able to provide better solution.
Dual-wavelength quantum cascade laser for trace gas spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jágerská, J.; Tuzson, B.; Mangold, M.
2014-10-20
We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.
Feedback stabilization of quantum cascade laser beams for stand-off applications
NASA Astrophysics Data System (ADS)
Müller, Reik; Kendziora, Christopher A.; Furstenberg, Robert
2017-05-01
Techniques which apply tunable quantum cascade lasers (QCLs) for target illumination suffer from fluctuations of the laser beam direction. This manuscript describes a method to stabilize the beam direction by using an active feedback loop. This approach corrects and stabilizes the laser pointing direction using the signal from a 4-element photo sensor as input to control an active 2 dimensional Galvo mirror system. Results are presented for measurements using known perturbations as well as actual mode hops intrinsic to external cavity QCL during wavelength tuning.
Complex delay dynamics of high power quantum cascade oscillators
NASA Astrophysics Data System (ADS)
Grillot, F.; Newell, T. C.; Gavrielides, A.; Carras, M.
2017-08-01
Quantum cascade lasers (QCL) have become the most suitable laser sources from the mid-infrared to the THz range. This work examines the effects of external feedback in different high power mid infrared QCL structures and shows that different conditions of the feedback wave can produce complex dynamics hence stabilization, destabilization into strong mode-competition or undamping nonlinear oscillations. As a dynamical system, reinjection of light back into the cavity also can also provoke apparition of chaotic oscillations, which must be avoided for a stable operation both at mid-infrared and THz wavelengths.
Synchronized Schlieren method for vortex shedding in cascade during acoustic resonance
NASA Astrophysics Data System (ADS)
Nagashima, T.; Tanida, Y.
1986-10-01
An evaluation is made of synchronized schlieren optical system methods for the simultaneous visualization of both the acoustic wave and vortex shedding phenomena encountered during acoustic resonance excited by vortex shedding from the trailing edges of cascade blades. Attention is given to the case of parallel flat plate blades in throughflow velocities of up to 100 m/s. The acoustic wavefront is found to appear in the trailing edge region and travel upstream when a pair of vortices of opposite sign are fully developed at the trailing edge.
Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.
1996-01-01
Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS and its cascade strategy and illustrates the capability of the combined design tool through the optimization of a subsonic aircraft and a high-bypass-turbofan wave-rotor-topped engine.
Default cascades in complex networks: topology and systemic risk.
Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano
2013-09-26
The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only--but substantially--when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser
NASA Astrophysics Data System (ADS)
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm-1. Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N2O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Juan; Ding, Junya; Liu, Ningwu; Yang, Guangxiang; Li, Jingsong
2018-02-01
A laser spectroscopy system based on a broadband tunable external cavity quantum cascade laser (ECQCL) and a mini quartz crystal tuning fork (QCTF) detector was developed for standoff detection of volatile organic compounds (VOCs). The self-established spectral analysis model based on multiple algorithms for quantitative and qualitative analysis of VOC components (i.e. ethanol and acetone) was detailedly investigated in both closed cell and open path configurations. A good agreement was obtained between the experimentally observed spectra and the standard reference spectra. For open path detection of VOCs, the sensor system was demonstrated at a distance of 30 m. The preliminary laboratory results show that standoff detection of VOCs at a distance of over 100 m is very promising.
Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser
NASA Astrophysics Data System (ADS)
Davis, N. M.; Hodgkinson, J.; Francis, D.; Tatam, R. P.
2016-04-01
Detection of methane at 3.3μm using a DFB Interband Cascade Laser and gold coated integrating sphere is performed. A 10cm diameter sphere with effective path length of 54.5cm was adapted for use as a gas cell. A comparison between this system and one using a 25cm path length single-pass gas cell is made using direct TDLS and methane concentrations between 0 and 1000 ppm. Initial investigations suggest a limit of detection of 1.0ppm for the integrating sphere and 2.2ppm for the single pass gas cell. The system has potential applications in challenging or industrial environments subject to high levels of vibration.
Design of a 0.13-μm CMOS cascade expandable ΣΔ modulator for multi-standard RF telecom systems
NASA Astrophysics Data System (ADS)
Morgado, Alonso; del Río, Rocío; de la Rosa, José M.
2007-05-01
This paper reports a 130-nm CMOS programmable cascade ΣΔ modulator for multi-standard wireless terminals, capable of operating on three standards: GSM, Bluetooth and UMTS. The modulator is reconfigured at both architecture- and circuit- level in order to adapt its performance to the different standards specifications with optimized power consumption. The design of the building blocks is based upon a top-down CAD methodology that combines simulation and statistical optimization at different levels of the system hierarchy. Transistor-level simulations show correct operation for all standards, featuring 13-bit, 11.3-bit and 9-bit effective resolution within 200-kHz, 1-MHz and 4-MHz bandwidth, respectively.
Crossover transition in flowing granular chains
NASA Astrophysics Data System (ADS)
Ulrich, Xialing; Fried, Eliot; Shen, Amy Q.
2009-09-01
We report on the dynamical and statistical behavior of flowing collections of granular chains confined two-dimensionally (2D) within a rotating tumbler. Experiments are conducted with systems of chains of fixed length, but various lengths are considered. The dynamics are punctuated by cascades of chains along a free-surface cascades, which drive the development of mixed porous/laminar packing arrangements in bulk. We investigate the conformation of the system, as characterized by the porosity of the flow region occupied by the chains and the mean-square end-to-end distance of the chains during flow. Both of these measures show crossover transitions from a 2D self-avoiding walk to a 2D random walk when the chain length becomes long enough to allow self-contact.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
1997-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2002-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2001-04-03
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with separate DC sources
Peng, F.Z.; Lai, J.S.
1997-06-24
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser.
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm -1 . Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N 2 O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Chhantyal-Pun, Rabi; Valavanis, Alexander; Keeley, James T; Rubino, Pierluigi; Kundu, Iman; Han, Yingjun; Dean, Paul; Li, Lianhe; Davies, A Giles; Linfield, Edmund H
2018-05-15
We demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis. By contrast, our system self-calibrates the laser frequency (i.e., with no external instrumentation) to a precision of 630 MHz (0.02%) by analyzing QCL voltage perturbations in response to optical feedback within a 0-800 mm round-trip delay line. We demonstrate methanol spectroscopy by introducing a gas cell into the feedback path and show that a limiting absorption coefficient of ∼1×10 -4 cm -1 is resolvable.
The importance of sensory integration processes for action cascading
Gohil, Krutika; Stock, Ann-Kathrin; Beste, Christian
2015-01-01
Dual tasking or action cascading is essential in everyday life and often investigated using tasks presenting stimuli in different sensory modalities. Findings obtained with multimodal tasks are often broadly generalized, but until today, it has remained unclear whether multimodal integration affects performance in action cascading or the underlying neurophysiology. To bridge this gap, we asked healthy young adults to complete a stop-change paradigm which presented different stimuli in either one or two modalities while recording behavioral and neurophysiological data. Bimodal stimulus presentation prolonged response times and affected bottom-up and top-down guided attentional processes as reflected by the P1 and N1, respectively. However, the most important effect was the modulation of response selection processes reflected by the P3 suggesting that a potentially different way of forming task goals operates during action cascading in bimodal vs. unimodal tasks. When two modalities are involved, separate task goals need to be formed while a conjoint task goal may be generated when all stimuli are presented in the same modality. On a systems level, these processes seem to be related to the modulation of activity in fronto-polar regions (BA10) as well as Broca's area (BA44). PMID:25820681
Two-stage effects of awareness cascade on epidemic spreading in multiplex networks
NASA Astrophysics Data System (ADS)
Guo, Quantong; Jiang, Xin; Lei, Yanjun; Li, Meng; Ma, Yifang; Zheng, Zhiming
2015-01-01
Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. The dynamic process with human awareness is called awareness cascade, during which individuals exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-Holthoefer et al., J. Complex Networks 1, 3 (2013), 10.1093/comnet/cnt006]. In this paper, to investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks. By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the emergence of an abrupt transition of epidemic threshold βc with the local awareness ratio α approximating 0.5 , which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that the increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated to illustrate the two-stage-like sharp transition at αc≈0.5 . The results can give us a better understanding of why some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the awareness cascading systems.
Beyond Aztec Castles: Toric Cascades in the dP 3 Quiver
NASA Astrophysics Data System (ADS)
Lai, Tri; Musiker, Gregg
2017-12-01
Given one of an infinite class of supersymmetric quiver gauge theories, string theorists can associate a corresponding toric variety (which is a Calabi-Yau 3-fold) as well as an associated combinatorial model known as a brane tiling. In combinatorial language, a brane tiling is a bipartite graph on a torus and its perfect matchings are of interest to both combinatorialists and physicists alike. A cluster algebra may also be associated to such quivers and in this paper we study the generators of this algebra, known as cluster variables, for the quiver associated to the cone over the del Pezzo surface d P 3. In particular, mutation sequences involving mutations exclusively at vertices with two in-coming arrows and two out-going arrows are referred to as toric cascades in the string theory literature. Such toric cascades give rise to interesting discrete integrable systems on the level of cluster variable dynamics. We provide an explicit algebraic formula for all cluster variables that are reachable by toric cascades as well as a combinatorial interpretation involving perfect matchings of subgraphs of the d P 3 brane tiling for these formulas in most cases.
NASA Astrophysics Data System (ADS)
Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin
2017-06-01
The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.
NASA Astrophysics Data System (ADS)
Guo, Wenzhang; Wang, Hao; Wu, Zhengping
2018-03-01
Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.
Phase-I monitoring of standard deviations in multistage linear profiles
NASA Astrophysics Data System (ADS)
Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim
2018-03-01
In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.
A cascading failure analysis tool for post processing TRANSCARE simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is a MATLAB-based tool to post process simulation results in the EPRI software TRANSCARE, for massive cascading failure analysis following severe disturbances. There are a few key modules available in this tool, including: 1. automatically creating a contingency list to run TRANSCARE simulations, including substation outages above a certain kV threshold, N-k (1, 2 or 3) generator outages and branche outages; 2. read in and analyze a CKO file of PCG definition, an initiating event list, and a CDN file; 3. post process all the simulation results saved in a CDN file and perform critical event corridor analysis; 4.more » provide a summary of TRANSCARE simulations; 5. Identify the most frequently occurring event corridors in the system; and 6. Rank the contingencies using a user defined security index to quantify consequences in terms of total load loss, total number of cascades, etc.« less
Multistage WDM access architecture employing cascaded AWGs
NASA Astrophysics Data System (ADS)
El-Nahal, F. I.; Mears, R. J.
2009-03-01
Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.
Active mode locking of quantum cascade lasers in an external ring cavity.
Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A
2016-05-05
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.
Active mode locking of quantum cascade lasers in an external ring cavity
Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.
2016-01-01
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409
Ilmi, Miftahul; Abduh, Muhammad Y; Hommes, Arne; Winkelman, Jozef G M; Hidayat, Chusnul; Heeres, Hero J
2018-01-17
Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)- water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous centrifugal contactor separator (CCCS), the latter being used for integrated reaction and liquid-liquid separation. A fatty acid butyl ester yield up to 93% was obtained in the cascade when operated in a once-through mode. The cascade was run for 8 h without operational issues. Enzyme recycling was studied by reintroduction of the water phase from the CCCS outlet to the stirred tank reactor. Product yield decreased over time to an average of 50% of the initial value, likely due to accumulation of 1-butanol in water phase, loss of enzyme due to agglomeration, and the formation of a separate enzyme layer.
NASA Astrophysics Data System (ADS)
Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik
2018-04-01
We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.
2017-01-01
Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)– water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous centrifugal contactor separator (CCCS), the latter being used for integrated reaction and liquid–liquid separation. A fatty acid butyl ester yield up to 93% was obtained in the cascade when operated in a once-through mode. The cascade was run for 8 h without operational issues. Enzyme recycling was studied by reintroduction of the water phase from the CCCS outlet to the stirred tank reactor. Product yield decreased over time to an average of 50% of the initial value, likely due to accumulation of 1-butanol in water phase, loss of enzyme due to agglomeration, and the formation of a separate enzyme layer. PMID:29398779
Fear of large carnivores causes a trophic cascade
Suraci, Justin P.; Clinchy, Michael; Dill, Lawrence M.; Roberts, Devin; Zanette, Liana Y.
2016-01-01
The fear large carnivores inspire, independent of their direct killing of prey, may itself cause cascading effects down food webs potentially critical for conserving ecosystem function, particularly by affecting large herbivores and mesocarnivores. However, the evidence of this has been repeatedly challenged because it remains experimentally untested. Here we show that experimentally manipulating fear itself in free-living mesocarnivore (raccoon) populations using month-long playbacks of large carnivore vocalizations caused just such cascading effects, reducing mesocarnivore foraging to the benefit of the mesocarnivore's prey, which in turn affected a competitor and prey of the mesocarnivore's prey. We further report that by experimentally restoring the fear of large carnivores in our study system, where most large carnivores have been extirpated, we succeeded in reversing this mesocarnivore's impacts. We suggest that our results reinforce the need to conserve large carnivores given the significant “ecosystem service” the fear of them provides. PMID:26906881
Learning and optimization with cascaded VLSI neural network building-block chips
NASA Technical Reports Server (NTRS)
Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.
1992-01-01
To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.
Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees
NASA Astrophysics Data System (ADS)
Khryashchev, V. V.; Lebedev, A. A.; Priorov, A. L.
2017-05-01
Face detection algorithm based on a cascade of ensembles of decision trees (CEDT) is presented. The new approach allows detecting faces other than the front position through the use of multiple classifiers. Each classifier is trained for a specific range of angles of the rotation head. The results showed a high rate of productivity for CEDT on images with standard size. The algorithm increases the area under the ROC-curve of 13% compared to a standard Viola-Jones face detection algorithm. Final realization of given algorithm consist of 5 different cascades for frontal/non-frontal faces. One more thing which we take from the simulation results is a low computational complexity of CEDT algorithm in comparison with standard Viola-Jones approach. This could prove important in the embedded system and mobile device industries because it can reduce the cost of hardware and make battery life longer.
Cascade control of superheated steam temperature with neuro-PID controller.
Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang
2012-11-01
In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Altszyler, Edgar; Ventura, Alejandra C.; Colman-Lerner, Alejandro; Chernomoretz, Ariel
2017-01-01
Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system’s ultrasensitivity, how a given combination of layers affects a cascade’s ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade’s ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O’Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models. PMID:28662096
NASA Astrophysics Data System (ADS)
Yamagishi, Tsukasa; Maharjan, Laxman; Akagi, Hirofumi
This paper focuses on a battery energy storage system that can be installed in a 6.6-kV power distribution system. This system comprises a combination of a modular multilevel cascade converter based on single-star bridge-cells (MMCC-SSBC) and multiple battery modules. Each battery module is connected to the dc side of each bridge-cell, where the battery modules are galvanically isolated from each other. Three-phase multilevel line-to-line voltages with extremely low voltage steps on the ac side of the converter help in solving problems related to line harmonic currents and electromagnetic interference (EMI) issues. This paper proposes a control method that allows each bridge-cell to independently adjust the battery power flowing into or out of each battery module. A three-phase energy storage system using nine nickel-metal-hydride (NiMH) battery modules, each rated at 72V and 5.5Ah, is designed, constructed, and tested to verify the viability and effectiveness of the proposed control method.
Development of an integrated CAD-FEA system for patient-specific design of spinal cages.
Zhang, Mingzheng; Pu, Fang; Xu, Liqiang; Zhang, Linlin; Liang, Hang; Li, Deyu; Wang, Yu; Fan, Yubo
2017-03-01
Spinal cages are used to create a suitable mechanical environment for interbody fusion in cases of degenerative spinal instability. Due to individual variations in bone structures and pathological conditions, patient-specific cages can provide optimal biomechanical conditions for fusion, strengthening patient recovery. Finite element analysis (FEA) is a valuable tool in the biomechanical evaluation of patient-specific cage designs, but the time- and labor-intensive process of modeling limits its clinical application. In an effort to facilitate the design and analysis of patient-specific spinal cages, an integrated CAD-FEA system (CASCaDeS, comprehensive analytical spinal cage design system) was developed. This system produces a biomechanical-based patient-specific design of spinal cages and is capable of rapid implementation of finite element modeling. By comparison with commercial software, this system was validated and proven to be both accurate and efficient. CASCaDeS can be used to design patient-specific cages with a superior biomechanical performance to commercial spinal cages.
A Multiplicative Cascade Model for High-Resolution Space-Time Downscaling of Rainfall
NASA Astrophysics Data System (ADS)
Raut, Bhupendra A.; Seed, Alan W.; Reeder, Michael J.; Jakob, Christian
2018-02-01
Distributions of rainfall with the time and space resolutions of minutes and kilometers, respectively, are often needed to drive the hydrological models used in a range of engineering, environmental, and urban design applications. The work described here is the first step in constructing a model capable of downscaling rainfall to scales of minutes and kilometers from time and space resolutions of several hours and a hundred kilometers. A multiplicative random cascade model known as the Short-Term Ensemble Prediction System is run with parameters from the radar observations at Melbourne (Australia). The orographic effects are added through multiplicative correction factor after the model is run. In the first set of model calculations, 112 significant rain events over Melbourne are simulated 100 times. Because of the stochastic nature of the cascade model, the simulations represent 100 possible realizations of the same rain event. The cascade model produces realistic spatial and temporal patterns of rainfall at 6 min and 1 km resolution (the resolution of the radar data), the statistical properties of which are in close agreement with observation. In the second set of calculations, the cascade model is run continuously for all days from January 2008 to August 2015 and the rainfall accumulations are compared at 12 locations in the greater Melbourne area. The statistical properties of the observations lie with envelope of the 100 ensemble members. The model successfully reproduces the frequency distribution of the 6 min rainfall intensities, storm durations, interarrival times, and autocorrelation function.
NASA Astrophysics Data System (ADS)
Karsai, Márton; Iñiguez, Gerardo; Kikas, Riivo; Kaski, Kimmo; Kertész, János
2016-06-01
Adoption of innovations, products or online services is commonly interpreted as a spreading process driven to large extent by social influence and conditioned by the needs and capacities of individuals. To model this process one usually introduces behavioural threshold mechanisms, which can give rise to the evolution of global cascades if the system satisfies a set of conditions. However, these models do not address temporal aspects of the emerging cascades, which in real systems may evolve through various pathways ranging from slow to rapid patterns. Here we fill this gap through the analysis and modelling of product adoption in the world’s largest voice over internet service, the social network of Skype. We provide empirical evidence about the heterogeneous distribution of fractional behavioural thresholds, which appears to be independent of the degree of adopting egos. We show that the structure of real-world adoption clusters is radically different from previous theoretical expectations, since vulnerable adoptions—induced by a single adopting neighbour—appear to be important only locally, while spontaneous adopters arriving at a constant rate and the involvement of unconcerned individuals govern the global emergence of social spreading.
Wang, Baofeng; Qi, Zhiquan; Chen, Sizhong; Liu, Zhaodu; Ma, Guocheng
2017-01-01
Vision-based vehicle detection is an important issue for advanced driver assistance systems. In this paper, we presented an improved multi-vehicle detection and tracking method using cascade Adaboost and Adaptive Kalman filter(AKF) with target identity awareness. A cascade Adaboost classifier using Haar-like features was built for vehicle detection, followed by a more comprehensive verification process which could refine the vehicle hypothesis in terms of both location and dimension. In vehicle tracking, each vehicle was tracked with independent identity by an Adaptive Kalman filter in collaboration with a data association approach. The AKF adaptively adjusted the measurement and process noise covariance through on-line stochastic modelling to compensate the dynamics changes. The data association correctly assigned different detections with tracks using global nearest neighbour(GNN) algorithm while considering the local validation. During tracking, a temporal context based track management was proposed to decide whether to initiate, maintain or terminate the tracks of different objects, thus suppressing the sparse false alarms and compensating the temporary detection failures. Finally, the proposed method was tested on various challenging real roads, and the experimental results showed that the vehicle detection performance was greatly improved with higher accuracy and robustness.
The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators
Karampourniotis, Panagiotis D.; Sreenivasan, Sameet; Szymanski, Boleslaw K.; Korniss, Gyorgy
2015-01-01
The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We accomplish this by employing a truncated normal distribution of the nodes’ thresholds and observe a non-monotonic change in the cascade size as we vary the standard deviation. Further, for a sufficiently large spread in the threshold distribution, the tipping-point behavior of the social influencing process disappears and is replaced by a smooth crossover governed by the size of initiator set. We demonstrate that for a given size of the initiator set, there is a specific variance of the threshold distribution for which an opinion spreads optimally. Furthermore, in the case of synthetic graphs we show that the spread asymptotically becomes independent of the system size, and that global cascades can arise just by the addition of a single node to the initiator set. PMID:26571486
Karsai, Márton; Iñiguez, Gerardo; Kikas, Riivo; Kaski, Kimmo; Kertész, János
2016-01-01
Adoption of innovations, products or online services is commonly interpreted as a spreading process driven to large extent by social influence and conditioned by the needs and capacities of individuals. To model this process one usually introduces behavioural threshold mechanisms, which can give rise to the evolution of global cascades if the system satisfies a set of conditions. However, these models do not address temporal aspects of the emerging cascades, which in real systems may evolve through various pathways ranging from slow to rapid patterns. Here we fill this gap through the analysis and modelling of product adoption in the world’s largest voice over internet service, the social network of Skype. We provide empirical evidence about the heterogeneous distribution of fractional behavioural thresholds, which appears to be independent of the degree of adopting egos. We show that the structure of real-world adoption clusters is radically different from previous theoretical expectations, since vulnerable adoptions—induced by a single adopting neighbour—appear to be important only locally, while spontaneous adopters arriving at a constant rate and the involvement of unconcerned individuals govern the global emergence of social spreading. PMID:27272744
NASA Astrophysics Data System (ADS)
Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen
2011-08-01
In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.
Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Ju, Wenyun; Sun, Kai
In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system ismore » closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.« less
NASA Astrophysics Data System (ADS)
Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING
2017-11-01
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.
The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanguay, Jesse; Yun, Seungman; School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735
Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondarymore » quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.« less
Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens.
Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart
2015-10-15
Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhang, HuaJian; Tang, BaoZhen; Lin, YaPing; Chen, ZhiMing; Zhang, XiaFang; Ji, TianLiang; Zhang, XiaoMei; Hou, YouMing
2017-12-01
A typical characteristic of the insect innate immune system is the activation of the serine protease cascade in the hemolymph. As being the terminal component of the extracellular serine protease cascade in the prophenoloxidase (proPO) activating system, proPO-activating factors (PPAFs) activated by the upstream cascade may generate active phenoloxidase, which then induces downstream melanization. In the present study, we reported three PPAFs from the nipa palm hispid beetle Octodonta nipae (Maulik) (designated as OnPPAF1, OnPPAF2, OnPPAF3). All three OnPPAFs contained a single clip domain at the amino-terminus followed by a trypsin-like serine protease domain at the carboxyl-terminus, except the Ser in the active sites of OnPPAF2 and OnPPAF3 was substituted with Gly. Transcript expression analysis revealed that all OnPPAFs were highly expressed in hemolymph, whereas OnPPAF2 showed an extremely low mRNA abundance compared with that of OnPPAF1 and OnPPAF3, and that the abundance of all three OnPPAFs was dramatically increased upon bacterial challenge. Knockdown of OnPPAF1 or OnPPAF3 resulted in a reduction of hemolymph phenoloxidase activity and an inhibition of hemolymph melanization, whereas the knockdown of OnPPAF2 did not affect the proPO cascade. Our work thus implies that the three OnPPAFs may have different functions and regulation during immune responses in O. nipae. © 2017 Wiley Periodicals, Inc.
Antitumoral Cascade-Targeting Ligand for IL-6 Receptor-Mediated Gene Delivery to Glioma.
Wang, Shanshan; Reinhard, Sören; Li, Chengyi; Qian, Min; Jiang, Huiling; Du, Yilin; Lächelt, Ulrich; Lu, Weiyue; Wagner, Ernst; Huang, Rongqin
2017-07-05
The effective treatment of glioma is largely hindered by the poor transfer of drug delivery systems across the blood-brain barrier (BBB) and the difficulty in distinguishing healthy and tumorous cells. In this work, for the first time, an interleukin-6 receptor binding I 6 P 7 peptide was exploited as a cascade-targeting ligand in combination with a succinoyl tetraethylene pentamine (Stp)-histidine oligomer-based nonviral gene delivery system (I 6 P 7 -Stp-His/DNA). The I 6 P 7 peptide provides multiple functions, including the cascade-targeting potential represented by a combined BBB-crossing and subsequent glioma-targeting ability, as well as a direct tumor-inhibiting effect. I 6 P 7 -Stp-His/DNA nanoparticles (NPs) mediated higher gene expression in human glioma U87 cells than in healthy human astrocytes and a deeper penetration into glioma spheroids than scrambled peptide-modified NPs. Transport of I 6 P 7 -modified, but not the control, NPs across the BBB was demonstrated in vitro in a transwell bEnd.3 cell model resulting in transfection of underlying U87 cells and also in vivo in glioma-bearing mice. Intravenous administration of I 6 P 7 -Stp-His/plasmid DNA (pDNA)-encoding inhibitor of growth 4 (pING4) significantly prolonged the survival time of orthotopic U87 glioma-bearing mice. The results denote that I 6 P 7 peptide is a roborant cascade-targeting ligand, and I 6 P 7 -modified NPs might be exploited for efficient glioma therapy. Copyright © 2017. Published by Elsevier Inc.
Hammill, Edward; Booth, David J.; Madin, Elizabeth M. P.; Hinchliffe, Charles; Harborne, Alastair R.; Lovelock, Catherine E.; Macreadie, Peter I.; Atwood, Trisha B.
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways. PMID:29513746
Ollivier, Quinn R; Hammill, Edward; Booth, David J; Madin, Elizabeth M P; Hinchliffe, Charles; Harborne, Alastair R; Lovelock, Catherine E; Macreadie, Peter I; Atwood, Trisha B
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the 'grazing halos' of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways.
Tampering with the turbulent energy cascade with polymer additives
NASA Astrophysics Data System (ADS)
Valente, Pedro; da Silva, Carlos; Pinho, Fernando
2014-11-01
We show that the strong depletion of the viscous dissipation in homogeneous viscoelastic turbulence reported by previous authors does not necessarily imply a depletion of the turbulent energy cascade. However, for large polymer relaxation times there is an onset of a polymer-induced kinetic energy cascade which competes with the non-linear energy cascade leading to its depletion. Remarkably, the total energy cascade flux from both cascade mechanisms remains approximately the same fraction of the kinetic energy over the turnover time as the non-linear energy cascade flux in Newtonian turbulence. The authors acknowledge the funding from COMPETE, FEDER and FCT (Grant PTDC/EME-MFE/113589/2009).
Parallel computation of fluid-structural interactions using high resolution upwind schemes
NASA Astrophysics Data System (ADS)
Hu, Zongjun
An efficient and accurate solver is developed to simulate the non-linear fluid-structural interactions in turbomachinery flutter flows. A new low diffusion E-CUSP scheme, Zha CUSP scheme, is developed to improve the efficiency and accuracy of the inviscid flux computation. The 3D unsteady Navier-Stokes equations with the Baldwin-Lomax turbulence model are solved using the finite volume method with the dual-time stepping scheme. The linearized equations are solved with Gauss-Seidel line iterations. The parallel computation is implemented using MPI protocol. The solver is validated with 2D cases for its turbulence modeling, parallel computation and unsteady calculation. The Zha CUSP scheme is validated with 2D cases, including a supersonic flat plate boundary layer, a transonic converging-diverging nozzle and a transonic inlet diffuser. The Zha CUSP2 scheme is tested with 3D cases, including a circular-to-rectangular nozzle, a subsonic compressor cascade and a transonic channel. The Zha CUSP schemes are proved to be accurate, robust and efficient in these tests. The steady and unsteady separation flows in a 3D stationary cascade under high incidence and three inlet Mach numbers are calculated to study the steady state separation flow patterns and their unsteady oscillation characteristics. The leading edge vortex shedding is the mechanism behind the unsteady characteristics of the high incidence separated flows. The separation flow characteristics is affected by the inlet Mach number. The blade aeroelasticity of a linear cascade with forced oscillating blades is studied using parallel computation. A simplified two-passage cascade with periodic boundary condition is first calculated under a medium frequency and a low incidence. The full scale cascade with 9 blades and two end walls is then studied more extensively under three oscillation frequencies and two incidence angles. The end wall influence and the blade stability are studied and compared under different frequencies and incidence angles. The Zha CUSP schemes are the first time to be applied in moving grid systems and 2D and 3D calculations. The implicit Gauss-Seidel iteration with dual time stepping is the first time to be used for moving grid systems. The NASA flutter cascade is the first time to be calculated in full scale.
Cosmic-ray cascades photographed in scintillator
NASA Technical Reports Server (NTRS)
Barrowes, S. C.; Huggett, R. W.; Levit, L. B.; Porter, L. G.
1974-01-01
Light produced by nuclear-electromagnetic cascades in a plastic scintillator can be photographed, and the resulting images on film used to measure both the energy content of the cascades and also the positions at which the cascades passed through the scintillator. The energy content of a cascade can be measured to 20% and its position determined to plus or minus 0.8 cm in each scintillator. Techniques for photographing the cascades and analyzing the film are described. Sample data are presented and discussed.
Higher-order Kerr effect and harmonic cascading in gases.
Bache, Morten; Eilenberger, Falk; Minardi, Stefano
2012-11-15
The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity.
Integrated Multimedia Modeling System Response to Regional Land Management Change
A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of research and development. It is ...
Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing.
Cheng, Chi; Jiang, Gengping; Garvey, Christopher J; Wang, Yuanyuan; Simon, George P; Liu, Jefferson Z; Li, Dan
2016-02-01
Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub-10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub-10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems.
Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing
Cheng, Chi; Jiang, Gengping; Garvey, Christopher J.; Wang, Yuanyuan; Simon, George P.; Liu, Jefferson Z.; Li, Dan
2016-01-01
Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub–10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub–10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems. PMID:26933689
Power Budget Analysis for High Altitude Airships
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Elliott, James R.; King, Glen C.
2006-01-01
The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.
Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W
2016-11-10
Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40 μs.
Fuel cell and system for supplying electrolyte thereto utilizing cascade feed
Feigenbaum, Haim
1984-01-01
An electrolyte distribution supply system for use with a fuel cell having a wicking medium for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells or groups thereof in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells or groups of cells of the stack. Individual storage compartments are coupled by individual tubes, the ends of the respective tubes terminating on the wicking medium in each of the respective fuel cells. The individual compartments are filled with electrolyte by allowing the compartments to overflow such as in a cascading fashion thereby maintaining the requisite depth of electrolyte in each of the storage compartments. The individual compartments can also contain packed carbon fibers to provide a three stage electrolyte distribution system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevenell, Lisa; Coolbaugh, Mark; Hinz, Nick
This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production.more » To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.« less
Rein, Keith D; Roy, Sukesh; Sanders, Scott T; Caswell, Andrew W; Schauer, Frederick R; Gord, James R
2016-08-10
A mid-infrared fiber-coupled laser system constructed around three time-division-multiplexed quantum-cascade lasers capable of measuring the absorption spectra of CO, CO2, and N2O at 100 kHz over a wide range of operating pressures and temperatures is demonstrated. This system is first demonstrated in a laboratory burner and then used to measure temperature, pressure, and concentrations of CO, CO2, and N2O as a function of time in a detonated mixture of N2O and C3H8. Both fuel-rich and fuel-lean detonation cases are outlined. High-temperature fluctuations during the blowdown are observed. Concentrations of CO are shown to decrease with time for fuel-lean conditions and increase for fuel-rich conditions.
Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; ...
2016-01-05
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei; Li, Chunguang; Sanchez, Nancy P.
A tunable diode laser absorption spectroscopy-based methane sensor, employing a dense-pattern multi-pass gas cell and a 3.3 µm, CW, DFB, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management resulted in a CH 4 sensor with a small footprint (32 x 20 x 17 cm 3) and low-power consumption (6 W). Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH 4 concentrations, respectively. An Allan-Werle deviation analysis shows that themore » measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements covering a seven-day period were performed to demonstrate the stability and robustness of the reported CH 4 sensor system.« less
Aerodynamics of a linear oscillating cascade
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1990-01-01
The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.
Investigation of oscillating cascade aerodynamics by an experimental influence coefficient technique
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; Fleeter, Sanford
1988-01-01
Fundamental experiments are performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate the torsion mode unsteady aerodynamics of a biconvex airfoil cascade at realistic values of the reduced frequency for all interblade phase angles at a specified mean flow condition. In particular, an unsteady aerodynamic influence coefficient technique is developed and utilized in which only one airfoil in the cascade is oscillated at a time and the resulting airfoil surface unsteady pressure distribution measured on one dynamically instrumented airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils oscillating at a specified interblade phase angle are then determined through a vector summation of these data. These influence coefficient determined oscillation cascade data are correlated with data obtained in this cascade with all airfoils oscillating at several interblade phase angle values. The influence coefficients are then utilized to determine the unsteady aerodynamics of the cascade for all interblade phase angles, with these unique data subsequently correlated with predictions from a linearized unsteady cascade model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinisch, H.L.
1997-04-01
The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparentmore » only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.« less
NASA Astrophysics Data System (ADS)
Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang
2017-08-01
This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.
Miyakawa, Misato Okamoto; Tsuchida, Koji; Miyakawa, Hitoshi
2018-03-01
A female diploid, male haploid sex determination system (haplodiploidy) is found in hymenopteran taxa, such as ants, wasps, bees and sawflies. In this system, a single, complementary sex-determination (sl-CSD) locus functions as the primary sex-determination signal. In the taxa that has evolved this system, females and males are heterozygous and hemi/homozygous at the CSD locus, respectively. While the sl-CSD system enables females to alter sex ratios in the nest, it carries a high cost in terms of inbreeding, as individuals that are homozygous at the CSD locus become sterile diploid males. To counter this risk, some of hymenopteran species have evolved a multi-locus CSD (ml-CSD) system, which effectively reduces the proportion of sterile males. However, the mechanism by which these multiple primary signals are integrated and how they affect the terminal sex-differentiation signal of the molecular cascade have not yet been clarified. To resolve these questions, we examined the molecular cascade in the Japanese ant Vollenhovia emeryi, which we previously confirmed has two CSD loci. Here, we showed that the sex-determination gene, doublesex (dsx), which is highly conserved among phylogenetically distant taxa, is responsible for integrating two CSD signals in V. emeryi. After identifying and characterizing dsx, genotypes containing two CSD loci and splicing patterns of dsx were found to correspond to the sexual phenotype, suggesting that two primary signals are integrated into dsx. These findings will facilitate future molecular and functional studies of the sex determination cascade in V. emeryi, and shed light on the evolution and diversification of sex determination systems in insects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantum-electrodynamic cascades in intense laser fields
NASA Astrophysics Data System (ADS)
Narozhny, N. B.; Fedotov, A. M.
2015-01-01
It is shown that in an intense laser field, along with cascades similar to extensive air showers, self-sustaining field-energized cascades can develop. For intensities of 1024~ \\text {W cm}-2 or higher, such cascades can even be initiated by a particle at rest in the focal area of a tightly focused laser pulse. The cascade appearance effect can considerably alter the progression of any process occurring in a high-intensity laser field. At very high intensities, the evolvement of such cascades can lead to the depletion of the laser field. This paper presents a design of an experiment to observe these two cascade types simultaneously already in next-generation laser facilities.
NASA Astrophysics Data System (ADS)
Li, Jiqing; Yang, Xiong
2018-06-01
In this paper, to explore the efficiency and rationality of the cascade combined generation, a cascade combined optimal model with the maximum generating capacity is established, and solving the model by the modified GA-POA method. It provides a useful reference for the joint development of cascade hydro-power stations in large river basins. The typical annual runoff data are selected to calculate the difference between the calculated results under different representative years. The results show that the cascade operation of cascaded hydro-power stations can significantly increase the overall power generation of cascade and ease the flood risk caused by concentration of flood season.
Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method
NASA Technical Reports Server (NTRS)
Serovy, G. K.; Hansen, E. C.
1980-01-01
The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.
Cascade aeroacoustics including steady loading effects
NASA Astrophysics Data System (ADS)
Chiang, Hsiao-Wei D.; Fleeter, Sanford
A mathematical model is developed to analyze the effects of airfoil and cascade geometry, steady aerodynamic loading, and the characteristics of the unsteady flow field on the discrete frequency noise generation of a blade row in an incompressible flow. The unsteady lift which generates the noise is predicted with a complex first-order cascade convected gust analysis. This model was then applied to the Gostelow airfoil cascade and variations, demonstrating that steady loading, cascade solidity, and the gust direction are significant. Also, even at zero incidence, the classical flat plate cascade predictions are unacceptable.
NASA Astrophysics Data System (ADS)
Harrington, James A.; Bledt, Carlos M.; Kriesel, Jason M.
2011-03-01
Spectroscopy in the long-wave infrared (LWIR) wavelength region (8 to 12 μm) is useful for detecting trace chemical compounds, such as those indicative of weapons of mass destruction (WMD). To enable the development of field portable systems for anti-proliferation efforts, current spectroscopy systems need to be made more robust, convenient, and practical (e.g., miniaturized). Hollow glass waveguides have been used with a Quantum Cascade Laser source for the delivery of single-mode laser radiation from 9 to 10 μm. The lowest loss measured for a straight, 484 μm-bore guide was 0.44 dB/m at 10 μm. The smallest 300 μm-bore waveguide transmitted singlemode radiation even while bent to radii less than 30 cm.
Nitric Oxide-GAPDH Transcriptional Signaling Mediates Behavioral Actions of Cocaine.
Harraz, Maged M; Snyder, Solomon H
2015-01-01
Psychotropic actions of cocaine are generally thought to involve its blockade of monoamine transporters leading to increased synaptic levels of monoamines, especially dopamine. Subsequent intracellular events have been less well characterized. We describe a signaling system wherein lower behavioral stimulant doses of cocaine, as well as higher neurotoxic doses, activate a cascade wherein nitric oxide nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to generate a complex with the ubiquitin-E3-ligase Siah1 which translocates to the nucleus. With lower cocaine doses, nuclear GAPDH augments CREB signaling, while at higher doses p53 signaling is enhanced. The drug CGP3466B very potently blocks GAPDH nitrosylation, hindering both signaling cascades and inhibits both behavioral activating and neurotoxic effects of cocaine. This system affords potentially novel approaches to the therapy of cocaine abuse.
Functional Cellular Mimics for the Spatiotemporal Control of Multiple Enzymatic Cascade Reactions.
Liu, Xiaoling; Formanek, Petr; Voit, Brigitte; Appelhans, Dietmar
2017-12-18
Next-generation therapeutic approaches are expected to rely on the engineering of biomimetic cellular systems that can mimic specific cellular functions. Herein, we demonstrate a highly effective route for constructing structural and functional eukaryotic cell mimics by loading pH-sensitive polymersomes as membrane-associated and free-floating organelle mimics inside the multifunctional cell membrane. Metabolism mimicry has been validated by performing successive enzymatic cascade reactions spatially separated at specific sites of cell mimics in the presence and absence of extracellular organelle mimics. These enzymatic reactions take place in a highly controllable, reproducible, efficient, and successive manner. Our biomimetic approach to material design for establishing functional principles brings considerable enrichment to the fields of biomedicine, biocatalysis, biotechnology, and systems biology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bistable metamaterial for switching and cascading elastic vibrations
Foehr, André; Daraio, Chiara
2017-01-01
The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations. PMID:28416663
Cascaded Segmentation-Detection Networks for Word-Level Text Spotting.
Qin, Siyang; Manduchi, Roberto
2017-11-01
We introduce an algorithm for word-level text spotting that is able to accurately and reliably determine the bounding regions of individual words of text "in the wild". Our system is formed by the cascade of two convolutional neural networks. The first network is fully convolutional and is in charge of detecting areas containing text. This results in a very reliable but possibly inaccurate segmentation of the input image. The second network (inspired by the popular YOLO architecture) analyzes each segment produced in the first stage, and predicts oriented rectangular regions containing individual words. No post-processing (e.g. text line grouping) is necessary. With execution time of 450 ms for a 1000 × 560 image on a Titan X GPU, our system achieves good performance on the ICDAR 2013, 2015 benchmarks [2], [1].
Single-Mode, Distributed Feedback Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)
2016-01-01
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.
Default Cascades in Complex Networks: Topology and Systemic Risk
Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano
2013-01-01
The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only – but substantially – when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011. PMID:24067913
On-chip dual-comb based on quantum cascade laser frequency combs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villares, G., E-mail: gustavo.villares@phys.ethz.ch; Wolf, J.; Kazakov, D.
2015-12-21
Dual-comb spectroscopy is emerging as an appealing application of mid-infrared frequency combs for high-resolution molecular spectroscopy, as it leverages on the unique coherence properties of frequency combs. Here, we present an on-chip dual-comb source based on mid-infrared quantum cascade laser frequency combs. Control of the combs repetition and offset frequencies is obtained by integrating micro-heaters next to each laser. We show that a full control of the dual-comb system is possible, by measuring a multi-heterodyne beating corresponding to an optical bandwidth of 32 cm{sup −1} centered at 1330 cm{sup −1} (7.52 μm), demonstrating that this device represents a critical step towards compact dual-combmore » systems.« less
Quantum cascade lasers, systems, and applications in Europe
NASA Astrophysics Data System (ADS)
Lambrecht, Armin
2005-03-01
Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.
Semi-actuator disk theory for compressor choke flutter
NASA Technical Reports Server (NTRS)
Micklow, J.; Jeffers, J.
1981-01-01
A mathematical anaysis predict the unsteady aerodynamic utilizing semi actuator theory environment for a cascade of airfoils harmonically oscillating in choked flow was developed. A normal shock is located in the blade passage, its position depending on the time dependent geometry, and pressure perturbations of the system. In addition to shock dynamics, the model includes the effect of compressibility, interblade phase lag, and an unsteady flow field upstream and downstream of the cascade. Calculated unsteady aerodynamics were compared with isolated airfoil wind tunnel data, and choke flutter onset boundaries were compared with data from testing of an F100 high pressure compressor stage.
NASA Astrophysics Data System (ADS)
Eliazar, Iddo I.; Shlesinger, Michael F.
2012-01-01
We introduce and explore a Stochastic Flow Cascade (SFC) model: A general statistical model for the unidirectional flow through a tandem array of heterogeneous filters. Examples include the flow of: (i) liquid through heterogeneous porous layers; (ii) shocks through tandem shot noise systems; (iii) signals through tandem communication filters. The SFC model combines together the Langevin equation, convolution filters and moving averages, and Poissonian randomizations. A comprehensive analysis of the SFC model is carried out, yielding closed-form results. Lévy laws are shown to universally emerge from the SFC model, and characterize both heavy tailed retention times (Noah effect) and long-ranged correlations (Joseph effect).
Puerto, G; Ortega, B; Manzanedo, M D; Martínez, A; Pastor, D; Capmany, J; Kovacs, G
2006-10-30
This paper describes both the experimental and theoretical investigations on the cascadability of all-optical routers in optical label swapping networks incorporating a multistage wavelength conversion with 2R regeneration. A full description of a novel experimental setup allows the packet by packet measurement up to 16 hops with 10 Gb/s payload showing 1 dB penalty with 10(-12) bit error rate. Similarly, the simulations on the system allow a prediction on the cascadability of the router up to 64 hops.
Parameswaran, Krishnan R; Rosen, David I; Allen, Mark G; Ganz, Alan M; Risby, Terence H
2009-02-01
Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb/Hz(1/2).
Biomedical terahertz imaging with a quantum cascade laser
NASA Astrophysics Data System (ADS)
Kim, Seongsin M.; Hatami, Fariba; Harris, James S.; Kurian, Allison W.; Ford, James; King, Douglas; Scalari, Giacomo; Giovannini, Marcella; Hoyler, Nicolas; Faist, Jerome; Harris, Geoff
2006-04-01
We present biomedical imaging using a single frequency terahertz imaging system based on a low threshold quantum cascade laser emitting at 3.7THz (λ=81μm). With a peak output power of 4mW, coherent terahertz radiation and detection provide a relatively large dynamic range and high spatial resolution. We study image contrast based on water/fat content ratios in different tissues. Terahertz transmission imaging demonstrates a distinct anatomy in a rat brain slice. We also demonstrate malignant tissue contrast in an image of a mouse liver with developed tumors, indicating potential use of terahertz imaging for probing cancerous tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo
2013-12-02
We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.
Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Terabayashi, Ryohei; Sonnenschein, Volker; Tomita, Hideki; Hayashi, Noriyoshi; Kato, Shusuke; Jin, Lei; Yamanaka, Masahito; Nishizawa, Norihiko; Sato, Atsushi; Nozawa, Kohei; Hashizume, Kenta; Oh-hara, Toshinari; Iguchi, Tetsuo
2017-11-01
A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.
Real-time quantum cascade laser-based infrared microspectroscopy in-vivo
NASA Astrophysics Data System (ADS)
Kröger-Lui, N.; Haase, K.; Pucci, A.; Schönhals, A.; Petrich, W.
2016-03-01
Infrared microscopy can be performed to observe dynamic processes on a microscopic scale. Fourier-transform infrared spectroscopy-based microscopes are bound to limitations regarding time resolution, which hampers their potential for imaging fast moving systems. In this manuscript we present a quantum cascade laser-based infrared microscope which overcomes these limitations and readily achieves standard video frame rates. The capabilities of our setup are demonstrated by observing dynamical processes at their specific time scales: fermentation, slow moving Amoeba Proteus and fast moving Caenorhabditis elegans. Mid-infrared sampling rates between 30 min and 20 ms are demonstrated.
Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels
NASA Astrophysics Data System (ADS)
Nikodem, Michal; Krzempek, Karol; Stachowiak, Dorota; Wysocki, Gerard
2018-01-01
Due to its high toxicity, monitoring of hydrogen sulfide (H2S) concentration is essential in many industrial sites (such as natural gas extraction sites, petroleum refineries, geothermal power plants, or waste water treatment facilities), which require sub-parts-per-million sensitivities. We report on a quantum cascade laser-based spectroscopic system for detection of H2S in the midinfrared at ˜7.2 μm. We present a sensor design utilizing Herriott multipass cell and a wavelength modulation spectroscopy to achieve a detection limit of 140 parts per billion for 1-s integration time.
Rohini, G; Jamuna, V
This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.
Rohini, G.; Jamuna, V.
2016-01-01
This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189
Energy flow along the medium-induced parton cascade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaizot, J.-P., E-mail: jean-paul.blaizot@cea.fr; Mehtar-Tani, Y., E-mail: ymehtar@uw.edu
2016-05-15
We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs.more » The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.« less
Cascading failure in the wireless sensor scale-free networks
NASA Astrophysics Data System (ADS)
Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li
2015-05-01
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).
Estimated water use and general hydrologic conditions for Oregon, 1985 and 1990
Broad, T.M.; Collins, C.A.
1996-01-01
Water-use information is vital to planners, engineers, and hydrologists in water resources. This report is a compilation of water-use information for Oregon for calendar years 1985 and 1990. The report presents water-use data by geographic region for several categories of use, including public supply, domestic, commercial, industrial, mining, thermoelectric power, hydroelectric power, live-stock, irrigation, reservoir evaporation, and wastewater treatment. Hydroelectric power is the only instream use discussed; all other uses are considered offstream. The Appendix presents 1985 and 1990 data by region and by drainage basin for the previously mentioned categories of use. The Cascade Range divides Oregon into two distinct climatic zones. The area west of the Cascade Range has an average annual precipitation that ranges from 40 to 200 inches, and precipitation in the area east of the Cascade Range ranges from 10 to 20 inches. The differences in precipitation and geology have an effect on the sources, uses, and amounts of water withdrawn. Most of the large public-supply systems west of the Cascade Range rely on surface water, whereas many of the large public-supply systems east of the Cascade Range use on wells or springs. Irrigators west of the Cascade Range rely primarily on nearby surface- water sources; however, irrigators east of the Cascade Range use primarily surface water that commonly is delivered from distant sources through irrigation ditches. A variety of methods was used to estimate water-use information. Most withdrawals for public-water suppliers were metered; however, irrigation withdrawals usually were estimated by using information on crops, climate, application efficiencies, and conveyance losses. The accuracy of the estimated total withdrawal values for public supply was estimated to be within 4 percent of the values that would be obtained if all public-supply withdrawals were metered. Total withdrawals for irrigation were estimated to be within 40 percent of metered irrigation withdrawals. The estimates-of-error are presented to show the relative, rather than absolute, accuracy of the data for each water-use category. A total of 8,400 million gallons of water per day was withdrawn in Oregon during 1990, about 1,900 million gallons per day more than the 6,500 million gallons per day withdrawn in 1985. Whereas actual water use increased in 1990, the major differences between 1985 and 1990 were attributed to the inclusion of offstream fish hatcheries, the use of different crop coefficients to estimate irrigation, and the availability of more detailed information in the 1990 estimates. Surface-water withdrawals accounted for 92 percent of the total withdrawals in 1990; irrigation was the largest category of water use, accounting for 82 percent of the total withdrawals.
NASA Astrophysics Data System (ADS)
Parisi, Alessandro; Fidelibus, Maria Dolores
2017-04-01
Physical extremes can be distinguished in "sudden physical extremes" (e.g. earthquakes, tsunami) and "progressive physical extremes" (e.g. drought, desertification, landslides). They differ for frequency, intensity, spatial extent, duration and timing of occurrence. If a physical extreme, by interacting with human systems, induces negative consequences, its outcome can be a "disaster". The disasters are, in both above cases, characterized by a few phases: physical extreme occurrence, emergency, response, and recovery. However, in the case of a progressive physical extreme, the disaster develops with an overlap in the time of the above-mentioned phases. When the events are repetitive, the emergency planning (which follows a cycle) succeeds with preparedness and mitigation with the intent of reducing the risk. Both the sudden and progressive physical extremes produce cascading effects of consequences on social, environmental and economic systems. Disasters consequent to sudden and progressive extremes show, however, some differences, mainly attributable to the "visibility" of the effects and to their time scale of evolution. As matter of fact, a disaster consequent to a progressive physical extreme produces "emerging signals" that are often invisible. Moreover, the emergency phase can arise with a time delay compared to the occurrence of the physical extreme, depending on the spatial scale of impacted system. The above differences allow defining "creeping disasters" the potential disasters related to progressive physical extremes. This study deals with some peculiar "cascading disasters" consequent to drought, which is the main "creeping disaster", namely the groundwater drought and the consequent salinization of coastal aquifers. In regional flow systems, their effects are invisible in the immediate to common people (and often even to managers) because of the concealed nature of groundwater; moreover, they are difficult to assess because of the shift over time of their evolution compared to the promptness of surface effects. The study area is the Salento coastal karstic aquifer (Apulia region, Southern Italy), where the groundwater flows according to a regional flow system. It has been subject to successive meteorological droughts between 1960 and 2010. The groundwater monitoring performed during this period, even with some gaps, allows identifying time lags between superficial effects and underground system response, potential tipping points, and emerging signals of the cascading disasters.
Integrated Broadband Quantum Cascade Laser
NASA Technical Reports Server (NTRS)
Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)
2016-01-01
A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.
Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn.
Berger, Kim Murray; Gese, Eric M; Berger, Joel
2008-03-01
The traditional trophic cascades model is based on consumer resource interactions at each link in a food chain. However, trophic-level interactions, such as mesocarnivore release resulting from intraguild predation, may also be important mediators of cascades. From September 2001 to August 2004, we used spatial and seasonal heterogeneity in wolf distribution and abundance in the southern Greater Yellowstone Ecosystem to evaluate whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of wolves (Canis lupus), accounts for high rates of coyote predation on pronghorn (Antilocapra americana) fawns observed in some areas. Results of this ecological perturbation in wolf densities, coyote densities, and pronghorn neonatal survival at wolf-free and wolf-abundant sites support the existence of a species-level trophic cascade. That wolves precipitated a trophic cascade was evidenced by fawn survival rates that were four-fold higher at sites used by wolves. A negative correlation between coyote and wolf densities supports the hypothesis that interspecific interactions between the two species facilitated the difference in fawn survival. Whereas densities of resident coyotes were similar between wolf-free and wolf-abundant sites, the abundance of transient coyotes was significantly lower in areas used by wolves. Thus, differential effects of wolves on solitary coyotes may be an important mechanism by which wolves limit coyote densities. Our results support the hypothesis that mesopredator release of coyotes contributes to high rates of coyote predation on pronghorn fawns, and demonstrate the importance of alternative food web pathways in structuring the dynamics of terrestrial systems.
Modeling techniques for quantum cascade lasers
NASA Astrophysics Data System (ADS)
Jirauschek, Christian; Kubis, Tillmann
2014-03-01
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
Malanson, George P.; Zimmerman, Dale L.; Fagre, Daniel B.
2015-01-01
The floras of mountain ranges, and their similarity, beta diversity and endemism, are indicative of processes of community assembly; they are also the initial conditions for coming disassembly and reassembly in response to climate change. As such, these characteristics can inform thinking on refugia. The published floras or approximations for 42 mountain ranges in the three major mountain systems (Sierra-Cascades, Rocky Mountains and Great Basin ranges) across the western USA and southwestern Canada were analysed. The similarity is higher among the ranges of the Rockies while equally low among the ranges of the Sierra-Cascades and Great Basin. Mantel correlations of similarity with geographic distance are also higher for the Rocky Mountains. Endemism is relatively high, but is highest in the Sierra-Cascades (due to the Sierra Nevada as the single largest range) and lowest in the Great Basin, where assemblages are allochthonous. These differences indicate that the geologic substrates of the Cascade volcanoes, which are much younger than any others, play a role in addition to geographic isolation in community assembly. The pattern of similarity and endemism indicates that the ranges of the Cascades will not function well as stepping stones and the endemic species that they harbor may need more protection than those of the Rocky Mountains. The geometry of the ranges is complemented by geology in setting the stage for similarity and the potential for refugia across the West. Understanding the geographic template as initial conditions for the future can guide the forecast of refugia and related monitoring or protection efforts.
Modeling techniques for quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jirauschek, Christian; Kubis, Tillmann
2014-03-15
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less
NASA Astrophysics Data System (ADS)
Petersen, Marcell Elo; Maar, Marie; Larsen, Janus; Møller, Eva Friis; Hansen, Per Juel
2017-05-01
The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model ERGOM was validated and applied in a local set-up of the Kattegat, Denmark, using the off-line Flexsem framework. The model scenarios were conducted by changing the forcing by ± 20% of nutrient inputs (bottom-up) and mesozooplankton mortality (top-down), and both types of forcing combined. The model results showed that cascading effects operated differently depending on the forcing type. In the single-forcing bottom-up scenarios, the cascade directions were in the same direction as the forcing. For scenarios involving top-down, there was a skipped-level-transmission in the trophic responses that was either attenuated or amplified at different trophic levels. On a seasonal scale, bottom-up forcing showed strongest response during winter-spring for DIN and Chl a concentrations, whereas top-down forcing had the highest cascade strength during summer for Chl a concentrations and microzooplankton biomass. On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient input and mesozooplankton mortality calling for the need of an integrated management of marine areas exploited by human activities.
Cascade phenomenon against subsequent failures in complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng
2018-06-01
Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.
NASA Astrophysics Data System (ADS)
Rudaz, Benjamin; Loye, Alexandre; Mazotti, Benoit; Bardou, Eric; Jaboyedoff, Michel
2013-04-01
The Materosion project, conducted between the swiss canton of Valais (CREALP) and University of Lausanne (CRET) aims at forecasting sediment transfer in alpine torrents using the sediment cascade concept. The study site is the high Anniviers valley, around the village of Zinal (Valais). The torrents are divided in homogeneous reaches, to and from which sediments are transported by debris flows and bedload transport events. The model runs simulations of 100 years, with a 1-month time step, each with a given a random meteorological event ranging from no activity up to high magnitude debris flows. These events are calibrated using local rain data and observed corresponding debris flow frequencies. The model is applied to ten torrent systems with variable geological context, watershed geometries and sediment supplies. Given the high number of possible event scenarios, 10'000 simulations per torrent are performed, giving a statistical distribution of cumulated volumes and an event size distribution. A way to visualize the complex results data is proposed, and a back-analysis of the internal sediment cascade dynamic is performed. The back-analysis shows that the results' distribution stabilize after ~5'000 simulations. The model results, especially the range of debris flow volumes are crucial to maintain mitigation measures such as retention dams, and give clues for future sediment cascade modeling.
Sensitive detection of Escherichia coli O157:H7 based on cascade signal amplification in ELISA.
Shan, Shan; Liu, Daofeng; Guo, Qi; Wu, Songsong; Chen, Rui; Luo, Kai; Hu, Liming; Xiong, Yonghua; Lai, Weihua
2016-09-01
In this study, cascade signal amplification in ELISA involving double-antibody sandwich ELISA and indirectly competitive ELISA was established to sensitively detect Escherichia coli O157:H7. In the double-antibody sandwich ELISA, a complex was formed comprising anti-E. coli O157:H7 polyclonal antibody, E. coli O157:H7, biotinylated anti-E. coli O157:H7 monoclonal antibody, streptavidin, and biotinylated β-lactamase. Penicillin solution was then added into the ELISA well and hydrolyzed by β-lactamase. Afterward, the penicillin solution was transferred to indirectly competitive ELISA. The concentration of penicillin can be sensitively detected in indirectly competitive ELISA. In the cascade signal amplification system, increasing the amount of added E. coli O157:H7 resulted in more β-lactamase and less penicillin. The detection sensitivity of E. coli O157:H7, which was 20cfu/mL with the cascade signal amplification in ELISA, was 1,000-fold higher than that of traditional ELISA. Furthermore, the novel method can be used to detect E. coli O157:H7 in milk (2cfu/g). Therefore, this new signaling strategy will facilitate analyses of highly sensitive foodborne pathogens. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Statistical Physics of Cascading Failures in Complex Networks
NASA Astrophysics Data System (ADS)
Panduranga, Nagendra Kumar
Systems such as the power grid, world wide web (WWW), and internet are categorized as complex systems because of the presence of a large number of interacting elements. For example, the WWW is estimated to have a billion webpages and understanding the dynamics of such a large number of individual agents (whose individual interactions might not be fully known) is a challenging task. Complex network representations of these systems have proved to be of great utility. Statistical physics is the study of emergence of macroscopic properties of systems from the characteristics of the interactions between individual molecules. Hence, statistical physics of complex networks has been an effective approach to study these systems. In this dissertation, I have used statistical physics to study two distinct phenomena in complex systems: i) Cascading failures and ii) Shortest paths in complex networks. Understanding cascading failures is considered to be one of the "holy grails" in the study of complex systems such as the power grid, transportation networks, and economic systems. Studying failures of these systems as percolation on complex networks has proved to be insightful. Previously, cascading failures have been studied extensively using two different models: k-core percolation and interdependent networks. The first part of this work combines the two models into a general model, solves it analytically, and validates the theoretical predictions through extensive computer simulations. The phase diagram of the percolation transition has been systematically studied as one varies the average local k-core threshold and the coupling between networks. The phase diagram of the combined processes is very rich and includes novel features that do not appear in the models which study each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge together and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a smaller occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition cycles from first-order to second-order to two-stage to first-order as the k-core threshold is increased. We setup the analytical equations describing the phase boundaries of the two-stage transition region and we derive the critical exponents for each type of transition. Understanding the shortest paths between individual elements in systems like communication networks and social media networks is important in the study of information cascades in these systems. Often, large heterogeneity can be present in the connections between nodes in these networks. Certain sets of nodes can be more highly connected among themselves than with the nodes from other sets. These sets of nodes are often referred to as 'communities'. The second part of this work studies the effect of the presence of communities on the distribution of shortest paths in a network using a modular Erdős-Renyi network model. In this model, the number of communities and the degree of modularity of the network can be tuned using the parameters of the model. We find that the model reaches a percolation threshold while tuning the degree of modularity of the network and the distribution of the shortest paths in the network can be used as an indicator of how the communities are connected.
Cascading network failure across the Alzheimer’s disease spectrum
Knopman, David S.; Gunter, Jeffrey L.; Graff-Radford, Jonathan; Vemuri, Prashanthi; Boeve, Bradley F.; Petersen, Ronald C.; Weiner, Michael W.; Jack, Clifford R.
2016-01-01
Abstract Complex biological systems are organized across various spatiotemporal scales with particular scientific disciplines dedicated to the study of each scale (e.g. genetics, molecular biology and cognitive neuroscience). When considering disease pathophysiology, one must contemplate the scale at which the disease process is being observed and how these processes impact other levels of organization. Historically Alzheimer’s disease has been viewed as a disease of abnormally aggregated proteins by pathologists and molecular biologists and a disease of clinical symptoms by neurologists and psychologists. Bridging the divide between these scales has been elusive, but the study of brain networks appears to be a pivotal inroad to accomplish this task. In this study, we were guided by an emerging systems-based conceptualization of Alzheimer’s disease and investigated changes in brain networks across the disease spectrum. The default mode network has distinct subsystems with unique functional-anatomic connectivity, cognitive associations, and responses to Alzheimer’s pathophysiology. These distinctions provide a window into the systems-level pathophysiology of Alzheimer’s disease. Using clinical phenotyping, metadata, and multimodal neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative, we characterized the pattern of default mode network subsystem connectivity changes across the entire disease spectrum (n = 128). The two main findings of this paper are (i) the posterior default mode network fails before measurable amyloid plaques and appears to initiate a connectivity cascade that continues throughout the disease spectrum; and (ii) high connectivity between the posterior default mode network and hubs of high connectivity (many located in the frontal lobe) is associated with amyloid accumulation. These findings support a system model best characterized by a cascading network failure—analogous to cascading failures seen in power grids triggered by local overloads proliferating to downstream nodes eventually leading to widespread power outages, or systems failures. The failure begins in the posterior default mode network, which then shifts processing burden to other systems containing prominent connectivity hubs. This model predicts a connectivity ‘overload’ that precedes structural and functional declines and recasts the interpretation of high connectivity from that of a positive compensatory phenomenon to that of a load-shifting process transiently serving a compensatory role. It is unknown whether this systems-level pathophysiology is the inciting event driving downstream molecular events related to synaptic activity embedded in these systems. Possible interpretations include that the molecular-level events drive the network failure, a pathological interaction between the network-level and the molecular-level, or other upstream factors are driving both. PMID:26586695
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph
2017-04-01
Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30
Installation package for a sunspot cascade solar water heating system
NASA Technical Reports Server (NTRS)
1980-01-01
Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.
Chemical and explosive detections using photo-acoustic effect and quantum cascade lasers
NASA Astrophysics Data System (ADS)
Choa, Fow-Sen
2013-12-01
Photoacoustic (PA) effect is a sensitive spectroscopic technique for chemical sensing. In recent years, with the development of quantum cascade lasers (QCLs), significant progress has been achieved for PA sensing applications. Using high-power, tunable mid-IR QCLs as laser sources, PA chemical sensor systems have demonstrated parts-pertrillion- level detection sensitivity. Many of these high sensitivity measurements were demonstrated locally in PA cells. Recently, we have demonstrated standoff PA detection of isopropanol vapor for more than 41 feet distance using a quantum cascade laser and a microphone with acoustic reflectors. We also further demonstrated solid phase TNT detections at a standoff distance of 8 feet. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. Standoff detection of gas samples with calibrated concentration of 2.3 ppm was achieved at a detection distance of more than 2 feet. An extended detection distance up to 14 feet was observed for a higher gas concentration of 13.9 ppm. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated that the signal and noise spectra of the 4 microphone/4 reflector system with a combined SNR of 12.48 dB. For the 16-microphone and one reflector case, an SNR of 17.82 was achieved. These successful chemical sensing demonstrations will likely create new demands for widely tunable QCLs with ultralow threshold (for local fire-alarm size detection systems) and high-power (for standoff detection systems) performances.
Satagopan, Sriram; Sun, Yuan; Parquette, Jon R; Tabita, F Robert
2017-01-01
With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO 2 , a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO 2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO 2 fixation. We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO 2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO 2 , without adversely affecting the catalytic activity. The ability to assemble a cascade of enzymes for CO 2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO 2 -fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.
Liu, Bo; Sun, Li-Hua; Huang, Yan-Fei; Guo, Li-Jun; Luo, Li-Shu
2018-02-01
Protein phosphatase 2ACα (PP2ACα), a vital member of the protein phosphatase family, has been studied primarily as a regulator for the development, growth and protein synthesis of a lot of cell types. Dysfunction of PP2ACα protein results in neurodegenerative disease; however, this finding has not been directly confirmed in the mouse model with PP2ACα gene knock-out. Therefore, in this study presented here, we generated the PP2ACα gene knock-out mouse model by the Cre-loxP targeting gene system, with the purpose to directly observe the regulatory role of PP2ACα gene in the development of mouse's cerebral cortex. We observe that knocking-out PP2ACα gene in the central nervous system (CNS) results in cortical neuronal shrinkage, synaptic plasticity impairments, and learning/memory deficits. Further study reveals that PP2ACα gene knock-out initiates Hippo cascade in cortical neuroprogenitor cells (NPCs), which blocks YAP translocation into the nuclei of NPCs. Notably, p73, directly targeted by Hippo cascade, can bind to the promoter of glutaminase2 (GLS2) that plays a dominant role in the enzymatic regulation of glutamate/glutamine cycle. Finally, we find that PP2ACα gene knock-out inhibits the glutamine synthesis through up-regulating the activity of phosphorylated-p73 in cortical NPCs. Taken together, it concludes that PP2ACα critically supports cortical neuronal growth and cognitive function via regulating the signaling transduction of Hippo-p73 cascade. And PP2ACα indirectly modulates the glutamine synthesis of cortical NPCs through targeting p73 that plays a direct transcriptional regulatory role in the gene expression of GLS2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hendriks, Jan; Stojanovic, Ivan; Schasfoort, Richard B M; Saris, Daniël B F; Karperien, Marcel
2018-06-05
There is a large unmet need for reliable biomarker measurement systems for clinical application. Such systems should meet challenging requirements for large scale use, including a large dynamic detection range, multiplexing capacity, and both high specificity and sensitivity. More importantly, these requirements need to apply to complex biological samples, which require extensive quality control. In this paper, we present the development of an enhancement detection cascade for surface plasmon resonance imaging (SPRi). The cascade applies an antibody sandwich assay, followed by neutravidin and a gold nanoparticle enhancement for quantitative biomarker measurements in small volumes of complex fluids. We present a feasibility study both in simple buffers and in spiked equine synovial fluid with four cytokines, IL-1β, IL-6, IFN-γ, and TNF-α. Our enhancement cascade leads to an antibody dependent improvement in sensitivity up to 40 000 times, resulting in a limit of detection as low as 50 fg/mL and a dynamic detection range of more than 7 logs. Additionally, measurements at these low concentrations are highly reliable with intra- and interassay CVs between 2% and 20%. We subsequently showed this assay is suitable for multiplex measurements with good specificity and limited cross-reactivity. Moreover, we demonstrated robust detection of IL-6 and IL-1β in spiked undiluted equine synovial fluid with small variation compared to buffer controls. In addition, the availability of real time measurements provides extensive quality control opportunities, essential for clinical applications. Therefore, we consider this method is suitable for broad application in SPRi for multiplex biomarker detection in both research and clinical settings.
Cascades frog conservation assessment
Karen Pope; Catherine Brown; Marc Hayes; Gregory Green; Diane Macfarlane
2014-01-01
The Cascades frog (Rana cascadae) is a montane, lentic-breeding amphibian that has become rare in the southern Cascade Range and remains relatively widespread in the Klamath Mountains of northern California. In the southern Cascades, remaining populations occur primarily in meadow habitats where the fungal disease, chytridiomycosis, and habitat...
Calculation of transonic flow in radial turbine blade cascade
NASA Astrophysics Data System (ADS)
Petr, Straka
2017-09-01
Numerical modeling of transonic centripetal turbulent flow in radial blade cascade is described in this paper. Attention is paid to effect of the outlet confusor on flow through the radial blade cascade. Parameters of presented radial blade cascade are compared with its linear representation
Turbulence of Weak Gravitational Waves in the Early Universe.
Galtier, Sébastien; Nazarenko, Sergey V
2017-12-01
We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.
Period adding cascades: experiment and modeling in air bubbling.
Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos
2012-03-01
Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.
Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.
Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo
2013-01-01
To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.
Gao, Zhuangqiang; Hou, Li; Xu, Mingdi; Tang, Dianping
2014-01-01
Methods based on enzyme labels have been developed for colorimetric immunoassays, but most involve poor sensitivity and are unsuitable for routine use. Herein, we design an enhanced colorimetric immunoassay for prostate-specific antigen (PSA) coupling with an enzyme-cascade-amplification strategy (ECAS-CIA). In the presence of target PSA, the labeled alkaline phosphatase on secondary antibody catalyzes the formation of palladium nanostructures, which catalyze 3,3′,5,5′-tetramethylbenzidine-H2O2 system to produce the colored products, thus resulting in the signal cascade amplification. Results indicated that the ECAS-CIA presents good responses toward PSA, and allows detection of PSA at a concentration as low as 0.05 ng mL−1. Intra- and inter-assay coefficients of variation are below 9.5% and 10.7%, respectively. Additionally, the methodology is validated for analysis of clinical serum specimens with consistent results obtained by PSA ELISA kit. Importantly, the ECAS-CIA opens a new horizon for protein diagnostics and biosecurity. PMID:24509941
Evolution of Mass Movements near Epicentre of Wenchuan Earthquake, the First Eight Years
Zhang, Shuai; Zhang, Limin; Lacasse, Suzanne; Nadim, Farrokh
2016-01-01
It is increasingly clear that landslides represent a major cause of economic costs and deaths in earthquakes in mountains. In the Wenchuan earthquake case, post-seismic cascading landslides continue to represent a major problem eight years on. Failure to anticipate the impact of cascading landslides could lead to unexpected losses of human lives and properties. Previous studies tended to focus on separate landslide processes, with little attention paid to the quantification of long-term evolution of multiple processes or the evolution of mass movements. The very active mass movements near the epicentre of the Wenchuan earthquake provided us a unique opportunity to understand the complex processes of the evolving cascading landslides after a strong earthquake. This study budgets the mass movements on the hillslopes and in the channels in the first eight years since the Wenchuan earthquake and verify a conservation in mass movements. A system illustrating the evolution and interactions of mass movement after a strong earthquake is proposed. PMID:27824077
Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.
Galán-Freyle, Nataly J; Pacheco-Londoño, Leonardo C; Román-Ospino, Andrés D; Hernandez-Rivera, Samuel P
2016-09-01
Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy. © The Author(s) 2016.
Wang, Manli; Wang, Xi; Yin, Mengyi; Wang, Qianran; Hu, Zhihong
2017-01-01
Melanization, an important insect defense mechanism, is mediated by clip-domain serine protease (cSP) cascades and is regulated by serpins. Here we show that proteolytic activation of prophenoloxidase (PPO) and PO-catalyzed melanization kill the baculovirus in vitro. Our quantitative proteomics and biochemical experiments revealed that baculovirus infection of the cotton bollworm, Helicoverpa armigera, reduced levels of most cascade members in the host hemolymph and PO activity. By contrast, serpin-9 and serpin-5 were sequentially upregulated after the viral infection. The H. armigera serpin-5 and serpin-9 regulate melanization by directly inhibiting their target proteases cSP4 and cSP6, respectively and cSP6 activates PPO purified from hemolymph. Furthermore, serpin-5/9-depleted insects exhibited high PO activities and showed resistance to baculovirus infection. Together, our results characterize a part of the melanization cascade in H. armigera, and suggest that natural insect virus baculovirus has evolved a distinct strategy to suppress the host immune system. PMID:28953952
Theory of invasion extinction dynamics in minimal food webs
NASA Astrophysics Data System (ADS)
Haerter, Jan O.; Mitarai, Namiko; Sneppen, Kim
2018-02-01
When food webs are exposed to species invasion, secondary extinction cascades may be set off. Although much work has gone into characterizing the structure of food webs, systematic predictions on their evolutionary dynamics are still scarce. Here we present a theoretical framework that predicts extinctions in terms of an alternating sequence of two basic processes: resource depletion by or competitive exclusion between consumers. We first propose a conceptual invasion extinction model (IEM) involving random fitness coefficients. We bolster this IEM by an analytical, recursive procedure for calculating idealized extinction cascades after any species addition and simulate the long-time evolution. Our procedure describes minimal food webs where each species interacts with only a single resource through the generalized Lotka-Volterra equations. For such food webs ex- tinction cascades are determined uniquely and the system always relaxes to a stable steady state. The dynamics and scale invariant species life time resemble the behavior of the IEM, and correctly predict an upper limit for trophic levels as observed in the field.
Theory of invasion extinction dynamics in minimal food webs.
Haerter, Jan O; Mitarai, Namiko; Sneppen, Kim
2018-02-01
When food webs are exposed to species invasion, secondary extinction cascades may be set off. Although much work has gone into characterizing the structure of food webs, systematic predictions on their evolutionary dynamics are still scarce. Here we present a theoretical framework that predicts extinctions in terms of an alternating sequence of two basic processes: resource depletion by or competitive exclusion between consumers. We first propose a conceptual invasion extinction model (IEM) involving random fitness coefficients. We bolster this IEM by an analytical, recursive procedure for calculating idealized extinction cascades after any species addition and simulate the long-time evolution. Our procedure describes minimal food webs where each species interacts with only a single resource through the generalized Lotka-Volterra equations. For such food webs ex- tinction cascades are determined uniquely and the system always relaxes to a stable steady state. The dynamics and scale invariant species life time resemble the behavior of the IEM, and correctly predict an upper limit for trophic levels as observed in the field.
Nuss, Aaron M; Schuster, Franziska; Kathrin Heroven, Ann; Heine, Wiebke; Pisano, Fabio; Dersch, Petra
2014-01-01
In this study we investigated the influence of the global response regulator PhoP on the complex regulatory cascade controlling expression of early stage virulence genes of Yersinia pseudotuberculosis via the virulence regulator RovA. Our analysis revealed the following novel features: (1) PhoP activates expression of the CsrC RNA in Y. pseudotuberculosis, leading to activation of RovA synthesis through the CsrABC-RovM cascade, (2) activation of csrC transcription is direct and PhoP is shown to bind to two separate PhoP box-like sites, (3) PhoP-mediated activation results in transcription from two different promoters closely downstream of the PhoP binding sites, leading to two distinct CsrC RNAs, and (4) the stability of the CsrC RNAs differs significantly between the Y. pseudotuberculosis strains YPIII and IP32953 due to a 20 nucleotides insertion in CsrC(IP32953), which renders the transcript more susceptible to degradation. In summary, our study showed that PhoP-mediated influence on the regulatory cascade controlling the Csr system and RovA in Y. pseudotuberculosis varies within the species, suggesting that the Csr system is a focal point to readjust and adapt the genus to different hosts and reservoirs.
Subband/transform functions for image processing
NASA Technical Reports Server (NTRS)
Glover, Daniel
1993-01-01
Functions for image data processing written for use with the MATLAB(TM) software package are presented. These functions provide the capability to transform image data with block transformations (such as the Walsh Hadamard) and to produce spatial frequency subbands of the transformed data. Block transforms are equivalent to simple subband systems. The transform coefficients are reordered using a simple permutation to give subbands. The low frequency subband is a low resolution version of the original image, while the higher frequency subbands contain edge information. The transform functions can be cascaded to provide further decomposition into more subbands. If the cascade is applied to all four of the first stage subbands (in the case of a four band decomposition), then a uniform structure of sixteen bands is obtained. If the cascade is applied only to the low frequency subband, an octave structure of seven bands results. Functions for the inverse transforms are also given. These functions can be used for image data compression systems. The transforms do not in themselves produce data compression, but prepare the data for quantization and compression. Sample quantization functions for subbands are also given. A typical compression approach is to subband the image data, quantize it, then use statistical coding (e.g., run-length coding followed by Huffman coding) for compression. Contour plots of image data and subbanded data are shown.
NASA Astrophysics Data System (ADS)
Kumano, Teruhisa
As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.
Wang, Baofeng; Qi, Zhiquan; Chen, Sizhong; Liu, Zhaodu; Ma, Guocheng
2017-01-01
Vision-based vehicle detection is an important issue for advanced driver assistance systems. In this paper, we presented an improved multi-vehicle detection and tracking method using cascade Adaboost and Adaptive Kalman filter(AKF) with target identity awareness. A cascade Adaboost classifier using Haar-like features was built for vehicle detection, followed by a more comprehensive verification process which could refine the vehicle hypothesis in terms of both location and dimension. In vehicle tracking, each vehicle was tracked with independent identity by an Adaptive Kalman filter in collaboration with a data association approach. The AKF adaptively adjusted the measurement and process noise covariance through on-line stochastic modelling to compensate the dynamics changes. The data association correctly assigned different detections with tracks using global nearest neighbour(GNN) algorithm while considering the local validation. During tracking, a temporal context based track management was proposed to decide whether to initiate, maintain or terminate the tracks of different objects, thus suppressing the sparse false alarms and compensating the temporary detection failures. Finally, the proposed method was tested on various challenging real roads, and the experimental results showed that the vehicle detection performance was greatly improved with higher accuracy and robustness. PMID:28296902
NASA Astrophysics Data System (ADS)
Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi
2017-04-01
Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.
Response of a One-Biosphere Nutrient Modeling System to Regional Land Use and Management Change
A multi-media system of nitrogen and co-pollutant models describing critical physical and chemical processes that cascade synergistically and competitively through the environment, the economy and society has been developed at the USEPA Office of Research and Development (see fig...
Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites
ERIC Educational Resources Information Center
Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa
2016-01-01
Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…
A Systems Approach to the Estimation of Ecosystem and Human Health Stressors in Air, Land and Water
A model linkage paradigm, based on the nitrogen cascade, is introduced. This general paradigm is then adapted to specific multi-media nitrogen issues and specific models to be linked. An example linked modeling system addressing potential nitrogen responses to biofuel-driven co...
Desikan, Radhika
2016-01-01
Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482
NASA Technical Reports Server (NTRS)
Friedman, J. D.; Frank, D. G.; Preble, D.; Painter, J. E.
1973-01-01
A combination of infrared images depicting areas of thermal emission and ground calibration points have proved to be particularly useful in plotting time-dependent changes in surface temperatures and radiance and in delimiting areas of predominantly convective heat flow to the earth's surface in the Cascade Range and on Surtsey Volcano, Iceland. In an integrated experiment group using ERTS-1 multispectral scanner (MSS) and aircraft infrared imaging systems in conjunction with multiple thermistor arrays, volcano surface temperatures are relayed daily to Washington via data communication platform (DCP) transmitters and ERTS-1. ERTS-1 MSS imagery has revealed curvilinear structures at Lassen, the full extent of which have not been previously mapped. Interestingly, the major surface thermal manifestations at Lassen are aligned along these structures, particularly in the Warner Valley.
El Niño$-$Southern Oscillation frequency cascade
Stuecker, Malte F.; Jin, Fei -Fei; Timmermann, Axel
2015-10-19
The El Niño$-$Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. In this paper, we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales. Finally, through climate model experiments and observational analysis, it is documented that a substantial fraction of the anomalous Northwest Pacific anticyclonemore » variability, which is the main atmospheric link between ENSO and the East Asian Monsoon system, can be explained by these interactions and is thus deterministic and potentially predictable.« less
Optical feedback effects on terahertz quantum cascade lasers: modelling and applications
NASA Astrophysics Data System (ADS)
Rakić, Aleksandar D.; Lim, Yah Leng; Taimre, Thomas; Agnew, Gary; Qi, Xiaoqiong; Bertling, Karl; Han, She; Wilson, Stephen J.; Kundu, Iman; Grier, Andrew; Ikonić, Zoran; Valavanis, Alexander; Demić, Aleksandar; Keeley, James; Li, Lianhe H.; Linfield, Edmund H.; Davies, A. Giles; Harrison, Paul; Ferguson, Blake; Walker, Graeme; Prow, Tarl; Indjin, Dragan; Soyer, H. Peter
2016-11-01
Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1-5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model.
El Niño$-$Southern Oscillation frequency cascade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuecker, Malte F.; Jin, Fei -Fei; Timmermann, Axel
The El Niño$-$Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. In this paper, we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales. Finally, through climate model experiments and observational analysis, it is documented that a substantial fraction of the anomalous Northwest Pacific anticyclonemore » variability, which is the main atmospheric link between ENSO and the East Asian Monsoon system, can be explained by these interactions and is thus deterministic and potentially predictable.« less
NASA Astrophysics Data System (ADS)
Idris, N. H.; Salim, N. A.; Othman, M. M.; Yasin, Z. M.
2018-03-01
This paper presents the Evolutionary Programming (EP) which proposed to optimize the training parameters for Artificial Neural Network (ANN) in predicting cascading collapse occurrence due to the effect of protection system hidden failure. The data has been collected from the probability of hidden failure model simulation from the historical data. The training parameters of multilayer-feedforward with backpropagation has been optimized with objective function to minimize the Mean Square Error (MSE). The optimal training parameters consists of the momentum rate, learning rate and number of neurons in first hidden layer and second hidden layer is selected in EP-ANN. The IEEE 14 bus system has been tested as a case study to validate the propose technique. The results show the reliable prediction of performance validated through MSE and Correlation Coefficient (R).
Knöpfel, Thomas; Leech, Robert
2018-01-01
Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality. PMID:29795654
Papper, V; Medvedeva, N; Fishov, I; Likhtenshtein, G I
2000-01-01
We proposed a new method for the study of molecular dynamics and fluidity of the living and model biomembranes and surface systems. The method is based on the measurements of the sensitized photoisomerization kinetics of a photochrome probe. The cascade triplet cis-trans photoisomerization of the excited stilbene derivative sensitized with the excited triplet Erythrosin B has been studied in a model liposome membrane. The photoisomerization reaction is depressed with nitroxide radicals quenching the excited triplet state of the sensitizer. The enhanced fluorescence polarization of the stilbene probe incorporated into liposome membranes indicates that the stilbene molecules are squeezed in a relatively viscous media of the phospholipids. Calibration of the "triple" cascade system is based on a previously proposed method that allows the measurement of the product of the quenching rate constant and the sensitizer's triplet lifetime, as well as the quantitative detection of the nitroxide radicals in the vicinity of the membrane surface. The experiment was conducted using the constant-illumination fluorescence technique. Sensitivity of the method using a standard commercial spectrofluorimeter is about 10(-12) mol of fluorescence molecules per sample and can be improved using an advanced fluorescence technique. The minimal local concentration of nitroxide radicals or any other quenchers being detected is about 10(-5) M. This method enables the investigation of any chemical and biological surface processes of microscopic scale when the minimal volume is about 10(-3) microL or less.
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.
The cyclic AMP cascade is altered in the fragile X nervous system.
Kelley, Daniel J; Davidson, Richard J; Elliott, Jamie L; Lahvis, Garet P; Yin, Jerry C P; Bhattacharyya, Anita
2007-09-26
Fragile X syndrome (FX), the most common heritable cause of mental retardation and autism, is a developmental disorder characterized by physical, cognitive, and behavioral deficits. FX results from a trinucleotide expansion mutation in the fmr1 gene that reduces levels of fragile X mental retardation protein (FMRP). Although research efforts have focused on FMRP's impact on mGluR signaling, how the loss of FMRP leads to the individual symptoms of FX is not known. Previous studies on human FX blood cells revealed alterations in the cyclic adenosine 3', 5'-monophosphate (cAMP) cascade. We tested the hypothesis that cAMP signaling is altered in the FX nervous system using three different model systems. Induced levels of cAMP in platelets and in brains of fmr1 knockout mice are substantially reduced. Cyclic AMP induction is also significantly reduced in human FX neural cells. Furthermore, cAMP production is decreased in the heads of FX Drosophila and this defect can be rescued by reintroduction of the dfmr gene. Our results indicate that a robust defect in cAMP production in FX is conserved across species and suggest that cAMP metabolism may serve as a useful biomarker in the human disease population. Reduced cAMP induction has implications for the underlying causes of FX and autism spectrum disorders. Pharmacological agents known to modulate the cAMP cascade may be therapeutic in FX patients and can be tested in these models, thus supplementing current efforts centered on mGluR signaling.
String Stability of a Linear Formation Flight Control System
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Ryan, Jack; Hanson, Curtis E.; Parle, James F.
2002-01-01
String stability analysis of an autonomous formation flight system was performed using linear and nonlinear simulations. String stability is a measure of how position errors propagate from one vehicle to another in a cascaded system. In the formation flight system considered here, each i(sup th) aircraft uses information from itself and the preceding ((i-1)(sup th)) aircraft to track a commanded relative position. A possible solution for meeting performance requirements with such a system is to allow string instability. This paper explores two results of string instability and outlines analysis techniques for string unstable systems. The three analysis techniques presented here are: linear, nonlinear formation performance, and ride quality. The linear technique was developed from a worst-case scenario and could be applied to the design of a string unstable controller. The nonlinear formation performance and ride quality analysis techniques both use nonlinear formation simulation. Three of the four formation-controller gain-sets analyzed in this paper were limited more by ride quality than by performance. Formations of up to seven aircraft in a cascaded formation could be used in the presence of light gusts with this string unstable system.
Optimizing the robustness of electrical power systems against cascading failures.
Zhang, Yingrui; Yağan, Osman
2016-06-21
Electrical power systems are one of the most important infrastructures that support our society. However, their vulnerabilities have raised great concern recently due to several large-scale blackouts around the world. In this paper, we investigate the robustness of power systems against cascading failures initiated by a random attack. This is done under a simple yet useful model based on global and equal redistribution of load upon failures. We provide a comprehensive understanding of system robustness under this model by (i) deriving an expression for the final system size as a function of the size of initial attacks; (ii) deriving the critical attack size after which system breaks down completely; (iii) showing that complete system breakdown takes place through a first-order (i.e., discontinuous) transition in terms of the attack size; and (iv) establishing the optimal load-capacity distribution that maximizes robustness. In particular, we show that robustness is maximized when the difference between the capacity and initial load is the same for all lines; i.e., when all lines have the same redundant space regardless of their initial load. This is in contrast with the intuitive and commonly used setting where capacity of a line is a fixed factor of its initial load.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... NUCLEAR REGULATORY COMMISSION [EA-11-013] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order Approving Direct Transfer of Licenses and Conforming Amendment I USEC... Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively, which...
NASA Astrophysics Data System (ADS)
Luke, Jensen; Lebit, Hermann; Paterson, Scott; Miller, Robert; Vernon, Ron
2017-04-01
The Cascades crystalline core forms part of the Cretaceous magmatic belt of western North America and exposes a crustal section composed of primarily tonalitic plutons that intruded siliciclastic metasediments of an arc-derived accretional system, and local meta-basalt/chert sequences. This study is the first attempt to correlate the well understood intrusive and P-T-t history of the metasedimentary and plutonic terrane with the kinematics and tectonic boundary conditions by rigorous analysis of structures documented in the Tonga Formation exposed at the western edge of the core. The Tonga Formation comprises pelite-psammite metasediments, which increase from greenschist ( 300-350° C) to amphibolite grade ( 500-600° C) from south to north. This metamorphic gradient is inverted relative to a major westward verging and downward facing fold system that dominates the internal architecture of the formation and implies that the initial regional metamorphic signature was established prior to the early fold generation. Subsequent co-axial fold superposition is seen as a consequence of the persistent accretional west-vergent thrusting in the foreland of the magmatic arc. The central section of the Cascades Range, exposed in western Washington, forms part of the Cretaceous accretional/magmatic arc extending over 4,000 km along western North America from Baja California to British Columbia (Fig. 1a) (e.g. Misch, 1966; Brown, 1987; Tabor et al., 1989). Two models exist for the evolution of the Cascades crystalline core with one invoking magmatic loading (e.g. Brown and Walker, 1993) as the major cause for rapid loading, consequent regional metamorphism and vertical uplift (Evans and Berti, 1986). Conversely, other workers favor a model that suggests loading as a consequence of tectonic, thrust-related thickening, followed by rapid exhumation of the exposed crustal section of 10 to 40 km paleodepth (e.g. Matzel, 2004; Patterson et al., 2004; Stowell et al., 2007). In this context, the Tonga Formation, on the westernmost boundary of the Cascades crystalline core, records Cretaceous plutonism, contact to regional metamorphism, and multiple episodes of folding, evidencing intense, arc-perpendicular contractional deformation, similar to that observed in the neighboring Chiwaukum Schist to the east (Miller and Paterson, 1992; Miller et al., 1993; Paterson and Miller, 1998; Miller et al., 2006). Building on previous extensive mapping and metamorphic and petrologic analysis in the Cascades, we use the Tonga Formation as a means to a comprehensive tectonic synthesis incorporating detailed analysis of the kinematics and timing of structural evolution, magma emplacement, and metamorphism.
Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions
2007-01-01
found in III-V quantum cascade lasers QCLs. Various groups have obtained electroluminescence from Si-rich Si/SiGe quantum cascade structures,2–4 but...Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions 5c. PROGRAM ELEMENT NUMBER 612305 6. AUTHOR(S) 5d. PROJECT NUMBER...ABSTRACT The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band
NASA Astrophysics Data System (ADS)
Al-Mansoori, M. H.; Al-Sheriyani, A.; Al-Nassri, S.; Hasoon, F. N.
2017-06-01
In this paper, we demonstrate a multi-wavelength Brillouin-erbium fiber laser (BEFL) with ~33 GHz frequency spacing using cascaded stimulated Brillouin scattering effects in optical fiber. The proposed laser structure exhibits a stable output channel with a tuning range of 19 nm, from 1549 nm to 1568 nm. The number of stable output channels produced is six channels with a triple-Brillouin frequency spacing. The output channels exhibit high output power and high optical signal-to-noise ratios (OSNRs). The laser structure has the potential to be used as a multi-wavelength source for optical communication systems.
Daniels, Blake E.; Ni, Jane; Reisman, Sarah E.
2016-01-01
A conjugate addition/asymmetric protonation/aza-Prins cascade reaction has been developed for the enantioselective synthesis of fused polycyclic indolines. A catalyst system generated from ZrCl4 and 3,3’-dibromo-BINOL enables the synthesis of a range of polycyclic indolines in good yields and high enantioselectivity. A key finding is the use of TMSCl and 2,6-dibromophenol as a stoichiometric source of HCl to facilitate catalyst turnover. This transformation is the first in which a ZrCl4•BINOL complex serves as a chiral Lewis acid-assisted Brønsted acid. PMID:26844668
Integrated heterodyne terahertz transceiver
Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM
2012-09-25
A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.
Tectonics and seismicity of the southern Washington Cascade range
Stanley, W.D.; Johnson, S.Y.; Qamar, A.I.; Weaver, C.S.; Williams, J.M.
1996-01-01
Geophysical, geological, and seismicity data are combined to develop a transpressional strain model for the southern Washington Cascades region. We use this model to explain oblique fold and fault systems, transverse faults, and a linear seismic zone just west of Mt. Rainier known as the western Rainier zone. We also attempt to explain a concentration of earthquakes that connects the northwest-trending Mount St. Helens seismic zone to the north-trending western Rainier zone. Our tectonic model illustrates the pervasive effects of accretionary processes, combined with subsequent transpressive forces generated by oblique subduction, on Eocene to present crustal processes, such as seismicity and volcanism.
Results of the Air Force high efficiency cascaded multiple bandgap solar cell programs
NASA Technical Reports Server (NTRS)
Rahilly, W. P.
1980-01-01
The III-V semiconductor materials system that was selected for continued cascade cell development was the AlGaAs cell on GaAs cell structure. The tunnel junction used as transparent ohmic contact between the top cell and the bottom cell continued to be the central difficulty in achieving the program objective of 25 percent AMO efficiency at 25 C. During the tunnel junction and top cell developments it became apparent that the AlGaAs cell has potential for independent development as a single junction converter and is a logical extension of the present GaAs heteroface technology.
Horst, Folkert; Green, William M J; Assefa, Solomon; Shank, Steven M; Vlasov, Yurii A; Offrein, Bert Jan
2013-05-20
We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.