Robert H. Ruth; Carl M. Berntsen
1955-01-01
Four years' measurement of seed fall in the spruce-hemlock type on the Cascade Head Experimental Forest indicates that an ample supply of seed is distributed over clear-cut areas under staggered-setting cutting. The largest tract sampled was 81 acres; in spite of a seed crop failure in 1950, it received an average of 243,000 viable spruce and hemlock seeds per...
A coarse wood dynamics model for the Western Cascades.
K. Mellen; A. Ager
2002-01-01
The Coarse Wood Dynamics Model (CWDM) analyzes the dynamics (fall, fragmentation, and decomposition) of Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) snags and down logs in forested ecosystems of the western Cascades of Oregon and Washington. The model predicts snag fall, height loss and decay,...
ERIC Educational Resources Information Center
Hoffert, Barbara; Heilbrun, Margaret; Kuzyk, Raya; Kim, Ann; McCormack, Heather; Katterjohn, Anna; Burns, Ann; Williams, Wilda
2008-01-01
From the fall's cascade of great new books, "Library Journal's" editors select their favorites--a dark rendition of Afghan life, a look at the "self-esteem trap," a celebration of Brooklyn activism, and much more.
Climate change and hydrology in the Blue Mountains [Chapter 3
Caty F. Clifton; Kate T. Day; Kathie Dello; Gordon E. Grant; Jessica E. Halofsky; Daniel J. Isaak; Charles H. Luce; Mohammad Safeeq; Brian P. Staab; John Stevenson
2017-01-01
The dominant influences on climatic patterns in the Pacific Northwest are the Pacific Ocean and the Cascade Range. The diurnal temperature range is higher east of the Cascade crest, further inland from the Pacific Ocean. More precipitation falls west of the Cascade Mountains crest, and a strong rain shadow greatly reduces precipitation east of the crest. The southern...
3. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...
3. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT
1. SWIMMING POOL. VIEW TO WEST. Rainbow Hydroelectric Facility, ...
1. SWIMMING POOL. VIEW TO WEST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT
2. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...
2. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT
B.M. Hardy; K.L. Pope; J. Piovia-Scott; R.N. Brown; J.E. Foley
2015-01-01
The global spread of the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to widespread extirpation of amphibian populations. During an intervention aimed at stabilizing at-risk populations, we treated wild-caught Cascades frogs Rana cascadae with the antifungal drug itraconazole. In fall 2012, we collected 60 recently...
A smart phone-based pocket fall accident detection, positioning, and rescue system.
Kau, Lih-Jen; Chen, Chih-Sheng
2015-01-01
We propose in this paper a novel algorithm as well as architecture for the fall accident detection and corresponding wide area rescue system based on a smart phone and the third generation (3G) networks. To realize the fall detection algorithm, the angles acquired by the electronic compass (ecompass) and the waveform sequence of the triaxial accelerometer on the smart phone are used as the system inputs. The acquired signals are then used to generate an ordered feature sequence and then examined in a sequential manner by the proposed cascade classifier for recognition purpose. Once the corresponding feature is verified by the classifier at current state, it can proceed to next state; otherwise, the system will reset to the initial state and wait for the appearance of another feature sequence. Once a fall accident event is detected, the user's position can be acquired by the global positioning system (GPS) or the assisted GPS, and sent to the rescue center via the 3G communication network so that the user can get medical help immediately. With the proposed cascaded classification architecture, the computational burden and power consumption issue on the smart phone system can be alleviated. Moreover, as we will see in the experiment that a distinguished fall accident detection accuracy up to 92% on the sensitivity and 99.75% on the specificity can be obtained when a set of 450 test actions in nine different kinds of activities are estimated by using the proposed cascaded classifier, which justifies the superiority of the proposed algorithm.
A. Youngblood
1995-01-01
An annotated bibliography of publications resulting from research at the Pringle Falls Experimental Forest, Deschutes National Forest, in central Oregon from 1930 to 1993 is presented. Over 100 publications are listed, including papers, theses, and reports. An index is provided that cross-references the listings under appropriate keywords.
Martin J. Brown; Jane Kertis; Mark H. Huff
2013-01-01
We monitored coarse woody debris dynamics and natural tree regeneration over a 14-year period after the 1991 Warner Creek Fire, a 3631-ha (8,972-ac) mixed severity fire in the western Cascade Range of Oregon. Rates for tree mortality in the fire, postfire mortality, snag fall, and snag fragmentation all showed distinct patterns by tree diameter and species, with...
Regeneration outlook on BLM lands in the Southern Oregon Cascades.
William I. Stein
1981-01-01
A survey of cutover timberland in the Butte Falls and Dead Indian areas showed that most partial cuts were moderately or well-stocked with natural regeneration. Clearcuts in the Butte Falls area were also well stocked, primarily with planted ponderosa pine; but many in the Dead Indian area were not. Advance regeneration was an important stocking component in partial...
Silvicultural activities in Pringle Falls Experimental Forest, Central Oregon
Andrew Youngblood; Kim Johnson; Jim Schlaich; Boyd Wickman
2004-01-01
Pringle Falls Experimental Forest has been a center for research in ponderosa pine forests east of the crest of the Cascade Range since 1931. Long-term research facilities, sites, and future research opportunities are currently at risk from stand-replacement wildfire because of changes in stand structure resulting from past fire exclusion. At the same time, many of the...
Hip fractures. Epidemiology, risk factors, falls, energy absorption, hip protectors, and prevention.
Lauritzen, J B
1997-04-01
The present review summarizes the pathogenic mechanisms leading to hip fracture based on epidemiological, experimental, and controlled studies. The estimated lifetime risk of hip fracture is about 14% in postmenopausal women and 6% in men. The incidence of hip fractures increases exponentially with aging, but the time-trend in increasing age-specific incidence may not be a universal phenomenon. Postmenopausal women suffering earlier non-hip fractures have an increased risk of later hip fracture. The relative risk being highest within the first years following the fracture. Nursing home residents have a high risk of hip fracture (annual rate of 5-6%), and the incidence of falls is about 1,500 falls/1,000 persons/year. Most hip fractures are a result of a direct trauma against the hip. The incidence of falls on the hip among nursing home residents is about 290 falls/1,000 persons/year and about 24% of these impacts lead to hip fracture. The force acting on the hip may reach 3.7 kN in falls on the hip from standing height, which means that only susceptible subjects will sustain a hip fracture in such falls. The effective load acting on the hip is 35% of the body weight in unprotected falls on the hip. Women with hip fractures have a lower body weight compared with controls, and they may also have less soft tissue covering the hip even when adjusted for body mass index, indicating a more android body habitus. Experimental studies show that the passive energy absorption in soft tissue covering the hip may influence the risk of hip fracture, and being an important determinant for the development of hip fracture, maybe more important than bone strength. External hip protectors were developed and tested in an open randomised nursing home study. The rate of hip fractures was reduced by 50%, corresponding to 9 out of 247 residents saved from sustaining a hip fracture. The review points to the essentials of the development of hip fracture, which constitutes; risk of fall, type of fall, type of impact, energy absorption, and lastly bone strength, which is the ultimate and last permissive factor in the cascade leading to hip fracture. Risk estimation and prevention of hip fractures may prove realistic when these issues are taken into consideration.
NASA Astrophysics Data System (ADS)
Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi
2017-04-01
Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.
Overview of transformer platform showing three original stepup transformer (center), ...
Overview of transformer platform showing three original step-up transformer (center), steel switchback (right), and modern step-down transformer (foreground), view to northwest - Morony Hydroelectric Facility, Dam and Powerhouse, Morony Dam Road, Great Falls, Cascade County, MT
Detail of exciter turbine showing shaft, scroll case, servomotor and ...
Detail of exciter turbine showing shaft, scroll case, servo-motor and operating ring (left foreground) and hand wheel for butterfly valve (right background) - Morony Hydroelectric Facility, Dam and Powerhouse, Morony Dam Road, Great Falls, Cascade County, MT
2010-07-01
3,271 acres in Cascade County in west-central Montana (Figure 1-1). The Base lies approximately 0.3 miles east of the city of Great Falls and 75...for future planning. MAFB has defined several land use categories, including Administration, Aircraft Operations, Airfield, Community, Housing ...greenhouse gases during construction. These emissions would be small compared to human-induced releases within the region and the State of Montana. No
Novel Design of Type I High Power Mid-IR Diode Lasers for Spectral Region 3 - 4.2 Microns
2014-09-25
multifold improvement of the device characteristics. Cascade pumping was achieved utilizing efficient interband tunneling through "leaky" window in band...Initially cascade pumping scheme was applied to laser heterostructures utilizing gain sections based on either intersubband [1] or type-II interband ...active regions, metamorphic virtual substrate and cascade pumping scheme. Cascade pumping of type-I quantum well gain section opened the whole new
View of transformer platform from Powerhouse roof showing oil tank ...
View of transformer platform from Powerhouse roof showing oil tank at original step-up transformer (center of foreground) and steel switchback (background), view to north-northeast - Morony Hydroelectric Facility, Dam and Powerhouse, Morony Dam Road, Great Falls, Cascade County, MT
Sueishi, Yuichiro; Sakaguchi, Norihito; Shibayama, Tamaki; Kinoshita, Hiroshi; Takahashi, Heishichiro
2003-01-01
We have investigated the formation of cascade clusters and structural changes in them by means of electron irradiation following ion irradiation in an austenitic stainless steel. Almost all of the cascade clusters, which were introduced by the ion irradiation, grew to form interstitial-type dislocation loops or vacancy-type stacking fault tetrahedra after electron irradiation at 623 K, whereas a few of the dot-type clusters remained in the matrix. It was possible to recognize the concentration of Ni and Si by radiation-induced segregation around the dot-type clusters. After electron irradiation at 773 K, we found that some cascade clusters became precipitates (delta-Ni2Si) due to radiation-induced precipitation. This suggests that the cascade clusters could directly become precipitation sites during irradiation.
2017-06-26
Various researchers are often pre-occupied with the quest for flowing water on Mars. However, this image from NASA's Mars Reconnaissance Orbiter (MRO), shows one of the many examples from Mars where lava (when it was molten) behaved in a similar fashion to liquid water. The northern rim of a 30-kilometer diameter crater situated in the western part of the Tharsis volcanic province is shown. The image shows that a lava flow coming from the north-northeast surrounded the crater rim, and rose to such levels that it breached the crater rim at four locations to produce spectacular multi-level lava falls (one in the northwest and three in the north). These lava "falls" cascaded down the wall and terraces of the crater to produce a quasi-circular flow deposit. It seems that the flows were insufficient to fill or even cover the pre-existing deposits of the crater floor. This is evidenced by the darker-toned lavas that overlie the older, and possibly dustier, lighter-toned deposits on the crater floor. This image covers the three falls in the north-central region of the crater wall. The lava flows and falls are distinct as they are rougher than the original features that are smooth and knobby. In a close-up image the rough-textured lava flow to the north has breached the crater wall at a narrow point, where it then cascades downwards, fanning out and draping the steeper slopes of the wall in the process. Image scale is 54.5 centimeters (21.5 inches) per pixel (with 2 x 2 binning); objects on the order of 164 centimeters (64.6 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA21763
No Snow No Flow: How Montane Stream Networks Respond to Drought
NASA Astrophysics Data System (ADS)
Grant, G.; Nolin, A. W.; Selker, J. S.; Lewis, S.; Hempel, L. A.; Jefferson, A.; Walter, C.; Roques, C.
2015-12-01
Hydrologic extremes, such as drought, offer an exceptional opportunity to explore how runoff generation mechanisms and stream networks respond to changing precipitation regimes. The winter of 2014-2015 was the warmest on record in western Oregon, US, with record low snowpacks, and was followed by an anomalously warm, dry spring, resulting in historically low streamflows. But a year like 2015 is more than an outlier meteorological year. It provides a unique opportunity to test fundamental hypotheses for how montane hydrologic systems will respond to anticipated changes in amount and timing of recharge. In particular, the volcanic Cascade Mountains represent a "landscape laboratory" comprised of two distinct runoff regimes: the surface-flow dominated Western Cascade watersheds, with flashy streamflow regimes, rapid baseflow recession, and very low summer flows; and (b) the spring-fed High Cascade watersheds, with a slow-responding streamflow regime, and a long and sustained baseflow recession that maintains late summer streamflow through deep-groundwater contributions to high volume, coldwater springs. We hypothesize that stream network response to the extremely low snowpack and recharge varies sharply in these two regions. In surface flow dominated streams, the location of channel heads can migrate downstream, contracting the network longitudinally; wetted channel width and depth contract laterally as summer recession proceeds and flows diminish. In contrast, in spring-fed streams, channel heads "jump" to the next downstream spring when upper basin spring flow diminishes to zero. Downstream of flowing springs, wetted channel width and depth contract laterally as flows recede. To test these hypotheses, we conducted a field campaign to measure changing discharge, hydraulic geometry, and channel head location in both types of watersheds throughout the summer and early fall. Multiple cross-section sites were established on 6 streams representing both flow regime types on either side of the Cascade crest. We also took Isotopic water samples to determine recharge elevations of receding streams. Taken together these measurements reveal the processes by which drainage networks contract as flows diminish - a fundamental property of montane stream systems both now and in the future.
Deuterium values from volcanic glass: A paleoelevation proxy for Oregon's Cascade Range
NASA Astrophysics Data System (ADS)
Carlson, T. B.; Bershaw, J. T.
2016-12-01
Hydrated volcanic glass has been used as a proxy to constrain Cenozoic paleoclimate across many of the world's mountain ranges. However, there are concerns that volcanic glass may not preserve the isotopic composition of syndepositional meteoric water. The Cascades are an excellent location to study the validity of hydrated volcanic glass as a paleoenvironmental proxy for several reasons. Moisture is derived from a single oceanic source and falls as orographic precipitation in the Cascades, leading to a characteristic altitude effect, or inverse relationship between elevation and the isotopic composition of meteoric water (δD). In addition, past studies have inferred uplift of the Cascades and an increase in the rain shadow effect since the Eocene through independent methods such as changing fossil assemblages, and other isotopic proxies including carbonates and fossil teeth. In this study, δD values of two hydrated tuff samples are compared: one prior to ( 29 Ma) and one following ( 5 Ma) the onset of High Cascade volcanism. The isotopic composition of these samples are interpreted in the context of modern water across the range to understand the potential of volcanic glass as a proxy for paleoelevation in the Pacific Northwest.
4. VIEW OF TURBINE PIT AT UNIT 3 SHOWING SERVOMOTOR ...
4. VIEW OF TURBINE PIT AT UNIT 3 SHOWING SERVO-MOTOR HEADS (BACKGROUND AT CENTER) WITH PISTON RODS BOLTED TO TURBINE GATE OPERATION RING (CENTER AT LEFT AND CENTER AT RIGHT). VIEW TO THE NORTH-NORTHWEST. - Black Eagle Hydroelectric Facility, Powerhouse, Great Falls, Cascade County, MT
Novel High Power Type-I Quantum Well Cascade Diode Lasers
2017-08-30
Novel High Power Type-I Quantum Well Cascade Diode Lasers The views, opinions and/or findings contained in this report are those of the author(s...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6... High Power Type-I Quantum Well Cascade Diode Lasers Report Term: 0-Other Email: leon.shterengas@stonybrook.edu Distribution Statement: 1-Approved
Threshold cascades with response heterogeneity in multiplex networks
NASA Astrophysics Data System (ADS)
Lee, Kyu-Min; Brummitt, Charles D.; Goh, K.-I.
2014-12-01
Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.
Zhang, Haijiang; Wen, Pengyue; Esener, Sadik
2007-07-01
We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.
Cooper, Lauren A.; Stringer, Anne M.
2018-01-01
ABSTRACT In clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) immunity systems, short CRISPR RNAs (crRNAs) are bound by Cas proteins, and these complexes target invading nucleic acid molecules for degradation in a process known as interference. In type I CRISPR-Cas systems, the Cas protein complex that binds DNA is known as Cascade. Association of Cascade with target DNA can also lead to acquisition of new immunity elements in a process known as primed adaptation. Here, we assess the specificity determinants for Cascade-DNA interaction, interference, and primed adaptation in vivo, for the type I-E system of Escherichia coli. Remarkably, as few as 5 bp of crRNA-DNA are sufficient for association of Cascade with a DNA target. Consequently, a single crRNA promotes Cascade association with numerous off-target sites, and the endogenous E. coli crRNAs direct Cascade binding to >100 chromosomal sites. In contrast to the low specificity of Cascade-DNA interactions, >18 bp are required for both interference and primed adaptation. Hence, Cascade binding to suboptimal, off-target sites is inert. Our data support a model in which the initial Cascade association with DNA targets requires only limited sequence complementarity at the crRNA 5′ end whereas recruitment and/or activation of the Cas3 nuclease, a prerequisite for interference and primed adaptation, requires extensive base pairing. PMID:29666291
Experimental and Theoretical Study of the Temperature Performance of Type-II Quantum Well Lasers
2007-05-31
performance of type-II Interband Cascade (IC) GaSb-based semiconductor lasers has been developed. The method includes comparing the temperature-concentration... dependence at the laser threshold with steady-state carrier heating characteristics. The number of cascades in prototype type-II IC lasers has been...Monroy, and R.L.Tober, "Wavelength Tuning of Interband Cascade Laser Based on the Stark Effect", in “Future Trends in Microelectronics” ed. by
Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
Pausch, Patrick; Müller-Esparza, Hanna; Gleditzsch, Daniel; Altegoer, Florian; Randau, Lennart; Bange, Gert
2017-08-17
CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids. Type I CRISPR-Cas systems employ highly diverse, multi-subunit surveillance Cascade complexes that facilitate duplex formation between crRNA and complementary target DNA for R-loop formation, retention, and DNA degradation by the subsequently recruited nuclease Cas3. Typically, the large subunit recognizes bona fide targets through the PAM (protospacer adjacent motif), and the small subunit guides the non-target DNA strand. Here, we present the Apo- and target-DNA-bound structures of the I-Fv (type I-F variant) Cascade lacking the small and large subunits. Large and small subunits are functionally replaced by the 5' terminal crRNA cap Cas5fv and the backbone protein Cas7fv, respectively. Cas5fv facilitates PAM recognition from the DNA major groove site, in contrast to all other described type I systems. Comparison of the type I-Fv Cascade with an anti-CRISPR protein-bound I-F Cascade reveals that the type I-Fv structure differs substantially at known anti-CRISPR protein target sites and might therefore be resistant to viral Cascade interception. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pitcher, Bradley W.; Kent, Adam J. R.; Grunder, Anita L.; Duncan, Robert A.
2017-06-01
The late Neogene Deschutes Formation of central Oregon preserves a remarkable volcanic and sedimentary record of the initial stages of High Cascades activity following an eastward shift in the locus of volcanism at 7.5 Ma. Numerous ignimbrite and tephra-fall units are contained within the formation, and since equivalent deposits are relatively rare for the Quaternary Cascades, the eruptions of the earliest High Cascade volcanoes were likely more explosive than those of the Quaternary arc. In this study, the timing and frequency of eruptions which produced 14 laterally extensive marker ignimbrites within the Deschutes Formation are established using 40Ar/39Ar geochronology. Plagioclase 40Ar/39Ar ages for the lowermost (6.25 ± 0.07 Ma) and uppermost (5.45 ± 0.04 Ma) marker ignimbrites indicate that all major explosive eruptions within the Deschutes Formation occurred within a period of 800 ± 54 k.y. (95% confidence interval). Minimum estimates for the volumes of the 14 ignimbrites, using an ArcGIS-based method, range from 1.0 to 9.4 km3 and have a total volume of 62.5 km3. Taken over the 50 km of arc length, the explosive volcanic production rate of the central Oregon High Cascades during Deschutes Formation time was a minimum of 1.8 km3/m.y./km of arc length. By including estimates of the volumes of tephra-fall components, as well as ignimbrites that may have traveled west, we estimate a total volume range, for these 14 eruptions alone, of 188 to 363 km3 ( 121 to 227 km3 DRE), a rate of 4.7-9.1 km3/m.y./km arc length. This explosive volcanic production rate is much higher than the average Quaternary eruption rates, of all compositions, estimated for the entire Cascade arc (1.5-2.5), Alaska Peninsula segment of the Aleutian arc (0.6-1.0), and the Andean southern volcanic zone (1.1-2.0). We suggest that this atypical explosive pulse may result from the onset of regional extension and migration of the magmatic arc, which had the combined effect of increasing magmatic flux and temporarily enhancing melting of more fusible crust.
Cascades in multiplex financial networks with debts of different seniority
NASA Astrophysics Data System (ADS)
Brummitt, Charles D.; Kobayashi, Teruyoshi
2015-06-01
The seniority of debt, which determines the order in which a bankrupt institution repays its debts, is an important and sometimes contentious feature of financial crises, yet its impact on systemwide stability is not well understood. We capture seniority of debt in a multiplex network, a graph of nodes connected by multiple types of edges. Here an edge between banks denotes a debt contract of a certain level of seniority. Next we study cascading default. There exist multiple kinds of bankruptcy, indexed by the highest level of seniority at which a bank cannot repay all its debts. Self-interested banks would prefer that all their loans be made at the most senior level. However, mixing debts of different seniority levels makes the system more stable in that it shrinks the set of network densities for which bankruptcies spread widely. We compute the optimal ratio of senior to junior debts, which we call the optimal seniority ratio, for two uncorrelated Erdős-Rényi networks. If institutions erode their buffer against insolvency, then this optimal seniority ratio rises; in other words, if default thresholds fall, then more loans should be senior. We generalize the analytical results to arbitrarily many levels of seniority and to heavy-tailed degree distributions.
Cascades in multiplex financial networks with debts of different seniority.
Brummitt, Charles D; Kobayashi, Teruyoshi
2015-06-01
The seniority of debt, which determines the order in which a bankrupt institution repays its debts, is an important and sometimes contentious feature of financial crises, yet its impact on systemwide stability is not well understood. We capture seniority of debt in a multiplex network, a graph of nodes connected by multiple types of edges. Here an edge between banks denotes a debt contract of a certain level of seniority. Next we study cascading default. There exist multiple kinds of bankruptcy, indexed by the highest level of seniority at which a bank cannot repay all its debts. Self-interested banks would prefer that all their loans be made at the most senior level. However, mixing debts of different seniority levels makes the system more stable in that it shrinks the set of network densities for which bankruptcies spread widely. We compute the optimal ratio of senior to junior debts, which we call the optimal seniority ratio, for two uncorrelated Erdős-Rényi networks. If institutions erode their buffer against insolvency, then this optimal seniority ratio rises; in other words, if default thresholds fall, then more loans should be senior. We generalize the analytical results to arbitrarily many levels of seniority and to heavy-tailed degree distributions.
Takasu, K
2001-12-01
Intramolecular cascade reaction has received much attention as a powerful methodology to construct a polycyclic framework in organic synthesis. We have been developing "boomerang-type cascade reaction" to construct a variety of polycyclic skeletons efficiently. In the above reactions, a nucleophilic function of substrates changes the character into an electrophile after the initial reaction, and the electrophilic group acts as a nucleophile in the second reaction. That is, the reaction center stepwise moves from one functional group back to the same one via other functional groups. The stream of the electron concerning the cascade reaction is like a locus of boomerang. We show here three different boomerang-type reactions via ionic species or free radicals. 1) Diastereoselective Michael-aldol reaction based on the chiral auxiliary method and enantioselective Michael-aldol reaction by the use of external chiral sources. 2) Short and efficient total syntheses of longifolane sesquiterpenes utilizing intramolecular double Michael addition as a key step. 3) Development of boomerang-type radical cascade reaction of halopolyenes to construct terpenoid skeletons and its regioselectivity.
Cooper, Lauren A; Stringer, Anne M; Wade, Joseph T
2018-04-17
In clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) immunity systems, short CRISPR RNAs (crRNAs) are bound by Cas proteins, and these complexes target invading nucleic acid molecules for degradation in a process known as interference. In type I CRISPR-Cas systems, the Cas protein complex that binds DNA is known as Cascade. Association of Cascade with target DNA can also lead to acquisition of new immunity elements in a process known as primed adaptation. Here, we assess the specificity determinants for Cascade-DNA interaction, interference, and primed adaptation in vivo , for the type I-E system of Escherichia coli Remarkably, as few as 5 bp of crRNA-DNA are sufficient for association of Cascade with a DNA target. Consequently, a single crRNA promotes Cascade association with numerous off-target sites, and the endogenous E. coli crRNAs direct Cascade binding to >100 chromosomal sites. In contrast to the low specificity of Cascade-DNA interactions, >18 bp are required for both interference and primed adaptation. Hence, Cascade binding to suboptimal, off-target sites is inert. Our data support a model in which the initial Cascade association with DNA targets requires only limited sequence complementarity at the crRNA 5' end whereas recruitment and/or activation of the Cas3 nuclease, a prerequisite for interference and primed adaptation, requires extensive base pairing. IMPORTANCE Many bacterial and archaeal species encode CRISPR-Cas immunity systems that protect against invasion by foreign DNA. In the Escherichia coli CRISPR-Cas system, a protein complex, Cascade, binds 61-nucleotide (nt) CRISPR RNAs (crRNAs). The Cascade complex is directed to invading DNA molecules through base pairing between the crRNA and target DNA. This leads to recruitment of the Cas3 nuclease, which destroys the invading DNA molecule and promotes acquisition of new immunity elements. We made the first in vivo measurements of Cascade binding to DNA targets. Thus, we show that Cascade binding to DNA is highly promiscuous; endogenous E. coli crRNAs can direct Cascade binding to >100 chromosomal locations. In contrast, we show that targeted degradation and acquisition of new immunity elements require highly specific association of Cascade with DNA, limiting CRISPR-Cas function to the appropriate targets. Copyright © 2018 Cooper et al.
Paterson, New Jersey: America's Silk City. Teaching with Historic Places.
ERIC Educational Resources Information Center
Koman, Rita G.
Paterson, New Jersey, was established in the 1790s to utilize the power of the water that cascades through the Passaic River Gorge. Massive brick mill buildings lined the canals that transformed the power of the falls into energy to drive machines. These mills manufactured many things during the history of this industrial city. In the late 19th…
People at risk - nexus critical infrastructure and society
NASA Astrophysics Data System (ADS)
Heiser, Micha; Thaler, Thomas; Fuchs, Sven
2016-04-01
Strategic infrastructure networks include the highly complex and interconnected systems that are so vital to a city or state that any sudden disruption can result in debilitating impacts on human life, the economy and the society as a whole. Recently, various studies have applied complex network-based models to study the performance and vulnerability of infrastructure systems under various types of attacks and hazards - a major part of them is, particularly after the 9/11 incident, related to terrorism attacks. Here, vulnerability is generally defined as the performance drop of an infrastructure system under a given disruptive event. The performance can be measured by different metrics, which correspond to various levels of resilience. In this paper, we will address vulnerability and exposure of critical infrastructure in the Eastern Alps. The Federal State Tyrol is an international transport route and an essential component of the north-south transport connectivity in Europe. Any interruption of the transport flow leads to incommensurable consequences in terms of indirect losses, since the system does not feature redundant elements at comparable economic efficiency. Natural hazard processes such as floods, debris flows, rock falls and avalanches, endanger this infrastructure line, such as large flood events in 2005 or 2012, rock falls 2014, which had strong impacts to the critical infrastructure, such as disruption of the railway lines (in 2005 and 2012), highways and motorways (in 2014). The aim of this paper is to present how critical infrastructures as well as communities and societies are vulnerable and can be resilient against natural hazard risks and the relative cascading effects to different compartments (industrial, infrastructural, societal, institutional, cultural, etc.), which is the dominant by the type of hazard (avalanches, torrential flooding, debris flow, rock falls). Specific themes will be addressed in various case studies to allow cross-learning and cross-comparison of, for example rural and urban areas, and different scales. Correspondingly, scale-specific resilience indicators and metrics will be developed to tailor methods to specific needs according to the scale of assessment (micro/local and macro/regional) and to the type of infrastructure. The traditional indicators normally used in structural analysis are not sufficient to understand how events happening on the networks can have cascading consequences. Moreover, effects have multidimensional (technical, economic, organizational and human), multiscale (micro and macro) and temporal characteristics (short- to long-term incidence). These considerations will guide to different activities: 1) computation of classic structural analysis indicators on the case studies in order to obtain an identity of the transport infrastructure and; 2) development of a set of new measures of resilience. To mitigate natural hazard risk a large amount of protection measures of different typology have been constructed following inhomogeneous reliability standards. The focus of this case study will be on resilience issues and decision making in the context of a large scale sectorial approach focused on transport infrastructure network.
Relationship between location and activity in injurious falls: an exploratory study
2010-01-01
Background Knowledge about the circumstances under which injurious falls occur could provide healthcare workers with better tools to prevent falls and fall-related injuries. Therefore, we assessed whether older persons who sustain an injurious fall can be classified into specific fall types, based on a combination of fall location and activity up to the moment of the fall. In addition, we assessed whether specific injurious fall types are related to causes of the fall, consequences of the fall, socio-demographic characteristics, and health-related characteristics. Methods An exploratory, cross-sectional study design was used to identify injurious fall types. The study population comprised 333 community-dwelling Dutch elderly people aged 65 years or over who attended an accident and emergency department after a fall. All participants received a self-administered questionnaire after being discharged home. The questionnaire comprised items concerning circumstances of the injurious fall, causes of the fall, consequences of the fall, socio-demographic characteristics and health-related characteristics. Injurious fall types were distinguished by analyzing data by means of HOMALS (homogeneity analysis by means of alternating least squares). Results We identified 4 injurious fall types: 1) Indoor falls related to lavatory visits (hall and bathroom); 2) Indoor falls during other activities of daily living; 3) Outdoor falls near the home during instrumental activities of daily living; 4) Outdoor falls away from home, occurring during walking, cycling, and shopping for groceries. These injurious fall types were significantly related to age, cause of the fall, activity avoidance and daily functioning. Conclusion The face validity of the injurious fall typology is obvious. However, we found no relationship between the injurious fall types and severity of the consequences of the fall. Nevertheless, there appears to be a difference between the prevalence of fractures and the cause of the fall between the injurious fall types. Our data suggests that with regard to prevention of serious injuries, we should pay special attention to outdoor fallers and indoor fallers during lavatory visits. In addition, we should have special attention for causes of the fall. However, the conclusions reached in this exploratory analysis are tentative and need to be validated in a separate dataset. PMID:20565871
Cascading off the West Greenland Shelf: A numerical perspective
NASA Astrophysics Data System (ADS)
Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Petrie, Brian; Azetsu-Scott, Kumiko; Lee, Craig M.
2017-07-01
Cascading of dense water from the shelf to deeper layers of the adjacent ocean basin has been observed in several locations around the world. The West Greenland Shelf (WGS), however, is a region where this process has never been documented. In this study, we use a numerical model with a 1/4° resolution to determine (i) if cascading could happen from the WGS; (ii) where and when it could take place; (iii) the forcings that induce or halt this process; and (iv) the path of the dense plume. Results show cascading happening off the WGS at Davis Strait. Dense waters form there due to brine rejection and slide down the slope during spring. Once the dense plume leaves the shelf, it gradually mixes with waters of similar density and moves northward into Baffin Bay. Our simulation showed events happening between 2003-2006 and during 2014; but no plume was observed in the simulation between 2007 and 2013. We suggest that the reason why cascading was halted in this period is related to: the increased freshwater transport from the Arctic Ocean through Fram Strait; the additional sea ice melting in the region; and the reduced presence of Irminger Water at Davis Strait during fall/early winter. Although observations at Davis Strait show that our simulation usually overestimates the seasonal range of temperature and salinity, they agree with the overall variability captured by the model. This suggests that cascades have the potential to develop on the WGS, albeit less dense than the ones estimated by the simulation.
Quantum-electrodynamic cascades in intense laser fields
NASA Astrophysics Data System (ADS)
Narozhny, N. B.; Fedotov, A. M.
2015-01-01
It is shown that in an intense laser field, along with cascades similar to extensive air showers, self-sustaining field-energized cascades can develop. For intensities of 1024~ \\text {W cm}-2 or higher, such cascades can even be initiated by a particle at rest in the focal area of a tightly focused laser pulse. The cascade appearance effect can considerably alter the progression of any process occurring in a high-intensity laser field. At very high intensities, the evolvement of such cascades can lead to the depletion of the laser field. This paper presents a design of an experiment to observe these two cascade types simultaneously already in next-generation laser facilities.
Movements of northern flying squirrels in different-aged forest stands of western Oregon
Martin, K.J.; Anthony, R.G.
1999-01-01
In western Oregon, northern flying squirrels (Glaucomys sabrinus) are the primary prey species for northern spotted owls (Strix occidentalis caurina), an old-growth associated species. To assess differences between old-growth and second-growth habitat, we livetrapped and radiotagged 39 northern flying squirrels to estimate their home range sizes and describe movements in 2 old-growth and 2 second-growth conifer forest stands in the Cascade Mountains of central Oregon. Sampling periods were summer and fall of 1991-92. Home range sizes averaged 4.9 ha and did not differ (P > 0.30) between the 2 stand types. Male northern flying squirrels had larger (P ??? 0.03) mean home ranges (5.9 ?? 0.8 ha; ?? ?? SE; n = 20) than females (3.9 ?? 0.4 ha; n = 19). Northern flying squirrel movement distances between successive, noncorrelated telemetry locations averaged 71 m (n = 1,090). No correlation was found between distances moved and stand type or sex. Northern flying squirrel's home range sizes, movements, and densities were similar between the 2 stand types. We suggest abundance and movements of northern flying squirrels are not influencing the preferential selection of oldgrowth forests by northern spotted owls.
The role of hillslope hydrology in controlling nutrient loss
Willem J. van Verseveld; Jeffrey J. McDonnell; Kate Lajtha
2009-01-01
Hydrological controls on DOC and N transport at the catchment scale were studied for five storm events from the fall of 2004 through the spring of 2005 in WS10, H,J, Andrews Experimental Forest in the western Cascade Mountains of Oregon, This catchment is devoid of any riparian zone and characterized by hillslopes that issue directly into the stream. This enabled us to...
Teper, Doron; Sunitha, Sukumaran; Martin, Gregory B; Sessa, Guido
2015-01-01
Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades. PMID:26237448
Towards Silicon-Based Longwave Integrated Optoelectronics (LIO)
2008-01-21
circuitry. The photonics can use, for example, microbolometers and III-V photodetectors as well as III-V interband cascade and quantum cascade lasers...chips using inputs from several sensors. (4) imaging: focal - plane - array imager with integral readout, infrared-to-visible image converter chip, (5... photodetectors , type II interband cascades and QCLs. I would integrate the cascades in LIO using a technique similar to that developed by John Bower’s
Reservoirs operation and water resources utilization coordination in Hongshuihe basin
NASA Astrophysics Data System (ADS)
Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin
2018-06-01
In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.
Interferometric phase locking of two electronic oscillators with a cascade electro-optic modulator
NASA Astrophysics Data System (ADS)
Chao, C. H.; Chien, P. Y.; Chang, L. W.; Juang, F. Y.; Hsia, C. H.; Chang, C. C.
1993-01-01
An optical-type electrical phase-locked-loop system based on a cascade electro-optic modulator has been demonstrated. By using this technique, a set of optical-type phase detectors, operating at any harmonic frequencies of two applied phase-modulation signals, has been implemented.
Josberger, Edward G.; Bidlake, William R.
2010-01-01
The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
2012-01-18
sidewall interband cascade lasers with single-mode midwave-infrared emission at room tempera- ture,” Appl. Phys. Lett. 95, 231103 (2009). 5. J. V. Li...R. Q. Yang, C. J. Hill, and S. L. Chuang, “ Interband cascade detectors with room temperature photo- voltaic operation,” Appl. Phys. Lett. 86, 101102... interband cascade lasers,” J. Appl. Phys. 96, 1866–1879 (2004). 13. S. Mou, J. V. Li, and S. L. Chuang, “Quantum efficiency analysis of InAs-GaSb type
NASA Astrophysics Data System (ADS)
Priest, George R.; Hladky, Frank R.; Mertzman, Stanley A.; Murray, Robert B.; Wiley, Thomas J.
2013-08-01
geologic mapping of the Klamath Falls-Keno area revealed the complex relationship between subduction, crustal extension, and magmatic composition of the southern Oregon Cascade volcanic arc. Volcanism in the study area at 7-4 Ma consisted of calc-alkaline basaltic andesite and andesite lava flowing over a relatively flat landscape. Local angular unconformities are evidence that Basin and Range extension began at by at least 4 Ma and continues today with fault blocks tilting at a long-term rate of 2°/Ma to 3°/Ma. Minimum NW-SE extension is 1.5 km over 28 km ( 5%). High-alumina olivine tholeiite (HAOT) or low-K, low-Ti transitional high-alumina olivine tholeiite (LKLT) erupted within and adjacent to the back edge of the calc-alkaline arc as the edge receded westward at a rate of 10 km/Ma at 2.7-0.45 Ma. The volcanic front migrated east much slower than the back arc migrated west: 0 km/Ma for 6-0.4 Ma calc-alkaline rocks; 0.7 km/Ma, if 6 Ma HAOT-LKLT is included; and 1 km/Ma, if highly differentiated 17-30 Ma volcanic rocks of the early Western Cascades are included. Declining convergence probably decreased asthenospheric corner flow, decreasing width of calc-alkaline and HAOT-LKLT volcanism and the associated heat flow anomaly, the margins of which focused on Basin and Range extension and leakage of HAOT-LKLT magma to the surface. This declining corner flow combined with steepening slab dip shifted the back arc west. Compensation of extension by volcanic intrusion and extrusion allowed growth of imposing range-front fault scarps only behind the trailing edge of the shrinking arc.
NASA Astrophysics Data System (ADS)
Yarnell, S. M.; Pope, K.; Podolak, K.; Wolf, E.; Burnett, R.
2016-12-01
Due to extensive livestock grazing and widespread removal of beaver and willows, headwater meadows have transformed from multi-thread channels with seasonally active floodplains into single thread, incised channels that store less carbon, retain less water, and are lower in habitat quality for a diverse suite of meadow-dependent wildlife. Meadow restoration techniques often include willow planting and cattle exclosures; however, few studies have rigorously tested the long-term efficacy of these methods or evaluated alternative restoration techniques such as reintroduction of beaver or installation of beaver dam analogues (BDAs). This project seeks to evaluate the installation of BDAs as a restoration technique in Childs Meadow, a heavily grazed meadow in the Cascade Range representative of low-gradient meadows across northern California. Using a before-after-control-impact study design, the study tests the impacts of two restoration techniques (willow planting with cattle exclusion and willow planting with cattle exclusion and BDAs) on hydrology, carbon sequestration, and sensitive species. Results will be compared with measurements in an unrestored section of the meadow that currently supports an active beaver population and two imperiled species (Cascades Frog and Willow Flycatcher). One specific project objective is to measure the response of hydrogeomorphic conditions (e.g. groundwater, surface water, temperature, habitat) and Cascades Frog and Willow Flycatcher to restorative actions. Pre-treatment data was collected in summer 2015, a cattle exclosure was established and willows were planted in fall 2015, and installation of the BDAs is planned for fall 2016. Three years of post-implementation monitoring will be completed to assess impacts of the treatments. Here, we will present our sampling design and first year results following initiation of the treatments.
Cascade of Quantum Transitions and Magnetocaloric Anomalies in an Open Nanowire
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Mitskan, V. A.; Shustin, M. S.
2017-12-01
A sequence of magnetocaloric anomalies occurring with the change in a magnetic field H is predicted for an open nanowire with the Rashba spin-orbit coupling and the induced superconducting pairing potential. The nature of such anomalies is due to the cascade of quantum transitions related to the successive changes in the fermion parity of the nanowire ground state with the growth of the magnetic field. It is shown that the critical H c values fall within the parameter range corresponding to the nontrivial values of the Z 2 topological invariant of the corresponding 1D band Hamiltonian characteristic of the D symmetry class. It is demonstrated that such features in the behavior of the open nanowire are retained even in the presence of Coulomb interactions.
Krimmel, Robert M.
2000-01-01
Mass balance and climate variables are reported for South Cascade Glacier, Washington, for the years 1986-91. These variables include air temperature, precipitation, water runoff, snow accumulation, snow and ice melt terminus position, surface level, and ice speed. Data are reduced to daily and monthly values where appropriate. The glacier-averaged values of spring snow accumulation and fall net balance given in this report differ from previous results because amore complete analysis is made. Snow accumulation values for the1986-91 period ranged from 3.54 (water equivalent) meters in 1991 to2.04 meters in 1987. Net balance values ranged from 0.07 meters in1991 to -2.06 meters in 1987. The glacier became much smaller during the 1986-91 period and retreated a cumulative 50 meters.
Sorenson, Daniel G.
2012-01-01
The Cascades Ecoregion (Omernik, 1987; U.S. Environmental Protection Agency, 1997) covers approximately 46,787 km2 (18,064 mi2) in Washington, Oregon, and California (fig. 1). The main body of the ecoregion extends from Snoqualmie Pass, Washington, in the north, to Hayden Mountain, near State Highway 66 in southern Oregon. Also included in the ecoregion is a small isolated section south of Bend, Oregon, as well as a larger one around Mount Shasta, California. The ecoregion is bounded on the west by the Klamath Mountains, Willamette Valley, and Puget Lowland Ecoregions; on the north by the North Cascades Ecoregion; and on the east by the Eastern Cascades Slopes and Foothills Ecoregion. The Cascades Ecoregion is a forested, mountainous ecoregion, and it contains a large amount of Cenozoic volcanic rock and many active and inactive volcanoes, especially in the east (McNab and Avers, 1994). Elevations range from near sea level at the Columbia River to 4,390 m at Mount Rainier in Washington, with most of the ecoregion between 645 and 2,258 m. The west side of the ecoregion is characterized by long, steep ridges and wide river valleys. Subalpine meadows are present at higher elevations, and alpine glaciers have left till and outwash deposits (McNab and Avers, 1994). Precipitation in the Cascades Ecoregion ranges from 1,300 to 3,800 mm, falling mostly as rain and snow from October to June. Average annual temperatures range from –1ºC to 11ºC. The length of the growing season varies from less than 30 days to 240 days (McNab and Avers, 1994).
Jianwei Zhang; William W. Oliver; Matt D. Busse
2006-01-01
Effects of stand density and shrub competition on growth and development were compared across a gradient of study sites. Challenge, the most productive site, is located in the foothills of the Sierra Nevada, northern California. Pringle Falls is of intermediate productivity in the rain shadow of the central Oregon Cascades. Trough Springs Ridge is the poorest site...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorka, K. M.; Copeland, E. K.; Winterhalter, W. E.
To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuationsmore » in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.« less
Cascading disaster models in postburn flash flood
Fred May
2007-01-01
A useful method of modeling threats from hazards and documenting their disaster causation sequences is called âcascading threat modeling.â This type of modeling enables emergency planners to address hazard and risk assessments systematically. This paper describes a cascading threat modeling and analysis process. Wildfire and an associated postburn flash flood disaster...
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia; ...
2016-10-13
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
He, Chi; Bai, Zengbing; Hu, Jialei; Wang, Bingnan; Xie, Hujun; Yu, Lei; Ding, Hanfeng
2017-07-25
A solvent-dependent oxidative dearomatization-induced divergent [5+2] cascade approach to bicyclo[3.2.1]octanes was described. This novel protocol enables a facile synthesis of a series of diversely functionalized ent-kaurene and cedrene-type skeletons in good yields and excellent diastereoselectivities.
Type-I interband cascade lasers near 3.2 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yuchao; Li, Lu; Yang, Rui Q., E-mail: Rui.Q.Yang@ou.edu
2015-01-26
Interband cascade (IC) lasers have been demonstrated based on type-I InGaAsSb/AlAsSb quantum well (QW) active regions. These type-I IC lasers are composed of 6-cascade stages and InAs/AlSb superlattice cladding layers. In contrast to the use of quinary AlGaInAsSb barriers for active region in previous type-I QW lasers, the type-I QW active region in each stage is sandwiched by digitally graded multiple InAs/AlSb QW electron injector and GaSb/AlSb QW hole injector. The fabricated type-I IC lasers were able to operate in continuous wave and pulsed modes at temperatures up to 306 and 365 K, respectively. The threshold current densities of broad-area lasersmore » were around 300 A/cm{sup 2} at 300 K with a lasing wavelength near 3.2 μm. The implications and prospects of these initial results are discussed.« less
DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter
NASA Astrophysics Data System (ADS)
Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi
2013-06-01
Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.
Poulin, Vivian; Serpico, Pasquale Dario
2015-03-06
The standard theory of electromagnetic cascades onto a photon background predicts a quasiuniversal shape for the resulting nonthermal photon spectrum. This has been applied to very disparate fields, including nonthermal big bang nucleosynthesis (BBN). However, once the energy of the injected photons falls below the pair-production threshold the spectral shape is much harder, a fact that has been overlooked in past literature. This loophole may have important phenomenological consequences, since it generically alters the BBN bounds on nonthermal relics; for instance, it allows us to reopen the possibility of purely electromagnetic solutions to the so-called "cosmological lithium problem," which were thought to be excluded by other cosmological constraints. We show this with a proof-of-principle example and a simple particle physics model, compared with previous literature.
1980-12-01
size data has been obtained with diffusion batteries, electrostatic precipitators , and cascade im- pactors. There is a strong (5 to 1) seasonal variation...dimensional Eddington approximation to derive microwave radiances emerging from finite clouds of precipitation , it was noted that the Eddington...condensation nuclei. They can then accrete water and grow by condensation, and fall as rain, collecting water droplets after they have grown to precipitation
Investigating the Role of Radiation Therapy Breast Cancer Clinical and Translational Research
2006-05-01
radiosensitizing and anticancer properties of green tea and curcumin and found a complex response cascade in cell lines. For example, the anticancer ...this fall. 5. Arber Kodra: Effect of Green Tea and Curcumin on Breast Cancer Cell Lines Mentor: Gary Kao, MD PhD Arber examined the...Breast Cancer Elizabeth Gurney Mentor: Gary Kao, MD, PhD Effect of Green Tea and Curcumin on Breast Cancer Cell Lines Arber Kodra Mentor
NASA Astrophysics Data System (ADS)
McCallum, I. S.; Mullen, E.; Jean-Louis, P.; Tepper, J. H.
2015-12-01
Mt. Baker and the adjacent Chilliwack batholith (MBC focus) in NW Washington preserve the longest magmatic record in the Cascade Arc, providing an excellent natural laboratory for examining the spatial, temporal and geochemical evolution of Cascade magmatism and links to tectonic processes. We present new U-Pb zircon LA-ICP-MS ages for 14 samples from MBC and neighboring regions of the north Cascades. The new results are up to 8 Myr different from previous K-Ar ages, illustrating the need for new age determinations in the Cascades. A maximum age of 34.74±0.24 Ma (2σ) (Post Creek stock) is consistent with 35-40 Ma ages for arc inception in the southern Cascades. The most voluminous MBC plutons cluster at 32-29 Ma, consistent with an early flare-up that also coincides with intrusion of the Index batholith farther south (2 samples at 33.26±0.19, 33.53±0.15 Ma). This flare-up is absent in the northernmost Cascades where the oldest pluton (Fall Creek stock) is 6.646±0.046 Ma, 4 Myr younger than previously cited. Earliest Cascade magmatism is progressively younger to the north of MBC, possibly tracing the northerly passage of the slab edge. MBC activity was continuous to 22.75±0.17 Ma (Whatcom Arm), marking the initiation of an 11 Myr hiatus. Magmatism resumed at 11.33±0.08 Ma (Indian Creek) and continued to the modern Mt. Baker cone, defining a pattern of southwesterly migration over ~55 km that may be attributable to slab rollback and arc rotation (e.g. Wells & McCaffrey 2013). Uniformity of the rate and direction of migration implies that rollback and rotation began at least 11 Myr ago. Post-hiatus magmas show distinct geochemical and petrologic characteristics including a major Pb isotopic shift. The 2.430±0.016 Ma Lake Ann stock contains 4.2 Ma zircon antecrysts, recording prolonged activity in that area. The 1.165±0.013 Ma Kulshan caldera ignimbrite contains ~200 Ma inherited zircons that may provide the first direct record of Wrangellian basement beneath the arc.
Williams, Shannon D.; Farmer, James
2003-01-01
The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Environment and Conservation, Division of Superfund, collected discharge, rainfall, continuous water-quality (temperature, dissolved oxygen, specific conductance, and pH), and volatile organic compound (VOC) data from three karst springs in Middle Tennessee from February 2000 to May 2001. Continuous monitoring data indicated that each spring responds differently to storms. Water quality and discharge at Wilson Spring, which is located in the Central Basin karst region of Tennessee, changed rapidly after rainfall. Water quality and discharge also varied at Cascade Spring; however, changes did not occur as frequently or as quickly as changes at Wilson Spring. Water quality and discharge at Big Spring at Rutledge Falls changed little in response to storms. Cascade Spring and Big Spring at Rutledge Falls are located in similar hydrogeologic settings on the escarpment of the Highland Rim. Nonisokinetic dip-sampling methods were used to collect VOC samples from the springs during base-flow conditions. During selected storms, automatic samplers were used to collect water samples at Cascade Spring and Wilson Spring. Water samples were collected as frequently as every 15 minutes at the beginning of a storm, and sampling intervals were gradually increased following a storm. VOC samples were analyzed using a portable gas chromatograph (GC). VOC samples were collected from Wilson, Cascade, and Big Springs during 600, 199, and 55 sampling times, respectively, from February 2000 to May 2001. Chloroform concentrations detected at Wilson Spring ranged from 0.073 to 34 mg/L (milligrams per liter). Chloroform concentrations changed during most storms; the greatest change detected was during the first storm in fall 2000, when chloroform concentrations increased from about 0.5 to about 34 mg/L. Concentrations of cis-1,2-dichloroethylene (cis-1,2-DCE) detected at Cascade Spring ranged from 0.30 to 1.8 ?g/L (micrograms per liter) and gradually decreased between November 2000 and May 2001. In addition to the gradual decrease in cis-1,2-DCE concentrations, some additional decreases were detected during storms. VOC samples collected at weekly intervals from Big Spring indicated a gradual decrease in trichloroethylene (TCE) concentrations from approximately 9 to 6 ?g/L between November 2000 and May 2001. Significant changes in TCE concentrations were not detected during individual storms at Big Spring. Quality-control samples included trip blanks, equipment blanks, replicates, and field-matrix spike samples. VOC concentrations measured using the portable GC were similar to concentrations in replicate samples analyzed by the USGS National Water Quality Laboratory (NWQL) with the exception of chloroform and TCE concentrations. Chloroform and TCE concentrations detected by the portable GC were consistently lower (median percent differences of ?19.2 and ?17.4, respectively) than NWQL results. High correlations, however, were observed between concentrations detected by the portable GC and concentrations detected by the NWQL (Pearson?s r > 0.96). VOC concentrations in automatically collected samples were similar to concentrations in replicates collected using dip-sampling methods. More than 80 percent of the VOC concentrations measured in automatically collected samples were within 12 percent of concentrations in dip samples.
Ubiquitin enzymes in the regulation of immune responses.
Ebner, Petra; Versteeg, Gijs A; Ikeda, Fumiyo
2017-08-01
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.
Protection against impact with the ground using wearable airbags.
Fukaya, Kiyoshi; Uchida, Mitsuya
2008-01-01
Incidental falls from heights, falls on the same level caused by slipping or tripping, and falls from wheelchair overturns are commonplace phenomena, associated with serious injuries from impact with the ground. A wearable airbag device is a countermeasure applicable to all these types of incidents. Three types of wearable airbag systems were developed and evaluated: for protection against falls from heights (Type-1), against wheelchair overturns (Type-2), and against falls on the same level (Type-3). The systems consist of an airbag, sensor, inflator, and jacket. The sensor detects the fall and the airbag inflates to protect the user. Fall tests using dummies with/without the airbags demonstrated the effectiveness of these devices. In the experiments with system Type-1, for fall heights of less than 2m, the airbags reduced the impact acceleration, and the Head Injury Criterion (HIC) values were under 1,000, the auto-crash test requirement. However, there are limits to the amount of protection afforded: in Type-1, the airbag can protect only the back of the head.; in Types-2 and 3, the fall height of the center of gravity is lower than 2m, and there is some margin of extra protective resource, which can be used to extend the protected area.
Ground-water hydrology of the Willamette basin, Oregon
Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.
2005-01-01
The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple productive water-bearing zones. A basement confining unit of older marine and volcanic rocks of low permeability underlies the basin and occurs at land surface in the Coast Range and western part of the Cascade Range. Most recharge in the basin is from infiltration of precipitation, and the spatial distribution of recharge mimics the distribution of precipitation, which increases with elevation. Basinwide annual mean recharge is estimated to be 22 inches. Rain and snowmelt easily recharge into the permeable High Cascade unit and discharge within the High Cascade area. Most recharge in the Coast Range and western part of the Cascade Range follows short flowpaths through the upper part of the low permeability material and discharges to streams within the mountains. Consequently, recharge in the Coast and Ranges is not available as lateral ground-water flow into the lowland, where most ground-water use occurs. Within the lowland, annual mean recharge is 16 inches and most recharge occurs from November to April, when rainfall is large and evapotranspiration is small. From May to October recharge is negligible because precipitation is small and evapotranspiration is large. Discharge of ground water is mainly to streams. Ground-water discharge is a relatively large component of flow in streams that drain the High Cascade unit and parts of the Portland Basin where permeable units are at the surface. In streams that do not head in the High Cascade area, streamflow is generally dominated by runoff of precipitation. Ground-water in the permeable units in the lowland discharges to the major streams where there is a good hydraulic connection between aquifers and streams. Ground-water discharge to smaller streams, which flow on the less permeable Willamette silt unit, is small and mostly from the Willamette silt unit. Most ground-water withdrawals occur within the lowland. Irrigation is the largest use of ground water, accounting for 240,000 acre feet of withdrawals, or 81 p
Influence of age and fall type on head injuries in infants and toddlers
Ibrahim, Nicole G.; Wood, Joanne; Margulies, Susan S.; Christian, Cindy W.
2011-01-01
Age-based differences in fall type and neuroanatomy in infants and toddlers may affect clinical presentations and injury patterns. Objective Our goal is to understand the influence of fall type and age on injuries to help guide clinical evaluation. Design/Setting/Participants Retrospectively, 285 children 0–48 months with accidental head injury from a fall and brain imaging between 2000–2006 were categorized by age (infant=<1 year and toddler=1–4 years) and fall type: low (≤3 ft), intermediate (>3 and <10 ft), high height falls (≥10 ft) and stair falls. Outcome Measures Clinical manifestations were noted and head injuries separated into primary (bleeding) and secondary (hypoxia, edema). The influence of age and fall type on head injuries sustained was evaluated. Results Injury patterns in children <4 yrs varied with age. Despite similar injury severity scores, infants sustained more skull fractures than toddlers (71% v. 39%). Of children with skull fractures, 11% had no evidence of scalp/facial soft tissue swelling. Of the patients with primary intracranial injury, 30% had no skull fracture and 8% had neither skull fracture nor cranial soft tissue injury. Low height falls resulted in primary intracranial injury without soft tissue or skull injury in infants (6%) and toddlers (16%). Conclusions Within a given fall type, age-related differences in injuries exist between infants and toddlers. When interpreting a fall history, clinicians must consider the fall type and influence of age on resulting injury. For young children, intracranial injury is not always accompanied by external manifestations of their injury. PMID:22079853
The role of Cas8 in type I CRISPR interference.
Cass, Simon D B; Haas, Karina A; Stoll, Britta; Alkhnbashi, Omer S; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L
2015-05-05
CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA. © 2015 Authors.
John F. Lehmkuhl
2004-01-01
cover types in the eastern Washington Cascade range. Cover types represented a temperature/moisture and stand structural complexity gradient. Lichen litterfall biomass increased with increasing stand complexity and moisture. Lichen litterfall biomass was 3.42 kg/ha in open pine stands, 7.51 kg/ha in young mixed-species stands, 8.55 kg/ha in mature mixed-species stands...
Social relevance: toward understanding the impact of the individual in an information cascade
NASA Astrophysics Data System (ADS)
Hall, Robert T.; White, Joshua S.; Fields, Jeremy
2016-05-01
Information Cascades (IC) through a social network occur due to the decision of users to disseminate content. We define this decision process as User Diffusion (UD). IC models typically describe an information cascade by treating a user as a node within a social graph, where a node's reception of an idea is represented by some activation state. The probability of activation then becomes a function of a node's connectedness to other activated nodes as well as, potentially, the history of activation attempts. We enrich this Coarse-Grained User Diffusion (CGUD) model by applying actor type logics to the nodes of the graph. The resulting Fine-Grained User Diffusion (FGUD) model utilizes prior research in actor typing to generate a predictive model regarding the future influence a user will have on an Information Cascade. Furthermore, we introduce a measure of Information Resonance that is used to aid in predictions regarding user behavior.
Ubiquitin enzymes in the regulation of immune responses
Ebner, Petra; Versteeg, Gijs A.; Ikeda, Fumiyo
2017-01-01
Abstract Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses. PMID:28524749
NASA Astrophysics Data System (ADS)
Wang, Zhenhua; Li, Qingyun; Huang, Zhuo; Tang, Xianqiang; Zhao, Weihua
2017-05-01
Cascaded exploitation of diversion-type small hydropower (SHP) offers a source of new energy as well as socioeconomic benefits; however, it inevitably causes environmental disturbance and damage. Previous studies on the cumulative effect of cascaded diversion SHP rarely discussed using quantitative analysis method. In this paper, the ecological footprint analysis approach is proposed to assess the positive and negative impacts of cascaded diversion SHP on environment of a small-scale river in Southwest China. Positive impact is defined as ecological supply footprint (ESF), which refers to vegetation protection by replacing firewood with SHP. Negative impact is defined as ecological loss footprint (ELF), which includes fish and net primary productivity loss, vegetation destruction and soil erosion. With the raising in the number (n>4) of diversion SHP stations, the difference between ELF and ESF increases remarkably, suggesting that the adverse impacts of cascaded diversion SHP accumulate in the study area. Compared with vegetation destruction and soil erosion, the cumulative loss of fish and net productivity is the most important aspect of the adverse impacts which needs more attentions.
View of southeastern Washington State
1973-08-30
SL3-22-0214 (July-September 1973) --- A vertical view of southeastern Washington State as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. The Snake River flows into the Columbia River in the most southerly corner of the picture. The Wallula Lake is below the junction of the two rivers. The Yakima Valley is at the southwestern edge of the photograph. The Columbia Basin is in the center of the picture. The Cascade Range extends across the northwest corner of the photograph. This picture was taken with type SO-356 regular color film. The S190-A experiment is part of the Earth Resources Experiments Package. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA
1987-12-01
Study for Sun River Electr’: Cooperative, Inc. Fairfield, Montana. Butler, G.C., C. Hyslop , and 0. Huntzinger (editors) 1980 Anthroposenic Compounds...Counties, Montana, 1980 -1984 3.1.3-2 Actual and Projected Population of Selected Montana ................ 3-7 Counties and Cities, the State of...by Grade Level 3.1.3-4 City of Great Falls Revenues and Expenditures, All Governmental .... 3-18 Governmental Funds, FY 1980 -2000 3.1.3-5 Cascade
1989-07-01
commercial center in the area. Those two counties are Cascade and Lewis & Clark. Population and Demographics. The ROI for this element includes areas...commercial trade, finance, III-2 II transportation, and service sectors of the area ( originating primarily in Great Falls) serve north-central Montana and...Malmstrom AFB through contracts with local and regional distributors that are filled through the Defense Fuels Supply Center I (DFSC). The fuel is
The rise and fall of social communities: Cascades of followers triggered by innovators
NASA Astrophysics Data System (ADS)
Hu, Yanqing; Havlin, Shlomo; Makse, Hernan
2013-03-01
New scientific ideas as well as key political messages, consumer products, advertisement strategies and art trends are originally adopted by a small number of pioneers who innovate and develop the ``new ideas''. When these innovators migrate to develop the novel idea, their former social network gradually weakens its grips as followers migrate too. As a result, an internal ``cascade of followers'' starts immediately thereafter speeding up the extinction of the entire original network. A fundamental problem in network theory is to determine the minimum number of pioneers that, upon leaving, will disintegrate their social network. Here, we first employ empirical analyses of collaboration networks of scientists to show that these communities are extremely fragile with regard to the departure of a few pioneers. This process can be mapped out on a percolation model in a correlated graph crucially augmented with outgoing ``influence links''. Analytical solutions predict phase transitions, either abrupt or continuous, where networks are disintegrated through cascades of followers as in the empirical data. The theory provides a framework to predict the vulnerability of a large class of networks containing influence links ranging from social and infrastructure networks to financial systems and markets.
Feature combination analysis in smart grid based using SOM for Sudan national grid
NASA Astrophysics Data System (ADS)
Bohari, Z. H.; Yusof, M. A. M.; Jali, M. H.; Sulaima, M. F.; Nasir, M. N. M.
2015-12-01
In the investigation of power grid security, the cascading failure in multicontingency situations has been a test because of its topological unpredictability and computational expense. Both system investigations and burden positioning routines have their limits. In this project, in view of sorting toward Self Organizing Maps (SOM), incorporated methodology consolidating spatial feature (distance)-based grouping with electrical attributes (load) to evaluate the vulnerability and cascading impact of various part sets in the force lattice. Utilizing the grouping result from SOM, sets of overwhelming stacked beginning victimized people to perform assault conspires and asses the consequent falling impact of their failures, and this SOM-based approach viably distinguishes the more powerless sets of substations than those from the conventional burden positioning and other bunching strategies. The robustness of power grids is a central topic in the design of the so called "smart grid". In this paper, to analyze the measures of importance of the nodes in a power grid under cascading failure. With these efforts, we can distinguish the most vulnerable nodes and protect them, improving the safety of the power grid. Also we can measure if a structure is proper for power grids.
Quantum Cascade Laser Tuning by Digital Micromirror Array-controlled External Cavity
2014-01-01
P. Vujkovic-Cvijin, B. Gregor, A. C. Samuels, E. S. Roese, Quantum cascade laser tuning by digital micromirror array-controlled external cavity...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Quantum cascade laser tuning by digital micromirror array-controlled...dimensional digital micromirror array (DMA) is described. The laser is tuned by modulating the reflectivity of DMA micromirror pixels under computer
ULTRAFINE AEROSOL INFLUENCE ON THE SAMPLING BY CASCADE IMPACTOR.
Vasyanovich, M; Mostafa, M Y A; Zhukovsky, M
2017-11-01
Cascade impactors based on inertial deposition of aerosols are widely used to determine the size distribution of radioactive aerosols. However, there are situations where radioactive aerosols are represented by particles with a diameter of 1-5 nm. In this case, ultrafine aerosols can be deposited on impactor cascades by diffusion mechanism. The influence of ultrafine aerosols (1-5 nm) on the response of three different types of cascade impactors was studied. It was shown that the diffusion deposition of ultrafine aerosols can distort the response of the cascade impactor. The influence of diffusion deposition of ultrafine aerosols can be considerably removed by the use of mesh screens or diffusion battery installed before cascade impactor during the aerosol sampling. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Overview for geologic field-trip guides to volcanoes of the Cascades Arc in northern California
Muffler, L. J. Patrick; Donnelly-Nolan, Julie M.; Grove, Timothy L.; Clynne, Michael A.; Christiansen, Robert L.; Calvert, Andrew T.; Ryan-Davis, Juliet
2017-08-15
The California Cascades field trip is a loop beginning and ending in Portland, Oregon. The route of day 1 goes eastward across the Cascades just south of Mount Hood, travels south along the east side of the Cascades for an overview of the central Oregon volcanoes (including Three Sisters and Newberry Volcano), and ends at Klamath Falls, Oregon. Day 2 and much of day 3 focus on Medicine Lake Volcano. The latter part of day 3 consists of a drive south across the Pit River into the Hat Creek Valley and then clockwise around Lassen Volcanic Center to the town of Chester, California. Day 4 goes from south to north across Lassen Volcanic Center, ending at Burney, California. Day 5 and the first part of day 6 follow a clockwise route around Mount Shasta. The trip returns to Portland on the latter part of day 6, west of the Cascades through the Klamath Mountains and the Willamette Valley. Each of the three sections of this guidebook addresses one of the major volcanic regions: Lassen Volcanic Center (a volcanic field that spans the volcanic arc), Mount Shasta (a fore-arc stratocone), and Medicine Lake Volcano (a rear-arc, shield-shaped edifice). Each section of the guide provides (1) an overview of the extensive field and laboratory studies, (2) an introduction to the literature, and (3) directions to the most important and accessible field localities. The field-trip sections contain far more stops than can possibly be visited in the actual 6-day 2017 IAVCEI excursion from Portland. We have included extra stops in order to provide a field-trip guide that will have lasting utility for those who may have more time or may want to emphasize one particular volcanic area.
Deuterium Values from Hydrated Volcanic Glass: A Paleoelevation Proxy for Oregon's Cascade Range
NASA Astrophysics Data System (ADS)
Carlson, T. B.; Bershaw, J. T.; Cassel, E. J.
2017-12-01
Deuterium ratios (δD) of hydrated volcanic glass have been used to reconstruct Cenozoic paleoenvironments. However, the reliability and proper sample preparation protocol have been debated. The Cascades are an excellent location to study the validity of hydrated volcanic glass as a paleoelevation proxy for several reasons. Moisture is largely derived from a single oceanic source and falls as orographic precipitation in the Cascades, leading to a characteristic altitude effect, or inverse relationship between elevation and the isotopic composition of meteoric water (δD). Additionally, past studies have inferred uplift of the Cascades since the Miocene based on changing fossil assemblages, tectonic models, and other isotopic proxies including soil carbonates and fossil teeth. In this study, hydrated volcanic ash samples from the lee of the Cascades were rinsed with hydrochloric acid and sonicated before glass shards were hand-selected and analyzed for δD and wt. % water. These preliminary results exhibited δD values becoming enriched with time, a trend opposite of other paleowater proxy studies in the area. A possible explanation for this trend is contamination due to inadequate removal of materials adhered to shard surfaces that can readily exchange with environmental water. Recent research asserts that hydrofluoric acid (HF) etching during sample preparation is necessary to accurately measure δD values of syndepositional water. Volcanic ash samples were reanalyzed after preparation using HF abrasion and heavy liquid separation. The data from these two subsets are interpreted in the context of modern water across the range, as well as other paleowater proxy and geologic studies to determine the implications of volcanic glass as a paleoelevation proxy in the Pacific Northwest.
Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania
We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.
Santra, Soumava; Andreana, Peter R
2007-11-22
Small molecule diversity can be achieved in a single synthetic operation from bifunctional substrates in the absence of additives and under the influence of microwaves with complete control of pathway selectivity. The preliminary Ugi four-component coupling products give rise to three structurally distinct scaffolds that are dependent on solvent effects and sterics. 2,5-Diketopiperazines (Type A), 2-azaspiro[4.5]deca-6,9-diene-3,8-diones (Type B), and thiophene-derived Diels-Alder tricyclic lactams (Type C) predominate in this reaction cascade.
2016-08-31
should not fall below (e.g., human right to life, health , and subsistence; Caney 2010). According to Murphy and Gardoni (2008), the values...used to refer to the aspect of access to potable water. Every human being needs clean drinking water to sustain her/his life, bod- ily health , and...Education in Nigeria: Matters Arising.” Journal of Human Ecology 20(2): 97–101. Ariana, P., and A. Naveed. 2009. “ Health .” Chapter 10 in An Introduction
Spectrum and variation of gamma-ray emission from the galactic center region
NASA Technical Reports Server (NTRS)
Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Jacobson, A. S.
1982-01-01
Continuum emission at 60-300 keV from the galactic center region was observed to decrease in intensity by 45 percent and to show a spectrum steepening between fall 1979 and spring 1980. At the same time 511 keV positron annihilation radiation decreased by a comparable fraction. No variations over shorter time scales were detected. The observations are consistent with a model where positrons and hard X-rays are produced in an electromagnetic cascade near a massive black hole.
NASA Astrophysics Data System (ADS)
Kapustin, P.; Svetukhin, V.; Tikhonchev, M.
2017-06-01
The atomic displacement cascade simulations near symmetric tilt grain boundaries (GBs) in hexagonal close packed-Zirconium were considered in this paper. Further defect structure analysis was conducted. Four symmetrical tilt GBs -∑14?, ∑14? with the axis of rotation [0 0 0 1] and ∑32?, ∑32? with the axis of rotation ? - were considered. The molecular dynamics method was used for atomic displacement cascades' simulation. A tendency of the point defects produced in the cascade to accumulate near the GB plane, which was an obstacle to the spread of the cascade, was discovered. The results of the point defects' clustering produced in the cascade were obtained. The clusters of both types were represented mainly by single point defects. At the same time, vacancies formed clusters of a large size (more than 20 vacancies per cluster), while self-interstitial atom clusters were small-sized.
Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Ju, Wenyun; Sun, Kai
In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system ismore » closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.« less
Quantum cascade light emitting diodes based on type-2 quantum wells
NASA Technical Reports Server (NTRS)
Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.
1997-01-01
The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.
Fu, Becky Xu Hua; Wainberg, Michael; Kundaje, Anshul; Fire, Andrew Z
2017-08-01
Interactions between Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs and CRISPR-associated (Cas) proteins form an RNA-guided adaptive immune system in prokaryotes. The adaptive immune system utilizes segments of the genetic material of invasive foreign elements in the CRISPR locus. The loci are transcribed and processed to produce small CRISPR RNAs (crRNAs), with degradation of invading genetic material directed by a combination of complementarity between RNA and DNA and in some cases recognition of adjacent motifs called PAMs (Protospacer Adjacent Motifs). Here we describe a general, high-throughput procedure to test the efficacy of thousands of targets, applying this to the Escherichia coli type I-E Cascade (CRISPR-associated complex for antiviral defense) system. These studies were followed with reciprocal experiments in which the consequence of CRISPR activity was survival in the presence of a lytic phage. From the combined analysis of the Cascade system, we found that (i) type I-E Cascade PAM recognition is more expansive than previously reported, with at least 22 distinct PAMs, with many of the noncanonical PAMs having CRISPR-interference abilities similar to the canonical PAMs; (ii) PAM positioning appears precise, with no evidence for tolerance to PAM slippage in interference; and (iii) while increased guanine-cytosine (GC) content in the spacer is associated with higher CRISPR-interference efficiency, high GC content (>62.5%) decreases CRISPR-interference efficiency. Our findings provide a comprehensive functional profile of Cascade type I-E interference requirements and a method to assay spacer efficacy that can be applied to other CRISPR-Cas systems. Copyright © 2017 by the Genetics Society of America.
Multi-species consumer jams and the fall of guarded corals to crown-of-thorns seastar outbreaks
Kayal, Mohsen; Ballard, Jane; Adjeroud, Mehdi
2018-01-01
Outbreaks of predatory crown-of-thorns seastars (COTS) can devastate coral reef ecosystems, yet some corals possess mutualistic guardian crabs that defend against COTS attacks. However, guarded corals do not always survive COTS outbreaks, with the ecological mechanisms sealing the fate of these corals during COTS infestations remaining unknown. In August 2008 in Moorea (17.539° S, 149.830° W), French Polynesia, an unusually dense multi-species aggregation of predators was observed feeding upon guarded corals following widespread coral decline due to COTS predation. Concurrent assaults from these amplified, mixed-species predator guilds likely overwhelm mutualistic crab defense, ultimately leading to the fall of guarded corals. Our observations indicate that guarded corals can sustain devastating COTS attacks for an extended duration, but eventually concede to intensifying assaults from diverse predators that aggregate in high numbers as alternative prey decays. The fall of guarded corals is therefore suggested to be ultimately driven by an indirect trophic cascade that leads to amplified attacks from diverse starving predators following prey decline, rather than COTS assaults alone. PMID:29487739
Fall classification by machine learning using mobile phones.
Albert, Mark V; Kording, Konrad; Herrmann, Megan; Jayaraman, Arun
2012-01-01
Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to automatically classify the type. We asked 15 subjects to simulate four different types of falls-left and right lateral, forward trips, and backward slips-while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research as well as improve rapid response to potential injuries due to falls.
Corneal tissue ablation using 6.1 μm quantum cascade laser
NASA Astrophysics Data System (ADS)
Huang, Yong; Kang, Jin U.
2012-03-01
High absorption property of tissues in the IR range (λ> 2 μm) results in effective tissue ablation, especially near 3 μm. In the mid-infrared range, wavelengths of 6.1 μm and 6.45 μm fall into the absorption bands of the amide protein groups Amide-I and Amide-II, respectively. They also coincide with the deformation mode of water, which has an absorption peak at 6.1 μm. This coincidence makes 6.1 μm laser a better ablation tool that has promising effectiveness and minimum collateral damages than 3 μm lasers. In this work, we performed bovine corneal ablation test in-vitro using high-power 6.1μm quantum cascade laser (QCL) operated at pulse mode. Quantum cascade laser has the advantages of low cost, compact size and tunable wavelength, which makes it great alternative Mid-IR light source to conventional tunable free-electron lasers (FEL) for medical applications. Preliminary results show that effective corneal stroma craters were achieved with much less collateral damage in corneal tissue that contains less water. Future study will focus on optimizing the control parameters of QCL to attain neat and precise ablation of corneal tissue and development of high peak power QCL.
Recharge of an Unconfined Pumice Aquifer: Winter Rainfall Versus Snow Pack, South-central Oregon
NASA Astrophysics Data System (ADS)
Cummings, M. L.; Weatherford, J. M.; Eibert, D.
2015-12-01
Walker Rim study area, an uplifted fault block east of the Cascade Range, south-central Oregon, exceeds 1580 m elevation and includes Round Meadow-Sellers Marsh closed basin, and headwaters of Upper Klamath Basin, Deschutes Basin, and Christmas Lake Valley in the Great Basin. The water-bearing unit is 2.8 to 3.0 m thick Plinian pumice fall from the Holocene eruption of Mount Mazama, Cascade Range. The perched pumice aquifer is underlain by low permeability regolith and bedrock. Disruption of the internal continuity of the Plinian pumice fall by fluvial and lacustrine processes resulted in hydrogeologic environments that include fens, wet meadows, and areas of shallow water table. Slopes are low and surface and groundwater pathways follow patterns inherited from the pre-eruption landscape. Discharge for streams and springs and depth to water table measured in open-ended piezometers slotted in the pumice aquifer have been measured between March and October, WY 2011 through WY2015. Yearly occupation on same date has been conducted for middle April, June 1st, and end of October. WY2011 and WY2012 received more precipitation than the 30 year average while WY2014 was the third driest year in 30 years of record. WY2014 and WY2015 provide an interesting contrast. Drought conditions dominated WY2014 while WY2015 was distinct in that the normal cold-season snow pack was replaced by rainfall. Cumulative precipitation exceeded the 30-year average between October and March. The pumice aquifer of wet meadows and areas of shallow water table experienced little recharge in WY2015. Persistence of widespread diffuse discharge from fens declined by middle summer as potentiometric surfaces lowered into confining peat layers or in some settings into the pumice aquifer. Recharge of the perched pumice aquifer in rain-dominated WY2015 was similar to or less than in the snow-dominated drought of WY2014. Rain falling on frozen ground drove runoff rather than aquifer recharge.
Xiao, Yibei; Luo, Min; Hayes, Robert P; Kim, Jonathan; Ng, Sherwin; Ding, Fang; Liao, Maofu; Ke, Ailong
2017-06-29
Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Vurgaftman, I; Bewley, W W; Canedy, C L; Kim, C S; Kim, M; Merritt, C D; Abell, J; Lindle, J R; Meyer, J R
2011-12-13
The interband cascade laser differs from any other class of semiconductor laser, conventional or cascaded, in that most of the carriers producing population inversion are generated internally, at semimetallic interfaces within each stage of the active region. Here we present simulations demonstrating that all previous interband cascade laser performance has suffered from a significant imbalance of electron and hole densities in the active wells. We further confirm experimentally that correcting this imbalance with relatively heavy n-type doping in the electron injectors substantially reduces the threshold current and power densities relative to all earlier devices. At room temperature, the redesigned devices require nearly two orders of magnitude less input power to operate in continuous-wave mode than the quantum cascade laser. The interband cascade laser is consequently the most attractive option for gas sensing and other spectroscopic applications requiring low output power and minimum heat dissipation at wavelengths extending from 3 μm to beyond 6 μm.
Balance training reduces falls risk in older individuals with type 2 diabetes.
Morrison, Steven; Colberg, Sheri R; Mariano, Mira; Parson, Henri K; Vinik, Arthur I
2010-04-01
This study assessed the effects of balance/strength training on falls risk and posture in older individuals with type 2 diabetes. Sixteen individuals with type 2 diabetes and 21 age-matched control subjects (aged 50-75 years) participated. Postural stability and falls risk was assessed before and after a 6-week exercise program. Diabetic individuals had significantly higher falls risk score compared with control subjects. The diabetic group also exhibited evidence of mild-to-moderate neuropathy, slower reaction times, and increased postural sway. Following exercise, the diabetic group showed significant improvements in leg strength, faster reaction times, decreased sway, and, consequently, reduced falls risk. Older individuals with diabetes had impaired balance, slower reactions, and consequently a higher falls risk than age-matched control subjects. However, all these variables improved after resistance/balance training. Together these results demonstrate that structured exercise has wide-spread positive effects on physiological function for older individuals with type 2 diabetes.
Open Cascades as Simple Solutions to Providing Ultrasensitivity and Adaptation in Cellular Signaling
Srividhya, Jeyaraman; Li, Yongfeng; Pomerening, Joseph R.
2011-01-01
Cell signaling is achieved predominantly by reversible phosphorylation-dephosphorylation reaction cascades. Up until now, circuits conferring adaptation have all required the presence of a cascade with some type of closed topology: negative–feedback loop with a buffering node, or incoherent feedforward loop with a proportioner node. In this paper—using Goldbeter and Koshland-type expressions—we propose a differential equation model to describe a generic, open signaling cascade that elicits an adaptation response. This is accomplished by coupling N phosphorylation–dephosphorylation cycles unidirectionally, without any explicit feedback loops. Using this model, we show that as the length of the cascade grows, the steady states of the downstream cycles reach a limiting value. In other words, our model indicates that there are a minimum number of cycles required to achieve a maximum in sensitivity and amplitude in the response of a signaling cascade. We also describe for the first time that the phenomenon of ultrasensitivity can be further subdivided into three sub–regimes, separated by sharp stimulus threshold values: OFF, OFF-ON-OFF, and ON. In the OFF-ON-OFF regime, an interesting property emerges. In the presence of a basal amount of activity, the temporal evolution of early cycles yields damped peak responses. On the other hand, the downstream cycles switch rapidly to a higher activity state for an extended period of time, prior to settling to an OFF state (OFF-ON-OFF). This response arises from the changing dynamics between a feed–forward activation module and dephosphorylation reactions. In conclusion, our model gives the new perspective that open signaling cascades embedded in complex biochemical circuits may possess the ability to show a switch–like adaptation response, without the need for any explicit feedback circuitry. PMID:21566270
NASA Astrophysics Data System (ADS)
Sheehan, T.; Bachelet, D. M.; Ferschweiler, K.
2016-12-01
For Oregon and Washington west of the Cascade Mountain crest, results from the MC2 global dynamic vegetation model have projected a shift in potential vegetation type from predominantly conifer to predominantly mixed forest over the 21st century, with a shift from mixed to conifer in some areas. Carbon stocks have been projected to fall over this period. We ran MC2 using the CCSM4 RCP 8.5 climate future downscaled to 2.5 arc minute resolution with 5 different configurations: no fire; assumed ignitions without fire suppression; assumed ignitions with fire suppression; assumed ignitions with fire suppression and with CO2 concentration held at the preindustrial level; and stochastic ignitions without fire suppression. Results show that vegetation change is the result of climate change alone, while carbon is influenced by both fire occurrence and CO2-induced increased water use efficiency. While model results do not indicate a large change in carbon dynamics concomitant with the shift in vegetation, it is reasonable to expect that a change in conditions resulting in such a change in vegetation type would stress the existing vegetation resulting in some mortality and loss of live carbon.
Bassan, M; Cavalleri, A; De Laurentis, M; De Marchi, F; De Rosa, R; Di Fiore, L; Dolesi, R; Finetti, N; Garufi, F; Grado, A; Hueller, M; Marconi, L; Milano, L; Pucacco, G; Stanga, R; Visco, M; Vitale, S; Weber, W J
2016-02-05
A torsion pendulum with 2 soft degrees of freedom (DOFs), realized by off-axis cascading two torsion fibers, has been built and operated. This instrument helps characterize the geodesic motion of a test mass for LISA Pathfinder or any other free-fall space mission, providing information on cross talk and other effects that cannot be detected when monitoring a single DOF. We show that it is possible to simultaneously measure both the residual force and the residual torque acting on a quasifree test mass. As an example of the investigations that a double pendulum allows, we report the measurement of the force-to-torque cross talk, i.e., the amount of actuation signal, produced by applying a force on the suspended test mass, that leaks into the rotational DOF, detected by measuring the corresponding (unwanted) torque.
Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol
NASA Astrophysics Data System (ADS)
Pust, Ladislav; Pesek, Ludek
This paper employs a new analytical approach to model the influence of aerodynamic excitation on the dynamics of a bladed cascade at the flutter state. The flutter is an aero-elastic phenomenon that is linked to the interaction of the flow and the traveling deformation wave in the cascade when only the damping of the cascade changes. As a case study the dynamic properties of the five-blade-bunch excited by the running harmonic external forces and aerodynamic self-excited forces are investigated. This blade-bunch is linked in the shroud by means of the viscous-elastic damping elements. The external running excitation depends on the ratio of stator and rotor blade numbers and corresponds to the real type of excitation in the steam turbine. The aerodynamic self-excited forces are modeled by two types of Van der Pol nonlinear models. The influence of the interaction of both types of self-excitation with the external running excitation is investigated on the response curves.
Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region
Siler, Drew; Zhang, Yingqi; Spycher, Nicolas F.; Dobson, Patrick; McClain, James S.; Gasperikova, Erika; Zierenberg, Robert A.; Schiffman, Peter; Ferguson, Colin; Fowler, Andrew; Cantwell, Carolyn
2017-01-01
The region surrounding the Modoc Plateau, encompassing parts of northeastern California, southern Oregon, and northwestern Nevada, lies at an intersection between two tectonic provinces; the Basin and Range province and the Cascade volcanic arc. Both of these provinces have substantial geothermal resource base and resource potential. Geothermal systems with evidence of magmatic heat, associated with Cascade arc magmatism, typify the western side of the region. Systems on the eastern side of the region appear to be fault controlled with heat derived from high crustal heat flow, both of which are typical of the Basin and Range. As it has the potential to host Cascade arc-type geothermal resources, Basin and Range-type geothermal resources, and/or resources with characteristics of both provinces, and because there is relatively little current development, the Modoc Plateau region represents an intriguing potential for undiscovered geothermal resources. It remains unclear however, what specific set(s) of characteristics are diagnostic of Modoc-type geothermal systems and how or if those characteristics are distinct from Basin and Range-type or Cascade arc-type geothermal systems. In order to evaluate the potential for undiscovered geothermal resources in the Modoc area, we integrate a wide variety of existing data in order to evaluate geothermal resource potential and exploration risk utilizing ‘play-fairway’ analysis. We consider that the requisite parameters for hydrothermal circulation are: 1) heat that is sufficient to drive circulation, and 2) permeability that is sufficient to allow for fluid circulation in the subsurface. We synthesize data that indicate the extent and distribution of these parameters throughout the Modoc region. ‘Fuzzy logic’ is used to incorporate expert opinion into the utility of each dataset as an indicator of either heat or permeability, and thus geothermal favorability. The results identify several geothermal prospects, areas that are highly favorable for the occurrence of both heat and permeability. These are also areas where there is sufficient data coverage, quality, and consistency that the exploration risk is relatively low. These unknown, undeveloped, and under-developed prospects are well-suited for continued exploration efforts. The results also indicate to what degree the two ‘play-types,’ i.e. Cascade arc-type or Basin and Range-type, apply to each of the geothermal prospects, a useful guide in exploration efforts.
Generation of Multi-band Chorus by Lower Band Cascade in the Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gao, X.; Lu, Q.; Chen, L.; Bortnik, J.; Li, W.; Wang, S.
2016-12-01
Chorus waves are intense electromagnetic whistler-mode emissions in the magnetosphere, typically falling into two distinct frequency bands: a lower band (0.1-0.5fce) and an upper band (0.5-0.8fce) with a power gap at about 0.5fce. In this letter, with the THEMIS satellite, we observed two special chorus events, which are called as multi-band chorus because upper band chorus is located at harmonics of lower band chorus. We propose a new potential generation mechanism for multi-band chorus, which is called as lower band cascade. In this scenario, a density mode with a frequency equal to that of lower band chorus is caused by the ponderomotive effect (inhomogeneity of the electric amplitude) along the wave vector, and then upper band chorus with the frequency twice that of lower band chorus is generated through wave-wave couplings between lower band chorus and the density mode. The mechanism provides a new insight into the evolution of whistler-mode chorus in the Earth's magnetosphere.
DeKorver, Kyle A; Wang, Xiao-Na; Walton, Mary C; Hsung, Richard P
2012-04-06
A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured.
DeKorver, Kyle A.; Wang, Xiao-Na; Walton, Mary C.; Hsung, Richard P.
2012-01-01
A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured. PMID:22414252
Low threshold interband cascade lasers operating above room temperature
NASA Technical Reports Server (NTRS)
Hill, C. J.; Yang, B.; Yang, R. Q.
2003-01-01
Mid-IR type-II interband cascade lasers were demonstrated in pulsed mode at temperatures up to 325 K and in continuous mode up to 200 K. At 80 K, the threshold current density was 8.9 A/cm2 and a cw outpout power of 140 mW/facet was obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, T
I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flankmore » of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the State of California, it would be prudent to carefully evaluate this question before proceeding with geothermal energy development on Medicine Lake Volcano.« less
He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin
2017-01-01
Abstract CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. PMID:27980065
NASA Astrophysics Data System (ADS)
Chang, Faliang; Liu, Chunsheng
2017-09-01
The high variability of sign colors and shapes in uncontrolled environments has made the detection of traffic signs a challenging problem in computer vision. We propose a traffic sign detection (TSD) method based on coarse-to-fine cascade and parallel support vector machine (SVM) detectors to detect Chinese warning and danger traffic signs. First, a region of interest (ROI) extraction method is proposed to extract ROIs using color contrast features in local regions. The ROI extraction can reduce scanning regions and save detection time. For multiclass TSD, we propose a structure that combines a coarse-to-fine cascaded tree with a parallel structure of histogram of oriented gradients (HOG) + SVM detectors. The cascaded tree is designed to detect different types of traffic signs in a coarse-to-fine process. The parallel HOG + SVM detectors are designed to do fine detection of different types of traffic signs. The experiments demonstrate the proposed TSD method can rapidly detect multiclass traffic signs with different colors and shapes in high accuracy.
Coupling strategies for coherent operation of quantum cascade ring laser arrays
NASA Astrophysics Data System (ADS)
Schwarzer, Clemens; Yao, Y.; Mujagić, E.; Ahn, S.; Schrenk, W.; Chen, J.; Gmachl, C.; Strasser, G.
2011-12-01
We report the design, fabrication and operation of coherently coupled ring cavity surface emitting quantum cascade lasers, emitting at wavelength around 8 μm. Special emphasis is placed on the evaluation of optimal coupling approaches and corresponding parameters. Evanescent field coupling as well as direct coupling where both devices are physically connected is presented. Furthermore, exploiting the Vernier-effect was used to obtain enhanced mode selectivity and robust coherent coupling of two ring-type quantum cascade lasers. Investigations were performed at pulsed room-temperature operation.
Cyclization Cascades Initiated by 1,6-Conjugate Addition
Brooks, Joshua L.; Frontier, Alison J.
2012-01-01
Dienyl diketones containing tethered acetates selectively undergo two different 1,6-conjugate addition-initiated cyclization cascades. One is a 1,6-conjugate addition/cyclization sequence with incorporation of the nucleophile, and the other is catalyzed by DABCO and is thought to proceed via a cyclic acetoxonium intermediate. The reaction behavior of substrates lacking the tethered acetate was also studied. The scope of both types of cyclization cascades, the role of the amine additive, and the factors controlling reactivity and selectivity in the two different reaction pathways is discussed. PMID:23004564
A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.
Catozzi, S; Sepulchre, J-A
2017-08-01
In living organisms, cascades of covalent modification cycles are one of the major intracellular signaling mechanisms, allowing to transduce physical or chemical stimuli of the external world into variations of activated biochemical species within the cell. In this paper, we develop a novel method to study the stimulus-response of signaling cascades and overall the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade. Our approach is based on a correspondence that we establish between the stationary states of a cascade and pieces of orbits of a 2D discrete dynamical system. The study of its possible phase portraits in function of the biochemical parameters, and in particular of the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations, yields a classification of the cascade tiers into three main types, whose biological impact within a signaling network is examined. In particular, our approach enables to discuss quantitatively the notion of cascade amplification/attenuation from this new perspective. The method allows also to study the interplay between forward and "retroactive" signaling, i.e., the upstream influence of an inhibiting drug bound to the last tier of the cascade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F.; Liu, Peter Q.
2013-11-18
We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.
Hospitalizations for fall-related injuries among active-duty Army soldiers, 1980–1998
Senier, Laura; Bell, Nicole S.; Yore, Michelle M.; Amoroso, Paul J.
2007-01-01
Data from the Total Army Injury and Health Outcomes Database (TAIHOD) were used to describe 28,352 fall-related hospitalizations among active-duty Army soldiers between 1980 and 1998. Soldiers who were younger than age 26, single, and had a high school education or less were at greatest risk. Falls from a height were more likely to be fatal than other types of falls, accounting for 88% of all fatalities. In cases where duty status was known, 64% of the falls took place while the soldier was on duty and half of these occurred during training. The most common type of fall during training was fall from a height (37%). Falls on stairs and ladders accounted for 49% of all off-duty falls. Future research should include identification of specific behavioral and occupational risk factors for falls, particularly those occurring during training activities, and falls occurring off duty. PMID:12441580
Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin
Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.
2005-01-01
Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.
Long-term multi-hazard assessment for El Misti volcano (Peru)
NASA Astrophysics Data System (ADS)
Sandri, Laura; Thouret, Jean-Claude; Constantinescu, Robert; Biass, Sébastien; Tonini, Roberto
2014-02-01
We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.
NASA Astrophysics Data System (ADS)
Dindar, Cigdem; Kiran, Erdogan
2002-10-01
We present a new sensor configuration and data reduction process to improve the accuracy and reliability of determining the terminal velocity of a falling sinker in falling body type viscometers. This procedure is based on the use of multiple linear variable differential transformer sensors and precise mapping of the sensor signal and position along with the time of fall which is then converted to distance versus fall time along the complete fall path. The method and its use in determination of high-pressure viscosity of n-pentane and carbon dioxide are described.
Balance Training Reduces Falls Risk in Older Individuals With Type 2 Diabetes
Morrison, Steven; Colberg, Sheri R.; Mariano, Mira; Parson, Henri K.; Vinik, Arthur I.
2010-01-01
OBJECTIVE This study assessed the effects of balance/strength training on falls risk and posture in older individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS Sixteen individuals with type 2 diabetes and 21 age-matched control subjects (aged 50–75 years) participated. Postural stability and falls risk was assessed before and after a 6-week exercise program. RESULTS Diabetic individuals had significantly higher falls risk score compared with control subjects. The diabetic group also exhibited evidence of mild-to-moderate neuropathy, slower reaction times, and increased postural sway. Following exercise, the diabetic group showed significant improvements in leg strength, faster reaction times, decreased sway, and, consequently, reduced falls risk. CONCLUSIONS Older individuals with diabetes had impaired balance, slower reactions, and consequently a higher falls risk than age-matched control subjects. However, all these variables improved after resistance/balance training. Together these results demonstrate that structured exercise has wide-spread positive effects on physiological function for older individuals with type 2 diabetes. PMID:20097781
Titler, Marita G; Conlon, Paul; Reynolds, Margaret A; Ripley, Robert; Tsodikov, Alex; Wilson, Deleise S; Montie, Mary
2016-08-01
Falls are a major public health problem internationally. Many hospitals have implemented fall risk assessment tools, but few have implemented interventions to mitigate patient-specific fall risks. Little research has been done to examine the effect of implementing evidence-based fall prevention interventions to mitigate patient-specific fall risk factors in hospitalized adults. To evaluate the impact of implementing, in 3 U.S. hospitals, evidence-based fall prevention interventions targeted to patient-specific fall risk factors (Targeted Risk Factor Fall Prevention Bundle). Fall rates, fall injury rates, types of fall injuries and adoption of the Targeted Risk Factor Fall Prevention Bundle were compared prior to and following implementation. A prospective pre-post implementation cohort design. Thirteen adult medical-surgical units from three community hospitals in the Midwest region of the U.S. Nurses who were employed at least 20hours/week, provided direct patient care, and licensed as an RN (n=157 pre; 140 post); and medical records of patients 21years of age or older, who received care on the study unit for more than 24hours during the designated data collection period (n=390 pre and post). A multi-faceted Translating Research Into Practice Intervention was used to implement the Targeted Risk Factor Fall Prevention Bundle composed of evidence-based fall prevention interventions designed to mitigate patient-specific fall risks. Dependent variables (fall rates, fall injury rates, fall injury type, use of Targeted Risk Factor Fall Prevention Bundle) were collected at baseline, and following completion of the 15month implementation phase. Nurse questionnaires included the Stage of Adoption Scale, and the Use of Research Findings in Practice Scale to measure adoption of evidence-based fall prevention practices. A Medical Record Abstract Form was used to abstract data about use of targeted risk-specific fall prevention interventions. Number of falls, and number and types of fall injuries were collected for each study unit for 3months pre- and post-implementation. Data were analyzed using multivariate analysis. Fall rates declined 22% (p=0.09). Types of fall injuries changed from major and moderate to minor injuries. Fall injury rates did not decline. Use of fall prevention interventions improved significantly (p<0.001) for mobility, toileting, cognition, and risk reduction for injury, but did not change for those targeting medications. Using the Translating Research Into Practice intervention promoted use of many evidence-based fall prevention interventions to mitigate patient-specific fall risk factors in hospitalized adults. Copyright © 2015. Published by Elsevier Inc.
Digital Data for Volcano Hazards from Mount Rainier, Washington, Revised 1998
Schilling, S.P.; Doelger, S.; Hoblitt, R.P.; Walder, J.S.; Driedger, C.L.; Scott, K.M.; Pringle, P.T.; Vallance, J.W.
2008-01-01
Mount Rainier at 4393 meters (14,410 feet) is the highest peak in the Cascade Range; a dormant volcano having glacier ice that exceeds that of any other mountain in the conterminous United States. This tremendous mass of rock and ice, in combination with great topographic relief, poses a variety of geologic hazards, both during inevitable future eruptions and during the intervening periods of repose. The volcano's past behavior is the best guide to possible future hazards. The written history (about A.D. 1820) of Mount Rainier includes one or two small eruptions, several small debris avalanches, and many small lahars (debris flows originating on a volcano). In addition, prehistoric deposits record the types, magnitudes, and frequencies of other events, and areas that were affected. Mount Rainier deposits produced since the latest ice age (approximately during the past 10,000 years) are well preserved. Studies of these deposits indicate we should anticipate potential hazards in the future. Some phenomena only occur during eruptions such as tephra falls, pyroclastic flows and surges, ballistic projectiles, and lava flows while others may occur without eruptive activity such as debris avalanches, lahars, and floods. The five geographic information system (GIS) volcano hazard data layers used to produce the Mount Rainier volcano hazard map in USGS Open-File Report 98-428 (Hoblitt and others, 1998) are included in this data set. Case 1, case 2, and case 3 layers were delineated by scientists at the Cascades Volcano Observatory and depict various lahar innundation zones around the mountain. Two additional layers delineate areas that may be affected by post-lahar sedimentation (postlahar layer) and pyroclastic flows (pyroclastic layer).
MAP kinase pathways in the yeast Saccharomyces cerevisiae
NASA Technical Reports Server (NTRS)
Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)
1998-01-01
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.
Video analysis of falls experienced by paediatric iceskaters and roller/inline skaters
Knox, C L; Comstock, R D
2006-01-01
Objectives To evaluate differences in the way iceskaters and roller/inline skaters fall. Methods Children's falls related to skating were videotaped and categorised based on type of skating activity, child's estimated age, direction of fall, whether the child attempted to break the fall, and whether the head struck the skating surface. Results In total, 216 iceskating and 201 roller/inline skating falls were captured on videotape. In both iceskating and roller/inline skating, the majority of falls were forward in direction. The skaters attempted to break the falls with their arms or hands in over 90% of falls in both iceskating (93.1%) and roller/inline skating (94.5%). A greater proportion of falls in iceskating resulted in the head striking the skating surface (13.0%) than did those in roller/inline skating (3.0%) (odds ratio = 4.8; 95% confidence interval 1.9 to 13.3; p<0.001). Conclusions This study found that paediatric iceskaters and roller/inline skaters fall similarly and that both types of skaters try to break their falls with their arms or hands; however, because iceskating takes place on a low friction surface, attempts to break falls with the arms or hands are often unsuccessful, leading to head and face injuries. The development of a new type of protective gear, a wrist guard with a non‐slip palm, should stop iceskaters from striking the head, protect against upper extremity fractures, and unlike a bulky helmet, should not discourage children from skating. PMID:16505087
Herrera-Rangel, Aline B; Aranda-Moreno, Catalina; Mantilla-Ochoa, Teresa; Zainos-Saucedo, Lilia; Jáuregui-Renaud, Kathrine
2015-01-01
To assess the influence of the body mass index (BMI) on the occurrence of falls in adults with type 2 diabetes mellitus, receiving primary health care. We collected data from 134 patients (56.7±9.4 y.o.), none of them were seeking medical care due to sensory or balance decline. During the first evaluation, they reported falls, replied to a questionnaire of symptoms related to balance and had a sensory evaluation. After a 6 months follow-up, they reported falls again and, according to the occurrence of falls during the preceding year, patients were classified in 2 groups: no falls (N=92) and falls (N=42). The occurrence of falls was related to BMI, gender and age. Compared to patients with no falls, patients with falls had a greater BMI and comprised a higher proportion of patients with a BMI ≥35; patients with a BMI ≥35 were younger than patients with a BMI <35. A total symptom score ≥4 allowed the classification of 77.7% of the patients with falls and 59.5% with no falls. In adults with type 2 diabetes mellitus, a BMI ≥35 may have an influence on balance and the occurrence of falls, which might be independent from aging. Patients should be aware of this risk and receive counsel on modifiable risk factors. Copyright © 2015 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Infectious Agents Trigger Trophic Cascades.
Buck, Julia C; Ripple, William J
2017-09-01
Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively. Unlike most predators, however, infectious agents are not fully and immediately lethal to their victims, so their consumptive effects can also trigger trait-mediated indirect effects. We find that the frequency of trophic cascades reported for different consumer types scales with consumer lethality. Furthermore, we emphasize the value of uniting predator-prey and parasite-host theory under a general consumer-resource framework. Copyright © 2017 Elsevier Ltd. All rights reserved.
Navier-Stokes solution of transonic cascade flows using nonperiodic C-type grids
NASA Technical Reports Server (NTRS)
Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.
1992-01-01
A new kind of C-type grid is proposed, this grid is non-periodic on the wake and allows minimum skewness for cascades with high turning and large camber. Reynolds-averaged Navier-Stokes equations are solved on this type of grid using a finite volume discretization and a full multigrid method which uses Runge-Kutta stepping as the driving scheme. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A detailed numerical study is proposed for a highly loaded transonic blade. A grid independence analysis is presented in terms of pressure distribution, exit flow angles, and loss coefficient. Comparison with experiments clearly demonstrates the capability of the proposed procedure.
Lead-isotopic data from sulfide minerals from the Cascade Range, Oregon and Washington
Church, S.E.; LeHuray, A.P.; Grant, A.R.; Delevaux, M.H.; Gray, J.E.
1986-01-01
Lead-isotopic studies of mineral deposits associated with Tertiary plutons found in the Cascade Range of Oregon and Washington demonstrate a rather uniform isotopic composition in various sulfide minerals ( 206Pb 204Pb = 18.84 to 19.05; 207Pb 204Pb = 15.57 to 15.62; 208Pb 204Pb = 38.49 to 38.74), show less variation than data from the volcanic rocks of the Cascade Range and fall within the mixing array defined by the MORB regression line and continental sediments. An evaluation of the role of crustal assimilation by hydrothermal convection during emplacement was made on five sulfide deposits associated with a single composite batholith, the Cloudy Pass pluton. The Pb-isotopic data and mass balance calculations suggest that only minor amounts of the lead were derived from the overlying Precambrian (?) Swakane Biotite Gneiss during emplacement. The bulk of the metal that occurs in sulfide deposits in the Cascade mineral belt appears to have been derived from subducted continental detritus. The variation of the Pb-isotopic signature of Sulfides from specific districts or deposits suggests that there is a correlation with age and structure of the crust. 206Pb 204Pb is greater than 18.92 in northern Washington and southern Oregon where deposits have intruded Mesozoic or older crust. However, the ore deposits between the northern Oregon border and central Oregon, south of Eugene, have intruded younger crust composed largely of mafic and andesitic volcanic rocks and 206Pb 204Pb lies between 18.84 and 18.92. This region, previously called the Columbia embayment, appears to be underlain by Tertiary volcanic rocks. Lead-isotopic data may be used to define the boundaries between discontinuous blocks of Mesozoic crust and Tertiary volcanic cover. ?? 1986.
Lee, Hang Wai; Chan, Albert S C; Kwong, Fuk Yee
2007-07-07
A rhodium-(S)-xyl-BINAP complex-catalyzed tandem formate decarbonylation and [2 + 2 + 1] carbonylative cyclization is described; this cooperative process utilizes formate as a condensed CO source, and the newly developed cascade protocol can be extended to its enantioselective version, providing up to 94% ee of the cyclopentenone adducts.
USDA-ARS?s Scientific Manuscript database
A plant regeneration protocol was developed for Cascade huckleberry (Vaccinium deliciosum Piper), mountain huckleberry (V. membranaceum Douglas ex Hooker) and for oval-leaf bilberry (V. ovalifolium Smith) clones. The effects of zeatin concentrations (0, 4.6, 9.1 and 13.7 µM) and explant type (leaf a...
Photo series for quantifying natural forest residues: southern Cascades, northern Sierra Nevada
Kenneth S. Blonski; John L. Schramel
1981-01-01
A total of 56 photographs shows different levels of natural fuel loadings for selected size classes in seven forest types of the southern Cascade and northern Sierra-Nevada ranges. Data provided with each photo include size, weight, volumes, residue depths, and percent of ground coverage. Stand information includes sizes, weights, and volumes of the trees sampled for...
He, Fei; Vestergaard, Gisle; Peng, Wenfang; She, Qunxin; Peng, Xu
2017-02-28
CRISPR-Cas (clustered regularly interspaced short palindromic repeats and the associated genes) constitute adaptive immune systems in bacteria and archaea and they provide sequence specific immunity against foreign nucleic acids. CRISPR-Cas systems are activated by viral infection. However, little is known about how CRISPR-Cas systems are activated in response to viral infection or how their expression is controlled in the absence of viral infection. Here, we demonstrate that both the transcriptional regulator Csa3b, and the type I-A interference complex Cascade, are required to transcriptionally repress the interference gene cassette in the archaeon Sulfolobus. Csa3b binds to two palindromic repeat sites in the promoter region of the cassette and facilitates binding of the Cascade to the promoter region. Upon viral infection, loading of Cascade complexes onto crRNA-matching protospacers leads to relief of the transcriptional repression. Our data demonstrate a mechanism coupling CRISPR-Cas surveillance of protospacers to transcriptional regulation of the interference gene cassette thereby allowing a fast response to viral infection. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio
From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zonemore » to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities within wetland habitats fell to low levels by July, similar to the pattern observed at mainstem beach-seining sites and coincident with high water temperatures that approached or exceeded 19 C by mid-summer. Wetland habitats were used primarily by small subyearling Chinook salmon, with the smallest size ranges (i.e., rarely exceeding 70 mm by the end of the wetland rearing season) at scrub/shrub forested sites above rkm 50. Wetland sites of all types were utilized by a diversity of genetic stock groups, including less abundant groups such as Interior Summer/Fall Chinook.« less
Do, M. T.; Chang, V. C.; Kuran, N.; Thompson, W.
2015-01-01
Abstract Introduction: We describe the epidemiology and trends of fall-related injuries among Canadian seniors aged 65 years and older by sex and age, as well as the circumstances and consequences of their injuries. Methods: We analyzed nationally representative data from the 2005, 2009/2010 and 2013 samples of the Canadian Community Health Survey to calculate the number and rates of fall-related injuries for each survey year. Where possible, we combined data from two or more samples to estimate the proportion of fall-related injuries by type of injury, part of body injured, type of activity and type of treatment. Results: The rate of fall-related injuries among seniors increased from 49.4 to 58.8 per 1000 population between 2005 and 2013, during which the number of fall-related injuries increased by 54% overall. Women had consistently higher rates than men across all survey years, while rates increased with advancing age. The upward trend in fall-related injury rates was more prominent among women and younger age groups. The most common type of injury was broken or fractured bones (37%), and the shoulder or upper arm (16%) was the most commonly injured body part. Many fall-related injuries occurred while walking on a surface other than snow or ice (45%). Over 70% of seniors seeking treatment for their injuries visited a hospital emergency department. Conclusion: Given the increase in both the number and rates of fall-related injuries over time, there is a need to continue monitoring trends and injury patterns associated with falls. PMID:26378768
Do, M T; Chang, V C; Kuran, N; Thompson, W
2015-09-01
We describe the epidemiology and trends of fall-related injuries among Canadian seniors aged 65 years and older by sex and age, as well as the circumstances and consequences of their injuries. We analyzed nationally representative data from the 2005, 2009/2010 and 2013 samples of the Canadian Community Health Survey to calculate the number and rates of fall-related injuries for each survey year. Where possible, we combined data from two or more samples to estimate the proportion of fall-related injuries by type of injury, part of body injured, type of activity and type of treatment. The rate of fall-related injuries among seniors increased from 49.4 to 58.8 per 1000 population between 2005 and 2013, during which the number of fall-related injuries increased by 54% overall. Women had consistently higher rates than men across all survey years, while rates increased with advancing age. The upward trend in fall-related injury rates was more prominent among women and younger age groups. The most common type of injury was broken or fractured bones (37%), and the shoulder or upper arm (16%) was the most commonly injured body part. Many fall-related injuries occurred while walking on a surface other than snow or ice (45%). Over 70% of seniors seeking treatment for their injuries visited a hospital emergency department. Given the increase in both the number and rates of fall-related injuries over time, there is a need to continue monitoring trends and injury patterns associated with falls.
NASA Technical Reports Server (NTRS)
Yang, R. J.; Weinberg, B. C.; Shamroth, S. J.; Mcdonald, H.
1985-01-01
The application of the time-dependent ensemble-averaged Navier-Stokes equations to transonic turbine cascade flow fields was examined. In particular, efforts focused on an assessment of the procedure in conjunction with a suitable turbulence model to calculate steady turbine flow fields using an O-type coordinate system. Three cascade configurations were considered. Comparisons were made between the predicted and measured surface pressures and heat transfer distributions wherever available. In general, the pressure predictions were in good agreement with the data. Heat transfer calculations also showed good agreement when an empirical transition model was used. However, further work in the development of laminar-turbulent transitional models is indicated. The calculations showed most of the known features associated with turbine cascade flow fields. These results indicate the ability of the Navier-Stokes analysis to predict, in reasonable amounts of computation time, the surface pressure distribution, heat transfer rates, and viscous flow development for turbine cascades operating at realistic conditions.
Fragmentation of displacement cascades into subcascades: A molecular dynamics study
Antoshchenkova, E.; Luneville, L.; Simeone, D.; ...
2014-12-12
The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less
Fragmentation of displacement cascades into subcascades: A molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoshchenkova, E.; Luneville, L.; Simeone, D.
The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less
Medication use and associated risk of falling in a geriatric outpatient population.
Freeland, Kathryn N; Thompson, Amy N; Zhao, Yumin; Leal, Julie E; Mauldin, Patrick D; Moran, William P
2012-09-01
Studies have shown that approximately one third of community-dwelling people aged 65 years and older will experience a fall each year. Many studies indicate that use of multiple medications may put patients at an increased risk of falling, but few studies have been conducted to correlate the number of medications with the risk of falls. To determine the medications most frequently used in patients aged 65 years or older who have experienced a fall within the past year, with particular attention to type or number of medications most commonly associated with multiple falls or a fall with injury. We conducted a chart review in an outpatient internal medicine clinic over a 13-month period. A total of 118 patients 65 years of age or older who were taking 4 or more medications and had experienced at least 1 fall in the previous 12 months were included. Data relating to sex, age, race, diagnoses, medications, and number and type of falls were obtained during the chart review. The primary end point of the study was number and type of medications most commonly used in patients experiencing a fall. A total of 116 patients were examined for trends in fall risk. A logistic regression model and receiver operating characteristic curve demonstrated significant fall risk with the addition of medications, with patients experiencing a 14% increase in fall risk with the addition of each medication beyond a 4-medication regimen (OR 1.14; 95% CI 1.02 to 1.27; p = 0.027). The addition of medications is associated with a significant increase in risk of falls in elderly patients, regardless of drug class. Further studies are needed to assess the possible increased risk of falls with increasing number of medications.
Optimal fall indicators for slip induced falls on a cross-slope.
Domone, Sarah; Lawrence, Daniel; Heller, Ben; Hendra, Tim; Mawson, Sue; Wheat, Jonathan
2016-08-01
Slip-induced falls are among the most common cause of major occupational injuries in the UK as well as being a major public health concern in the elderly population. This study aimed to determine the optimal fall indicators for fall detection models which could be used to reduce the detrimental consequences of falls. A total of 264 kinematic variables covering three-dimensional full body model translation and rotational measures were analysed during normal walking, successful recovery from slips and falls on a cross-slope. Large effect sizes were found for three kinematic variables which were able to distinguish falls from normal walking and successful recovery. Further work should consider other types of daily living activities as results show that the optimal kinematic fall indicators can vary considerably between movement types. Practitioner Summary: Fall detection models are used to minimise the adverse consequences of slip-induced falls, a major public health concern. Optimal fall indicators were derived from a comprehensive set of kinematic variables for slips on a cross-slope. Results suggest robust detection of falls is possible on a cross-slope but may be more difficult than level walking.
The HIV Care Cascade Before, During, and After Incarceration: A Systematic Review and Data Synthesis
Iroh, Princess A.; Mayo, Helen
2015-01-01
We conducted a systematic literature review of the data on HIV testing, engagement in care, and treatment in incarcerated persons, and estimated the care cascade in this group. We identified 2706 titles in MEDLINE, EBSCO, and Cochrane Library databases for studies indexed to January 13, 2015, and included 92 for analysis. We summarized HIV testing results by type (blinded, opt-out, voluntary); reviewed studies on HIV care engagement, treatment, and virological suppression; and synthesized these results into an HIV care cascade before, during, and after incarceration. The HIV care cascade following diagnosis increased during incarceration and declined substantially after release, often to levels lower than before incarceration. Incarceration provides an opportunity to address HIV care in hard-to-reach individuals, though new interventions are needed to improve postrelease care continuity. PMID:25973818
Severe hypoglycemia is associated with high risk for falls in adults with type 1 diabetes.
Shah, Viral N; Wu, Mengdi; Foster, Nicole; Dhaliwal, Ruban; Al Mukaddam, Mona
2018-06-12
We evaluated fall frequency and factors affecting falls among middle-aged and older adults with type 1 diabetes (T1D) from T1D Exchange Registry. Twenty-nine percent of T1D participants reported falls within the past 12 months. Severe hypoglycemia, diabetic peripheral neuropathy, and depression were associated with falls in adults with T1D. Fall is an important risk factor for osteoporotic fracture; we evaluated fall frequency and factors affecting falls among middle-aged and older adults with type 1 diabetes (T1D). Participants aged ≥ 55 years with T1D completed an email-based questionnaire on falls in the prior 12 months. Demographic, clinical, and fall-related information were gathered from the questionnaire; HbA1c was recorded from medical record data extraction. Four hundred and thirty five adults with T1D completed the fall questionnaire (mean age 64 ± 7 years, 57% females, and 97% were non-Hispanic whites). The mean diabetes duration was 36 years with mean HbA1c of 7.3%. Among the 435 participants, 126 reported at least one fall in the prior 12 months (29%). The fall frequency values in adults (55-64 years) with T1D and older adults (> 65 years) were 26 and 32%, respectively (p = 0.16). There was no significant difference in frequency of fall between female and male participants (31 vs. 26%, p = 0.33). Of 126 participants who had a fall, 44% had injuries due to fall, 24% required medical attention, and 13 participants reported fracture (10%). Severe hypoglycemia (odds ratio (OR) 3.6), diabetic peripheral neuropathy (OR 2.2), and depression (OR 1.7) were associated with falls in adults with T1D. Forty-one percent of participants were fearful of falls. This is the first study on prevalence and risk factors for falls suggesting that falls are common in T1D and severe hypoglycemia is a unique diabetes-related factor associated with threefold higher risk for falls.
NASA Astrophysics Data System (ADS)
Chen, Kanuo; Hsiao, Fu-Chen; Joy, Brittany; Dallesasse, John M.
2018-07-01
The concept of the quantum cascade light-emitting transistor (QCLET) is proposed by incorporating periodic stages of quantum wells and barriers in the completely depleted base-collector junction of a heterojunction bipolar transistor. The radiative band-to-band base recombination in the QCLET is shown to be controllable using the base-collector voltage bias for a given emitter-base biasing condition. A self-consistent Schrödinger-Poisson Equation model is built to validate the idea of the QCLET. A GaAs-based QCLET is designed and fabricated. Control of radiative band-to-band base recombination is observed and characterized. By changing the voltage across the quantum cascade region in the QCLET, the alignment of quantum states in the cascade region creates a tunable barrier for electrons that allows or suppresses emitter-injected electron flow from the p-type base through the quantum cascade region into the collector. The field-dependent electron barrier in the base-collector junction manipulates the effective minority carrier lifetime in the base and controls the radiative base recombination process. Under different quantum cascade region biasing conditions, the radiative base recombination is measured and analyzed.
Fall Protection Introduction, #33462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chochoms, Michael
The proper use of fall prevention and fall protection controls can reduce the risk of deaths and injuries caused by falls. This course, Fall Protection Introduction (#33462), is designed as an introduction to various types of recognized fall prevention and fall protection systems at Los Alamos National Laboratory (LANL), including guardrail systems, safety net systems, fall restraint systems, and fall arrest systems. Special emphasis is given to the components, inspection, care, and storage of personal fall arrest systems (PFASs). This course also presents controls for falling object hazards and emergency planning considerations for persons who have fallen.
Richard Everett; D. Schellhaas; D. Spurbeck; [and others].
1997-01-01
The northern spotted (Strix occidentalis caurina) uses a wide array of nesting habitat throughout its current range and successfully reproduces in a variety of stand types on the eastern slope of the Pacific Northwest Cascades. The species has the ability to utilize dynamic forest stands that continue to undergo significant changes in tree density...
Dual-stiffness flooring: can it reduce fracture rates associated with falls?
Knoefel, Frank; Patrick, Louise; Taylor, Jodie; Goubran, Rafik
2013-04-01
Falls cause significant morbidity and mortality in long term care facilities. Dual-stiffness flooring (DSF) has previously shown promise in reducing such morbidity in experimental models. This study set out to measure the impact of SmartCell flooring on falls-related morbidity in a nursing home. All falls occurring at an Arizona nursing home between July 1, 2008, and December 31, 2010, were reviewed for age, sex, diagnosis of osteoporosis, number of medications, history of previous falls, type of flooring (normal vs DSF), time of day, type of injury, and resulting actions. Fall-related outcomes were compared across room types using chi-square and logistic regression methods. Eighty-two falls on the DSF were compared with 85 falls on the regular floor. There was a tendency for residents falling on DSF to have less bruising and abrasions, while having more redness and cuts. There were 2 fractures on regular flooring (2.4% fracture rate) and none on the DSF flooring (0% fracture rate). The fracture rate of 2.4% of falls on the regular floor is consistent with previous reports in the literature, whereas a 0% rate found on the DSF floor is a clinically significant improvement. This suggests that DSF may be a practical approach for institutions and consumers to reduce fall-related injuries. A larger scale controlled study to confirm these encouraging preliminary findings is warranted. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
Computing Shapes Of Cascade Diffuser Blades
NASA Technical Reports Server (NTRS)
Tran, Ken; Prueger, George H.
1993-01-01
Computer program generates sizes and shapes of cascade-type blades for use in axial or radial turbomachine diffusers. Generates shapes of blades rapidly, incorporating extensive cascade data to determine optimum incidence and deviation angle for blade design based on 65-series data base of National Advisory Commission for Aeronautics and Astronautics (NACA). Allows great variability in blade profile through input variables. Also provides for design of three-dimensional blades by allowing variable blade stacking. Enables designer to obtain computed blade-geometry data in various forms: as input for blade-loading analysis; as input for quasi-three-dimensional analysis of flow; or as points for transfer to computer-aided design.
NASA Astrophysics Data System (ADS)
Studer, Armido; Curran, Dennis P.
2014-09-01
The electron is an efficient catalyst for conducting various types of radical cascade reaction that proceed by way of radical and radical ion intermediates. But because electrons are omnipresent, catalysis by electrons often passes unnoticed. In this Review, a simple analogy between acid/base catalysis and redox catalysis is presented. Conceptually, the electron is a catalyst in much the same way that a proton is a catalyst. The 'electron is a catalyst' paradigm unifies mechanistically an assortment of synthetic transformations that otherwise have little or no apparent relationship. Diverse radical cascades, including unimolecular radical substitution reactions (SRN1-type chemistry), base-promoted homolytic aromatic substitutions (BHAS), radical Heck-type reactions, radical cross-dehydrogenative couplings (CDC), direct arene trifluoromethylations and radical alkoxycarbonylations, can all be viewed as electron-catalysed reactions.
Lukaszyk, Caroline; Harvey, Lara A; Sherrington, Catherine; Close, Jacqueline Ct; Coombes, Julieann; Mitchell, Rebecca J; Moore, Robyn; Ivers, Rebecca
2017-07-03
To compare the socio-demographic characteristics and type of injury sustained, the use of hospital resources and rates of hospitalisation by injury type, and survival following fall injuries to older Aboriginal people and non-Indigenous Australian people hospitalised for fall-related injuries. Population-based retrospective cohort data linkage study. Setting, participants: New South Wales residents aged 50 years or more admitted to a public or private NSW hospital for a fall-related injury during 1 January 2003 - 31 December 2012. Proportions of patients with defined injury types, mean hospital length of stay (LOS), 30-day mortality, age-standardised hospitalisation rates and age-adjusted rate ratios, 28-day re-admission rates. There were 312 758 fall-related injury hospitalisations for 234 979 individuals; 2660 admissions (0.85%) were of Aboriginal people. The proportion of hospitalisations for fall-related fracture injuries was lower for Aboriginal than for non-Indigenous Australians (49% v 60% of fall-related hospitalisations; P < 0.001). The major injury type for Aboriginal patients was non-fracture injury to head or neck (19% of hospitalisations); for non-Indigenous patients it was hip fractures (18%). Age-adjusted LOS was lower for Aboriginal than for non-Indigenous patients (9.1 v 14.0 days; P < 0.001), as was 30-day mortality (2.9% v 4.2%; P < 0.001). For Aboriginal people, fall injury hospitalisations increased at an annual rate of 5.8% (95% CI, 4.0-7.7%; P < 0.001); for non-Indigenous patients, the mean annual increase was 2.5% (95% CI, 2.1-3.0; P < 0.001). The patterns of injury and outcomes of fall injury hospitalisations were different for older Aboriginal people and other older Australians, suggesting that different approaches are required to prevent and treat fall injuries.
Generation of multiband chorus by lower band cascade in the Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Gao, Xinliang; Lu, Quanming; Bortnik, Jacob; Li, Wen; Chen, Lunjin; Wang, Shui
2016-03-01
Chorus waves are intense electromagnetic whistler mode emissions in the magnetosphere, typically falling into two distinct frequency bands: a lower band (0.1-0.5fce) and an upper band (0.5-0.8fce) with a power gap at about 0.5fce. In this letter, with the Time History of Events and Macroscale Interactions during Substorms satellite, we observed two special chorus events, which are called as multiband chorus because upper band chorus is located at harmonics of lower band chorus. We propose a new potential generation mechanism for multiband chorus, which is called as lower band cascade. In this scenario, a density mode with a frequency equal to that of lower band chorus is generated by the ponderomotive effect (inhomogeneity of the electric amplitude) along the wave vector, and then upper band chorus with the frequency twice that of lower band chorus is generated through wave-wave couplings between lower band chorus and the density mode. The mechanism provides a new insight into the evolution of whistler mode chorus in the Earth's magnetosphere.
NASA Astrophysics Data System (ADS)
Song, Fang; Zheng, Chuantao; Yu, Di; Zhou, Yanwen; Yan, Wanhong; Ye, Weilin; Zhang, Yu; Wang, Yiding; Tittel, Frank K.
2018-03-01
A parts-per-billion in volume (ppbv) level mid-infrared methane (CH4) sensor system was demonstrated using second-harmonic wavelength modulation spectroscopy (2 f-WMS). A 3291 nm interband cascade laser (ICL) and a multi-pass gas cell (MPGC) with a 16 m optical path length were adopted in the reported sensor system. Two digital lock-in amplifier (DLIA) schemes, a digital signal processor (DSP)-based DLIA and a LabVIEW-based DLIA, were used for harmonic signal extraction. A limit of detection (LoD) of 13.07 ppbv with an averaging time of 2 s was achieved using the DSP-based DLIA and a LoD of 5.84 ppbv was obtained using the LabVIEW-based DLIA with the same averaging time. A rise time of 0→2 parts-per-million in volume (ppmv) and fall time of 2→0 ppmv were observed. Outdoor atmospheric CH4 concentration measurements were carried out to evaluate the sensor performance using the two DLIA schemes.
Hill, Keith D; Day, Lesley; Haines, Terry P
2014-01-01
Purpose To investigate previous, current, or planned participation in, and perceptions toward, multifactorial fall prevention programs such as those delivered through a falls clinic in the community setting, and to identify factors influencing older people’s intent to undertake these interventions. Design and methods Community-dwelling people aged >70 years completed a telephone survey. Participants were randomly selected from an electronic residential telephone listing, but purposeful sampling was used to include equal numbers with and without common chronic health conditions associated with fall-related hospitalization. The survey included scenarios for fall prevention interventions, including assessment/multifactorial interventions, such as those delivered through a falls clinic. Participants were asked about previous exposure to, or intent to participate in, the interventions. A path model analysis was used to identify factors associated with intent to participate in assessment/multifactorial interventions. Results Thirty of 376 participants (8.0%) reported exposure to a multifactorial falls clinic-type intervention in the past 5 years, and 16.0% expressed intention to undertake this intervention. Of the 132 participants who reported one or more falls in the past 12 months, over one-third were undecided or disagreed that a falls clinic type of intervention would be of benefit to them. Four elements from the theoretical model positively influenced intention to participate in the intervention: personal perception of intervention effectiveness, self-perceived risk of falls, self-perceived risk of injury, and inability to walk up/down steps without a handrail (P<0.05). Conclusion Multifactorial falls clinic-type interventions are not commonly accessed or considered as intended fall prevention approaches among community-dwelling older people, even among those with falls in the past 12 months. Factors identified as influencing intention to undertake these interventions may be useful in promoting or targeting these interventions. PMID:25473276
Duffield, W.; Riggs, N.; Kaufman, D.; Champion, D.; Fenton, C.; Forman, S.; McIntosh, W.; Hereford, R.; Plescia, J.; Ort, M.
2006-01-01
The Grand Falls basalt lava flow in northern Arizona was emplaced in late Pleistocene time. It flowed 10 km from its vent area to the Little Colorado River, where it cascaded into and filled a 65-m-deep canyon to form the Grand Falls lava dam. Lava continued ???25 km downstream and ???1 km onto the far rim beyond where the canyon was filled. Subsequent fluvial sedimentation filled the reservoir behind the dam, and eventually the river established a channel along the margin of the lava flow to the site where water falls back into the pre-eruption canyon. The ca. 150 ka age of the Grand Falls flow provided by whole-rock K-Ar analysis in the 1970s is inconsistent with the preservation of centimeter-scale flow-top features on the surface of the flow and the near absence of physical and chemical weathering on the flow downstream of the falls. The buried Little Colorado River channel and the present-day channel are at nearly the same elevation, indicating that very little, if any, regional downcutting has occurred since emplacement of the flow. Newly applied dating techniques better define the age of the lava dam. Infrared-stimulated luminescence dating of silty mudstone baked by the lava yielded an age of 19.6 ?? 1.2 ka. Samples from three noneroded or slightly eroded outcrops at the top of the lava flow yielded 3He cosmogenic ages of 16 ?? 1 ka, 17 ?? 1 ka, and 20 ?? 1 ka. A mean age of 8 ?? 19 ka was obtained from averaging four samples using the 40Ar/39Ar step-heating method. Finally, paleomagnetic directions in lava samples from two sites at Grand Falls and one at the vent area are nearly identical and match the curve of magnetic secular variation at ca. 15 ka, 19 ka, 23 ka, and 28 ka. We conclude that the Grand Falls flow was emplaced at ca. 20 ka. ?? 2006 Geological Society of America.
Gary L. Parson; Gerasimos Cassis; Andrew R. Moldenke; John D. Lattin; Norman H. Anderson; Jeffrey C Miller; Paul Hammond; Timothy D. Schowalter
1991-01-01
An annotated list of species of insects and other arthropods that have been collected and studies on the H.J. Andrews Experimental forest, western Cascade Range, Oregon. The list includes 459 families, 2,096 genera, and 3,402 species. All species have been authoritatively identified by more than 100 specialists. Information is included on habitat type, functional group...
Gary L. Parson; Gerasimos Cassis; Andrew R. Moldenke; John D. Lattin; Norman H. Anderson; Jeffrey C Miller; Paul Hammond; Timothy D. Schowalter
1991-01-01
An annotated list of species of insects and other arthropods that have been collected and studies on the H.J. Andrews Experimental forest, western Cascade Range, Oregon. The list includes 459 families, 2,096 genera, and 3,402 species. All species have been authoritatively identified by more than 100 specialists. Information is included on habitat type, functional group...
Antimony-Based Type-II Superlattice Photodetectors
2010-09-06
photodetectors, antimony-based mid- infrared detectors Shun L. Chuang, Russell D. Dupuis University of Illinois - Urbana Grants and Contracts Office...Q. Yang, Interband Cascade Detectors , US Patent #7,282,777, October 16, 2007. Graduate Students PERCENT_SUPPORTEDNAME Shin Mou 0.25 Adam Petschke...DD882) Inventions (DD882) Interband Cascade Detectors Patent Filed in US? (5d-1) Y NPatent Filed in Foreign Countries? (5d-2) Was the assignment
NASA Astrophysics Data System (ADS)
Carver, Nicole S.; Kelty-Stephen, Damian G.
2017-02-01
Honeybees (Apis mellifera) exhibit complex coordination and interaction across multiple behaviors such as swarming. This coordination among honeybees in the same colony is remarkably similar to the concept of informational cascades. The multifractal geometry of cascades suggests that multifractal measures of individual honeybee activity might carry signatures of these colony-wide coordinations. The present work reanalyzes time stamps of entrances to and exits from the hive captured by radio-frequency identification (RFID) sensors reading RFID tags on individual bees. Indeed, both multifractal spectrum width for individual bees' inter-reading interval series and differences of those widths from surrogates significantly predicted not just whether the individual bee's hive had a mesh enclosure but also predicted the specific membership of individual bees in one of five colonies. The significant effects of multifractality in matching honeybee activity to type of colony and, further, matching individual honeybees to their exact home colony suggests that multifractality quantifies key features of the colony-wide interactions across many scales. This relevance of multifractality to predicting colony type or colony membership adds additional credence to the cascade metaphor for colony organization. Perhaps, multifractality provides a new tool for exploring the relationship between individual organisms and larger, more complex social behaviors.
Developmental emergence of different forms of neuromodulation in Aplysia sensory neurons.
Marcus, E A; Carew, T J
1998-04-14
The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism's behavioral responses. Understanding how such capacity for neuromodulation develops therefore may provide insights into the mechanisms both of neuronal development and learning and memory. We have examined the development of multiple forms of neuromodulation triggered by a common neurotransmitter, serotonin, in the pleural sensory neurons of Aplysia californica. We have found that multiple signaling cascades within a single neuron develop sequentially, with some being expressed only very late in development. In addition, our data suggest a model in which, within a single neuromodulatory pathway, the elements of the signaling cascade are developmentally expressed in a "retrograde" manner with the ionic channel that is modulated appearing early in development, functional elements in the second messenger cascade appearing later, and finally, coupling of the second messenger cascade to the serotonin receptor appearing quite late. These studies provide the characterization of the development of neuromodulation at the level of an identified cell type and offer insights into the potential roles of neuromodulatory processes in development and adult plasticity.
NASA Astrophysics Data System (ADS)
Hannides, A. K.; Smith, C. R.; Baco-Taylor, A. R.
2005-12-01
Resource-limited deep-sea sedimentary settings are occasionally punctuated with massive organic matter (MOM) falls, such as fish and marine mammal carcasses, macrophytes and wood. In the case of whale falls, previous studies have shown that sharp gradients in microbial activity exist within a few meters of these falls. These sites are characterized by intense sulfate reduction and sulfide generation, which are commonly attributed to sedimentary organic enrichment from MOM, and in part support extensive chemosynthetic communities that rely on endosymbiotic oxidation of this sulfide for energy. Enrichment is brought about by the fragmentation and dissemination activities of deep-sea megafauna: scavengers in the case of carcasses and macrophytes, and wood borers in the case of wood.Differences in MOM fall composition and structure and the subsequent megafaunal processing raise questions concerning the patterns of organic enrichment around these falls and how these patterns vary with fall type. We present an extensive data set of surface sediment organic carbon and nitrogen content at whale, kelp and wood falls of various ages in the California Borderland Basins region. Evidence for organic enrichment around whale falls is lacking, corroborating previous findings. However, distinctly low C:N ratios in surface sediments adjacent to whale falls suggest more complex processing of MOM in this zone. This pattern persists regardless of whale fall age. On the contrary, evidence for organic enrichment around kelp and wood falls abounds. Organic carbon and nitrogen content values adjacent to 3 month-old kelp falls are 25-50 % higher than those 1 m away from the falls and traces of this signal persist for at least 3 more months. In the case of wood falls, 6 month-old falls do not show any significant traces of enrichment, but 3 years after the fall event organic carbon content adjacent to the falls increases by 2-5 times that of background. C:N ratios concomitantly increase to startling levels of 80-100. Comparison of falls of different ages but similar masses reveals that kelp falls result in rapid (<3 months) enrichment peaks, while wood falls only generate significant signals on the order of years. Comparison of organic enrichment patterns with pore water sulfide distributions suggests a role of MOM type or quality in stimulating increases in sedimentary organic matter decomposition rates.
NASA Astrophysics Data System (ADS)
Zhang, Mingyuan; Cao, Tianzhuo; Zhao, Xuefeng
2018-03-01
As an effective fall accident preventive method, insight into near-miss falls provides an efficient solution to find out the causes of fall accidents, classify the type of near-miss falls and control the potential hazards. In this context, the paper proposes a method to detect and identify near-miss falls that occur when a worker walks in a workplace based on artificial neural network (ANN). The energy variation generated by workers who meet with near-miss falls is measured by sensors embedded in smart phone. Two experiments were designed to train the algorithm to identify various types of near-miss falls and test the recognition accuracy, respectively. At last, a test was conducted by workers wearing smart phones as they walked around a simulated construction workplace. The motion data was collected, processed and inputted to the trained ANN to detect and identify near-miss falls. Thresholds were obtained to measure the relationship between near-miss falls and fall accidents in a quantitate way. This approach, which integrates smart phone and ANN, will help detect near-miss fall events, identify hazardous elements and vulnerable workers, providing opportunities to eliminate dangerous conditions in a construction site or to alert possible victims that need to change their behavior before the occurrence of a fall accident.
All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN.
Gong, Mingjun; Chen, Yuping; Lu, Feng; Chen, Xianfeng
2010-08-15
We experimentally demonstrate wavelength broadcast based on simultaneous Type I quasi-phase-matched (QPM) broadband sum-frequency generation (SFG) and second-harmonic generation (SHG) in 5 mol.% MgO-doped periodically poled lithium niobate (MgO:PPLN). One signal has been synchronously converted into seven different wavelengths using two pumps at a 1.5 microm band via quadratic cascaded nonlinear wavelength conversion. By selecting different pump regions, i.e., selecting different cascaded chi((2)):chi((2)) interactions, the flexible wavelength conversions with shifting from one signal to single, double, and triple channels were also demonstrated.
Type-II InAs/GaSb (InAsSb) superlattices for interband cascade midwavelength detectors
NASA Astrophysics Data System (ADS)
Hackiewicz, Klaudia; Martyniuk, Piotr
2018-02-01
Type-II superlattice (T2SL) interband cascade infrared detectors (IB CIDs) proved to be a promising candidate for short response time devices operating in room and higher temperatures. The current status of the higher operating temperature (HOT) T2SLs InAs/GaSb and InAs/InAsSb IB CID is presented. We compare both materials with HgCdTe alloy, which is widely described in literature. The detectivity of midwave infrared (MWIR) T2SLs InAs/GaSb and InAs/InAsSb based IB CID has been demonstrated up to 380 K.
Moreira, Bruno de Souza; Dos Anjos, Daniela Maria da Cruz; Pereira, Daniele Sirineu; Sampaio, Rosana Ferreira; Pereira, Leani Souza Máximo; Dias, Rosângela Corrêa; Kirkwood, Renata Noce
2016-03-03
Fear of falling is a common and potentially disabling problem among older adults. However, little is known about this condition in older adults with diabetes mellitus. The aims of this study were to investigate the impact of the fear of falling on clinical, functional and gait variables in older women with type 2 diabetes and to identify which variables could predict the fear of falling in this population. Ninety-nine community-dwelling older women with type 2 diabetes (aged 65 to 89 years) were stratified in two groups based on their Falls Efficacy Scale-International score. Participants with a score < 23 were assigned to the group without the fear of falling (n = 50) and those with a score ≥ 23 were assigned to the group with the fear of falling (n = 49). Clinical data included demographics, anthropometrics, number of diseases and medications, physical activity level, fall history, frailty level, cognition, depressive symptoms, fasting glucose level and disease duration. Functional measures included the Timed Up and Go test (TUG), the five times sit-to-stand test (5-STS) and handgrip strength. Gait parameters were obtained using the GAITRite® system. Participants with a fear of falling were frailer and presented more depressive symptoms and worse performance on the TUG and 5-STS tests compared with those without a fear of falling. The group with the fear of falling also walked with a lower velocity, cadence and step length and increased step time and swing time variability. The multivariate regression analysis showed that the likelihood of having a fear of falling increased 1.34 times (OR 1.34, 95 % CI 1.11-1.61) for a one-point increase in the Geriatric Depression Scale (GDS-15) score and 1.36 times (OR 1.36, 95 % CI 1.07-1.73) for each second of increase in the TUG performance. The fear of falling in community-dwelling older women with type 2 diabetes mellitus is associated with frailty, depressive symptoms and dynamic balance, functional mobility and gait deficits. Furthermore, both the GDS-15 and the TUG test predict a fear of falling in this population. Therefore, these instruments should be considered during the assessment of diabetic older women with fear of falling.
Digital Data for Volcano Hazards of the Mount Hood Region, Oregon
Schilling, S.P.; Doelger, S.; Scott, W.E.; Pierson, T.C.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.
2008-01-01
Snow-clad Mount Hood dominates the Cascade skyline from the Portland metropolitan area to the wheat fields of Wasco and Sherman Counties. The mountain contributes valuable water, scenic, and recreational resources that help sustain the agricultural and tourist segments of the economies of surrounding cities and counties. Mount Hood is also one of the major volcanoes of the Cascade Range, having erupted repeatedly for hundreds of thousands of years, most recently during two episodes in the past 1,500 yr. The last episode ended shortly before the arrival of Lewis and Clark in 1805. When Mount Hood erupts again, it will severely affect areas on its flanks and far downstream in the major river valleys that head on the volcano. Volcanic ash may fall on areas up to several hundred kilometers downwind. The purpose of the volcano hazard report USGS Open-File Report 97-89 (Scott and others, 1997) is to describe the kinds of hazardous geologic events that have happened at Mount Hood in the past and to show which areas will be at risk when such events occur in the future. This data release contains the geographic information system (GIS) data layers used to produce the Mount Hood volcano hazard map in USGS Open-File Report 97-89. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain. A second data layer contains points that indicate estimated travel times of lahars.
Exact Theory of Compressible Fluid Turbulence
NASA Astrophysics Data System (ADS)
Drivas, Theodore; Eyink, Gregory
2017-11-01
We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.
SisFall: A Fall and Movement Dataset
Sucerquia, Angela; López, José David; Vargas-Bonilla, Jesús Francisco
2017-01-01
Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities, and limited information. Here, we present a dataset of falls and activities of daily living (ADLs) acquired with a self-developed device composed of two types of accelerometer and one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL types performed by 14 healthy and independent participants over 62 years old, and data from one participant of 60 years old that performed all ADLs and falls. These activities were selected based on a survey and a literature analysis. We test the dataset with widely used feature extraction and a simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection. An individual activity analysis demonstrates that most errors coincide in a few number of activities where new approaches could be focused. Finally, validation tests with elderly people significantly reduced the fall detection performance of the tested features. This validates findings of other authors and encourages developing new strategies with this new dataset as the benchmark. PMID:28117691
SisFall: A Fall and Movement Dataset.
Sucerquia, Angela; López, José David; Vargas-Bonilla, Jesús Francisco
2017-01-20
Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities, and limited information. Here, we present a dataset of falls and activities of daily living (ADLs) acquired with a self-developed device composed of two types of accelerometer and one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL types performed by 14 healthy and independent participants over 62 years old, and data from one participant of 60 years old that performed all ADLs and falls. These activities were selected based on a survey and a literature analysis. We test the dataset with widely used feature extraction and a simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection. An individual activity analysis demonstrates that most errors coincide in a few number of activities where new approaches could be focused. Finally, validation tests with elderly people significantly reduced the fall detection performance of the tested features. This validates findings of other authors and encourages developing new strategies with this new dataset as the benchmark.
Chemistry of selected high-elevation lakes in seven national parks in the western United States
Clow, David W.; Striegl, Robert G.; Nanus, Leora; Mast, M. Alisa; Campbell, Donald H.; Krabbenhoft, David P.
2002-01-01
A chemical survey of 69 high-altitude lakes in seven national parks in the western United States was conducted during the fallof 1999; the lakes were previously sampled during the fall of 1985, as part of the Western Lake Survey. Lakes in parks in the Sierra/southern Cascades (Lassen Volcanic, Yosemite, Sequoia/Kings Canyon National Parks) and in the southern RockyMountains (Rocky Mountain National Park) were very dilute; medianspecific conductance ranged from 4.4 to 12.2 μS cm-1 andmedian alkalinity concentrations ranged from 32.2 to 72.9 μeqL-1. Specific conductances and alkalinity concentrations were substantially higher in lakes in the central and northernRocky Mountains parks (Grand Teton, Yellowstone, and GlacierNational Parks), probably due to the prevalence of more reactivebedrock types. Regional patterns in lake concentrations of NO3 and SO4 were similar to regional patterns in NO3 and SO4 concentrations in precipitation, suggestingthat the lakes are showing a response to atmospheric deposition.Concentrations of NO3 were particularly high in Rocky Mountain National Park, where some ecosystems appear to be undergoing nitrogen saturation.
NASA Astrophysics Data System (ADS)
Petersen, Marcell Elo; Maar, Marie; Larsen, Janus; Møller, Eva Friis; Hansen, Per Juel
2017-05-01
The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model ERGOM was validated and applied in a local set-up of the Kattegat, Denmark, using the off-line Flexsem framework. The model scenarios were conducted by changing the forcing by ± 20% of nutrient inputs (bottom-up) and mesozooplankton mortality (top-down), and both types of forcing combined. The model results showed that cascading effects operated differently depending on the forcing type. In the single-forcing bottom-up scenarios, the cascade directions were in the same direction as the forcing. For scenarios involving top-down, there was a skipped-level-transmission in the trophic responses that was either attenuated or amplified at different trophic levels. On a seasonal scale, bottom-up forcing showed strongest response during winter-spring for DIN and Chl a concentrations, whereas top-down forcing had the highest cascade strength during summer for Chl a concentrations and microzooplankton biomass. On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient input and mesozooplankton mortality calling for the need of an integrated management of marine areas exploited by human activities.
Cascade debris overlap mechanism of 〈100〉 dislocation loop formation in Fe and FeCr
NASA Astrophysics Data System (ADS)
Granberg, F.; Byggmästar, J.; Sand, A. E.; Nordlund, K.
2017-09-01
Two types of dislocation loops are observed in irradiated α-Fe, the 1/2〈111〉 loop and the 〈100〉 loop. Atomistic simulations consistently predict that only the energetically more favourable 1/2〈111〉 loops are formed directly in cascades, leaving the formation mechanism of 〈100〉 loops an unsolved question. We show how 〈100〉 loops can be formed when cascades overlap with random pre-existing primary radiation damage in Fe and FeCr. This indicates that there are no specific constraints involved in the formation of 〈100〉 loops, and can explain their common occurrence.
Pereira, Catarina L N; Baptista, Fátima; Infante, Paulo
2014-01-01
This study examined the effect of the type, level and amount of physical activity in falls and fall-related injuries. Participants were 506 community-dwelling adults aged >50 years (390 women: 67.7 ± 6.8 years and 116 men: 69.6 ± 6.6 years). Falls, fall-related injuries (slight and severe), and physical activity (type, level and energy expenditure) were evaluated by questionnaires. Confounders included co-morbidities, fear of falling, environmental hazards and physical fitness. After adjustment for confounders, logistic analysis revealed that the likelihood of falling decreased by 2% for each 100 metabolic expenditure (MET-min/week) of total physical activity and increased by 5% for each 100 MET-min/week of vigorous-intensity physical activity; total physical activity >1125 MET-min/week and vigorous physical activity <500 MET-min/week were identified as cut-off values discriminating non-fallers from fallers. Compared to the low physical activity level, increased physical activity levels diminished the likelihood of the occurrence of severe fall-related injuries by 76% (moderate) and 58% (high; p < 0.05) in fallers. Being active, especially sufficiently active, reduces fall-related injuries by decreasing falls and by safeguarding against severe injuries when falls occur. At least 1125 MET-min/week of total physical activity including >500 MET-min/week of vigorous intensity seems to prevent falls and, therefore, fall-related injuries.
Transonic cascade flow calculations using non-periodic C-type grids
NASA Technical Reports Server (NTRS)
Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.
1991-01-01
A new kind of C-type grid is proposed for turbomachinery flow calculations. This grid is nonperiodic on the wake and results in minimum skewness for cascades with high turning and large camber. Euler and Reynolds averaged Navier-Stokes equations are discretized on this type of grid using a finite volume approach. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. Jameson's explicit Runge-Kutta scheme is adopted for the integration in time, and computational efficiency is achieved through accelerating strategies such as multigriding and residual smoothing. A detailed numerical study was performed for a turbine rotor and for a vane. A grid dependence analysis is presented and the effect of artificial dissipation is also investigated. Comparison of calculations with experiments clearly demonstrates the advantage of the proposed grid.
The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Michelle L.; Jackson, Ryan N.; Denny, Steven R.
Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of thismore » complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Lastly, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity.« less
The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
Luo, Michelle L.; Jackson, Ryan N.; Denny, Steven R.; ...
2016-05-12
Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of thismore » complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Lastly, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity.« less
Cascades and Dissipative Anomalies in Compressible Fluid Turbulence
NASA Astrophysics Data System (ADS)
Eyink, Gregory L.; Drivas, Theodore D.
2018-02-01
We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a cascade of negentropy to small scales. We derive "4 /5 th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.
Computational Model of the Insect Pheromone Transduction Cascade
Gu, Yuqiao; Lucas, Philippe; Rospars, Jean-Pierre
2009-01-01
A biophysical model of receptor potential generation in the male moth olfactory receptor neuron is presented. It takes into account all pre-effector processes—the translocation of pheromone molecules from air to sensillum lymph, their deactivation and interaction with the receptors, and the G-protein and effector enzyme activation—and focuses on the main post-effector processes. These processes involve the production and degradation of second messengers (IP3 and DAG), the opening and closing of a series of ionic channels (IP3-gated Ca2+ channel, DAG-gated cationic channel, Ca2+-gated Cl− channel, and Ca2+- and voltage-gated K+ channel), and Ca2+ extrusion mechanisms. The whole network is regulated by modulators (protein kinase C and Ca2+-calmodulin) that exert feedback inhibition on the effector and channels. The evolution in time of these linked chemical species and currents and the resulting membrane potentials in response to single pulse stimulation of various intensities were simulated. The unknown parameter values were fitted by comparison to the amplitude and temporal characteristics (rising and falling times) of the experimentally measured receptor potential at various pheromone doses. The model obtained captures the main features of the dose–response curves: the wide dynamic range of six decades with the same amplitudes as the experimental data, the short rising time, and the long falling time. It also reproduces the second messenger kinetics. It suggests that the two main types of depolarizing ionic channels play different roles at low and high pheromone concentrations; the DAG-gated cationic channel plays the major role for depolarization at low concentrations, and the Ca2+-gated Cl− channel plays the major role for depolarization at middle and high concentrations. Several testable predictions are proposed, and future developments are discussed. PMID:19300479
Hugh D. Safford; Jens T. Stevens
2017-01-01
Yellow pine and mixed-conifer (YPMC) forests are the predominant montane forest type in the Sierra Nevada, southern Cascade Range, and neighboring forested areas on the Modoc and Inyo National Forests (the "assessment area"). YPMC forests occur above the oak woodland belt and below red fir forests, and are dominated by the yellow pines (ponderosa pine [
Weak- and strong-turbulence regimes of the Hasegawa-Mima equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottaviani, M.; Krommes, J.A.
1992-02-01
A Kolmogorov-type analysis of the energy- and enstrophy-cascading ranges of the forced Hasegawa-Mima equation allows one to derive a criterion for the threshold of the transition between the weak turbulence and the strong turbulence regimes. It is found that, due to the inverse energy cascade, the large-scale portion of the inertial range is in the strong turbulence regime in the limit of infinite Reynolds-like numbers.
Fort Collins Science Center: Ecosystem Dynamics
Bowen, Zack
2004-01-01
Current studies fall into five general areas. Herbivore-Ecosystem Interactions examines the efficacy of multiple controls on selected herbivore populations and cascading effects through predator-herbivore-plant-soil linkages. Riparian Ecology is concerned with interactions among streamflow, fluvial geomorphology, and riparian vegetation. Integrated Fire Science focuses on the effects of fire on plant and animal communities at multiple scales, and on the interactions between post-fire plant, runoff, and erosion processes. Reference Ecosystems comprises long-term, place-based studies of ecosystem biogeochemistry. Finally, Integrated Assessments is investigating how to synthesize multiple ecosystem stressors and responses over complex landscapes in ways that are useful for management and planning.
NASA Astrophysics Data System (ADS)
Ryczko, K.; Sek, G.; Misiewicz, J.
2013-12-01
Band structure properties of the type-II W-design AlSb/InAs/GaIn(As)Sb/InAs/AlSb quantum wells have been investigated theoretically in a systematic manner and with respect to their use in the active region of interband cascade laser for a broad range of emission in mid infrared between below 3 to beyond 10 μm. Eight-band k.p approach has been utilized to calculate the electronic subbands. The fundamental optical transition energy and the corresponding oscillator strength have been determined in function of the thickness of InAs and GaIn(As)Sb layers and the composition of the latter. There have been considered active structures on two types of relevant substrates, GaSb and InAs, introducing slightly modified strain conditions. Additionally, the effect of external electric field has been taken into account to simulate the conditions occurring in the operational devices. The results show that introducing arsenic as fourth element into the valence band well of the type-II W-design system, and then altering its composition, can efficiently enhance the transition oscillator strength and allow additionally increasing the emission wavelength, which makes this solution prospective for improved performance and long wavelength interband cascade lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryczko, K.; Sęk, G.; Misiewicz, J.
Band structure properties of the type-II W-design AlSb/InAs/GaIn(As)Sb/InAs/AlSb quantum wells have been investigated theoretically in a systematic manner and with respect to their use in the active region of interband cascade laser for a broad range of emission in mid infrared between below 3 to beyond 10 μm. Eight-band k·p approach has been utilized to calculate the electronic subbands. The fundamental optical transition energy and the corresponding oscillator strength have been determined in function of the thickness of InAs and GaIn(As)Sb layers and the composition of the latter. There have been considered active structures on two types of relevant substrates, GaSbmore » and InAs, introducing slightly modified strain conditions. Additionally, the effect of external electric field has been taken into account to simulate the conditions occurring in the operational devices. The results show that introducing arsenic as fourth element into the valence band well of the type-II W-design system, and then altering its composition, can efficiently enhance the transition oscillator strength and allow additionally increasing the emission wavelength, which makes this solution prospective for improved performance and long wavelength interband cascade lasers.« less
Structure of the CRISPR Interference Complex CSM Reveals Key Similarities with Cascade
Rouillon, Christophe; Zhou, Min; Zhang, Jing; Politis, Argyris; Beilsten-Edmands, Victoria; Cannone, Giuseppe; Graham, Shirley; Robinson, Carol V.; Spagnolo, Laura; White, Malcolm F.
2013-01-01
Summary The Clustered Regularly Interspaced Palindromic Repeats (CRISPR) system is an adaptive immune system in prokaryotes. Interference complexes encoded by CRISPR-associated (cas) genes utilize small RNAs for homology-directed detection and subsequent degradation of invading genetic elements, and they have been classified into three main types (I–III). Type III complexes share the Cas10 subunit but are subclassifed as type IIIA (CSM) and type IIIB (CMR), depending on their specificity for DNA or RNA targets, respectively. The role of CSM in limiting the spread of conjugative plasmids in Staphylococcus epidermidis was first described in 2008. Here, we report a detailed investigation of the composition and structure of the CSM complex from the archaeon Sulfolobus solfataricus, using a combination of electron microscopy, mass spectrometry, and deep sequencing. This reveals a three-dimensional model for the CSM complex that includes a helical component strikingly reminiscent of the backbone structure of the type I (Cascade) family. PMID:24119402
Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard
2014-02-10
We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.
Can Recovery Foot Placement Affect Older Adults' Slip-Fall Severity?
Wang, Shuaijie; Liu, Xuan; Lee, Anna; Pai, Yi-Chung
2017-08-01
Following a slip occurred in the overground walking, a fall can be classified into two exclusive categories: feet-forward fall or split fall. The purposes of this study were to investigate whether the placement of the recovery foot would determine the slip types, the likelihood of fall, and the severity associated with each fall. The fall severity was estimated based on the impact velocity of body segments or trunk orientation upon fall arrest. One hundred ninety-five participants experienced a novel, unannounced slip while walking on a 7-m walkway. Kinematics of a full-body marker set was collected by a motion capture system which was synchronized with the force plates and loadcell. The results showed that the recovery foot landing position relative to the projected center of mass position at the recovery foot touchdown determined the slip type by 90.8%. Feet-forward slips led to significantly lower rate of falls than did split slips (47.6 vs. 67.8%, p < 0.01). Yet, feet-forward falls were much more dangerous because they were associated with significantly greater estimated maximum hip impact velocity (p < 0.001) and trunk backward leaning angle (p < 0.001) in comparison to split falls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motyka, M.; Dyksik, M.; Ryczko, K.
Optical properties of modified type II W-shaped quantum wells have been investigated with the aim to be utilized in interband cascade lasers. The results show that introducing a tensely strained GaAsSb layer, instead of a commonly used compressively strained GaInSb, allows employing the active transition involving valence band states with a significant admixture of the light holes. Theoretical predictions of multiband k·p theory have been experimentally verified by using photoluminescence and polarization dependent photoreflectance measurements. These results open a pathway for practical realization of mid-infrared lasing devices with uncommon polarization properties including, for instance, polarization-independent midinfrared light emitters.
Modeling Kelvin Wave Cascades in Superfluid Helium
NASA Astrophysics Data System (ADS)
Boffetta, G.; Celani, A.; Dezzani, D.; Laurie, J.; Nazarenko, S.
2009-09-01
We study two different types of simplified models for Kelvin wave turbulence on quantized vortex lines in superfluids near zero temperature. Our first model is obtained from a truncated expansion of the Local Induction Approximation (Truncated-LIA) and it is shown to possess the same scalings and the essential behaviour as the full Biot-Savart model, being much simpler than the later and, therefore, more amenable to theoretical and numerical investigations. The Truncated-LIA model supports six-wave interactions and dual cascades, which are clearly demonstrated via the direct numerical simulation of this model in the present paper. In particular, our simulations confirm presence of the weak turbulence regime and the theoretically predicted spectra for the direct energy cascade and the inverse wave action cascade. The second type of model we study, the Differential Approximation Model (DAM), takes a further drastic simplification by assuming locality of interactions in k-space via using a differential closure that preserves the main scalings of the Kelvin wave dynamics. DAMs are even more amenable to study and they form a useful tool by providing simple analytical solutions in the cases when extra physical effects are present, e.g. forcing by reconnections, friction dissipation and phonon radiation. We study these models numerically and test their theoretical predictions, in particular the formation of the stationary spectra, and closeness of numerics for the higher-order DAM to the analytical predictions for the lower-order DAM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
2015-06-01
In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have beenmore » conducted with a grid-less three-dimensional space-charge algorithm.« less
Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wienold, M.; Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin; Deutsches Zentrum für Luft und Raumfahrt, Rutherfordstr. 2, 12489 Berlin
2015-11-16
We report on the observation of an approximately linear reduction in the maximum operating temperature with an increasing emission frequency for terahertz quantum-cascade lasers between 4.2 and 5.4 THz. These lasers are based on the same design type, but vary in period length and barrier height for the cascade structure. The sample emitting at the highest frequency around 5.4 THz can be operated in pulsed mode up to 56 K. We identify an additional relaxation channel for electrons by longitudinal optical phonon scattering from the upper to the lower laser level and increasing optical losses toward higher frequencies as major processes,more » leading to the observed temperature behavior.« less
2012-01-01
Background The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and signal response behaviour of the MAPK cascade and phosphatase sequestration dramatically enhances the robustness to perturbations in each of the cascade. An implicit negative feedback loop was uncovered from our analysis and we found that strength of the negative feedback loop is reciprocally related to the strength of phosphatase sequestration. Duration of output phosphorylation in response to a transient signal was also found to be determined by the individual cascade’s kinase-phosphatase interaction design. PMID:22748295
Quantum structures for recombination control in the light-emitting transistor
NASA Astrophysics Data System (ADS)
Chen, Kanuo; Hsiao, Fu-Chen; Joy, Brittany; Dallesasse, John M.
2017-02-01
Recombination of carriers in the direct-bandgap base of a transistor-injected quantum cascade laser (TI-QCL) is shown to be controllable through the field applied across the quantum cascade region located in the transistor's base-collector junction. The influence of the electric field on the quantum states in the cascade region's superlattice allows free flow of electrons out of the transistor base only for field values near the design field that provides optimal QCL gain. Quantum modulation of base recombination in the light-emitting transistor is therefore observed. In a GaAs-based light-emitting transistor, a periodic superlattice is grown between the p-type base and the n-type collector. Under different base-collector biasing conditions the distribution of quantum states, and as a consequence transition probabilities through the wells and barriers forming the cascade region, leads to strong field-dependent mobility for electrons in transit through the base-collector junction. The radiative base recombination, which is influenced by minority carrier transition lifetime, can be modulated through the quantum states alignment in the superlattice. A GaAs-based transistor-injected quantum cascade laser with AlGaAs/GaAs superlattice is designed and fabricated. Radiative base recombination is measured under both common-emitter and common-base configuration. In both configurations the optical output from the base is proportional to the emitter injection. When the quantum states in the superlattice are aligned the optical output in the base is reduced as electrons encounter less impedance entering the collector; when the quantum states are misaligned electrons have longer lifetime in the base and the radiative base recombination process is enhanced.
Rock falls landslides in Abruzzo (Central Italy) after recent earthquakes: morphostructural control
NASA Astrophysics Data System (ADS)
Piacentini, T.; Miccadei, E.; Di Michele, R.; Esposito, G.
2012-04-01
Recent earthquakes show that damages due to collateral effects could, in some cases exceed the economic and social losses directly connected to the seismic shaking. The earthquake heavily damaged urban areas and villages and induced several coseismic deformations and geomorphologic effects, including different types of instability such as: rock falls, debris falls, sink holes, ground collapses, liquefaction, etc. Among the effects induced by the seismic energy release, landslides are one of the most significant in terms of hazard and related risk, owing to the occurrence of exposed elements. This work analyzes the geomorphological effects, and particularly the rock falls, which occurred in the L'Aquila area during and immediately after the April 2009 earthquake. The analysis is focused mainly on the rock fall distribution related to the local morphostructural setting. Rock falls occurred mostly on calcareous bedrock slopes or on scarps developed on conglomerates and breccias of Quaternary continental deposits. Geological and geomorphological surveys have outlined different types of rock falls on different morpho-structural settings, which can be summarized as follow: 1)rock falls on calcareous faulted homoclinal ridges; 2)rock falls on calcareous rock slopes of karst landforms; 3)rock falls on structural scarps on conglomerates and breccias of Quaternary continental deposits. The first type of rockfall occurred particularly along main gorges carved on calcareous rocks and characterised by very steep fault slopes and structural slopes (i.e. San Venanzio Gorges, along the Aterno river). In these cases already unstable slopes due to lithological and structural control were triggered as rockfalls also at high distance from the epicentre area. These elements provide useful indications both at local scale, for seismic microzonation studies and seismic risk prevention, and at regional scale, for updating studies and inventory of landslides.
Borkowska, Sylwia; Suszynska, Malwina; Ratajczak, Janina; Ratajczak, Mariusz Z
2016-01-01
We found that diurnal activation of the three evolutionarily ancient proteolytic cascades in peripheral blood (PB), namely, the complement, coagulation, and fibrinolytic cascades, late at night or in the early morning hours, precedes the diurnal release of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into PB in wild-type mice. Moreover, activation of the distal part of the complement cascade (ComC), involving cleavage of the fifth component (C5), seems to play a crucial role in pharmacological mobilization of HSPCs. In order to shed more light on the role of diurnal rhythms in the egress of HSPCs, we studied diurnal changes in the number of circulating HSPCs in C5-deficient mice and did not observe diurnal changes in the number of these cells circulating in PB in C5(-/-) animals. Based on this finding, we conclude that activation of the distal part of the ComC, C5 cleavage, and release of C5a and desArgC5a are required in executing the diurnal release of HSPCs from BM into PB. Moreover, the fact that C5(-/-) mice still displayed normal activation of the coagulation and fibrinolytic cascades indicates that, of all the proteolytic cascades, the ComC is the dominant player regulating diurnal egress of HSPCs.
Bears benefit plants via a cascade with both antagonistic and mutualistic interactions.
Grinath, Joshua B; Inouye, Brian D; Underwood, Nora
2015-02-01
Predators can influence primary producers by generating cascades of effects in ecological webs. These effects are often non-intuitive, going undetected because they involve many links and different types of species interactions. Particularly, little is understood about how antagonistic (negative) and mutualistic (positive) interactions combine to create cascades. Here, we show that black bears can benefit plants by consuming ants. The ants are mutualists of herbivores and protect herbivores from other arthropod predators. We found that plants near bear-damaged ant nests had greater reproduction than those near undamaged nests, due to weaker ant protection for herbivores, which allowed herbivore suppression by arthropod predators. Our results highlight the need to integrate mutualisms into trophic cascade theory, which is based primarily on antagonistic relationships. Predators are often conservation targets, and our results suggest that bears and other predators should be managed with the understanding that they can influence primary producers through many paths. © 2014 John Wiley & Sons Ltd/CNRS.
Midwavelength interband cascade infrared photodetectors with superlattice absorbers and gain
NASA Astrophysics Data System (ADS)
Lei, Lin; Li, Lu; Lotfi, Hossein; Ye, Hao; Yang, Rui Q.; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.
2018-01-01
We report on a comparison study of the electrical and optical properties of a set of device structures with different numbers of cascade stages, type-II superlattice (T2SL) absorber thickness, and doping variations, as well as a noncurrent-matched interband cascade infrared photodetectors (ICIP) structure with equal absorbers. Multistage ICIPs were demonstrated to be capable of operating at high temperatures at zero-bias with superior carrier transport over comparable conventional one-stage detectors. Based on the temperature dependence and bias sensitivity of their responsivities with various absorber thicknesses, the diffusion length is estimated to be between 0.6 and 1.0 μm for T2SL materials at high temperatures (>250 K). A comparison of responsivities between current matched ICIPs with varied absorber thicknesses and noncurrent-matched ICIPs with equal absorbers shows that the current-matching among cascade stages is necessary to maximize responsivity. Additionally, electrical gain exceeding unity is demonstrated in these detectors in the reverse-illumination configuration.
Volcano and earthquake hazards in the Crater Lake region, Oregon
Bacon, Charles R.; Mastin, Larry G.; Scott, Kevin M.; Nathenson, Manuel
1997-01-01
Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. This report describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The main conclusions are summarized below.
Radial Color and Mass Profile Trends of Dwarf Irregular Galaxies
NASA Astrophysics Data System (ADS)
Herrmann, Kimberly A.; Hunter, D. A.; THINGS, LITTLE
2014-01-01
Radial stellar surface brightness (SB) profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar SB profile breaks are also found in dwarf disk galaxies, but with an additional sub-category of Type II profiles: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. Additionally, Bakos, Trujillo, & Pohlen (2008) showed that for spirals, each profile type has a characteristic color trend with respect to the break location which can be combined with color mass-to-light ratio relationships to examine radial mass profiles as well. Here we show radial color and mass profile trends for the three main SB types from a large multi-wavelength photometric study of dwarf irregular galaxies (the 141 dwarf parent sample of the LITTLE THINGS galaxies). We explore the similarities and differences between spirals and dwarfs and also between different colors.
Burns, Elizabeth R; Haddad, Yara K; Parker, Erin M
2018-03-01
Falls are the leading cause of fatal and non-fatal injuries among older adults. The American and British Geriatric Societies recommend a fall risk assessment to identify risk factors and guide interventions to prevent these falls. This study describes the self-reported discussion of fall prevention approaches used by primary care providers (PCPs)-family practitioners, internists and nurse practitioners-who treat older adults. Results are described overall and by PCP type. We analyzed a sample of 1210 U.S. PCPs who participated in the 2014 DocStyles survey. PCPs reported on their recommendation of fall prevention approaches including general exercise, Tai Chi, medication adjustments, home safety modifications, vitamin D supplements, assistive devices, alarm systems, and referral to physical therapy, foot specialist, or vision specialist. Frequencies and adjusted odds ratios for fall prevention approaches were assessed by provider and practice characteristics. Self-reported discussion of any fall prevention approaches was 89.3%. Controlling for provider and practice characteristics, there were significant differences for some approaches by provider type. Family practitioners were more likely to suggest home modification [adjusted Odds Ratio: 1.8 (1.3-2.4)], exercise [aOR: 2.0 (1.5-2.5)], and Tai Chi [aOR: 1.5 (1.0-2.2)] than internists. Nurse practitioners were more likely to suggest home modification [aOR: 2.1 (1.3-3.4)] and less likely to suggest vitamin D [aOR: 0.6 (0.4-1.0)] than internists. Fall prevention suggestions vary by type of PCP. Dissemination of geriatric guidelines should include all PCPs who routinely see older adults.
Prediction of Falls in Subjects Suffering From Parkinson Disease, Multiple Sclerosis, and Stroke.
Beghi, Ettore; Gervasoni, Elisa; Pupillo, Elisabetta; Bianchi, Elisa; Montesano, Angelo; Aprile, Irene; Agostini, Michela; Rovaris, Marco; Cattaneo, Davide
2018-04-01
To compare the risk of falls and fall predictors in patients with Parkinson disease (PD), multiple sclerosis (MS), and stroke using the same study design. Multicenter prospective cohort study. Institutions for physical therapy and rehabilitation. Patients (N=299) with PD (n=94), MS (n=111), and stroke (n=94) seen for rehabilitation. Not applicable. Functional scales were applied to investigate balance, disability, daily performance, self-confidence with balance, and social integration. Patients were followed for 6 months. Telephone interviews were organized at 2, 4, and 6 months to record falls and fall-related injuries. Incidence ratios, Kaplan-Meier survival curves, and Cox proportional hazards models were used. Of the 299 patients enrolled, 259 had complete follow-up. One hundred and twenty-two patients (47.1%) fell at least once; 82 (31.7%) were recurrent fallers and 44 (17.0%) suffered injuries; and 16%, 32%, and 40% fell at 2, 4, and 6 months. Risk of falls was associated with disease type (PD, MS, and stroke in decreasing order) and confidence with balance (Activities-specific Balance Confidence [ABC] scale). Recurrent fallers were 7%, 15%, and 24% at 2, 4, and 6 months. The risk of recurrent falls was associated with disease type, high educational level, and ABC score. Injured fallers were 3%, 8%, and 12% at 2, 4, and 6 months. The only predictor of falls with injuries was disease type (PD). PD, MS, and stroke carry a high risk of falls. Other predictors include perceived balance confidence and high educational level. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Feeding supermassive black holes by collisional cascades
NASA Astrophysics Data System (ADS)
Faber, Christian; Dehnen, Walter
2018-05-01
The processes driving gas accretion on to supermassive black holes (SMBHs) are still poorly understood. Angular momentum conservation prevents gas within ˜10 pc of the black hole from reaching radii ˜10-3 pc where viscous accretion becomes efficient. Here we present simulations of the collapse of a clumpy shell of swept-up isothermal gas, which is assumed to have formed as a result of feedback from a previous episode of AGN activity. The gas falls towards the SMBH forming clumps and streams, which intersect, collide, and often form a disc. These collisions promote partial cancellations of angular momenta, resulting in further infall and more collisions. This continued collisional cascade generates a tail of gas with sufficiently small angular momenta and provides a viable route for gas inflow to sub-parsec scales. The efficiency of this process hardly depends on details, such as gas temperature, initial virial ratio and power spectrum of the gas distribution, as long as it is not strongly rotating. Adding star formation to this picture might explain the near-simultaneous formation of the S-stars (from tidally disrupted binaries formed in plunging gas streams) and the sub-parsec young stellar disc around Sgr A⋆.
Feeding supermassive black holes by collisional cascades
NASA Astrophysics Data System (ADS)
Faber, Christian; Dehnen, Walter
2018-07-01
The processes driving gas accretion on to supermassive black holes (SMBHs) are still poorly understood. Angular momentum conservation prevents gas within ˜10 pc of the black hole from reaching radii ˜10-3pc where viscous accretion becomes efficient. Here we present simulations of the collapse of a clumpy shell of swept-up isothermal gas, which is assumed to have formed as a result of feedback from a previous episode of AGN activity. The gas falls towards the SMBH forming clumps and streams, which intersect, collide and often form a disc. These collisions promote partial cancellations of angular momenta, resulting in further infall and more collisions. This continued collisional cascade generates a tail of gas with sufficiently small angular momenta and provides a viable route for gas inflow to sub-parsec scales. The efficiency of this process hardly depends on details, such as gas temperature, initial virial ratio and power spectrum of the gas distribution, as long as it is not strongly rotating. Adding star formation to this picture might explain the near-simultaneous formation of the S-stars (from tidally disrupted binaries formed in plunging gas streams) and the sub-parsec young stellar disc around Sgr A⋆.
Emergent self-similarity of cluster coagulation
NASA Astrophysics Data System (ADS)
Pushkin, Dmtiri O.
A wide variety of nonequilibrium processes, such as coagulation of colloidal particles, aggregation of bacteria into colonies, coalescence of rain drops, bond formation between polymerization sites, and formation of planetesimals, fall under the rubric of cluster coagulation. We predict emergence of self-similar behavior in such systems when they are 'forced' by an external source of the smallest particles. The corresponding self-similar coagulation spectra prove to be power laws. Starting from the classical Smoluchowski coagulation equation, we identify the conditions required for emergence of self-similarity and show that the power-law exponent value for a particular coagulation mechanism depends on the homogeneity index of the corresponding coagulation kernel only. Next, we consider the current wave of mergers of large American banks as an 'unorthodox' application of coagulation theory. We predict that the bank size distribution has propensity to become a power law, and verify our prediction in a statistical study of the available economical data. We conclude this chapter by discussing economically significant phenomenon of capital condensation and predicting emergence of power-law distributions in other economical and social data. Finally, we turn to apparent semblance between cluster coagulation and turbulence and conclude that it is not accidental: both of these processes are instances of nonlinear cascades. This class of processes also includes river network formation models, certain force-chain models in granular mechanics, fragmentation due to collisional cascades, percolation, and growing random networks. We characterize a particular cascade by three indicies and show that the resulting power-law spectrum exponent depends on the indicies values only. The ensuing algebraic formula is remarkable for its simplicity.
Weak- and strong-turbulence regimes of the forced Hasegawa-Mima equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottaviani, M.; Krommes, J.A.
1992-11-16
A Kolmogorov-type analysis of the energy- and enstrophy-cascading ranges of a forced Hasegawa-Mima equation allows one to derive a criterion for the threshold of the transition between the weak-turbulence and the strong-turbulence regimes. Contrary to general belief, it is found that due to the inverse energy cascade the large-scale portion of the inertial range is in the strong-turbulence regime in the limit of infinite Reynolds-like numbers for any finite amount of forcing.
Density matrix Monte Carlo modeling of quantum cascade lasers
NASA Astrophysics Data System (ADS)
Jirauschek, Christian
2017-10-01
By including elements of the density matrix formalism, the semiclassical ensemble Monte Carlo method for carrier transport is extended to incorporate incoherent tunneling, known to play an important role in quantum cascade lasers (QCLs). In particular, this effect dominates electron transport across thick injection barriers, which are frequently used in terahertz QCL designs. A self-consistent model for quantum mechanical dephasing is implemented, eliminating the need for empirical simulation parameters. Our modeling approach is validated against available experimental data for different types of terahertz QCL designs.
Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b.
Richter, Hagen; Rompf, Judith; Wiegel, Julia; Rau, Kristina; Randau, Lennart
2017-11-01
CRISPR arrays are transcribed into long precursor RNA species, which are further processed into mature CRISPR RNAs (crRNAs). Cas proteins utilize these crRNAs, which contain spacer sequences that can be derived from mobile genetic elements, to mediate immunity during a reoccurring virus infection. Type I CRISPR-Cas systems are defined by the presence of different Cascade interference complexes containing large and small subunits that play major roles during target DNA selection. Here, we produce the protein and crRNA components of the Type I-B CRISPR-Cas complex of Clostridium thermocellum and Methanococcus maripaludis. The C. thermocellum Cascade complexes were reconstituted and analyzed via size-exclusion chromatography. Activity of the heterologous M. maripaludis CRISPR-Cas system was followed using phage lambda plaques assays. The reconstituted Type-I-B Cascade complex contains Cas7, Cas5, Cas6b and the large subunit Cas8b. Cas6b can be omitted from the reconstitution protocol. The large subunit Cas8b was found to be represented by two tightly associated protein fragments and a small C-terminal Cas8b segment was identified in recombinant complexes and C. thermocellum cell lysate. Production of Cas8b generates a small C-terminal fragment, which is suggested to fulfill the role of the missing small subunit. A heterologous, synthetic M. maripaludis Type I-B system is active in E. coli against phage lambda, highlighting a potential for genome editing using endogenous Type-I-B CRISPR-Cas machineries. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mitchell, David L.
1996-06-01
Based on boundary layer theory and a comparison of empirical power laws relating the Reynolds and Best numbers, it was apparent that the primary variables governing a hydrometeor's terminal velocity were its mass, its area projected to the flow, and its maximum dimension. The dependence of terminal velocities on surface roughness appeared secondary, with surface roughness apparently changing significantly only during phase changes (i.e., ice to liquid). In the theoretical analysis, a new, comprehensive expression for the drag force, which is valid for both inertial and viscous-dominated flow, was derived.A hydrometeor's mass and projected area were simply and accurately represented in terms of its maximum dimension by using dimensional power laws. Hydrometeor terminal velocities were calculated by using mass- and area-dimensional power laws to parameterize the Best number, X. Using a theoretical relationship general for all particle types, the Reynolds number, Re, was then calculated from the Best number. Terminal velocities were calculated from Re.Alternatively, four Re-X power-law expressions were extracted from the theoretical Re-X relationship. These expressions collectively describe the terminal velocities of all ice particle types. These were parameterized using mass- and area-dimensional power laws, yielding four theoretically based power-law expressions predicting fall speeds in terms of ice particle maximum dimension. When parameterized for a given ice particle type, the theoretical fall speed power law can be compared directly with empirical fall speed-dimensional power laws in the literature for the appropriate Re range. This provides a means of comparing theory with observations.Terminal velocities predicted by this method were compared with fall speeds given by empirical fall speed expressions for the same ice particle type, which were curve fits to measured fall speeds. Such comparisons were done for nine types of ice particles. Fall speeds predicted by this method differed from those based on measurements by no more than 20%.The features that distinguish this method of determining fall speeds from others are that it does not represent particles as spheroids, it is general for any ice particle shape and size, it is conceptually and mathematically simple, it appears accurate, and it provides for physical insight. This method also allows fall speeds to be determined from aircraft measurements of ice particle mass and projected area, rather than directly measuring fall speeds. This approach may be useful for ice crystals characterizing cirrus clouds, for which direct fall speed measurements are difficult.
Effect on fan flow characteristics of length and axial location of a cascade thrust reverser
NASA Technical Reports Server (NTRS)
Dietrich, D. A.
1975-01-01
A series of static tests were conducted on a model fan with a diameter of 14.0 cm to determine the fan operating characteristics, the inlet static pressure contours, the fan-exit total and static pressure contours, and the fan-exit pressure distortion parameters associated with the installation of a partial-circumferential-emission cascade thrust reverser. The tests variables included the cascade axial length, the axial location of the reverser, and the type of fan inlet. It was shown that significant total and static pressure distortions were produced in the fan aft duct, and that some configurations induced a static pressure distortion at the fan face. The amount of flow passed by the fan and the level of the flow distortions were dependent upon all the variables tested.
Some Effects of Compressibility on the Flow Through Fans and Turbines
NASA Technical Reports Server (NTRS)
Perl, W.; Epstein, H. T.
1946-01-01
The laws of conservation of mass, momentum, and energy are applied to the compressible flow through a two-dimensional cascade of airfoils. A fundamental relation between the ultimate upstream and downstream flow angles, the inlet Mach number, and the pressure ratio across the cascade is derived. Comparison with the corresponding relation for incompressible flow shows large differences. The fundamental relation reveals two ranges of flow angles and inlet Mach numbers, for which no ideal pressure ratio exists. One of these nonideal operating ranges is analogous to a similar type in incompressible flow. The other is characteristic only of compressible flow. The effect of variable axial-flow area is treated. Some implications of the basic conservation laws in the case of nonideal flow through cascades are discussed.
Attaining high-resolution eruptive histories for active arc volcanoes with argon geochronology
NASA Astrophysics Data System (ADS)
Calvert, A. T.
2012-04-01
Geochronology of active arc volcanoes commonly illuminates eruptive behavior over tens to hundreds of thousands of years, lengthy periods of repose punctuated by short eruptive episodes, and spatial and compositional changes with time. Despite the >1 Gyr half-life of 40K, argon geochronology is an exceptional tool for characterizing Pleistocene to Holocene eruptive histories and for placing constraints on models of eruptive behavior. Reliable 40Ar/39Ar ages of calc-alkaline arc rocks with rigorously derived errors small enough (± 500 to 3,000 years) to constrain eruptive histories are attainable using careful procedures. Sample selection and analytical work in concert with geologic mapping and stratigraphic studies are essential for determining reliable eruptive histories. Preparation, irradiation and spectrometric techniques have all been optimized to produce reliable, high-precision results. Examples of Cascade and Alaska/Aleutian eruptive histories illustrating duration of activity from single centers, eruptive episodicity, and spatial and compositional changes with time will be presented: (1) Mt. Shasta, the largest Cascade stratovolcano, has a 700,000-year history (Calvert and Christiansen, 2011 Fall AGU). A similar sized and composition volcano (Rainbow Mountain) on the Cascade axis was active 1200-950 ka. The eruptive center then jumped west 15 km to the south flank of the present Mt. Shasta and produced a stratovolcano from 700-450 ka likely rivaling today's Mt. Shasta. The NW portion of that edifice failed in an enormous (>30 km3) debris avalanche. Vents near today's active summit erupted 300-135 ka, then 60-15 ka. A voluminous, but short-lived eruptive sequence occurred at 11 ka, including a summit explosion producing a subplinian plume, followed by >60 km3 andesite-dacite Shastina domes and flows, then by the flank dacite Black Butte dome. Holocene domes and flows subsequently rebuilt the summit and flowed to the north and east. (2) Mt. Veniaminof on the Alaska Peninsula is a ~350 km3 tholeiitic arc volcano with basalt early in its history (~250 ka) and basaltic andesite to dacite currently. Chemical variation is due principally to crystallization differentiation with little or no evidence for crustal contamination. The smooth increase with time of Veniaminof's most silicic products chronicles the development of an intrusive complex, also reflected in granitoid blocks expelled during Holocene explosive eruptions (Bacon et al., 2007 Geology). (3) The Three Sisters in the central Oregon Cascades are a cluster of small volcanoes with remarkable chemical diversity (basalt to high silica rhyolite) that mainly erupted in a short interval between 40-15 ka. This eruptive interval was unusual in its chemical diversity beginning bimodal (basaltic andesite and rhyolite), progressing to dacite then andesite, and back to basaltic andesite. Over eighty percent of mapped units are dated, enabling time-series displays of the chemical and spatial evolution of the volcanic field (Calvert et al., 2010 Fall AGU).
Risk factors for unintentional injuries due to falls in children aged 0–6 years: a systematic review
Khambalia, A; Joshi, P; Brussoni, M; Raina, P; Morrongiello, B; Macarthur, C
2006-01-01
Objective To identify risk factors for unintentional injuries due to falls in children aged 0–6 years. Design A systematic review of the literature. Methods Electronic databases from 1966 to March 2005 were comprehensively searched to identify empirical research that evaluated risk factors for unintentional injuries due to falls in children aged 0–6 years and included a comparison group. Results 14 studies met the inclusion criteria. Studies varied by the type of fall injury that was considered (ie, bunk bed, stairway, playground or infant walker) and with respect to the quality of evidence. In general, major risk factors for the incidence or severity of injuries due to falls in children included age of the child, sex, height of the fall, type of surface, mechanism (dropped, stairway or using a walker), setting (day care v home care) and socioeconomic status. Conclusion Despite a high burden, few controlled studies have examined the risk and protective factors for injuries due to falls in children aged 0–6 years. The only study to examine falls from a population health perspective suggests that age, sex and poverty are independent risk factors for injuries due to falls in children. PMID:17170185
Color Profile Trends of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Herrmann, Kimberly A.; LITTLE THINGS Team
2012-01-01
Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. Additionally, Bakos, Trujillo, & Pohlen (2008) showed that for spirals, each profile type has a characteristic color trend with respect to the break location. Furthermore, color trends reveal information about possible stellar population changes at the breaks. Here we show color trends for the four profile types from a large multi-wavelength photometric study of dwarf disk galaxies (the 141 dwarf parent sample of the LITTLE THINGS galaxies). We explore the similarities and differences between spirals and dwarfs and also between different colors. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).
Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation
NASA Astrophysics Data System (ADS)
Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.
2017-08-01
In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.
Sanders, K M; Lim, K; Stuart, A L; Macleod, A; Scott, D; Nicholson, G C; Busija, L
2017-10-01
Falls among the elderly are common and characteristics may differ between injurious and non-injurious falls. Among 887 older Australian women followed for 1.6 years, 32% fell annually. Only 8.5% resulted in fracture and/or hospital admission. The characteristics of those falls are indistinguishable from those not coming to medical attention. The precipitants and environment of all falls occurring among a large cohort of older Caucasian women were categorised by injury status to determine if the characteristics differed between injurious and non-injurious falls. Among 887 Australian women (70+ years), falls were ascertained using monthly postcard calendars and a questionnaire was administered for each fall. Hospital admissions and fractures were independently confirmed. All falls were reported for a mean observation time of 577 (IQR 546-607) days per participant, equating to a total 1400 person-years. Thirty-two percent fell at least once per year. The most common features of a fall were that the faller was walking (61%) at home (61%) during the day (88%) and lost balance (32%). Only 12% of all falls occurred at night. Despite no difference in the type of injury between day and night, the likelihood of being hospitalised from a fall at night was 4.5 times greater than that of a daytime fall with adjustment for injury type and participant age (OR 4.5, 95% CI 2.1, 9.5; p < 0.001). Of all falls, approximately one third were associated with no injury to the faller (31%), one third reported a single injury (37%) and one third reported more than one injury (32%). In 95% of falls, the faller was not admitted to hospital. Only 5% of falls resulted in fracture(s). Our findings demonstrate the significant diversity of precipitants and environment where falls commonly occur among older community-dwelling women. Falls resulting in fracture and/or hospital admission collectively represent 8.5% of all falls and their characteristics are indistinguishable from falls not coming to medical attention and incurring no apparent cost to the health system.
Spatial distribution of block falls using volumetric GIS-decision-tree models
NASA Astrophysics Data System (ADS)
Abdallah, C.
2010-10-01
Block falls are considered a significant aspect of surficial instability contributing to losses in land and socio-economic aspects through their damaging effects to natural and human environments. This paper predicts and maps the geographic distribution and volumes of block falls in central Lebanon using remote sensing, geographic information systems (GIS) and decision-tree modeling (un-pruned and pruned trees). Eleven terrain parameters (lithology, proximity to fault line, karst type, soil type, distance to drainage line, elevation, slope gradient, slope aspect, slope curvature, land cover/use, and proximity to roads) were generated to statistically explain the occurrence of block falls. The latter were discriminated using SPOT4 satellite imageries, and their dimensions were determined during field surveys. The un-pruned tree model based on all considered parameters explained 86% of the variability in field block fall measurements. Once pruned, it classifies 50% in block falls' volumes by selecting just four parameters (lithology, slope gradient, soil type, and land cover/use). Both tree models (un-pruned and pruned) were converted to quantitative 1:50,000 block falls' maps with different classes; starting from Nil (no block falls) to more than 4000 m 3. These maps are fairly matching with coincidence value equal to 45%; however, both can be used to prioritize the choice of specific zones for further measurement and modeling, as well as for land-use management. The proposed tree models are relatively simple, and may also be applied to other areas (i.e. the choice of un-pruned or pruned model is related to the availability of terrain parameters in a given area).
NASA Astrophysics Data System (ADS)
Walsh, L. K.; Wallace, P. J.; Cashman, K. V.
2012-12-01
An abundance of hazardous effects including ash fall out, basaltic lava flows and poisonous volcanic gas have been documented at active volcanic centers (e.g. Auckland Volcanic Field, New Zealand; Bebbington and Cronin 2011) and have been inferred using tools such as geologic mapping and geochemical analyses for prehistoric eruptions (e.g. Cerro Negro, Nicaragua; Hill et al. 1995; McKnight and Williams 1997). The Cascades volcanic history is also dominated by prehistoric eruptions; however the associated hazards have yet to be studied in-depth. Short recurrence rates of cinder cone volcanism (1x10-5 to 5x10-4 events/yr; Smid et al. 2009) likely intensify the probability of human experience with cinder cone hazards. Hence, it is important to understand the effects that cinder cone volcanism can have on communities near the Cascades. In this study, we estimate volatile fluxes of prehistoric Cascade cinder cone eruptions by analyzing olivine-hosted melt inclusions and rapidly quenched tephra matrix glass. The melt inclusions provide pre-eruptive volatile concentrations whereas tephra groundmass glass provides post-eruptive volatile concentrations. By comparing initial and final concentrations we can determine the amounts of sulfur, chlorine and fluorine released into the atmosphere. We have analyzed S, Cl and F concentrations in melt inclusions from cinder cones in the Central Oregon Cascades (Collier Cone, Yapoah Crater, Four-in-One Fissure, Garrison Butte) and in Northern California near Mt. Lassen (Cinder Cone, Basalt of Old Railroad Grade, Basalt of Highway 44). Analyses of volatiles in melt inclusions and matrix glasses were done using the Cameca SX100 electron microprobe at the University of Oregon. Melt inclusions and matrix glass were run under 15kV, 50nA, and 10μm-beam conditions. For F analyses, a use of an LTAP crystal and relatively long counting times (160 sec. on peak) resulted in good analytical precision. Preliminary results for melt inclusions from the Central Oregon Cascades are (averages from each cone): 700-1190 ppm S; 480-1115 ppm Cl; 120-280 ppm F; and for Northern California: 620-1100 ppm S; 305-445 ppm Cl; 130-240 ppm F. Maximum values for the two regions are 1610 ppm S, 1490 ppm Cl, and 440 ppm F. The majority of studies on health hazards from inhalation or ingestion of volcanic aerosols are centered on livestock; therefore not much is known of the effects on humans. This emphasizes the importance of such a study in a volcanically active region. Levels of volcanic aerosols are considered "hazardous" and to "pose a hazardous risk" to surrounding agricultural and residential communities if concentrations are elevated above World Health Organization (WHO) or Occupational Safety and Health Administration maximum exposure limits (OSHA) (SO2: 7 ppm for a 24-hr period; HCl: 5 ppm for a 24-hr period; HF: 3 ppm for a 10-hr period). By assessing volatile concentrations from past eruptions we can better constrain the probable volatile hazards future cinder cone eruptions pose to surrounding agricultural and residential communities near the Cascades.
DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN AT 1025 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.
2013-09-30
Molecular dynamics simulation was employed to investigate the irradiation damage properties of bulk tungsten at 1025 K (0.25 melting temperature). A comprehensive data set of primary cascade damage was generated up to primary knock-on atom (PKA) energies 100 keV. The dependence of the number of surviving Frenkel pairs (NFP) on the PKA energy (E) exhibits three different characteristic domains presumably related to the different cascade morphologies that form. The low-energy regime < 0.2 keV is characterized by a hit-or-miss type of Frenkel pair (FP) production near the displacement threshold energy of 128 eV. The middle regime 0.3 – 30 keVmore » exhibits a sublinear dependence of log(NFP) vs log(E) associated with compact cascade morphology with a slope of 0.73. Above 30 keV, the cascade morphology consists of complex branches or interconnected damage regions. In this extended morphology, large interstitial clusters form from superposition of interstitials from nearby damage regions. Strong clustering above 30 keV results in a superlinear dependence of log(NFP) vs log(E) with a slope of 1.365. At 100 keV, an interstitial cluster of size 92 and a vacancy cluster of size 114 were observed.« less
Quantum-engineered interband cascade photovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razeghi, Manijeh; Tournié, Eric; Brown, Gail J.
2013-12-18
Quantum-engineered multiple stage photovoltaic (PV) devices are explored based on InAs/GaSb/AlSb interband cascade (IC) structures. These ICPV devices employ multiple discrete absorbers that are connected in series by widebandgap unipolar barriers using type-II heterostructure interfaces for facilitating carrier transport between cascade stages similar to IC lasers. The discrete architecture is beneficial for improving the collection efficiency and for spectral splitting by utilizing absorbers with different bandgaps. As such, the photo-voltages from each individual cascade stage in an ICPV device add together, creating a high overall open-circuit voltage, similar to conventional multi-junction tandem solar cells. Furthermore, photo-generated carriers can be collectedmore » with nearly 100% efficiency in each stage. This is because the carriers travel over only a single cascade stage, designed to be shorter than a typical diffusion length. The approach is of significant importance for operation at high temperatures where the diffusion length is reduced. Here, we will present our recent progress in the study of ICPV devices, which includes the demonstration of ICPV devices at room temperature and above with narrow bandgaps (e.g. 0.23 eV) and high open-circuit voltages. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.« less
Hamm, Julian; Money, Arthur G; Atwal, Anita; Paraskevopoulos, Ioannis
2016-02-01
In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Interference activity of a minimal Type I CRISPR–Cas system from Shewanella putrefaciens
Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart
2015-01-01
Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. PMID:26350210
Lu, Jing; Wu, Lin; Hu, Yufang; Wang, Sui; Guo, Zhiyong
2018-06-30
In this study, a novel electrochemiluminescence (ECL) biosensor for sensitive detection of femtomolar miRNA-141 was constructed on the basis of Faraday cage-type strategy via graphene oxide (GO) and hybridization chain reaction (HCR)-assisted cascade amplification. A capture probe (CP) was immobilized on Fe 3 O 4 @SiO 2 @Au nanoparticles as capture unit, which could catch the miRNA-141, and the immobilization of the signal unit (Ru(phen) 3 2+ -HCR/GO) was allowed via nucleic acid hybridization. The prepared biosensor exhibited two advantages for signal amplification: firstly, GO could lap on the electrode surface directly, extending Outer Helmholtz Plane (OHP) of the sensor due to the large surface area and good electronic transport property; secondly, HCR-assisted cascade amplification was designed by anchoring all HCR products on the GO surface, then embedding Ru(phen) 3 2+ as a signal readout pathway. All these signal molecules could take part in electrochemical reactions, thus further enhancing the ECL signal drastically. Therefore, the proposed sensor constructed by integrating HCR with Faraday cage-type strategy displayed an ultrasensitive detection platform for the miRNA-141 with a low detection limit of 0.03 fM. In addition, this proposed biosensor provides a universal platform for analysis of other microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.
Enrollment and Facilities Inventory, Fall 1972.
ERIC Educational Resources Information Center
Maine State Higher Education Facilities Commission, Augusta.
The tables in this report present a summary of the area, in net assignable square feet, used by each institution of higher education in Maine, broken down by room type and also by organizational unit for fall 1972. Data is presented concerning enrollment information of public and independent colleges and organizational units and room type for…
Facilities Inventory, Fall 1971.
ERIC Educational Resources Information Center
Maine State Higher Education Facilities Commission, Augusta.
The tables in this report present a summary of the area, in net assignable square feet, used by each institution of higher education in Maine, broken down by room type and by organizational unit for fall 1971. Data is presented concerning enrollment information of public and independent colleges and organizational unit and room type for public…
Dhar, R S; Ban, D
2013-07-01
The distribution of charge carriers inside the active region of a terahertz (THz) quantum cascade laser (QCL) has been measured with scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). Individual quantum well-barrier modules with a 35.7-nm single module thickness in the active region of the device have been resolved for the first time using high-resolution SSRM and SCM techniques at room temperature. SSRM and SCM measurements on the quantum well-barrier structure were calibrated utilizing known GaAs dopant staircase samples. Doping concentrations derived from SSRM and SCM measurements were found to be in quantitative agreement with the designed average doping values of the n-type active region in the terahertz quantum cascade laser. The secondary ion mass spectroscopy provides a partial picture of internal device parameters, and we have demonstrated with our results the efficacy of uniting calibrated SSRM and SCM to delineate quantitatively the transverse cross-sectional structure of complex two-dimensional terahertz quantum cascade laser devices. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Semenyuk, V.
2014-06-01
The influence of the thermal properties of the substrate on the performance of cascade thermoelectric coolers (TECs) is studied with an emphasis on a justified choice of substrate material. An analytical model is developed for predicting the thermal resistance of the substrate associated with three-dimensional heat transfer from a smaller cascade area into a larger cooling cascade. The model is used to define the maximum temperature difference for a line of standard multistage TECs based on various substrate materials with different thermal conductivities, including white 96% Al2O3 "Rubalit" ceramic, grey 99.8% Al2O3 "Policor" ceramic, and AlN and BeO ceramics. Two types of multistage TECs are considered, namely with series and series-parallel connection of TE pellets, having from two to five cascades with TE pellet length in the range from 0.3 mm to 2 mm. A comparative analysis of the obtained results is made, and recommendations are formulated concerning the selection of an appropriate substrate material providing the highest performance-to-cost ratio.
Appraisal of water in bedrock aquifers, northern Cascade County, Montana
Wilke, K.R.
1982-01-01
Suburban residential expansion of the city of Great Falls has resulted in an increased demand on water supplies from bedrock aquifers in northern Cascade County. The unconsolidated deposits aquifer of Quaternary age, including alluvium and glacial lake deposits, also is an important source of water in the area. Water levels in the Madison-Swift aquifer and all overlying aquifers, including the Quaternary deposits aquifer, reflect unconfined (water-table) conditions in the Great Falls vicinity. This interconnected hydrologic system is the result of breaching of the major anticlinal structure, by ancestral and present day erosion of drainage channels by the Missouri River and its tributaries. Significant vertical inter-aquifer mixing of water, as well as surface water/groundwater interchange, probably occurs in the central part of the study area. Characterization of the chemical composition of water in individual aquifers based on samples from wells in this area probably is unreliable because of this mixing. Quality of water from two wells in the Madison-Swift aquifer near Giant Springs is similar to water from the springs. Water from these three samples is less mineralized than most groundwater in the study area; dissolved solids concentrations for the three samples range from 516 to 550 mg/L. The quality of water varies among aquifers and throughout the study area. The ranges of dissolved solids concentrations determined by chemical analysis are Madison-Swift aquifer, about 520 to 1,570 mg/L; Morrison Formation, 908 to 1 ,480 mg/L; Kootenai Formation, 558 to 1,550 mg/L; Colorado Group , 2,690 and 2,740 mg/L (two samples); and unconsolidated Quaternary deposits, 383 to 2,060 mg/L. The chemical quality of water from the Colorado Group in the western one-third of the area generally is more mineralized than water from aquifers in the rest of the area. Specific conductance of water from eight wells completed in the Colorado Group averages 4,440 micromhos at 25 C. (Author 's abstract)
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Stein, Aaron; Lu, Ming; Belenky, Gregory
2017-11-01
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ∼5-μm-wide ridge with ∼5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1 . The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFB lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. The devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi
Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing,more » Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Tao; Hosoda, Takashi; Shterengas, Leon
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...
2017-10-18
The laterally coupled distributed feedback (LC-DFB) GaSb-based type-I quantum well cascade diode lasers using the second- and the sixth-order gratings to stabilize the output spectrum near 3.22 μm were designed and fabricated in this paper. The laser heterostructure contained three cascades. The devices were manufactured using a single dry etching step defining the ~5-μm-wide ridge with ~5-μm-wide gratings sections adjacent to the ridge sides. The grating coupling coefficients were estimated to be about 1 cm -1. The stability of the single-frequency operation was ensured by alignment of the DFB mode to the relatively wide gain peak. The 2-mm-long second-order LC-DFBmore » lasers generated above 10 mW of continuous-wave (CW) output power at 20°C in epi-side-up configuration and demonstrated power conversion efficiency above 2%. The sixth-order LC-DFB lasers showed lower efficiency but still generated several milliwatts of CW output power. Finally, the devices demonstrated a CW current tuning range of about 3.5 nm at the temperature of 20°C.« less
Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis
Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K
2011-01-01
Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator–effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway. PMID:22108795
N× N optical switch based on cascaded microring resonators
NASA Astrophysics Data System (ADS)
Li, Jing-sen; Lu, Huan-yu; Zhao, Yu-lin
2018-05-01
An N×N optical switch based on cascaded microring resonators on chip is proposed. As an example, the 4×4 optical switch is further investigated. It is successfully demonstrated that its insertion loss is relatively low as 2.2 dB, the crosstalk is negligible, and the extinction ratio ( ER) is as large as 130 dB. Thermal tuning is employed to make the microrings be in resonance or not, which leads to a response time of several hundred microseconds. Alternatively, doping the desired waveguide regions with p-type or n-type dopants is able to achieve a better response time of several nanoseconds. The proposed design is easily integrated to a large scale with less microring resonators, which ensures the compact size and the low power consumption.
NASA Astrophysics Data System (ADS)
Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz
2017-11-01
Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.
Separations by supported liquid membrane cascades
Danesi, P.R.
1983-09-01
The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.
Investigation of SOI Raman Lasers for Mid-Infrared Gas Sensing
Passaro, Vittorio M.N.; De Leonardis, Francesco
2009-01-01
In this paper, the investigation and detailed modeling of a cascaded Raman laser, operating in the midwave infrared region, is described. The device is based on silicon-on-insulator optical waveguides and a coupled resonant microcavity. Theoretical results are compared with recent experiments, demonstrating a very good agreement. Design criteria are derived for cascaded Raman lasers working as continuous wave light sources to simultaneously sense two types of gases, namely C2H6 and CO2, at a moderate power level of 130 mW. PMID:22408481
Multiple Differential-Amplifier MMICs Embedded in Waveguides
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Schlecht, Erich
2010-01-01
Compact amplifier assemblies of a type now being developed for operation at frequencies of hundreds of gigahertz comprise multiple amplifier units in parallel arrangements to increase power and/or cascade arrangements to increase gains. Each amplifier unit is a monolithic microwave integrated circuit (MMIC) implementation of a pair of amplifiers in differential (in contradistinction to single-ended) configuration. Heretofore, in cascading amplifiers to increase gain, it has been common practice to interconnect the amplifiers by use of wires and/or thin films on substrates. This practice has not yielded satisfactory results at frequencies greater than 200 Hz, in each case, for either or both of two reasons: Wire bonds introduce large discontinuities. Because the interconnections are typically tens of wavelengths long, any impedance mismatches give rise to ripples in the gain-vs.-frequency response, which degrade the performance of the cascade.
Gu, Yu; Dennis, Sarah M
2017-02-01
Diabetic peripheral neuropathy (DPN) is a common complication of type-2 diabetes mellitus (T2DM) that predisposes the elderly to a higher falls risk. Falls prevention programs with a component of weight-bearing exercises are effective in decreasing future falls in the elderly. However, weight-bearing exercise was only recently recommended in guidelines for exercise for people with T2DM and DPN. Since then, there have been an increasing number of studies to evaluate the effectiveness of falls prevention programs on this targeted population. A systematic literature review was undertaken to determine the effectiveness of falls prevention programs for people with T2DM and DPN. Nine published studies that investigated the effect of exercise training on falls risk among people with T2DM and DPN were included in the review. Interventions included lower limb strengthening, balance practice, aerobic exercise, walking programs, and Tai Chi. The preliminary evidence presented in this review suggests that people with T2DM and DPN can improve their balance and walking after a targeted multicomponent program without risk of serious adverse events. There is insufficient long-term follow-up data to determine whether the improvements in balance or strength resulted in a decrease falls risk in the community setting. Copyright © 2016 Elsevier Inc. All rights reserved.
Noguchi, Naomi; Chan, Lewis; Cumming, Robert G; Blyth, Fiona M; Naganathan, Vasi
2016-09-01
Lower urinary tract symptoms (LUTS) have been associated with falls in studies either exclusively or predominantly of women. It is, therefore, less clear if LUTS are risk factors for falls in men. We conducted a systematic review of the literature on the association between LUTS and falls, injuries, and fractures in community-dwelling older men. Medline, Embase, and Cinahl were searched for any type of observational study that has been published in a peer-reviewed journal in English language. Studies were excluded if they did not report male-specific data or targeted specific patient populations. Results were summarized qualitatively. Three prospective cohort studies and six cross-sectional studies were identified. Incontinence, urgency, nocturia, and frequency were consistently shown to have weak to moderate association with falls (the point estimates of odds ratio and relative risk ranged from 1.31 to 1.67) in studies with low risk of bias for confounding. Only frequency was shown to be associated with fractures. Urinary incontinence and lower urinary tract storage symptoms are associated with falls in community-dwelling older men. The circumstances of falls in men with LUTS need to be investigated to generate hypotheses about what types of interventions may be effective in reducing falls.
Project Management and Systems Engineering Guide. Second Edition
1989-09-30
depend on the type of requirement. In general, opera- tional requirements will fall into one of the following categories : 1. Replacement of an existing...Warranty service and maintenance contracts also fall into this support category . The planning for phase-in type support must be accomplished during the...fixed-price incentive (FPI). The second general category of contracts is cost reimbursement. Under a cost- type contract, the product is not paid for on
Programmable nanowire circuits for nanoprocessors.
Yan, Hao; Choe, Hwan Sung; Nam, SungWoo; Hu, Yongjie; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M
2011-02-10
A nanoprocessor constructed from intrinsically nanometre-scale building blocks is an essential component for controlling memory, nanosensors and other functions proposed for nanosystems assembled from the bottom up. Important steps towards this goal over the past fifteen years include the realization of simple logic gates with individually assembled semiconductor nanowires and carbon nanotubes, but with only 16 devices or fewer and a single function for each circuit. Recently, logic circuits also have been demonstrated that use two or three elements of a one-dimensional memristor array, although such passive devices without gain are difficult to cascade. These circuits fall short of the requirements for a scalable, multifunctional nanoprocessor owing to challenges in materials, assembly and architecture on the nanoscale. Here we describe the design, fabrication and use of programmable and scalable logic tiles for nanoprocessors that surmount these hurdles. The tiles were built from programmable, non-volatile nanowire transistor arrays. Ge/Si core/shell nanowires coupled to designed dielectric shells yielded single-nanowire, non-volatile field-effect transistors (FETs) with uniform, programmable threshold voltages and the capability to drive cascaded elements. We developed an architecture to integrate the programmable nanowire FETs and define a logic tile consisting of two interconnected arrays with 496 functional configurable FET nodes in an area of ∼960 μm(2). The logic tile was programmed and operated first as a full adder with a maximal voltage gain of ten and input-output voltage matching. Then we showed that the same logic tile can be reprogrammed and used to demonstrate full-subtractor, multiplexer, demultiplexer and clocked D-latch functions. These results represent a significant advance in the complexity and functionality of nanoelectronic circuits built from the bottom up with a tiled architecture that could be cascaded to realize fully integrated nanoprocessors with computing, memory and addressing capabilities.
Graham, Kay; Smith, Matthew Lee; Hall, Jori N; Emerson, Kerstin G; Wilson, Mark G
2016-01-01
Chronic conditions and falls are related issues faced by many aging adults. Stanford's Chronic Disease Self-Management Program (CDSMP) added brief fall-related content to the standardized 6-week workshop; however, no research had examined changes in Fall-related self-efficacy (SE) in response to CDSMP participation. This study explored relationships and changes in SE using the SE to manage chronic disease scale (SEMCD Scale) and the Fall Efficacy Scale (FallE Scale) in participants who successfully completed CDSMP workshops within a Southern state over a 10-month period. SE scale data were compared at baseline and post-intervention for 36 adults (mean age = 74.5, SD = ±9.64). Principal component analysis (PCA), using oblimin rotation was completed at baseline and post-intervention for the individual scales and then for analysis combining both scales as a single scale. Each scale loaded under a single component for the PCA at both baseline and post-intervention. When both scales were entered as single meta-scale, the meta-scale split along two factors with no double loading. SEMCD and FallE Scale scores were significantly correlated at baseline and post-intervention, at least p < 0.05. A significant proportion of participants improved their scores on the FallE Scale post-intervention ( p = 0.038). The magnitude of the change was also significant only for the FallE Scale ( p = 0.043). The SEMCD Scale scores did not change significantly. Study findings from the exploratory PCA and significant correlations indicated that the SEMCD Scale and the FallE Scale measured two distinct but related types of SE. Though the scale scores were correlated at baseline and post-intervention, only the FallE Scale scores significantly differed post-intervention. Given this relationship and CDSMP's recent addition of a 10-min fall prevention segment, further exploration of CDSMP's possible influence on Fall-related SE would provide useful understanding for health promotion in aging adults.
Historical rock falls in Yosemite National Park, California (1857-2011)
Stock, Greg M.; Collins, Brian D.; Santaniello, David J.; Zimmer, Valerie L.; Wieczorek, Gerald F.; Snyder, James B.
2013-01-01
Inventories of rock falls and other types of landslides are valuable tools for improving understanding of these events. For example, detailed information on rock falls is critical for identifying mechanisms that trigger rock falls, for quantifying the susceptibility of different cliffs to rock falls, and for developing magnitude-frequency relations. Further, inventories can assist in quantifying the relative hazard and risk posed by these events over both short and long time scales. This report describes and presents the accompanying rock fall inventory database for Yosemite National Park, California. The inventory database documents 925 events spanning the period 1857–2011. Rock falls, rock slides, and other forms of slope movement represent a serious natural hazard in Yosemite National Park. Rock-fall hazard and risk are particularly relevant in Yosemite Valley, where glacially steepened granitic cliffs approach 1 km in height and where the majority of the approximately 4 million yearly visitors to the park congregate. In addition to damaging roads, trails, and other facilities, rock falls and other slope movement events have killed 15 people and injured at least 85 people in the park since the first documented rock fall in 1857. The accompanying report describes each of the organizational categories in the database, including event location, type of slope movement, date, volume, relative size, probable trigger, impact to humans, narrative description, references, and environmental conditions. The inventory database itself is contained in a Microsoft Excel spreadsheet (Yosemite_rock_fall_database_1857-2011.xlsx). Narrative descriptions of events are contained in the database, but are also provided in a more readable Adobe portable document format (pdf) file (Yosemite_rock_fall_database_narratives_1857-2011.pdf) available for download separate from the database.
Development of an algorithm to identify fall-related injuries and costs in Medicare data.
Kim, Sung-Bou; Zingmond, David S; Keeler, Emmett B; Jennings, Lee A; Wenger, Neil S; Reuben, David B; Ganz, David A
2016-12-01
Identifying fall-related injuries and costs using healthcare claims data is cost-effective and easier to implement than using medical records or patient self-report to track falls. We developed a comprehensive four-step algorithm for identifying episodes of care for fall-related injuries and associated costs, using fee-for-service Medicare and Medicare Advantage health plan claims data for 2,011 patients from 5 medical groups between 2005 and 2009. First, as a preparatory step, we identified care received in acute inpatient and skilled nursing facility settings, in addition to emergency department visits. Second, based on diagnosis and procedure codes, we identified all fall-related claim records. Third, with these records, we identified six types of encounters for fall-related injuries, with different levels of injury and care. In the final step, we used these encounters to identify episodes of care for fall-related injuries. To illustrate the algorithm, we present a representative example of a fall episode and examine descriptive statistics of injuries and costs for such episodes. Altogether, we found that the results support the use of our algorithm for identifying episodes of care for fall-related injuries. When we decomposed an episode, we found that the details present a realistic and coherent story of fall-related injuries and healthcare services. Variation of episode characteristics across medical groups supported the use of a complex algorithm approach, and descriptive statistics on the proportion, duration, and cost of episodes by healthcare services and injuries verified that our results are consistent with other studies. This algorithm can be used to identify and analyze various types of fall-related outcomes including episodes of care, injuries, and associated costs. Furthermore, the algorithm can be applied and adopted in other fall-related studies with relative ease.
NASA Astrophysics Data System (ADS)
Wang, Shaofeng; Yao, Yin; Bai, Jianhui; Wang, Rui
2017-04-01
This paper investigated the intermediate states and the structure evolution of the dislocation in graphene when it falls freely from the saddle point of the energy landscape. The O-type dislocation, an unstable equilibrium structure located at the saddle point, is obtained from the lattice theory of the dislocation structure and improved by the ab initio calculation to take the buckling into account. Intermediate states along the kinetics path in the falling process are obtained from the ab initio simulation. Once the dislocation falls from the saddle point to the energy valley, this O-type dislocation transforms into the stable structure that is referred to as the B-type dislocation, and in the meantime, it moves a distance that equals half a Burgers vector. The structure evolution and the energy variation in the free-falling process are revealed explicitly. It is observed that rather than smooth change, a platform manifests itself in the energy curve. The unusual behaviour in the energy curve is mainly originated from symmetry breaking and bond formation in the dislocation core. The results can provide deep insight in the mechanism of the brittle feature of covalent materials.
Post-fall-back evolution of multipolar magnetic fields and radio pulsar activation
NASA Astrophysics Data System (ADS)
Igoshev, A. P.; Elfritz, J. G.; Popov, S. B.
2016-11-01
It has long been unclear if the small-scale magnetic structures on the neutron star (NS) surface could survive the fall-back episode. The study of the Hall cascade by Cumming, Arras & Zweibel hinted that energy in small-scales structures should dissipate on short time-scales. Our new 2D magneto-thermal simulations suggest the opposite. For the first ˜10 kyr after the fall-back episode with accreted mass 10-3 M⊙, the observed NS magnetic field appears dipolar, which is insensitive to the initial magnetic topology. In framework of the Ruderman & Sutherland, vacuum gap model during this interval, non-thermal radiation is strongly suppressed. After this time, the initial (I.e. multipolar) structure begins to re-emerge through the NS crust. We distinguish three evolutionary epochs for the re-emergence process: the growth of internal toroidal field, the advection of buried poloidal field, and slow Ohmic diffusion. The efficiency of the first two stages can be enhanced when small-scale magnetic structure is present. The efficient re-emergence of high-order harmonics might significantly affect the curvature of the magnetospheric field lines in the emission zone. So, only after few 104 yr would be the NS starts shining as a pulsar again, which is in correspondence with radio silence of central compact objects. In addition, these results can explain the absence of good candidates for thermally emitting NSs with freshly re-emerged field among radio pulsars (), as NSs have time to cool down, and supernova remnants can already dissipate.
Seasonal species composition of invertebrates in several Oregon streams.
Pamela E. Porter; William R. Meehan
1987-01-01
The invertebrate communities ofeight Oregon streams were sampled seasonally from 1974 to 1976. Benthic, drift, and two types of aerial-trap samples were collected. Occurrence and percentage composition are summarized by sample type, season, and geographic area (coastal, Cascade, central, and eastern Oregon). Within 276 families, 426 taxa were identified; the 20...
Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.
2014-01-01
Rock falls are common in Yosemite Valley, California, posing substantial hazard and risk to the approximately four million annual visitors to Yosemite National Park. Rock falls in Yosemite Valley over the past few decades have damaged structures and caused injuries within developed regions located on or adjacent to talus slopes highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock-fall hazard and risk in Yosemite Valley and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls as large as approximately 100,000 (cubic meters) in volume.
Stellar Surface Brightness Profiles of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Herrmann, K. A.
2014-03-01
Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, or the light falls off with one exponential out to a break radius and then falls off (II) more steeply (“truncated”), or (III) less steeply (“anti-truncated”). Why there are three different radial profile types is still a mystery, including why light falls off as an exponential at all. Profile breaks are also found in dwarf disks, but some dwarf Type IIs are flat or increasing (FI) out to a break before falling off. I have been re-examining the multi-wavelength stellar disk profiles of 141 dwarf galaxies, primarily from Hunter & Elmegreen (2004, 2006). Each dwarf has data in up to 11 wavelength bands: FUV and NUV from GALEX, UBVJHK and Hα from ground-based observations, and 3.6 and 4.5μm from Spitzer. Here I highlight some results from a semi-automatic fitting of this data set including: (1) statistics of break locations and other properties as a function of wavelength and profile type, (2) color trends and radial mass distribution as a function of profile type, and (3) the relationship of the break radius to the kinematics and density profiles of atomic hydrogen gas in the 40 dwarfs of the LITTLE THINGS subsample.
Morrison, Steven; Simmons, Rachel; Colberg, Sheri R; Parson, Henri K; Vinik, Aaron I
2018-02-01
This study examined the benefits of and differences between 12 weeks of thrice-weekly supervised balance training and an unsupervised at-home balance activity (using the Nintendo Wii Fit) for improving balance and reaction time and lowering falls risk in older individuals with type 2 diabetes mellitus (T2DM). Before-after trial. University research laboratory, home environment. Sixty-five older adults with type 2 diabetes were recruited for this study. Participants were randomly allocated to either supervised balance training (mean age 67.8 ± 5.2) or unsupervised training using the Nintendo Wii Fit balance board (mean age 66.1 ± 5.6). The training period for both groups lasted for 12 weeks. Individuals were required to complete three 40-minute sessions per week for a total of 36 sessions. The primary outcome measure was falls risk, which was as derived from the physiological profile assessment. In addition, measures of simple reaction time, lower limb proprioception, postural sway, knee flexion, and knee extension strength were also collected. Persons also self-reported any falls in the previous 6 months. Both training programs resulted in a significant lowering of falls risk (P < .05). The reduced risk was attributable to significant changes in reaction times for the hand (P < .05), foot (P < .01), lower-limb proprioception (P < .01), and postural sway (P < .05). Overall, training led to a decrease in falls risk, which was driven by improvements in reaction times, lower limb proprioception, and general balance ability. Interestingly, the reduced falls risk occurred without significant changes in leg strength, suggesting that interventions to reduce falls risk that target intrinsic risk factors related to balance control (over muscle strength) may have positive benefits for the older adult with T2DM at risk for falls. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Interaction of upstream flow distortions with high Mach number cascades
NASA Technical Reports Server (NTRS)
Englert, G. W.
1981-01-01
Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.
Does Arctic sea ice reduction foster shelf-basin exchange?
Ivanov, Vladimir; Watanabe, Eiji
2013-12-01
The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of salt flux leads to a threefold increase of shelf-slope volume flux below the warm core of Atlantic water. This threefold increase would be a sufficient substitute for a similar amount of dense water that currently forms in the Greenland, Iceland, and Norwegian (GIN) seas but is expected to decrease in a warming climate.
Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms.
Kang, Sangmin; Myoung, Jinjong
2017-10-28
Hepatitis E virus (HEV) infections cause epidemic or sporadic acute hepatitis, which are mostly self-limiting. However, viral infection in immunocompromised patients and pregnant women may result in serious consequences, such as chronic hepatitis and liver damage, mortality of the latter of which reaches up to 20-30%. Type I interferon (IFN)-induced antiviral immunity is known to be the first-line defense against virus infection. Upon HEV infection in the cell, the virus genome is recognized by pathogen recognition receptors, leading to rapid activation of intracellular signaling cascades. Expression of type I IFN triggers induction of a barrage of IFN-stimulated genes, helping the cells cope with viral infection. Interestingly, some of the HEV-encoded genes seem to be involved in disrupting signaling cascades for antiviral immune responses, and thus crippling cytokine/chemokine production. Antagonistic mechanisms of type I IFN responses by HEV have only recently begun to emerge, and in this review, we summarize known HEV evasion strategies and compare them with those of other hepatitis viruses.
NASA Astrophysics Data System (ADS)
Tseng, Y. P.; Bouzy, P.; Stone, N.; Pedersen, C.; Tidemand-Lichtenberg, P.
2018-02-01
Spectral imaging in the long-wave infrared regime has great potential for medical diagnostics. Breast cancer is the most common cancer amongst females in the US. The pathological features and the occurrence of the microcalcifications are still poorly understood. However, two types of microcalcifications have been identified as unique biomarkers: type I consisting of calcium oxalate (benign lesions) and type II composed of hydroxyapatite (benign or invasive lesions). In this study, we propose a new approach based on vibrational spectroscopy that is non-destructive, label-free and chemically specific for breast cancer detection. Long-wave infrared spectroscopy combining quantum cascade lasers (QCL) and upconversion detection, offer to improve signal-to-noise ratios compared to standard long-wave infrared spectroscopy. We demonstrated long-wave identification of synthetic samples of carbonated hydroxyapatite and of microcalcification in breast cancer tissue using upconversion detection. Absorbance spectra and upconverted images of in situ breast cancer biopsy are compared with that of Fourier-transform infrared (FTIR) spectroscopy.
High power cascade diode lasers emitting near 2 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoda, Takashi; Feng, Tao; Shterengas, Leon, E-mail: leon.shterengas@stonybrook.edu
2016-03-28
High-power two-stage cascade GaSb-based type-I quantum well diode lasers emitting near 2 μm were designed and fabricated. Coated devices with cavity length of 3 mm generated about 2 W of continuous wave power from 100-μm-wide aperture at the current of 6 A. The power conversion efficiency peaked at 20%. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Design optimization eliminated parasitic optical absorption and thermionic emission, and included modification of the InAs quantum wells of electron and composition and doping profile of hole injectors. Utilization of the cascade pumpingmore » scheme yielded 2 μm lasers with improved output power and efficiency compared to existing state-of-the-art diodes.« less
A cascaded silicon Raman laser
NASA Astrophysics Data System (ADS)
Rong, Haisheng; Xu, Shengbo; Cohen, Oded; Raday, Omri; Lee, Mindy; Sih, Vanessa; Paniccia, Mario
2008-03-01
One of the major advantages of Raman lasers is their ability to generate coherent light in wavelength regions that are not easily accessible with other conventional types of lasers. Recently, efficient Raman lasing in silicon in the near-infrared region has been demonstrated, showing great potential for realizing low-cost, compact, room-temperature lasers in the mid-infrared region. Such lasers are highly desirable for many applications, ranging from trace-gas sensing, environmental monitoring and biomedical analysis, to industrial process control, and free-space communications. Here we report the first experimental demonstration of cascaded Raman lasing in silicon, opening the path to extending the lasing wavelength from the near- to mid-infrared region. Using a 1,550-nm pump source, we achieve stable, continuous-wave, second-order cascaded lasing at 1,848 nm with an output power exceeding 5 mW. The laser operates in single mode, and the laser linewidth is measured to be <2.5 MHz.
Representation of radiative strength functions within a practical model of cascade gamma decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, D. C., E-mail: vuconghnue@gmail.com; Sukhovoj, A. M., E-mail: suchovoj@nf.jinr.ru; Mitsyna, L. V., E-mail: mitsyna@nf.jinr.ru
A practical model developed at the Joint Institute for Nuclear Research (JINR, Dubna) in order to describe the cascade gamma decay of neutron resonances makes it possible to determine simultaneously, from an approximation of the intensities of two-step cascades, parameters of nuclear level densities and partial widths with respect to the emission of nuclear-reaction products. The number of the phenomenological ideas used isminimized in themodel version considered in the present study. An analysis of new results confirms what was obtained earlier for the dependence of dynamics of the interaction of fermion and boson nuclear states on the nuclear shape. Frommore » the ratio of the level densities for excitations of the vibrational and quasiparticle types, it also follows that this interaction manifests itself in the region around the neutron binding energy and is probably different in nuclei that have different parities of nucleons.« less
THE RGM/DRAGON FAMILY OF BMP CO-RECEPTORS
Corradini, Elena; Babitt, Jodie L.; Lin, Herbert Y.
2013-01-01
The BMP signaling pathway controls a number of cell processes during development and in adult tissues. At the cellular level, ligands of the BMP family act by binding a hetero-tetrameric signaling complex, composed of two type I and two type II receptors. BMP ligands make use of a limited number of receptors, which in turn activate a common signal transduction cascade at the intracellular level. A complex regulatory network is required in order to activate the signaling cascade at proper times and locations, and to generate specific downstream effects in the appropriate cellular context. One such regulatory mechanism is the repulsive guidance molecule (RGM) family of BMP co-receptors. This article reviews the current knowledge regarding the structure, regulation, and function of RGMs, focusing on known and potential roles of RGMs in physiology and pathophysiology. PMID:19897400
Crystal Structure of a CRISPR RNA-guided Surveillance Complex Bound to a ssDNA Target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulepati, Sabin; Heroux, Annie; Bailey, Scott
In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of proteinmore » subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.« less
Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
Mulepati, Sabin; Héroux, Annie; Bailey, Scott
2015-01-01
In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kDa complex is called Cascade. Here we report the 3.03Å crystal structure of Cascade bound to a single-stranded DNA target. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This non-canonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding. PMID:25123481
Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens.
Dwarakanath, Srivatsa; Brenzinger, Susanne; Gleditzsch, Daniel; Plagens, André; Klingl, Andreas; Thormann, Kai; Randau, Lennart
2015-10-15
Type I CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) systems exist in bacterial and archaeal organisms and provide immunity against foreign DNA. The Cas protein content of the DNA interference complexes (termed Cascade) varies between different CRISPR-Cas subtypes. A minimal variant of the Type I-F system was identified in proteobacterial species including Shewanella putrefaciens CN-32. This variant lacks a large subunit (Csy1), Csy2 and Csy3 and contains two unclassified cas genes. The genome of S. putrefaciens CN-32 contains only five Cas proteins (Cas1, Cas3, Cas6f, Cas1821 and Cas1822) and a single CRISPR array with 81 spacers. RNA-Seq analyses revealed the transcription of this array and the maturation of crRNAs (CRISPR RNAs). Interference assays based on plasmid conjugation demonstrated that this CRISPR-Cas system is active in vivo and that activity is dependent on the recognition of the dinucleotide GG PAM (Protospacer Adjacent Motif) sequence and crRNA abundance. The deletion of cas1821 and cas1822 reduced the cellular crRNA pool. Recombinant Cas1821 was shown to form helical filaments bound to RNA molecules, which suggests its role as the Cascade backbone protein. A Cascade complex was isolated which contained multiple Cas1821 copies, Cas1822, Cas6f and mature crRNAs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gell, Nancy M; Wallace, Robert B; LaCroix, Andrea Z; Mroz, Tracy M; Patel, Kushang V
2015-05-01
To examine the prevalence of mobility device use in community-dwelling older adults in the United States and to investigate the incidence of falls and worry about falling according to type and number of mobility devices used. Analysis of cross-sectional and longitudinal data from the 2011-12 National Health and Aging Trends Study. In-person interviews in the homes of study participants. Nationally representative sample of Medicare beneficiaries (n=7,609). Participants were asked about mobility device use (e.g., canes, walkers, wheelchairs and scooters) in the last month, 1-year fall history and worry about falling. Twenty-four percent of adults aged 65 and older reported mobility device use in 2011, and 9.3% reported using multiple devices within the last month. Mobility device use increased with advancing age and was associated with nonwhite race and ethnicity, female sex, lower education level, greater multimorbidity, and obesity (all P<.001). Adjusting for demographic and health characteristics and physical function, the incidence of falls and recurrent falls was not associated with the use of multiple devices or any particular type of mobility device. Activity-limiting worry about falling was significantly higher in cane-only users than in nonusers. The percentage of older adults reporting mobility device use is higher than results from previous national surveys, and multiple device use is common in those who use any device. Mobility device use is not associated with greater incidence of falls. Cane-only users may compensate for worry about falling by limiting activity. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.
Gell, Nancy M.; Wallace, Robert B.; LaCroix, Andrea Z.; Mroz, Tracy M.; Patel, Kushang V.
2015-01-01
OBJECTIVES To examine mobility device use prevalence among community-dwelling older adults in the U.S. and to investigate the incidence of falls and worry about falling by the type and number of mobility devices used. DESIGN Analysis of cross-sectional and longitudinal data from the 2011–2012 National Health and Aging Trends Study SETTING In-person interviews in the homes of study participants PARTICIPANTS Nationally representative sample of Medicare beneficiaries(N=7609). MEASUREMENTS Participants were asked about mobility device use (e.g., canes, walkers, wheelchairs and scooters) in the last month, one-year fall history and worry about falling. RESULTS Twenty-four percent of adults age ≥65 reported mobility device use in 2011 and 9.3% reported using multiple devices within the last month. Mobility device use increased with advancing age and was associated with non-White race/ethnicity, female sex, lower education level, greater multi-morbidity, and obesity (all P-values < 0.001). Adjusting for demographic, health characteristics, and physical function, the incidence of falls and recurrent falls were not associated with the use of multiple devices or any one particular type of mobility device. Activity-limiting worry about falling was significantly higher in cane-only users, compared with non-users. CONCLUSION The percentage of older adults reporting mobility device use is higher compared to results from previous national surveys and multiple device use is common among those who use any device. Mobility device use is not associated with increased incidence of falls compared to non-device users. Cane-only users may compensate for worry about falling by limiting activity. PMID:25953070
Roman de Mettelinge, Tine; Cambier, Dirk; Calders, Patrick; Van Den Noortgate, Nele; Delbaere, Kim
2013-01-01
Background Older adults with type 2 Diabetes Mellitus are at increased risk of falling. The current study aims to identify risk factors that mediate the relationship between diabetes and falls. Methods 199 older adults (104 with diabetes and 95 healthy controls) underwent a medical screening. Gait (GAITRite®), balance (AccuGait® force plate), grip strength (Jamar®), and cognitive status (Mini-Mental State Examination and Clock Drawing Test) were assessed. Falls were prospectively recorded during a 12-month follow-up period using monthly calendars. Results Compared to controls, diabetes participants scored worse on all physical and cognitive measures. Sixty-four participants (42 diabetes vs. 22 controls) reported at least one injurious fall or two non-injurious falls (“fallers”). Univariate logistic regression identified diabetes as a risk factor for future falls (Odds Ratio 2.25, 95%CI 1.21–4.15, p = 0.010). Stepwise multiple regressions defined diabetes and poor balance as independent risk factors for falling. Taking more medications, slower walking speed, shorter stride length and poor cognitive performance were mediators that reduced the Odds Ratio of the relationship between diabetes and faller status relationship the most followed by reduced grip strength and increased stride length variability. Conclusions Diabetes is a major risk factor for falling, even after controlling for poor balance. Taking more medications, poorer walking performance and reduced cognitive functioning were mediators of the relationship between diabetes and falls. Tailored preventive programs including systematic medication reviews, specific balance exercises and cognitive training might be beneficial in reducing fall risk in older adults suffering from diabetes. PMID:23825617
Behavioral self-concept as predictor of teen drinking behaviors.
Dudovitz, Rebecca N; Li, Ning; Chung, Paul J
2013-01-01
Adolescence is a critical developmental period for self-concept (role identity). Cross-sectional studies link self-concept's behavioral conduct domain (whether teens perceive themselves as delinquent) with adolescent substance use. If self-concept actually drives substance use, then it may be an important target for intervention. In this study, we used longitudinal data from 1 school year to examine whether behavioral self-concept predicts teen drinking behaviors or vice versa. A total of 291 students from a large, predominantly Latino public high school completed a confidential computerized survey in the fall and spring of their 9th grade year. Survey measures included the frequency of alcohol use, binge drinking and at-school alcohol use in the previous 30 days; and the Harter Self-Perception Profile for Adolescents behavioral conduct subscale. Multiple regressions were performed to test whether fall self-concept predicted the frequency and type of spring drinking behavior, and whether the frequency and type of fall drinking predicted spring self-concept. Fall behavioral self-concept predicted both the frequency and type of spring drinking. Students with low versus high fall self-concept had a predicted probability of 31% versus 20% for any drinking, 20% versus 8% for binge drinking and 14% versus 4% for at-school drinking in the spring. However, neither the frequency nor the type of fall drinking significantly predicted spring self-concept. Low behavioral self-concept may precede or perhaps even drive adolescent drinking. If these results are confirmed, then prevention efforts might be enhanced by targeting high-risk teens for interventions that help develop a healthy behavioral self-concept. Copyright © 2013 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Paganini-Hill, Annlia; Greenia, Dana E; Perry, Shawna; Sajjadi, Seyed Ahmad; Kawas, Claudia H; Corrada, Maria M
2017-11-01
to explore the relationship between risk of falling at age 90+ and prior physical activity at age 60-70s. population-based cohort study (The 90+ Study). California retirement community. of 1596 cohort members, 1536 had both falls and prior activity data. Mean age = 94 years; 78% female; 99% Caucasian. time spent in active physical activity was self-reported in 1980s; medical history, medication, assistive devices, residence type, and falls (outcome) was collected in 2000s. Activity/fall relationships were assessed using logistic regression. falls were reported by 52% of participants, recurrent falls by 32%, and severe injury by 21% of fallers. In univariate analyses risk of falling at age 90+ was significantly related to medical history (heart disease, TIA/stroke, arthritis, vision disease, depression, dementia), medication use (hypnotics, anti-psychotics, anti-depressants), use of assistive devices (cane, walker, wheelchair), residence type (living with relatives, sheltered living), and source of information (self-report vs informant). Risks of falling and recurrent falls at age 90+ were 35-45% lower in those reporting 30+ minutes/day of active physical activity at age 60-70s compared with no activity. The odds ratio of falling was 0.65 (95% CI = 0.44-0.97) for 30-45 minutes/day and 0.64 (0.44-0.94) for 1+ hour/day adjusting for age, sex, medical history (stroke/TIA, vision disease, depression), use of assistive devices, and source of information. falls are extremely common among the oldest-old and a significant proportion lead to severe injury. This work is the first to show an association between exercise at age 60-70s and lower risk of falling at age 90+. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com
NASA Technical Reports Server (NTRS)
Seasholtz, R. G.; Goldman, L. J.
1982-01-01
A technique for measuring a small optical axis velocity component in a flow with a large transverse velocity component is presented. Experimental results are given for a subsonic free jet operating in a laboratory environment, and for a 0.508 meter diameter turbine stator cascade. Satisfactory operation of the instrument was demonstrated in the stator cascade facility with an ambient acoustic noise level during operation of about 105 dB. In addition, the turbulence intensity measured with the interferometer was consistent with previous measurements taken with a fringe type laser anemometer.
NASA Technical Reports Server (NTRS)
Jones, W. V.
1973-01-01
Modifications to the basic computer program for performing the simulations are reported. The major changes include: (1) extension of the calculations to include the development of cascades initiated by heavy nuclei, (2) improved treatment of the nuclear disintegrations which occur during the interactions of hadrons in heavy absorbers, (3) incorporation of accurate multi-pion final-state cross sections for various interactions at accelerator energies, (4) restructuring of the program logic so that calculations can be made for sandwich-type detectors, and (5) logic modifications related to execution of the program.
Boltz, Melissa M; Podany, Abigail B; Hollenbeak, Christopher S; Armen, Scott B
2015-09-01
Fall risk for older adults is a multi-factorial public health problem as 90% of geriatric injuries are caused by traumatic falls. The CDC estimated 33% of adults >65 years incurred a fall in 2011, with 30% resulting in moderate injury. While much has been written about overall risk to trauma patients on oral anticoagulant (OAC) therapy, less has been reported on outcomes in the elderly trauma population. We used data from the National Trauma Data Bank (NTDB) to identify the types of injury and complications incurred, length of stay, and mortality associated with OACs in elderly patients sustaining a fall. Using standard NTDB practices, data were collected on elderly patients (≥65 years) on OACs with diagnosis of fall as the primary mechanism of injury from 2007 to 2010. Univariate analysis was used to determine patient variables influencing risk of fall on OACs. Odds ratios were calculated for types of injury sustained and post-trauma complications. Logistic regression was used to determine mortality associated with type of injury incurred. Of 118,467 elderly patients sampled, OAC use was observed in 444. Predisposing risk factors for fall on OACs were >1 comorbidity (p<0.0001). Patients on OACs were 188% and 370% more likely to develop 2 and >3 complications (p<0.0001); the most significant being ARDS and ARF (p<0.0001). The mortality rate on OACs was 16%. Injuries to the GI tract, liver, spleen, and kidney (p<0.0002) were more likely to occur. However, if patients suffered a mortality, the most significant injuries were skull fractures and intracranial haemorrhage (p<0.0001). Risks of anticoagulation in elderly trauma patients are complex. While OAC use is a predictor of 30-day mortality after fall, the injuries sustained are markedly different between the elderly who die and those who do not. As a result there is a greater need for healthcare providers to identify preventable and non-preventable risks factors indicative of falls in the anti-coagulated elderly patient. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrical gain in interband cascade infrared photodetectors
NASA Astrophysics Data System (ADS)
Huang, Wenxiang; Li, Lu; Lei, Lin; Massengale, Jeremy A.; Yang, Rui Q.; Mishima, Tetsuya D.; Santos, Michael B.
2018-03-01
In order to achieve improved understanding and gain insights into the device operation of interband cascade infrared photodetectors (ICIPs) and ultimately to optimize the design, we present a comparative study of five long-wavelength (LW) ICIPs based on a type-II InAs/GaSb superlattice. This study shows how the device responsivity is affected by the individual absorber thicknesses and the number of cascade stages, through the impact of light attenuation. Additionally, this study further validates that the electrical gain universally exists in non-current-matched ICIPs. With multiple cascade stages to suppress noise, these LW ICIPs achieved superior device performance at high temperatures, in terms of Johnson-noise limited detectivities, compared to commercial MCT detectors. Furthermore, a theory is developed to quantitatively describe the electrical gain in ICIPs and our calculations are in good agreement with the experimental results. Based on the theory, the optimal number of stages for maximizing the device detectivity D* is identified with inclusion of the electrical gain. Our calculation shows that this optimal number of stages is relatively large in the presence of the gain and the maximized D* has a relatively weak dependence on the absorber thickness when it is sufficiently thin.
Optimization of cascade blade mistuning under flutter and forced response constraints
NASA Technical Reports Server (NTRS)
Murthy, D. V.; Haftka, R. T.
1984-01-01
In the development of modern turbomachinery, problems of flutter instabilities and excessive forced response of a cascade of blades that were encountered have often turned out to be extremely difficult to eliminate. The study of these instabilities and the forced response is complicated by the presence of mistuning; that is, small differences among the individual blades. The theory of mistuned cascade behavior shows that mistuning can have a beneficial effect on the stability of the rotor. This beneficial effect is produced by the coupling between the more stable and less stable flutter modes introduced by mistuning. The effect of mistuning on the forced response can be either beneficial or adverse. Kaza and Kielb have studied the effects of two types of mistuning on the flutter and forced response: alternate mistuning where alternte blades are identical and random mistuning. The objective is to investigate other patterns of mistuning which maximize the beneficial effects on the flutter and forced response of the cascade. Numerical optimization techniques are employed to obtain optimal mistuning patterns. The optimization program seeks to minimize the amount of mistuning required to satisfy constraints on flutter speed and forced response.
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.
2000-01-01
The NASA Engine Performance Program (NEPP) can configure and analyze almost any type of gas turbine engine that can be generated through the interconnection of a set of standard physical components. In addition, the code can optimize engine performance by changing adjustable variables under a set of constraints. However, for engine cycle problems at certain operating points, the NEPP code can encounter difficulties: nonconvergence in the currently implemented Powell's optimization algorithm and deficiencies in the Newton-Raphson solver during engine balancing. A project was undertaken to correct these deficiencies. Nonconvergence was avoided through a cascade optimization strategy, and deficiencies associated with engine balancing were eliminated through neural network and linear regression methods. An approximation-interspersed cascade strategy was used to optimize the engine's operation over its flight envelope. Replacement of Powell's algorithm by the cascade strategy improved the optimization segment of the NEPP code. The performance of the linear regression and neural network methods as alternative engine analyzers was found to be satisfactory. This report considers two examples-a supersonic mixed-flow turbofan engine and a subsonic waverotor-topped engine-to illustrate the results, and it discusses insights gained from the improved version of the NEPP code.
Phase-I monitoring of standard deviations in multistage linear profiles
NASA Astrophysics Data System (ADS)
Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim
2018-03-01
In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.
Bordonaro, M; Mariadason, J M; Aslam, F; Heerdt, B G; Augenlicht, L H
1999-10-01
Short-chain fatty acids play a critical role in colonic homeostasis because they stimulate pathways of growth arrest, differentiation, and apoptosis. These effects have been well characterized in colonic cell lines in vitro. We investigated the role of beta-catenin-Tcf signaling in these responses to butyrate and other well-characterized inducers of apoptosis of colonic epithelial cells. Unlike wild-type APC, which down-regulates Tcf activity, butyrate, as well as sulindac and trichostatin A, all inducers of G0-G1 cell cycle arrest and apoptosis in the SW620 colonic carcinoma cell line, up-regulate Tcf activity. In contrast, structural analogues of butyrate that do not induce cell cycle arrest or apoptosis and curcumin, which stimulates G2-M arrest without inducing apoptosis, do not alter Tcf activity. Similar to the cell cycle arrest and apoptotic cascade induced by butyrate, the up-regulation of Tcf activity is dependent upon the presence of a mitochondrial membrane potential, unlike the APC-induced down-regulation, which is insensitive to collapse of the mitochondrial membrane potential. Moreover, the butyrate-induced increase in Tcf activity, which is reflected in an increase in beta-catenin-Tcf complex formation, is independent of the down-regulation caused by expression of wild-type APC. Thus, butyrate and wild-type APC have different and independent effects on beta-catenin-Tcf signaling. These data are consistent with other reports that suggest that the absence of wild-type APC, associated with the up-regulation of this signaling pathway, is linked to the probability of a colonic epithelial cell entering an apoptotic cascade.
NASA Technical Reports Server (NTRS)
Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin
2006-01-01
Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer at 0 C and 4% of the particles by volume for the region just below the isothermal layer where air temperatures rise from 0" to 0.5"C. As air temperatures increa sed above 0.5 C, the relative proportions of rain versus snow particl es shift dramatically and raindrops become dominant. The value of 0.5 C for the sharp transition in volume fraction from snow to rain is sl ightly lower than the range from 1 .l to 1.7 C often used in hydrolog ical models.
Browne, Claire; Kingston, Claire; Keane, Claire
2014-10-01
Patients at risk of falling are regularly prescribed medicines which increase falls risk. Medication review is a widely advocated risk reduction strategy. The objectives of this descriptive study were to determine the number and types of falls risk medicines suitable for intervention, and to develop guidance to optimise the effectiveness of future medication related falls prevention initiatives. An Irish acute teaching hospital and tertiary referral centre. 50 hospital in-patients at risk of falls underwent medication review focused on falls prevention by a pharmacist. Falls risk medicines were identified, and reviewed. If scope to discontinue, dose reduce or switch to a safer alternative was identified by the pharmacist, the suggested medication changes were communicated to the patient's care team. Identification of the classes of falls risk medicines and types of prescriptions with greatest potential for intervention. Results The mean number of falls risk medicines prescribed to each patient was 4.8 (± 2.8) and the total number prescribed to the 50 patients was 238. Following medication review, the pharmacist identified 48 (20 %) as suitable for intervention. Consequently, 34 medication changes (70.8 %) were implemented. Four medication classes accounted for over 80 % of medication changes. These were anti-emetics, opioid analgesics, anti-cholinergic agents acting on the bladder and benzodiazepines/hypnotics. Intervention was statistically significantly more likely to be possible in the case of p.r.n. medicines compared to regular medicines (p < 0.001, Chi square test). Medication reviews focused on falls prevention took an average of 23.5 min per patient to complete. Medication reviews focused on falls prevention involve striking a balance between minimising medicines associated with falls and effectively treating medical conditions. We found only 20 % of falls risk medicines were suitable for change, and reviews were time consuming and resource intensive. However, targeting four medication classes, and being particularly alert to the potential to discontinue 'as required' medicines, has the potential to achieve most of the benefits of more comprehensive reviews. This information will guide the development of future falls risk medicine review initiatives in our hospital, increasing their feasibility in the acute hospital setting.
1981-10-01
Chicopee Falls, Fia rpt Mass 6. PERFORMING ORG. REPORT NUMBER 7. AUTNOR(e) S. CONTRACT OR GRANT NUMBER(#) 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10...Chicopee Falls, Mass . * It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily...WESTOVER AFB/CHICOPEE FALLS MASS N 42 12 W 072 32 245 CEF 74491 STATION LOCATION AND INSTRUMENTATION HISTORY UNCEl TYPE AT TIS LOCATION ELEVATION ABOVE NSL
Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.
2012-01-01
caused injuries within developed regions located on or adjacent to talus slopes, highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock fall hazard and risk in Yosemite Valley (Wieczorek et al., 1998, 1999; Guzzetti et al., 2003; Wieczorek et al., 2008), and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls (Evans and Hungr, 1999), up to approximately 100,000 m3 in volume.
Relevance of vitamin D in fall prevention.
Bischoff-Ferrari, Heike A
2017-03-01
This review will summarize recent clinical studies and meta-analyses on the effect of vitamin D supplementation on fall prevention. As fall prevention is fundamental in fracture prevention at older age, we discuss if and to what extend the vitamin D effect on muscle modulates hip fracture risk. Further, to explain the effect of vitamin D on fall prevention, we will review the mechanistic evidence linking vitamin D to muscle health and the potentially selective effect of vitamin D on type II fast muscle fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanishi, Masamichi, E-mail: masamiya@crl.hpk.co.jp; Hirohata, Tooru; Hayashi, Syohei
2014-11-14
Free running line-widths (>100 kHz), much broader than intrinsic line-widths ∼100 Hz, of existing quantum-cascade lasers are governed by strong flicker frequency-noise originating from electrical flicker noise. Understanding of microscopic origins of the electrical flicker noises in quantum-cascade lasers is crucially important for the reduction of strength of flicker frequency-noise without assistances of any type of feedback schemes. In this article, an ad hoc model that is based on fluctuating charge-dipoles induced by electron trappings and de-trappings at indispensable impurity states in injector super-lattices of a quantum-cascade laser is proposed, developing theoretical framework based on the model. The validity of the presentmore » model is evaluated by comparing theoretical voltage-noise power spectral densities based on the model with experimental ones obtained by using mid-infrared quantum-cascade lasers with designed impurity-positioning. The obtained experimental results on flicker noises, in comparison with the theoretical ones, shed light on physical mechanisms, such as the inherent one due to impurity states in their injectors and extrinsic ones due to surface states on the ridge-walls and due to residual deep traps, for electrical flicker-noise generation in existing mid-infrared quantum-cascade lasers. It is shown theoretically that quasi-delta doping of impurities in their injectors leads to strong suppression of electrical flicker noise by minimization of the dipole length at a certain temperature, for instance ∼300 K and, in turn, is expected to result in substantial narrowing of the free running line-width down below 10 kHz.« less
Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram
2015-08-01
In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.
Barking up the wrong tree: injuries due to falls from trees in Solomon Islands.
Negin, Joel; Vizintin, Pavle; Houasia, Patrick; Martiniuk, Alexandra L C
2014-12-11
To investigate tree-related injuries in Solomon Islands by the types of trees involved, who is affected and the types of injuries caused. Descriptive case series of all cases of injuries related to trees presenting to the National Referral Hospital in Honiara from 1994 to 2011. Data were collected by the attending clinician using a Trauma Epidemiology form, which provides information on age, sex, cause of injury and type of fracture. Number of injuries by tree type, sex and age. Of the 7651 injuries in the database, 1107 (14%) were caused by falls from trees. Falls from coconut trees led to the highest number of injuries, followed by falls from mango, guava, apple and nut trees. Overall, 85% of injuries occurred in individuals aged < 20 years. For injuries involving guava trees, 77% of patients were aged < 10 years, compared with 46% for the five most commonly involved tree types. Overall, 71% of injuries occurred among males. Of all injuries, 92% were fractures, 3% were dislocations and 5% were non-fracture, non-dislocation injuries. The arm (including wrist, elbow and hand) was the most common location of injury across all tree types. Distal radius fractures in the forearm were particularly common, as were ulna fractures. While mangos and guavas are undeniably delicious, the quest for their flesh can be hazardous. Children will always climb trees, but the search for food among children in lower-income settings may lead to higher rates of injury.
Volcano Hazards Assessment for Medicine Lake Volcano, Northern California
Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.
2007-01-01
Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.
Laflamme, Lucie; Monárrez-Espino, Joel; Johnell, Kristina; Elling, Berty; Möller, Jette
2015-01-01
Drug use is a modifiable risk factor for fall-related injuries in older people. Whereas the injurious effect of polypharmacy is established, that of low numbers of medications has not been fully ascertained. Neither do we know whether it is the number per se or the type of medications that actually matters. We assessed this question for fall injuries leading to hospitalization. National register-based, population-based, matched case-control study. Community dwellers aged 65+ years living in Sweden between March 2006 and December 2009. Cases (n = 64,399) were identified in the national inpatient register and four controls per case were randomly matched by gender, date of birth and residential area. The association between number of prescribed medications, assessed through linkage with the Swedish prescribed drug register, and the risk of injurious falls was estimated with odds ratios with 95% confidence intervals using conditional logistic regression, adjusted for demographic and health status. The number of medications was associated with an increased risk of fall injury in a dose-response fashion, even after adjustment for marital status, comorbidity and number of fall-risk-inducing drugs (FRIDs). Using ten or more medications was associated with an almost two-fold higher risk (adjusted OR: 1.76, 95% CI: 1.66 to 1.88). When stratified by use (or not) of at least one FRID, the association weakened slightly among both non-users (adjusted OR: 1.50, 95% CI: 1.34 to 1.67) and users (adjusted OR: 1.67, 95% CI: 1.58 to 1.77). In older people, not only large but also small numbers of medications may affect the risk for them to sustain injurious falls. Although the mechanisms lying behind this are complex, the finding challenges the prevention strategies targeting either specific types of medications (FRIDs) or high numbers of them.
Passive mode-locking of 3.25μm GaSb-based type-I quantum-well cascade diode lasers
NASA Astrophysics Data System (ADS)
Feng, Tao; Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Wang, Meng; Belenky, Gregory
2018-02-01
Passively mode-locked type-I quantum well cascade diode lasers emitting in the methane absorption band near 3.25 μm were designed, fabricated and characterized. The deep etched 5.5-μm-wide single spatial mode ridge waveguide design utilizing split-contact architecture was implemented. The devices with absorber to gain section length ratios of 11% and 5.5% were studied. Lasers with the longer absorber section ( 300 μm) generated smooth bell-shape-like emission spectrum with about 30 lasing modes at full-width-at-half-maximum level. Devices with reverse biased absorber section demonstrated stable radio frequency beat with nearly perfect Lorentzian shape over four orders of magnitude of intensity. The estimated pulse-to-pulse timing jitter was about 110 fs/cycle. Laser generated average power of more than 1 mW in mode-locked regime.
NASA Astrophysics Data System (ADS)
Yoxall, Edward; Navarro-Cía, Miguel; Rahmani, Mohsen; Maier, Stefan A.; Phillips, Chris C.
2013-11-01
We demonstrate the use of a pulsed quantum cascade laser, wavelength tuneable between 6 and 10 μm, with a scattering-type scanning near-field optical microscope (s-SNOM). A simple method for calculating the signal-to-noise ratio (SNR) of the s-SNOM measurement is presented. For pulsed lasers, the SNR is shown to be highly dependent on the degree of synchronization between the laser pulse and the sampling circuitry; in measurements on a gold sample, the SNR is 26 with good synchronization and less than 1 without. Simulations and experimental s-SNOM images, with a resolution of 100 nm, corresponding to λ/80, and an acquisition time of less than 90 s, are presented as proof of concept. They show the change in the field profile of plasmon-resonant broadband antennas when they are excited with wavelengths of 7.9 and 9.5 μm.
Lee, David A.
2017-01-01
ABSTRACT Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response. PMID:28152338
Thorpe, Stephen D; Lee, David A
2017-05-04
Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response.
Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package
NASA Astrophysics Data System (ADS)
Guo, Bujin; Hwang, Wen-Yen; Lin, Chich-Hsiang
2001-10-01
Through a vertically integrated effort involving atomic level material engineering, advanced device processing development, state-of-the-art optomechanical packaging, and thermal management, Applied Optoelectronics, Inc. (AOI), University of Houston (U H), and Physical Science, Inc. (PSI) have made progress in both Sb-based type-II semiconductor material and in P-based type-I laser device development. We have achieved record performance on inP based quantum cascade continuous wave (CW) laser (with more than 5 mW CW power at 210 K). Grating-coupled external-cavity quantum cascade lasers were studied for temperatures from 20 to 230 K. A tuning range of 88 nm has been obtained at 80 K. The technology can be made commercially available and represents a significant milestone with regard to the Dual Use Science and Technology (DUST) intention of fostering dual use commercial technology for defense need. AOI is the first commercial company to ship products of this licensed technology.
Information cascade on networks
NASA Astrophysics Data System (ADS)
Hisakado, Masato; Mori, Shintaro
2016-05-01
In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.
Transverse Cascade and Sustenance of Turbulence in Keplerian Disks with an Azimuthal Magnetic Field
NASA Astrophysics Data System (ADS)
Gogichaishvili, D.; Mamatsashvili, G.; Horton, W.; Chagelishvili, G.; Bodo, G.
2017-10-01
The magnetorotational instability (MRI) in the sheared rotational Keplerian explains fundamental problems for both astrophysics and toroidal laboratory plasmas. The turbulence occurs before the threshold for the linear eigen modes. The work shows the turbulence occurs in nonzero toroidal magnetic field with a sheared toroidal flow velocity. We analyze the turbulence in Fourier k-space and x-space each time step to clarify the nonlinear energy-momentum transfers that produce the sustenance in the linearly stable plasma. The nonlinear process is a type 3D angular redistribution of modes in Fourier space - a transverse cascade - rather than the direct/inverse cascades. The turbulence is sustained an interplay of the linear transient growth from the radial gradient of the toroidal velocity (which is the only energy supply for the turbulence) and the transverse cascade. There is a relatively small ``vital area in Fourier space'' is crucial for the sustenance. Outside the vital area the direct cascade dominates. The interplay of the linear and nonlinear processes is generally too intertwined in k-space for a classical turbulence characterization. Subcycles occur from the interactions that maintain self-organization nonlinear turbulence. The spectral characteristics in four simulations are similar showing the universality of the sustenance mechanism of the shear flow driven MHDs-turbulence. Funded by the US Department of Energy under Grant DE-FG02-04ER54742 and the Space and Geophysics Laboratory at the University of Texas at Austin. G. Mamatsashvili is supported by the Alexander von Humboldt Foundation, Germany.
Kangas, M; Vikman, I; Nyberg, L; Korpelainen, R; Lindblom, J; Jämsä, T
2012-03-01
Falling is a common accident among older people. Automatic fall detectors are one method of improving security. However, in most cases, fall detectors are designed and tested with data from experimental falls in younger people. This study is one of the first to provide fall-related acceleration data obtained from real-life falls. Wireless sensors were used to collect acceleration data during a six-month test period in older people. Data from five events representing forward falls, a sideways fall, a backwards fall, and a fall out of bed were collected and compared with experimental falls performed by middle-aged test subjects. The signals from real-life falls had similar features to those from intentional falls. Real-life forward, sideways and backward falls all showed a pre impact phase and an impact phase that were in keeping with the model that was based on experimental falls. In addition, the fall out of bed had a similar acceleration profile as the experimental falls of the same type. However, there were differences in the parameters that were used for the detection of the fall phases. The beginning of the fall was detected in all of the real-life falls starting from a standing posture, whereas the high pre impact velocity was not. In some real-life falls, multiple impacts suggested protective actions. In conclusion, this study demonstrated similarities between real-life falls of older people and experimental falls of middle-aged subjects. However, some fall characteristics detected from experimental falls were not detectable in acceleration signals from corresponding heterogeneous real-life falls. Copyright © 2011 Elsevier B.V. All rights reserved.
Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.
1997-01-01
Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance. Ordination identified three site groups and three community types. Site groups consisted of (1) small streams of the Cascades and Eastern Cascades ecoregions, (2) small streams of the Columbia Basin ecoregions, and (3) large rivers of the Cascades and Columbia Basin ecoregions. The small streams of the Columbia Basin could be further subdivided into two groups--one where agricultural intensity was low and one where agricultural intensity was moderate to high. Dividing the basin into these three groups removed much of the influence of elevation and facilitated the analysis of land-use effects. Community types identified by ordination were (1) high elevation, cold-water communities associated with low agricultural intensity; (2) lower elevation, warm-water communities associated with low agricultural intensity, and (3) lower elevation, warm-water communities associated with moderate to high agricultural intensity. Multimetric community condition indices indicated that sites in the Cascades and Eastern Cascades site group were largely unimpaired. In contrast, all but two sites in the Columbia Basin site group were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor responsible for this impairment, and all impaired sites were characterized by multiple indicators of impairment. Three sites (Granger Drain, Moxee Drain, and Spring Creek) had high levels of impairment. Sites in the large-river site group were moderately to severely impaired downstream from the city of Yakima. High levels of impairment at large-river sites corresponded with high levels of pesticides in fish tissues and the occurrence of external anomalies. The response exhibited by invertebrates and algae to a gradient of agricultural intensity suggested a threshold response for sites in the Columbia Basin site group. Community condition declined precipitously at agricultural intensities above 50 (non-pesticide agricultural intensity index) and showed little respon
McCrum, Christopher; Gerards, Marissa H G; Karamanidis, Kiros; Zijlstra, Wiebren; Meijer, Kenneth
2017-01-01
Falls are a leading cause of injury among older adults and most often occur during walking. While strength and balance training moderately improve falls risk, training reactive recovery responses following sudden perturbations during walking may be more task-specific for falls prevention. The aim of this review was to determine the variety, characteristics and effectiveness of gait perturbation paradigms that have been used for improving reactive recovery responses during walking and reducing falls among healthy older adults. A systematic search was conducted in PubMed, Web of Science, MEDLINE and CINAHL databases in December 2015, repeated in May 2016, using sets of terms relating to gait, perturbations, adaptation and training, and ageing. Inclusion criteria: studies were conducted with healthy participants of 60 years or older; repeated, unpredictable, mechanical perturbations were applied during walking; and reactive recovery responses to gait perturbations or the incidence of laboratory or daily life falls were recorded. Results were narratively synthesised. The risk of bias for each study (PEDro Scale) and the levels of evidence for each perturbation type were determined. In the nine studies that met the inclusion criteria, moveable floor platforms, ground surface compliance changes, or treadmill belt accelerations or decelerations were used to perturb the gait of older adults. Eight studies used a single session of perturbations, with two studies using multiple sessions. Eight of the studies reported improvement in the reactive recovery response to the perturbations. Four studies reported a reduction in the percentage of laboratory falls from the pre- to post-perturbation experience measurement and two studies reported a reduction in daily life falls. As well as the range of perturbation types, the magnitude and frequency of the perturbations varied between the studies. To date, a range of perturbation paradigms have been used successfully to perturb older adults' gait and stimulate reactive response adaptations. Variation also exists in the number and magnitudes of applied perturbations. Future research should examine the effects of perturbation type, magnitude and number on the extent and retention of the reactive recovery response adaptations, as well as on falls, over longer time periods among older adults.
Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.
Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying; Houacine, Amrane
2016-12-01
In this paper, we address the problem of detecting human falls using anomaly detection. Detection and classification of falls are based on accelerometric data and variations in human silhouette shape. First, we use the exponentially weighted moving average (EWMA) monitoring scheme to detect a potential fall in the accelerometric data. We used an EWMA to identify features that correspond with a particular type of fall allowing us to classify falls. Only features corresponding with detected falls were used in the classification phase. A benefit of using a subset of the original data to design classification models minimizes training time and simplifies models. Based on features corresponding to detected falls, we used the support vector machine (SVM) algorithm to distinguish between true falls and fall-like events. We apply this strategy to the publicly available fall detection databases from the university of Rzeszow's. Results indicated that our strategy accurately detected and classified fall events, suggesting its potential application to early alert mechanisms in the event of fall situations and its capability for classification of detected falls. Comparison of the classification results using the EWMA-based SVM classifier method with those achieved using three commonly used machine learning classifiers, neural network, K-nearest neighbor and naïve Bayes, proved our model superior.
Does fall history influence residential adjustments?
Leland, Natalie; Porell, Frank; Murphy, Susan L
2011-04-01
To determine whether reported falls at baseline are associated with an older adult's decision to make a residential adjustment (RA) and the type of adjustment made in the subsequent 2 years. Observations (n = 25,036) were from the Health and Retirement Study, a nationally representative sample of community-living older adults, 65 years of age and older. At baseline, fall history (no fall, 1 fall no injury, 2 or more falls no injury, or 1 or more falls with an injury) and factors potentially associated with RA were used to predict the initiation of an RA (i.e., moving, home modifications, increased use of adaptive equipment, family support, or personal care assistance) during the subsequent 2 years. Compared with those with no history of falls, individuals with a history of falls had higher odds of making any RA. Among those making an RA, individuals with an injurious fall were more likely than those with no history of a fall to start using adaptive equipment or increase their use of personal care assistance. The higher initiation of RAs among fallers may indicate proactive steps to prevent future falls and may be influenced by interactions with the health care system. To optimize fall prevention efforts, older adults would benefit from education and interventions addressing optimal use of RAs before falls occur.
Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser.
Craig, Ian M; Taubman, Matthew S; Lea, A Scott; Phillips, Mark C; Josberger, Erik E; Raschke, Markus B
2013-12-16
Utilizing a broadly-tunable external cavity quantum cascade laser for scattering-type scanning near-field optical microscopy (s-SNOM), we measure infrared spectra of particles of explosives by probing characteristic nitro-group resonances in the 7.1-7.9 µm wavelength range. Measurements are presented with spectral resolution of 0.25 cm(-1), spatial resolution of 25 nm, sensitivity better than 100 attomoles, and at a rapid acquisition time of 90 s per spectrum. We demonstrate high reproducibility of the acquired s-SNOM spectra with very high signal-to-noise ratios and relative noise of <0.02 in self-homodyne detection.
Two-step narrow ridge cascade diode lasers emitting near $$2~\\mu$$ m
Feng, Tao; Hosoda, Takashi; Shterengas, Leon; ...
2017-01-02
Nearly diffraction limited GaSb-based type-I quantum well cascade diode lasers emitting in the spectral region 1.95-2 μm were designed and fabricated. Two-step 5.5-μm-wide shallow and 14-μm-wide deep etched ridge waveguide design yielded devices generating stable single lobe beams with 250 mW of continuous wave output power at 20 °C. Quantum well radiative recombination current contributes about 13% to laser threshold as estimated from true spontaneous emission and modal gain analysis. Here, recombination at etched sidewalls of the 14-μmwide deep ridges controls about 30% of the threshold.
Horst, Folkert; Green, William M J; Assefa, Solomon; Shank, Steven M; Vlasov, Yurii A; Offrein, Bert Jan
2013-05-20
We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.
Low-Impact Flooring: Does It Reduce Fall-Related Injuries?
Hanger, H Carl
2017-07-01
To compare fall rates and injuries from falls on low-impact flooring (LIF) compared with a standard vinyl flooring. Prospective, observational, nonrandomized controlled study. Subacute Older Persons Health ward (N = 20 beds). Older inpatients. Three different types of LIF. All falls in the ward were prospectively monitored using incident reporting, noting location and consequences of each fall. Fall rates (per 1000 bed days) and injuries, were compared between bedroom falls on LIF against those occurring on standard vinyl flooring (controls). Over 31 months, there were 278 bedroom falls (from 178 fallers). The bedroom fall rate (falls per 1000 bed days occupied) did not differ between the LIF and control groups (median 15 [IQR 8-18] versus 17 [IQR 9-23], respectively; P = .47). However, fall-related injuries were significantly less frequent when they occurred on LIFs (22% of falls versus 34% of falls on control flooring; P = .02). Fractures occurred in 0.7% of falls in the LIF cohort versus 2.3% in the control cohort. Rolling resistance when moving heavier equipment, such as beds or hoists, was an issue for staff on LIF. LIF significantly reduced fall-related injuries compared with a standard vinyl flooring, whereas they did not alter the overall risk of falling. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Stellar Surface Brightness Profiles of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Herrmann, Kimberly A.; LITTLE THINGS Team
2012-01-01
Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. We have been re-examining the multi-wavelength stellar disk profiles of 141 dwarf galaxies, primarily from Hunter & Elmegreen (2006, 2004). Each dwarf has data in up to 11 wavelength bands: FUV and NUV from GALEX, UBVJHK and H-alpha from ground-based observations, and 3.6 and 4.5 microns from Spitzer. In this talk, I will highlight results from a semi-automatic fitting of this data set, including: (1) statistics of break locations and other properties as a function of wavelength and profile type, (2) color trends and radial mass distribution as a function of profile type, and (3) the relationship of the break radius to the kinematics and density profiles of atomic hydrogen gas in the 41 dwarfs of the LITTLE THINGS subsample. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).
Lilla, Jennifer N.; Joshi, Ravi V.; Craik, Charles S.; Werb, Zena
2009-01-01
The plasminogen cascade of serine proteases directs both development and tumorigenesis in the mammary gland. Plasminogen can be activated to plasmin by urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), and plasma kallikrein (PKal). The dominant plasminogen activator for mammary involution is PKal, a serine protease that participates in the contact activation system of blood coagulation. We observed that the prekallikrein gene (Klkb1) is expressed highly in the mammary gland during stromal remodeling periods including puberty and postlactational involution. We used a variant of ecotin (ecotin-PKal), a macromolecular inhibitor of serine proteases engineered to be highly specific for active PKal, to demonstrate that inhibition of PKal with ecotin-PKal delays alveolar apoptosis, adipocyte replenishment, and stromal remodeling in the involuting mammary gland, producing a phenotype resembling that resulting from plasminogen deficiency. Using biotinylated ecotin-PKal, we localized active PKal to connective tissue-type mast cells in the mammary gland. Taken together, these results implicate PKal as an effector of the plasminogen cascade during mammary development. PMID:19297327
A small-area study of environmental risk assessment of outdoor falls.
Lai, Poh-Chin; Wong, Wing-Cheung; Low, Chien-Tat; Wong, Martin; Chan, Ming-Houng
2011-12-01
Falls in public places are an issue of great health concern especially for the elderly. Falls among the elderly is also a major health burden in many countries. This study describes a spatial approach to assess environmental causes of outdoor falls using a small urban community in Hong Kong as an example. The method involves collecting data on fall occurrences and mapping their geographic positions to examine circumstances and environmental evidence that contribute to falls. High risk locations or hot spots of falls are identified on the bases of spatial proximity and concentration of falls within a threshold distance by means of kernel smoothing and standard deviational ellipses. This method of geographic aggregation of individual fall incidents for a small-area study yields hot spots of manageable sizes. The spatial clustering approach is effective in two ways. Firstly, it allows visualisation and isolation of fall hot spots to draw focus. Secondly and especially under conditions of resource decline, policy makers are able to target specific locations to examine the underlying causal mechanisms and strategise effective response and preventive measures based on the types of environmental risk factors identified.
NASA Astrophysics Data System (ADS)
Cover, M. R.; May, C. L.; Dietrich, W. E.; Resh, V. H.
2005-12-01
The availability of flow refugia and cover is an important factor affecting habitat suitability for fish and invertebrates, especially in steep, turbulent streams. In some channels, crevices beneath and between large rocks may be the only available flow refugia that allow rainbow trout (Oncorhynchus mykiss) to conserve energy and escape from high velocity flow during large storm events. Many aquatic invertebrates, especially large or crawling taxa, require cover that is provided by unembedded crevice space underneath large stones. To investigate the influence of channel type on habitat availability, we performed intensive surveys of crevice habitat for salmonids and benthic invertebrates in 12 reaches in Walker Creek, a 25 square km basin in the Klamath Mountains of Northern California. We identified four reaches in each of three channel types: plane bed (3.1% - 3.7% slope), step-pool (5.4% - 6.5% slope), and cascade (6.3% - 8.5% slope). We used 4 realistic fish models (5, 10, 15, and 20 cm length) to assess the size of crevices and presence of flow refugia associated with all cobble (64 - 256 mm) and boulder (> 256 mm) grains within five 0.5 m-wide diagonal transects. The total abundance of crevices was similar among plane bed (6.3 +/- 1.1 m-2) (Mean +/- SD), step-pool (6.2 +/- 0.25 m-2), and cascade (6.7 +/- 1.2 m-2) reaches. Small (5 cm) crevices made up the majority of crevices in all three reach types. While the presence of 5 cm and 10 cm crevices was not significantly different between the three channel types, there were significantly more large (20 cm) crevices in cascade (0.73 +/- 0.33 m-2) and step-pool (0.68 +/- 0.1 m-2) reaches than in plane bed (0.26 +/- 0.14 m-2) reaches (AVOVA, p < 0.05). Moderately sized (15 cm) crevices were more common in step-pool reaches (0.91 +/- 0.13 m-2) than either cascade (0.54 +/- 0.15 m-2) or plane bed (0.42 +/- 0.13 m-2) reaches. Based on these results we conclude that step-pool reaches provide the most favorable habitat for larger (15 to 20 cm) fish, probably due to the channel-spawning clusters of large cobbles and boulders that define this channel type. Understanding the processes that develop and maintain these open-framework clusters is important for basin-scale assessment of potential aquatic habitat.
Lapane, Kate L; Jesdale, Bill M; Dubé, Catherine E; Pimentel, Camilla B; Rajpathak, Swapnil N
2015-08-01
Although sulfonylureas increase the risk of hypoglycemia which may lead to fall-associated fractures, studies quantifying the association between sulfonylureas and falls and/or fractures are sparse and existing studies have yielded inconsistent results. Our objective is to evaluate the extent to which sulfonylurea use was associated with fractures and falls among nursing home residents with type 2 diabetes mellitus. We performed a propensity-matched retrospective new user cohort study of 12,327 Medicare Parts A/B/D eligible long-stay NH residents. Medicare Part D data provided information on sulfonylurea and biguanide use initiated as monotherapy (nsulfonylurea=5807 and nbiguanide=6151) after NH entry. Medicare hospitalizations were used to identify hypoglycemic events (ICD-9-CM codes 250.8, 251.1, 251.2) and fall-associated fractures (ICD-9-CM codes 800, 804, 812-817, 820, 823, 824). Minimum Data Set 2.0 (2008-2010) provided information on falls and potential confounders. Cox models conducted on propensity-matched samples provided adjusted hazard ratio (aHR) estimates and 95% confidence intervals (CI). Falls were common (37.4 per 100 person-years). Fractures were not associated with initiation of sulfonylureas. Sulfonylurea initiation was associated with an excess risk of falls among residents with moderate activities of daily living limitations (aHR: 1.13; 95% CI: 1.00-1.26), but not among those with minimal limitations or dependence in activities of daily living. Nursing home residents with moderate limitations in activities of daily living are at increased risk of falls upon initiation of sulfonylureas. Initiating sulfonylurea use in NH residents must be done with caution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fonseca, Erika Pedreira da; Sá, Katia Nunes; Nunes, Rebeca Freitas Reis; Ribeiro Junior, Antônio Carlos; Lira, Síntia Freitas Bastos; Pinto, Elen Beatriz
2018-01-01
Human T-cell lymphotropic virus type-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) may lead to reduced functional mobility and balance. It is important to establish specific parameters that identify these changes and predict the risk of falls in these patients. The aim was to compare balance, functional mobility, and occurrence of falls among patients with and without HAM/TSP and to suggest values to predict the risk of falls in these patients. A cross-sectional study in patients with and without HAM/TSP involved balance assessments based on the berg balance scale (BBS) and functional mobility evaluation based on the timed up and go (TUG) test. From reports of falls, the sensitivity, specificity, and best cutoff points for the risk of falls assessed by these instruments were established using the receiver-operating characteristic (ROC) curve; 5% alpha was considered. We selected 42 participants: 29 with HAM/TSP and 13 without HAM/TSP. There was a statistically significant difference in the occurrence of falls, balance, and functional mobility between the groups (p<0.05). Good accuracy was determined for the BBS (77%) and TUG test (70%) and the cutoff points for the risk of falls were defined as 50 points for the BBS and 12.28 seconds for the TUG test. Patients with HAM/TSP present reduced functional mobility and balance in relation to those without HAM/TSP. The risk of falls increased for these patients can be evaluated by the values of 50 points using the BBS and 12.28 seconds using the TUG test.
Online boosting for vehicle detection.
Chang, Wen-Chung; Cho, Chih-Wei
2010-06-01
This paper presents a real-time vision-based vehicle detection system employing an online boosting algorithm. It is an online AdaBoost approach for a cascade of strong classifiers instead of a single strong classifier. Most existing cascades of classifiers must be trained offline and cannot effectively be updated when online tuning is required. The idea is to develop a cascade of strong classifiers for vehicle detection that is capable of being online trained in response to changing traffic environments. To make the online algorithm tractable, the proposed system must efficiently tune parameters based on incoming images and up-to-date performance of each weak classifier. The proposed online boosting method can improve system adaptability and accuracy to deal with novel types of vehicles and unfamiliar environments, whereas existing offline methods rely much more on extensive training processes to reach comparable results and cannot further be updated online. Our approach has been successfully validated in real traffic environments by performing experiments with an onboard charge-coupled-device camera in a roadway vehicle.
Interatomic Coulombic decay cascades in multiply excited neon clusters
Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.
2016-01-01
In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867
Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter
2011-09-01
We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.
NASA Astrophysics Data System (ADS)
Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter
2011-09-01
We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.
CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.
NASA Astrophysics Data System (ADS)
Sahoo, Deepak Ranjan; Szlufarska, Izabela; Morgan, Dane; Swaminathan, Narasimhan
2018-01-01
Molecular dynamics simulations of displacement cascades were conducted to study the effect of point defects on the primary damage production in β-SiC. Although all types of point defects and Frenkel pairs were considered, Si interstitials and Si Frenkel pairs were unstable and hence excluded from the cascade studies. Si (C) vacancies had the maximum influence, enhancing C (Si) antisites and suppressing C interstitial production, when compared to the sample without any defects. The intracascade recombination mechanisms, in the presence of pre-existing defects, is explored by examining the evolution of point defects during the cascade. To ascertain the role of the unstable Si defects on amorphization, simulations involving explicit displacements of Si atoms were conducted. The dose to amorphization with only Si displacements was much lower than what was observed with only C displacements. The release of elastic energy accumulated due to Si defects, is found to be the amorphizing mechanism.
Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John
2015-01-01
We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed discrete tephra deposits are correlative with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 - >~0.780 Ma), 2) the Rockland ash bed (~0.575 Ma), 3) the Loleta ash bed (~0.390 Ma), and 4) a middle Pleistocene tephra resembling volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~0.180 Ma, correlated age). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades near Lassen Peak, California, and occurs in deposits up to >7 m thick as observed in core samples taken from ~40 m depth below land surface. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following the volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates (~0.07-0.29 m/1000 yr) in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in developing a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.
Vermeulen, Joan; Willard, Sarah; Aguiar, Bruno; De Witte, Luc P
2015-01-01
The objective of this study was to evaluate the sensitivity and specificity of a smartphone-based fall detection application when different smartphone models are worn on a belt or in a trouser pocket. Eight healthy adults aged between 18 and 24 years old simulated 10 different types of true falls, 5 different types of falls with recovery, and 11 daily activities, five consecutive times. Participants wore one smartphone in a pocket that was attached to their belt and another one in their trouser pocket. All smartphones were equipped with a built-in accelerometer and the fall detection application. Four participants tested the application on a Samsung S3 and four tested the application on a Samsung S3 mini. Sensitivity scores were .75 (Samsung S3 belt), .88 (Samsung S3 mini trouser pocket), and .90 (Samsung S3 mini belt/Samsung S3 trouser pocket). Specificity scores were .87 (Samsung S3 trouser pocket), .91 (Samsung S3 mini trouser pocket), .97 (Samsung S3 belt), and .99 (Samsung S3 mini belt). These results suggest that an application on a smartphone can generate valid fall alarms when worn on a belt or in a trouser pocket. However, sensitivity should be improved before implementation of the application in practice.
Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath
2015-02-14
Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.
Trophic cascades result in large-scale coralline algae loss through differential grazer effects.
O'Leary, Jennifer K; McClanahan, Timothy R
2010-12-01
Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Niño Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer-induced bioerosion. However, the cost-benefit ratio for CCA appears to change with grazer type, grazer abundance, and environment. In Kenya, predator removal leads to a trophic cascade that is expected to reduce net calcification of reefs and therefore reduce reef stability, growth, and resilience.
Yao, Bin; Kang, Hong; Miao, Qi; Zhou, Sicheng; Liang, Chen; Gong, Yang
2017-01-01
Patient falls are a common safety event type that impairs the healthcare quality. Strategies including solution tools and reporting systems for preventing patient falls have been developed and implemented in the U.S. However, the current strategies do not include timely knowledge support, which is in great need in bridging the gap between reporting and learning. In this study, we constructed a knowledge base of fall events by combining expert-reviewed fall prevention solutions and then integrating them into a reporting system. The knowledge base enables timely and tailored knowledge support and thus will serve as a prevailing fall prevention tool. This effort holds promise in making knowledge acquisition and management a routine process for enhancing the reporting and understanding of patient safety events.
Utricular hypofunction in patients with type 2 diabetes mellitus.
Jáuregui-Renaud, K; Aranda-Moreno, C; Herrera-Rangel, A
2017-10-01
The aim of this study was to assess the function of the utricle and horizontal semicircular canals in patients with type 2 diabetes mellitus receiving primary health care, with/without a history of falls. 101 patients with type 2 diabetes mellitus, 34 to 84 years old (26 with and 75 without a history of falls) and 51 healthy volunteers (40-83 years old) accepted to participate. They denied having a history of dizziness, vertigo, unsteadiness, hearing loss, or neurological disorders. None of them were seeking care due to sensory or balance decline. After a clinical evaluation and report of symptoms related to balance using a standardised questionnaire, lateral canal function was assessed by sinusoidal rotation at 0.16 Hz and 1.28 Hz (60°/sec peak velocity), otolith function was assessed by static visual vertical (average of 10 trials) and dynamic visual vertical during unilateral centrifugation (300°/sec at 3.5 cm) and static posturography was performed on hard/ soft surface with eyes open/closed. Compared to healthy volunteers, patients showed decreased responses to unilateral centrifugation, but similar responses to horizontal canal stimuli (independently of age, peripheral neuropathy or a history of falls) (ANCoVA p < 0.05) and a larger sway area with a lengthier sway path. Compared to patients with no falls, patients with falls had a higher female/male ratio and a higher frequency of score ≥ 4 on the questionnaire of symptoms related to balance, but similar age, body mass index and frequency of peripheral neuropathy. In patients with type 2 diabetes mellitus, receiving primary healthcare who are not seeking care due to sensory or balance decline, utricular function may be impaired even in the absence of horizontal canal dysfunction or a history of falls. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.
Kendrick, Denise; Stewart, Jane; Clacy, Rose; Coffey, Frank; Cooper, Nicola; Coupland, Carol; Hayes, Mike; McColl, Elaine; Reading, Richard; Sutton, Alex; M L Towner, Elizabeth; Craig Watson, Michael
2012-01-01
Background Childhood falls result in considerable morbidity, mortality and health service use. Despite this, little evidence exists on protective factors or effective falls prevention interventions in young children. Objectives To estimate ORs for three types of medically attended fall injuries in young children in relation to safety equipment, safety behaviours and hazard reduction and explore differential effects by child and family factors and injury severity. Design Three multicentre case–control studies in UK hospitals with validation of parental reported exposures using home observations. Cases are aged 0–4 years with a medically attended fall injury occurring at home, matched on age and sex with community controls. Children attending hospital for other types of injury will serve as unmatched hospital controls. Matched analyses will use conditional logistic regression to adjust for potential confounding variables. Unmatched analyses will use unconditional logistic regression, adjusted for age, sex, deprivation and distance from hospital in addition to other confounders. Each study requires 496 cases and 1984 controls to detect an OR of 0.7, with 80% power, 5% significance level, a correlation between cases and controls of 0.1 and a range of exposure prevalences. Main outcome measures Falls on stairs, on one level and from furniture. Discussion As the largest in the field to date, these case control studies will adjust for potential confounders, validate measures of exposure and investigate modifiable risk factors for specific falls injury mechanisms. Findings should enhance the evidence base for falls prevention for young children. PMID:22628151
Predicting Use of Outdoor Fall Prevention Strategies: Considerations for Prevention Practices.
Chippendale, Tracy
2018-01-01
Outdoor falls are just as common as indoor falls, but have received less attention in research and practice. Behavioral strategies play an important role in outdoor fall prevention. The purpose of this study was to examine predictors of strategy use. Backward stepwise regression was used to study factors associated with use of outdoor fall prevention strategies among a random sample ( N = 120) of community-dwelling seniors. Significant negative predictors of strategy use included higher education levels ( p < .01) and living in an urban versus a suburban environment ( p < .01). Concern about falls and number of identified risks were positive predictors ( ps < .05). Differences were found between outdoor fallers and nonfallers in the use of three different types of strategies ( ps < .05). There are some differences in the profiles of people who use and do not use outdoor fall prevention strategies. Further study of additional factors is warranted.
Antarctic iron meteorites: An unexpectedly high proportion of falls of unusual interest
NASA Technical Reports Server (NTRS)
Clarke, R. S., Jr.
1986-01-01
The inhabited and explored areas of Earth have contributed 725 iron meteorites, accounting for 28% of the 2611 authenticated meteorites known of all types. Observed fall statistics give a much different view of relative abundance. The 42 historic iron meteorite falls spanning 230 years suggests a frequency of one fall per 5.6 years and represents only 4.9% of the total 853 known falls. Antarctic iron meteorite recoveries offer promise of providing a new perspective on the influx problem. At least 42 iron meteorite specimens were found during the last 25 years by various field teams working in Antarctica. Most of these specimens were not described in detail, but the available data indicates that 21 separate falls are represented, 50% of the number of recovered specimens. Twelve of the 21 falls were both structurally classified and placed into chemical groups. They are listed in order of increasing structural complexity and/or Ni content.
Sardo, Pedro Miguel Garcez; Simões, Cláudia Sofia Oliveira; Alvarelhão, José Joaquim Marques; Simões, João Filipe Fernandes Lindo; Melo, Elsa Maria de Oliveira Pinheiro de
2016-08-01
The Morse Fall Scale is used in several care settings for fall risk assessment and supports the implementation of preventive nursing interventions. Our work aims to analyze the Morse Fall Scale scores of Portuguese hospitalized adult patients in association with their characteristics, diagnoses and length of stay. Retrospective cohort analysis of Morse Fall Scale scores of 8356 patients hospitalized during 2012. Data were associated to age, gender, type of admission, specialty units, length of stay, patient discharge, and ICD-9 diagnosis. Elderly patients, female, with emergency service admission, at medical units and/or with longer length of stays were more frequently included in the risk group for falls. ICD-9 diagnosis may also be an important risk factor. More than a half of hospitalized patients had "medium" to "high" risk of falling during the length of stay, which determines the implementation and maintenance of protocoled preventive nursing interventions throughout hospitalization. There are several fall risk factors not assessed by Morse Fall Scale. There were no statistical differences in Morse Fall Scale score between the first and the last assessment. Copyright © 2015 Elsevier Inc. All rights reserved.
Yakima basalt of the Tieton River area, south-central Washington
Swanson, Donald A.
1967-01-01
The basalts are warped into five nearly west-trending folds and an eastward-sloping homocline. The homocline is related directly to Cascade uplift, which may have begun at about the time that Yakima-type flows ceased flooding the area.
Fan, Desheng; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Pan, Xuemei; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2015-04-10
A multiple-image authentication method with a cascaded multilevel architecture in the Fresnel domain is proposed, in which a synthetic encoded complex amplitude is first fabricated, and its real amplitude component is generated by iterative amplitude encoding, random sampling, and space multiplexing for the low-level certification images, while the phase component of the synthetic encoded complex amplitude is constructed by iterative phase information encoding and multiplexing for the high-level certification images. Then the synthetic encoded complex amplitude is iteratively encoded into two phase-type ciphertexts located in two different transform planes. During high-level authentication, when the two phase-type ciphertexts and the high-level decryption key are presented to the system and then the Fresnel transform is carried out, a meaningful image with good quality and a high correlation coefficient with the original certification image can be recovered in the output plane. Similar to the procedure of high-level authentication, in the case of low-level authentication with the aid of a low-level decryption key, no significant or meaningful information is retrieved, but it can result in a remarkable peak output in the nonlinear correlation coefficient of the output image and the corresponding original certification image. Therefore, the method realizes different levels of accessibility to the original certification image for different authority levels with the same cascaded multilevel architecture.
Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules.
Wang, Yao; Lu, Hong; Xu, Peng-Fei
2015-07-21
With the increasing concerns about chemical pollution and sustainability of resources, among the significant challenges facing synthetic chemists are the development and application of elegant and efficient methods that enable the concise synthesis of natural products, drugs, and related compounds in a step-, atom- and redox-economic manner. One of the most effective ways to reach this goal is to implement reaction cascades that allow multiple bond-forming events to occur in a single vessel. This Account documents our progress on the rational design and strategic application of asymmetric catalytic cascade reactions in constructing diverse scaffolds and synthesizing complex chiral molecules. Our research is aimed at developing robust cascade reactions for the systematic synthesis of a range of interesting molecules that contain structural motifs prevalent in natural products, pharmaceuticals, and biological probes. The strategies employed to achieve this goal can be classified into three categories: bifunctional base/Brønsted acid catalysis, covalent aminocatalysis/N-heterocyclic carbene catalysis, and asymmetric organocatalytic relay cascades. By the use of rationally designed substrates with properly reactive sites, chiral oxindole, chroman, tetrahydroquinoline, tetrahydrothiophene, and cyclohexane scaffolds were successfully assembled under bifunctional base/Brønsted acid catalysis from simple and readily available substances such as imines and nitroolefins. We found that some of these reactions are highly efficient since catalyst loadings as low as 1 mol % can promote the multistep sequences affording complex architectures with high stereoselectivities and yields. Furthermore, one of the bifunctional base/Brønsted acid-catalyzed cascade reactions for the synthesis of chiral cyclohexanes has been used as a key step in the construction of the tetracyclic core of lycorine-type alkaloids and the formal synthesis of α-lycorane. Guided by the principles of covalent aminocatalysis and N-heterocyclic carbene catalysis, we synthesized chiral piperidine, indole, and cyclobutane derivatives. The synthesis of chiral cyclobutanes and pyrroloindolones showed unprecedented reactivity of substrates and catalysts. The development of the strategy of asymmetric organocatalytic relay cascades has provided a useful tool for the controlled synthesis of specific diastereomers in complex molecules. This Account gives a panoramic view and the logic of our research on the design, development, and applications of asymmetric catalytic cascade reactions that will potentially provide useful insights into exploring new reactions.
Involvement of Family Members and Professionals in Older Women's Post-Fall Decision Making.
Bergeron, Caroline D; Hilfinger Messias, DeAnne K; Friedman, Daniela B; Spencer, S Melinda; Miller, Susan C
2018-03-01
This exploratory, descriptive study examined involvement of family members and professionals in older women's post-fall decision making. We conducted semistructured interviews with 17 older women who had recently fallen and 11 individuals these women identified as being engaged in their post-fall decision-making processes. Qualitative data analysis involved open and axial coding and development of themes. After experiencing a fall, these older women's openness to others' opinions and advice; their assessments of types and credibility of potential information sources; and the communication practices they established with these sources influenced how they accessed, accepted, or rejected information from family members and professionals. Increased awareness of the involvement of others in post-fall decision making could enhance communication with older women who fall. Developing and implementing practical strategies to help family members and professionals initiate and engage in conversations about falls and their consequences could lead to more open decision making and improved post-fall quality of life among older women.
Shi, Xiuquan; Wang, Tao; Nie, Chan; Wang, Haiyan; Luo, Lirong; Qi, Yonghong; Jiang, Zhixia
2018-05-24
Falls are the top one type in all unintentional injuries. In this study, we aim to explore the epidemiological characteristics of falls and assess the intervention effect. Our research had interviewed 2854 rural children in southwest China. Then, we used School-Family-Individual (SFI) comprehensive education model to conduct an intervention among 1506 children and follow up them for one year. The changes in injury knowledge and incidence rate before and after intervention were compared. We found the fall injury was 37.32% (178/477) and ranked top one in the total injuries. After intervention, the children's fall-injuries-related knowledge was significantly increased by 15.29 percent (P < 0.001). While falls incidence significantly decreased after- intervention (6.24% vs. 3.93%; P < 0.001). From the results we concluded that the falls rate was high and was the prior reason of all injuries. SFI intervention model can effectively reduce the incidence of the fall injury.
Richardson, James K.; DeMott, Trina; Allet, Lara; Kim; Ashton-Miller, James A.
2014-01-01
Introduction We determined lower limb neuromuscular capacities associated with falls and fall-related injuries in older people with declining peripheral nerve function. Methods Thirty-two subjects (67.4 ± 13.4 years; 19 with type 2 diabetes), representing a spectrum of peripheral neurologic function, were evaluated with frontal plane proprioceptive thresholds at the ankle, frontal plane motor function at the ankle and hip, and prospective follow-up for 1 year. Results Falls and fall-related injuries were reported by 20 (62.5%) and 14 (43.8%) subjects, respectively. The ratio of hip adductor rate of torque development to ankle proprioceptive threshold (HipSTR/AnkPRO) predicted falls (pseudo-R2 = .726) and injury (pseudo-R2 = .382). No other variable maintained significance in the presence of HipSTR/AnkPRO. Discussion Fall and injury risk in the population studied is related inversely to HipSTR/AnkPRO. Increasing rapidly available hip strength in patients with neuropathic ankle sensory impairment may decrease risk of falls and related injuries. PMID:24282041
Mondal, Sandip; Bera, Sachinath; Maity, Suvendu; Ghosh, Prasanta
2017-11-06
The study discloses that the redox activity of N-(1,4-naphthoquinone)-o-aminophenol derivatives (L R H 2 ) containing a (phenol)-NH-(1,4-naphthoquinone) fragment is notably different from that of a (phenol)-NH-(phenol) precursor. The former is a platform for a redox cascade. L R H 2 is redox noninnocent and exists in Cat-N-(1,4-naphthoquinone)(2-) (L R 2- ) and SQ-N-(1,4-naphthoquinone) (L R •- ) states in the complexes. Reactions of L R H 2 with cobalt(II) salts in MeOH in air promote a cascade affording spiro oxazine-oxazepine derivatives ( OX L R ) in good yields, when R = H, Me, t Bu. Spiro oxazine-oxazepine derivatives are bioactive, and such a molecule has so far not been isolated by a schematic route. In this context this cascade is significant. Dimerization of L R H 2 → OX L R in MeOH is a (6H + + 6e) oxidation reaction and is composed of formations of four covalent bonds and 6-exo-trig and 7-endo-trig cyclization based on C-O coupling reactions, where MeOH is the source of a proton and the ester function. It was established that the active cascade precursor is [(L Me •- )Co III Cl 2 ] (A). Notably, formation of a spiro derivative was not detected in CH 3 CN and the reaction ends up furnishing A. The route of the reaction is tunable by R, when R = NO 2 , it is a (2e + 4H + ) oxidation reaction affording a dinuclear L R 2- complex of cobalt(III) of the type [(L NO2 2- ) 2 Co III 2 (OMe) 2 (H 2 O) 2 ] (1) in good yields. No cascade occurs with zinc(II) ion even in MeOH and produces a L Me •- complex of type [(L Me •- )Zn II Cl 2 ] (2). The intermediate A and 2 exhibit strong EPR signals at g = 2.008 and 1.999, confrming the existence of L Me •- coordinated to low-spin cobalt(III) and zinc(II) ions. The intermediates of L R H 2 → OX L R conversion were analyzed by ESI mass spectrometry. The molecular geometries of OX L R and 1 were confirmed by X-ray crystallography, and the spectral features were elucidated by TD DFT calculations.
Modeling techniques for quantum cascade lasers
NASA Astrophysics Data System (ADS)
Jirauschek, Christian; Kubis, Tillmann
2014-03-01
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
Modeling techniques for quantum cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jirauschek, Christian; Kubis, Tillmann
2014-03-15
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less
Zhao, Yichen; Qi, Zhi; Berkowitz, Gerald A
2013-10-01
Brassinosteroids (BRs) are hormones that control many aspects of plant growth and development, acting at the cell level to promote division and expansion. BR regulation of plant and plant cell function occurs through altered expression of many genes. Transcriptional reprogramming downstream from cell perception of this hormone is currently known to be mediated by a phosphorylation/dephosphorylation ("phosphorelay") cascade that alters the stability of two master transcription regulators. Here, we provide evidence that BR perception by their receptor also causes an elevation in cytosolic Ca(2+), initiating a Ca(2+) signaling cascade in Arabidopsis (Arabidopsis thaliana) cell cytosol. BR-dependent increases in the expression of some genes (INDOLE-3-ACETIC ACID-INDUCIBLE1 and PHYTOCHROME B ACTIVATION-TAGGED SUPPRESSOR1) were impaired in wild-type plants by a Ca(2+) channel blocker and also in the defense-no-death (dnd1) mutant, which lacks a functional cyclic GMP-activated cell membrane Ca(2+)-conducting channel. Alternatively, mutations that impair the BR phosphorelay cascade did not much affect the BR-dependent expression of these genes. Similar effects of the Ca(2+) channel blocker and dnd1 mutation were observed on a BR plant growth phenotype, deetiolation of the seedling hypocotyl. Further evidence presented in this report suggests that a BR-dependent elevation in cyclic GMP may be involved in the Ca(2+) signaling cascade initiated by this hormone. The work presented here leads to a new model of the molecular steps that mediate some of the cell responses to this plant hormone.
Beyond the limits of present active matrix flat-panel imagers (AMFPIs) for diagnostic radiology
NASA Astrophysics Data System (ADS)
Antonuk, Larry E.; El-Mohri, Youcef; Jee, Kyung-Wook; Maolinbay, Manat; Nassif, Samer C.; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Zhao, Qihua; Street, Robert A.
1999-05-01
A theoretical cascaded systems analysis of the performance limits of x-ray imagers based on thin-film, active matrix flat-panel technology is presented. This analysis specifically focuses upon an examination of the functional dependence of the detective quantum efficiency on exposure. While the DQE of AMFPI systems is relatively high at the large exposure levels associated with radiographic x-ray imaging, there is a significant decline in DQE with decreasing exposure over the medium and lower end of the exposure range associated with fluoroscopic imaging. This fall-off in DQE originates from the relatively large size of the additive noise of AMFPI systems compared to their overall system gain. Therefore, strategies to diminish additive noise and increase system gain should significantly improve performance. Potential strategies for noise reduction include the use of charge compensation lines while strategies for gain enhancement include continuous photodiodes, pixel amplification structures, or higher gain converters. The effect of the implementation of such strategies is examined for a variety for hypothetical imager configurations. Through the modeling of these configurations, such enhancements are shown to hold the potential of making low frequency DQE response large and essentially independent of exposure while greatly reducing the fall-off in DQE at higher spatial frequencies.
Fall diet and bathymetric distribution of deepwater sculpin (Myoxocephalus thompsonii) in Lake Huron
O'Brien, T. P.; Roseman, E.F.; Kiley, C.S.; Schaeffer, J.S.
2009-01-01
Deepwater sculpin Myoxocephalus thompsonii are an important component of Great Lake's offshore benthic food webs. Recent declines in deepwater sculpin abundance and changes in bathymetric distribution may be associated with changes in the deepwater food web of Lake Huron, particularly, decreased abundance of benthic invertebrates such as Diporeia. To assess how deepwater sculpins have responded to recent changes, we examined a fifteen-year time series of spatial and temporal patterns in abundance as well as the diets of fish collected in bottom trawls during fall of 2003, 2004, and 2005. During 1992-2007, deepwater sculpin abundance declined on a lake-wide scale but the decline in abundance at shallower depths and in the southern portion of Lake Huron was more pronounced. Of the 534 fish examined for diet analysis, 97% had food in the stomach. Mysis, Diporeia, and Chironomidae were consumed frequently, while sphaerid clams, ostracods, fish eggs, and small fish were found in only low numbers. We found an inverse relationship between prevalence of Mysis and Diporeia in diets that reflected geographic and temporal trends in abundance of these invertebrates in Lake Huron. Because deepwater sculpins are an important trophic link in offshore benthic food webs, declines in population abundance and changes in distribution may cascade throughout the food web and impede fish community restoration goals.
Hohmann, Natalie; Hohmann, Lindsey; Kruse, Michael
2014-01-01
Use of fall-risk medications (medications that increase risk of falling in the elderly as defined by Beers criteria, STOPP/START criteria, and other literature) or antithrombotics is common in the elderly, and the impact of their concomitant use should be assessed in regards to fall injuries. The primary objective of this study is to assess the simultaneous outpatient use of fall-risk medications and antithrombotics in elderly fall-patients, and secondarily to analyze the injury severity score and occurrence of intracranial hemorrhage. Consecutive chart review at a level 2 trauma center in California, USA from August 01, 2009 to October 31, 2010. Records included 112 patients at least 65 years of age admitted with an outpatient fall. Fisher's exact and Student's t-tests were used (alpha 0.05, two-tailed) to examine prescribing patterns, intracranial hemorrhage occurrence, and injury severity score. Regression adjusted for antithrombotic and fall-risk medication type and number, opiate use, co-morbidities, age, and gender. Thirty-nine percent (44/112) of outpatients were prescribed antithrombotics plus fall-risk medications. The mean injury severity score (ISS) was 13.3 (range 1-26, standard deviation 7.2) for patients taking both medication classes versus 9.7 (range 1-25, standard deviation 7.5) for patients taking antithrombotics alone (p = 0.027). Additionally, in patients over 80 years of age, intracranial hemorrhage occurred more frequently with the use of antithrombotics plus fall-risk medications versus antithrombotics alone (18/29 = 62.1% versus 7/24 = 29.2%, p = 0.027, odds ratio = 3.974, 95% confidence interval = 1.094-15.010). Multivariate analyses showed an independent relationship between intracranial hemorrhage occurrence and type of therapy, as well as injury severity score and simultaneous therapy with fall-risk medications and antithrombotics. Simultaneous prescribing of antithrombotics and fall-risk medications is common. For outpatients over 80 years of age, the odds of experiencing a post-fall intracranial hemorrhage are 4 times higher when prescribed antithrombotics plus fall-risk medications compared to antithrombotics alone, and injury severity is higher with combined use of these medication classes. Copyright © 2014 Mosby, Inc. All rights reserved.
Direct observation of safety belt use in Michigan : Fall 1997
DOT National Transportation Integrated Search
1997-10-01
The present survey reports the results of a direct observation survey of safety belt use conducted in the fall of 1997. In this study, 10,307 occupants traveling in four vehicle types (oassenger cars, sport-utility vehicles, vans, and pickup trucks) ...
Direct observation of safety belt use in Michigan : Fall 2000
DOT National Transportation Integrated Search
2000-11-01
Reported here are the results of a direct observation survey of safety belt use conducted in the fall of 2000. In this study, 14,366 occupants traveling in four vehicle types (passenger cars, sport-utility vehicles, vans/minivans, and pickup trucks) ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Protection Against Shifting and Falling Cargo § 393.100..., spilling, blowing or falling from the motor vehicle. (c) Prevention against shifting of load. Cargo must be...
Code of Federal Regulations, 2012 CFR
2012-10-01
... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Protection Against Shifting and Falling Cargo § 393.100..., spilling, blowing or falling from the motor vehicle. (c) Prevention against shifting of load. Cargo must be...
Code of Federal Regulations, 2014 CFR
2014-10-01
... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Protection Against Shifting and Falling Cargo § 393.100..., spilling, blowing or falling from the motor vehicle. (c) Prevention against shifting of load. Cargo must be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Protection Against Shifting and Falling Cargo § 393.100..., spilling, blowing or falling from the motor vehicle. (c) Prevention against shifting of load. Cargo must be...
Code of Federal Regulations, 2013 CFR
2013-10-01
... AND ACCESSORIES NECESSARY FOR SAFE OPERATION Protection Against Shifting and Falling Cargo § 393.100..., spilling, blowing or falling from the motor vehicle. (c) Prevention against shifting of load. Cargo must be...
Mamatsashvili, G; Khujadze, G; Chagelishvili, G; Dong, S; Jiménez, J; Foysi, H
2016-08-01
To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies, but always remains quite large (equal to 36, 86, and 209) in the considered here three aspect ratios. This implies that the self-sustenance of subcritical turbulence cannot be described by low-order models.
NASA Astrophysics Data System (ADS)
Mamatsashvili, G.; Khujadze, G.; Chagelishvili, G.; Dong, S.; Jiménez, J.; Foysi, H.
2016-08-01
To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies, but always remains quite large (equal to 36, 86, and 209) in the considered here three aspect ratios. This implies that the self-sustenance of subcritical turbulence cannot be described by low-order models.
Marques, Alda; Silva, Alexandre; Oliveira, Ana; Cruz, Joana; Machado, Ana; Jácome, Cristina
The Berg Balance Scale (BBS), the Balance Evaluation Systems Test (BESTest), the Mini-BESTest, and the Brief-BESTest are useful tests to assess balance; however, their clinimetric properties have not been studied well in older adults with type 2 diabetes (T2D). This study compared the validity and relative ability of the BBS, BESTest, Mini-BESTest, and Brief-BESTest to identify fall status in older adults with T2D. This study involved a cross-sectional design. Sixty-six older adults with T2D (75 ± 7.6 years) were included and asked to report the number of falls during the previous 12 months and to complete the Activities-specific Balance Confidence scale. The BBS and the BESTest were administered, and the Mini-BESTest and Brief-BESTest scores were computed based on the BESTest performance. Receiver operating characteristics were used to assess the ability of each balance test to differentiate between participants with and without a history of falls. The 4 balance tests were able to identify fall status (areas under the curve = 0.74-0.76), with similar sensitivity (60%-67%) and specificity (71%-76%). The 4 balance tests were able to differentiate between older adults with T2D with and without a history of falls. As the BBS and the BESTest require longer application time, the Brief-BESTest may be an appropriate choice to use in clinical practice to detect fall risk.
Fall-related injuries among initially 75- and 80-year old people during a 10-year follow-up.
Saari, Päivi; Heikkinen, Eino; Sakari-Rantala, Ritva; Rantanen, Taina
2007-01-01
The aim of this study was to investigate the occurrence, type, scene and seasonal variation of fall related injuries, and the impact of socio-economic factors, mobility limitation, and the most common diseases on the risk of injurious falls over a 10-year follow-up. Elderly residents of Jyväskylä, Finland, aged initially 75 and 80 years, took part in the study in 1989-1990. The health and functional capacity assessments were carried out at the baseline. Injurious falls were monitored over a 10-year period. The rate of injurious falls per thousand person-years was 188 among women and 78 among men. Of all fall-related diagnoses, head injuries comprised 32%, upper limb injuries 27% and hip injuries 19%. Majority of injurious falls took place indoors and no seasonal variation in fall occurrence was observed. Recurring falls were more likely to take place in institutions. Osteoarthritis increased the risk of injurious falls but no effect was observed for coronary heart diseases or mobility limitation. All in all, intrinsic factors, such as chronic diseases and mobility limitation had only minor effect on risk of injurious falls among older people. The current results suggest that preventive interventions for injurious falls among older people should pay attention to the risk factors present indoors.
Sulfonylureas and risk of falls and fractures: a systematic review.
Lapane, Kate L; Yang, Shibing; Brown, Monique J; Jawahar, Rachel; Pagliasotti, Caleb; Rajpathak, Swapnil
2013-07-01
Sulfonylureas have been linked to increased risk of hypoglycemia. Hypoglycemia may lead to falls, and falls may lead to fracture. However, studies quantifying the association between sulfonylureas and fractures are sparse and yield inconsistent results. The purpose of this article was to review the literature regarding sulfonylurea use and falls or fall-related fractures among older adults with type 2 diabetes mellitus and to delineate areas for future research. We searched MEDLINE (1966-March 2012) and CINAHL (1937-March 2012) for studies of patients with type 2 diabetes mellitus living in the community or nursing homes. The search algorithms combined three domains: (1) diabetic patients, (2) sulfonylurea medications, and (3) fractures or falls. We included only publications in English that pertained to human subjects. We found 9 randomized trials and 12 non-experimental studies that met the inclusion criteria. The guidelines provided by the Cochrane handbook or Agency for Healthcare Research and Quality (AHRQ) Methods Guide are too general to distinguish the quality of included non-experimental studies, so we developed several specific domains based on those general guidelines. These domains included study design, study population, follow-up time, comparison group, exposure definition, outcome definition, induction period, confounding adjustment, and attrition or missing data. The data were not amenable to a meta-analysis. No clinical trials included fracture as a primary endpoint. Most clinical trials excluded older adults. Most studies were not designed to evaluate the risk of sulfonylureas on fractures or falls. Studies did not show an increased risk of falls/fractures with sulfonylurea. The data available from existing studies suffer from methodological limitations including insufficient events, lack of primary endpoints, exclusion of older adults, and lack of clarity or inappropriate comparison groups. Future studies are needed to appropriately estimate the effect of sulfonylureas on falls or fall-related fractures in older adults who are at increased risk for hypoglycemia, the hypothesized mechanism for fractures related to sulfonylurea therapy.
Cates, Benjamin; Sim, Taeyong; Heo, Hyun Mu; Kim, Bori; Kim, Hyunggun; Mun, Joung Hwan
2018-01-01
In order to overcome the current limitations in current threshold-based and machine learning-based fall detectors, an insole system and novel fall classification model were created. Because high-acceleration activities have a high risk for falls, and because of the potential damage that is associated with falls during high-acceleration activities, four low-acceleration activities, four high-acceleration activities, and eight types of high-acceleration falls were performed by twenty young male subjects. Encompassing a total of 800 falls and 320 min of activities of daily life (ADLs), the created Support Vector Machine model’s Leave-One-Out cross-validation provides a fall detection sensitivity (0.996), specificity (1.000), and accuracy (0.999). These classification results are similar or superior to other fall detection models in the literature, while also including high-acceleration ADLs to challenge the classification model, and simultaneously reducing the burden that is associated with wearable sensors and increasing user comfort by inserting the insole system into the shoe. PMID:29673165
Spatial analysis of falls in an urban community of Hong Kong
Lai, Poh C; Low, Chien T; Wong, Martin; Wong, Wing C; Chan, Ming H
2009-01-01
Background Falls are an issue of great public health concern. This study focuses on outdoor falls within an urban community in Hong Kong. Urban environmental hazards are often place-specific and dependent upon the built features, landscape characteristics, and habitual activities. Therefore, falls must be examined with respect to local situations. Results This paper uses spatial analysis methods to map fall occurrences and examine possible environmental attributes of falls in an urban community of Hong Kong. The Nearest neighbour hierarchical (Nnh) and Standard Deviational Ellipse (SDE) techniques can offer additional insights about the circumstances and environmental factors that contribute to falls. The results affirm the multi-factorial nature of falls at specific locations and for selected groups of the population. Conclusion The techniques to detect hot spots of falls yield meaningful results that enable the identification of high risk locations. The combined use of descriptive and spatial analyses can be beneficial to policy makers because different preventive measures can be devised based on the types of environmental risk factors identified. The analyses are also important preludes to establishing research hypotheses for more focused studies. PMID:19291326
Ward, W K; Engle, J M; Branigan, D; El Youssef, J; Massoud, R G; Castle, J R
2012-08-01
Because declining glucose levels should be detected quickly in persons with Type 1 diabetes, a lag between blood glucose and subcutaneous sensor glucose can be problematic. It is unclear whether the magnitude of sensor lag is lower during falling glucose than during rising glucose. Initially, we analysed 95 data segments during which glucose changed and during which very frequent reference blood glucose monitoring was performed. However, to minimize confounding effects of noise and calibration error, we excluded data segments in which there was substantial sensor error. After these exclusions, and combination of data from duplicate sensors, there were 72 analysable data segments (36 for rising glucose, 36 for falling). We measured lag in two ways: (1) the time delay at the vertical mid-point of the glucose change (regression delay); and (2) determination of the optimal time shift required to minimize the difference between glucose sensor signals and blood glucose values drawn concurrently. Using the regression delay method, the mean sensor lag for rising vs. falling glucose segments was 8.9 min (95%CI 6.1-11.6) vs. 1.5 min (95%CI -2.6 to 5.5, P<0.005). Using the time shift optimization method, results were similar, with a lag that was higher for rising than for falling segments [8.3 (95%CI 5.8-10.7) vs. 1.5 min (95% CI -2.2 to 5.2), P<0.001]. Commensurate with the lag results, sensor accuracy was greater during falling than during rising glucose segments. In Type 1 diabetes, when noise and calibration error are minimized to reduce effects that confound delay measurement, subcutaneous glucose sensors demonstrate a shorter lag duration and greater accuracy when glucose is falling than when rising. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.
NASA Astrophysics Data System (ADS)
Stone, J.; Steinberg, D. K.
2016-02-01
The effects of predation on carbon export in planktonic food webs are poorly known, but likely play a key role in the biological pump. Gelatinous zooplankton (GZ) dominate the zooplankton community in the Chesapeake Bay during summer months, exerting considerable top-down control on the planktonic food web. The medusa Chrysaora quinquecirrha preys upon the ctenophore Mnemiopsis leidyi, which in turn is a major predator of the omnivorous copepod Acartia tonsa. This trophic cascade is known to significantly affect copepod abundance in Chesapeake Bay, but the resulting changes to particulate organic carbon (POC) flux are unknown. We hypothesized that additions or exclusions of GZ predators would result in changes in both total POC flux and the composition of exported particles (e.g., phytoplankton aggregates, fecal pellets). We conducted mesocosm experiments in the York River tributary of Chesapeake Bay during summer and fall, 2015 to quantify the cascading effects of GZ blooms on POC flux. The mesocosms contained a natural assemblage of phytoplankton and microzooplankton, and A. tonsa copepods, and received one of four treatments of GZ: 1) a control with no GZ added, 2) addition of ctenophores, 3) addition of medusae, and 4) addition of both ctenophores and medusae. POC flux from each mesocosm was measured over multiple 2-day experimental runs and grazing rates of GZ on each other and on copepods were calculated. There were no significant differences in total POC flux between treatments, but the composition of both the final zooplankton assemblage and exported organic matter differed between treatments. As a result of grazing on copepods by ctenophores, treatments which included GZ had lower final copepod abundances and a corresponding decrease in flux of copepod fecal pellets. We discuss how this change in composition of exported material as a result of cascading trophic interactions may affect the efficiency of the biological pump and benthic processes.
Infection-derived lipids elicit a novel immune deficiency circuitry in arthropods
USDA-ARS?s Scientific Manuscript database
The insect Immune Deficiency (IMD) pathway resembles the tumor necrosis factor receptor network in mammals and senses diaminopimelic-type peptidoglycans present in Gram-negative bacteria. Whether unidentified chemical moieties elicit the IMD signaling cascade remains unknown. Here, we disclose thoug...
The usefulness of carotid sinus massage in different patient groups.
Kumar, Narasimhan Pradeep; Thomas, Alan; Mudd, Paul; Morris, Robert O; Masud, Tahir
2003-11-01
to determine the positive yield of carotid sinus massage in different patient groups: unexplained syncope, falls, dizziness and controls. observational study. teaching hospital. we studied consecutive patients over the age of 60 years referred to the 'falls clinic' with a history of unexplained syncope, unexplained falls and unexplained dizziness. We also studied asymptomatic control subjects recruited from a general practice register aged 60 years and over. All patients and control subjects underwent a full clinical assessment (comprehensive history and detailed clinical examination including supine and erect blood pressure measurements) and 12-lead electrocardiography. We performed carotid sinus massage in the supine position for 5 seconds separately on both sides followed by repeating the procedure in the upright positions using a motorised tilt table. Heart rate and blood pressure were recorded using a cardiac monitor and digital plethysmography respectively. The test was considered positive if carotid sinus massage produced asystole with more than a 3 second pause (cardioinhibitory type of carotid sinus syndrome), or a fall in systolic blood pressure of more than 50 mmHg in the absence of significant cardioinhibition (vasodepressor type of carotid sinus syndrome) or where there was evidence of both vasodepressor and cardio-inhibition as above (mixed type). we studied 44 asymptomatic control subjects and 221 symptomatic patients (130 with unexplained syncope, 41 with unexplained falls and 50 with unexplained dizziness). In the overall symptomatic patient group, the positive yield (any type of carotid sinus syndrome) was 17.6% (95% CI = 12.7-22.5). The positive yield in men (26.3% (95% CI = 16.4-36.2)) was twice that in women (13.1% (95% CI = 7.6-18.6)) (P = 0.014). Overall any type of carotid sinus syndrome was present in 22.3% (n = 29) of the syncope group, 17.1% (n = 7) in the unexplained fallers group and 6% (n = 3) in the dizziness group. We also found that no women with unexplained dizziness had a positive carotid sinus massage test. None of the controls demonstrated a positive response. None of the subjects suffered any complications during or after the test. the positive yield of carotid sinus massage in symptomatic patients was 17.6% with the yield in men being twice that in women. None of the asymptomatic control subjects demonstrated a positive response. The yields in unexplained syncope and unexplained falls patients were around 4-fold and 3-fold higher respectively than in unexplained dizziness patients. The positive yield in women with unexplained dizziness (without a definite history of syncope and falls) is zero. Hence, carotid sinus massage in older adults should particularly be targeted at patients with unexplained syncope and unexplained falls.
Direct observation of safety belt use in Michigan : Fall 1998
DOT National Transportation Integrated Search
1998-10-01
Reported here are the results of a direct observation survey of safety belt use conducted in the fall of 1998. In this study, 11,413 occupants traveling in four vehicle types (passenger cars, sport utility vehicles, vans/minvans, and pickup trucks) w...
Direct observation of safety belt use in Michigan : Fall 1999
DOT National Transportation Integrated Search
1999-01-01
Reported here are the results of a direct observation survey of safety belt use conducted in the fall of 1999. In this study, 9,414 occupants traveling in four vehicle types (passenger cars, sport-utility vehicles, vans/minivans, and pickup trucks) w...
The effect of spasticity, sense and walking aids in falls of people after chronic stroke.
Soyuer, Ferhan; Oztürk, Ahmet
2007-05-15
To study the effects of spasticity, sensory impairment, and type of walking aid on falls in community dwellers with chronic stroke. Functional Independence Measure (FIM) Instrument, Joint Position Sense Evaluation (JPS), the Rivermead motor assessment scale (RMA), Ashworth Scale, Tinetti Assessment Tool were used to assess 100 cases. Fifty-three of the cases were grouped as nonfallers, 36 as one-time fallers and 11 as repeat fallers. These 3 groups were found to be different from each other in respect to FIM, Tinetti test and RMA (p < 0.001). In respect to knee JPS, nonfallers and one-time faller groups were found to be different from repeat fallers (p = 0.001). There is a difference among the groups in respect to Ashworth assessment (p < 0.001), use of walking aid (p = 0.01) and type of walking aid (p = 0.01). Some 43% of the cases use a walking aid (58.1% cane, 41.9% high cane). According to Ordinal logistic regression analysis, it was found that the possibility of fall increased (p < 0.01), as the value of spasticity increased while the possibility of the fall of the individuals with stroke decreased (p < 0.00 - 0.01) as Tinetti, RMA and FIM variables increased. In respect to falls, spasticity is also an indicator for chronic stroke patients, as is motor impairment, functional situation, impairment of balance and walking. Sensory impairment, using a walking aid and the type were found to be ineffective.
On the modified active region design of interband cascade lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motyka, M.; Ryczko, K.; Dyksik, M.
2015-02-28
Type II InAs/GaInSb quantum wells (QWs) grown on GaSb or InAs substrates and designed to be integrated in the active region of interband cascade lasers (ICLs) emitting in the mid infrared have been investigated. Optical spectroscopy, combined with band structure calculations, has been used to probe their electronic properties. A design with multiple InAs QWs has been compared with the more common double W-shaped QW and it has been demonstrated that it allows red shifting the emission wavelength and enhancing the transition oscillator strength. This can be beneficial for the improvements of the ICLs performances, especially when considering their long-wavelengthmore » operation.« less
NASA Astrophysics Data System (ADS)
Dougakiuchi, Tatsuo; Kawada, Yoichi; Takebe, Gen
2018-03-01
We demonstrate the continuous multispectral imaging of surface phonon polaritons (SPhPs) on silicon carbide excited by an external cavity quantum cascade laser using scattering-type scanning near-field optical microscopy. The launched SPhPs were well characterized via the confirmation that the theoretical dispersion relation and measured in-plane wave vectors are in excellent agreement in the entire measurement range. The proposed scheme, which can excite and observe SPhPs with an arbitrary wavelength that effectively covers the spectral gap of CO2 lasers, is expected to be applicable for studies of near-field optics and for various applications based on SPhPs.
Adapting Local Features for Face Detection in Thermal Image.
Ma, Chao; Trung, Ngo Thanh; Uchiyama, Hideaki; Nagahara, Hajime; Shimada, Atsushi; Taniguchi, Rin-Ichiro
2017-11-27
A thermal camera captures the temperature distribution of a scene as a thermal image. In thermal images, facial appearances of different people under different lighting conditions are similar. This is because facial temperature distribution is generally constant and not affected by lighting condition. This similarity in face appearances is advantageous for face detection. To detect faces in thermal images, cascade classifiers with Haar-like features are generally used. However, there are few studies exploring the local features for face detection in thermal images. In this paper, we introduce two approaches relying on local features for face detection in thermal images. First, we create new feature types by extending Multi-Block LBP. We consider a margin around the reference and the generally constant distribution of facial temperature. In this way, we make the features more robust to image noise and more effective for face detection in thermal images. Second, we propose an AdaBoost-based training method to get cascade classifiers with multiple types of local features. These feature types have different advantages. In this way we enhance the description power of local features. We did a hold-out validation experiment and a field experiment. In the hold-out validation experiment, we captured a dataset from 20 participants, comprising 14 males and 6 females. For each participant, we captured 420 images with 10 variations in camera distance, 21 poses, and 2 appearances (participant with/without glasses). We compared the performance of cascade classifiers trained by different sets of the features. The experiment results showed that the proposed approaches effectively improve the performance of face detection in thermal images. In the field experiment, we compared the face detection performance in realistic scenes using thermal and RGB images, and gave discussion based on the results.
High-Performance Three-Stage Cascade Thermoelectric Devices with 20% Efficiency
NASA Astrophysics Data System (ADS)
Cook, B. A.; Chan, T. E.; Dezsi, G.; Thomas, P.; Koch, C. C.; Poon, J.; Tritt, T.; Venkatasubramanian, R.
2015-06-01
The use of advanced materials has resulted in a significant improvement in thermoelectric device conversion efficiency. Three-stage cascade devices were assembled, consisting of nano-bulk Bi2Te3-based materials on the cold side, PbTe and enhanced TAGS-85 [(AgSbTe2)15(GeTe)85] for the mid-stage, and half-Heusler alloys for the high-temperature top stage. In addition, an area aspect ratio optimization process was applied in order to account for asymmetric thermal transport down the individual n- and p-legs. The n- and p-type chalcogenide alloy materials were prepared by high-energy mechanical ball-milling and/or cryogenic ball-milling of elementary powders, with subsequent consolidation by high-pressure uniaxial hot-pressing. The low-temperature stage materials, nano-bulk Bi2Te3- x Sb x and Bi2Te3- x Se x , exhibit a unique mixture of nanoscale features that leads to an enhanced Seebeck coefficient and reduced lattice thermal conductivity, thereby achieving an average ZT of ~1.26 and ~1.7 in the 27°C to 100°C range for the n-type and p-type materials, respectively. Also, the addition of small amounts of selected rare earth elements has been shown to improve the ZT of TAGS-85 by 25%, compared with conventional or neat TAGS-85, resulting in a ZT = 1.5 at 400°C. The incorporation of these improved materials resulted in a peak device conversion efficiency of ~20% at a temperature difference of 750°C when corrected for radiation heat losses and thermal conduction losses through the lead wires. These high-efficiency results were shown to be reproducible across multiple cascade devices.
Exercise for Fall Risk Reduction in Community-Dwelling Older Adults: A Systematic Review
Arnold, Catherine M.; Sran, Meena M.; Harrison, Elizabeth L.
2008-01-01
Purpose: To evaluate the influence of exercise on falls and fall risk reduction in community-dwelling older adults and to present an updated synthesis of outcome measures for the assessment of fall risk in community-dwelling older adults. Method: A systematic review was performed, considering English-language articles published from 2000 to 2006 and accessible through MEDLINE, CINAHL, PEDro, EMBASE, and/or AMED. Included were randomized controlled clinical trials (RCTs) that used an exercise or physical activity intervention and involved participants over age 50. Screening and methodological quality for internal validity were conducted by two independent reviewers. Results: The search retrieved 156 abstracts; 22 articles met the internal validity criteria. Both individualized and group exercise programmes were found to be effective in reducing falls and fall risk. The optimal type, frequency, and dose of exercise to achieve a positive effect have not been determined. A variety of outcome measures have been used to measure fall risk, especially for balance. Conclusions: Falls and fall risk can be reduced with exercise interventions in the community-dwelling elderly, although the most effective exercise variables are unknown. Future studies in populations with comorbidities known to increase fall risk will help determine optimal, condition-specific fall-prevention programmes. Poor balance is a key risk factor for falls; therefore, the best measure of this variable should be selected when evaluating patients at risk of falling. PMID:20145768
NASA Astrophysics Data System (ADS)
Gao, Xinliang; Lu, Quanming; Wang, Shaojie; Wang, Shui
2018-05-01
Whistler-mode waves play a crucial role in controlling electron dynamics in the Earth's Van Allen radiation belt, which is increasingly important for spacecraft safety. Using THEMIS waveform data, Gao et al. [X. L. Gao, Q. Lu, J. Bortnik, W. Li, L. Chen, and S. Wang, Geophys. Res. Lett., 43, 2343-2350, 2016] have reported two multiband chorus events, wherein upper-band chorus appears at harmonics of lower-band chorus. They proposed that upper-band harmonic waves are excited through the nonlinear coupling between the electromagnetic and electrostatic components of lower-band chorus, a second-order effect called "lower band cascade". However, the theoretical explanation of lower band cascade was not thoroughly explained in the earlier work. In this paper, based on a cold plasma assumption, we have obtained the explicit nonlinear driven force of lower band cascade through a full nonlinear theoretical analysis, which includes both the ponderomotive force and coupling between electrostatic and electromagnetic components of the pump whistler wave. Moreover, we discover the existence of an efficient energy-transfer (E-t) channel from lower-band to upper-band whistler-mode waves during lower band cascade for the first time, which is also confirmed by PIC simulations. For lower-band whistler-mode waves with a small wave normal angle (WNA), the E-t channel is detected when the driven upper-band wave nearly satisfies the linear dispersion relation of whistler mode. While, for lower-band waves with a large WNA, the E-t channel is found when the lower-band wave is close to its resonant frequency, and the driven upper-band wave becomes quasi-electrostatic. Through this efficient channel, the harmonic upper band of whistler waves is generated through energy cascade from the lower band, and the two-band spectral structure of whistler waves is then formed. Both two types of banded whistler-mode spectrum have also been successfully reproduced by PIC simulations.
Hasebe, Masaharu
2016-01-01
The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na+-activated K+ (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells. PMID:26984419
Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model.
Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai
2017-02-08
Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences.
Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model
Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai
2017-01-01
Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences. PMID:28208694
Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects.
Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L
2015-02-01
Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank.
New osmium isotope evidence for intracrustal recycling of crustal domains with discrete ages
Hart, G.L.; Johnson, C.M.; Hildreth, W.; Shirey, S.B.
2003-01-01
New 187Os/188Os ratios of Quaternary Mount Adams volcanic rocks from the Cascade arc in southern Washington vary by >300% (187Os/188Os = 0.165-0.564) and fall into high (>0.319) and low (0.166 to 0.281) groups of 187Os/188Os ratios that are substantially more radiogenic than mantle values. These Os isotope compositions and groupings are interpreted to reflect recycling of discrete intracrustal domains with high 187Os/188Os ratios but differing ages, thus recording the process of crustal hybridization and homogenization. Os isotope compositions provide new constraints on amounts of intracrustal recycling in young subduction-zone environments that reflect the magmatic history of the arc. Sr, Nd, Hf, and Pb isotope variations in this young, mafic are complex are too small to allow such constraints.
Parasitised caterpillars suffer reduced predation: potential implications for intra-guild predation
Chen, Wen-bin; Vasseur, Liette; You, Min-sheng; Li, Jian-yu; Wang, Cheng-xiang; Meng, Ruo-xue; Gurr, Geoff M.
2017-01-01
Intra-guild predation (IGP) is an important phenomenon structuring ecological communities and affects the success of biological control. Here we show that parasitism by the koinobiont wasp Cotesia vestalis is associated with behavioural changes in its larval host (diamondback moth, Plutella xylostella) that reduce risk of IGP. Compared with unparasitised caterpillars, parasitised P. xylostella moved less frequently to new feeding patches on plants and were less likely to fall from the plant. Wolf spiders killed significantly fewer parasitised larvae. Reflecting their reduced movement and capacity to select plant tissue of optimal quality, parasitised caterpillars fed at a lower rate and exhibited delayed development suggesting a trade-off between IGP avoidance and nutrient intake by the host. This change in behaviour to reduce risk may cascade to the first trophic level and help explain the stability of IGP systems. PMID:28230205
NASA Astrophysics Data System (ADS)
Yamashita, F.; Fukuyama, E.; Xu, S.; Kawakata, H.; Mizoguchi, K.; Takizawa, S.
2017-12-01
We report two types of foreshock activities observed on meter-scale laboratory experiments: slow-slip-driven type and cascade-up type. We used two rectangular metagabbro blocks as experimental specimens, whose nominal contacting area was 1.5 m long and 0.1 m wide. To monitor stress changes and seismic activities on the fault, we installed dense arrays of 32 triaxial rosette strain gauges and 64 PZT seismic sensors along the fault. We repeatedly conducted experiments with the same pair of rock specimens, causing the evolution of damage on the fault. We focus on two experiments successively conducted under the same loading condition (normal stress of 6.7 MPa and loading rate of 0.01 mm/s) but different initial fault surface conditions; the first experiment preserved the gouge generated from the previous experiment while the second experiment started with all gouge removed. Note that the distribution of gouge was heterogeneous, because we did not make the gouge layer uniform. We observed many foreshocks in both experiments, but found that the b-value of foreshocks was smaller in the first experiment with pre-existing gouge (PEG). In the second experiment without PEG, we observed premonitory slow slip associated with nucleation process preceding most main events by the strain measurements. We also found that foreshocks were triggered by the slow slip at the end of the nucleation process. In the experiment with PEG, on the contrary, no clear premonitory slow slips were found. Instead, foreshock activity accelerated towards the main event, as confirmed by a decreasing b-value. Spatiotemporal distribution of foreshock hypocenters suggests that foreshocks migrated and cascaded up to the main event. We infer that heterogeneous gouge distribution caused stress-concentrated and unstable patches, which impeded stable slow slip but promoted foreshocks on the fault. Further, our results suggest that b-value is a useful parameter for characterizing these observations.
Fink, Howard A.; Kuskowski, Michael A.; Marshall, Lynn M.
2014-01-01
Background: small, retrospective studies suggest that major life events and/or sudden emotional stress may increase fall and fracture risk. The current study examines these associations prospectively. Methods: a total of 5,152 men aged ≥65 years in the Osteoporotic Fractures in Men study self-reported data on stressful life events for 1 year prior to study Visit 2. Incident falls and fractures were ascertained for 1 year after Visit 2. Fractures were centrally confirmed. Results: a total of 2,932 (56.9%) men reported ≥1 type of stressful life event. In men with complete stressful life event, fall and covariate data (n = 3,949), any stressful life event was associated with a 33% increased risk of incident fall [relative risk (RR) 1.33, 95% confidence interval (CI) 1.19–1.49] and 68% increased risk of multiple falls (RR = 1.68, 95% CI = 1.40–2.01) in the year following Visit 2 after adjustment for age, education, Parkinson's disease, diabetes, stroke, instrumental activities of daily living (IADL) impairment, chair stand time, walk speed, multiple past falls, depressive symptoms and antidepressant use. Risk increased with the number of types of stressful life events. Though any stressful life event was associated with a 58% increased age-adjusted risk for incident fracture, this association was attenuated and no longer statistically significant after additional adjustment for total hip bone mineral density, fracture after age 50, Parkinson's disease, stroke and IADL impairment. Conclusions: in this cohort of older men, stressful life events significantly increased risk of incident falls independent of other explanatory variables, but did not independently increase incident fracture risk. PMID:24002237
Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.
2008-01-01
Medicine Lake Volcano (MLV), located in the southern Cascades ??? 55??km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ??? 2000??km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ??? 475 to 300??ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ??? 300??ka. Rhyolite eruptions were scarce post-300??ka until late Holocene time. However, a dacite episode at ??? 200 to ??? 180??ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ??? 100??ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100??ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200??years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ??? 600??km3, giving an overall effusion rate of ??? 1.2??km3 per thousand years, although the rate for the past 100??kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline basalts erupted together in close temporal and spatial proximity. Petrologic studies indicate that the HAOT magmas were derived by dry melting of spinel peridotite mantle near the crust mantle boundary. Subduction-derived H2O-rich fluids played an important role in the generation of calcalkaline magmas. Petrology, geochemistry and proximity indicate that MLV is part of the Cascades magmatic arc and not a Basin and Range volcano, although Basin and Range extension impinges on the volcano and strongly influences its eruptive style. MLV may be analogous to Mount Adams in southern Washington, but not, as sometimes proposed, to the older distributed back-arc Simcoe Mountains volcanic field.
Clemson, Lindy; Mackenzie, Lynette; Roberts, Chris; Poulos, Roslyn; Tan, Amy; Lovarini, Meryl; Sherrington, Cathie; Simpson, Judy M; Willis, Karen; Lam, Mary; Tiedemann, Anne; Pond, Dimity; Peiris, David; Hilmer, Sarah; Pit, Sabrina Winona; Howard, Kirsten; Lovitt, Lorraine; White, Fiona
2017-02-07
Despite strong evidence giving guidance for effective fall prevention interventions in community-residing older people, there is currently no clear model for engaging general medical practitioners in fall prevention and routine use of allied health professionals in fall prevention has been slow, limiting widespread dissemination. This protocol paper outlines an implementation-effectiveness study of the Integrated Solutions for Sustainable Fall Prevention (iSOLVE) intervention which has developed integrated processes and pathways to identify older people at risk of falls and engage a whole of primary care approach to fall prevention. This protocol paper presents the iSOLVE implementation processes and change strategies and outlines the study design of a blended type 2 hybrid design. The study consists of a two-arm cluster randomized controlled trial in 28 general practices and recruiting 560 patients in Sydney, Australia, to evaluate effectiveness of the iSOLVE intervention in changing general practitioner fall management practices and reducing patient falls and the cost effectiveness from a healthcare funder perspective. Secondary outcomes include change in medications known to increase fall risk. We will simultaneously conduct a multi-methodology evaluation to investigate the workability and utility of the implementation intervention. The implementation evaluation includes in-depth interviews and surveys with general practitioners and allied health professionals to explore acceptability and uptake of the intervention, the coherence of the proposed changes for those in the work setting, and how to facilitate the collective action needed to implement changes in practice; social network mapping will explore professional relationships and influences on referral patterns; and, a survey of GPs in the geographical intervention zone will test diffusion of evidence-based fall prevention practices. The project works in partnership with a primary care health network, state fall prevention leaders, and a community of practice of fall prevention advocates. The design is aimed at providing clear direction for sustainability and informing decisions about generalization of the iSOLVE intervention processes and change strategies. While challenges exist in hybrid designs, there is a potential for significant outcomes as the iSOLVE pathways project brings together practice and research to collectively solve a major national problem with implications for policy service delivery. Australian New Zealand Clinial Trials Registry ACTRN12615000401550.
Weerdesteyn, V; Groen, B E; van Swigchem, R; Duysens, J
2008-04-01
Hip fractures are among the most serious consequences of falls in the elderly. Martial arts (MA) fall techniques may reduce hip fracture risk, as they are known to reduce hip impact forces by approximately 30% in experienced fallers. The purpose of this study was to investigate whether hip impact forces and velocities in MA falls would be smaller than in a 'natural' fall arrest strategy (Block) in young adults (without any prior experience) after a 30-min training session in sideways MA fall techniques. Ten subjects fell sideways from kneeling height. In order to identify experience-related differences, additional EMG data of both fall types were collected in inexperienced (n=10) and experienced fallers (n=5). Compared to Block falls, MA falls had significantly smaller hip impact forces (-17%) and velocities (-7%). EMG results revealed experience-related differences in the execution of the MA fall, indicative of less pronounced trunk rotation in the inexperienced fallers. This may explain their smaller reduction of impact forces compared to experienced fallers. In conclusion, the finding that a substantial reduction in impact forces can be achieved after a short training in MA techniques is very promising with respect to their use in interventions to prevent fall injuries.
Mangharam, Jean; Moorin, Rachael; Straker, Leon
2016-12-01
Occupational falls are one of the leading causes of occupational injury and death internationally. This study described the nature of occupational falls following an analysis of workers compensation data in Western Australia. Frequencies, proportions and incidence rates were calculated following mechanism, gender, age and industry stratification. The natures of injury and bodily locations affected were compared between mechanisms of fall. Industry incidence rates were ranked and their corresponding proportions reported. Cost and lost time were described and risk scores for each burden type (incapacity, cost and lost time) were calculated and compared between fall mechanisms. Of all occupational falls, the proportion, incidence rates and risk scores of falls on same level were consistently greater compared to falls from a height. Gender, age and industry groups that appear to be at highest risk vary with the measure used and mechanism of incident. This study translates epidemiological information into a risk score that can aid in prioritisation. Practitioner Summary: This paper presents an in-depth analysis of Worker's Compensation claims for falls in Western Australia. Calculated proportion, incidence rates and formulated risk scores for falls on the level were consistently greater compared to falls from a height. Limitations associated with the analysis of large-scale data-sets are described.
Fall Protection Characteristics of Safety Belts and Human Impact Tolerance.
Hino, Yasumichi; Ohdo, Katsutoshi; Takahashi, Hiroki
2014-08-23
Many fatal accidents due to falls from heights have occurred at construction sites not only in Japan but also in other countries. This study aims to determine the fall prevention performance of two types of safety belts: a body belt 1) , which has been used for more than 40 yr in the Japanese construction industry as a general type of safety equipment for fall accident prevention, and a full harness 2, 3) , which has been used in many other countries. To determine human tolerance for impact trauma, this study discusses features of safety belts with reference 4-9) to relevant studies in the medical science, automobile crash safety, and aircrew safety. For this purpose, simple drop tests were carried out in a virtual workplace to measure impact load, head acceleration, and posture in the experiments, the Hybrid-III pedestrian model 10) was used as a human dummy. Hybrid-III is typically employed in official automobile crash tests (New Car Assessment Program: NCAP) and is currently recognized as a model that faithfully reproduces dynamic responses. Experimental results shows that safety performance strongly depends on both the variety of safety belts used and the shock absorbers attached onto lanyards. These findings indicate that fall prevention equipment, such as safety belts, lanyards, and shock absorbers, must be improved to reduce impact injuries to the human head and body during falls.
Fall protection characteristics of safety belts and human impact tolerance.
Hino, Yasumichi; Ohdo, Katsutoshi; Takahashi, Hiroki
2014-01-01
Many fatal accidents due to falls from heights have occurred at construction sites not only in Japan but also in other countries. This study aims to determine the fall prevention performance of two types of safety belts: a body belt, which has been used for more than 40 yr in the Japanese construction industry as a general type of safety equipment for fall accident prevention, and a full harness, which has been used in many other countries. To determine human tolerance for impact trauma, this study discusses features of safety belts with reference to relevant studies in the medical science, automobile crash safety, and aircrew safety. For this purpose, simple drop tests were carried out in a virtual workplace to measure impact load, head acceleration, and posture in the experiments, the Hybrid-III pedestrian model was used as a human dummy. Hybrid-III is typically employed in official automobile crash tests (New Car Assessment Program: NCAP) and is currently recognized as a model that faithfully reproduces dynamic responses. Experimental results shows that safety performance strongly depends on both the variety of safety belts used and the shock absorbers attached onto lanyards. These findings indicate that fall prevention equipment, such as safety belts, lanyards, and shock absorbers, must be improved to reduce impact injuries to the human head and body during falls.
Fall Protection Characteristics of Safety Belts and Human Impact Tolerance
HINO, Yasumichi; OHDO, Katsutoshi; TAKAHASHI, Hiroki
2014-01-01
Abstract: Many fatal accidents due to falls from heights have occurred at construction sites not only in Japan but also in other countries. This study aims to determine the fall prevention performance of two types of safety belts: a body belt1), which has been used for more than 40 yr in the Japanese construction industry as a general type of safety equipment for fall accident prevention, and a full harness2, 3), which has been used in many other countries. To determine human tolerance for impact trauma, this study discusses features of safety belts with reference4,5,6,7,8,9) to relevant studies in the medical science, automobile crash safety, and aircrew safety. For this purpose, simple drop tests were carried out in a virtual workplace to measure impact load, head acceleration, and posture in the experiments, the Hybrid-III pedestrian model10) was used as a human dummy. Hybrid-III is typically employed in official automobile crash tests (New Car Assessment Program: NCAP) and is currently recognized as a model that faithfully reproduces dynamic responses. Experimental results shows that safety performance strongly depends on both the variety of safety belts used and the shock absorbers attached onto lanyards. These findings indicate that fall prevention equipment, such as safety belts, lanyards, and shock absorbers, must be improved to reduce impact injuries to the human head and body during falls. PMID:25345426
A Multicomponent Fall Prevention Strategy Reduces Falls at an Academic Medical Center.
France, Dan; Slayton, Jenny; Moore, Sonya; Domenico, Henry; Matthews, Julia; Steaban, Robin L; Choma, Neesha
2017-09-01
While the reduction in fall rates has not kept pace with the reduction of other hospital-acquired conditions, patient safety research and quality improvement (QI) initiatives at the system and hospital levels have achieved positive results and provide insights into potentially effective risk reduction strategies. An academic medical center developed a QI-based multicomponent strategy for fall prevention and pilot tested it for six months in three high-risk units-the Neuroscience Acute Care Unit, the Myelosuppression/Stem Cell Transplant Unit, and the Acute Care for the Elderly Unit-before implementing and evaluating the strategy hospitalwide. The multicomponent fall strategy was evaluated using a pre-post study design. The main outcome measures were falls and falls with harm measured in events per 1,000 patient-days. Fall rates were monitored and compared for three classes of falls: (1) accidental, (2) anticipated physiologic, and (3) unanticipated physiologic. Statistical process control charts showed that the pilot units had achieved significant reductions in falls with harm during the last five months of data collection. Wald test and segmented regression analyses revealed significant improvements in pooled postintervention fall rates, stratified by fall type. The hospitalwide implementation of the program resulted in a 47% overall reduction in falls in the postintervention period. A fall prevention strategy that targeted the spectrum of risk factors produced measurable improvement in fall rates and rates of patient harm. Hospitals must continue developing, rigorously testing, and sharing their results and experiences in implementing and sustaining multicomponent fall prevention strategies. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
Model for a pulsed terahertz quantum cascade laser under optical feedback.
Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D
2016-09-05
Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.
Valerie L. Zimmer,; Collins, Brian D.; Greg M. Stock,; Nicholas Sitar,
2012-01-01
We analyzed a combination of airborne and terrestrial LiDAR, high-resolution photography, seismic, and acoustic data in order to gain insights into the initiation, dynamics, and talus deposition of a complex rock fall. A large (46 700 m3) rock fall originated from near Ahwiyah Point in eastern Yosemite Valley and fell a total of 730 m to the valley floor on 28 March 2009. Analyses of remote sensing, seismic, and acoustic data were integrated to reconstruct the rock fall, which consisted of (1) the triggering of a 25 400 m3 rock block in an area of intersecting and sometimes highly weathered joint planes, (2) the sliding and subsequent ballistic trajectory of the block from a steeply dipping ledge, (3) dislodging of additional rock from the cliff surface from beneath the rock fall source area, (4) a mid-cliff ledge impact that detached a volume of rock nearly equivalent in volume to the initial block, (5) sliding of the deteriorating rock mass down the remainder of the cliff, and (6) final impact at the base of the cliff that remobilized the existing talus downward and outward and produced an airblast that knocked down hundreds of trees. The depositional geomorphology indicates that the porosity of the fresh talus is significantly lower than that expected for typical blocky talus slopes, likely because the rock debris from this event was pulverized into smaller, more poorly sorted fragments and densified via dynamic compaction when compared to less energetic, fragmental-type rock falls. These results suggest that accumulation of individual rock-fall boulders tends to steepen talus slopes, whereas large, energetic rock falls tend to flatten them. Detachment and impact signals were recorded by seismic and acoustic instruments and highlight the potential use of this type of instrumentation for generalized rock fall monitoring, while LiDAR and photography data were able to quantify the cliff geometry, rock fall volume, source and impact locations, and geomorphological changes to the cliff and talus.
Meuleners, Lynn B; Fraser, Michelle L; Bulsara, Max K; Chow, Kyle; Ng, Jonathon Q
2016-09-29
Older adults with dementia are at an increased risk of falls, however, little is known about risk factors for recurrent injurious falls (a subsequent fall after the first fall has occurred) among this group. This study aimed to identify risk factors for recurrent injurious falls requiring hospitalization among adults aged 60+ years with dementia. This retrospective, whole-population cohort study was conducted using the Western Australian Hospital Morbidity Data System and Western Australian Death Registrations from 2001 to 2013. Survival analysis using a stratified conditional Cox model (type 1) was undertaken to identify risk factors for recurrent injurious falls requiring hospitalization. There were 32,519 participants with an index hospital admission with dementia during the study period. Over 27 % (n = 8970) of the cohort experienced a total of 11,073 injurious falls requiring hospitalization during follow up with 7297 individuals experiencing a single fall, 1330 experiencing two falls and 343 experiencing three or more falls. The median follow-up time for each individual was 2.49 years. Females were at a significantly increased risk of 7 % for recurrent injurious falls resulting in hospitalization (adjusted hazard ratio 1.07, 95 % CI 1.01-1.12), compared to males. Increasing age, living in rural areas, and having an injurious fall in the year prior to the index hospital admission with dementia also increased the risk of recurrent injurious falls resulting in hospitalization. Screening those with dementia for injurious falls history could help to identify those most at risk of recurrent injurious falls. Improvement of heath care and falls prevention services for those with dementia who live in rural areas may also reduce recurrent injurious falls.
Report on Staffing and Salaries, Fall 1993.
ERIC Educational Resources Information Center
California Community Colleges, Sacramento. Office of the Chancellor.
Thirteenth in a series of annual reports, this document presents fall 1993 demographic, staffing, salary, and workload information on California community college employees, based on data collected from all 71 California community college districts. Section I presents data on primary occupational activity, full-time equivalency, and type of…
Integration of fall prevention into state policy in Connecticut.
Murphy, Terrence E; Baker, Dorothy I; Leo-Summers, Linda S; Bianco, Luann; Gottschalk, Margaret; Acampora, Denise; King, Mary B
2013-06-01
To describe the ongoing efforts of the Connecticut Collaboration for Fall Prevention (CCFP) to move evidence regarding fall prevention into clinical practice and state policy. A university-based team developed methods of networking with existing statewide organizations to influence clinical practice and state policy. We describe steps taken that led to funding and legislation of fall prevention efforts in the state of Connecticut. We summarize CCFP's direct outreach by tabulating the educational sessions delivered and the numbers and types of clinical care providers that were trained. Community organizations that had sustained clinical practices incorporating evidence-based fall prevention were subsequently funded through mini-grants to develop innovative interventional activities. These mini-grants targeted specific subpopulations of older persons at high risk for falls. Building collaborative relationships with existing stakeholders and care providers throughout the state, CCFP continues to facilitate the integration of evidence-based fall prevention into clinical practice and state-funded policy using strategies that may be useful to others.
Chang, Meng-Wei; Liu, Hang-Tsung; Huang, Chun-Ying; Chien, Peng-Chen; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua
2018-05-27
This study aimed to determine the incidence of femoral fracture location in trauma patients with different weight classes in fall and motorcycle accidents. A total of 2647 hospitalized adult patients with 2760 femoral fractures from 1 January 2009 to 31 December 2014 were included in this study. Femoral fracture sites were categorized based on their location: proximal femur (type A, trochanteric; type B, neck; and type C, head), femoral shaft, and distal femur. The patients were further classified as obese (body mass index [BMI] of ≥30 kg/m²), overweight (BMI of.
Tsinganos, Panagiotis; Skodras, Athanassios
2018-02-14
In the context of the ageing global population, researchers and scientists have tried to find solutions to many challenges faced by older people. Falls, the leading cause of injury among elderly, are usually severe enough to require immediate medical attention; thus, their detection is of primary importance. To this effect, many fall detection systems that utilize wearable and ambient sensors have been proposed. In this study, we compare three newly proposed data fusion schemes that have been applied in human activity recognition and fall detection. Furthermore, these algorithms are compared to our recent work regarding fall detection in which only one type of sensor is used. The results show that fusion algorithms differ in their performance, whereas a machine learning strategy should be preferred. In conclusion, the methods presented and the comparison of their performance provide useful insights into the problem of fall detection.
Review of fall detection techniques: A data availability perspective.
Khan, Shehroz S; Hoey, Jesse
2017-01-01
A fall is an abnormal activity that occurs rarely; however, missing to identify falls can have serious health and safety implications on an individual. Due to the rarity of occurrence of falls, there may be insufficient or no training data available for them. Therefore, standard supervised machine learning methods may not be directly applied to handle this problem. In this paper, we present a taxonomy for the study of fall detection from the perspective of availability of fall data. The proposed taxonomy is independent of the type of sensors used and specific feature extraction/selection methods. The taxonomy identifies different categories of classification methods for the study of fall detection based on the availability of their data during training the classifiers. Then, we present a comprehensive literature review within those categories and identify the approach of treating a fall as an abnormal activity to be a plausible research direction. We conclude our paper by discussing several open research problems in the field and pointers for future research. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Neuillé, Marion; Morgans, Catherine W.; Cao, Yan; Orhan, Elise; Michiels, Christelle; Sahel, José-Alain; Audo, Isabelle; Duvoisin, Robert M.; Martemyanov, Kirill A.; Zeitz, Christina
2016-01-01
Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 (no b-wave 6, (Lrit3nob6/nob6)), which displays similar abnormalities as patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3nob6/nob6 retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3nob6/nob6 mice. LRIT3 did not colocalize with ribeye or calbindin but colocalized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3nob6/nob6 mice. mGluR6, GPR179, RGS7, RGS11 and Gβ5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3nob6/nob6 mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, PNA labeling was severely reduced in the OPL in Lrit3nob6/nob6 mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. Since tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells. PMID:25997951
Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Doss, C George Priya; Agoramoorthy, Govindasamy
2015-04-01
Maturity onset diabetes of the young (MODY) is a metabolic and genetic disorder. It is different from type 1 and type 2 diabetes with low occurrence level (1-2%) among all diabetes. This disorder is a consequence of β-cell dysfunction. Till date, 11 subtypes of MODY have been identified, and all of them can cause gene mutations. However, very little is known about the gene mapping, molecular phylogenetics, and co-expression among MODY genes and networking between cascades. This study has used latest servers and software such as VarioWatch, ClustalW, MUSCLE, G Blocks, Phylogeny.fr, iTOL, WebLogo, STRING, and KEGG PATHWAY to perform comprehensive analyses of gene mapping, multiple sequences alignment, molecular phylogenetics, protein-protein network design, co-expression analysis of MODY genes, and pathway development. The MODY genes are located in chromosomes-2, 7, 8, 9, 11, 12, 13, 17, and 20. Highly aligned block shows Pro, Gly, Leu, Arg, and Pro residues are highly aligned in the positions of 296, 386, 437, 455, 456 and 598, respectively. Alignment scores inform us that HNF1A and HNF1B proteins have shown high sequence similarity among MODY proteins. Protein-protein network design shows that HNF1A, HNF1B, HNF4A, NEUROD1, PDX1, PAX4, INS, and GCK are strongly connected, and the co-expression analyses between MODY genes also show distinct association between HNF1A and HNF4A genes. This study has used latest tools of bioinformatics to develop a rapid method to assess the evolutionary relationship, the network development, and the associations among eleven MODY genes and cascades. The prediction of sequence conservation, molecular phylogenetics, protein-protein network and the association between the MODY cascades enhances opportunities to get more insights into the less-known MODY disease.
A disposable insulated container for rearing fall webworm larvae in the laboratory
William N., Jr. Cannon
1970-01-01
Plastic-foam cups with plastic lids were found to be more suitable for rearing larvae of the fall webworm, Hyphantria cunea Drury, than other types of containers tested. These cups are inexpensive, lightweight, rigid, and translucent; and they protect the contents from rapid fluctuations in temperature.
Report on Staffing and Salaries, Fall 1990.
ERIC Educational Resources Information Center
Shymoniak, Leonard; And Others
Tenth in a series of annual reports, this report presents fall 1990 demographic, staffing, salary, and workload information on California community college employees, based on data collected from all 71 California community college districts. Section I presents data on primary occupational activity, full-time equivalency, and type of assignment…
STARS Quarterly Review. Fall 2012: The Role of Institutional Diversity
ERIC Educational Resources Information Center
Urbanski, Monika
2012-01-01
The Fall 2012 SQR: "The Role of Institutional Diversity," explores how the diversity of STARS institutions has changed over time and how participation in STARS according to institution type compares to U.S. demographics. Findings in this review suggest that the institutional characteristics that make higher education institutions…
DOT National Transportation Integrated Search
2013-03-01
Rock falls on highways while dangerous are unpredictable. Most rock falls are of the raveling type and not conducive to stability : calculations, and even the failure mechanisms are not well understood. LIDAR (LIght Detection And Ranging) has been sh...
A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.
Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N
1994-05-15
Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages.
"Small Steps, Big Rewards": Preventing Type 2 Diabetes
... please turn Javascript on. Feature: Diabetes "Small Steps, Big Rewards": Preventing Type 2 Diabetes Past Issues / Fall ... These are the plain facts in "Small Steps. Big Rewards: Prevent Type 2 Diabetes," an education campaign ...
Nishida, Hidenori; Sohara, Eisei; Nomura, Naohiro; Chiga, Motoko; Alessi, Dario R; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi
2013-01-01
Metabolic syndrome patients have insulin resistance, which causes hyperinsulinemia, which in turn causes aberrant increased renal sodium reabsorption. The precise mechanisms underlying this greater salt-sensitivity of hyperinsulinemic patients remain unclear. Abnormal activation of the recently-identified WNK kinase-OSR1/SPAK kinases-NCC transporter phosphorylation cascade results in the salt-sensitive hypertension of pseudohypoaldosteronism type II. Here, we report a study of renal WNK-OSR1/SPAK-NCC cascade activation in the db/db mouse model of hyperinsulinemic metabolic syndrome. Thiazide sensitivity was increased, suggesting greater activity of NCC in db/db mice. In fact, increased phosphorylation of OSR1/SPAK and NCC was observed. In both SpakT243A/+ and Osr1T185A/+ knock-in db/db mice, which carry mutations that disrupt the signal from WNK kinases, increased phosphorylation of NCC and elevated blood pressure were completely corrected, indicating that phosphorylation of SPAK and OSR1 by WNK kinases is required for the increased activation and phosphorylation of NCC in this model. Renal phosphorylated Akt was increased in db/db mice, suggesting that increased NCC phosphorylation is regulated by the PI3K/Akt signaling cascade in the kidney in response to hyperinsulinemia. A PI3K inhibitor (NVP-BEZ235) corrected the increased OSR1/SPAK-NCC phosphorylation. Another more specific PI3K inhibitor (GDC-0941) and an Akt inhibitor (MK-2206) also inhibited increased NCC phosphorylation. These results indicate that the PI3K/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in db/db mice. This mechanism may play a role in the pathogenesis of salt-sensitive hypertension in human hyperinsulinemic conditions such as the metabolic syndrome. PMID:22949526
WNT signaling in stem cell biology and regenerative medicine.
Katoh, Masaru
2008-07-01
WNT family members are secreted-type glycoproteins to orchestrate embryogenesis, to maintain homeostasis, and to induce pathological conditions. FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9, FZD10, LRP5, LRP6, and ROR2 are transmembrane receptors transducing WNT signals based on ligand-dependent preferentiality for caveolin- or clathrin-mediated endocytosis. WNT signals are transduced to canonical pathway for cell fate determination, and to non-canonical pathways for regulation of planar cell polarity, cell adhesion, and motility. MYC, CCND1, AXIN2, FGF20, WISP1, JAG1, DKK1 and Glucagon are target genes of canonical WNT signaling cascade, while CD44, Vimentin and STX5 are target genes of non-canonical WNT signaling cascades. However, target genes of WNT signaling cascades are determined in a context-dependent manner due to expression profile of transcription factors and epigenetic status. WNT signaling cascades network with Notch, FGF, BMP and Hedgehog signaling cascades to regulate the balance of stem cells and progenitor cells. Here WNT signaling in embryonic stem cells, neural stem cells, mesenchymal stem cells, hematopoietic stem cells, and intestinal stem cells will be reviewed. WNT3, WNT5A and WNT10B are expressed in undifferentiated human embryonic stem cells, while WNT6, WNT8B and WNT10B in endoderm precursor cells. Wnt6 is expressed in intestinal crypt region for stem or progenitor cells. TNF/alpha-WNT10B signaling is a negative feedback loop to maintain homeostasis of adipose tissue and gastrointestinal mucosa with chronic inflammation. Recombinant WNT protein or WNT mimetic (circular peptide, small molecule compound, or RNA aptamer) in combination with Notch mimetic, FGF protein, and BMP protein opens a new window to tissue engineering for regenerative medicine.
Linardy, Evelyn M; Erskine, Simon M; Lima, Nicole E; Lonergan, Tina; Mokany, Elisa; Todd, Alison V
2016-01-15
Advancements in molecular biology have improved the ability to characterize disease-related nucleic acids and proteins. Recently, there has been an increasing desire for tests that can be performed outside of centralised laboratories. This study describes a novel isothermal signal amplification cascade called EzyAmp (enzymatic signal amplification) that is being developed for detection of targets at the point of care. EzyAmp exploits the ability of some restriction endonucleases to cleave substrates containing nicks within their recognition sites. EzyAmp uses two oligonucleotide duplexes (partial complexes 1 and 2) which are initially cleavage-resistant as they lack a complete recognition site. The recognition site of partial complex 1 can be completed by hybridization of a triggering oligonucleotide (Driver Fragment 1) that is generated by a target-specific initiation event. Binding of Driver Fragment 1 generates a completed complex 1, which upon cleavage, releases Driver Fragment 2. In turn, binding of Driver Fragment 2 to partial complex 2 creates completed complex 2 which when cleaved releases additional Driver Fragment 1. Each cleavage event separates fluorophore quencher pairs resulting in an increase in fluorescence. At this stage a cascade of signal production becomes independent of further target-specific initiation events. This study demonstrated that the EzyAmp cascade can facilitate detection and quantification of nucleic acid targets with sensitivity down to aM concentration. Further, the same cascade detected VEGF protein with a sensitivity of 20nM showing that this universal method for amplifying signal may be linked to the detection of different types of analytes in an isothermal format. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Odontoid fracture following a fall in an elderly man.
Pagnez, Maria Alice Mainenti; Elliott, James M
2011-12-01
The patient was a 79-year-old man with a chief complaint of neck pain after a fall. Three days following the fall, the patient was seen in the emergency department, where computed tomography imaging of the head and radiographs of the cervical spine were completed. The patient was subsequently referred to a physical therapist. Due to concern for a possible undetected cervical spine fracture, the patient was immediately referred to his physician. Magnetic resonance imaging demonstrated a type II fracture of the odontoid.
Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA
2006-10-24
Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA
2010-01-26
Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
Wegeng, Robert S.; TeGrotenhuis, Ward E.; Whyatt, Greg A.
2007-09-18
Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
NASA Technical Reports Server (NTRS)
Suzuki, Kazuhiro; Grinnell, Alan D.; Kidokoro, Yoshiaki
2002-01-01
The frequency of quantal transmitter release increases upon application of hypertonic solutions. This effect bypasses the Ca(2+) triggering step, but requires the presence of key molecules involved in vesicle fusion, and hence could be a useful tool for dissecting the molecular process of vesicle fusion. We have examined the hypertonicity response at neuromuscular junctions of Drosophila embryos in Ca(2+)-free saline. Relative to wild-type, the response induced by puff application of hypertonic solution was enhanced in a mutant, dunce, in which the cAMP level is elevated, or in wild-type embryos treated with forskolin, an activator of adenylyl cyclase, while protein kinase A (PKA) inhibitors decreased it. The response was also smaller in a mutant, DC0, which lacks the major subunit of PKA. Thus the cAMP/PKA cascade is involved in the hypertonicity response. Peptides containing the sequence Arg-Gly-Asp (RGD), which inhibit binding of integrins to natural ligands, reduced the response, whereas a peptide containing the non-binding sequence Arg-Gly-Glu (RGE) did not. A reduced response persisted in a mutant, myospheroid, which expresses no integrins, and the response in DC0 was unaffected by RGD peptides. These data indicate that there are at lease two components in the hypertonicity response: one that is integrin mediated and involves the cAMP/PKA cascade, and another that is not integrin mediated and does not involve the cAMP/PKA cascade.
Chen, Ting; Ren, Chunhua; Jiang, Xiao; Zhang, Lvping; Li, Hongmei; Huang, Wen; Hu, Chaoqun
2018-01-01
Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans.
Ren, Chunhua; Jiang, Xiao; Zhang, Lvping; Li, Hongmei; Huang, Wen; Hu, Chaoqun
2018-01-01
Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans. PMID:29590153
NASA Astrophysics Data System (ADS)
Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.
2018-03-01
This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Ouliang; Gary, S. Peter; Wang, Joseph, E-mail: ouliang@usc.edu, E-mail: pgary@lanl.gov, E-mail: josephjw@usc.edu
2015-02-20
We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inversemore » cascade regime is much weaker than that in the forward cascade regime.« less
NASA Technical Reports Server (NTRS)
Roman, Monsi C.; Steele, John W.; Marsh, Robert W.; Callahan, David M.; VonJouanne, Roger G.
1999-01-01
In August 1997 NASA/ Marshall Space Flight Center (MSFC) began a test with the objective of monitoring the growth of microorganisms on material simulating the surface of the International Space Station (ISS) Temperature and Humidity Control (THC) Condensing Heat Exchanger (CHX). The test addressed the concerns of potential uncontrolled microbial growth on the surface of the THC CHX subsystem. For this study, humidity condensate from a closed manned environment was used as a direct challenge to the surfaces of six cascades in a test set-up. The condensate was collected using a Shuttle-type CHX within the MSFC End-Use Equipment Testing Facility. Panels in four of the six cascades tested were coated with the ISS CHX silver impregnated hydrophilic coating. The remainder two cascade panels were coated with the hydrophilic coating without the antimicrobial component, silver. Results of the fourteen-month study are discussed in this paper. The effects on the microbial population when drying vs. not-drying the simulated THC CHX surface are also discussed.
Importance of MAP Kinases during Protoperithecial Morphogenesis in Neurospora crassa
Jeffree, Chris E.; Oborny, Radek; Boonyarungsrit, Patid; Read, Nick D.
2012-01-01
In order to produce multicellular structures filamentous fungi combine various morphogenetic programs that are fundamentally different from those used by plants and animals. The perithecium, the female sexual fruitbody of Neurospora crassa, differentiates from the vegetative mycelium in distinct morphological stages, and represents one of the more complex multicellular structures produced by fungi. In this study we defined the stages of protoperithecial morphogenesis in the N. crassa wild type in greater detail than has previously been described; compared protoperithecial morphogenesis in gene-deletion mutants of all nine mitogen-activated protein (MAP) kinases conserved in N. crassa; confirmed that all three MAP kinase cascades are required for sexual development; and showed that the three different cascades each have distinctly different functions during this process. However, only MAP kinases equivalent to the budding yeast pheromone response and cell wall integrity pathways, but not the osmoregulatory pathway, were essential for vegetative cell fusion. Evidence was obtained for MAP kinase signaling cascades performing roles in extracellular matrix deposition, hyphal adhesion, and envelopment during the construction of fertilizable protoperithecia. PMID:22900028
Defect structures induced by high-energy displacement cascades in γ uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Beeler, Benjamin; Deo, Chaitanya
Displacement cascade simulations were conducted for the c uranium system based on molecular dynamics. A recently developed modified embedded atom method (MEAM) potential was employed to replicate the atomic interactions while an embedded atom method (EAM) potential was adopted to help characterize the defect structures induced by the displacement cascades. The atomic displacement process was studied by providing primary knock-on atoms (PKAs) with kinetic energies from 1 keV to 50 keV. The influence of the PKA incident direction was examined. The defect structures were analyzed after the systems were fully relaxed. The states of the self-interstitial atoms (SIAs) were categorizedmore » into various types of dumbbells, the crowdion, and the octahedral interstitial. The voids were determined to have a polyhedral shape with {110} facets. The size distribution of the voids was also obtained. The results of this study not only expand the knowledge of the microstructural evolution in irradiated c uranium, but also provide valuable references for the radiation-induced defects in uranium alloy fuels.« less
NASA Astrophysics Data System (ADS)
Natal da Luz, H.; Souza, F. A.; Moralles, M.; Carlin, N.; Oliveira, R. A. N.; Bregant, M.; Suaide, A. A. P.; Chubaci, J. F. D.; Matsuoka, M.; Silva, T. F.; Moro, M. V.; Rodrigues, C. L.; Munhoz, M. G.
2018-02-01
Boron-based thermal neutron detectors have recently regained some attention from the instrumentation community as a strong alternative to helium-3 detectors. From the existing concepts exploiting boron layers in position sensitive detectors, the Cascade [
ROS-mediated redox signaling during cell differentiation in plants.
Schmidt, Romy; Schippers, Jos H M
2015-08-01
Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.
El-Khoury, Fabienne; Cassou, Bernard; Charles, Marie-Aline; Dargent-Molina, Patricia
2013-10-29
To determine whether, and to what extent, fall prevention exercise interventions for older community dwelling people are effective in preventing different types of fall related injuries. Electronic databases (PubMed, the Cochrane Library, Embase, and CINAHL) and reference lists of included studies and relevant reviews from inception to July 2013. Randomised controlled trials of fall prevention exercise interventions, targeting older (>60 years) community dwelling people and providing quantitative data on injurious falls, serious falls, or fall related fractures. Based on a systematic review of the case definitions used in the selected studies, we grouped the definitions of injurious falls into more homogeneous categories to allow comparisons of results across studies and the pooling of data. For each study we extracted or calculated the rate ratio of injurious falls. Depending on the available data, a given study could contribute data relevant to one or more categories of injurious falls. A pooled rate ratio was estimated for each category of injurious falls based on random effects models. 17 trials involving 4305 participants were eligible for meta-analysis. Four categories of falls were identified: all injurious falls, falls resulting in medical care, severe injurious falls, and falls resulting in fractures. Exercise had a significant effect in all categories, with pooled estimates of the rate ratios of 0.63 (95% confidence interval 0.51 to 0.77, 10 trials) for all injurious falls, 0.70 (0.54 to 0.92, 8 trials) for falls resulting in medical care, 0.57 (0.36 to 0.90, 7 trials) for severe injurious falls, and 0.39 (0.22 to 0.66, 6 trials) for falls resulting in fractures, but significant heterogeneity was observed between studies of all injurious falls (I(2)=50%, P=0.04). Exercise programmes designed to prevent falls in older adults also seem to prevent injuries caused by falls, including the most severe ones. Such programmes also reduce the rate of falls leading to medical care.
Targeting a high-risk group for fall prevention: strategies for health plans.
Jennings, Lee A; Reuben, David B; Kim, Sung-Bou; Keeler, Emmett; Roth, Carol P; Zingmond, David S; Wenger, Neil S; Ganz, David A
2015-09-01
Although Medicare has implemented incentives for health plans to reduce fall risk, the best way to identify older people at high risk of falling and to use screening results to target fall prevention services remains unknown. We evaluated 4 different strategies using a combination of administrative data and patient-reported information that health plans could easily obtain. Observational study. We used data from 1776 patients 75 years or older in 4 community-based primary care practices who screened positive for a fear of falling and/or a history of falls. For these patients, we predicted fall-related injuries in the 24 months after the date of screening using claims/encounter data. After controlling for age and gender, we predicted the number of fall-related injuries by adding Elixhauser comorbidity count, any claim for a fall-related injury during the 12 months prior to screening, and falls screening question responses in a sequential fashion using negative binomial regression models. Basic patient characteristics, including age and Elixhauser comorbidity count, were strong predictors of fall-related injury. Among falls screening questions, a positive response to, "Have you fallen 2 or more times in the past year?" was the most predictive of a fall-related injury (incidence rate ratio [IRR], 1.56; 95% CI, 1.25-1.94). Prior claim for a fall-related injury also independently predicted this type of injury (IRR, 1.41; 95% CI, 1.05-1.89). The best model for predicting fall-related injuries combined all of these approaches. The combination of administrative data and a simple screening item can be used by health plans to target patients at high risk for future fall-related injuries.
Wurzer, Birgit; Waters, Debra Lynn; Hale, Leigh Anne
2016-01-01
To investigate reported injuries and circumstances and to estimate the costs related to falls experienced by older adults participating in Steady As You Go (SAYGO) peer-led fall prevention exercise classes. A 12-month prospective cohort study of 207 participants attending community-based SAYGO classes in Dunedin, New Zealand. Types and costs of medical treatment for injuries and circumstances of falls were obtained via standardized fall event questionnaires and phone-administered questionnaires. Eighty-four percent completed the study (160 females, 14 males, mean age = 77.5 [standard deviation = 6.5] years). More than a third of the total falls (55/148 total falls, 37%) did not result in any injuries. Most injuries (45%, n = 67) were sprains, grazes, and bruises. Medical attention was sought 26 times (18%), out of which 6 participants (4%) reported fractures (none femoral). The majority of falls occurred while walking. More falls and injuries occurred outdoors (n = 55). The number of times medical treatment was sought correlated with the number of falls in the previous year (r = 0.50, P = .02). The total number of years attending SAYGO was a significant predictor of lower total number of injuries (stepwise regression β = -0.157, t = -1.99, P = .048). The total cost of medical treatment across all reported injurious falls was estimated at NZ$6946 (US$5415). Older adults participating in SAYGO appear to sustain less severe injuries following a fall than previously reported. More falls and injuries occurred outdoors, suggesting better overall health of these participants. The role of long-term participation in fall prevention exercise classes on injurious falls warrants further investigation.
Broadband external cavity quantum cascade laser based sensor for gasoline detection
NASA Astrophysics Data System (ADS)
Ding, Junya; He, Tianbo; Zhou, Sheng; Li, Jinsong
2018-02-01
A new type of tunable diode spectroscopy sensor based on an external cavity quantum cascade laser (ECQCL) and a quartz crystal tuning fork (QCTF) were used for quantitative analysis of volatile organic compounds. In this work, the sensor system had been tested on different gasoline sample analysis. For signal processing, the self-established interpolation algorithm and multiple linear regression algorithm model were used for quantitative analysis of major volatile organic compounds in gasoline samples. The results were very consistent with that of the standard spectra taken from the Pacific Northwest National Laboratory (PNNL) database. In future, The ECQCL sensor will be used for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis, etc.
Alignment-stabilized interference filter-tuned external-cavity quantum cascade laser.
Kischkat, Jan; Semtsiv, Mykhaylo P; Elagin, Mikaela; Monastyrskyi, Grygorii; Flores, Yuri; Kurlov, Sergii; Peters, Sven; Masselink, W Ted
2014-12-01
A passively alignment-stabilized external cavity quantum cascade laser (EC-QCL) employing a "cat's eye"-type retroreflector and an ultra-narrowband transmissive interference filter for wavelength selection is demonstrated and experimentally investigated. Compared with conventional grating-tuned ECQCLs, the setup is nearly two orders of magnitude more stable against misalignment of the components, and spectral fluctuation is reduced by one order of magnitude, allowing for a simultaneously lightweight and fail-safe construction, suitable for applications outdoors and in space. It also allows for a substantially greater level of miniaturization and cost reduction. These advantages fit in well with the general properties of modern QCLs in the promise to deliver useful and affordable mid-infrared-light sources for a variety of spectroscopic and imaging applications.
External cavity cascade diode lasers tunable from 3.05 to 3.25 μm
NASA Astrophysics Data System (ADS)
Wang, Meng; Hosoda, Takashi; Shterengas, Leon; Kipshidze, Gela; Lu, Ming; Stein, Aaron; Belenky, Gregory
2018-01-01
The external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ˜25 meV of tuning range.
Spectrally resolved far-fields of terahertz quantum cascade lasers.
Brandstetter, Martin; Schönhuber, Sebastian; Krall, Michael; Kainz, Martin A; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Strasser, Gottfried; Unterrainer, Karl
2016-10-31
We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-Pérot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing the contribution of each single laser mode to the total far-field. The presented method is thus an important tool to gain in-depth knowledge of the emission properties of multimode laser cavities at terahertz frequencies, which become increasingly important for future sensing applications.
External cavity cascade diode lasers tunable from 3.05 to 3.25 μm
Wang, Meng; Hosoda, Takashi; Shterengas, Leon; ...
2017-09-14
Here, the external cavity tunable mid-infrared emitters based on Littrow configuration and utilizing three stages type-I quantum well cascade diode laser gain elements were designed and fabricated. The free-standing coated 7.5-μm-wide ridge waveguide lasers generated more than 30 mW of continuous wave power near 3.25 μm at 20°C when mounted epi-side-up on copper blocks. The external cavity lasers (ECLs) utilized 2-mm-long gain chips with straight ridge design and anti-/neutral-reflection coated facets. The ECLs demonstrated narrow spectrum tunable operation with several milliwatts of output power in spectral region from 3.05 to 3.25 μm corresponding to ~25 meV of tuning range.
Radio detection of cosmic-ray air showers and high-energy neutrinos
NASA Astrophysics Data System (ADS)
Schröder, Frank G.
2017-03-01
In the last fifteen years radio detection made it back to the list of promising techniques for extensive air showers, firstly, due to the installation and successful operation of digital radio experiments and, secondly, due to the quantitative understanding of the radio emission from atmospheric particle cascades. The radio technique has an energy threshold of about 100 PeV, which coincides with the energy at which a transition from the highest-energy galactic sources to the even more energetic extragalactic cosmic rays is assumed. Thus, radio detectors are particularly useful to study the highest-energy galactic particles and ultra-high-energy extragalactic particles of all types. Recent measurements by various antenna arrays like LOPES, CODALEMA, AERA, LOFAR, Tunka-Rex, and others have shown that radio measurements can compete in precision with other established techniques, in particular for the arrival direction, the energy, and the position of the shower maximum, which is one of the best estimators for the composition of the primary cosmic rays. The scientific potential of the radio technique seems to be maximum in combination with particle detectors, because this combination of complementary detectors can significantly increase the total accuracy for air-shower measurements. This increase in accuracy is crucial for a better separation of different primary particles, like gamma-ray photons, neutrinos, or different types of nuclei, because showers initiated by these particles differ in average depth of the shower maximum and in the ratio between the amplitude of the radio signal and the number of muons. In addition to air-shower measurements, the radio technique can be used to measure particle cascades in dense media, which is a promising technique for detection of ultra-high-energy neutrinos. Several pioneering experiments like ARA, ARIANNA, and ANITA are currently searching for the radio emission by neutrino-induced particle cascades in ice. In the next years these two sub-fields of radio detection of cascades in air and in dense media will likely merge, because several future projects aim at the simultaneous detection of both, high-energy cosmic-rays and neutrinos. SKA will search for neutrino and cosmic-ray initiated cascades in the lunar regolith and simultaneously provide unprecedented detail for air-shower measurements. Moreover, detectors with huge exposure like GRAND, SWORD or EVA are being considered to study the highest energy cosmic rays and neutrinos. This review provides an introduction to the physics of radio emission by particle cascades, an overview on the various experiments and their instrumental properties, and a summary of methods for reconstructing the most important air-shower properties from radio measurements. Finally, potential applications of the radio technique in high-energy astroparticle physics are discussed.
Stubbs, Kendra E; Sikes, Lindsay
2017-01-01
Within a tertiary care pediatric medical center, the largest number of inpatient falls (8.84 falls per 1,000 patient days) occurred within a 14-bed rehabilitation/transitional care unit between February and September 2009. An interdisciplinary fall prevention program, called "Red Light, Green Light," was developed to better educate all staff and family members to ensure safety of transfers and ambulation of children with neurological impairments. The purpose of this study was to develop and implement an interdisciplinary pediatric fall prevention program to reduce total falls and falls with family members present in this population. Preintervention 2009 data and longitudinal data from 2010-2014 were obtained from retrospective review of event/incident reports. This quality improvement project was based on inpatient pediatric admissions to a rehabilitation care unit accommodating children with neurological impairments. Data extraction included: total falls, falls with caregiver (alone versus staff versus family), type of falls, and falls by diagnosis. Descriptive statistics were obtained on outcome measures; chi-square statistics were calculated on preintervention and postintervention comparisons. Total falls decreased steadily from 8.84 falls per 1,000 patient days in 2009 to 1.79 falls per 1,000 patient days in 2014 (χ12=3.901, P=.048). Falls with family members present decreased 50% postintervention. (χ12=6.26, P=.012). Limitations included unit size nearly doubled postintervention, event reporting changed to both uncontrolled and controlled therapy falls (safely lowering patient to bed, chair, or floor), and enhanced reporting increased numbers of postintervention falls. The Red Light, Green Light program has resulted in reductions in overall fall rates, falls with family members present, increased staff collaboration, heightened staff and family safety awareness, and a safer environment for patients at high risk for neurological or musculoskeletal impairments. © 2017 American Physical Therapy Association
Morrison, Steven; Colberg, Sheri R; Parson, Henri K; Vinik, Aaron I
2014-01-01
For older adults with type 2 diabetes (T2DM), declines in balance and walking ability are risk factors for falls, and peripheral neuropathy magnifies this risk. Exercise training may improve balance, gait and reduce the risk of falling. This study investigated the effects of 12weeks of aerobic exercise training on walking, balance, reaction time and falls risk metrics in older T2DM individuals with/without peripheral neuropathy. Adults with T2DM, 21 without (DM; age 58.7±1.7years) and 16 with neuropathy (DM-PN; age 58.9±1.9years), engaged in either moderate or intense supervised exercise training thrice-weekly for 12weeks. Pre/post-training assessments included falls risk (using the physiological profile assessment), standing balance, walking ability and hand/foot simple reaction time. Pre-training, the DM-PN group had higher falls risk, slower (hand) reaction times (232 vs. 219ms), walked at a slower speed (108 vs. 113cm/s) with shorter strides compared to the DM group. Following training, improvements in hand/foot reaction times and faster walking speed were seen for both groups. While falls risk was not significantly reduced, the observed changes in gait, reaction time and balance metrics suggest that aerobic exercise of varying intensities is beneficial for improving dynamic postural control in older T2DM adults with/without neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.
Report on Staffing and Salaries, Fall 1988. Report Number 89-2.
ERIC Educational Resources Information Center
California Community Colleges, Sacramento. Office of the Chancellor.
This report presents fall 1989 demographic, staffing, salary, and workload information on all California community college employees, based on data from 69 of the 71 districts in the state. First, tables present the total number of district employees by primary occupational activity; full-time equivalency; type of assignment; weekly faculty…
Does Fall History Influence Residential Adjustments?
ERIC Educational Resources Information Center
Leland, Natalie; Porell, Frank; Murphy, Susan L.
2011-01-01
Purpose of the study: To determine whether reported falls at baseline are associated with an older adult's decision to make a residential adjustment (RA) and the type of adjustment made in the subsequent 2 years. Design and Methods: Observations (n = 25,036) were from the Health and Retirement Study, a nationally representative sample of…
Scale-invariant cascades in turbulence and evolution
NASA Astrophysics Data System (ADS)
Guttenberg, Nicholas Ryan
In this dissertation, I present work addressing three systems which are traditionally considered to be unrelated: turbulence, evolution, and social organization. The commonality between these systems is that in each case, microscopic interaction rules give rise to an emergent behavior that in some way makes contact with the macroscopic scale of the problem. The open-ended evolution of complexity in evolving systems is analogous to the scale-free structure established in turbulent flows through local transportation of energy. In both cases, an invariance is required for the cascading behavior to occur, and in both cases the scale-free structure is built up from some initial scale from which the behavior is fed. In turbulence, I examine the case of two-dimensional turbulence in order to support the hypothesis that the friction factor and velocity profile of turbulent pipe flows depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl theory. By simulating two-dimensional flows in controlled geometries, either an inverse energy cascade or forward enstrophy cascade can be produced. The friction factor scaling of the flow changes depending on which cascade is present, in a way consistent with momentum transfer theory and roughness-induced criticality. In the problem of evolution, I show that open-ended growth of complexity can be obtained by ensuring that the evolutionary dynamics are invariant with respect to changes in complexity. Finite system size, finite point mutation rate, and fixed points in the fitness landscape can all interrupt this cascade behavior, producing an analogue to the integral scale of turbulence. This complexity cascade can exist both for competing and for symbiotic sets of organisms. Extending this picture to the qualitatively-different levels of organization of real lifeforms (viruses, unicellular, biofilms, multicellular) requires an understanding of how the processes of evolution themselves evolve. I show that a separation of spatial or temporal scales can enhance selection pressure on parameters that only matter several generations down the line. Because of this, I conclude that the prime candidates for the emergence of novel evolutionary mechanisms are biofilms and things living in oscillating environments. Finally, in the problem of social organization, I show that different types of control hierarchies - leaders or communal decision making - can emerge depending on the relationship between the environment in which members of the social group act and the development and exchange of information.
Sleep Duration, Quality of Sleep, and Use of Sleep Medication, by Sex and Family Type, 2013-2014.
Nugent, Colleen N; Black, Lindsey I
2016-01-01
Data from the National Health Interview Survey, 2013-2014. Single parents, especially women, were more likely than adults in other types of families to have short sleep duration, frequently have trouble falling asleep and staying asleep, and frequently wake up feeling not well-rested. Within family types, women were more likely than men to frequently have trouble falling asleep and staying asleep, and to frequently wake up feeling not well-rested. Overall, adults in two-parent families were less likely than adults in other types of families to have taken sleep medication four times or more in the past week. All material appearing in this report is in the public domain and may be reproduced or copied without permission; citation as to source, however, is appreciated.
Risk of Fractures and Falls during and after 5-α Reductase Inhibitor Use: A Nationwide Cohort Study
Robinson, David; Garmo, Hans; Stattin, Pär; Michaëlsson, Karl
2015-01-01
Background Lower urinary tract symptoms are common among older men and 5-α reductase inhibitors (5-ARI) are a group of drugs recommended in treating these symptoms. The effect on prostate volume is mediated by a reduction in dihydrotestosterone; however, this reduction is counterbalanced by a 25% rise in serum testosterone levels. Therefore, 5-ARI use might have systemic effects and differentially affect bone mineral density, muscular mass and strength, as well as falls, all of which are major determinants of fractures in older men. Methods We conducted a nationwide cohort study of all Swedish men who used 5-ARI by comparing their risk of hip fracture, any type of fracture and of falls with matched control men randomly selected from the population and unexposed to 5-ARI. Results During 1 417 673 person-years of follow-up, 10 418 men had a hip fracture, 19 570 any type of fracture and 46 755 a fall requiring hospital care. Compared with unexposed men, current users of 5-ARI had an adjusted hazard ratio (HR) of 0.96 (95% CI 0.91–1.02) for hip fracture, an HR of 0.94 (95% CI 0.90–0.98) for all fracture and an HR of 0.99 (95% CI 0.96–1.02) for falls. Former users had an increased risk of hip fractures (HR 1.10, 95% CI 1.01–1.19). Conclusion 5-ARI is safe from a bone health perspective with an unaltered risk of fractures and falls during periods of use. After discontinuation of 5-ARI, there is a modest increase in the rate of fractures and falls. PMID:26469978
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan
2016-01-01
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
Chen, Shueh-Fen; Huang, Su-Fei; Lu, Li-Ting; Wang, Mei-Chuen; Liao, Jung-Yu; Guo, Jong-Long
2016-07-07
Falling has high incidence and reoccurrence rates and is an essential factor contributing to accidental injury or death for older adults. Enhancing the participation of community-dwelling older adults in fall-prevention programs is crucial. Understanding fall-prevention beliefs will be beneficial for developing a community-based fall-prevention program. The aim of the present study was to identify the distinct types of subjective views on the fall-prevention beliefs of community-dwelling older adults aged 80 years and older by applying the Q method. The Q method was adopted to investigate the pattern of perception on fall-prevention beliefs. Forty-two older adults aged 80 - 92 years from a community care center in Northern Taiwan were recruited and requested to complete a Q-sorting. A series of Q-sorts was performed by the participants to rank 30 statements into a normal distribution Q-sort grid. The Q-sorts were subjected to principal component analysis by using PQMethod software Version 2.35. Four statistically independent perspectives were derived from the analysis and reflected distinct viewpoints on beliefs related to fall prevention. Participants in the Considerate perspective believed that health problems caused by falling were serious and fall prevention could decrease the burden they place on their family. Participants in the Promising perspective believed that existing health problems could cause a fall and that fall prevention contributed to their well-being. Participants in the Adaptable perspective perceived low barriers to execute fall prevention and displayed self-confidence and independence in preventing falls. Participants in the Ignorance perspective believed that they could not prevent falls and perceived barriers to fall prevention. By combining theoretical constructs and the Q methodology approach, this study identified four distinct perspectives on fall prevention among community-dwelling older adults. Critical reflection on older adult personal perspectives and interpretations of the required responsive approach is a key element for appropriating fall-prevention support.
Barker, Anna; Brand, Caroline; Haines, Terry; Hill, Keith; Brauer, Sandy; Jolley, Damien; Botti, Mari; Cumming, Robert; Livingston, Patricia M; Sherrington, Cathie; Zavarsek, Silva; Morello, Renata; Kamar, Jeannette
2011-08-01
In-hospital fall-related injuries are a source of personal harm, preventable hospitalisation costs, and access block through increased length of stay. Despite increased fall prevention awareness and activity over the last decade, rates of reported fall-related fractures in hospitals appear not to have decreased. This cluster randomised controlled trial (RCT) aims to determine the efficacy of the 6-PACK programme for preventing fall-related injuries, and its generalisability to other acute hospitals. 24 acute medical and surgical wards from six to eight hospitals throughout Australia will be recruited for the study. Wards will be matched by type and fall-related injury rates, then randomly allocated to the 6-PACK intervention (12 wards) or usual care control group (12 wards). The 6-PACK programme includes a nine-item fall risk assessment and six nursing interventions: 'falls alert' sign; supervision of patients in the bathroom; ensuring patient's walking aids are within reach; establishment of a toileting regime; use of a low-low bed; and use of bed/chair alarm. Intervention wards will be supported by a structured implementation strategy. The primary outcomes are fall and fall-related injury rates 12 months following 6-PACK implementation. This study will involve approximately 16,000 patients, and as such is planned to be the largest hospital fall prevention RCT to be undertaken and the first to be powered for the important outcome of fall-related injuries. If effective, there is potential to implement the programme widely as part of daily patient care in acute hospital wards where fall-related injuries are a problem.
NASA Astrophysics Data System (ADS)
Fakhari, Abbas; Bolster, Diogo; Luo, Li-Shi
2017-07-01
We present a lattice Boltzmann method (LBM) with a weighted multiple-relaxation-time (WMRT) collision model and an adaptive mesh refinement (AMR) algorithm for direct numerical simulation of two-phase flows in three dimensions. The proposed WMRT model enhances the numerical stability of the LBM for immiscible fluids at high density ratios, particularly on the D3Q27 lattice. The effectiveness and efficiency of the proposed WMRT-LBM-AMR is validated through simulations of (a) buoyancy-driven motion and deformation of a gas bubble rising in a viscous liquid; (b) the bag-breakup mechanism of a falling drop; (c) crown splashing of a droplet on a wet surface; and (d) the partial coalescence mechanism of a liquid drop at a liquid-liquid interface. The numerical simulations agree well with available experimental data and theoretical approximations where applicable.
Pathophysiology of shock and hemorrhage in a fulminating viral infection (Ebola).
Fisher-Hoch, S P; Platt, G S; Neild, G H; Southee, T; Baskerville, A; Raymond, R T; Lloyd, G; Simpson, D I
1985-11-01
Eleven rhesus monkeys were monitored intensively during experimental infection with Ebola virus. Prominent neutrophilia with left shift and lymphopenia were the earliest abnormalities and were statistically significant by day 4 (P less than .02 and P less than .01, respectively). By day 4 falls in platelet counts were not statistically significant, whereas in vitro platelet aggregation was markedly depressed, progressing rapidly to complete failure by the time of maximum illness. Intraplatelet protein studies suggested this event was the result of in vivo activation and degranulation. Coagulation cascade defects were mainly in the intrinsic system and were surprisingly mild, with no evidence of selective consumption or production deficit of factor VII or VIII. When the possibility of indirectly mediated damage to endothelium possibly by a nonspecific immune response was examined, weight loss was less severe in drug-treated monkeys, and all had detectable plasma prostacyclin metabolites, but there was no improvement in survival.
Steroid dysregulation and stomatodynia (burning mouth syndrome).
Woda, Alain; Dao, Thuan; Gremeau-Richard, Christelle
2009-01-01
Stomatodynia ( burning mouth syndrome) is characterized by a spontaneous, continuous burning pain felt in the oral mucosa typically of anxiodepressive menopausal women. Because there is no obvious organic cause, it is considered a nonspecific pain. This Focus Article proposes a hypothesis based on the following pathophysiological cascade: chronic anxiety or post traumatic stress leads to a dysregulation of the adrenal production of steroids. One consequence is a decreased or modified production of some major precursors for the neuroactive steroid synthesis occurring in the skin, mucosa, and nervous system. At menopause, the drastic fall of the other main precursor supply , the gonadal steroids, leads to a brisk alteration of the production of neuroactive steroids. This results in neurodegenerative alterations of small nerves fibers of the oral mucosa and /or some brain areas involved in oral somatic sensations. These neuropathic changes become irreversible and precipitate the burning pain, dysgeusia, and xerostomia associated with stomatodynia, which all involve thin nerve fibers.
Frequency-comb-assisted precision laser spectroscopy of CHF{sub 3} around 8.6 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambetta, Alessio; Coluccelli, Nicola; Cassinerio, Marco
2015-12-21
We report a high-precision spectroscopic study of room-temperature trifluoromethane around 8.6 μm, using a CW quantum cascade laser phase-locked to a mid-infrared optical frequency comb. This latter is generated by a nonlinear down-conversion process starting from a dual-branch Er:fiber laser and is stabilized against a GPS-disciplined rubidium clock. By tuning the comb repetition frequency, several transitions falling in the υ{sub 5} vibrational band are recorded with a frequency resolution of 20 kHz. Due to the very dense spectra, a special multiple-line fitting code, involving a Voigt profile, is developed for data analysis. The combination of the adopted experimental approach andmore » survey procedure leads to fractional accuracy levels in the determination of line center frequencies, down to 2 × 10{sup −10}. Line intensity factors, pressure broadening, and shifting parameters are also provided.« less
Sakai, Hiroki; Sakaguchi, Honami; Aoki, Fugaku; Suzuki, Masataka G
2015-08-01
The sexual fate of B. mori is determined genetically; ZW, female and ZZ, male. Recently, we successfully identified a strong candidate gene at the top of the sex determination cascade in B. mori. This gene was termed Feminizer (Fem) and revealed to be a source of Fem-piRNA. Further, we found that B. mori doublesex (Bmdsx) splicing was markedly altered to produce the male-type isoform when a Fem-piRNA inhibitor was injected into ZW embryos. Moreover, knockdown of Masculinizer (Masc), a Fem-piRNA target gene, altered to produce the female-type isoform of Bmdsx in male embryos. However, it remains unclear as to whether Masc directly regulates the sex-specific expression of Bmdsx. In previous studies, we determined that the male-specific isoform of the Bombyx homolog of IGF-II mRNA-binding protein (Imp(M)) was involved in the male-specific splicing of Bmdsx. In an attempt to clarify the genetic relationship between Fem, Masc, Imp(M), and Bmdsx, knockdown experiments were performed. Knockdown of Fem shifted into male-type Bmdsx, Imp(M) and Masc in female embryos. Knockdown of Masc led to the production of the female-type Bmdsx and a dramatic reduction in Imp(M) expression in male embryos. Knockdown of Imp(M) shifted Bmdsx splice mode from the male-type into the female-type. Our results suggest that: (1) Fem reduces Masc expression, (2) Masc dramatically induces Imp(M) expression, and (3) Imp(M) shifting Bmdsx splice mode from the female-type into the male-type. Based on these findings, we propose a possible genetic cascade regulating sex determination in B. mori. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Crop residue decomposition in Minnesota biochar-amended plots
NASA Astrophysics Data System (ADS)
Weyers, S. L.; Spokas, K. A.
2014-06-01
Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different plant-based feedstocks and pyrolysis platforms in the fall of 2008. Litterbags containing wheat straw material were buried in July of 2011 below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a uncharred wood-pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Overall, these findings indicate that no significant alteration in the microbial dynamics of the soil decomposer communities occurred as a consequence of the application of plant-based biochars evaluated here.
Falls from height during the floor slab formwork of buildings: current situation in Spain.
Adam, Jose M; Pallarés, Francisco J; Calderón, Pedro A
2009-01-01
One of the phases with the highest risk of falls from a height in the construction of a building is during the floor slab formwork stage. This paper analyzes this particular risk, as well as the most frequently used fall-protection systems. A survey was carried out to define the current situation in Spain with regard to falls from a height during floor slab formwork and the fall-protection systems used to prevent such a risk. The results of the survey clarified the current situation in Spain with regard to this risk, and made it clear that there is considerable risk of falling from a height during the floor slab formwork stage. All the safety systems analyzed presented a series of weak points that should be studied in detail before they can be used on building sites. The risk of falling associated with floor slab formwork and the most frequently used protection systems are analyzed. As no research had been carried out to date on this type of risk, we consider the research presented in this article to be a pioneer in the field.
O'Connor, Siobhan; Warrington, Giles; McGoldrick, Adrian; Cullen, SarahJane
2017-12-01
Professional horse racing is considered a high-risk sport, yet the last analysis of fall and injury incidence in this sport in Ireland was completed between 1999 and 2006. To provide an updated analysis of the fall and injury incidence in professional flat and jump horse racing in Ireland from 2011 through 2015, compare it with the previous analysis, and detail the specific types and locations of injuries. Descriptive epidemiology study. A medical doctor recorded all injuries that occurred at every official flat and jump race meeting for the 2011 through 2015 seasons using standardized injury-report forms. Injury and fall rates and their 95% confidence intervals (CIs) were reported for flat and jump racing. Incidence rate ratios and 95% CIs were calculated between flat and jump racing, between the 1999-2006 analysis and the current results, and between 2011 and 2015. The distribution of injuries for type and location of injury was reported. Compared with flat racing, jump racing had significantly more falls per 1000 rides (49.5 versus 3.8), injuries per 1000 rides (10.1 versus 1.4), and injuries per 1000 meetings (776.0 versus 94.1). However, the rate of injuries per 1000 falls was significantly higher in flat racing (352.8 versus 203.8). An increase in injuries per 1000 falls between 2011 and 2015 was found in flat racing ( P = .005). Since the previous analysis, a significant increase in injuries per 1000 rides and falls was noted in jump racing. Soft tissue injuries were predominant in flat and jump racing (61.54% and 68.80%, respectively), with fractures the second most common injury (15.38% and 18.06%, respectively). Concussions were more prevalent from flat-racing falls (incidence rate ratio = 0.30; 95% CI = 0.15, 0.61). The lower limb was the most frequent location of injury (32.89%) in flat racing; however, in jump racing, upper limb injuries (34.97%) were predominant. An update on professional flat- and jump-racing fall and injury epidemiology is provided. Further research to identify risk factors for injury, design and investigate the feasibility of injury-prevention strategies, and document their effects on fall and injury incidence is required.
Hill, Keith D; Suttanon, Plaiwan; Lin, Sang-I; Tsang, William W N; Ashari, Asmidawati; Hamid, Tengku Aizan Abd; Farrier, Kaela; Burton, Elissa
2018-01-05
There is strong research evidence for falls prevention among older people in the community setting, although most is from Western countries. Differences between countries (eg sunlight exposure, diet, environment, exercise preferences) may influence the success of implementing falls prevention approaches in Asian countries that have been shown to be effective elsewhere in the world. The aim of this review is to evaluate the scope and effectiveness of falls prevention randomized controlled trials (RCTs) from the Asian region. RCTs investigating falls prevention interventions conducted in Asian countries from (i) the most recent (2012) Cochrane community setting falls prevention review, and (ii) subsequent published RCTs meeting the same criteria were identified, classified and grouped according to the ProFANE intervention classification. Characteristics of included trials were extracted from both the Cochrane review and original publications. Where ≥2 studies investigated an intervention type in the Asian region, a meta-analysis was performed. Fifteen of 159 RCTs in the Cochrane review were conducted in the Asian region (9%), and a further 11 recent RCTs conducted in Asia were identified (total 26 Asian studies: median 160 participants, mean age:75.1, female:71.9%). Exercise (15 RCTs) and home assessment/modification (n = 2) were the only single interventions with ≥2 RCTs. Intervention types with ≥1 effective RCT in reducing fall outcomes were exercise (6 effective), home modification (1 effective), and medication (vitamin D) (1 effective). One multiple and one multifactorial intervention also had positive falls outcomes. Meta-analysis of exercise interventions identified significant benefit (number of fallers: Odds Ratio 0.43 [0.34,0.53]; number of falls: 0.35 [0.21,0.57]; and number of fallers injured: 0.50 [0.35,0.71]); but multifactorial interventions did not reach significance (number of fallers OR = 0.57 [0.23,1.44]). There is a small but growing research base of falls prevention RCTs from Asian countries, with exercise approaches being most researched and effective. For other interventions shown to be effective elsewhere, consideration of local issues is required to ensure that research and programs implemented in these countries are effective, and relevant to the local context, people, and health system. There is also a need for further high quality, appropriately powered falls prevention trials in Asian countries.
Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi
2002-05-01
Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation.
Roos, Paulien E; Dingwell, Jonathan B
2013-06-21
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roos, Paulien E.; Dingwell, Jonathan B.
2013-01-01
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the ‘push-off’ force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. PMID:23659911
Epstein, Noam U; Guo, Rong; Farlow, Martin R; Singh, Jaswinder P; Fisher, Morris
2014-02-01
Falls are common in the elderly, especially in those with cognitive impairment. The elderly are often treated with several medications, which may have both beneficial and deleterious effects. The use and type of medication in Alzheimer's disease (AD) patients and association with falls is limited. We examined the association between falls and medication use in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Diagnosis, demographics, medication use, apolipoprotein E4 allele status and functional activity level at baseline were gathered for 810 participants enrolled in the ADNI, including healthy controls and subjects with mild cognitive impairment or Alzheimer's. Reports detailing adverse event falls were tabulated. Baseline characteristics were compared between subjects with and without one or more falls. Cox proportional hazards models were conducted to evaluate the association between subject characteristics and hazard of the first fall. Age (p < 0.0001), Functional Activities Questionnaire (p = 0.035), Beers List (p = 0.0477) and medications for treating cognitive symptoms of Alzheimer's (p = 0.0019) were associated with hazard of fall in the univariate model. In the final multivariate model, after adjusting for covariates, Alzheimer's medication use (p = 0.0005) was associated with hazard of fall. Medication was changed by the clinician after an adverse fall event in 9% of the falls. About 7% of the falls were reported as serious adverse events and 6% were reported to be severe. We found a significant association between the use of symptomatic medication treating cognitive symptoms in AD and hazard of fall after adjusting for age and Beers List medication use. Additional pharmacovigilance of the association between falls and Alzheimer's medication use is warranted.
Epstein, Noam U.; Guo, Rong; Farlow, Martin R.; Singh, Jaswinder P.; Fisher, Morris
2014-01-01
Background Falls are common in the elderly, especially in those with cognitive impairment. The elderly are often treated with several medications which may have both beneficial and deleterious effects. The use and type of medication in Alzheimer’s patients and association with falls is limited. Objective We examined the association between falls and medication use in the Alzheimer’s Disease Neuro-Imaging Initiative (ADNI). Methods Diagnosis, demographics, medication use, apolipoprotein E4 allele status and functional activity level at baseline were gathered for 810 participants enrolled in ADNI including healthy controls and subjects with mild cognitive impairment or Alzheimer’s. Adverse event fall reports were tabulated. Baseline characteristics were compared between subjects with and without one or more falls. Cox proportional hazards models were conducted to evaluate the association between subject characteristics and hazard of first fall. Results Age (p<0.0001), functional activities questionnaire (p=0.035), Beers list (p=0.0477) and medications for treating cognitive symptoms of Alzheimer’s (p=0.0019) were associated with hazard of fall in the univariate model. In the final multivariate model, after adjusting for covariates, Alzheimer’s medication use (p=0.0005) was associated with hazard of fall. Medication was changed after an adverse fall event by the clinician in 9% of the falls. About 7% of the falls were reported as serious adverse events and 6% were reported to be severe. Conclusion We found a significant association between use of symptomatic medication treating cognitive symptoms in Alzheimer’s disease and hazard of fall after adjusting for age and Beers list medication use. Additional pharmaco-vigilance of the association between falls and Alzheimer’s medication use is warranted. PMID:24357133
Baldewijns, Greet; Debard, Glen; Mertes, Gert; Vanrumste, Bart; Croonenborghs, Tom
2016-03-01
Fall incidents are an important health hazard for older adults. Automatic fall detection systems can reduce the consequences of a fall incident by assuring that timely aid is given. The development of these systems is therefore getting a lot of research attention. Real-life data which can help evaluate the results of this research is however sparse. Moreover, research groups that have this type of data are not at liberty to share it. Most research groups thus use simulated datasets. These simulation datasets, however, often do not incorporate the challenges the fall detection system will face when implemented in real-life. In this Letter, a more realistic simulation dataset is presented to fill this gap between real-life data and currently available datasets. It was recorded while re-enacting real-life falls recorded during previous studies. It incorporates the challenges faced by fall detection algorithms in real life. A fall detection algorithm from Debard et al. was evaluated on this dataset. This evaluation showed that the dataset possesses extra challenges compared with other publicly available datasets. In this Letter, the dataset is discussed as well as the results of this preliminary evaluation of the fall detection algorithm. The dataset can be downloaded from www.kuleuven.be/advise/datasets.
Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.
Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire
2017-11-01
Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Occupational and environmental risk factors for falls among workers in the healthcare sector.
Drebit, Sharla; Shajari, Salomeh; Alamgir, Hasanat; Yu, Shicheng; Keen, Dave
2010-04-01
Falls are a leading cause of occupational injury for workers in healthcare, yet the risk factors of falls in this sector are understudied. Falls resulting in workers' compensation for time-loss from work from 2004-2007 for healthcare workers in British Columbia (BC) were extracted from a standardised incident-reporting database. Productive hours were derived from payroll data for the denominator to produce injury rates; relative risks were derived through Poisson regression modelling. A total of 411 falls were accepted for time-loss compensation. Compared to registered nurses, facility support workers (risk ratio (95% CI) = 6.29 (4.56-8.69)) and community health workers (6.58 (3.76-11.50)) were at high risk for falls. Falls predominantly occurred outdoors, in patients' rooms and kitchens depending on occupation and sub-sector. Slippery surfaces due to icy conditions or liquid contaminants were a leading contributing factor. Falls were more frequent in the colder months (January-March). The risk of falls varies by nature of work, location and worker demographics. The findings of this research will be useful for developing evidence-based interventions. STATEMENT OF RELEVANCE: Falls are a major cause of occupational injury for healthcare workers. This study examined risk factors including occupation type, workplace design, work setting, work organisation and environmental conditions in a large healthcare worker population in BC, Canada. The findings of this research should contribute towards developing evidence-based interventions.
Fatal falls involving stairs: an anthropological analysis of skeletal trauma.
Rowbotham, Samantha K; Blau, Soren; Hislop-Jambrich, Jacqueline; Francis, Victoria
2018-06-01
The skeletal blunt force trauma resulting from fatal falls involving stairs is complex. There are countless ways an individual may fall when stairs are involved, and thus a variety of ways the skeleton may fracture. Therefore anecdotally, it may be said that there is no specific skeletal trauma characteristic of this fall type. In order to scientifically investigate this anecdotal understanding, this study provides a detailed investigation of the skeletal fracture patterns and morphologies resulting from fatal falls involving stairs. Skeletal trauma was analyzed using the full-body postmortem computed tomography scans of 57 individuals who died from a fall involving stairs. Trauma was examined in the context of the variables that potentially influence how an individual falls (i.e. sex, age, body mass index, number of stairs involved, psychoactive drugs, pre-existing conditions, landing surface and manner of the fall) using logistic regression. Skeletal trauma primarily occurred in the axial skeleton. An analysis of fracture patterns showed the cranial base was less likely to fracture in younger individuals and the cervical vertebrae were more likely to fracture in falls that involved more than half a flight of stairs. A total of 56 fracture morphologies were identified. Of these, diastatic fractures were less likely to occur in older individuals. Findings indicate that there are skeletal fracture patterns and morphologies characteristic of a fatal fall involving stairs.
Femur loading in feet-first fall experiments using an anthropomorphic test device.
Thompson, Angela; Bertocci, Gina; Smalley, Craig
2018-03-31
Femur fractures are a common orthopedic injury in young children. Falls account for a large portion of accidental femur fractures in young children, but there is also a high prevalence of femur fractures in child abuse, with falls often provided as false histories. Objective information regarding fracture potential in short distance fall scenarios may aid in assessing whether a child's injuries are the result of abuse or an accidental fall. Knowledge of femur loading is the first step towards understanding likelihood of fracture in a fall. Characterize femur loading during feet-first free falls using a surrogate representing a 12-month-old child. The femur and hip joint of a surrogate representing a 12-month-old were modified to improve biofidelity and measure femur loading; 6-axis load cells were integrated into the proximal and distal femur. Femur modification was based upon CT imaging of cadaveric femurs in children 10-14 months of age. Using the modified 12-month-old surrogate, feet-first free falls from 69 cm and 119 cm heights onto padded carpet and linoleum were conducted to assess fall dynamics and determine femur loading. Femur compression, bending moment, shear and torsional moment were measured for each fall. Fall dynamics differed across fall heights, but did not substantially differ by impact surface type. Significant differences were found in all loading conditions across fall heights, while only compression and bending loads differed between carpet and linoleum surfaces. Maximum compression, bending, torsion and shear occurred in 119 cm falls and were 572 N, 23 N-m, 11 N-m and 281 N, respectively. Fall dynamics play an important role in the biomechanical assessment of falls. Fall height was found to influence both fall dynamics and femur loading, while impact surface affected only compression and bending in feet-first falls; fall dynamics did not differ across carpet and linoleum. Improved pediatric thresholds are necessary to predict likelihood of fracture, but morphologically accurate representation of the lower extremity, along with accurate characterization of loading in falls are a crucial first step. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Harp, E.L.; Noble, M.A.
1993-01-01
Investigations of earthquakes world wide show that rock falls are the most abundant type of landslide that is triggered by earthquakes. An engineering classification originally used in tunnel design, known as the rock mass quality designation (Q), was modified for use in rating the susceptibility of rock slopes to seismically-induced failure. Analysis of rock-fall concentrations and Q-values for the 1980 earthquake sequence near Mammoth Lakes, California, defines a well-constrained upper bound that shows the number of rock falls per site decreases rapidly with increasing Q. Because of the similarities of lithology and slope between the Eastern Sierra Nevada Range near Mammoth Lakes and the Wasatch Front near Salt Lake City, Utah, the probabilities derived from analysis of the Mammoth Lakes region were used to predict rock-fall probabilities for rock slopes near Salt Lake City in response to a magnitude 6.0 earthquake. These predicted probabilities were then used to generalize zones of rock-fall susceptibility. -from Authors
Rojas, Julio C; Kolomiets, Michael V; Bernal, Julio S
2018-01-01
Selecting optimal host plants is critical for herbivorous insects, such as fall armyworm (Spodoptera frugiperda), an important maize pest in the Americas and Africa. Fall armyworm larvae are presumed to have limited mobility, hence female moths are presumed to be largely responsible for selecting hosts. We addressed host selection by fall armyworm moths and neonate and older (3rd-instar) larvae, as mediated by resistance and herbivory in maize plants. Thus, we compared discrimination among three maize cultivars with varying degrees of resistance to fall armyworm, and between plants subjected or not to two types of herbivory. The cultivars were: (i) susceptible, and deficient in jasmonic acid (JA) production and green leaf volatiles (GLV) emissions (inbred line B73-lox10); (ii) modestly resistant (B73), and; (iii) highly resistant (Mp708). The herbivory types were: (i) ongoing (= fall armyworm larvae present), and; (ii) future (= fall armyworm eggs present). In choice tests, moths laid more eggs on the highly resistant cultivar, and least on the susceptible cultivar, though on those cultivars larvae performed poorest and best, respectively. In the context of herbivory, moths laid more eggs: (i) on plants subject to versus free of future herbivory, regardless of whether plants were deficient or not in JA and GLV production; (ii) on plants subject versus free of ongoing herbivory, and; (iii) on plants not deficient in compared to deficient in JA and GLV production. Neonate larvae dispersed aerially from host plants (i.e. ballooned), and most larvae colonized the modestly resistant cultivar, and fewest the highly resistant cultivar, suggesting quasi-directional, directed aerial descent. Finally, dispersing older larvae did not discriminate among the three maize cultivars, nor between maize plants and (plastic) model maize plants, suggesting random, visually-oriented dispersal. Our results were used to assemble a model of host selection by fall armyworm moths and larvae, including recommendations for future research.
NASA Technical Reports Server (NTRS)
Grant, J.R.; Thorpe, A. N.; James, C.; Michael, A.; Ware, M.; Senftle, F.; Smith, S.
1997-01-01
During recent high altitude flights, we have tested the aerosol section of the fast flow flight cascade impactor quartz crystal microbalance (QCM) on loan to Howard University from NASA. The aerosol mass collected during these flights was disappointingly small. Increasing the flow through the QCM did not correct the problem. It was clear that the instrument was not being operated under proper conditions for aerosol collect ion primarily because the gas dynamics is not well understood. A laboratory study was therefore undertaken using two different fast flow QCM's in an attempt to establish the gas flow characteristics of the aerosol sections and its effect on particle collection, Some tests were made at low temperatures but most of the work reported here was carried out at room temperature. The QCM is a cascade type impactor originally designed by May (1945) and later modified by Anderson (1966) and Mercer et al (1970) for chemical gas analysis. The QCM has been used extensively for collecting and sizing stratospheric aerosol particles. In this paper all flow rates are given or corrected and referred to in terms of air at STP. All of the flow meters were kept at STP. Although there have been several calibration and evaluation studies of moderate flow cascade impactors of less than or equal to 1 L/rein., there is little experimental information on the gas flow characteristics for fast flow rates greater than 1 L/rein.
NASA Astrophysics Data System (ADS)
Mori, Shintaro; Hisakado, Masato
2015-05-01
We propose a finite-size scaling analysis method for binary stochastic processes X(t) in { 0,1} based on the second moment correlation length ξ for the autocorrelation function C(t). The purpose is to clarify the critical properties and provide a new data analysis method for information cascades. As a simple model to represent the different behaviors of subjects in information cascade experiments, we assume that X(t) is a mixture of an independent random variable that takes 1 with probability q and a random variable that depends on the ratio z of the variables taking 1 among recent r variables. We consider two types of the probability f(z) that the latter takes 1: (i) analog [f(z) = z] and (ii) digital [f(z) = θ(z - 1/2)]. We study the universal functions of scaling for ξ and the integrated correlation time τ. For finite r, C(t) decays exponentially as a function of t, and there is only one stable renormalization group (RG) fixed point. In the limit r to ∞ , where X(t) depends on all the previous variables, C(t) in model (i) obeys a power law, and the system becomes scale invariant. In model (ii) with q ≠ 1/2, there are two stable RG fixed points, which correspond to the ordered and disordered phases of the information cascade phase transition with the critical exponents β = 1 and ν|| = 2.
Sobrero, Patricio Martín; Muzlera, Andrés; Frescura, Julieta; Jofré, Edgardo; Valverde, Claudio
2017-10-01
In this work, we surveyed the genome of P. protegens CHA0 in order to identify novel mRNAs possibly under the control of the Gac-Rsm cascade that might, for their part, serve to elucidate as-yet-unknown functions involved in the biocontrol of plant pathogens and/or in cellular processes required for fitness in natural environments. In view of the experimental evidence from former studies on the Gac-Rsm cascade, we developed a computational screen supported by a combination of sequence, structural and evolutionary constraints that led to a dataset of 43 potential novel mRNA targets. We then confirmed several mRNA targets experimentally and next focused on two of the respective genes that are physically linked to the orfamide biosynthetic gene cluster and whose predicted open-reading frames resembled cognate LuxR-type transcriptional regulators of cyclic lipopeptide clusters in related pseudomonads. In this report, we demonstrate that in strain CHA0, orfamide production is stringently dependent on a functional Gac-Rsm cascade and that both mRNAs encoding transcriptional regulatory proteins are under direct translational control of the RsmA/E proteins. Our results have thus revealed a hierarchical control over the expression of orfamide biosynthetic genes with the final transcriptional control subordinated to the global Gac-Rsm post-transcriptional regulatory system. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yoshida, Tokuyuki; Yoshioka, Yasuo; Morishita, Yuki; Aoyama, Michihiko; Tochigi, Saeko; Hirai, Toshiro; Tanaka, Kota; Nagano, Kazuya; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Higashisaka, Kazuma; Tsutsumi, Yasuo
2015-06-01
Recently, nanomaterial-mediated biological effects have been shown to be governed by the interaction of nanomaterials with some kinds of proteins in biological fluids, and the physical characteristics of the nanomaterials determine the extent and type of their interactions with proteins. Here, we examined the relationships between the surface properties of amorphous silica nanoparticles with diameters of 70 nm (nSP70), their interactions with some proteins in biological fluids, and their toxicity in mice after intravenous administration. The surface modification of nSP70 with amino groups (nSP70-N) prevented acute lethality and abnormal activation of the coagulation cascade found in the nSP70-treated group of mice. Since our previous study showed that coagulation factor XII played a role in the nSP70-mediated abnormal activation of the coagulation cascade, we examined the interaction of nSP70 and nSP70-N with coagulation factor XII. Coagulation factor XII bonded to the surface of nSP70 to a greater extent than that observed for nSP70-N, and consequently more activation of coagulation factor XII was observed for nSP70 than for nSP70-N. Collectively, our results suggest that controlling the interaction of nSP70 with blood coagulation factor XII by modifying the surface properties would help to inhibit the nSP70-mediated abnormal activation of the blood coagulation cascade.
Computer simulations of disordering kinetics in irradiated intermetallic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaczer, M.; Caro, A.; Victoria, M.
1994-11-01
Molecular-dynamics computer simulations of collision cascades in intermetallic Cu[sub 3]Au, Ni[sub 3]Al, and NiAl have been performed to study the nature of the disordering processes in the collision cascade. The choice of these systems was suggested by the quite accurate description of the thermodynamic properties obtained using embedded-atom-type potentials. Since melting occurs in the core of the cascades, interesting effects appear as a result of the superposition of the loss (and subsequent recovery) of the crystalline order and the evolution of the chemical order, both processes being developed on different time scales. In our previous simulations on Ni[sub 3]Al andmore » Cu[sub 3]Au [T. Diaz de la Rubia, A. Caro, and M. Spaczer, Phys. Rev. B 47, 11 483 (1993)] we found a significant difference between the time evolution of the chemical short-range order (SRO) and the crystalline order in the cascade core for both alloys, namely the complete loss of the crystalline structure but only partial chemical disordering. Recent computer simulations in NiAl show the same phenomena. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the atomic mobility, the relaxation time, and the saturation value of the chemical short-range order. An analytic model for the time evolution of the SRO is given.« less
NASA Astrophysics Data System (ADS)
Dennison, J. E.; Lipschutz, M. E.
1987-03-01
The authors report RNAA data for 14 siderophile, lithophile and chalcophile volatile/mobile trace elements in interior portions of 45 different H4-6 chondrites (49 samples) from Victoria Land, Antarctica and 5 H5 chondrites from the Yamato Mts., Antarctica. Relative to H5 chondrites of weathering types A and B, all elements are depleted (10 at statistically significant levels) in extensively weathered (types B/C and C) samples. Chondrites of weathering types A and B seem compositionally uncompromised and as useful as contemporary falls for trace-element studies. When data distributions for these 14 trace elements in non-Antarctic H chondrite falls and unpaired samples from Victoria Land and from the Yamato Mts. (Queen Maud Land) are compared statistically, numerous significant differences are apparent. These and other differences give ample cause to doubt that the various sample populations derive from the same parent population. The observed differences do no reflect weathering, chance or other trivial causes: a preterrestrial source must be responsible.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-03
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2333-078] Rumford Falls Hydro, LLC; Notice of Application Accepted for Filing, Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission and is available for public inspection: a. Types...
Chippendale, Tracy; Gentile, Patricia A; James, Melissa K; Melnic, Gloria
2017-06-01
The aim of the present study was to examine significant differences in patient characteristics, associated factors and outcomes for indoor versus outdoor falls among trauma patients. A retrospective cross-sectional study using data from the trauma registry and electronic medical records at a level 1 trauma center in the USA was carried out. People aged 55 years or older, for whom fall location could be identified (n = 712), were included in the study. Demographic information, functional status before admission, comorbid conditions, activation level, Injury Severity Score, discharge disposition and injury type were included in the comparative analyses. Associated factors for falls and fractures in each location were also examined using logistic regression. Significant differences were found in patient characteristics between indoor and outdoor fallers. Significant differences in outcomes were found related to discharge disposition and injury type. Open wounds were more common among outdoor fallers (26.5%) as compared with indoor fallers (16.3%, P = 0.002). Although disorders of joints with difficulty walking were associated with fractures among both indoor (OR 7.20, CI 2.19-23.66) and outdoor fallers (OR 5.65, CI 1.27-25.06), sex was only associated with fractures among those who fell indoors (OR 1.69 CI 1.12-2.56). Significant differences exist in characteristics of indoor and outdoor fallers, and for discharge disposition and injury type for each fall location among patients admitted for trauma care. Factors associated with fractures differ between indoor and outdoor fallers. Results can help to inform targeted primary and secondary prevention initiatives. Geriatr Gerontol Int 2017; 17: 905-912. © 2016 Japan Geriatrics Society.
Strength, power output and symmetry of leg muscles: effect of age and history of falling.
Perry, Mark C; Carville, Serena F; Smith, I Christopher H; Rutherford, Olga M; Newham, Di J
2007-07-01
Risk factors for medically unexplained falls may include reduced muscle power, strength and asymmetry in the lower limbs. Conflicting reports exist about strength and there is little information about power and symmetry. Forty-four healthy young people (29.3 +/- 0.6 years), 44 older non-fallers (75.9 +/- 0.6 years), and 34 older fallers (76.4 +/- 0.8 years) were studied. Isometric, concentric and eccentric strength of the knee and ankle muscles and leg extension power were measured bilaterally. The younger group was stronger in all muscles and types of contraction than both older groups (P < 0.02-0.0001). Strength differences between the older groups occasionally reached significance in individual muscles and types of contraction but overall the fallers had 85% of the strength and 79% of the power of the non-fallers (P < 0.001). Young subjects generated more power than both older groups (P < 0.0001) and the fallers generated less than the non-fallers (P = 0.03). Strength symmetry showed an inconsistent age effect in some muscles and some contraction types. This was similar overall in the two older groups. Both older groups had greater asymmetry in power than the young (P < 0.02-0.004). Power asymmetry tended to be greater in the fallers than the non-fallers but this did not reach significance. These data do not support the suggestion that asymmetry of strength and power are associated with either increasing age or fall history. Power output showed clear differences between age groups and fall status and appears to be the most relevant measurement of fall risk and highlights the cumulative effects on function of small changes in strength in individual muscle groups.
Sensitivity-enhanced optical temperature sensor with cascaded LPFGs
NASA Astrophysics Data System (ADS)
Tsutsumi, Yasuhiro; Miyoshi, Yuji; Ohashi, Masaharu
2011-12-01
We propose a new structure of optical fiber temperature sensor with cascaded long-period fiber gratings (LPFGs) and investigate the temperature dependent loss of cascaded LFPGs. Each of the cascaded LPFGs has the same resonance wavelength with the same temperature change, because the cascaded LPFGs are made of a heat-shrinkable tube and a screw. The total resonance loss of proposed cascaded LPFGs shows higher temperature sensitivity than that of a single LPFG. The thermal coefficient of 4-cascaded LPFG also shows more than 4 times larger than that of a single one.
Liu, Shan W; Sri-On, Jiraporn; Tirrell, Gregory Philip; Nickel, Christian; Bingisser, Roland
2016-08-01
Falls among older adults are a public health problem and are multifactorial. We sought to determine whether falls predict more serious conditions in older adult patients presenting to the emergency department (ED) with a "nonspecific complaint" (NSC). A secondary objective was to examine what factors predicted serious conditions among older adult patients with a fall. This study was a secondary analysis of a prospective delayed-type cross-sectional diagnostic study that included a 30-day follow-up. We included patients 65 years and older who presented to the ED from May 2007 and July 2011 with a NSC and had an Emergency Severity Index score of 2 or 3. We then compared the serious conditions among older adults who presented to the ED with a fall with those who did not fall in a cohort of patients with NSC. We had 1111 patients enrolled in our study; 518 (47%) of them had fallen. We found that 310 (60%) of elderly fall patients vs 349 (59%) of nonfall patients had a 30-day serious condition (P=.74). In multiple logistic regression analysis, falls did not predict serious conditions or 30-day mortality among all NSC patients. Among fall patients, male sex, diuretic use, and generalized weakness predicted serious conditions. Fall patients share many features with nonfall NSC patient. However, falls did not increase the risk of serious conditions. Falls in the elderly could be considered under the broader entity of NSC. Copyright © 2016 Elsevier Inc. All rights reserved.
Jensen, Lou E; Padilla, René
2011-01-01
A systematic review was conducted to determine the effectiveness of interventions to prevent falls in people with Alzheimer's disease (AD) and related dementias. Twelve research reports met inclusion criteria. Studies reported on three types of intervention: (1) exercise- and motor-based interventions, (2) nursing staff-directed interventions, and (3) multidisciplinary interventions. Strategies were offered as single or multifaceted intervention programs. All types of intervention resulted in benefit, although the evidence for effectiveness is tentative because of the studies' limitations. More research is needed to better understand appropriate dosages of intervention. No evidence was found for the effectiveness of prevention programs accessed as part of occasional respite care. Occupational therapy was seldom involved in the interventions researched. Because effective fall prevention programs are embedded in people's daily routines and encouraged participation in occupation, the contribution occupational therapy practitioners can make to the care of people with AD has yet to be fully realized.
Bushy-tailed woodrat abundance in dry forests of eastern Washington.
John F. Lehmkuhl; Keith D. Kistler; James S. Begley
2006-01-01
We studied bushy-tailed woodrats (Neotonza cinerea occidentalis) in the eastern Washington Cascade Range to estimate their density and survival in 3 typical dry forest cover types. We predicted woodrat density to be high, moderate, and low in mature mixed-conifer forests, young mixed-conifer forests, and open ponderosa pine forests, respectively....
ERIC Educational Resources Information Center
Kopec, Ashley M.; Carew, Thomas J.
2013-01-01
Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g.,…
Yap1 as a New Therapeutic Target in Neurofibromatosis Type 2
2013-09-01
Hedgehog and Notch has particularly contributed to the understanding and treatment of cancer1. A more recently discovered signalling cascade is the...Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8, 97–106 (2011). 2. Zhao, B., Lei, Q. Y. & Guan, K. L. The Hippo-YAP pathway: new
Cascade DNA nanomachine and exponential amplification biosensing.
Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee
2015-11-15
DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Forest Vegetation Monitoring Protocol for National Parks in the North Coast and Cascades Network
Woodward, Andrea; Hutten, Karen M.; Boetsch, John R.; Acker, Steven A.; Rochefort, Regina M.; Bivin, Mignonne M.; Kurth, Laurie L.
2009-01-01
Plant communities are the foundation for terrestrial trophic webs and animal habitat, and their structure and species composition are an integrated result of biological and physical drivers (Gates, 1993). Additionally, they have a major role in geologic, geomorphologic and soil development processes (Jenny, 1941; Stevens and Walker, 1970). Throughout most of the Pacific Northwest, environmental conditions support coniferous forests as the dominant vegetation type. In the face of anthropogenic climate change, forests have a global role as potential sinks for atmospheric carbon (Goodale and others, 2002). Consequently, knowledge of the status of forests in the three large parks of the NCCN [that is, Mount Rainier (MORA), North Cascades (NOCA), and Olympic (OLYM) National Parks] is fundamental to understanding the condition of Pacific Northwest ecosystems. Diverse climate and soil properties across the Pacific Northwest result in a variety of forest types (Franklin and Dyrness, 1973; Franklin and others, 1988; Henderson and others, 1989, 1992). The mountainous terrain of Mount Rainier, North Cascades, and Olympic National Parks create steep elevational and precipitation gradients within and among the parks: collectively, these parks span from sea level to more than 4,200 m; and include areas with precipitation from 90 to more than 500 cm. The resulting forests range from coastal rainforests with dense understories and massive trees draped with epiphytes; to areas with drought-adapted Ponderosa pines; to high-elevation subalpine fir forests interspersed with meadows just below treeline (table 1). These forests, in turn, are the foundation for other biotic communities constituting Pacific Northwest ecosystems.
Cascade Pumping of 1.9–3.3 μm Type-I Quantum Well GaSb-Based Diode Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi
Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in spectral region from 1.9 to 3.3 μm. Coated devices with ~100-μm-wide aperture and 3-mm-long cavity demonstrated continuous wave (CW) output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at room temperature. The corresponding narrow ridge lasers with nearly diffraction limited beams operate in CW regime with tens of mW of output power up to 60 °C. Two step shallow/deep narrow/wide ridge waveguide devicesmore » showed lower threshold currents and higher slope efficiencies compared to single step narrow ridge lasers. Laterally coupled DFB lasers mounted epi-up generated above 10 mW of tunable single frequency CW power at 20 °C near 3.22 μm.« less
Cascade Pumping of 1.9–3.3 μm Type-I Quantum Well GaSb-Based Diode Lasers
Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; ...
2017-03-24
Cascade pumping of type-I quantum well gain sections was utilized to increase output power and efficiency of GaSb-based diode lasers operating in spectral region from 1.9 to 3.3 μm. Coated devices with ~100-μm-wide aperture and 3-mm-long cavity demonstrated continuous wave (CW) output power of 1.96 W near 2 μm, 980 mW near 3 μm, 500 mW near 3.18 μm, and 360 mW near 3.25 μm at room temperature. The corresponding narrow ridge lasers with nearly diffraction limited beams operate in CW regime with tens of mW of output power up to 60 °C. Two step shallow/deep narrow/wide ridge waveguide devicesmore » showed lower threshold currents and higher slope efficiencies compared to single step narrow ridge lasers. Laterally coupled DFB lasers mounted epi-up generated above 10 mW of tunable single frequency CW power at 20 °C near 3.22 μm.« less
Scale-up on basis of structured mixing models: A new concept.
Mayr, B; Moser, A; Nagy, E; Horvat, P
1994-02-05
A new scale-up concept based upon mixing models for bioreactors equipped with Rushton turbines using the tanks-in-series concept is presented. The physical mixing model includes four adjustable parameters, i.e., radial and axial circulation time, number of ideally mixed elements in one cascade, and the volume of the ideally mixed turbine region. The values of the model parameters were adjusted with the application of a modified Monte-Carlo optimization method, which fitted the simulated response function to the experimental curve. The number of cascade elements turned out to be constant (N = 4). The model parameter radial circulation time is in good agreement with the one obtained by the pumping capacity. In case of remaining parameters a first or second order formal equation was developed, including four operational parameters (stirring and aeration intensity, scale, viscosity). This concept can be extended to several other types of bioreactors as well, and it seems to be a suitable tool to compare the bioprocess performance of different types of bioreactors. (c) 1994 John Wiley & Sons, Inc.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1982-01-01
A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Malet, Jean-Philippe; Roessner, Sigrid
2017-04-01
Landslides occur around the world, on every continent, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, it has been estimated that past landslide and landslide potential maps cover less than 1% of the slopes in these landmasses. Systematic information on the type, abundance, and distribution of existing landslides is lacking. Even in countries where landslide information is abundant (e.g. Italy), the vast majority of landslides caused by meteorological (intense or prolonged rainfall, rapid snowmelt) or geophysical (earthquake) triggers go undetected. This paucity of knowledge has consequences on the design of effective remedial and mitigation measures. Systematic use of Earth observation (EO) data and technologies can contribute effectively to detect, map, and monitor landslides, and landslide prone hillsides, in different physiographic and climatic regions. The CEOS (Committee on Earth Observation Satellites) Working Group on Disasters has recently launched a Landslide Pilot (period 2017-2019) with the aim to demonstrate the effective exploitation of satellite EO across the full cycle of landslide disaster risk management, including preparedness, response, and recovery at global, regional, and local scales, with a distinct multi-hazard focus on cascading impacts and risks. The Landslide Pilot is focusing efforts on three objectives: 1. Establish effective practices for merging different Earth Observation data (e.g. optical and radar) to better monitor and map landslide activity over time and space. 2. Demonstrate how landslide products, models, and services can support disaster risk management for multi-hazard and cascading landslide events. 3. Engage and partner with data brokers and end users to understand requirements and user expectations and get feedback through the activities described in objectives 1-2. The Landslide Pilot was endorsed in April 2016 and work started in fall 2016. The first data from the CEOS space agencies will become available in early 2017. The pilot is focused on two main regions (Nepal and the US Pacific Northwest), and five experimental regions (US Southeast Alaska, sub-part of China, the Caribbean, Peru, and Indonesia. The objective of this contribution is to present the Landslide Pilot and the working methodology to a broader scientific community with the goal of further encouraging active involvement.
NASA Astrophysics Data System (ADS)
Licznar, Paweł; Rupp, David; Adamowski, Witold
2013-04-01
In the fall of 2008, Municipal Water Supply and Sewerage Company (MWSSC) in Warsaw began operating the first large precipitation monitoring network dedicated to urban hydrology in Poland. The process of establishing the network as well as the preliminary phase of its operation, raised a number of questions concerning optimal gauge location and density and revealed the urgent need for new data processing techniques. When considering the full-field precipitation as input to hydrodynamic models of stormwater and combined sewage systems, standard processing techniques developed previously for single gauges and concentrating mainly on the analysis of maximum rainfall rates and intensity-duration-frequency (IDF) curves development were found inadequate. We used a multifractal rainfall modeling framework based on microcanonical multiplicative random cascades to analyze properties of Warsaw precipitation. We calculated breakdown coefficients (BDC) for the hierarchy of timescales from λ=1 (5-min) up to λ=128 (1280-min) for all 25 gauges in the network. At small timescales histograms of BDCs were strongly deformed due to the recording precision of rainfall amounts. A randomization procedure statistically removed the artifacts due to precision errors in the original series. At large timescales BDC values were sparse due to relatively short period of observations (2008-2011). An algorithm with a moving window was proposed to increase the number of BDC values at large timescales and to smooth their histograms. The resulting empirical BDC histograms were modeled by a theoretical "2N-B" distribution, which combined 2 separate normal (N) distributions and one beta (B) distribution. A clear evolution of BDC histograms from a 2N-B distribution for small timescales to a N-B distributions for intermediate timescales and finally to a single beta distributions for large timescales was observed for all gauges. Cluster analysis revealed close patterns of BDC distributions among almost all gauges and timescales with exception of two gauges located at the city limits (one gauge was located on the Okęcie airport). We evaluated the performance of the microcanonical cascades at disaggregating 1280-min (quasi daily precipitation totals) into 5-min rainfall data for selected gauges. Synthetic time series were analyzed with respect to their intermittency and variability of rainfall intensities and compared to observational series. We showed that microcanonical cascades models could be used in practice for generating synthetic rainfall time series suitable as input to urban hydrology models in Warsaw.
NASA Astrophysics Data System (ADS)
Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying
2017-09-01
As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.
Design and Application of Automatic Falling Device for Different Brands of Goods
NASA Astrophysics Data System (ADS)
Yang, Xudong; Ge, Qingkuan; Zuo, Ping; Peng, Tao; Dong, Weifu
2017-12-01
The Goods-Falling device is an important device in the intelligent sorting goods sorting system, which is responsible for the temporary storage and counting of the goods, and the function of putting the goods on the conveyor belt according to certain precision requirements. According to the present situation analysis and actual demand of the domestic goods sorting equipment, a vertical type Goods - Falling Device is designed and the simulation model of the device is established. The dynamic characteristics such as the angular error of the opening and closing mechanism are carried out by ADAMS software. The simulation results show that the maximum angular error is 0.016rad. Through the test of the device, the goods falling speed is 7031/hour, the good of the falling position error within 2mm, meet the crawl accuracy requirements of the palletizing robot.
Effect of free fall on higher plants.
NASA Technical Reports Server (NTRS)
Gordon, S. A.
1973-01-01
The influence of exposure to the free-fall state on the orientation, morphogenesis, physiology, and radiation response of higher plants is briefly summarized. It is proposed that the duration of the space-flight experiments has been to brief to permit meaningful effects of free fall on general biochemistry, growth, and development to appear. However, two types of significant effect did occur. The first is on differential growth - i.e., tropism and epinasty - resulting from the absence of a normal geostimulus. For these phenomena it is suggested that ground-based experiments with the clinostat would suffice to mimic the effect of the free-fall state. The second is an apparent interaction between the radiation response and some flight condition, yielding an enhanced microspore abortion, a disturbed spindle function, and a stunting of stamen hairs. It is suggested that this apparent interaction may be derived from a shift in the rhythm of the cell cycle, induced by the free fall.
Typing pictures: Linguistic processing cascades into finger movements.
Scaltritti, Michele; Arfé, Barbara; Torrance, Mark; Peressotti, Francesca
2016-11-01
The present study investigated the effect of psycholinguistic variables on measures of response latency and mean interkeystroke interval in a typewritten picture naming task, with the aim to outline the functional organization of the stages of cognitive processing and response execution associated with typewritten word production. Onset latencies were modulated by lexical and semantic variables traditionally linked to lexical retrieval, such as word frequency, age of acquisition, and naming agreement. Orthographic variables, both at the lexical and sublexical level, appear to influence just within-word interkeystroke intervals, suggesting that orthographic information may play a relevant role in controlling actual response execution. Lexical-semantic variables also influenced speed of execution. This points towards cascaded flow of activation between stages of lexical access and response execution. Copyright © 2016 Elsevier B.V. All rights reserved.
Integrated all-optical infrared switchable plasmonic quantum cascade laser.
Kohoutek, John; Bonakdar, Alireza; Gelfand, Ryan; Dey, Dibyendu; Nia, Iman Hassani; Fathipour, Vala; Memis, Omer Gokalp; Mohseni, Hooman
2012-05-09
We report a type of infrared switchable plasmonic quantum cascade laser, in which far field light in the midwave infrared (MWIR, 6.1 μm) is modulated by a near field interaction of light in the telecommunications wavelength (1.55 μm). To achieve this all-optical switch, we used cross-polarized bowtie antennas and a centrally located germanium nanoslab. The bowtie antenna squeezes the short wavelength light into the gap region, where the germanium is placed. The perturbation of refractive index of the germanium due to the free carrier absorption produced by short wavelength light changes the optical response of the antenna and the entire laser intensity at 6.1 μm significantly. This device shows a viable method to modulate the far field of a laser through a near field interaction.
Wavelet synthetic method for turbulent flow.
Zhou, Long; Rauh, Cornelia; Delgado, Antonio
2015-07-01
Based on the idea of random cascades on wavelet dyadic trees and the energy cascade model known as the wavelet p model, a series of velocity increments in two-dimensional space are constructed in different levels of scale. The dynamics is imposed on the generated scales by solving the Euler equation in the Lagrangian framework. A dissipation model is used in order to cover the shortage of the p model, which only predicts in inertial range. Wavelet reconstruction as well as the multiresolution analysis are then performed on each scales. As a result, a type of isotropic velocity field is created. The statistical properties show that the constructed velocity fields share many important features with real turbulence. The pertinence of this approach in the prediction of flow intermittency is also discussed.
Kloos, Anne D; Kegelmeyer, Deborah A; White, Susan E; Kostyk, Sandra K
2012-01-01
Gait and balance impairments lead to frequent falls and injuries in individuals with Huntington's disease (HD). Assistive devices (ADs) such as canes and walkers are often prescribed to prevent falls, but their efficacy is unknown. We systematically examined the effects of different types of ADs on quantitative gait measures during walking in a straight path and around obstacles. Spatial and temporal gait parameters were measured in 21 subjects with HD as they walked across a GAITRite walkway under 7 conditions (i.e., using no AD and 6 commonly prescribed ADs: a cane, a weighted cane, a standard walker, and a 2, 3 or 4 wheeled walker). Subjects also were timed and observed for number of stumbles and falls while walking around two obstacles in a figure-of-eight pattern. Gait measure variability (i.e., coefficient of variation), an indicator of fall risk, was consistently better when using the 4WW compared to other ADs. Subjects also walked the fastest and had the fewest number of stumbles and falls when using the 4WW in the figure-of-eight course. Subjects walked significantly slower using ADs compared to no AD both across the GAITRite and in the figure-of-eight. Measures reflecting gait stability and safety improved with the 4WW but were made worse by some other ADs.
White, Susan E.; Kostyk, Sandra K.
2012-01-01
Background Gait and balance impairments lead to frequent falls and injuries in individuals with Huntington's disease (HD). Assistive devices (ADs) such as canes and walkers are often prescribed to prevent falls, but their efficacy is unknown. We systematically examined the effects of different types of ADs on quantitative gait measures during walking in a straight path and around obstacles. Methods Spatial and temporal gait parameters were measured in 21 subjects with HD as they walked across a GAITRite walkway under 7 conditions (i.e., using no AD and 6 commonly prescribed ADs: a cane, a weighted cane, a standard walker, and a 2, 3 or 4 wheeled walker). Subjects also were timed and observed for number of stumbles and falls while walking around two obstacles in a figure-of-eight pattern. Results Gait measure variability (i.e., coefficient of variation), an indicator of fall risk, was consistently better when using the 4WW compared to other ADs. Subjects also walked the fastest and had the fewest number of stumbles and falls when using the 4WW in the figure-of-eight course. Subjects walked significantly slower using ADs compared to no AD both across the GAITRite and in the figure-of-eight. Measures reflecting gait stability and safety improved with the 4WW but were made worse by some other ADs. PMID:22363511
NASA Astrophysics Data System (ADS)
Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.
2013-06-01
The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.
Semiconductor Lasers Containing Quantum Wells in Junctions
NASA Technical Reports Server (NTRS)
Yang, Rui Q.; Qiu, Yueming
2004-01-01
In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).
Nguyen, Minh-Hang; Tsai, Hau-Jie; Wu, Jen-Kuei; Wu, Yi-Shiuan; Lee, Ming-Chang; Tseng, Fan-Gang
2013-09-15
We present a chemical-biosensor in the Mid-IR range and based on cascaded porous silicon made on p- and n-type (100) silicon substrates of resistivities between 0.001Ωcm and 0.005Ωcm. The stacked porous layers of various porosities (20-80%) and thicknesses (5-9μm) are formed by successive electrochemical etchings with different current densities. Working with FTIR technique that possesses fast response, high sensitivity, and capability of detecting and identifying functional groups, the cascaded porous structures provided enhanced refractive index sensitivities and reduced detection limits in chemical and biodetection. The largest wavenumber shifts were 50cm(-1)/mM obtained for d-(+)-glucose and 96cm(-1)/μg/mL for Cy5-conjungated Rabbit Anti-Mouse IgG. The lowest detectable concentration of glucose was 80μM (1.4mg/mL) with PS porosity of 40% and thickness of about 9μm while it was 40ng/mL for Cy5-conjugated Rabbit Anti-Mouse IgG which is 2.5×10(5) folds better than those in literature. Copyright © 2013 Elsevier B.V. All rights reserved.
Cascading activation from lexical processing to letter-level processing in written word production.
Buchwald, Adam; Falconer, Carolyn
2014-01-01
Descriptions of language production have identified processes involved in producing language and the presence and type of interaction among those processes. In the case of spoken language production, consensus has emerged that there is interaction among lexical selection processes and phoneme-level processing. This issue has received less attention in written language production. In this paper, we present a novel analysis of the writing-to-dictation performance of an individual with acquired dysgraphia revealing cascading activation from lexical processing to letter-level processing. The individual produced frequent lexical-semantic errors (e.g., chipmunk → SQUIRREL) as well as letter errors (e.g., inhibit → INBHITI) and had a profile consistent with impairment affecting both lexical processing and letter-level processing. The presence of cascading activation is suggested by lower letter accuracy on words that are more weakly activated during lexical selection than on those that are more strongly activated. We operationalize weakly activated lexemes as those lexemes that are produced as lexical-semantic errors (e.g., lethal in deadly → LETAHL) compared to strongly activated lexemes where the intended target word (e.g., lethal) is the lexeme selected for production.
Culmination of the inverse cascade - mean flow and fluctuations
NASA Astrophysics Data System (ADS)
Frishman, Anna; Herbert, Corentin
2017-11-01
An inverse cascade-energy transfer to progressively larger scales - is a salient feature of two-dimensional turbulence. If the cascade reaches the system scale, it terminates in the self organization of the turbulence into a large scale coherent structure, on top of small scale fluctuations. A recent theoretical framework in which this coherent mean flow can be obtained will be discussed. Assuming that the quasi-linear approximation applies, the forcing acts at small scales, and a strong shear, the theory gives an inverse relation between the average momentum flux and the mean shear rate. It will be argued that this relation is quite general, being independent of the dissipation mechanism and largely insensitive to the type of forcing. Furthermore, in the special case of a homogeneous forcing, the relation between the momentum flux and mean shear rate is completely determined by dimensional analysis and symmetry arguments. The subject of the average energy of the fluctuations will also be touched upon, focusing on a vortex mean flow. In contrast to the momentum flux, we find that the energy of the fluctuations is determined by zero modes of the mean-flow advection operator. Using an analytic derivation for the zero mo.
Monitoring All Weather Precipitation Using PIP and MRR
NASA Astrophysics Data System (ADS)
Bliven, Francis; Petersen, Walter; Kulie, Mark; Pettersen, Claire; Wolff, David; Dutter, Michael
2015-04-01
The objective of this study is to demonstrate the science benefit of monitoring all weather precipitation for the Global Precipitation Measurement (GPM) Mission Ground Validation Program using a combination of two instruments: the Precipitation Imaging Package (PIP) and a Microwave Rain Radar-II (MRR). The PIP is a new ground based precipitation imaging instrument that uses a high speed camera and advanced processing software to image individual hydrometeors, measure hydrometeor size distributions, track individual hydrometeors and compute fall velocities. PIP hydrometeor data are also processed using algorithms to compute precipitation rates in one-minute time increments, and to discriminate liquid, mixed and frozen (e.g., snow) precipitation. The MRR, a vertically-pointing 24 GHz radar, is well documented in the literature and monitors hydrometeor vertical profile characteristics such as Doppler fall-speed spectra, radar reflectivity, size distribution and precipitation rate. Of interest to GPM direct and physical ground validation are collections of robust, satellite overpass-coincident, long-duration datasets consisting of observations of the aforementioned hydrometeor characteristics for falling snow and mixes of falling-snow and rain, as there are relatively few instruments that provide continuous observations of coincident hydrometeor image, size, and fall velocity in cold regions due to harsh environmental conditions. During extended periods of 2013 and 2014, concurrent PIP and MRR data sets were obtained at the National Weather Service station in Marquette, Michigan (2014), and at the NASA Wallops Flight Facility in Wallops Island, Virginia (2013,14). Herein we present examples of those data sets for a variety of weather conditions (rain, snow, frontal passages, lake effect snow events etc.). The results demonstrate 1) that the PIP and MRR are well-suited to long term operation in cold regions; 2) PIP and MRR data products are useful for characterizing a wide variety of precipitation types and conditions; 3) systematic variability in bulk snow characteristics such as fall speed and size distributions can be observed between event types, but also within individual event types (e.g., within a given synoptic or lake effect storm). The observed behavior suggests that added information on environmental or cloud parameters may be necessary to further define snowfall types/regimes or to estimate snow water equivalent rates using satellite or ground-based active or passive remote sensing tools.
48 CFR 46.202 - Types of contract quality requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Quality Requirements 46.202 Types of contract quality requirements. Contract quality requirements fall into four general categories, depending on the extent of... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Types of contract quality...
The role of forest humus in watershed management in New England
G. R., Jr. Trimble; Howard W. Lull
1956-01-01
Forest humus is one of the most interesting components of the forest environment. Its surface serves as a depository for leaf fall and needle fall, with successive depths marking stages of transmutation from the freshly fallen to the decomposed. And humus is responsive: humus type and depth are indicators of forest treatment and, to some extent, of site quality....
29 CFR Appendix C to Subpart M of... - Personal Fall Arrest Systems
Code of Federal Regulations, 2014 CFR
2014-07-01
... appendix D of this subpart, the test methods listed here in appendix C can also be used to assist employers... about the system based on its performance during testing so that the employer can know if the system... deceleration device of the self-retracting type since this can result in additional free fall for which the...
29 CFR Appendix C to Subpart M of... - Personal Fall Arrest Systems
Code of Federal Regulations, 2013 CFR
2013-07-01
... appendix D of this subpart, the test methods listed here in appendix C can also be used to assist employers... about the system based on its performance during testing so that the employer can know if the system... deceleration device of the self-retracting type since this can result in additional free fall for which the...
29 CFR Appendix C to Subpart M of... - Personal Fall Arrest Systems
Code of Federal Regulations, 2012 CFR
2012-07-01
... appendix D of this subpart, the test methods listed here in appendix C can also be used to assist employers... about the system based on its performance during testing so that the employer can know if the system... deceleration device of the self-retracting type since this can result in additional free fall for which the...
Guolei Li; Yan Zhu; Yong Liu; Jiaxi Wang; Jiajia Liu; R. Kasten Dumroese
2014-01-01
Maintaining proper seedling nitrogen status is important for outplanting success. Fall fertilization of evergreen conifer seedlings is a well-known technique for averting nitrogen (N) dilution caused by continued seedling growth during hardening. For deciduous seedlings, this technique is much less understood, and regardless of foliage type, the interaction of N status...
Survey on fall detection and fall prevention using wearable and external sensors.
Delahoz, Yueng Santiago; Labrador, Miguel Angel
2014-10-22
According to nihseniorhealth.gov (a website for older adults), falling represents a great threat as people get older, and providing mechanisms to detect and prevent falls is critical to improve people's lives. Over 1.6 million U.S. adults are treated for fall-related injuries in emergency rooms every year suffering fractures, loss of independence, and even death. It is clear then, that this problem must be addressed in a prompt manner, and the use of pervasive computing plays a key role to achieve this. Fall detection (FD) and fall prevention (FP) are research areas that have been active for over a decade, and they both strive for improving people's lives through the use of pervasive computing. This paper surveys the state of the art in FD and FP systems, including qualitative comparisons among various studies. It aims to serve as a point of reference for future research on the mentioned systems. A general description of FD and FP systems is provided, including the different types of sensors used in both approaches. Challenges and current solutions are presented and described in great detail. A 3-level taxonomy associated with the risk factors of a fall is proposed. Finally, cutting edge FD and FP systems are thoroughly reviewed and qualitatively compared, in terms of design issues and other parameters.
Pinchbeck, G L; Clegg, P D; Proudman, C J; Morgan, K L; French, N R
2004-07-01
Falls during racing present a risk of injury to both horse and jockey and a risk of fatality to horses. To use video recordings of races to describe the circumstances surrounding horse falls at hurdle and steeplechase fences and to identify and quantify within-race risk factors for horse falls in National Hunt racing in the UK. A retrospective, matched, nested case-control study using video recordings of races was conducted on 6 UK racecourses. Cases and controls were matched on both race type and jump number at which the fall occurred. Conditional logistic regression analysis was used to examine the univariable and multivariable relationship between predictor variables and the risk of falling. The risk of falling was significantly associated with whip use and race progress. Horses which were being whipped and progressing through the race were at greater than 7 times the risk of falling compared to horses which were not being whipped and which had no change in position or lost position through the field. This study has identified whip use and the position of the horse with respect to others in the field as potential risk factors for horse falls. If these findings are confirmed by the use of intervention trials (e.g. with whip-free or restricted whip use races), modifications could be introduced which would reduce the frequency of horse falls, leading to improved equine welfare.
In-hospital paediatric accidents: an integrative review of the literature.
Da Rin Della Mora, R; Bagnasco, A; Sasso, L
2012-12-01
Paediatric hospitals can be perceived by children, parents, health professionals as 'safe' places, but accidents do occur. To review publications relating to in-hospital paediatric accidents and highlight the state-of-the-science concerning this issue especially in relation to falls, and the evolution of research addressing this issue. Integrative review of papers published before March 2011 on accidents and falls occurred in hospitalized children. Electronic databases (PubMed, Cumulative Index to Nursing and Allied Health Literature and Cochrane Library databases) and further hand searching through references were searched. The inclusion criteria were articles involving observational, quasi-experimental or experimental studies in English or Italian. Exclusion criteria were articles addressing the outcomes of falls caused by suspect violence on children. Thirteen studies in English were included. Of the 13 studies conducted between 1963 and 2010, 10 had been conducted in the last 5 years; 10 in the USA. The studies were divided into two categories: contextualization and prevention of the 'accident' or 'fall' phenomenon (10 studies), and fall risk assessment (three studies). The most frequent type of design was observational explorative/descriptive. Several areas of investigation were explored (hazardous environment, children's characteristics correlated to accidents/falls, characteristics of the accidents/falls and their outcomes, paediatric fall risk factors and risk assessment tools, fall risk prevention programmes, parents' perceptions of accident/fall risks, etc.). No comparable methods were used to investigate the contextualization and prevention of the 'accident' and 'fall' phenomena; proposed fall risk assessment tools were not evaluated for their reliability and validity. Consensus would be needed around the approach to accidents in terms of: the definition of 'accident' and 'fall'; 'fall-related injury' and respective classifications; the frequency and rate calculation methods; the tools used to assess the risk of falls; and evidence-based practice aimed at preventing them. © 2012 The Authors. International Nursing Review © 2012 International Council of Nurses.
Tampering with the turbulent energy cascade with polymer additives
NASA Astrophysics Data System (ADS)
Valente, Pedro; da Silva, Carlos; Pinho, Fernando
2014-11-01
We show that the strong depletion of the viscous dissipation in homogeneous viscoelastic turbulence reported by previous authors does not necessarily imply a depletion of the turbulent energy cascade. However, for large polymer relaxation times there is an onset of a polymer-induced kinetic energy cascade which competes with the non-linear energy cascade leading to its depletion. Remarkably, the total energy cascade flux from both cascade mechanisms remains approximately the same fraction of the kinetic energy over the turnover time as the non-linear energy cascade flux in Newtonian turbulence. The authors acknowledge the funding from COMPETE, FEDER and FCT (Grant PTDC/EME-MFE/113589/2009).
Investigation of the Building M6-794 Roofing Fatality, Type A Mishap
NASA Technical Reports Server (NTRS)
Casper, John H.; French, Kristie; Tipton, David A.; Bennardo, C. P.; Miller, Darcy H.; Facemire, David L.
2006-01-01
The Building M6-794 Roofing Fatality Mishap Investigation Board (Board) was commissioned to gather information; analyze the facts; identify the proximate causes, root causes, and contributing factors relating to the mishap; and recommend appropriate actions to prevent a similar mishap from occurring in the future. During the investigation of this mishap, the Board also examined the fall protection policies of other NASA Centers and operating locations to gain an understanding of how those entities conduct fall protection, as well as the degree to which fall protection is standardized across the Agency.
Choi, Jin Young; Kim, Seong Bum; Eo, Seong Kug
2015-01-01
Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I–dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I–dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident–to-hematopoietic–to-resident cells that drives cytokine–to-chemokine–to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues. PMID:26618488
Cosmic-ray cascades photographed in scintillator
NASA Technical Reports Server (NTRS)
Barrowes, S. C.; Huggett, R. W.; Levit, L. B.; Porter, L. G.
1974-01-01
Light produced by nuclear-electromagnetic cascades in a plastic scintillator can be photographed, and the resulting images on film used to measure both the energy content of the cascades and also the positions at which the cascades passed through the scintillator. The energy content of a cascade can be measured to 20% and its position determined to plus or minus 0.8 cm in each scintillator. Techniques for photographing the cascades and analyzing the film are described. Sample data are presented and discussed.
Higher-order Kerr effect and harmonic cascading in gases.
Bache, Morten; Eilenberger, Falk; Minardi, Stefano
2012-11-15
The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity.