Science.gov

Sample records for cascading trophic interactions

  1. Consumer-mediated recycling and cascading trophic interactions.

    PubMed

    Leroux, Shawn J; Loreau, Michel

    2010-07-01

    Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.

  2. What is a Trophic Cascade?

    PubMed

    Ripple, William J; Estes, James A; Schmitz, Oswald J; Constant, Vanessa; Kaylor, Matthew J; Lenz, Adam; Motley, Jennifer L; Self, Katharine E; Taylor, David S; Wolf, Christopher

    2016-11-01

    Few concepts in ecology have been so influential as that of the trophic cascade. Since the 1980s, the term has been a central or major theme of more than 2000 scientific articles. Despite this importance and widespread usage, basic questions remain about what constitutes a trophic cascade. Inconsistent usage of language impedes scientific progress and the utility of scientific concepts in management and conservation. Herein, we offer a definition of trophic cascade that is designed to be both widely applicable yet explicit enough to exclude extraneous interactions. We discuss our proposed definition and its implications, and define important related terms, thereby providing a common language for scientists, policy makers, conservationists, and other stakeholders with an interest in trophic cascades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  4. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  5. Trophic cascades across ecosystems.

    PubMed

    Knight, Tiffany M; McCoy, Michael W; Chase, Jonathan M; McCoy, Krista A; Holt, Robert D

    2005-10-06

    Predation can be intense, creating strong direct and indirect effects throughout food webs. In addition, ecologists increasingly recognize that fluxes of organisms across ecosystem boundaries can have major consequences for community dynamics. Species with complex life histories often shift habitats during their life cycles and provide potent conduits coupling ecosystems. Thus, local interactions that affect predator abundance in one ecosystem (for example a larval habitat) may have reverberating effects in another (for example an adult habitat). Here we show that fish indirectly facilitate terrestrial plant reproduction through cascading trophic interactions across ecosystem boundaries. Fish reduce larval dragonfly abundances in ponds, leading to fewer adult dragonflies nearby. Adult dragonflies consume insect pollinators and alter their foraging behaviour. As a result, plants near ponds with fish receive more pollinator visits and are less pollen limited than plants near fish-free ponds. Our results confirm that strong species interactions can reverberate across ecosystems, and emphasize the importance of landscape-level processes in driving local species interactions.

  6. Predator diversity and identity drive interaction strength and trophic cascades in a food web.

    PubMed

    Otto, Sonja B; Berlow, Eric L; Rank, Nathan E; Smiley, John; Brose, Ulrich

    2008-01-01

    Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.

  7. The body size dependence of trophic cascades.

    PubMed

    DeLong, John P; Gilbert, Benjamin; Shurin, Jonathan B; Savage, Van M; Barton, Brandon T; Clements, Christopher F; Dell, Anthony I; Greig, Hamish S; Harley, Christopher D G; Kratina, Pavel; McCann, Kevin S; Tunney, Tyler D; Vasseur, David A; O'Connor, Mary I

    2015-03-01

    Trophic cascades are indirect positive effects of predators on resources via control of intermediate consumers. Larger-bodied predators appear to induce stronger trophic cascades (a greater rebound of resource density toward carrying capacity), but how this happens is unknown because we lack a clear depiction of how the strength of trophic cascades is determined. Using consumer resource models, we first show that the strength of a trophic cascade has an upper limit set by the interaction strength between the basal trophic group and its consumer and that this limit is approached as the interaction strength between the consumer and its predator increases. We then express the strength of a trophic cascade explicitly in terms of predator body size and use two independent parameter sets to calculate how the strength of a trophic cascade depends on predator size. Both parameter sets predict a positive effect of predator size on the strength of a trophic cascade, driven mostly by the body size dependence of the interaction strength between the first two trophic levels. Our results support previous empirical findings and suggest that the loss of larger predators will have greater consequences on trophic control and biomass structure in food webs than the loss of smaller predators.

  8. Intraspecific variation in a predator affects community structure and cascading trophic interactions.

    PubMed

    Post, David M; Palkovacs, Eric P; Schielke, Erika G; Dodson, Stanley I

    2008-07-01

    Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.

  9. Unintended Consequences of Management Actions in Salt Pond Restoration: Cascading Effects in Trophic Interactions

    PubMed Central

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, L. Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark P.; Topping, Brent R.; Shellenbarger, Gregory G.; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  10. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions

    USGS Publications Warehouse

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark; Topping, Brent R.; Shellenbarger, Gregory; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  11. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions.

    PubMed

    Takekawa, John Y; Ackerman, Joshua T; Brand, L Arriana; Graham, Tanya R; Eagles-Smith, Collin A; Herzog, Mark P; Topping, Brent R; Shellenbarger, Gregory G; Kuwabara, James S; Mruz, Eric; Piotter, Sara L; Athearn, Nicole D

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  12. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate–boreal forest

    PubMed Central

    Frelich, Lee E.; Peterson, Rolf O.; Dovčiak, Martin; Reich, Peter B.; Vucetich, John A.; Eisenhauer, Nico

    2012-01-01

    As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems. PMID:23007083

  13. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest.

    PubMed

    Frelich, Lee E; Peterson, Rolf O; Dovčiak, Martin; Reich, Peter B; Vucetich, John A; Eisenhauer, Nico

    2012-11-05

    As the climate warms, boreal tree species are expected to be gradually replaced by temperate species within the southern boreal forest. Warming will be accompanied by changes in above- and below-ground consumers: large moose (Alces alces) replaced by smaller deer (Odocoileus virginianus) above-ground, and small detritivores replaced by larger exotic earthworms below-ground. These shifts may induce a cascade of ecological impacts across trophic levels that could alter the boreal to temperate forest transition. Deer are more likely to browse saplings of temperate tree species, and European earthworms favour seedlings of boreal tree species more than temperate species, potentially hindering the ability of temperate tree species to expand northwards. We hypothesize that warming-induced changes in consumers will lead to novel plant communities by changing the filter on plant species success, and that above- and below-ground cascades of trophic interactions will allow boreal tree species to persist during early phases of warming, leading to an abrupt change at a later time. The synthesis of evidence suggests that consumers can modify the climate change-induced transition of ecosystems.

  14. The biogeography of trophic cascades on US oyster reefs.

    PubMed

    Kimbro, David L; Byers, James E; Grabowski, Jonathan H; Hughes, A Randall; Piehler, Michael F

    2014-07-01

    Predators can indirectly benefit prey populations by suppressing mid-trophic level consumers, but often the strength and outcome of trophic cascades are uncertain. We manipulated oyster reef communities to test the generality of potential causal factors across a 1000-km region. Densities of oyster consumers were weakly influenced by predators at all sites. In contrast, consumer foraging behaviour in the presence of predators varied considerably, and these behavioural effects altered the trophic cascade across space. Variability in the behavioural cascade was linked to regional gradients in oyster recruitment to and sediment accumulation on reefs. Specifically, asynchronous gradients in these factors influenced whether the benefits of suppressed consumer foraging on oyster recruits exceeded costs of sediment accumulation resulting from decreased consumer activity. Thus, although predation on consumers remains consistent, predator influences on behaviour do not; rather, they interact with environmental gradients to cause biogeographic variability in the net strength of trophic cascades.

  15. Trophic cascade alters ecosystem carbon exchange.

    PubMed

    Strickland, Michael S; Hawlena, Dror; Reese, Aspen; Bradford, Mark A; Schmitz, Oswald J

    2013-07-02

    Trophic cascades--the indirect effects of carnivores on plants mediated by herbivores--are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a (13)C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems.

  16. Quantitative gradient of subsidies reveals a threshold in community-level trophic cascades.

    PubMed

    Klemmer, Amanda J; Richardson, John S

    2013-09-01

    Evidence varies on how subsidies affect trophic cascades within recipient food webs. This could be due to complex nonlinearities being masked by single-level manipulations (presence/absence) of subsidies in past studies. We predicted that trophic cascade strength would increase nonlinearly across a gradient of subsidies. We set out to reveal these complex, nonlinear relationships through manipulating a quantitative gradient of detrital subsidies to lake benthic food webs along with the presence/absence of trout. Contrary to our prediction, we found that trophic cascades only occurred at low subsidy levels, disappearing as subsidies increased. This threshold in trophic cascade strength may be due to an increase in intermediate predators in the absence of top predators, as well as changes in the proportion of armored vs. un-armored primary consumers. Future studies on the effect of subsidies on trophic cascade strength need to incorporate naturally occurring gradients to reveal the complex direct and indirect interactions within food webs.

  17. Warming modifies trophic cascades and eutrophication in experimental freshwater communities.

    PubMed

    Kratina, Pavel; Greig, Hamish S; Thompson, Patrick L; Carvalho-Pereira, Ticiana S A; Shurin, Jonathan B

    2012-06-01

    Climate warming is occurring in concert with other anthropogenic changes to ecosystems. However, it is unknown whether and how warming alters the importance of top-down vs. bottom-up control over community productivity and variability. We performed a 16-month factorial experimental manipulation of warming, nutrient enrichment, and predator presence in replicated freshwater pond mesocosms to test their independent and interactive impacts. Warming strengthened trophic cascades from fish to primary producers, and it decreased the impact of eutrophication on the mean and temporal variation of phytoplankton biomass. These impacts varied seasonally, with higher temperatures leading to stronger trophic cascades in winter and weaker algae blooms under eutrophication in summer. Our results suggest that higher temperatures may shift the control of primary production in freshwater ponds toward stronger top-down and weaker bottom-up effects. The dampened temporal variability of algal biomass under eutrophication at higher temperatures suggests that warming may stabilize some ecosystem processes.

  18. Damped trophic cascades driven by fishing in model marine ecosystems.

    PubMed

    Andersen, K H; Pedersen, M

    2010-03-07

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped as it comes further away from the perturbed trophic level. Fishing on several trophic levels leads to a disappearance of the signature of the trophic cascade. Differences in fishing patterns among ecosystems might influence whether a trophic cascade is observed.

  19. Novel trophic cascades: apex predators enable coexistence.

    PubMed

    Wallach, Arian D; Ripple, William J; Carroll, Scott P

    2015-03-01

    Novel assemblages of native and introduced species characterize a growing proportion of ecosystems worldwide. Some introduced species have contributed to extinctions, even extinction waves, spurring widespread efforts to eradicate or control them. We propose that trophic cascade theory offers insights into why introduced species sometimes become harmful, but in other cases stably coexist with natives and offer net benefits. Large predators commonly limit populations of potentially irruptive prey and mesopredators, both native and introduced. This top-down force influences a wide range of ecosystem processes that often enhance biodiversity. We argue that many species, regardless of their origin or priors, are allies for the retention and restoration of biodiversity in top-down regulated ecosystems.

  20. Planktonic dispersal dampens temporal trophic cascades in pond metacommunities.

    PubMed

    Howeth, Jennifer G; Leibold, Mathew A

    2008-03-01

    Trophic cascades, in which changes in predation affect the biomass of lower trophic levels, vary substantially in strength and incidence. Most work to explain this variation has focused on local factors and has ignored larger regional effects. To study how metacommunity dynamics can alter trophic cascades, we constructed mesocosm metacommunities consisting of three pond communities with heterogeneous levels of fish predation and examined how planktonic dispersal rate (5-140% per week) affected biomass partitioning. Two of the three communities differed continually in the occurrence of fish and supported different but constant environments in a 'spatial trophic cascade,' while the third community supported temporally variable fish occurrence in a 'temporal trophic cascade.' We find that the presence, but the not the magnitude, of dispersal dampens temporal trophic cascades through an increase in grazer biomass. In contrast, dispersal has no effect on the strength of spatial cascades due to strong sorting pressures in the communities with constant presence or absence of fish as top predators.

  1. Critical assessment and ramifications of a purported marine trophic cascade

    USGS Publications Warehouse

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  2. Critical assessment and ramifications of a purported marine trophic cascade

    NASA Astrophysics Data System (ADS)

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-02-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  3. Critical assessment and ramifications of a purported marine trophic cascade

    PubMed Central

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions. PMID:26876514

  4. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    PubMed

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  5. Spider foraging strategy affects trophic cascades under natural and drought conditions

    PubMed Central

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-01-01

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370

  6. Trophic cascade facilitates coral recruitment in a marine reserve

    PubMed Central

    Mumby, Peter J.; Harborne, Alastair R.; Williams, Jodene; Kappel, Carrie V.; Brumbaugh, Daniel R.; Micheli, Fiorenza; Holmes, Katherine E.; Dahlgren, Craig P.; Paris, Claire B.; Blackwell, Paul G.

    2007-01-01

    Reduced fishing pressure and weak predator–prey interactions within marine reserves can create trophic cascades that increase the number of grazing fishes and reduce the coverage of macroalgae on coral reefs. Here, we show that the impacts of reserves extend beyond trophic cascades and enhance the process of coral recruitment. Increased fish grazing, primarily driven by reduced fishing, was strongly negatively correlated with macroalgal cover and resulted in a 2-fold increase in the density of coral recruits within a Bahamian reef system. Our conclusions are robust because four alternative hypotheses that may generate a spurious correlation between grazing and coral recruitment were tested and rejected. Grazing appears to influence the density and community structure of coral recruits, but no detectable influence was found on the overall size-frequency distribution, community structure, or cover of corals. We interpret this absence of pattern in the adult coral community as symptomatic of the impact of a recent disturbance event that masks the recovery trajectories of individual reefs. Marine reserves are not a panacea for conservation but can facilitate the recovery of corals from disturbance and may help sustain the biodiversity of organisms that depend on a complex three-dimensional coral habitat. PMID:17488824

  7. Potential trophic cascades triggered by the barred owl range expansion

    USGS Publications Warehouse

    Holm, Samantha R.; Noon, Barry R.; Wiens, David; Ripple, William J.

    2016-01-01

    Recently, the barred owl (Strix varia) has expanded its range into the Pacific Northwest of the United States resulting in pronounced effects on the demography and behavior of the northern spotted owl (S. occidentalis caurina). The range expansion has brought together historically allopatric species, creating the potential for significant changes in the avian predator community with possible cascading effects on food-web dynamics. The adverse effects of the barred owl on the behavior and demography of the northern spotted owl are well-documented, but little is known about the immediate and long-term effects changes in the predator community may have on native species composition and ecosystem processes. Based on northern spotted owl and barred owl selection for diet and habitat resources, there is a potential for trophic cascades within the region's predator and prey communities, differing responses by their shared and unique prey species, and possible direct and indirect effects on ecosystem processes. We explored the possible ecological consequences of the barred owl range expansion to wildlife communities of the Pacific Northwest based on the theoretical underpinnings of predator–prey relationships, interspecific competition, intraguild predation, and potential cascading trophic interactions. Negative effects on fitness of northern spotted owls because of interspecific competition with barred owls are strong selection forces that may contribute to the regional extinction of the northern spotted owl. In addition, we posit that shared prey species and those uniquely consumed by barred owls, along with other competing native predators, may experience changes in behavior, abundance, and distribution as a result of increased rates of predation by rapidly expanding populations of barred owls.

  8. Predator personality structures prey communities and trophic cascades.

    PubMed

    Start, Denon; Gilbert, Benjamin

    2017-03-01

    Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality - consistent individual differences in suites of behaviours - may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator-resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades.

  9. Willow on Yellowstone's northern range: evidence for a trophic cascade?

    PubMed

    Beyer, Hawthorne L; Merrill, Evelyn H; Varley, Nathan; Boyce, Mark S

    2007-09-01

    Reintroduction of wolves (Canis lupus) to Yellowstone National Park in 1995-1996 has been argued to promote a trophic cascade by altering elk (Cervus elaphus) density, habitat-selection patterns, and behavior that, in turn, could lead to changes within the plant communities used by elk. We sampled two species of willow (Salix boothii and S. geyeriana) on the northern winter range to determine whether (1) there was quantitative evidence of increased willow growth following wolf reintroduction, (2) browsing by elk affected willow growth, and (3) any increase in growth observed was greater than that expected by climatic and hydrological factors alone, thereby indicating a trophic cascade caused by wolves. Using stem sectioning techniques to quantify historical growth patterns we found an approximately twofold increase in stem growth-ring area following wolf reintroduction for both species of willow. This increase could not be explained by climate and hydrological factors alone; the presence of wolves on the landscape was a significant predictor of stem growth above and beyond these abiotic factors. Growth-ring area was positively correlated with the previous year's ring area and negatively correlated with the percentage of twigs browsed from the stem during the winter preceding growth, indicating that elk browse impeded stem growth. Our results are consistent with the hypothesis of a behaviorally mediated trophic cascade on Yellowstone's northern winter range following wolf reintroduction. We suggest that the community-altering effects of wolf restoration are an endorsement of ecological-process management in Yellowstone National Park.

  10. Understanding patterns and processes in models of trophic cascades.

    PubMed

    Heath, Michael R; Speirs, Douglas C; Steele, John H

    2014-01-01

    Climate fluctuations and human exploitation are causing global changes in nutrient enrichment of terrestrial and aquatic ecosystems and declining abundances of apex predators. The resulting trophic cascades have had profound effects on food webs, leading to significant economic and societal consequences. However, the strength of cascades-that is the extent to which a disturbance is diminished as it propagates through a food web-varies widely between ecosystems, and there is no formal theory as to why this should be so. Some food chain models reproduce cascade effects seen in nature, but to what extent is this dependent on their formulation? We show that inclusion of processes represented mathematically as density-dependent regulation of either consumer uptake or mortality rates is necessary for the generation of realistic 'top-down' cascades in simple food chain models. Realistically modelled 'bottom-up' cascades, caused by changing nutrient input, are also dependent on the inclusion of density dependence, but especially on mortality regulation as a caricature of, e.g. disease and parasite dynamics or intraguild predation. We show that our conclusions, based on simple food chains, transfer to a more complex marine food web model in which cascades are induced by varying river nutrient inputs or fish harvesting rates. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  11. Climate change impact on Balearic shearwater through a trophic cascade.

    PubMed

    Luczak, C; Beaugrand, G; Jaffré, M; Lenoir, S

    2011-10-23

    A recent study showed that a critically endangered migratory predator species, the Balearic shearwater Puffinus mauretanicus, rapidly expanded northwards in northeast Atlantic waters after the mid-1990s. As a significant positive correlation was found between the long-term changes in the abundance of this seabird and sea temperature around the British Isles, it was hypothesized that the link between the biogeographic shift and temperature occurred through the food web. Here, we test this conjecture and reveal concomitant changes in a regional index of sea temperature, plankton (total calanoid copepod), fish prey (anchovy and sardine) and the Balearic shearwater for the period 1980-2003. All three trophic levels exhibit a significant shift detected between 1994 and 1996. Our findings therefore support the assertion of both a direct and an indirect effect of climate change on the spatial distribution of post-breeding Balearic shearwater through a trophic cascade.

  12. Understanding patterns and processes in models of trophic cascades

    PubMed Central

    Heath, Michael R; Speirs, Douglas C; Steele, John H; Lafferty, Kevin

    2014-01-01

    Climate fluctuations and human exploitation are causing global changes in nutrient enrichment of terrestrial and aquatic ecosystems and declining abundances of apex predators. The resulting trophic cascades have had profound effects on food webs, leading to significant economic and societal consequences. However, the strength of cascades–that is the extent to which a disturbance is diminished as it propagates through a food web–varies widely between ecosystems, and there is no formal theory as to why this should be so. Some food chain models reproduce cascade effects seen in nature, but to what extent is this dependent on their formulation? We show that inclusion of processes represented mathematically as density-dependent regulation of either consumer uptake or mortality rates is necessary for the generation of realistic ‘top-down’ cascades in simple food chain models. Realistically modelled ‘bottom-up’ cascades, caused by changing nutrient input, are also dependent on the inclusion of density dependence, but especially on mortality regulation as a caricature of, e.g. disease and parasite dynamics or intraguild predation. We show that our conclusions, based on simple food chains, transfer to a more complex marine food web model in which cascades are induced by varying river nutrient inputs or fish harvesting rates. PMID:24165353

  13. Indirect effects and traditional trophic cascades: a test involving wolves, coyotes, and pronghorn.

    PubMed

    Berger, Kim Murray; Gese, Eric M; Berger, Joel

    2008-03-01

    The traditional trophic cascades model is based on consumer resource interactions at each link in a food chain. However, trophic-level interactions, such as mesocarnivore release resulting from intraguild predation, may also be important mediators of cascades. From September 2001 to August 2004, we used spatial and seasonal heterogeneity in wolf distribution and abundance in the southern Greater Yellowstone Ecosystem to evaluate whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of wolves (Canis lupus), accounts for high rates of coyote predation on pronghorn (Antilocapra americana) fawns observed in some areas. Results of this ecological perturbation in wolf densities, coyote densities, and pronghorn neonatal survival at wolf-free and wolf-abundant sites support the existence of a species-level trophic cascade. That wolves precipitated a trophic cascade was evidenced by fawn survival rates that were four-fold higher at sites used by wolves. A negative correlation between coyote and wolf densities supports the hypothesis that interspecific interactions between the two species facilitated the difference in fawn survival. Whereas densities of resident coyotes were similar between wolf-free and wolf-abundant sites, the abundance of transient coyotes was significantly lower in areas used by wolves. Thus, differential effects of wolves on solitary coyotes may be an important mechanism by which wolves limit coyote densities. Our results support the hypothesis that mesopredator release of coyotes contributes to high rates of coyote predation on pronghorn fawns, and demonstrate the importance of alternative food web pathways in structuring the dynamics of terrestrial systems.

  14. Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades.

    PubMed

    Kimbro, David L; Grosholz, Edwin D; Baukus, Adam J; Nesbitt, Nicholas J; Travis, Nicole M; Attoe, Sarikka; Coleman-Hulbert, Caitlin

    2009-06-01

    Although invasive species often resemble their native counterparts, differences in their foraging and anti-predator strategies may disrupt native food webs. In a California estuary, we showed that regions dominated by native crabs and native whelks have low mortality of native oysters (the basal prey), while regions dominated by invasive crabs and invasive whelks have high oyster mortality and are consequently losing a biologically diverse habitat. Using field experiments, we demonstrated that the invasive whelk's distribution is causally related to a large-scale pattern of oyster mortality. To determine whether predator-prey interactions between crabs (top predators) and whelks (intermediate consumers) indirectly control the pattern of oyster mortality, we manipulated the presence and invasion status of the intermediate and top trophic levels in laboratory mesocosms. Our results show that native crabs indirectly maintain a portion of the estuary's oyster habitat by both consuming native whelks (density-mediated trophic cascade) and altering their foraging behavior (trait-mediated trophic cascade). In contrast, invasive whelks are naive to crab predators and fail to avoid them, thereby inhibiting trait-mediated cascades and their invasion into areas with native crabs. Similarly, when native crabs are replaced with invasive crabs, the naive foraging strategy and smaller size of invasive crabs prevents them from efficiently consuming adult whelks, thereby inhibiting strong density-mediated cascades. Thus, while trophic cascades allow native crabs, whelks, and oysters to locally co-exist, the replacement of native crabs and whelks by functionally similar invasive species results in severe depletion of native oysters. As coastal systems become increasingly invaded, the mismatch of evolutionarily based strategies among predators and prey may lead to further losses of critical habitat that support marine biodiversity and ecosystem function.

  15. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length.

    PubMed

    Hintz, William D; Mattes, Brian M; Schuler, Matthew S; Jones, Devin K; Stoler, Aaron B; Lind, Lovisa; Relyea, Rick A

    2017-04-01

    The application of road deicing salts in northern regions worldwide is changing the chemical environment of freshwater ecosystems. Chloride levels in many lakes, streams, and wetlands exceed the chronic and acute thresholds established by the United States and Canada for the protection of freshwater biota. Few studies have identified the impacts of deicing salts in stream and wetland communities and none have examined impacts in lake communities. We tested how relevant concentrations of road salt (15, 100, 250, 500, and 1000 mg Cl(-) /L) interacted with experimental communities containing two or three trophic levels (i.e., no fish vs. predatory fish). We hypothesized that road salt and fish would have a negative synergistic effect on zooplankton, which would then induce a trophic cascade. We tested this hypothesis in outdoor mesocosms containing filamentous algae, periphyton, phytoplankton, zooplankton, several macroinvertebrate species, and fish. We found that the presence of fish and high salt had a negative synergistic effect on the zooplankton community, which in turn caused an increase in phytoplankton. Contributing to the magnitude of this trophic cascade was a direct positive effect of high salinity on phytoplankton abundance. Cascading effects were limited with respect to impacts on the benthic food web. Periphyton and snail grazers were unaffected by the salt-induced trophic cascade, but the biomass of filamentous algae decreased as a result of competition with phytoplankton for light or nutrients. We also found direct negative effects of high salinity on the biomass of filamentous algae and amphipods (Hyalella azteca) and the mortality of banded mystery snails (Viviparus georgianus) and fingernail clams (Sphaerium simile). Clam mortality was dependent on the presence of fish, suggesting a non-consumptive interactive effect with salt. Our results indicate that globally increasing concentrations of road salt can alter community structure via both direct

  16. Trophic cascades in the bryosphere: the impact of global change factors on top-down control of cyanobacterial N2 -fixation.

    PubMed

    Kardol, Paul; Spitzer, Clydecia M; Gundale, Michael J; Nilsson, Marie-Charlotte; Wardle, David A

    2016-08-01

    Trophic cascades in which predators regulate densities of organisms at lower trophic levels are important drivers of population dynamics, but effects of trophic cascades on ecosystem-level fluxes and processes, and the conditions under which top-down control is important, remain unresolved. We manipulated the structure of a food web in boreal feather mosses and found that moss-inhabiting microfauna exerted top-down control of N2 -fixation by moss-associated cyanobacteria. However, the presence of higher trophic levels alleviated this top-down control, likely through feeding on bacterivorous microfauna. These effects of food-web structure on cyanobacterial N2 -fixation were dependent on global change factors and strongly suppressed under N fertilisation. Our findings illustrate how food web interactions and trophic cascades can regulate N cycling in boreal ecosystems, where carbon uptake is generally strongly N-limited, and shifting trophic control of N cycling under global change is therefore likely to impact ecosystem functioning.

  17. Charismatic microfauna alter cyanobacterial production through a trophic cascade

    NASA Astrophysics Data System (ADS)

    Geange, S. W.; Stier, A. C.

    2010-06-01

    The trophic ecology of cyanobacterial blooms is poorly understood on coral reefs. Blooms of toxic cyanobacteria, Lyngbya majuscula, can quickly form large mats. The herbivorous sea hare, Stylocheilus striatus, and the predatory nudibranch, Gymnodoris ceylonica, often associate with these blooms, forming a linear food chain: nudibranch—sea hare—cyanobacteria. Using laboratory studies, this study quantified (1) the functional response of nudibranchs, (2) the effect of sea hare size on predation rates, and (3) the strength of the indirect effect of sea hare predation on cyanobacteria (i.e., a trophic cascade). Nudibranchs consumed on average 2.4 sea hares d-1, with the consumption of small sea hares 22 times greater than the consumption of large sea hares. Predation of sea hares reduced herbivory. Cyanobacterial biomass was 1.5 times greater when nudibranchs were present relative to when nudibranchs were absent. Although sea hare grazing can substantially reduce cyanobacterial biomass, predation of sea hares may mitigate grazing pressure, and therefore increase the abundance of cyanobacteria.

  18. Experimental demonstration of a trophic cascade in the Galápagos rocky subtidal: Effects of consumer identity and behavior.

    PubMed

    Witman, Jon D; Smith, Franz; Novak, Mark

    2017-01-01

    In diverse tropical webs, trophic cascades are presumed to be rare, as species interactions may dampen top-down control and reduce their prevalence. To test this hypothesis, we used an open experimental design in the Galápagos rocky subtidal that enabled a diverse guild of fish species, in the presence of each other and top predators (sea lions and sharks), to attack two species of sea urchins grazing on benthic algae. Time-lapse photography of experiments on natural and experimental substrates revealed strong species identity effects: only two predator species-blunthead triggerfish (Pseudobalistes naufragium) and finescale triggerfish (Balistes polylepis)-drove a diurnal trophic cascade extending to algae, and they preferred large pencil urchins (Eucidaris galapagensis) over green urchins (Lytechinus semituberculatus). Triggerfish predation effects were strong, causing a 24-fold reduction of pencil urchin densities during the initial 21 hours of a trophic cascade experiment. A trophic cascade was demonstrated for pencil urchins, but not for green urchins, by significantly higher percent cover of urchin-grazed algae in cages that excluded predatory fish than in predator access (fence) treatments. Pencil urchins were more abundant at night when triggerfish were absent, suggesting that this species persists by exploiting a nocturnal predation refuge. Time-series of pencil urchin survivorship further demonstrated per capita interference effects of hogfish and top predators. These interference effects respectively weakened and extended the trophic cascade to a fourth trophic level through behavioral modifications of the triggerfish-urchin interaction. We conclude that interference behaviors capable of modifying interaction strength warrant greater attention as mechanisms for altering top-down control, particularly in speciose food webs.

  19. Experimental demonstration of a trophic cascade in the Galápagos rocky subtidal: Effects of consumer identity and behavior

    PubMed Central

    Witman, Jon D.; Smith, Franz; Novak, Mark

    2017-01-01

    In diverse tropical webs, trophic cascades are presumed to be rare, as species interactions may dampen top-down control and reduce their prevalence. To test this hypothesis, we used an open experimental design in the Galápagos rocky subtidal that enabled a diverse guild of fish species, in the presence of each other and top predators (sea lions and sharks), to attack two species of sea urchins grazing on benthic algae. Time-lapse photography of experiments on natural and experimental substrates revealed strong species identity effects: only two predator species–blunthead triggerfish (Pseudobalistes naufragium) and finescale triggerfish (Balistes polylepis)–drove a diurnal trophic cascade extending to algae, and they preferred large pencil urchins (Eucidaris galapagensis) over green urchins (Lytechinus semituberculatus). Triggerfish predation effects were strong, causing a 24-fold reduction of pencil urchin densities during the initial 21 hours of a trophic cascade experiment. A trophic cascade was demonstrated for pencil urchins, but not for green urchins, by significantly higher percent cover of urchin-grazed algae in cages that excluded predatory fish than in predator access (fence) treatments. Pencil urchins were more abundant at night when triggerfish were absent, suggesting that this species persists by exploiting a nocturnal predation refuge. Time-series of pencil urchin survivorship further demonstrated per capita interference effects of hogfish and top predators. These interference effects respectively weakened and extended the trophic cascade to a fourth trophic level through behavioral modifications of the triggerfish-urchin interaction. We conclude that interference behaviors capable of modifying interaction strength warrant greater attention as mechanisms for altering top-down control, particularly in speciose food webs. PMID:28430794

  20. Complex trophic interactions in kelp forest ecosystems

    USGS Publications Warehouse

    Estes, J. A.; Danner, E.M.; Doak, D.F.; Konar, B.; Springer, A.M.; Steinberg, P.D.; Tinker, M. Tim; Williams, T.M.

    2004-01-01

    The distributions and abundances of species and populations change almost continuously. Understanding the processes responsible is perhaps ecology’s most fundamental challenge. Kelp-forest ecosystems in southwest Alaska have undergone several phase shifts between alga- and herbivore-dominated states in recent decades. Overhunting and recovery of sea otters caused the earlier shifts. Studies focusing on these changes demonstrate the importance of top-down forcing processes, a variety of indirect food-web interactions associated with the otter-urchin-kelp trophic cascade, and the role of food-chain length in the coevolution of defense and resistance in plants and their herbivores. This system unexpectedly shifted back to an herbivore-dominated state during the 1990s, because of a sea-otter population collapse that apparently was driven by increased predation by killer whales. Reasons for this change remain uncertain but seem to be linked to the whole-sale collapse of marine mammals in the North Pacific Ocean and southern Bering Sea. We hypothesize that killer whales sequentially "fished down" pinniped and sea-otter populations after their earlier prey, the great whales, were decimated by commercial whaling. The dynamics of kelp forests in southwest Alaska thus appears to have been influenced by an ecological chain reaction that encompassed numerous species and large scales of space and time.

  1. Seasonal Trophic Niche Shift and Cascading Effect of a Generalist Predator Fish

    PubMed Central

    Gong, Zhijun; Zhang, Min; Xie, Ping; Hansson, Lars-Anders

    2012-01-01

    Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs. PMID:23251347

  2. Contrasting effects of aquatic subsidies on a terrestrial trophic cascade.

    PubMed

    Graf, Nadin; Bucher, Roman; Schäfer, Ralf B; Entling, Martin H

    2017-05-01

    Subsidies from adjacent ecosystems can alter recipient food webs and ecosystem functions, such as herbivory. Emerging aquatic insects from streams can be an important prey in the riparian zone. Such aquatic subsidies can enhance predator abundances or cause predators to switch prey, depending on the herbivores. This can lead to an increase or decrease of in situ herbivores and herbivory. We examined the effects of aquatic subsidies on a simplified terrestrial food web consisting of two types of herbivores, plants and predators (spiders). In our six-week experiment, we focused on the prey choice of the spiders by excluding predator immigration and reproduction. In accordance with predator switching, survival of leafhoppers increased in the presence of aquatic subsidies. By contrast, the presence of aquatic subsidies indirectly reduced weevils and herbivory. Our study shows that effects of aquatic subsidies on terrestrial predators can propagate through the food web in contrasting ways. Thereby, the outcome of the trophic cascade is determined by the prey choice of predators. © 2017 The Author(s).

  3. Geographic extent and variation of a coral reef trophic cascade.

    PubMed

    McClanahan, T R; Muthiga, N A

    2016-07-01

    Trophic cascades caused by a reduction in predators of sea urchins have been reported in Indian Ocean and Caribbean coral reefs. Previous studies have been constrained by their site-specific nature and limited spatial replication, which has produced site and species-specific understanding that can potentially preclude larger community-organization nuances and generalizations. In this study, we aimed to evaluate the extent and variability of the cascade community in response to fishing across ~23° of latitude and longitude in coral reefs in the southwestern Indian Ocean. The taxonomic composition of predators of sea urchins, the sea urchin community itself, and potential effects of changing grazer abundance on the calcifying benthic organisms were studied in 171 unique coral reef sites. We found that geography and habitat were less important than the predator-prey relationships. There were seven sea urchin community clusters that aligned with a gradient of declining fishable biomass and the abundance of a key predator, the orange-lined triggerfish (Balistapus undulatus). The orange-lined triggerfish dominated where sea urchin numbers and diversity were low but the relative abundance of wrasses and emperors increased where sea urchin numbers were high. Two-thirds of the study sites had high sea urchin biomass (>2,300 kg/ha) and could be dominated by four different sea urchin species, Echinothrix diadema, Diadema savignyi, D. setosum, and Echinometra mathaei, depending on the community of sea urchin predators, geographic location, and water depth. One-third of the sites had low sea urchin biomass and diversity and were typified by high fish biomass, predators of sea urchins, and herbivore abundance, representing lightly fished communities with generally higher cover of calcifying algae. Calcifying algal cover was associated with low urchin abundance where as noncalcifying fleshy algal cover was not clearly associated with herbivore abundance. Fishing of the orange

  4. Trophic cascades linking wolves (Canis lupus), coyotes (Canis latrans), and small mammals

    USGS Publications Warehouse

    Miller, B.J.; Harlow, H.J.; Harlow, T.S.; Biggins, D.; Ripple, W.J.

    2012-01-01

    When large carnivores are extirpated from ecosystems that evolved with apex predators, these systems can change at the herbivore and plant trophic levels. Such changes across trophic levels are called cascading effects and they are very important to conservation. Studies on the effects of reintroduced wolves in Yellowstone National Park have examined the interaction pathway of wolves (Canis lupus L., 1758) to ungulates to plants. This study examines the interaction effects of wolves to coyotes to rodents (reversing mesopredator release in the absence of wolves). Coyotes (Canis latrans Say, 1823) generally avoided areas near a wolf den. However, when in the proximity of a den, they used woody habitats (pine or sage) compared with herbaceous habitats (grass or forb or sedge)- when they were away from the wolf den. Our data suggested a significant increase in rodent numbers, particularly voles (genus Microtus Schrank, 1798), during the 3-year study on plots that were within 3 km of the wolf den, but we did not detect a significant change in rodent numbers over time for more distant plots. Predation by coyotes may have depressed numbers of small mammals in areas away from the wolf den. These factors indicate a top-down effect by wolves on coyotes and subsequently on the rodents of the area. Restoration of wolves could be a powerful tool for regulating predation at lower trophic levels.

  5. Wolves trigger a trophic cascade to berries as alternative food for grizzly bears.

    PubMed

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2015-05-01

    This is a Forum article in response to: Barber-Meyer, S. (2015) Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods? Journal of Animal Ecology, 83, doi: 10.1111/1365-2656.12338. We used multiple data sets and study areas as well as several lines of evidence to investigate potential trophic linkages in Yellowstone National Park. Our results suggest that a trophic cascade from wolves to elk to berry production to berry consumption by grizzly bears may now be underway in the Park.

  6. Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems

    PubMed Central

    Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise

    2015-01-01

    In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.

  7. Trophic cascades from wolves to grizzly bears in Yellowstone.

    PubMed

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2014-01-01

    We explored multiple linkages among grey wolves (Canis lupus), elk (Cervus elaphus), berry-producing shrubs and grizzly bears (Ursus arctos) in Yellowstone National Park. We hypothesized competition between elk and grizzly bears whereby, in the absence of wolves, increases in elk numbers would increase browsing on berry-producing shrubs and decrease fruit availability to grizzly bears. After wolves were reintroduced and with a reduced elk population, we hypothesized there would be an increase in the establishment of berry-producing shrubs, such as serviceberry (Amelanchier alnifolia), which is a major berry-producing plant. We also hypothesized that the percentage fruit in the grizzly bear diet would be greater after than before wolf reintroduction. We compared the frequency of fruit in grizzly bear scats to elk densities prior to wolf reintroduction during a time of increasing elk densities (1968-1987). For a period after wolf reintroduction, we calculated the percentage fruit in grizzly bear scat by month based on scats collected in 2007-2009 (n = 778 scats) and compared these results to scat data collected before wolf reintroduction. Additionally, we developed an age structure for serviceberry showing the origination year of stems in a northern range study area. We found that over a 19-year period, the percentage frequency of fruit in the grizzly diet (6231 scats) was inversely correlated (P < 0·001) with elk population size. The average percentage fruit in grizzly bear scats was higher after wolf reintroduction in July (0·3% vs. 5·9%) and August (7·8% vs. 14·6%) than before. All measured serviceberry stems accessible to ungulates originated since wolf reintroduction, while protected serviceberry growing in a nearby ungulate exclosure originated both before and after wolf reintroduction. Moreover, in recent years, browsing of serviceberry outside of the exclosure decreased while their heights increased. Overall, these results are consistent with a trophic

  8. Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade.

    PubMed

    Ford, Adam T; Goheen, Jacob R; Augustine, David J; Kinnaird, Margaret F; O'Brien, Timothy G; Palmer, Todd M; Pringle, Robert M; Woodroffe, Rosie

    2015-10-01

    Increasingly, the restoration of large carnivores is proposed as a means through which to restore community structure and ecosystem function via trophic cascades. After a decades-long absence, African wild dogs (Lycaon pictus) recolonized the Laikipia Plateau in central Kenya, which we hypothesized would trigger a trophic cascade via suppression of their primary prey (dik-dik, Madoqua guentheri) and the subsequent relaxation of browsing pressure on trees. We tested the trophic-cascade hypothesis using (1) a 14-year time series of wild dog abundance; (2) surveys of dik-dik population densities conducted before and after wild dog recovery; and (3) two separate, replicated, herbivore-exclusion experiments initiated before and after wild dog recovery. The dik-dik population declined by 33% following wild dog recovery, which is best explained by wild dog predation. Dik-dik browsing suppressed tree abundance, but the strength of suppression did not differ between before and after wild dog recovery. Despite strong, top-down limitation between adjacent trophic levels (carnivore-herbivore and herbivore-plant), a trophic cascade did not occur, possibly because of a time lag in indirect effects, variation in rainfall, and foraging by herbivores other than dik-dik. Our ability to reject the trophic-cascade hypothesis required two important approaches: (1) temporally replicated herbivore exclusions, separately established before and after wild dog recovery; and (2) evaluating multiple drivers of variation in the abundance of dik-dik and trees. While the restoration of large carnivores is often a conservation priority, our results suggest that indirect effects are mediated by ecological context, and that trophic cascades are not a foregone conclusion of such recoveries.

  9. Mammal-induced trophic cascades in invertebrate food webs are modulated by grazing intensity in subalpine grassland.

    PubMed

    Vandegehuchte, Martijn L; Schütz, Martin; de Schaetzen, Frederic; Risch, Anita C

    2017-08-16

    1. Even though mammalian herbivores can exert strong indirect effects on other animals by altering the vegetation, the study of trophic cascades retains a focus on apex predators and their top-down forces. Bottom-up trophic interaction chains induced by mammalian herbivores, particularly in invertebrate food webs, remain largely unexplored. 2. We tested whether effects of mammalian herbivores on the vegetation ricochet back up several trophic levels of the invertebrate food web. We further tested two alternative hypotheses: the strength of herbivore-induced indirect interactions either increases with plant productivity because of a concurrent higher grazing intensity, or it decreases because of a higher plant tolerance to grazing. 3. We progressively excluded large, medium, and small herbivorous mammals from replicated plots of 6 m(2) in productive, intensively grazed short-grass vegetation and less productive, less intensively grazed tall-grass vegetation of subalpine grasslands. We measured vegetation quantity, quality, structure, and composition, and determined the abundance of invertebrate herbivores, detritivores, omnivores, and predators. We used Structural Equation Modelling to test vegetation-mediated cascading effects of the different mammalian herbivores across different trophic groups of invertebrates. 4. In the short-grass vegetation, mammals caused changes in vegetation quantity and thickness. These changes directly affected detritivorous and predatory invertebrate abundance, yet indirectly affected predatory and omnivorous invertebrates through a bottom-up trophic cascade via changes in herbivorous invertebrate abundance. In the tall-grass vegetation, mammal-induced changes in vegetation quality and composition affected detritivorous invertebrates and in turn omnivorous invertebrates, but these cascading effects were weaker than those in the short-grass vegetation. Smaller mammals were at least as important as large mammals in structuring the

  10. Human influences on trophic cascades along rocky shores

    USGS Publications Warehouse

    Lindberg, D.R.; Estes, J.A.; Warheit, K.I.

    1998-01-01

    A three-trophic-level interaction among American Black Oystercatchers (Haematopus bachmani), limpets (Lottia spp.), and erect fleshy algae in rocky intertidal communities of central and southern California was documented via manipulative and 'natural' experiments. Removal of the territorial limpet (Lottia gigantea) initially caused large increases in the percent cover of erect fleshy algae, followed by a more gradual increase in density of small limpets (Lottia spp.) and a decline in algal cover. Algal cover increased following the removal of small limpets at the sites from which L. gigantea had been removed earlier, thus demonstrating that the large and small limpets had similar inhibitory effects on plant populations. A comparison of sites with and without oyster-catchers showed that L. gigantea occupied substrate inclinations in proportion to their availability at sites where oystercatchers were rare, whereas the distribution of L. gigantea was skewed toward vertically inclined substrates where oystercatchers were common. Survival rates of limpets translocated to horizontal and vertical substrates were similar in sites lacking oystercatcher predation, but were much lower on horizontal substrates where oystercatchers were common. Our results are consistent with those from several prior studies in demonstrating that shorelines frequented by humans typically lack oystercatchers. Humans also exploit L. gigantea and reduce populations to low densities of small individuals. These findings may explain why the midlittoral zone of rocky intertidal communities in western North America are so often dominated by high population densities of small limpets.

  11. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts.

    PubMed

    Daskalov, Georgi M; Grishin, Alexander N; Rodionov, Sergei; Mihneva, Vesselina

    2007-06-19

    Large-scale transitions between alternative states in ecosystems are known as regime shifts. Once described as healthy and dominated by various marine predators, the Black Sea ecosystem by the late 20th century had experienced anthropogenic impacts such as heavy fishing, cultural eutrophication, and invasions by alien species. We studied changes related to these "natural experiments" to reveal the mechanisms of regime shifts. Two major shifts were detected, the first related to a depletion of marine predators and the second to an outburst of the alien comb jelly Mnemiopsis leidyi; both shifts were triggered by intense fishing resulting in system-wide trophic cascades. The complex nature of ecosystem responses to human activities calls for more elaborate approaches than currently provided by traditional environmental and fisheries management. This implies challenging existing practices and implementing explanatory models of ecosystem interactions that can better reconcile conservation and ecosystem management ideals.

  12. Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades.

    PubMed

    Rudolf, Volker H W

    2007-12-01

    Cannibalistic and asymmetrical behavioral interactions between stages are common within stage-structured predator populations. Such direct interactions between predator stages can result in density- and trait-mediated indirect interactions between a predator and its prey. A set of structured predator-prey models is used to explore how such indirect interactions affect the dynamics and structure of communities. Analyses of the separate and combined effects of stage-structured cannibalism and behavior-mediated avoidance of cannibals under different ecological scenarios show that both cannibalism and behavioral avoidance of cannibalism can result in short- and long-term positive indirect connections between predator stages and the prey, including "apparent mutualism." These positive interactions alter the strength of trophic cascades such that the system's dynamics are determined by the interaction between bottom-up and top-down effects. Contrary to the expectation of simpler models, enrichment increases both predator and prey abundance in systems with cannibalism or behavioral avoidance of cannibalism. The effect of behavioral avoidance of cannibalism, however, depends on how strongly it affects the maturation rate of the predator. Behavioral interactions between predator stages reduce the short-term positive effect of cannibalism on the prey density, but can enhance its positive long-term effects. Both interaction types reduce the destabilizing effect of enrichment. These results suggest that inconsistencies between data and simple models can be resolved by accounting for stage-structured interactions within and among species.

  13. Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods?

    USGS Publications Warehouse

    Barber-Meyer, Shannon M.

    2015-01-01

    This is a Forum article commenting on: Ripple, W. J., Beschta, R. L., Fortin, J. K., & Robbins, C. T. (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. Journal of Animal Ecology, 83, 223–233. Comparisons Ripple et al. (2014) used to demonstrate increased fruit availability and consumption by grizzly bears post-wolf reintroduction are flawed and tenuous at best. Importantly, a more parsimonious (than trophic cascades) hypothesis, not sufficiently considered by Ripple et al., exists and is better supported by available data I review.

  14. Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods?

    PubMed

    Barber-Meyer, Shannon M

    2015-05-01

    This is a Forum article commenting on: Ripple, W. J., Beschta, R. L., Fortin, J. K., & Robbins, C. T. (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. Journal of Animal Ecology, 83, 223-233. Comparisons Ripple et al. (2014) used to demonstrate increased fruit availability and consumption by grizzly bears post-wolf reintroduction are flawed and tenuous at best. Importantly, a more parsimonious (than trophic cascades) hypothesis, not sufficiently considered by Ripple et al., exists and is better supported by available data I review.

  15. Context-dependent effects of fishing: variation in trophic cascades across environmental gradients.

    PubMed

    Shears, Nick T; Babcock, Russell C; Salomon, Anne K

    2008-12-01

    . These results suggest that trophic cascades are not ubiquitous to northeastern New Zealand's subtidal reefs and the importance of sea urchins, and indirectly predators, in controlling macroalgal biomass will vary at local and regional scales in relation to abiotic factors. A better mechanistic understanding of how environmental variation affects the strength of species interactions across multiple spatial scales is needed to predict the ecosystem-level effects of fishing.

  16. Potential for Entomopathogenic Nematodes in Biological Control: A Meta-Analytical Synthesis and Insights from Trophic Cascade Theory

    PubMed Central

    Denno, Robert F.; Gruner, Daniel S.; Kaplan, Ian

    2008-01-01

    Entomopathogenic nematodes (EPN) are ubiquitous and generalized consumers of insects in soil food webs, occurring widely in natural and agricultural ecosystems on six continents. Augmentative releases of EPN have been used to enhance biological control of pests in agroecosystems. Pest managers strive to achieve a trophic cascade whereby natural-enemy effects permeate down through the food web to suppress host herbivores and increase crop production. Although trophic cascades have been studied in diverse aboveground arthropod-based systems, they are infrequently investigated in soil systems. Moreover, no overall quantitative assessment of the effectiveness of EPN in suppressing hosts with cascading benefits to plants has been made. Toward synthesizing the available but limited information on EPN and their ability to suppress prey and affect plant yield, we surveyed the literature and performed a meta-analysis of 35 published studies. Our analysis found that effect sizes for arthropod hosts as a result of EPN addition were consistently negative and indirect effects on plants were consistently positive. Results held across several different host metrics (abundance, fecundity and survival) and across measures of plant performance (biomass, growth, yield and survival). Moreover, the relationship between plant and host effect sizes was strikingly and significantly negative. That is, the positive impact on plant responses generally increased as the negative effect of EPN on hosts intensified, providing strong support for the mechanism of trophic cascades. We also review the ways in which EPN might interact antagonistically with each other and other predators and pathogens to adversely affect host suppression and dampen trophic cascades. We conclude that the food web implications of multiple-enemy interactions involving EPN are little studied, but, as management techniques that promote the long-term persistence of EPN are improved, antagonistic interactions are more likely

  17. Long-term effects of a trophic cascade in a large lake ecosystem

    PubMed Central

    Ellis, Bonnie K.; Stanford, Jack A.; Goodman, Daniel; Stafford, Craig P.; Gustafson, Daniel L.; Beauchamp, David A.; Chess, Dale W.; Craft, James A.; Deleray, Mark A.; Hansen, Barry S.

    2011-01-01

    Introductions or invasions of nonnative organisms can mediate major changes in the trophic structure of aquatic ecosystems. Here we document multitrophic level impacts in a spatially extensive system that played out over more than a century. Positive interactions among exotic vertebrate and invertebrate predators caused a substantial and abrupt shift in community composition resulting in a trophic cascade that extended to primary producers and to a nonaquatic species, the bald eagle. The opossum shrimp, Mysis diluviana, invaded Flathead Lake, Montana, the largest freshwater lake in the western United States. Lake trout had been introduced 80 y prior but remained at low densities until nonnative Mysis became established. The bottom-dwelling mysids eliminated a recruitment bottleneck for lake trout by providing a deep water source of food where little was available previously. Lake trout subsequently flourished on mysids and this voracious piscivore now dominates the lake fishery; formerly abundant kokanee were extirpated, and native bull and westslope cutthroat trout are imperiled. Predation by Mysis shifted zooplankton and phytoplankton community size structure. Bayesian change point analysis of primary productivity (27-y time series) showed a significant step increase of 55 mg C m−2 d−1 (i.e., 21% rise) concurrent with the mysid invasion, but little trend before or after despite increasing nutrient loading. Mysis facilitated predation by lake trout and indirectly caused the collapse of kokanee, redirecting energy flow through the ecosystem that would otherwise have been available to other top predators (bald eagles). PMID:21199944

  18. Long-term effects of a trophic cascade in a large lake ecosystem.

    PubMed

    Ellis, Bonnie K; Stanford, Jack A; Goodman, Daniel; Stafford, Craig P; Gustafson, Daniel L; Beauchamp, David A; Chess, Dale W; Craft, James A; Deleray, Mark A; Hansen, Barry S

    2011-01-18

    Introductions or invasions of nonnative organisms can mediate major changes in the trophic structure of aquatic ecosystems. Here we document multitrophic level impacts in a spatially extensive system that played out over more than a century. Positive interactions among exotic vertebrate and invertebrate predators caused a substantial and abrupt shift in community composition resulting in a trophic cascade that extended to primary producers and to a nonaquatic species, the bald eagle. The opossum shrimp, Mysis diluviana, invaded Flathead Lake, Montana, the largest freshwater lake in the western United States. Lake trout had been introduced 80 y prior but remained at low densities until nonnative Mysis became established. The bottom-dwelling mysids eliminated a recruitment bottleneck for lake trout by providing a deep water source of food where little was available previously. Lake trout subsequently flourished on mysids and this voracious piscivore now dominates the lake fishery; formerly abundant kokanee were extirpated, and native bull and westslope cutthroat trout are imperiled. Predation by Mysis shifted zooplankton and phytoplankton community size structure. Bayesian change point analysis of primary productivity (27-y time series) showed a significant step increase of 55 mg C m(-2) d(-1) (i.e., 21% rise) concurrent with the mysid invasion, but little trend before or after despite increasing nutrient loading. Mysis facilitated predation by lake trout and indirectly caused the collapse of kokanee, redirecting energy flow through the ecosystem that would otherwise have been available to other top predators (bald eagles).

  19. Grazer identity changes the spatial distribution of cascading trophic effects in stream pools.

    PubMed

    Gelwick, F P

    2000-12-01

    Non-lethal effects of predators on prey behavior can mediate trophic cascades, but the extent of effects depends on habitat characteristics and risk sensitivity of prey. Furthermore, predation risk for stream organisms varies along the depth gradient and strongly influences their behavior. Grazing minnows (Campostoma anomalum) and crayfish (Orconectes virilis) are both prey for largemouth bass (Micropterus salmoides) in streams, but differ in their predator-avoidance behavior. This study contrasts the effects and mechanisms of non-lethal trophic cascades on the spatial distribution of filamentous green algae among stream pools and along a depth gradient within pools. Presence/absence of a largemouth bass was crossed with four combinations of the two grazer species (0 grazers, 30 minnows, 30 crayfish, and 15 each) in outdoor, experimental streams. Grazer densities were maintained by restocking. I used geostatistics to quantify spatial patterns of predator and grazer habitat use, height of filamentous algae in the water column, and spatial covariation of water depth with algal height, and depth with grazer habitat use. In streams with only minnows, bass were sedentary, and hid within tall algae in a single "bass pool". In pools with grazed algae, bass actively pursued prey within and among pools and used deeper water. This set up a hierarchy of risk to grazers along the depth gradient from bass in deep water to potential risk from terrestrial predators in shallow water. Thus, minnows were more sensitive than crayfish to predation risk from bass, but less sensitive than crayfish to risk from terrestrial predators. Minnows mediated cascades at the scale of whole pools by avoiding "bass pools", but only if crayfish were absent. Crayfish avoided potential interactions both with terrestrial predators and bass by grazing and burrowing in deeper water at night (when bass were inactive), and by hiding in burrows during daytime. Crayfish without burrows avoided bass and

  20. Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade

    USDA-ARS?s Scientific Manuscript database

    Large carnivores can powerfully shape ecosystems by directly suppressing herbivores, thereby indirectly benefitting plants in a process known as a trophic cascade. In 2002, after a 20-year absence, African wild dogs (Lycaon pictus) recolonized the Laikipia Plateau in central Kenya. We hypothesized t...

  1. Trophic cascades induced by lobster fishing are not ubiquitous in southern California kelp forests.

    PubMed

    Guenther, Carla M; Lenihan, Hunter S; Grant, Laura E; Lopez-Carr, David; Reed, Daniel C

    2012-01-01

    Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and

  2. Trophic Cascades Induced by Lobster Fishing Are Not Ubiquitous in Southern California Kelp Forests

    PubMed Central

    Guenther, Carla M.; Lenihan, Hunter S.; Grant, Laura E.; Lopez-Carr, David; Reed, Daniel C.

    2012-01-01

    Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and

  3. Trophic and Non-Trophic Interactions in a Biodiversity Experiment Assessed by Next-Generation Sequencing

    PubMed Central

    Tiede, Julia; Wemheuer, Bernd; Traugott, Michael; Daniel, Rolf; Tscharntke, Teja; Ebeling, Anne; Scherber, Christoph

    2016-01-01

    Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research. PMID:26859146

  4. Human-Induced Trophic Cascades along the Fecal Detritus Pathway

    PubMed Central

    Nichols, Elizabeth; Uriarte, María; Peres, Carlos A.; Louzada, Julio; Braga, Rodrigo Fagundes; Schiffler, Gustavo; Endo, Whaldener; Spector, Sacha H.

    2013-01-01

    Human presence and activity in tropical forest is thought to exert top-down regulation over the various ‘green-world’ pathways of plant-based foodwebs. However, these effects have never been explored for the ‘brown-world’ pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function. PMID:24146780

  5. Multi-level trophic cascades in a heavily exploited open marine ecosystem.

    PubMed

    Casini, Michele; Lövgren, Johan; Hjelm, Joakim; Cardinale, Massimiliano; Molinero, Juan-Carlos; Kornilovs, Georgs

    2008-08-07

    Anthropogenic disturbances intertwined with climatic changes can have a large impact on the upper trophic levels of marine ecosystems, which may cascade down the food web. So far it has been difficult to demonstrate multi-level trophic cascades in pelagic marine environments. Using field data collected during a 33-year period, we show for the first time a four-level community-wide trophic cascade in the open Baltic Sea. The dramatic reduction of the cod (Gadus morhua) population directly affected its main prey, the zooplanktivorous sprat (Sprattus sprattus), and indirectly the summer biomass of zooplankton and phytoplankton (top-down processes). Bottom-up processes and climate-hydrological forces had a weaker influence on sprat and zooplankton, whereas phytoplankton variation was explained solely by top-down mechanisms. Our results suggest that in order to dampen the occasionally harmful algal blooms of the Baltic, effort should be addressed not only to control anthropogenic nutrient inputs but also to preserve structure and functioning of higher trophic levels.

  6. Fear of large carnivores causes a trophic cascade.

    PubMed

    Suraci, Justin P; Clinchy, Michael; Dill, Lawrence M; Roberts, Devin; Zanette, Liana Y

    2016-02-23

    The fear large carnivores inspire, independent of their direct killing of prey, may itself cause cascading effects down food webs potentially critical for conserving ecosystem function, particularly by affecting large herbivores and mesocarnivores. However, the evidence of this has been repeatedly challenged because it remains experimentally untested. Here we show that experimentally manipulating fear itself in free-living mesocarnivore (raccoon) populations using month-long playbacks of large carnivore vocalizations caused just such cascading effects, reducing mesocarnivore foraging to the benefit of the mesocarnivore's prey, which in turn affected a competitor and prey of the mesocarnivore's prey. We further report that by experimentally restoring the fear of large carnivores in our study system, where most large carnivores have been extirpated, we succeeded in reversing this mesocarnivore's impacts. We suggest that our results reinforce the need to conserve large carnivores given the significant "ecosystem service" the fear of them provides.

  7. Fear of large carnivores causes a trophic cascade

    PubMed Central

    Suraci, Justin P.; Clinchy, Michael; Dill, Lawrence M.; Roberts, Devin; Zanette, Liana Y.

    2016-01-01

    The fear large carnivores inspire, independent of their direct killing of prey, may itself cause cascading effects down food webs potentially critical for conserving ecosystem function, particularly by affecting large herbivores and mesocarnivores. However, the evidence of this has been repeatedly challenged because it remains experimentally untested. Here we show that experimentally manipulating fear itself in free-living mesocarnivore (raccoon) populations using month-long playbacks of large carnivore vocalizations caused just such cascading effects, reducing mesocarnivore foraging to the benefit of the mesocarnivore's prey, which in turn affected a competitor and prey of the mesocarnivore's prey. We further report that by experimentally restoring the fear of large carnivores in our study system, where most large carnivores have been extirpated, we succeeded in reversing this mesocarnivore's impacts. We suggest that our results reinforce the need to conserve large carnivores given the significant “ecosystem service” the fear of them provides. PMID:26906881

  8. Trophic cascades in agricultural landscapes: indirect effects of landscape composition on crop yield.

    PubMed

    Liere, Heidi; Kim, Tania N; Werling, Benjamin P; Meehan, Timothy D; Landis, Douglas A; Gratton, Claudio

    2015-04-01

    The strength and prevalence of trophic cascades, defined as positive, indirect effects of natural enemies (predatory and parasitic arthropods) on plants, is highly variable in agroecosystems. This variation may in part be due to the spatial or landscape context in which hese trophic cascades occur. In 2011 and 2012, we conducted a natural enemy exclusion experiment in soybean fields along a gradient of landscape composition across southern Wisconsin and Michigan, USA. We used structural equation modeling to ask (1) whether natural enemies influence biocontrol of soybean aphids (SBA) and soybean yield and (2) whether landscape effects on natural enemies influence the strength of the trophic cascades. We found that natural enemies (NE) suppressed aphid populations in both years of our study, and, in 2011, the yield of soybean plants exposed to natural enemies was 37% higher than the yield of plants with aphid populations protected from natural enemies. The strength of the :rophic cascade was also influenced by landscape context. We found that landscapes with a higher proportion of soybean and higher diversity habitats resulted in more NE, fewer aphids, and, in some cases, a trend toward greater soybean yield. These results indicate that landscape context is important for understanding spatial variability in biocontrol and yield, but other factors, such as environmental variability and compensatory growth, might overwhelm the beneficial effects of biocontrol on crop yield.

  9. Wolf presence and increased willow consumption by Yellowstone elk: implications for trophic cascades.

    PubMed

    Creel, Scott; Christianson, David

    2009-09-01

    Recent increases in the height and growth ring width of willow (Salix spp.) and other woody plants in the Greater Yellowstone Ecosystem (GYE) have been attributed to a behaviorally mediated trophic cascade from wolves (Canis lupus) to elk (Cervus elaphus) to willows. This hypothesis predicts that individual elk consume less willow in response to the presence of wolves, but this prediction has not been directly tested with data from elk. We collected 727 fecal samples from elk in the Gallatin Canyon portion of the GYE over three winters and used microhistological methods to quantify the proportion of willow in each sample. We then tested the effect of wolf presence on willow consumption by elk, controlling for the effects of snow conditions, sex, and habitat type. During the period of study, 8-17 wolves occupied the study area, and wolves were locally present on 49% of 260 sampling days, stratified at two-week intervals across three drainages. Over the three years combined, willow consumption was related to snow conditions, wolf presence, and a wolf X sex interaction. As expected, willow consumption increased with deeper and less penetrable snow, and this effect was strong. Contrary to expectation, willow consumption increased in the presence of wolves. As with other aspects of antipredator behavior, wolves had different effects on willow consumption by males and females. Finally, we aggregated the data to estimate winter-long mean willow consumption within each drainage; at this broader scale, willow consumption again increased as predation risk increased. In summary, willow consumption was more strongly affected by snow conditions than by the presence of wolves. Interactions between elk and willow were affected by wolves, but not as predicted by the hypothesis that wolf presence favors willow release through a reduction in the selection of willow by individual elk. If a trophic cascade is operating, our results suggest that a decline in the size of the elk

  10. Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour.

    PubMed

    Byrnes, Jarrett; Stachowicz, John J; Hultgren, Kristin M; Randall Hughes, A; Olyarnik, Suzanne V; Thornber, Carol S

    2006-01-01

    Although human-mediated extinctions disproportionately affect higher trophic levels, the ecosystem consequences of declining diversity are best known for plants and herbivores. We combined field surveys and experimental manipulations to examine the consequences of changing predator diversity for trophic cascades in kelp forests. In field surveys we found that predator diversity was negatively correlated with herbivore abundance and positively correlated with kelp abundance. To assess whether this relationship was causal, we manipulated predator richness in kelp mesocosms, and found that decreasing predator richness increased herbivore grazing, leading to a decrease in the biomass of the giant kelp Macrocystis. The presence of different predators caused different herbivores to alter their behaviour by reducing grazing, such that total grazing was lowest at highest predator diversity. Our results suggest that declining predator diversity can have cascading effects on community structure by reducing the abundance of key habitat-providing species.

  11. Global warming tugs at trophic interactions.

    PubMed

    Brook, Barry W

    2009-01-01

    Climate change impacts are becoming increasingly evident as 1 degree C warming above pre-industrial temperatures is approached. One of the signature biological effects is a shift towards earlier-timed reproduction. If individual species lack sufficient adaptive plasticity to alter phenology, they will have reduced fitness in a hotter world. Yet, a long-term study of an oak-caterpillar-songbird-sparrowhawk food web reveals that what could matter as much is if trophic interactions are disrupted. Multiple selective pressures may be triggered by climate change, leading to a tug-of-war between the need to stay in synchrony with the timing of maximum food, and the benefits of minimizing predation.

  12. Trophic cascades in rocky shore tide pools: distinguishing lethal and nonlethal effects.

    PubMed

    Trussell, Geoffrey C; Ewanchuk, Patrick J; Bertness, Mark D; Silliman, Brian R

    2004-05-01

    The effects of predators on the density of their prey can have positive indirect effects on the abundance of the prey's resource via a trophic cascade. This concept has strongly influenced contemporary views of how communities are structured. However, predators also can transmit indirect effects by inducing changes in prey traits. We show that the mere presence of predator risk cues can initiate a trophic cascade in rocky shore tide pools. In large (mean surface area =9 m2), natural tide pools, we manipulated crab density and their foraging ability to examine the relative importance of lethal (density-mediated) and non-lethal (trait-mediated) predator effects to algal community development. We found that perceived predation risk reduced snail density as much as the direct predation treatment, showing that green crab predation was not an important factor regulating local snail density. Instead, snail emigration away from resident crabs appears to be the most important factor regulating local snail density. As a result, the abundance of ephemeral green algae was similar in the predation risk and direct predation treatments, suggesting that the consumption of snails by crabs plays a minimal role in mediating the trophic cascade. Increased attention to trait-mediated effects that are transmitted by predator-induced changes in prey behavior may change our view of how predators exert their strong influence on community structure.

  13. Weak Interactions and Instability Cascades.

    PubMed

    Kadoya, Taku; McCann, Kevin S

    2015-07-29

    Food web theory states that a weak interactor which is positioned in the food web such that it tends to deflect, or mute, energy away from a potentially oscillating consumer-resource interaction often enhances community persistence and stability. Here we examine how adding other weak interactions (predation/harvesting) on the stabilizing weak interactor alters the stability of food web using a set of well-established food web models/modules. We show that such "weak on weak" interaction chains drive an indirect dynamic cascade that can rapidly ignite a distant consumer-resource oscillator. Nonetheless, we also show that the "weak on weak" interactions are still more stable than the food web without them, and so weak interactions still generally act to stabilize food webs. Rather, these results are best interpreted to say that the degree of the stabilizing effect of a given important weak interaction can be severely compromised by other weak interactions (including weak harvesting).

  14. Predator transitory spillover induces trophic cascades in ecological sinks.

    PubMed

    Casini, Michele; Blenckner, Thorsten; Möllmann, Christian; Gårdmark, Anna; Lindegren, Martin; Llope, Marcos; Kornilovs, Georgs; Plikshs, Maris; Stenseth, Nils Christian

    2012-05-22

    Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross-system fluxes on a whole marine ecosystem structure have not yet been presented. Here we show, using 35 y of multitrophic data series from the Baltic Sea, that transitory spillover of the top-predator cod from its main distribution area produces cascading effects in the whole food web of an adjacent and semi-isolated ecosystem. At varying population size, cod expand/contract their distribution range and invade/retreat from the neighboring Gulf of Riga, thereby affecting the local prey population of herring and, indirectly, zooplankton and phytoplankton via top-down control. The Gulf of Riga can be considered for cod a "true sink" habitat, where in the absence of immigration from the source areas of the central Baltic Sea the cod population goes extinct due to the absence of suitable spawning grounds. Our results add a metaecosystem perspective to the ongoing intense scientific debate on the key role of top predators in structuring natural systems. The integration of regional and local processes is central to predict species and ecosystem responses to future climate changes and ongoing anthropogenic disturbances.

  15. Trophic cascades on the edge: fostering seagrass resilience via a novel pathway.

    PubMed

    Hughes, Brent B; Hammerstrom, Kamille K; Grant, Nora E; Hoshijima, Umi; Eby, Ron; Wasson, Kerstin

    2016-09-01

    Despite widespread degradation, some coastal ecosystems display remarkable resilience. For seagrasses, a century-old paradigm has implicated macroalgal blooms stimulated by anthropogenic nutrient, loading as a primary driver of seagrass decline, yet relatively little attention has been given to drivers of seagrass resilience. In Elkhorn Slough, CA, an estuarine system characterized by extreme anthropogenic nutrient loading and macroalgal (Ulva spp.) blooms, seagrass (Zostera marina) beds have recovered concurrent with colonization of the estuary by top predators, sea otters (Enhydra lutris). Here, we follow up on the results of a previous experiment at the seagrass interior, showing how sea otters can generate a trophic cascade that promotes seagrass. We conducted an experiment and constructed structural equation models to determine how sea otters, through a trophic cascade, might affect the edge of seagrass beds where expansion occurs. We found that at the edge, sea otters promoted both seagrass and ephemeral macroalgae, with the latter contributing beneficial grazers to the seagrass. The surprising results that sea otters promote two potentially competing vegetation types, and a grazer assemblage at their boundary provides a mechanism by which seagrasses can expand in eutrophic environments, and contributes to a growing body of literature demonstrating that ephemeral macroalgae are not always negatively associated with seagrass. Our results highlight the potential for top predator recovery to enhance ecosystem resilience to anthropogenic alterations through several cascading mechanisms.

  16. Trophic cascade induced by molluscivore predator alters pore-water biogeochemistry via competitive release of prey.

    PubMed

    van Gils, Jan A; van der Geest, Matthijs; Jansen, Erik J; Govers, Laura L; de Fouw, Jimmy; Piersma, Theunis

    2012-05-01

    Effects of predation may cascade down the food web. By alleviating interspecific competition among prey, predators may promote biodiversity, but the precise mechanisms of how predators alter competition have remained elusive. Here we report on a predator-exclosure experiment carried out in a tropical intertidal ecosystem, providing evidence for a three-level trophic cascade induced by predation by molluscivore Red Knots (Calidris canutus) that affects pore water biogeochemistry. In the exclosures the knots' favorite prey (Dosinia isocardia) became dominant and reduced the individual growth rate in an alternative prey (Loripes lucinalis). Dosinia, a suspension feeder, consumes suspended particulate organic matter (POM), whereas Loripes is a facultative mixotroph, partly living on metabolites produced by sulfur-oxidizing chemoautotrophic bacteria, but also consuming suspended POM. Reduced sulfide concentrations in the exclosures suggest that, without predation on Dosinia, stronger competition for suspended POM forces Loripes to rely on energy produced by endosymbiotic bacteria, thus leading to an enhanced uptake of sulfide from the surrounding pore water. As sulfide is toxic to most organisms, this competition-induced diet shift by Loripes may detoxify the environment, which in turn may facilitate other species. The inference that predators affect the toxicity of their environment via a multi-level trophic cascade is novel, but we believe it may be a general phenomenon in detritus-based ecosystems.

  17. Trait-mediated trophic cascade creates enemy-free space for nesting hummingbirds

    PubMed Central

    Greeney, Harold F.; Meneses, M. Rocio; Hamilton, Chris E.; Lichter-Marck, Eli; Mannan, R. William; Snyder, Noel; Snyder, Helen; Wethington, Susan M.; Dyer, Lee A.

    2015-01-01

    The indirect effects of predators on nonadjacent trophic levels, mediated through traits of intervening species, are collectively known as trait-mediated trophic cascades. Although birds are important predators in terrestrial ecosystems, clear examples of trait-mediated indirect effects involving bird predators have almost never been documented. Such indirect effects are important for structuring ecological communities and are likely to be negatively impacted by habitat fragmentation, climate change, and other factors that reduce abundance of top predators. We demonstrate that hummingbirds in Arizona realize increased breeding success when nesting in association with hawks. An enemy-free nesting space is created when jays, an important source of mortality for hummingbird nests, alter their foraging behavior in the presence of their hawk predators. PMID:26601258

  18. Trait-mediated trophic cascade creates enemy-free space for nesting hummingbirds.

    PubMed

    Greeney, Harold F; Meneses, M Rocio; Hamilton, Chris E; Lichter-Marck, Eli; Mannan, R William; Snyder, Noel; Snyder, Helen; Wethington, Susan M; Dyer, Lee A

    2015-09-01

    The indirect effects of predators on nonadjacent trophic levels, mediated through traits of intervening species, are collectively known as trait-mediated trophic cascades. Although birds are important predators in terrestrial ecosystems, clear examples of trait-mediated indirect effects involving bird predators have almost never been documented. Such indirect effects are important for structuring ecological communities and are likely to be negatively impacted by habitat fragmentation, climate change, and other factors that reduce abundance of top predators. We demonstrate that hummingbirds in Arizona realize increased breeding success when nesting in association with hawks. An enemy-free nesting space is created when jays, an important source of mortality for hummingbird nests, alter their foraging behavior in the presence of their hawk predators.

  19. Intraguild predation, invertebrate predators, and trophic cascades in lake food webs.

    PubMed

    Hart, Deborah

    2002-09-07

    The top-down and bottom-up properties of model food webs that include intraguild predation and self-limiting factors such as cannibalism are investigated. Intraguild predation can dampen or even reverse the top-down effects predicted by food chain theory. The degree of self-limitation among the intraguild prey is a key factor in determining the direction and strength of the top-down response. Intraguild predation and self-limiting factors can also substantially alter the bottom-up effects of enrichment. These results can help explain the disparate results of trophic cascade experiments in lakes, where cascades are usually seen when large Daphnia are the primary herbivores, but not when smaller-bodied herbivores are dominant. Top-down manipulations should cascade at least modestly to phytoplankton in those lakes whose food web can be reasonably approximated by a chain (typically, those where Daphnia is the dominant herbivore), as predicted by food chain theory. On the other hand, smaller-bodied zooplankton are often preyed upon heavily by invertebrate predators as well as by planktivorous fish, thereby introducing elements of intraguild predation into these food webs. In this case, conventional food chain theory is likely to give incorrect predictions. Very large cascade effects may be due primarily to regime shifts between intraguild predation-dominated food webs and those that more resemble food chains, rather than due to the simple food chain cascade usually considered.

  20. Evidence for a trophic cascade on rocky reefs following sea star mass mortality in British Columbia.

    PubMed

    Schultz, Jessica A; Cloutier, Ryan N; Côté, Isabelle M

    2016-01-01

    Echinoderm population collapses, driven by disease outbreaks and climatic events, may be important drivers of population dynamics, ecological shifts and biodiversity. The northeast Pacific recently experienced a mass mortality of sea stars. In Howe Sound, British Columbia, the sunflower star Pycnopodia helianthoides-a previously abundant predator of bottom-dwelling invertebrates-began to show signs of a wasting syndrome in early September 2013, and dense aggregations disappeared from many sites in a matter of weeks. Here, we assess changes in subtidal community composition by comparing the abundance of fish, invertebrates and macroalgae at 20 sites in Howe Sound before and after the 2013 sea star mortality to evaluate evidence for a trophic cascade. We observed changes in the abundance of several species after the sea star mortality, most notably a four-fold increase in the number of green sea urchins, Strongylocentrotus droebachiensis, and a significant decline in kelp cover, which are together consistent with a trophic cascade. Qualitative data on the abundance of sunflower stars and green urchins from a citizen science database show that the patterns of echinoderm abundance detected at our study sites reflected wider local trends. The trophic cascade evident at the scale of Howe Sound was observed at half of the study sites. It remains unclear whether the urchin response was triggered directly, via a reduction in urchin mortality, or indirectly, via a shift in urchin distribution into areas previously occupied by the predatory sea stars. Understanding the ecological implications of sudden and extreme population declines may further elucidate the role of echinoderms in temperate seas, and provide insight into the resilience of marine ecosystems to biological disturbances.

  1. Evidence for a trophic cascade on rocky reefs following sea star mass mortality in British Columbia

    PubMed Central

    Cloutier, Ryan N.; Côté, Isabelle M.

    2016-01-01

    Echinoderm population collapses, driven by disease outbreaks and climatic events, may be important drivers of population dynamics, ecological shifts and biodiversity. The northeast Pacific recently experienced a mass mortality of sea stars. In Howe Sound, British Columbia, the sunflower star Pycnopodia helianthoides—a previously abundant predator of bottom-dwelling invertebrates—began to show signs of a wasting syndrome in early September 2013, and dense aggregations disappeared from many sites in a matter of weeks. Here, we assess changes in subtidal community composition by comparing the abundance of fish, invertebrates and macroalgae at 20 sites in Howe Sound before and after the 2013 sea star mortality to evaluate evidence for a trophic cascade. We observed changes in the abundance of several species after the sea star mortality, most notably a four-fold increase in the number of green sea urchins, Strongylocentrotus droebachiensis, and a significant decline in kelp cover, which are together consistent with a trophic cascade. Qualitative data on the abundance of sunflower stars and green urchins from a citizen science database show that the patterns of echinoderm abundance detected at our study sites reflected wider local trends. The trophic cascade evident at the scale of Howe Sound was observed at half of the study sites. It remains unclear whether the urchin response was triggered directly, via a reduction in urchin mortality, or indirectly, via a shift in urchin distribution into areas previously occupied by the predatory sea stars. Understanding the ecological implications of sudden and extreme population declines may further elucidate the role of echinoderms in temperate seas, and provide insight into the resilience of marine ecosystems to biological disturbances. PMID:27168988

  2. Trophic cascade effects of avian predation on a willow in an urban wetland.

    PubMed

    Wu, Pei-Chen; Shaner, Pei-Jen L

    2016-01-01

    Trophic cascades play a crucial role in ecosystem functioning. In this study, we tested the effects of avian predation on willows (Salix warburgii) and associated arthropods in an urban wetland. We excluded birds by netting around willow branches for 20 months from September-November 2010 to June 2012. We compared the leaf count, leaf area, leaf biomass, bud count, catkin (flower) count and herbivory from pairs of bird-exclusion and no-exclusion branches on 11 trees. Simultaneously, we compared herbivorous and predatory arthropod abundances associated with bird-exclusion and no-exclusion branches. Another nine trees were used as reference branches to assess whether the bird exclusion impacted other branches of the same trees (i.e., no-exclusion branches). Bird exclusion resulted in increased herbivory 1 year after the treatment, followed by a reduced leaf count, leaf area, leaf biomass, bud count and catkin count in the second year. The bird-exclusion branches exhibited greater spider abundance than the no-exclusion branches. However, herbivorous arthropod abundances were similar between the branch types. The reference branches had similar values in all plant traits and for all arthropod abundances to those of the no-exclusion branches. This study demonstrated the branch-level effects of trophic cascades on willows via the exclusion of birds and a resulting reduction in herbivory. However, whether and how the arthropods mediate such effects require further investigation. This study adds to the limited empirical data demonstrating the effects of trophic cascades on plant reproduction. Our findings highlight the importance of bird conservation in urban wetlands.

  3. Testing the generality of a trophic-cascade model for plague

    USGS Publications Warehouse

    Collinge, S.K.; Johnson, W.C.; Ray, C.; Matchett, R.; Grensten, J.; Cully, J.F.; Gage, K.L.; Kosoy, M.Y.; Loye, J.E.; Martin, A.P.

    2005-01-01

    Climate may affect the dynamics of infectious diseases by shifting pathogen, vector, or host species abundance, population dynamics, or community interactions. Black-tailed prairie dogs (Cynomys ludovicianus) are highly susceptible to plague, yet little is known about factors that influence the dynamics of plague epizootics in prairie dogs. We investigated temporal patterns of plague occurrence in black-tailed prairie dogs to assess the generality of links between climate and plague occurrence found in previous analyses of human plague cases. We examined long-term data on climate and plague occurrence in prairie dog colonies within two study areas. Multiple regression analyses revealed that plague occurrence in prairie dogs was not associated with climatic variables in our Colorado study area. In contrast, plague occurrence was strongly associated with climatic variables in our Montana study area. The models with most support included a positive association with precipitation in April-July of the previous year, in addition to a positive association with the number of "warm" days and a negative association with the number of "hot" days in the same year as reported plague events. We conclude that the timing and magnitude of precipitation and temperature may affect plague occurrence in some geographic areas. The best climatic predictors of plague occurrence in prairie dogs within our Montana study area are quite similar to the best climatic predictors of human plague cases in the southwestern United States. This correspondence across regions and species suggests support for a (temperature-modulated) trophic-cascade model for plague, including climatic effects on rodent abundance, flea abundance, and pathogen transmission, at least in regions that experience strong climatic signals. ?? 2005 EcoHealth Journal Consortium.

  4. Missing lynx and trophic cascades in food webs: A reply to Ripple et al.

    Treesearch

    John R. Squires; Nicholas J. DeCesare; Mark Hebblewhite; Joel Berger

    2012-01-01

    Ripple et al. (2011) proposed a hypothesis that the recovery of gray wolves (Canis lupus) may positively affect the viability of threatened Canada lynx (Lynx canadensis) populations in the contiguous United States through indirect species interactions. Ripple et al. (2011) proposed 2 key trophic linkages connecting wolf restoration with lynx recovery. First, recovering...

  5. Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predicting Trophic Interactions and Habitat Utilization...on trophic interactions affecting habitat utilization and foraging patterns of California sea lions (CSL) in the California Current Large Marine...structure and trophic interactions OBJECTIVES The main research objective is to quantify habitat utilization and trophic interactions in the CCLME by

  6. Coyotes, deer, and wildflowers: diverse evidence points to a trophic cascade.

    PubMed

    Waser, Nickolas M; Price, Mary V; Blumstein, Daniel T; Arózqueta, S Reneé; Escobar, Betsabé D Castro; Pickens, Richard; Pistoia, Alessandra

    2014-05-01

    Spatial gradients in human activity, coyote activity, deer activity, and deer herbivory provide an unusual type of evidence for a trophic cascade. Activity of coyotes, which eat young mule deer (fawns), decreased with proximity to a remote biological field station, indicating that these predators avoided an area of high human activity. In contrast, activity of adult female deer (does) and intensity of herbivory on palatable plant species both increased with proximity to the station and were positively correlated with each other. The gradient in deer activity was not explained by availabilities of preferred habitats or plant species because these did not vary with distance from the station. Does spent less time feeding when they encountered coyote urine next to a feed block, indicating that increased vigilance may contribute, along with avoidance of areas with coyotes, to lower herbivory away from the station. Judging from two palatable wildflower species whose seed crop and seedling recruitment were greatly reduced near the field station, the coyote-deer-wildflower trophic cascade has the potential to influence plant community composition. Our study illustrates the value of a case-history approach, in which different forms of ecological data about a single system are used to develop conceptual models of complex ecological phenomena. Such an iterative model-building process is a common, but underappreciated, way of understanding how ecological systems work.

  7. Coyotes, deer, and wildflowers: diverse evidence points to a trophic cascade

    NASA Astrophysics Data System (ADS)

    Waser, Nickolas M.; Price, Mary V.; Blumstein, Daniel T.; Arózqueta, S. Reneé; Escobar, Betsabé D. Castro; Pickens, Richard; Pistoia, Alessandra

    2014-05-01

    Spatial gradients in human activity, coyote activity, deer activity, and deer herbivory provide an unusual type of evidence for a trophic cascade. Activity of coyotes, which eat young mule deer (fawns), decreased with proximity to a remote biological field station, indicating that these predators avoided an area of high human activity. In contrast, activity of adult female deer (does) and intensity of herbivory on palatable plant species both increased with proximity to the station and were positively correlated with each other. The gradient in deer activity was not explained by availabilities of preferred habitats or plant species because these did not vary with distance from the station. Does spent less time feeding when they encountered coyote urine next to a feed block, indicating that increased vigilance may contribute, along with avoidance of areas with coyotes, to lower herbivory away from the station. Judging from two palatable wildflower species whose seed crop and seedling recruitment were greatly reduced near the field station, the coyote-deer-wildflower trophic cascade has the potential to influence plant community composition. Our study illustrates the value of a case-history approach, in which different forms of ecological data about a single system are used to develop conceptual models of complex ecological phenomena. Such an iterative model-building process is a common, but underappreciated, way of understanding how ecological systems work.

  8. Competition among penguins and cetaceans reveals trophic cascades in the western Ross Sea, Antarctica.

    PubMed

    Ainley, David G; Ballard, Grant; Dugger, Katie M

    2006-08-01

    An apparent trophic cascade that appears during summer in the western Ross Sea, Antarctica, explains why the Antarctic silverfish (Pleuragramma antarcticum) there becomes cannibalistic; its principal prey, crystal krill (Euphausia crystallorophias) becomes scarce; and the diatom community is minimally grazed compared to adjacent areas. The krill is the major grazer of diatoms. On the basis of fieldwork at Ross Island, we suggest that the cascade results from foraging by unusually numerous Adélie Penguins (Pygoscelis adeliae), minke whales (Balaenoptera bonaerensis), and fish-eating killer whales (Orcinus orca). These species and other top predators apparently deplete the krill and silverfish. In drawing our conclusions, we were aided by two "natural experiments." In one "experiment," large, grounded icebergs altered the seasonal pattern of change in regional sea-ice cover, but not the seasonal change in penguin diet and foraging behavior that was also detected during the pre-iceberg era. In the other "experiment," a short-term polynya (opening in the ice) brought penguins and whales together in a confined area, this time altering both penguin diet and foraging behavior. We conclude that the foraging of penguins and whales, and not a formerly hypothesized seasonal decrease in sea-ice cover, explains (1) the annual switch in the penguins' prey from krill to silverfish, (2) the subsequent lengthening of penguin foraging trips, and (3) a marked decline of cetaceans in the area later in the season. Reduction in the middle-trophic-level prey is expressed in the relaxed grazing pressure on phytoplankton.

  9. Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams

    USGS Publications Warehouse

    Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle; Mahler, Barbara J.; VanMetre, Peter

    2016-01-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  10. Bifenthrin causes trophic cascades and alters insect emergence in mesocosms: implication for small streams

    USGS Publications Warehouse

    Rogers, Holly; Schmidt, Travis S.; Dabney, Brittanie L.; Hladik, Michelle; Mahler, Barbara J.; VanMetre, Peter

    2016-01-01

    Direct and indirect ecological effects of the widely used insecticide bifenthrin on stream ecosystems are largely unknown. To investigate such effects, a manipulative experiment was conducted in stream mesocosms that were colonized by aquatic insect communities and exposed to bifenthrin-contaminated sediment; implications for natural streams were interpreted through comparison of mesocosm results to a survey of 100 Midwestern streams, USA. In the mesocosm experiment, direct effects of bifenthrin exposure included reduced larval macroinvertebrate abundance, richness, and biomass at concentrations (EC50s ranged 197.6 – 233.5 ng bifenthrin/ g organic carbon) previously thought safe for aquatic life. Indirect effects included a trophic cascade in which periphyton abundance increased after macroinvertebrate scrapers decreased. Adult emergence dynamics and corresponding terrestrial subsidies were altered at all bifenthrin concentrations tested. Extrapolating these results to the Midwestern stream assessment suggests pervasive ecological effects, with altered emergence dynamics likely in 40% of streams and a trophic cascade in 7% of streams. This study provides new evidence that a common pyrethroid might alter aquatic and terrestrial ecosystem function at the regional scale.

  11. Animal water balance drives top-down effects in a riparian forest—implications for terrestrial trophic cascades

    PubMed Central

    Sabo, John L.

    2016-01-01

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. PMID:27534953

  12. Predation risk, elk, and aspen: tests of a behaviorally mediated trophic cascade in the Greater Yellowstone Ecosystem.

    PubMed

    Winnie, John A

    2012-12-01

    Aspen in the Greater Yellowstone Ecosystem are hypothesized to be recovering from decades of heavy browsing by elk due to a behaviorally mediated trophic cascade (BMTC). Several authors have suggested that wolves interact with certain terrain features, creating places of high predation risk at fine spatial scales, and that elk avoid these places, which creates refugia for plants. This hypothesized BMTC could release aspen from elk browsing pressure, leading to a patchy recovery in places of high risk. I tested whether four specific, hypothesized fine-scale risk factors are correlated with changes in current elk browsing pressure on aspen, or with aspen recruitment since wolf reintroduction, in the Daly Creek drainage in Yellowstone National Park, and near two aspen enclosures outside of the park boundary. Aspen were not responding to hypothesized fine-scale risk factors in ways consistent with the current BMTC hypothesis.

  13. Trophic cascades result in large-scale coralline algae loss through differential grazer effects.

    PubMed

    O'Leary, Jennifer K; McClanahan, Timothy R

    2010-12-01

    Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Niño Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer

  14. Recovering aspen follow changing elk dynamics in Yellowstone: evidence of a trophic cascade?

    PubMed

    Painter, Luke E; Beschta, Robert L; Larsen, Eric J; Ripple, William J

    2015-01-01

    To investigate the extent and causes of recent quaking aspen (Populus tremuloides) recruitment in northern Yellowstone National Park, we measured browsing intensity and height of young aspen in 87 randomly selected aspen stands in 2012, and compared our results to similar data collected in 1997-1998. We also examined the relationship between aspen recovery and the distribution of Rocky Mountain elk (Cervus elaphus) and bison (Bison bison) on the Yellowstone northern ungulate winter range, using ungulate fecal pile densities and annual elk count data. In 1998, 90% of young aspen were browsed and none were taller-than 200 cm, the height at which aspen begin to escape from elk browsing. In 2012, only 37% in the east and 63% in the west portions of the winter range were browsed, and 65% of stands in the east had young aspen taller than 200 cm. Heights of young aspen were inversely related to browsing intensity, with the least browsing and greatest heights in the eastern portion of the range, corresponding with recent changes in elk density and distribution. In contrast with historical elk distribution (1930s-1990s), the greatest densities of elk recently (2006-2012) have been north of the park boundary (approximately 5 elk/km2), and in the western part of the range (2-4 elk/km2), with relatively few elk in the eastern portion of the range (<2 elk/km2), even in mild winters. This redistribution of elk and decrease in density inside the park, and overall reduction in elk numbers, explain why many aspen stands have begun to recover. Increased predation pressure following the reintroduction of gray wolves (Canis lupius) in 1995-1996 played a role in these changing elk population dynamics, interacting with other influences including increased predation by bears (Ursus spp.), competition with an expanding bison population, and shifting patterns of human land use and hunting outside the park. The resulting new aspen recruitment is evidence of a landscape-scale trophic cascade

  15. Toxic cascades: multiple anthropogenic stressors have complex and unanticipated interactive effects on temperate reefs.

    PubMed

    Shears, Nick T; Ross, Philip M

    2010-09-01

    In a changing environment multiple anthropogenic stressors can have novel and non-additive effects on interacting species. We investigated the interactive effects of fishing and harmful algal blooms on the predator-sea urchin-macroalgae trophic cascade. Fishing of urchin predators had indirect negative effects on macroalgae, whereas blooms of epi-benthic dinoflagellates (Ostreopsis siamensis) were found to have strong negative effects on urchins and indirect positive effects on macroalgae. Based on these opposing effects, blooms were expected to counteract the cascading effects of fishing. However, a large bloom of Ostreopsis led to greater divergence in macroalgae abundance between reserve and fished sites, as urchins declined at reserve sites but remained stable at fished sites. This resulted from enhanced predation rates on bloom-affected urchins at reserve sites rather than direct lethal effects of Ostreopsis on urchins. We argue that interacting stressors can facilitate or attenuate trophic cascades depending on stressor intensity and complex non-lethal interactions.

  16. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade

    USGS Publications Warehouse

    Kauffman, Matthew J.; Brodie, Jedediah F.; Jules, Erik S.

    2010-01-01

    Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic

  17. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C.

    PubMed

    Holdo, Ricardo M; Sinclair, Anthony R E; Dobson, Andrew P; Metzger, Kristine L; Bolker, Benjamin M; Ritchie, Mark E; Holt, Robert D

    2009-09-01

    Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-space model to show that the wildebeest population eruption that followed disease (rinderpest) eradication in the Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks for C may be fundamentally linked to the control of disease outbreaks and poaching.

  18. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade.

    PubMed

    Kauffman, Matthew J; Brodie, Jedediah F; Jules, Erik S

    2010-09-01

    Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen Stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic

  19. Four-trophic level food webs reveal the cascading impacts of an invasive plant targeted for biocontrol.

    PubMed

    López-Núñez, Francisco A; Heleno, Ruben H; Ribeiro, Sérgio; Marchante, Hélia; Marchante, Elizabete

    2017-03-01

    Biological invasions are a major threat to biodiversity and as such understanding their impacts is a research priority. Ecological networks provide a valuable tool to explore such impacts at the community level, and can be particularly insightful for planning and monitoring biocontrol programmes, including the potential for their seldom evaluated indirect non-target effects. Acacia longifolia is among the worst invasive species in Portugal, and has been recently targeted for biocontrol by a highly specific gall-wasp. Here we use an ambitious replicated network approach to: (1) identify the mechanisms by which direct and indirect impacts of A. longifolia can cascade from plants to higher trophic levels, including gallers, their parasitoids and inquilines; (2) reveal the structure of the interaction networks between plants, gallers, parasitoids and inquilines before the biocontrol; and (3) explore the potential for indirect interactions among gallers, including those established with the biocontrol agent, via apparent competition. Over a 15-month period, we collected 31,737 galls from native plants and identified all emerging insects, quantifying the interactions between 219 plant-, 49 galler-, 65 parasitoid- and 87 inquiline-species-one of the largest ecological networks to date. No galls were found on any of the 16 alien plant species. Invasion by A. longifolia caused an alarming simplification of plant communities, with cascading effects to higher trophic levels, namely: a decline of overall gall biomass, and on the richness, abundance and biomass of galler insects, their parasitoids, and inquilines. Correspondingly, we detected a significant decline in the richness of interactions between plants and galls. The invasion tended to increase overall interaction evenness by promoting the local extinction of the native plants that sustained more gall species. However, highly idiosyncratic responses hindered the detection of further consistent changes in network

  20. Trait-mediated trophic interactions: is foraging theory keeping up?

    Treesearch

    Steven F. Railsback; Bret C. Harvey

    2013-01-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can...

  1. Perturbations to trophic interactions and the stability of complex food webs

    PubMed Central

    O'Gorman, Eoin J.; Emmerson, Mark C.

    2009-01-01

    The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606

  2. Consequences of omnivory for trophic interactions on a salt marsh shrub.

    PubMed

    Ho, Chuan-Kai; Pennings, Steven C

    2008-06-01

    Although omnivory is common in nature, its impact on trophic interactions is variable. Predicting the food web consequences of omnivory is complicated because omnivores can simultaneously produce conflicting direct and indirect effects on the same species or trophic level. We conducted field and laboratory experiments testing the top-down impacts of an omnivorous salt marsh crab, Armases cinereum, on the shrub Iva frutescens and its herbivorous and predatory arthropod fauna. Armases is a "true omnivore," consuming both Iva and arthropods living on Iva. We hypothesized that Armases would benefit Iva through a top-down trophic cascade, and that this benefit would be stronger than the direct negative effect of Armases on Iva. A field experiment on Sapelo Island, Georgia (USA), supported this hypothesis. Although Armases suppressed predators (spiders), it also suppressed herbivores (aphids), and benefited Iva, increasing leaf number, and reducing the proportion of dead shoots. A one-month laboratory experiment, focusing on the most common species in the food web, also supported this hypothesis. Armases strongly suppressed aphids and consumed fewer Iva leaves if aphids were available as an alternate diet. Armases gained more body mass if they could feed on aphids as well as on Iva. Although Armases had a negative effect on Iva when aphids were not present, Armases benefited Iva if aphids were present, because Armases controlled aphid populations, releasing Iva from herbivory. Although Armases is an omnivore, it produced strong top-down forces and a trophic cascade because it fed preferentially on herbivores rather than plants when both were available. At the same time, the ability of Armases to subsist on a plant diet allows it to persist in the food web when animal food is not available. Because omnivores feed on multiple trophic levels, their effects on food webs may differ from those predicted by standard trophic models that assume that each species feeds only on a

  3. Food web persistence is enhanced by non-trophic interactions.

    PubMed

    Hammill, Edd; Kratina, Pavel; Vos, Matthijs; Petchey, Owen L; Anholt, Bradley R

    2015-06-01

    The strength of interspecific interactions is often proposed to affect food web stability, with weaker interactions increasing the persistence of species, and food webs as a whole. However, the mechanisms that modify interaction strengths, and their effects on food web persistence are not fully understood. Using food webs containing different combinations of predator, prey, and nonprey species, we investigated how predation risk of susceptible prey is affected by the presence of species not directly trophically linked to either predators or prey. We predicted that indirect alterations to the strength of trophic interactions translate to changes in persistence time of extinction-prone species. We assembled interaction webs of protist consumers and turbellarian predators with eight different combinations of prey, predators and nonprey species, and recorded abundances for over 130 prey generations. Persistence of predation-susceptible species was increased by the presence of nonprey. Furthermore, multiple nonprey species acted synergistically to increase prey persistence, such that persistence was greater than would be predicted from the dynamics of simpler food webs. We also found evidence suggesting increased food web complexity may weaken interspecific competition, increasing persistence of poorer competitors. Our results demonstrate that persistence times in complex food webs cannot be predicted from the dynamics of simplified systems, and that species not directly involved in consumptive interactions likely play key roles in maintaining persistence. Global species diversity is currently declining at an unprecedented rate and our findings reveal that concurrent loss of species that modify trophic interactions may have unpredictable consequences for food web stability.

  4. Fungal phyllosphere communities are altered by indirect interactions among trophic levels.

    PubMed

    Perez, Jose L; French, J Victor; Summy, Kenneth R; Baines, Anita Davelos; Little, Christopher R

    2009-05-01

    Trophic interactions involving predators, herbivores, and plants have been described in terrestrial systems. However, there is almost no information on the effect of trophic interactions on microbial phyllosphere community abundance, diversity, or structure. In this study, the interaction between a parasitoid, an insect herbivore, and the fungal phyllosphere community is examined. Parasitoid wasps have an indirect negative impact on fungal community diversity. On the citrus phyllosphere, the exotic wasp species, Amitus hesperidum and Encarsia opulenta, may parasitize the citrus blackfly (Aleurocanthus woglumi). If parasitism levels are low, the blackfly may produce significant amounts of honeydew secretions on the surface of the leaf. Honeydew deposition provides a carbon-rich substrate for the development of fungal growth persisting as sooty mold on the leaves. Leaves from sooty mold-infested grapefruit (Citrus paradisi) trees were collected from multiple orchards in south Texas. The effect of different levels of exotic parasite activity, citrus blackfly, and sooty mold infestation on phyllosphere mycobiota community structure and diversity was examined. Our results suggest the presence of the parasitoid may lead to a top-down trophic cascade affecting phyllosphere fungal community diversity and structure. Additionally, persistent sooty mold deposits that have classically been referred to as Capnodium citri (and related asexual morphological forms) actually comprise a myriad of fungal species including many saprophytes and potential fruit and foliar pathogens of citrus.

  5. Unified spatial scaling of species and their trophic interactions.

    PubMed

    Brose, Ulrich; Ostling, Annette; Harrison, Kateri; Martinez, Neo D

    2004-03-11

    Two largely independent bodies of scaling theory address the quantitative relationships between habitat area, species diversity and trophic interactions. Spatial theory within macroecology addresses how species richness scales with area in landscapes, while typically ignoring interspecific interactions. Complexity theory within community ecology addresses how trophic links scale with species richness in food webs, while typically ignoring spatial considerations. Recent studies suggest unifying these theories by demonstrating how spatial patterns influence food-web structure and vice versa. Here, we follow this suggestion by developing and empirically testing a more unified scaling theory. On the basis of power-law species-area relationships, we develop link-area and non-power-law link-species models that accurately predict how trophic links scale with area and species richness of microcosms, lakes and streams from community to metacommunity levels. In contrast to previous models that assume that species richness alone determines the number of trophic links, these models include the species' spatial distribution, and hence extend the domain of complexity theory to metacommunity scales. This generality and predictive success shows how complexity theory and spatial theory can be unified into a much more general theory addressing new domains of ecology.

  6. Dimensionality of consumer search space drives trophic interaction strengths.

    PubMed

    Pawar, Samraat; Dell, Anthony I; Savage, Van M

    2012-06-28

    Trophic interactions govern biomass fluxes in ecosystems, and stability in food webs. Knowledge of how trophic interaction strengths are affected by differences among habitats is crucial for understanding variation in ecological systems. Here we show how substantial variation in consumption-rate data, and hence trophic interaction strengths, arises because consumers tend to encounter resources more frequently in three dimensions (3D) (for example, arboreal and pelagic zones) than two dimensions (2D) (for example, terrestrial and benthic zones). By combining new theory with extensive data (376 species, with body masses ranging from 5.24 × 10(-14) kg to 800 kg), we find that consumption rates scale sublinearly with consumer body mass (exponent of approximately 0.85) for 2D interactions, but superlinearly (exponent of approximately 1.06) for 3D interactions. These results contradict the currently widespread assumption of a single exponent (of approximately 0.75) in consumer-resource and food-web research. Further analysis of 2,929 consumer-resource interactions shows that dimensionality of consumer search space is probably a major driver of species coexistence, and the stability and abundance of populations.

  7. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants

    PubMed Central

    Mooney, Kailen A.; Gruner, Daniel S.; Barber, Nicholas A.; Van Bael, Sunshine A.; Philpott, Stacy M.; Greenberg, Russell

    2010-01-01

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores—which by virtue of their body size and feeding habits are often top predators in these systems—and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities. PMID:20368418

  8. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    PubMed

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities.

  9. Nationwide trophic cascades: changes in avian community structure driven by ungulates

    NASA Astrophysics Data System (ADS)

    Palmer, Georgina; Stephens, Philip A.; Ward, Alastair I.; Willis, Stephen G.

    2015-10-01

    In recent decades, many ungulate populations have changed dramatically in abundance, resulting in cascading effects across ecosystems. However, studies of such effects are often limited in their spatial and temporal scope. Here, we contrast multi-species composite population trends of deer-sensitive and deer-tolerant woodland birds at a national scale, across Britain. We highlight the divergent fates of these two groups between 1994 and 2011, and show a striking association between the calculated divergence and a composite population trend of woodland deer. Our results demonstrate the link between changes in deer populations and changes in bird communities. In a period when composite population trends for deer increased by 46%, the community population trend across deer-sensitive birds (those dependent on understory vegetation) declined much more than the community trend for deer-tolerant birds. Our findings suggest that ongoing changes in the populations of herbivorous ungulates in many countries worldwide may help explain patterns of community restructuring at other trophic levels. Ungulate impacts on other taxa may require more consideration by conservation practitioners than they currently receive.

  10. Plant toxins and trophic cascades alter fire regime and succession on a boral forest landscape

    USGS Publications Warehouse

    Feng, Zhilan; Alfaro-Murillo, Jorge A.; DeAngelis, Donald L.; Schmidt, Jennifer; Barga, Matthew; Zheng, Yiqiang; Ahmad Tamrin, Muhammad Hanis B.; Olson, Mark; Glaser, Tim; Kielland, Knut; Chapin, F. Stuart; Bryant, John

    2012-01-01

    Two models were integrated in order to study the effect of plant toxicity and a trophic cascade on forest succession and fire patterns across a boreal landscape in central Alaska. One of the models, ALFRESCO, is a cellular automata model that stochastically simulates transitions from spruce dominated 1 km2 spatial cells to deciduous woody vegetation based on stochastic fires, and from deciduous woody vegetation to spruce based on age of the cell with some stochastic variation. The other model, the ‘toxin-dependent functional response’ model (TDFRM) simulates woody vegetation types with different levels of toxicity, an herbivore browser (moose) that can forage selectively on these types, and a carnivore (wolf) that preys on the herbivore. Here we replace the simple succession rules in each ALFRESCO cell by plant–herbivore–carnivore dynamics from TDFRM. The central hypothesis tested in the integrated model is that the herbivore, by feeding selectively on low-toxicity deciduous woody vegetation, speeds succession towards high-toxicity evergreens, like spruce. Wolves, by keeping moose populations down, can help slow the succession. Our results confirmed this hypothesis for the model calibrated to the Tanana floodplain of Alaska. We used the model to estimate the effects of different levels of wolf control. Simulations indicated that management reductions in wolf densities could reduce the mean time to transition from deciduous to spruce by more than 15 years, thereby increasing landscape flammability. The integrated model can be useful in estimating ecosystem impacts of wolf control and moose harvesting in central Alaska.

  11. Nationwide trophic cascades: changes in avian community structure driven by ungulates

    PubMed Central

    Palmer, Georgina; Stephens, Philip A.; Ward, Alastair I.; Willis, Stephen G.

    2015-01-01

    In recent decades, many ungulate populations have changed dramatically in abundance, resulting in cascading effects across ecosystems. However, studies of such effects are often limited in their spatial and temporal scope. Here, we contrast multi-species composite population trends of deer-sensitive and deer-tolerant woodland birds at a national scale, across Britain. We highlight the divergent fates of these two groups between 1994 and 2011, and show a striking association between the calculated divergence and a composite population trend of woodland deer. Our results demonstrate the link between changes in deer populations and changes in bird communities. In a period when composite population trends for deer increased by 46%, the community population trend across deer-sensitive birds (those dependent on understory vegetation) declined much more than the community trend for deer-tolerant birds. Our findings suggest that ongoing changes in the populations of herbivorous ungulates in many countries worldwide may help explain patterns of community restructuring at other trophic levels. Ungulate impacts on other taxa may require more consideration by conservation practitioners than they currently receive. PMID:26499183

  12. Fear Mediates Trophic Cascades: Nonconsumptive Effects of Predators Drive Aquatic Ecosystem Function.

    PubMed

    Breviglieri, Crasso Paulo B; Oliveira, Paulo S; Romero, Gustavo Q

    2017-05-01

    Predators control prey populations and influence communities and the functioning of ecosystems through a combination of consumptive and nonconsumptive effects. These effects can be locally confined to one ecosystem but can also be extended to neighboring ecosystems. In this study, we investigated the nonconsumptive effects of terrestrial avian predators on the communities of aquatic invertebrates inhabiting bromeliads and on the functioning of these natural ecosystems. Bromeliads with stuffed birds placed nearby showed a decrease in aquatic damselfly larvae abundance and biomass, and we can infer that these changes were caused by antipredator responses. These larvae, which are top predators in bromeliad ecosystems, changed the composition of the entire aquatic invertebrate community. While total species richness, mesopredator richness, and shredder abundance increased in the presence of birds, scraper biomass decreased, possibly as a consequence of the increase in mesopredator richness. High scraper biomass in the absence of birds may have accelerated detrital decomposition, making more nutrients available for bromeliads, which grew more. These results show that nonconsumptive effects triggered by terrestrial predators can cascade down to lower trophic levels and dramatically affect the functioning of aquatic ecosystems, which can in turn alter nutrient provision to terrestrial ecosystems.

  13. Nationwide trophic cascades: changes in avian community structure driven by ungulates.

    PubMed

    Palmer, Georgina; Stephens, Philip A; Ward, Alastair I; Willis, Stephen G

    2015-10-26

    In recent decades, many ungulate populations have changed dramatically in abundance, resulting in cascading effects across ecosystems. However, studies of such effects are often limited in their spatial and temporal scope. Here, we contrast multi-species composite population trends of deer-sensitive and deer-tolerant woodland birds at a national scale, across Britain. We highlight the divergent fates of these two groups between 1994 and 2011, and show a striking association between the calculated divergence and a composite population trend of woodland deer. Our results demonstrate the link between changes in deer populations and changes in bird communities. In a period when composite population trends for deer increased by 46%, the community population trend across deer-sensitive birds (those dependent on understory vegetation) declined much more than the community trend for deer-tolerant birds. Our findings suggest that ongoing changes in the populations of herbivorous ungulates in many countries worldwide may help explain patterns of community restructuring at other trophic levels. Ungulate impacts on other taxa may require more consideration by conservation practitioners than they currently receive.

  14. Natural and experimental tests of trophic cascades: gray wolves and white-tailed deer in a Great Lakes forest.

    PubMed

    Flagel, D G; Belovsky, G E; Beyer, D E

    2016-04-01

    Herbivores can be major drivers of environmental change, altering plant community structure and changing biodiversity through the amount and species of plants consumed. If natural predators can reduce herbivore numbers and/or alter herbivore foraging behavior, then predators may reduce herbivory on sensitive plants, and a trophic cascade will emerge. We have investigated whether gray wolves (Canis lupus) generate such trophic cascades by reducing white-tailed deer (Odocoileus virginianus) herbivory on saplings and rare forbs in a northern mesic forest (Land O' Lakes, WI). Our investigation used an experimental system of deer exclosures in areas of high and low wolf use that allowed us to examine the role that wolf predation may play in reducing deer herbivory through direct reduction in deer numbers or indirectly through changing deer behavior. We found that in areas of high wolf use, deer were 62 % less dense, visit duration was reduced by 82 %, and percentage of time spent foraging was reduced by 43 %; in addition, the proportion of saplings browsed was nearly sevenfold less. Average maple (Acer spp.) sapling height and forb species richness increased 137 and 117 % in areas of high versus low wolf use, respectively. The results of the exclosure experiments revealed that the negative impacts of deer on sapling growth and forb species richness became negligible in high wolf use areas. We conclude that wolves are likely generating trophic cascades which benefit maples and rare forbs through trait-mediated effects on deer herbivory, not through direct predation kills.

  15. The diatom-produced polyunsaturated aldehydes can induce trophic cascades in the planktonic food web in productive coastal waters.

    NASA Astrophysics Data System (ADS)

    Franzè, G.; Stoecker, D. K.; Pierson, J. J.; Lavrentyev, P.

    2016-02-01

    Allelopathy is wide spread among marine phytoplankton, including diatoms that produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most published PUA studies focused on the reproduction and development of specific marine invertebrates under laboratory conditions. In this study, we examined the effect of PUA on the trophic interactions between the copepod Acartia tonsa and natural microplankton collected from the Chesapeake Bay and the Virginia coastal waters. A set of bottle incubation experiments was conducted using the environmentally realistic concentrations of dissolved 2E, 4E-heptadienal and 2E, 4E-octadienal. Although PUA did not change phytoplankton growth, microzooplankton growth was affected at the species-specific level and their community herbivory rates declined. At the same time, the rates of copepod herbivory and predation on ciliates increased in the PUA treatments. These preliminary results suggest that production of cytotoxic compounds by diatoms may be a defense mechanism primarily against microzooplankton. The cascading effects induced by PUA can alter the composition and dynamics of microbial plankton communities, which in turn could have strong implication for the carbon cycling in productive coastal ecosystems.

  16. Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics.

    PubMed

    Sentis, Arnaud; Morisson, Julie; Boukal, David S

    2015-09-01

    Global change affects individual phenotypes and biotic interactions, which can have cascading effects up to the ecosystem level. However, the role of environmentally induced phenotypic plasticity in species interactions is poorly understood, leaving a substantial gap in our knowledge of the impacts of global change on ecosystems. Using a cladoceran-dragonfly system, we experimentally investigated the effects of thermal acclimation, acute temperature change and enrichment on predator functional response and metabolic rate. Using our experimental data, we next parameterized a population dynamics model to determine the consequences of these effects on trophic interaction strength and food-chain stability. We found that (1) predation and metabolic rates of the dragonfly larvae increase with acute warming, (2) warm-acclimated larvae have a higher maximum predation rate than cold-acclimated ones, and (3) long-term interaction strength increases with enrichment but decreases with both acclimation and acute temperatures. Overall, our experimental results show that thermal acclimation can buffer negative impacts of environmental change on predators and increase food-web stability and persistence. We conclude that the effect of acclimation and, more generally, phenotypic plasticity on trophic interactions should not be overlooked if we aim to understand the effects of climate change and enrichment on species interaction strength and food-web stability.

  17. Incorporating anthropogenic effects into trophic ecology: predator-prey interactions in a human-dominated landscape.

    PubMed

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G

    2015-09-07

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. © 2015 The Author(s).

  18. Incorporating anthropogenic effects into trophic ecology: predator–prey interactions in a human-dominated landscape

    PubMed Central

    Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G.; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G.

    2015-01-01

    Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169

  19. Trophic interactions and range limits: the diverse roles of predation

    PubMed Central

    Holt, Robert D.; Barfield, Michael

    2009-01-01

    Interactions between natural enemies and their victims are a pervasive feature of the natural world. In this paper, we discuss trophic interactions as determinants of geographic range limits. Predators can directly limit ranges, or do so in conjunction with competition. Dispersal can at times permit a specialist predator to constrain the distribution of its prey—and thus itself—along a gradient. Conversely, we suggest that predators can also at times permit prey to have larger ranges than would be seen without predation. We discuss several ecological and evolutionary mechanisms that can lead to this counter-intuitive outcome. PMID:19324814

  20. Does cadmium pollution change trophic interactions in rockpool food webs?

    SciTech Connect

    Koivisto, S.; Arner, M.; Kautsky, N.

    1997-06-01

    The authors studied the regulation of phytoplankton and zooplankton biomass in rockpool food webs under chronic cadmium pollution. Experimental food webs with two and three trophic levels were composed of phytoplankton, small-bodied zooplankton (Chydorus sphaericus, Cyclops sp., and rotifers), Daphnia magna, and Notonecta sp., a zooplanktivorous predator. Every food web received a control and cadmium treatment allowing a separate study of cadmium and predation effects. After a 3-week stabilization period, cadmium and Notonecta were added and changes in primary productivity, chlorophyll, zooplankton species composition, and biomass were followed during 8 weeks. The results showed that phytoplankton and Daphnia were consumer regulated in both control and cadmium treatments, although resource availability ultimately determined the biomass at each trophic level. Daphnia was the only zooplankton species that reduced phytoplankton and also the only species that was eliminated by Notonecta predation. Notonecta had an indirect positive impact on phytoplankton biomass that increased after the extinction of Daphnia. Cadmium significantly reduced phytoplankton and Daphnia but did not change the trophic interactions between them, i.e., Daphnia and chlorophyll were significantly negatively correlated both in the control and cadmium treatments. Cadmium did not affect the relationship between Daphnia and Notonecta.

  1. Trophic interactions in a high arctic snow goose colony.

    PubMed

    Gauthier, Gilles; Bêty, Joël; Giroux, Jean-François; Rochefort, Line

    2004-04-01

    We examined the role of trophic interactions in structuring a high arctic tundra community characterized by a large breeding colony of greater snow geese (Chen caerulescens atlantica). According to the exploitation ecosystem hypothesis of Oksanen et al. (1981), food chains are controlled by top-down interactions. However, because the arctic primary productivity is low, herbivore populations are too small to support functional predator populations and these communities should thus be dominated by the plant/ herbivore trophic-level interaction. Since 1990, we have been monitoring annual abundance and productivity of geese, the impact of goose grazing, predator abundance (mostly arctic foxes, Alopex lagopus) and the abundance of lemmings, the other significant herbivore in this community, on Bylot Island, Nunavut, Canada. Goose grazing consistently removed a significant proportion of the standing crop (∼40%) in tundra wetlands every year. Grazing changed plant community composition and reduced the production of grasses and sedges to a low-level equilibrium compared to the situation where the presence of geese had been removed. Lemming cyclic fluctuations were strong and affected fox reproduction. Fox predation on goose eggs was severe and generated marked annual variation in goose productivity. Predation intensity on geese was closely related to the lemming cycle, a consequence of an indirect interaction between lemming and geese via shared predators. We conclude that, contrary to the exploitation ecosystem hypothesis, both the plant/herbivore and predator/prey interactions are significant in this arctic community.

  2. Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem

    DTIC Science & Technology

    2012-09-30

    marine organisms over multiple trophic levels , and (2) natural and anthropogenic variability in ecosystem structure and trophic interactions...framework consists of a lower trophic level ecosystem model (NEMURO) embedded in a regional ocean circulation model (ROMS), and both coupled with a multi...to better understand and characterize biological “hotspots” (i.e., the aggregation of multiple marine organisms over multiple trophic levels ) off the

  3. Physical Drivers Vs. Effects of the Wolf-Elk Trophic Cascade on Fluvial Channel Planform, Olympic National Park, Washington

    NASA Astrophysics Data System (ADS)

    East, A. E.; Jenkins, K. J.; Happe, P. J.; Bountry, J.; Beechie, T. J.; Mastin, M. C.; Sankey, J. B.; Randle, T. J.

    2016-12-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history; all four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, shown, for example, by the response of the Elwha River to a landslide. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. These rivers demonstrate rapid transmission of climatic signals through relatively short sediment-routing systems that lack substantial buffering by sediment storage. We infer no correspondence between channel evolution and elk abundance, suggesting that in this system effects of the wolf-driven trophic cascade are subsidiary to physical controls on channel morphology. Our examinations of stage-discharge history, historical maps, photographs, and descriptions, and empirical geomorphic thresholds do not support a previous conceptual model that these rivers underwent a fundamental geomorphic transition (widening, and a shift from single-thread to braided) resulting from large elk populations in the early 20th century. These findings differ from previous interpretations of Olympic National Park river dynamics, and also contrast with previous findings in Yellowstone National Park, where legacy effects of abundant elk nearly a century ago apparently still affect

  4. A trophic cascade induced by predatory ants in a fig-fig wasp mutualism.

    PubMed

    Wang, Bo; Geng, Xiang-Zong; Ma, Li-Bin; Cook, James M; Wang, Rui-Wu

    2014-09-01

    A trophic cascade occurs when predators directly decrease the densities, or change the behaviour, of herbivores and thus indirectly increase plant productivity. The predator-herbivore-plant context is well known, but some predators attack species beneficial to plants (e.g. pollinators) and/or enemies of herbivores (e.g. parasites), and their role in the dynamics of mutualisms remains largely unexplored. We surveyed the predatory ant species and studied predation by the dominant ant species, the weaver ant Oecophylla smaragdina, associated with the fig tree Ficus racemosa in southwest China. We then tested the effects of weaver ants on the oviposition behaviour of pollinating and non-pollinating fig wasps in an ant-exclusion experiment. The effects of weaver ants on fig wasp community structure and fig seed production were then compared between trees with and without O. smaragdina. Oecophylla smaragdina captured more non-pollinating wasps (Platyneura mayri) than pollinators as the insects arrived to lay eggs. When ants were excluded, more non-pollinators laid eggs into figs and fewer pollinators entered figs. Furthermore, trees with O. smaragdina produced more pollinator offspring and fewer non-pollinator offspring, shifting the community structure significantly. In addition, F. racemosa produced significantly more seeds on trees inhabited by weaver ants. Oecophylla smaragdina predation reverses the dominance of the two commonest wasp species at the egg-laying stage and favours the pollinators. This behavioural pattern is mirrored by wasp offspring production, with pollinators' offspring dominating figs produced by trees inhabited by weaver ants, and offspring of the non-pollinator P. mayri most abundant in figs on trees inhabited by other ants. Overall, our results suggest that predation by weaver ants limits the success of the non-pollinating P. mayri and therefore indirectly benefits the mutualism by increasing the reproductive success of both the

  5. Humans strengthen bottom-up effects and weaken trophic cascades in a terrestrial food web.

    PubMed

    Muhly, Tyler B; Hebblewhite, Mark; Paton, Dale; Pitt, Justin A; Boyce, Mark S; Musiani, Marco

    2013-01-01

    -up predominance and weaken top-down trophic cascades in ecosystems. We suggest that human influences on ecosystems may usurp top-down and bottom-up effects.

  6. Humans Strengthen Bottom-Up Effects and Weaken Trophic Cascades in a Terrestrial Food Web

    PubMed Central

    Muhly, Tyler B.; Hebblewhite, Mark; Paton, Dale; Pitt, Justin A.; Boyce, Mark S.; Musiani, Marco

    2013-01-01

    -up predominance and weaken top-down trophic cascades in ecosystems. We suggest that human influences on ecosystems may usurp top-down and bottom-up effects. PMID:23667705

  7. Disrupted trophic interactions affect recruitment of boreal deciduous and coniferous trees in northern Europe.

    PubMed

    Angelstam, Per; Manton, Michael; Pedersen, Simen; Elbakidze, Marine

    2017-01-23

    Loss of large carnivore populations may lead to increased population densities of large herbivores, and subsequent cascading effects on the composition, structure, and function of ecosystems. Using a macroecological approach based on studies in multiple boreal forest landscapes in the Baltic Sea region and Russia, we tested the hypothesis that disrupted trophic interactions among large carnivores and large herbivores affect the recruitment of both ecologically and economically valuable tree species. We measured damage levels on young trees and large herbivore density in 10 local landscapes representing a gradient from extinct to extant populations of both large carnivores and large herbivores. We also tested the alternative hypothesis that forest management intensity is correlated to reduced recruitment of these tree species. At the macroecological scale there was an inverse relationship between the number of large carnivores and large herbivores. This coincided with a steep gradient in browsing damage on the ecologically important aspen, rowan and sallow as hosts for specialized species, as well as the economically important Scots pine. In one landscape hunting had replaced the presence of carnivores. Mean damage levels of these four tree species were correlated with large herbivore abundance, but not with forest management intensity. We discuss the pros and cons of this macroecological approach, as well as the challenge of governing and managing trophic interactions at multiple scales.

  8. Bears benefit plants via a cascade with both antagonistic and mutualistic interactions.

    PubMed

    Grinath, Joshua B; Inouye, Brian D; Underwood, Nora

    2015-02-01

    Predators can influence primary producers by generating cascades of effects in ecological webs. These effects are often non-intuitive, going undetected because they involve many links and different types of species interactions. Particularly, little is understood about how antagonistic (negative) and mutualistic (positive) interactions combine to create cascades. Here, we show that black bears can benefit plants by consuming ants. The ants are mutualists of herbivores and protect herbivores from other arthropod predators. We found that plants near bear-damaged ant nests had greater reproduction than those near undamaged nests, due to weaker ant protection for herbivores, which allowed herbivore suppression by arthropod predators. Our results highlight the need to integrate mutualisms into trophic cascade theory, which is based primarily on antagonistic relationships. Predators are often conservation targets, and our results suggest that bears and other predators should be managed with the understanding that they can influence primary producers through many paths. © 2014 John Wiley & Sons Ltd/CNRS.

  9. Trophic interactions within the Ross Sea continental shelf ecosystem.

    PubMed

    Smith, Walker O; Ainley, David G; Cattaneo-Vietti, Riccardo

    2007-01-29

    The continental shelf of the Ross Sea is one of the Antarctic's most intensively studied regions. We review the available data on the region's physical characteristics (currents and ice concentrations) and their spatial variations, as well as components of the neritic food web, including lower and middle levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic interactions, such as the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically with others in the Antarctic that appear to be structured around the keystone species Euphausia superba. Similarly, we suggest that benthic-pelagic coupling is stronger in the Ross Sea than in most other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the impacts of a changing Ross Sea habitat on the ecosystem.

  10. Trophic interactions within the Ross Sea continental shelf ecosystem

    PubMed Central

    Smith, Walker O; Ainley, David G; Cattaneo-Vietti, Riccardo

    2006-01-01

    The continental shelf of the Ross Sea is one of the Antarctic's most intensively studied regions. We review the available data on the region's physical characteristics (currents and ice concentrations) and their spatial variations, as well as components of the neritic food web, including lower and middle levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic interactions, such as the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically with others in the Antarctic that appear to be structured around the keystone species Euphausia superba. Similarly, we suggest that benthic–pelagic coupling is stronger in the Ross Sea than in most other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the impacts of a changing Ross Sea habitat on the ecosystem. PMID:17405209

  11. A continental scale trophic cascade from wolves through coyotes to foxes.

    PubMed

    Newsome, Thomas M; Ripple, William J

    2015-01-01

    Top-down processes, via the direct and indirect effects of interspecific competitive killing (no consumption of the kill) or intraguild predation (consumption of the kill), can potentially influence the spatial distribution of terrestrial predators, but few studies have demonstrated the phenomenon at a continental scale. For example, in North America, grey wolves Canis lupus are known to kill coyotes Canis latrans, and coyotes, in turn, may kill foxes Vulpes spp., but the spatial effects of these competitive interactions at large scales are unknown. Here, we analyse fur return data across eight jurisdictions in North America to test whether the presence or absence of wolves has caused a continent-wide shift in coyote and red fox Vulpes vulpes density. Our results support the existence of a continental scale cascade whereby coyotes outnumber red foxes in areas where wolves have been extirpated by humans, whereas red foxes outnumber coyotes in areas where wolves are present. However, for a distance of up to 200 km on the edge of wolf distribution, there is a transition zone where the effects of top-down control are weakened, possibly due to the rapid dispersal and reinvasion capabilities of coyotes into areas where wolves are sporadically distributed or at low densities. Our results have implications for understanding how the restoration of wolf populations across North America could potentially affect co-occurring predators and prey. We conclude that large carnivores may need to occupy large continuous areas to facilitate among-carnivore cascades and that studies of small areas may not be indicative of the effects of top-down mesopredator control. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  12. Trophic interactions determine the effects of drought on an aquatic ecosystem.

    PubMed

    Amundrud, Sarah L; Srivastava, Diane S

    2016-06-01

    Species interactions can be important mediators of community and ecosystem responses to environmental stressors. However, we still lack a mechanistic understanding of the indirect ecological effects of stress that arise via altered species interactions. To understand how species interactions will be altered by environmental stressors, we need to know if the species that are vulnerable to such stressors also have large impacts on the ecosystem. As predators often exhibit certain traits that are linked to a high vulnerability to stress (e.g., large body size, long generation time), as well as having large effects on communities (e.g., top-down trophic effects), predators may be particularly likely to mediate ecological effects of environmental stress. Other functional groups, like facilitators, are known to have large impacts on communities, but their vulnerability to perturbations remains undocumented. Here, we use aquatic insect communities in bromeliads to examine the indirect effects of an important stressor (drought) on community and ecosystem responses. In a microcosm experiment, we manipulated predatory and facilitative taxa under a range of experimental droughts, and quantified effects on community structure and ecosystem function. Drought, by adversely affecting the top predator, had indirect cascading effects on the entire food web, altering community composition and decomposition. We identified the likely pathway of how drought cascaded through the food web from the top-down as drought -->predator --> shredder --> decomposition. This stress-induced cascade depended on predators exhibiting both a strong vulnerability to drought and large impacts on prey (especially shredders), as well as shredders exhibiting high functional importance as decomposers.

  13. Top-predator control-induced trophic cascades: an alternative hypothesis to the conclusion of Colman et al.

    PubMed

    Allen, Benjamin L

    2015-01-22

    Colman et al. (2014 Proc. R. Soc. B 281, 20133094. (doi:10.1098/rspb.2013.3094)) recently argued that observed positive relationships between dingoes and small mammals were a result of top-down processes whereby lethal dingo control reduced dingoes and increased mesopredators and herbivores, which then suppressed small mammals. Here, I show that the prerequisite negative effects of dingo control on dingoes were not shown, and that the same positive relationships observed may simply represent well-known bottom-up processes whereby more generalist predators are found in places with more of their preferred prey. Identification of top-predator control-induced trophic cascades first requires demonstration of some actual effect of control on predators, typically possible only through manipulative experiments with the ability to identify cause and effect. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. An acute trophic cascade among microorganisms in the tree hole ecosystem following removal of omnivorous mosquito larvae

    PubMed Central

    Walker, E. D.; Kaufman, M. G.; Merritt, R. W.

    2014-01-01

    Results of two field experiments showed that selective removal of omnivorous mosquito larvae (Aedes triseriatus (Say)) functioning as top predators in the food web of a temperate, tree hole ecosystem resulted rapidly in increased abundance of flagellate and then ciliate populations. Flagellate density increased from <1 per ml to >103 per ml within 4 days of omnivore removal, followed shortly thereafter by an increase in ciliate density from <1 per ml to >102 per ml, after which flagellate density declined, and flagellate and ciliate densities stabilized. Rod-shaped bacteria increased slightly in density after removal of larval mosquitoes, then declined as protist density increased. Cocciform bacteria did not vary in density with these changes, thus the trophic cascade dampened at the remotest trophic level. Concomitant with the increase in protist densities, some bacteria formed elongated filaments >10 μm in length, likely an anti-predation, morphological response stimulated by suddenly intensified grazing as protozoan density rose. Results suggest that feeding by omnivorous mosquito larvae exhibited strong top-down effects on flagellate and ciliate populations, depressing them to below their equilibrium densities and nearly to extinction in tree hole ecosystems. PMID:25342946

  15. Climate change can cause spatial mismatch of trophically interacting species.

    PubMed

    Schweiger, Oliver; Settele, Josef; Kudrna, Otakar; Klotz, Stefan; Kühn, Ingolf

    2008-12-01

    Climate change is one of the most influential drivers of biodiversity. Species-specific differences in the reaction to climate change can become particularly important when interacting species are considered. Current studies have evidenced temporal mismatching of interacting species at single points in space, and recently two investigations showed that species interactions are relevant for their future ranges. However, so far we are not aware that the ranges of interacting species may become substantially spatially mismatched. We developed separate ecological-niche models for a monophagous butterfly (Boloria titania) and its larval host plant (Polygonum bistorta) based on monthly interpolated climate data, land-cover classes, and soil data at a 10'-grid resolution. We show that all of three chosen global-change scenarios, which cover a broad range of potential developments in demography, socio-economics, and technology during the 21st century from moderate to intermediate to maximum change, will result in a pronounced spatial mismatch between future niche spaces of these species. The butterfly may expand considerably its future range (by 124-258%) if the host plant has unlimited dispersal, but it could lose 52-75% of its current range if the host plant is not able to fill its projected ecological niche space, and 79-88% if the butterfly also is assumed to be highly dispersal limited. These findings strongly suggest that climate change has the potential to disrupt trophic interactions because co-occurring species do not necessarily react in a similar manner to global change, having important consequences at ecological and evolutionary time scales.

  16. Trophic interactions and the relationship between species diversity and ecosystem stability.

    PubMed

    Thébault, Elisa; Loreau, Michel

    2005-10-01

    Several theoretical studies propose that biodiversity buffers ecosystem functioning against environmental fluctuations, but virtually all of these studies concern a single trophic level, the primary producers. Changes in biodiversity also affect ecosystem processes through trophic interactions. Therefore, it is important to understand how trophic interactions affect the relationship between biodiversity and the stability of ecosystem processes. Here we present two models to investigate this issue in ecosystems with two trophic levels. The first is an analytically tractable symmetrical plant-herbivore model under random environmental fluctuations, while the second is a mechanistic ecosystem model under periodic environmental fluctuations. Our analysis shows that when diversity affects net species interaction strength, species interactions--both competition among plants and plant-herbivore interactions--have a strong impact on the relationships between diversity and the temporal variability of total biomass of the various trophic levels. More intense plant competition leads to a stronger decrease or a lower increase in variability of total plant biomass, but plant-herbivore interactions always have a destabilizing effect on total plant biomass. Despite the complexity generated by trophic interactions, biodiversity should still act as biological insurance for ecosystem processes, except when mean trophic interaction strength increases strongly with diversity.

  17. Thiacloprid affects trophic interaction between gammarids and mayflies.

    PubMed

    Englert, D; Bundschuh, M; Schulz, R

    2012-08-01

    Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator-prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption of Gammarus fossarum (Amphipoda) were assessed over 96 h (n = 13-17) in conjunction with its predation on Baetis rhodani (Ephemeroptera) nymphs. The predation by Gammarus increased significantly at 0.50-1.00 μg/L. Simultaneously, its leaf consumption decreased with increasing thiacloprid concentration. As a consequence of the increased predation at 1.00 μg/L, gammarids' dry weight rose significantly by 15% compared to the control. At 4.00 μg/L, the reduced leaf consumption was not compensated by an increase in predation causing a significantly reduced dry weight of Gammarus (∼20%). These results may finally suggest that thiacloprid adversely affects trophic interactions, potentially translating into alterations in ecosystem functions, like leaf litter breakdown and aquatic-terrestrial subsidies.

  18. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior

    Treesearch

    Dean E. Pearson

    2009-01-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa...

  19. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming

    PubMed Central

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-01-01

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa. PMID:25918393

  20. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming.

    PubMed

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-05-12

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa.

  1. Trophic interactions between parasitoids and necrophagous flies in Central Argentina.

    PubMed

    Sereno, Ana P; Salvo, Adriana; Battán-Horenstein, Moira

    2016-10-01

    Larvae of necrophagous flies in the families Calliphoridae, Sarcophagidae and Muscidae are the main exploiters of decaying organic matter. Knowledge of insect species associated with each stage of decay can be used to estimate the time since death in the crime scene. Dipteran larvae are attacked by a rich community of parasitoids, including species of Braconidae, Ichneumonidae and Pteromalidae (Hymenoptera: Parasitica). This study examined the parasitic complex associated with flies of forensic and sanitary importance in the city of Córdoba (Argentina). Sampling was conducted at two sites with different urbanization levels from December 2012 to March 2013; parasitoids were collected using fly traps baited with beef liver. Rates of parasitism and of parasitized pupae were estimated and species composition was analyzed for both communities. Sarcophagidae was the most abundant family, represented by two species, followed by Calliphoridae. Nasonia vitripennis Ashmead (Hymenoptera) was the most abundant species and was collected from a wider variety of hosts. To the best of our knowledge, this is the first study providing accurate information about trophic interactions between calyptrate dipteran species and their hymenopteran parasitoids in central Argentina.

  2. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions.

    PubMed

    Sentis, Arnaud; Gémard, Charlène; Jaugeon, Baptiste; Boukal, David S

    2016-11-10

    Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities.

  3. Perplexing Metabolomes in Fungal-Insect Trophic Interactions: A Terra Incognita of Mycobiocontrol Mechanisms

    PubMed Central

    Singh, Digar; Son, Su Y.; Lee, Choong H.

    2016-01-01

    The trophic interactions of entomopathogenic fungi in different ecological niches viz., soil, plants, or insect themselves are effectively regulated by their maneuvered metabolomes and the plethora of metabotypes. In this article, we discuss a holistic framework of co-evolutionary metabolomes and metabotypes to model the interactions of biocontrol fungi especially with mycosed insects. Conventionally, the studies involving fungal biocontrol mechanisms are reported in the context of much aggrandized fungal entomotoxins while the adaptive response mechanisms of host insects are relatively overlooked. The present review asserts that the selective pressure exerted among the competing or interacting species drives alterations in their overall metabolomes which ultimately implicates in corresponding metabotypes. Quintessentially, metabolomics offers a most generic and tractable model to assess the fungal-insect antagonism in terms of interaction biomarkers, biosynthetic pathway plasticity, and their co-evolutionary defense. The fungi chiefly rely on a battery of entomotoxins viz., secondary metabolites falling in the categories of NRP’s (non-ribosomal peptides), PK’s (polyketides), lysine derive alkaloids, and terpenoids. On the contrary, insects overcome mycosis through employing different layers of immunity manifested as altered metabotypes (phenoloxidase activity) and overall metabolomes viz., carbohydrates, lipids, fatty acids, amino acids, and eicosanoids. Here, we discuss the recent findings within conventional premise of fungal entomotoxicity and the evolution of truculent immune response among host insect. The metabolomic frameworks for fungal–insect interaction can potentially transmogrify our current comprehensions of biocontrol mechanisms to develop the hypervirulent biocontrol strains with least environmental concerns. Moreover, the interaction metabolomics (interactome) in complementation with other -omics cascades could further be applied to address

  4. Trophic cascades and future harmful algal blooms within ice-free Arctic Seas north of Bering Strait: A simulation analysis

    NASA Astrophysics Data System (ADS)

    Walsh, John J.; Dieterle, Dwight A.; Chen, F. Robert; Lenes, Jason M.; Maslowski, Wieslaw; Cassano, John J.; Whitledge, Terry E.; Stockwell, Dean; Flint, Mikhail; Sukhanova, Irina N.; Christensen, John

    2011-11-01

    Within larger ice-free regions of the western Arctic Seas, subject to ongoing trophic cascades induced by past overfishing, as well as to possible future eutrophication of the drainage basins of the Yukon and Mackenzie Rivers, prior very toxic harmful algal blooms (HABs) - first associated with ∼100 human deaths near Sitka, Alaska in 1799 - may soon expand. Blooms of calcareous coccolithophores in the Bering Sea during 1997-1998 were non-toxic harbingers of the subsequent increments of other non-siliceous phytoplankton. But, now saxitoxic dinoflagellates, e.g. Alexandrium tamarense, were instead found by us within the adjacent downstream Chukchi Sea during SBI cruises of 2002 and 2003. A previous complex, coupled biophysical model had been validated earlier by ship-board observations from the Chukchi/Beaufort Seas during the summer of 2002. With inclusion of phosphorus as another chemical state variable to modulate additional competition by recently observed nitrogen-fixers, we now explore here the possible consequences of altered composition of dominant phytoplankton functional groups [diatoms, microflagellates, prymnesiophyte Phaeocystis colonies, coccolithophores, diazotrophs, and dinoflagellates] in relation to increases of the toxic A. tamarense, responding to relaxation of grazing pressure by herbivores north of Bering Strait as part of a continuing trophic cascade. Model formulation was guided by validation observations obtained during 2002-2004 from: cruises of the SBI, CHINARE, and CASES programs; moored arrays in Bering Strait; other RUSALCA cruises around Wrangel Island; and SBI helicopter surveys of the shelf-break regions of the Arctic basin. Our year-long model scenarios during 2002-2003 indicate that post bloom silica-limitation of diatoms, after smaller simulated spring grazing losses, led to subsequent competitive advantages in summer for the coccolithophores, dinoflagellates, and diazotrophs. Immediate top-down control is exerted by imposed

  5. A heuristic model for potential geomorphic influences on trophic interactions in streams

    NASA Astrophysics Data System (ADS)

    Doyle, Martin W.

    2006-07-01

    Whereas certain linkages between stream channel morphology and stream ecology are fairly well-understood, how geomorphology influences trophic interactions remains largely unknown. As a first step, a simple, heuristic model is developed that couples reach-scale geomorphic morphology with trophic dynamics between vegetation, detritus, herbivores, and predators. Predation is assumed to increase with depth beyond a threshold depth, and herbivory is assumed to decrease with velocity beyond a threshold velocity. Results show that the modeled food chain is sensitive to channel geometry, particularly around the threshold conditions for predators and herbivores. Importantly, geomorphic influences are not isolated to a particular trophic level, but rather are transferred through the food chain via top-down and bottom-up effects. The modeled system is particularly sensitive to changes in the end-members of the food chain: vegetation and predators. Results illustrate that geomorphic disturbances, known to affect a single trophic level (e.g., fish), likely impact multiple trophic levels in the stream ecosystem via trophic interactions. Such impacts at the multiple trophic level are poorly understood. While limited by the lack of empirical long-term data for testing and calibration, this simple model provides a structure for generating hypotheses, collecting targeted data, and assessing the potential impacts of stream disturbance or restoration on entire stream ecosystems. Further, the model illustrates the potential for future coupled stream models to explore spatial and temporal linkages.

  6. Trophic transference of microplastics under a low exposure scenario: Insights on the likelihood of particle cascading along marine food-webs.

    PubMed

    Santana, M F M; Moreira, F T; Turra, A

    2017-08-15

    Microplastics are emergent pollutants in marine environments, whose risks along food-web still need to be understood. Within this knowledge gap, MPs transference and persistence along trophic levels are key processes. We assessed the potential occurrence of these processes considering a less extreme scenario of exposure than used previously, with microplastics present only in the hemolymph of prey (the mussel Perna perna) and absent in the gut cavity. Predators were the crab Callinectes ornatus and the puffer fish Spheoeroides greeleyi. Transference of microplastics occurred from prey to predators but without evidences of particle persistence in their tissues after 10days of exposure. This suggests a reduced likelihood of trophic cascading of particles and, consequently, a reduced risk of direct impacts of microplastics on higher trophic levels. However, the contact with microplastics along food-webs is still concerning, modulated by the concentration of particles in prey and predators' depuration capacity and rate. Copyright © 2017. Published by Elsevier Ltd.

  7. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.

    PubMed

    Anthony, Robert G; Estes, James A; Ricca, Mark A; Miles, A Keith; Forsman, Eric D

    2008-10-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993-1994 and 2000-2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993-1994 to 2000-2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex predator

  8. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.

    USGS Publications Warehouse

    Anthony, R.G.; Estes, J.A.; Ricca, M.A.; Miles, A.K.; Forsman, E.D.

    2008-01-01

    Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993–1994 and 2000–2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993–1994 to 2000–2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. The frequency of sea otter pups, rock greenling (Hexagammus lagocephalus), and smooth lumpsuckers (Aptocyclus ventricosus) in the eagle's diet declined with corresponding increases in Rock Ptarmigan (Lagopus mutus), Glaucous-winged Gulls (Larus glaucescens), Atka mackerel (Pleurogrammus monopterygius), and various species of seabirds during the period of the recent otter population decline. Breeding success and productivity of Bald Eagles also increased during this time period, which may be due to the higher nutritional quality of avian prey consumed in later years. Our results provide further evidence of the wide-ranging indirect effects of sea otter predation on nearshore marine communities and another apex predator, the Bald Eagle. Although the indirect effects of sea otters are widely known, this example is unique because the food-web pathway transcended five species and several trophic levels in linking one apex

  9. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing.

    PubMed

    Altieri, Andrew H; Bertness, Mark D; Coverdale, Tyler C; Herrmann, Nicholas C; Angelini, Christine

    2012-06-01

    Overexploitation of predators has been linked to the collapse of a growing number of shallow-water marine ecosystems. However, salt-marsh ecosystems are often viewed and managed as systems controlled by physical processes, despite recent evidence for herbivore-driven die-off of marsh vegetation. Here we use field observations, experiments, and historical records at 14 sites to examine whether the recently reported die-off of northwestern Atlantic salt marshes is associated with the cascading effects of predator dynamics and intensive recreational fishing activity. We found that the localized depletion of top predators at sites accessible to recreational anglers has triggered the proliferation of herbivorous crabs, which in turn results in runaway consumption of marsh vegetation. This suggests that overfishing may be a general mechanism underlying the consumer-driven die-off of salt marshes spreading throughout the western Atlantic. Our findings support the emerging realization that consumers play a dominant role in regulating marine plant communities and can lead to ecosystem collapse when their impacts are amplified by human activities, including recreational fishing.

  10. [Ultrastructural basis of trophic interactions in the central nervous system].

    PubMed

    Kositsyn, N S

    1978-05-01

    Cytological aspects of metabolic processes between capillaries and nerve cells, as well as between different elements of neurons were studied electron microscopically. The sensomotor cortex, hippocampus, anterior tubercles of corpora quadrigemina, geniculate body were studied in rats, adult cats and 4-day-old kittens. Metabolic ultrastructure was demonstrated by means of vesicles formed by micropinocytosis, in the endothelial wall of the capillary, in the synaptic plaques, in the growth cones. Coincidence of pinocytic processes with active synaptic zones, especially in the developing nervous system, was revealed. The phenomena of intraneuronal metabolism by means of cytoplasmic fragments (clasmatosis) in the area of synapses were described. Endogenic (formed in the zone of the lamellar apparatus) and exogenic (pinocytic) trophic vesicles were compared. In young animals the exchange of the trophic vesicles was demonstrated to precede the synaptic transmission, while in adult animals it seemed to supplement a short-lasting synaptic interconnection.

  11. Invasive species triggers a massive loss of ecosystem services through a trophic cascade

    PubMed Central

    Walsh, Jake R.; Carpenter, Stephen R.; Vander Zanden, M. Jake

    2016-01-01

    Despite growing recognition of the importance of ecosystem services and the economic and ecological harm caused by invasive species, linkages between invasions, changes in ecosystem functioning, and in turn, provisioning of ecosystem services remain poorly documented and poorly understood. We evaluate the economic impacts of an invasion that cascaded through a food web to cause substantial declines in water clarity, a valued ecosystem service. The predatory zooplankton, the spiny water flea (Bythotrephes longimanus), invaded the Laurentian Great Lakes in the 1980s and has subsequently undergone secondary spread to inland lakes, including Lake Mendota (Wisconsin), in 2009. In Lake Mendota, Bythotrephes has reached unparalleled densities compared with in other lakes, decreasing biomass of the grazer Daphnia pulicaria and causing a decline in water clarity of nearly 1 m. Time series modeling revealed that the loss in water clarity, valued at US$140 million (US$640 per household), could be reversed by a 71% reduction in phosphorus loading. A phosphorus reduction of this magnitude is estimated to cost between US$86.5 million and US$163 million (US$430–US$810 per household). Estimates of the economic effects of Great Lakes invasive species may increase considerably if cases of secondary invasions into inland lakes, such as Lake Mendota, are included. Furthermore, such extreme cases of economic damages call for increased investment in the prevention and control of invasive species to better maximize the economic benefits of such programs. Our results highlight the need to more fully incorporate ecosystem services into our analysis of invasive species impacts, management, and public policy. PMID:27001838

  12. Invasive species triggers a massive loss of ecosystem services through a trophic cascade.

    PubMed

    Walsh, Jake R; Carpenter, Stephen R; Vander Zanden, M Jake

    2016-04-12

    Despite growing recognition of the importance of ecosystem services and the economic and ecological harm caused by invasive species, linkages between invasions, changes in ecosystem functioning, and in turn, provisioning of ecosystem services remain poorly documented and poorly understood. We evaluate the economic impacts of an invasion that cascaded through a food web to cause substantial declines in water clarity, a valued ecosystem service. The predatory zooplankton, the spiny water flea (Bythotrephes longimanus), invaded the Laurentian Great Lakes in the 1980s and has subsequently undergone secondary spread to inland lakes, including Lake Mendota (Wisconsin), in 2009. In Lake Mendota, Bythotrephes has reached unparalleled densities compared with in other lakes, decreasing biomass of the grazer Daphnia pulicaria and causing a decline in water clarity of nearly 1 m. Time series modeling revealed that the loss in water clarity, valued at US$140 million (US$640 per household), could be reversed by a 71% reduction in phosphorus loading. A phosphorus reduction of this magnitude is estimated to cost between US$86.5 million and US$163 million (US$430-US$810 per household). Estimates of the economic effects of Great Lakes invasive species may increase considerably if cases of secondary invasions into inland lakes, such as Lake Mendota, are included. Furthermore, such extreme cases of economic damages call for increased investment in the prevention and control of invasive species to better maximize the economic benefits of such programs. Our results highlight the need to more fully incorporate ecosystem services into our analysis of invasive species impacts, management, and public policy.

  13. Herbivory drives large-scale spatial variation in reef fish trophic interactions

    PubMed Central

    Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R

    2014-01-01

    Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large

  14. Herbivory drives large-scale spatial variation in reef fish trophic interactions.

    PubMed

    Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R

    2014-12-01

    Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large

  15. Trophic cascades of bottom-up and top-down forcing on nutrients and plankton in the Kattegat, evaluated by modelling

    NASA Astrophysics Data System (ADS)

    Petersen, Marcell Elo; Maar, Marie; Larsen, Janus; Møller, Eva Friis; Hansen, Per Juel

    2017-05-01

    The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model ERGOM was validated and applied in a local set-up of the Kattegat, Denmark, using the off-line Flexsem framework. The model scenarios were conducted by changing the forcing by ± 20% of nutrient inputs (bottom-up) and mesozooplankton mortality (top-down), and both types of forcing combined. The model results showed that cascading effects operated differently depending on the forcing type. In the single-forcing bottom-up scenarios, the cascade directions were in the same direction as the forcing. For scenarios involving top-down, there was a skipped-level-transmission in the trophic responses that was either attenuated or amplified at different trophic levels. On a seasonal scale, bottom-up forcing showed strongest response during winter-spring for DIN and Chl a concentrations, whereas top-down forcing had the highest cascade strength during summer for Chl a concentrations and microzooplankton biomass. On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient input and mesozooplankton mortality calling for the need of an integrated management of marine areas exploited by human activities.

  16. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  17. Habitat structure, trophic structure and ecosystem function: interactive effects in a bromeliad-insect community.

    PubMed

    Srivastava, Diane S

    2006-09-01

    Although previous studies have shown that ecosystem functions are affected by either trophic structure or habitat structure, there has been little consideration of their combined effects. Such interactions may be particularly important in systems where habitat and trophic structure covary. I use the aquatic insects in bromeliads to examine the combined effects of trophic structure and habitat structure on a key ecosystem function: detrital processing. In Costa Rican bromeliads, trophic structure naturally covaries with both habitat complexity and habitat size, precluding any observational analysis of interactions between factors. I therefore designed mesocosms that allowed each factor to be manipulated separately. Increases in mesocosm complexity reduced predator (damselfly larva) efficiency, resulting in high detritivore abundances, indirectly increasing detrital processing rates. However, increased complexity also directly reduced the per capita foraging efficiency of the detritivores. Over short time periods, these trends effectively cancelled each other out in terms of detrital processing. Over longer time periods, more complex patterns emerged. Increases in mesocosm size also reduced both predator efficiency and detritivore efficiency, leading to no net effect on detrital processing. In many systems, ecosystem functions may be impacted by strong interactions between trophic structure and habitat structure, cautioning against examining either effect in isolation.

  18. Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade?

    PubMed

    Burkholder, Derek A; Heithaus, Michael R; Fourqurean, James W; Wirsing, Aaron; Dill, Lawrence M

    2013-11-01

    1. The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in ecosystems around the world, but there remain important questions regarding the contexts in which such changes are most likely and the mechanisms through which they occur, particularly in marine ecosystems. 2. We used long-term exclusion cages to examine the effects of large grazers (sea cows, Dugong dugon; sea turtles Chelonia mydas) on seagrass community structure, biomass and nutrient dynamics. Experiments were conducted in habitats with high risk of predation (interior of shallow banks) and lower risk (edges of banks) to elucidate whether nonconsumptive (risk) effects of tiger sharks (Galeocerdo cuvier), a roving predator, structure herbivore impacts on seagrasses. 3. In lower-risk habitats, excluding large herbivores resulted in increased leaf length for Cymodocea angustata and Halodule uninervis. C. angustata shoot densities nearly tripled when released from herbivory, while H. uninervis nearly disappeared from exclusion cages over the course of the study. 4. We found no support for the hypothesis that grazing increases seagrass nutrient content. Instead, phosphorus content was higher in seagrasses within exclosures. This pattern is consistent with decreased light availability in the denser C. angustata canopies that formed in exclosures, and may indicate that competition for light led to the decrease in H. uninervis. 5. Impacts of large grazers were consistent with a behaviour-mediated trophic cascade (BMTC) initiated by tiger sharks and mediated by risk-sensitive foraging by large grazers. 6, Our results suggest that large-bodied grazers likely played important roles in seagrass ecosystem dynamics historically and that roving predators are capable of initiating a BMTC. Conservation efforts in coastal ecosystems must account for such interactions or risk unintended consequences.

  19. The interacting effects of temperature and food chain length on trophic abundance and ecosystem function.

    PubMed

    Beveridge, Oliver S; Humphries, Stuart; Petchey, Owen L

    2010-05-01

    1. While much is known about the independent effects of trophic structure and temperature on density and ecosystem processes, less is known about the interaction(s) between the two. 2. We manipulated the temperature of laboratory-based bacteria-protist communities that contained communities with one, two, or three trophic levels, and recorded species' densities and bacterial decomposition. 3. Temperature, food chain length and their interaction produced significant responses in microbial density and bacterial decomposition. Prey and resource density expressed different patterns of temperature dependency during different phases of population dynamics. The addition of a predator altered the temperature-density relationship of prey, from a unimodal trend to a negative one. Bacterial decomposition was greatest in the presence of consumers at higher temperatures. 4. These results are qualitatively consistent with a recent model of direct and indirect temperature effects on resource-consumer population dynamics. Results highlight and reinforce the importance of indirect effects of temperature mediated through trophic interactions. Understanding and predicting the consequences of environmental change will require that indirect effects, trophic structure, and individual species' tolerances be incorporated into theory and models.

  20. Effects of exurban development on trophic interactions in a desert landscape

    USDA-ARS?s Scientific Manuscript database

    Context Mechanisms of ecosystem change in urbanizing landscapes are poorly understood, especially in exurban areas featuring residential or commercial development set in a matrix of modified and natural vegetation. We asked how development altered trophic interactions and ecosystem processes in the ...

  1. Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents.

    PubMed

    Paula, Débora P; Linard, Benjamin; Crampton-Platt, Alex; Srivathsan, Amrita; Timmermans, Martijn J T N; Sujii, Edison R; Pires, Carmen S S; Souza, Lucas M; Andow, David A; Vogler, Alfried P

    2016-01-01

    Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks.

  2. Habitat fragmentation and species loss across three interacting trophic levels: effects of life-history and food-web traits.

    PubMed

    Cagnolo, Luciano; Valladares, Graciela; Salvo, Adriana; Cabido, Marcelo; Zak, Marcelo

    2009-10-01

    Not all species are likely to be equally affected by habitat fragmentation; thus, we evaluated the effects of size of forest remnants on trophically linked communities of plants, leaf-mining insects, and their parasitoids. We explored the possibility of differential vulnerability to habitat area reduction in relation to species-specific and food-web traits by comparing species-area regression slopes. Moreover, we searched for a synergistic effect of these traits and of trophic level. We collected mined leaves and recorded plant, leaf miner, and parasitoid species interactions in five 100-m2 transects in 19 Chaco Serrano woodland remnants in central Argentina. Species were classified into extreme categories according to body size, natural abundance, trophic breadth, and trophic level. Species-area slopes differed between groups with extreme values of natural abundance or trophic specialization. Nevertheless, synergistic effects of life-history and food-web traits were only found for trophic level and trophic breadth: area-related species loss was highest for specialist parasitoids. It has been suggested that species position within interaction webs could determine their vulnerability to extinction. Our results provide evidence that food-web parameters, such as trophic level and trophic breadth, affect species sensitivity to habitat fragmentation.

  3. Interaction of upstream flow distortions with high Mach number cascades

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1981-01-01

    Features of the interaction of flow distortions, such as gusts and wakes with blade rows of advance type fans and compressors having high tip Mach numbers are modeled. A typical disturbance was assumed to have harmonic time dependence and was described, at a far upstream location, in three orthogonal spatial coordinates by a double Fourier series. It was convected at supersonic relative to a linear cascade described as an unrolled annulus. Conditions were selected so that the component of this velocity parallel to the axis of the turbomachine was subsonic, permitting interaction between blades through the upstream as well as downstream flow media. A strong, nearly normal shock was considered in the blade passages which was allowed curvature and displacement. The flows before and after the shock were linearized relative to uniform mean velocities in their respective regions. Solution of the descriptive equations was by adaption of the Wiener-Hopf technique, enabling a determination of distortion patterns through and downstream of the cascade as well as pressure distributions on the blade and surfaces. Details of interaction of the disturbance with the in-passage shock were discussed. Infuences of amplitude, wave length, and phase of the disturbance on lifts and moments of cascade configurations are presented. Numerical results are clarified by reference to an especially orderly pattern of upstream vertical motion in relation to the cascade parameters.

  4. Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions.

    PubMed

    Newton, Adrian C; Fitt, Bruce D L; Atkins, Simon D; Walters, Dale R; Daniell, Tim J

    2010-08-01

    Microbe-host interactions can be categorised as pathogenic, parasitic or mutualistic, but in practice few examples exactly fit these descriptions. New molecular methods are providing insights into the dynamics of microbe-host interactions, with most microbes changing their relationship with their host at different life-cycle stages or in response to changing environmental conditions. Microbes can transition between the trophic states of pathogenesis and symbiosis and/or between mutualism and parasitism. In plant-based systems, an understanding of the true ecological niche of organisms and the dynamic state of their trophic interactions with their hosts has important implications for agriculture, including crop rotation, disease control and risk management. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Zooplanktivory and nutrient regeneration by invertebrate (Mysis relicta) and vertebrate (Oncorhynchus nerka) planktivores: Implications for trophic interactions in oligotrophic lakes

    USGS Publications Warehouse

    Chipps, S.R.; Bennett, D.H.

    2000-01-01

    We investigated zooplanktivory and nutrient regeneration by the opossum shrimp Mysis relicta and kokanee Oncorhynchus nerka to assess the relative roles of these planktivores in oligotrophic food webs. Using bioenergetic models and clearance rate estimates, we quantified phosphorus (P) excretion rates and consumption of cladoceran prey by Mysis and kokanees in Lake Pend Oreille, Idaho, from 1995 to 1996. Consumption of cladoceran prey by Mysis was 186 kg ?? ha-1 ?? year-1, whereas consumption by kokanees was less than one quarter as much, at 45 kg ?? ha-1 ?? year-1. Similarly, Mysis excreted approximately 0.250 kg P ?? ha-1 ?? year-1 during nighttime migrations into the upper water column, whereas P excretion by kokanees was less than one third as much, at approximately 0.070 kg P ?? ha-1 ?? year-1. On a volumetric basis, nocturnal excretion by Mysis ranged from 0.002 to 0.007 ??g P ?? L-1 ?? d-1 and accounted for less than 1% of the soluble reactive P typically measured in the upper water column of the lake. Hence, nutrient recycling by Mysis may be limited in the upper water column because of the nocturnal feeding habitats that constrain Mysis to deeper strata for much of the day. In spring and autumn months, low abundance of cladoceran prey coincided with high seasonal energy requirements of the Mysis population that were linked to timing of annual Mysis brood release and abundance of age-0 Mysis. Predation by Mysis accounted for 5-70% of daily cladoceran standing stock, supporting the notion that seasonal availability of cladocerans may be regulated by Mysis predation. In lakes where Mysis experience little predation mortality, they likely play a dominant role in food web interactions (e.g., trophic cascades) relative to planktivorous fishes. Biotic mechanisms, such as successful predator-avoidance behavior, omnivorous feeding habits, and seasonal variation in Mysisbiomass, enhance the ability of Mysis to influence food web interactions from an intermediate

  6. The importance of phytoplankton size in mediating trophic interactions within the plankton of a southern African estuary

    NASA Astrophysics Data System (ADS)

    Froneman, P. W.

    2006-12-01

    The influence of the phytoplankton size composition in mediating the trophic interactions between the bacteria, phytoplankton, microheterotrophs (<200 μm) and mesozooplankton (>200 μm) was investigated on three occasions in a warm temperate, temporarily open/closed estuary situated along the southern African coastline. Results of the investigation indicated that the microheterotrophs represented the most important consumers of bacteria and chlorophyll (chl)- a <5.0 μm. The low impact of the mesozooplankton on the bacteria and chl- a <5.0 μm during the study appeared to be related to the inability of the larger zooplankton to feed efficiently on small particles. During those periods when total chl- a concentration was dominated by picophytoplankton (<2.0 μm) and microphytoplankton (>20 μm), mesozooplankton were unable to feed efficiently on the chl- a due to feeding constraints. In response to the unfavorable size structure of the phytoplankton assemblages, mesozooplankton appeared to consume the microheterotrophs. The negative impact of the mesozooplankton on the microheterotrophs resulted in a decrease in the impact of these organisms on the bacteria and the chl- a <5.0 μm. This result is consistent with the predator-prey cascades. On the other hand, when the total chl- a was dominated by nanophytoplankton (2-20 μm), mesozooplankton were able to feed directly on the phytoplankton. Results of the study indicate that size structure of the phytoplankton assemblages within estuaries plays an important role in mediating the trophic interactions between the various components of the plankton food web.

  7. Cosmic neutrino cascades from secret neutrino interactions

    NASA Astrophysics Data System (ADS)

    Ng, Kenny C. Y.; Beacom, John F.

    2014-09-01

    The first detection of high-energy astrophysical neutrinos by IceCube provides new opportunities for tests of neutrino properties. The long baseline through the cosmic neutrino background (CνB) is particularly useful for directly testing secret neutrino interactions (νSI) that would cause neutrino-neutrino elastic scattering at a larger rate than the usual weak interactions. We show that IceCube can provide competitive sensitivity to νSI compared to other astrophysical and cosmological probes, which are complementary to laboratory tests. We study the spectral distortions caused by νSI with a large s-channel contribution, which can lead to a dip, bump, or cutoff on an initially smooth spectrum. Consequently, νSI may be an exotic solution for features seen in the IceCube energy spectrum. More conservatively, IceCube neutrino data could be used to set model-independent limits on νSI. Our phenomenological estimates provide guidance for more detailed calculations, comparisons to data, and model building.

  8. Predicting novel trophic interactions in a non-native world.

    PubMed

    Pearse, Ian S; Altermatt, Florian

    2013-08-01

    Humans are altering the global distributional ranges of plants, while their co-evolved herbivores are frequently left behind. Native herbivores often colonise non-native plants, potentially reducing invasion success or causing economic loss to introduced agricultural crops. We developed a predictive model to forecast novel interactions and verified it with a data set containing hundreds of observed novel plant-insect interactions. Using a food network of 900 native European butterfly and moth species and 1944 native plants, we built an herbivore host-use model. By extrapolating host use from the native herbivore-plant food network, we accurately forecasted the observed novel use of 459 non-native plant species by native herbivores. Patterns that governed herbivore host breadth on co-evolved native plants were equally important in determining non-native hosts. Our results make the forecasting of novel herbivore communities feasible in order to better understand the fate and impact of introduced plants.

  9. Reciprocal Trophic Interactions and Transmission of Blood Parasites between Mosquitoes and Frogs

    PubMed Central

    Ferguson, Laura V.; Smith, Todd G.

    2012-01-01

    The relationship between mosquitoes and their amphibian hosts is a unique, reciprocal trophic interaction. Instead of a one-way, predator-prey relationship, there is a cyclical dance of avoidance and attraction. This has prompted spatial and temporal synchrony between organisms, reflected in emergence time of mosquitoes in the spring and choice of habitat for oviposition. Frog-feeding mosquitoes also possess different sensory apparatuses than do their mammal-feeding counterparts. The reciprocal nature of this relationship is exploited by various blood parasites that use mechanical, salivary or trophic transmission to pass from mosquitoes to frogs. It is important to investigate the involvement of mosquitoes, frogs and parasites in this interaction in order to understand the consequences of anthropogenic actions, such as implementing biocontrol efforts against mosquitoes, and to determine potential causes of the global decline of amphibian species. PMID:26466534

  10. Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem

    DTIC Science & Technology

    2013-09-30

    2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4 . TITLE AND SUBTITLE Predicting Trophic Interactions and Habitat Utilization in...population dynamics via early life survival and condition at recruitment. 4 Figure 1. Output from ROMS and NEMURO illustrating...extreme conditions associated with the 1998 El Nino (top) and 1999 La Nina (bottom). From left-to-right: annual sea surface temperature, phytoplankton

  11. Cascading trait-mediated interactions induced by ant pheromones

    PubMed Central

    Hsieh, Hsun-Yi; Liere, Heidi; Soto, Estelí J; Perfecto, Ivette

    2012-01-01

    Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles – the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% – the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade. PMID:23139877

  12. Cascading trait-mediated interactions induced by ant pheromones.

    PubMed

    Hsieh, Hsun-Yi; Liere, Heidi; Soto, Estelí J; Perfecto, Ivette

    2012-09-01

    Trait-mediated indirect interactions (TMII) can be as important as density-mediated indirect interactions. Here, we provide evidence for a novel trait-mediated cascade (where one TMII affects another TMII) and demonstrate that the mechanism consists of a predator eavesdropping on chemical signaling. Ants protect scale insects from predation by adult coccinellid beetles - the first TMII. However, parasitic phorid flies reduce ant foraging activity by 50% - the second TMII, providing a window of opportunity for female beetles to oviposit in high-quality microsites. Beetle larvae are protected from ant predation and benefit from living in patches with high scale densities. We demonstrate that female beetles can detect pheromones released by the ant when attacked by phorids, and that only females, and especially gravid females, are attracted to the ant pheromone. As ants reduce their movement when under attack by phorids, we conclude that phorids facilitate beetle oviposition, thus producing the TMII cascade.

  13. Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents

    PubMed Central

    Paula, Débora P.; Linard, Benjamin; Crampton-Platt, Alex; Srivathsan, Amrita; Timmermans, Martijn J. T. N.; Sujii, Edison R.; Pires, Carmen S. S.; Souza, Lucas M.; Andow, David A.; Vogler, Alfried P.

    2016-01-01

    Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks. PMID:27622637

  14. Multiple vs. single phytoplankton species alter stoichiometry of trophic interaction with zooplankton.

    PubMed

    Plum, Christoph; Hüsener, Matthias; Hillebrand, Helmut

    2015-11-01

    Despite the progress made in explaining trophic interactions through the stoichiometric interplay between consumers and resources, it remains unclear how the number of species in a trophic group influences the effects of elemental imbalances in food webs. Therefore, we conducted a laboratory experiment to test the hypothesis that multispecies producer assemblages alter the nutrient dynamics in a pelagic community. Four algal species were reared in mono- and polycultures under a 2 x 2 factorial combination of light and nutrient supply, thereby contrasting the stoichiometry of trophic interactions involving single vs. multiple producer species. After 9 d, these cultures were fed to the calanoid copepod Acartia tonsa, and we monitored biomass, resource use, and C:N:P stoichiometry in both phyto- and zooplankton. According to our expectations, light and N supply resulted in gradients of phytoplankton biomass and nutrient composition (C:N:P). Significant net diversity effects for algal biomass and C:N:P ratios reflected the greater responsiveness of the phytoplankton polyculture to altered resource supply compared to monocultures. These alterations of elemental ratios were common, and were partly triggered by changes in species frequency in the mixtures and partly by diversity-related changes in resource use. Copepod individual biomass increased under high light (HL) and N-reduced (-N) conditions, when food was high in C:N but low in C:P and N:P, whereas copepod growth was obviously P limited, and copepod stoichiometry was not affected by phytoplankton elemental composition. Correspondingly, copepod individual biomass reflected significant net diversity effects: compared to expectations- derived from monocultures, copepod individuals feeding on algal polycultures remained smaller than predicted under HL and N-sufficient (+N) conditions but grew larger than predicted under HL, -N and low light +N conditions. In conclusion, multiple producer species altered the

  15. Trophic Garnishes: Cat–Rat Interactions in an Urban Environment

    PubMed Central

    Glass, Gregory E.; Gardner-Santana, Lynne C.; Holt, Robert D.; Chen, Jessica; Shields, Timothy M.; Roy, Manojit; Schachterle, Stephen; Klein, Sabra L.

    2009-01-01

    Background Community interactions can produce complex dynamics with counterintuitive responses. Synanthropic community members are of increasing practical interest for their effects on biodiversity and public health. Most studies incorporating introduced species have been performed on islands where they may pose a risk to the native fauna. Few have examined their interactions in urban environments where they represent the majority of species. We characterized house cat (Felis catus) predation on wild Norway rats (Rattus norvegicus), and its population effects in an urban area as a model system. Three aspects of predation likely to influence population dynamics were examined; the stratum of the prey population killed by predators, the intensity of the predation, and the size of the predator population. Methodology/Principal Findings Predation pressure was estimated from the sizes of the rat and cat populations, and the characteristics of rats killed in 20 alleys. Short and long term responses of rat population to perturbations were examined by removal trapping. Perturbations removed an average of 56% of the rats/alley but had no negative long-term impact on the size of the rat population (49.6±12.5 rats/alley and 123.8±42.2 rats/alley over two years). The sizes of the cat population during two years (3.5 animals/alley and 2.7 animals/alley) also were unaffected by rat population perturbations. Predation by cats occurred in 9/20 alleys. Predated rats were predominantly juveniles and significantly smaller (144.6 g±17.8 g) than the trapped rats (385.0 g±135.6 g). Cats rarely preyed on the larger, older portion of the rat population. Conclusions/Significance The rat population appears resilient to perturbation from even substantial population reduction using targeted removal. In this area there is a relatively low population density of cats and they only occasionally prey on the rat population. This occasional predation primarily removes the juvenile proportion of

  16. A Time Domain Analysis of Gust-Cascade Interaction Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Hixon, R.; Sawyer, S. D.; Dyson, R. W.

    2003-01-01

    The gust response of a 2 D cascade is studied by solving the full nonlinear Euler equations employing higher order accurate spatial differencing and time stepping techniques. The solutions exhibit the exponential decay of the two circumferential mode orders of the cutoff blade passing frequency (BPF) tone and propagation of one circumferential mode order at 2BPF, as would be expected for the flow configuration considered. Two frequency excitations indicate that the interaction between the frequencies and the self interaction contribute to the amplitude of the propagating mode.

  17. Direct evidence of trophic interactions among apex predators in the Late Triassic of western North America.

    PubMed

    Drumheller, Stephanie K; Stocker, Michelle R; Nesbitt, Sterling J

    2014-11-01

    Hypotheses of feeding behaviors and community structure are testable with rare direct evidence of trophic interactions in the fossil record (e.g., bite marks). We present evidence of four predation, scavenging, and/or interspecific fighting events involving two large paracrocodylomorphs (='rauisuchians') from the Upper Triassic Chinle Formation (∼220-210 Ma). The larger femur preserves a rare history of interactions with multiple actors prior to and after death of this ∼8-9-m individual. A large embedded tooth crown and punctures, all of which display reaction tissue formed through healing, record evidence of a failed attack on this individual. The second paracrocodylomorph femur exhibits four unhealed bite marks, indicating the animal either did not survive the attack or was scavenged soon after death. The combination of character states observed (e.g., morphology of the embedded tooth, 'D'-shaped punctures, evidence of bicarination of the marking teeth, spacing of potentially serial marks) indicates that large phytosaurs were actors in both cases. Our analysis of these specimens demonstrates phytosaurs targeted large paracrocodylomorphs in these Late Triassic ecosystems. Previous distinctions between 'aquatic' and 'terrestrial' Late Triassic trophic structures were overly simplistic and built upon mistaken paleoecological assumptions; we show they were intimately connected at the highest trophic levels. Our data also support that size cannot be the sole factor in determining trophic status. Furthermore, these marks provide an opportunity to start exploring the seemingly unbalanced terrestrial ecosystems from the Late Triassic of North America, in which large carnivores far outnumber herbivores in terms of both abundance and diversity.

  18. Channel-planform evolution in four rivers of Olympic National Park, Washington, U.S.A.: The roles of physical drivers and trophic cascades

    USGS Publications Warehouse

    East, Amy E.; Jenkins, Kurt J.; Happe, Patricia J.; Bountry, Jennifer A.; Beechie, Timothy J.; Mastin, Mark C.; Sankey, Joel B.; Randle, Timothy J.

    2017-01-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history. All four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, evident from landslide response on the Elwha River. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. In this sediment-routing system with high connectivity, such climate-driven signals appear to propagate downstream without being buffered substantially by sediment storage. Legacy effects of anthropogenic modification likely also affect the Quinault River planform. We infer no correspondence between channel geomorphic evolution and elk abundance, suggesting that trophic-cascade effects in this setting are subsidiary to physical controls on channel morphology. Our findings differ from previous interpretations of Olympic National Park fluvial dynamics and contrast with the classic example of Yellowstone National Park, where legacy effects of elk overuse are apparent in channel morphology; we attribute these differences to hydrologic regime and large-wood availability.

  19. Channel-planform evolution in four rivers of Olympic National Park, Washington, U.S.A.: The roles of physical drivers and trophic cascades

    USGS Publications Warehouse

    East, Amy; Jenkins, Kurt J.; Happe, Patricia J.; Bountry, Jennifer A.; Beechie, Timothy J.; Mastin, Mark C.; Sankey, Joel B.; Randle, Timothy J.

    2016-01-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history. All four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, evident from landslide response on the Elwha River. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. In this sediment-routing system with high connectivity, such climate-driven signals appear to propagate downstream without being buffered substantially by sediment storage. Legacy effects of anthropogenic modification likely also affect the Quinault River planform. We infer no correspondence between channel geomorphic evolution and elk abundance, suggesting that trophic-cascade effects in this setting are subsidiary to physical controls on channel morphology. Our findings differ from previous interpretations of Olympic National Park fluvial dynamics and contrast with the classic example of Yellowstone National Park, where legacy effects of elk overuse are apparent in channel morphology; we attribute these differences to hydrologic regime and large-wood availability.

  20. Understanding trophic interactions in host-parasite associations using stable isotopes of carbon and nitrogen.

    PubMed

    Nachev, Milen; Jochmann, Maik A; Walter, Friederike; Wolbert, J Benjamin; Schulte, S Marcel; Schmidt, Torsten C; Sures, Bernd

    2017-02-17

    Stable isotope analysis of carbon and nitrogen can deliver insights into trophic interactions between organisms. While many studies on free-living organisms are available, the number of those focusing on trophic interactions between hosts and their associated parasites still remains scarce. In some cases information about taxa (e.g. acanthocephalans) is completely missing. Additionally, available data revealed different and occasionally contrasting patterns, depending on the parasite's taxonomic position and its degree of development, which is most probably determined by its feeding strategy (absorption of nutrients through the tegument versus active feeding) and its localization in the host. Using stable isotope analysis of carbon and nitrogen we provided first data on the trophic position of an acanthocephalan species with respect to its fish host. Barbels (Barbus barbus) infected only with adult acanthocephalans Pomphorhynchus laevis as well as fish co-infected with the larval (L4) nematodes Eustrongylides sp. from host body cavity were investigated in order to determine the factors shaping host-parasite trophic interactions. Fish were collected in different seasons, to study also potential isotopic shifts over time, whereas barbels with single infection were obtained in summer and co-infected ones in autumn. Acanthocephalans as absorptive feeders showed lower isotope discrimination values of δ (15)N than the fish host. Results obtained for the acanthocephalans were in line with other parasitic taxa (e.g. cestodes), which exhibit a similar feeding strategy. We assumed that they feed mainly on metabolites, which were reprocessed by the host and are therefore isotopically lighter. In contrast, the nematodes were enriched in the heavier isotope δ (15)N with respect to their host and the acanthocephalans, respectively. As active feeders they feed on tissues and blood in the body cavity of the host and thus showed isotope discrimination patterns resembling those of

  1. How hemostatic agents interact with the coagulation cascade.

    PubMed

    Overbey, Douglas M; Jones, Edward L; Robinson, Thomas N

    2014-08-01

    Hemostasis is a critical component of the preservation of hemodynamic stability and operative visibility during surgery. Initially, hemostasis is achieved via the careful application of direct pressure to allow time for the coagulation cascade to create a fibrin and platelet plug. Other first-line methods of hemostasis in surgery include repair or ligation of the bleeding vessel with sutures, clips, or staples and coagulation of the bleeding site with a thermal energy-based device. When these methods are insufficient to provide adequate hemostasis, topical hemostatic agents can be used to augment the creation of a clot during surgery. A basic understanding of how and where these products interact with the coagulation cascade is essential to achieving optimal hemostasis outcomes.

  2. [Trophic chains in soil].

    PubMed

    Goncharov, A A; Tiunov, A V

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems.

  3. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat.

    PubMed

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  4. Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat

    PubMed Central

    Pasotti, Francesca; Saravia, Leonardo Ariel; De Troch, Marleen; Tarantelli, Maria Soledad; Sahade, Ricardo; Vanreusel, Ann

    2015-01-01

    The western Antarctic Peninsula is experiencing strong environmental changes as a consequence of ongoing regional warming. Glaciers in the area are retreating rapidly and increased sediment-laden meltwater runoff threatens the benthic biodiversity at shallow depths. We identified three sites with a distinct glacier-retreat related history and different levels of glacial influence in the inner part of Potter Cove (King George Island, South Shetland Islands), a fjord-like embayment impacted since the 1950s by a tidewater glacier retreat. We compared the soft sediment meio- and macrofauna isotopic niche widths (δ13C and δ15N stable isotope analysis) at the three sites to investigate possible glacier retreat-related influences on benthic trophic interactions. The isotopic niches were locally shaped by the different degrees of glacier retreat-related disturbance within the Cove. Wider isotopic niche widths were found at the site that has become ice-free most recently, and narrower niches at the older ice-free sites. At an intermediate state of glacier retreat-related disturbance (e.g. via ice-growler scouring) species with different strategies could settle. The site at the earliest stage of post-retreat development was characterized by an assemblage with lower trophic redundancy. Generally, the isotopic niche widths increased with increasing size spectra of organisms within the community, excepting the youngest assemblage, where the pioneer colonizer meiofauna size class displayed the highest isotopic niche width. Meiofauna at all sites generally occupied positions in the isotopic space that suggested a detrital-pool food source and/or the presence of predatory taxa. In general ice scour and glacial impact appeared to play a two-fold role within the Cove: i) either stimulating trophic diversity by allowing continuous re-colonization of meiofaunal species or, ii) over time driving the benthic assemblages into a more compact trophic structure with increased

  5. Bottom-up effects may not reach the top: the influence of ant–aphid interactions on the spread of soil disturbances through trophic chains

    PubMed Central

    Lescano, María Natalia; Farji-Brener, Alejandro G.; Gianoli, Ernesto; Carlo, Tomás A.

    2012-01-01

    Soil disturbances that increase nutrient availability may trigger bottom-up cascading effects along trophic chains. However, the strength and sign of these effects may depend on attributes of the interacting species. Here, we studied the effects of nutrient-rich refuse dumps of the leaf-cutting ant, Acromyrmex lobicornis, on the food chain composed of thistles, aphids, tending ants and aphid natural enemies. Using stable isotopes tracers, we show that the nitrogen accumulated in refuse dumps propagates upward through the studied food chain. Thistles growing on refuse dumps had greater biomass and higher aphid density than those growing in adjacent soil. These modifications did not affect the structure of the tending ant assemblage, but were associated with increased ant activity. In contrast to the expectations under the typical bottom-up cascade effect, the increase in aphid abundance did not positively impact on aphid natural enemies. This pattern may be explained by both an increased activity of tending ants, which defend aphids against their natural enemies, and the low capacity of aphid natural enemies to show numerical or functional responses to increased aphid density. Our results illustrate how biotic interactions and the response capacity of top predators could disrupt bottom-up cascades triggered by disturbances that increase resource availability. PMID:22719029

  6. Effects of urbanization on direct and indirect interactions in a tri-trophic system.

    PubMed

    Tabea, Turrini; Dirk, Sanders; Eva, Knop

    2016-04-01

    While effects of urbanization on species assemblages are receiving increasing attention, effects on ecological interactions remain largely unexplored. We investigated how urbanization influences the strength of direct and indirect trophic interactions in a tri- trophic system. In a field experiment including five cities and nearby farmed areas, we used potted Vicia faba plants and manipulated the presence of Megoura viciae aphids and that of naturally occurring aphid predators. When predators could access aphids, they reduced their abundance less in the urban than in the agricultural ecosystem. Compared to aphid abundance on plants without predator access, abundance on plants with predator access was 2.58 times lower in urban and 5.27 times lower in agricultural areas. This indicates that urbanization limited top-down control of aphids by predators. In both ecosystems, plant biomass was negatively affected by herbivores and positively affected by predators, but the positive indirect predator effect was weaker in cities. Compared to aphid-infested plants without predator access, plants with predator access were 1.89 times heavier in urban and 2.12 times heavier in agricultural areas. Surprisingly, differences between ecosystems regarding the indirect predator effect on plants were not explained by the differentially strong herbivore suppression. Instead, the urban environment limited plant biomass per se, thereby mitigating the scope of a positive predator effect. Our results show that urbanization can influence direct and indirect trophic interactions through effects on biotic top-down forces and on plant growth. In order to understand how urbanization affects biodiversity and ecosystem functioning, it is fundamental to not only consider species assemblages, but also species interactions.

  7. Complex dynamics in a three-level trophic system with intraspecies interaction.

    PubMed

    Peet, Alison B; Deutsch, Peter A; Peacock-López, Enrique

    2005-02-21

    In this paper, we present a three-level trophic food chain, including intraspecies interaction. In contrast with other analyses, we consider the effect on the third trophic level by the first-level parameters. The model shows complex, as well as, chaotic oscillations. Bifurcation diagrams show period doubling route to chaos and crises. Also from the forward and backwards sections of the bifurcation diagrams, we find hysteresis. This result implies the coexistence of attractors for the same parameter values. In particular, we consider the coexistence of a chaotic and a P1 attractors. Our results show that the regulation in the food chain is not exclusive to either a food-prey or prey-predator interaction, but to a more subtle food-prey-predator interaction, where, for some parameter values, a food-prey or a prey-predator regulation may dominate the system's dynamics. Finally, we consider the impact of the intraspecies interaction in the overall dynamics of the food chain.

  8. Influence of plant genetic diversity on interactions between higher trophic levels.

    PubMed

    Moreira, Xoaquín; Mooney, Kailen A

    2013-06-23

    While the ecological consequences of plant diversity have received much attention, the mechanisms by which intraspecific diversity affects associated communities remains understudied. We report on a field experiment documenting the effects of patch diversity in the plant Baccharis salicifolia (genotypic monocultures versus polycultures of four genotypes), ants (presence versus absence) and their interaction on ant-tended aphids, ants and parasitic wasps, and the mechanistic pathways by which diversity influences their multi-trophic interactions. Five months after planting, polycultures (versus monocultures) had increased abundances of aphids (threefold), ants (3.2-fold) and parasitoids (1.7-fold) owing to non-additive effects of genetic diversity. The effect on aphids was direct, as plant genetic diversity did not mediate ant-aphid, parasitoid-aphid or ant-parasitoid interactions. This increase in aphid abundance occurred even though plant growth (and thus aphid resources) was not higher in polycultures. The increase in ants and parasitoids was an indirect effect, due entirely to higher aphid abundance. Ants reduced parasitoid abundance by 60 per cent, but did not affect aphid abundance or plant growth, and these top-down effects were equivalent between monocultures and polycultures. In summary, intraspecific plant diversity did not increase primary productivity, but nevertheless had strong effects across multiple trophic levels, and effects on both herbivore mutualists and enemies could be predicted entirely as an extension of plant-herbivore interactions.

  9. CXCL12 Mediates Trophic Interactions between Endothelial and Tumor Cells in Glioblastoma

    PubMed Central

    Choe, Eun Joo; Woerner, B. Mark; Jackson, Erin; Sun, Tao; Leonard, Jeffrey; Piwnica-Worms, David; Rubin, Joshua B.

    2012-01-01

    Emerging evidence suggests endothelial cells (EC) play a critical role in promoting Glioblastoma multiforme (GBM) cell proliferation and resistance to therapy. The molecular basis for GBM-EC interactions is incompletely understood. We hypothesized that the chemokine CXCL12 and its receptor CXCR4 could mediate direct interactions between GBM cells and tumor-associated endothelial cells and that disruption of this interaction might be the molecular basis for the anti-tumor effects of CXCR4 antagonists. We investigated this possibility in vivo and in an in vitro co-culture model that incorporated extracellular matrix, primary human brain microvascular ECs (HBMECs) and either an established GBM cell line or primary GBM specimens. Depletion of CXCR4 in U87 GBM cells blocked their growth as intracranial xenografts indicating that tumor cell CXCR4 is required for tumor growth in vivo. In vitro, co-culture of either U87 cells or primary GBM cells with HBMECs resulted in their co-localization and enhanced GBM cell growth. Genetic manipulation of CXCL12 expression and pharmacological inhibition of its receptors CXCR4 and CXCR7 revealed that the localizing and trophic effects of endothelial cells on GBM cells were dependent upon CXCL12 and CXCR4. These findings indicate that the CXCL12/CXCR4 pathway directly mediates endothelial cell trophic function in GBMs and that inhibition of CXCL12-CXCR4 signaling may uniquely target this activity. Therapeutic disruption of endothelial cell trophic functions could complement the structural disruption of anti-angiogenic regimens and, in combination, might also improve the efficacy of radiation and chemotherapy in treating GBMs. PMID:22427929

  10. Ecological and evolutionary consequences of tri-trophic interactions: Spatial variation and effects of plant density.

    PubMed

    Abdala-Roberts, Luis; Parra-Tabla, Víctor; Moreira, Xoaquín; Ramos-Zapata, José

    2017-02-01

    The factors driving variation in species interactions are often unknown, and few studies have made a link between changes in interactions and the strength of selection. We report on spatial variation in functional responses by a seed predator (SP) and its parasitic wasps associated with the herb Ruellia nudiflora. We assessed the influence of plant density on consumer responses and determined whether density effects and spatial variation in functional responses altered natural selection by these consumers on the plant. We established common gardens at two sites in Yucatan, Mexico, and planted R. nudiflora at two densities in each garden. We recorded fruit output and SP and parasitoid attack; calculated relative fitness (seed number) under scenarios of three trophic levels (accounting for SP and parasitoid effects), two trophic levels (accounting for SP but not parasitoid effects), and one trophic level (no consumer effects); and compared selection strength on fruit number under these scenarios across sites and densities. There was spatial variation in SP recruitment, whereby the SP functional response was negatively density-dependent at one site but density-independent at the other; parasitoid responses were density-independent and invariant across sites. Site variation in SP attack led, in turn, to differences in SP selection on fruit output, and parasitoids did not alter SP selection. There were no significant effects of density at either site. Our results provide a link between consumer functional responses and consumer selection on plants, which deepens our understanding of geographic variation in the evolutionary outcomes of multitrophic interactions. © 2017 Botanical Society of America.

  11. Catchment vegetation and temperature mediating trophic interactions and production in plankton communities.

    PubMed

    Finstad, Anders G; Nilsen, Erlend B; Hendrichsen, Ditte K; Schmidt, Niels Martin

    2017-01-01

    Climatic factors influence the interactions among trophic levels in an ecosystem in multiple ways. However, whereas most studies focus on single factors in isolation, mainly due to interrelation and correlation among drivers complicating interpretation and analyses, there are still only few studies on how multiple ecosystems respond to climate related factors at the same time. Here, we use a hierarchical Bayesian model with a bioenergetic predator-prey framework to study how different climatic factors affect trophic interactions and production in small Arctic lakes. Natural variation in temperature and catchment land-cover was used as a natural experiment to exemplify how interactions between and production of primary producers (phytoplankton) and grazers (zooplankton) are driven by direct (temperature) and indirect (catchment vegetation) factors, as well as the presence or absence of apex predators (fish). The results show that increased vegetation cover increased phytoplankton growth rate by mediating lake nutrient concentration. At the same time, increased temperature also increased grazing rates by zooplankton. Presence of fish increased zooplankton mortality rates, thus reducing grazing. The Arctic is currently experiencing an increase in both temperature and shrub vegetation cover due to climate change, a trend, which is likely to continue. Our results point towards a possible future general weakening of zooplankton grazing on phytoplankton and greening of arctic lakes with increasing temperatures. At the same time, the impact of the presence of an apex predator indicate considerable local variation in the response. This makes direction and strength of global change impacts difficult to forecast.

  12. 'Trophic whales' as biotic buffers: weak interactions stabilize ecosystems against nutrient enrichment.

    PubMed

    Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich

    2015-05-01

    Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems.

  13. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters.

    PubMed

    Alvarado, Alejandra; Montañez-Hernández, Lilia E; Palacio-Molina, Sandra L; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.

  14. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters

    PubMed Central

    Alvarado, Alejandra; Montañez-Hernández, Lilia E.; Palacio-Molina, Sandra L.; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P.; Balagurusamy, Nagamani

    2014-01-01

    Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286

  15. Interaction of acoustic and vortical waves with an annular cascade

    NASA Astrophysics Data System (ADS)

    Vinogradov, Igor V.

    Noise generated by a turbofan engine has both tonal and broadband noise components. It is shown in this thesis that a computationally efficient method for tonal noise can be applied for broadband noise as well. In the thesis, both types of noise are studied using linearized three-dimensional Euler equations model. First, a numerical method for tonal noise calculation is formulated using a high accuracy implicit scheme for the spatial derivatives and the assumption that the flow variables depend on time in a periodic fashion. The system of equations is then solved in frequency domain using time-marching technique. The high accuracy approximation allows to reduce the number of grid points while, due to factoring out of the time variable, grid-dependent time step can be used. In order to verify the method, comparison with existing codes is made for a number of geometries. Several acceleration techniques are tested, including parallel computing, grid clustering, and multigrid. Second, for an annular cascade with zero blade loading the results show that the mean flow swirl changes the physics of scattering in three major ways: (i) it modifies the number of acoustic modes in the duct, (ii) it changes their duct radial profile, and (iii) it causes significant amplitude and radial phase variations of the incident disturbances. The method is also applied toward loaded cascades and the results indicate significant effect of thickness at high frequency for cases of non-zero stagger and camber. Finally, a three-dimensional model is presented for fan broadband interaction noise based on spectral representation of the impinging upstream turbulence and a multiple scale analysis for the evolution of turbulence in a nonuniform swirling flow. Comparison of the radiated noise spectra for three-dimensional and two-dimensional cascades is presented.

  16. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research.

    PubMed

    Svenning, Jens-Christian; Pedersen, Pil B M; Donlan, C Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M; Sandel, Brody; Sandom, Christopher J; Terborgh, John W; Vera, Frans W M

    2016-01-26

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human-wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology.

  17. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research

    PubMed Central

    Svenning, Jens-Christian; Pedersen, Pil B. M.; Donlan, C. Josh; Ejrnæs, Rasmus; Faurby, Søren; Galetti, Mauro; Hansen, Dennis M.; Sandel, Brody; Sandom, Christopher J.; Terborgh, John W.; Vera, Frans W. M.

    2016-01-01

    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human–wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology. PMID:26504218

  18. Convergence of trophic interaction strengths in grassland food webs through metabolic scaling of herbivore biomass.

    PubMed

    Schmitz, Oswald J; Price, Jessica R

    2011-11-01

    1. Food web theory hypothesizes that trophic interaction strengths of consumers should vary with consumer metabolic body mass (mass(0·75) ) rather than simply with consumer body mass (mass(1·0) ) owing to constraints on consumption imposed by metabolic demand for and metabolic capacity to process nutrients and energy. Accordingly, species with similar metabolic body masses should have similar trophic interaction strengths. 2. We experimentally tested this hypothesis by assembling food webs comprised of species of arthropod predators, small sap-feeding and large leaf-chewing insect herbivores and herbaceous plants in a New England, USA meadow grassland. The experiment comprised of a density-matching treatment where herbivore species were stocked into field mesocosms at equal densities to quantify baseline species identity and metabolic body mass effects. The experiment also comprised of a metabolic biomass-matching treatment where smaller sap-feeding herbivore (SH) species were stocked into mesocosms such that the product of their density and metabolic body mass (metabolic biomass) was equal to the large herbivore (LH) species. We compared the magnitude of the direct effects of herbivore species on plants in the different treatments. We also compared the magnitude of indirect effects between predators and plants mediated by herbivores in the different treatments. 3. Consistent with the hypothesis, we found that increasing metabolic biomass translated into a 9-14-fold increase in magnitude of herbivore direct effects and up to a fivefold increase in indirect effects on plants. Moreover, metabolic biomass matching caused interaction strengths among herbivore species to converge. This result came about through increases in the herbivore mean effects as well as decreases in variation in effects among treatment replicates as herbivore metabolic biomass increased. 4. We found, however, that herbivore feeding mode rather than herbivore metabolic biomass explained

  19. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon.

    PubMed

    Deacy, William W; Armstrong, Jonathan B; Leacock, William B; Robbins, Charles T; Gustine, David D; Ward, Eric J; Erlenbach, Joy A; Stanford, Jack A

    2017-09-26

    Climate change is altering the seasonal timing of life cycle events in organisms across the planet, but the magnitude of change often varies among taxa [Thackeray SJ, et al. (2016) Nature 535:241-245]. This can cause the temporal relationships among species to change, altering the strength of interaction. A large body of work has explored what happens when coevolved species shift out of sync, but virtually no studies have documented the effects of climate-induced synchronization, which could remove temporal barriers between species and create novel interactions. We explored how a predator, the Kodiak brown bear (Ursus arctos middendorffi), responded to asymmetric phenological shifts between its primary trophic resources, sockeye salmon (Oncorhynchus nerka) and red elderberry (Sambucus racemosa). In years with anomalously high spring air temperatures, elderberry fruited several weeks earlier and became available during the period when salmon spawned in tributary streams. Bears departed salmon spawning streams, where they typically kill 25-75% of the salmon [Quinn TP, Cunningham CJ, Wirsing AJ (2016) Oecologia 183:415-429], to forage on berries on adjacent hillsides. This prey switching behavior attenuated an iconic predator-prey interaction and likely altered the many ecological functions that result from bears foraging on salmon [Helfield JM, Naiman RJ (2006) Ecosystems 9:167-180]. We document how climate-induced shifts in resource phenology can alter food webs through a mechanism other than trophic mismatch. The current emphasis on singular consumer-resource interactions fails to capture how climate-altered phenologies reschedule resource availability and alter how energy flows through ecosystems.

  20. Food-web dynamics and trophic-level interactions in a multispecies community of freshwater unionids

    USGS Publications Warehouse

    Nichols, S.J.; Garling, D.

    2000-01-01

    We compared feeding habits and trophic-level relationships of unionid species in a detritus-dominated river and an alga-dominated lake using biochemical analyses, gut contents, and stable-isotope ratios. The δ13C ratios for algae and other food-web components show that all unionids from both the river and the lake used bacterial carbons, not algal carbons, as their main dietary source, in spite of positive selection and concentration of diatoms and green algae from the water column in the gut and mantle cavity. Algae did provide key nutrients such as vitamins A and D and phytosterols that were bioaccumulated in the tissues of all species. The δ15N ratios for the multispecies unionid community in the Huron River indicated some differences in nitrogen enrichment between species, the greatest enrichment being found in Pyganadon grandis. These δ15N ratios indicate that unionids may not always feed as primary consumers or omnivores. Stable-isotope data were critical for delineating diets and trophic-level interactions of this group of filter-feeders. Further refinements in identifying bacterial and picoplankton components of the fine particulate organic matter are needed to complete our understanding of resource partitioning between multispecies unionid populations.

  1. Trophic interactions in the St. Lawrence Estuary (Canada): Must the blue whale compete for krill?

    NASA Astrophysics Data System (ADS)

    Savenkoff, C.; Comtois, S.; Chabot, D.

    2013-09-01

    Inverse methodology was used to construct a mass-balance model of the Lower St. Lawrence Estuary (LSLE) for the 2008-2010 time period. Our first objective was to make an overall description of community structure, trophic interactions, and the effects of fishing and predation on the vertebrate and invertebrate communities of the ecosystem. A second objective was to identify other important predators of krill, and to assess if these compete with blue whales, listed as endangered under the Canadian Species at Risk Act in 2005 (northwest Atlantic population). The Estuary and the Gulf of St. Lawrence are summer feeding grounds for blue whales and other marine mammals. Blue whales eat only euphausiids (krill) and require dense concentrations of prey to meet their energy requirements, which makes them particularly vulnerable to changes in prey availability. In the LSLE, many species from secondary producers (hyperiid amphipods, other macrozooplankton) to top predators (fish, birds, and marine mammals) consumed euphausiids. Consequently, krill predators were found at all consumer trophic levels. However, our results showed that only about 35% of the estimated euphausiid production was consumed by all predator species combined. Euphausiid did not seem to be a restricted resource in the LSLE ecosystem, at least during the study period. The blue whale did not appear to have to compete for krill in the LSLE.

  2. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon

    NASA Astrophysics Data System (ADS)

    Malik, A.; Fernandes, C. E. G.; Gonsalves, M.-J. B. D.; Subina, N. S.; Mamatha, S. S.; Krishna, K.; Varik, S.; Kumari, R.; Gauns, M.; Cejoice, R. P.; Pandey, S. S.; Jineesh, V. K.; Kamaleson, A. S.; Vijayan, V.; Mukherjee, I.; Subramanyan, S.; Nair, S.; Ingole, B.; LokaBharathi, P. A.

    2015-01-01

    Coastal upwelling is a regular phenomenon occurring along the southwest coast of India during summer monsoon (May-September). We hypothesize that there could be a shift in environmental parameters along with changes in the network of interactions between bacteria, phytoplankton, and zooplankton in upwelling and non-upwelling regions. During cruise # 267 on FORV Sagar Sampada, water samples were analysed for environmental and biological parameters from two transects, one upwelling region off Trivandrum (TVM) (8°26‧N, 76°20‧E-8°30‧N, 76°50‧E), and the other non-upwelling region off Calicut (CLT) (11°11‧N, 75°30‧E-11°14‧N,74°54‧E), about 230 nmi to the north. Meteorological, hydrological, and nutrient profiles confirmed upwelling off TVM. Bacteria, phytoplankton and zooplankton significantly responded. Primary and bacterial productivity enhanced together with increase in the percentage of viable bacteria (TVC). Pearson's correlation analysis pointed out the differences in bacterial interactions with other trophic levels at both transects. TVC played a prominent role in trophic interactions off TVM by depending on phytoplankton for substrate (r = 0.754). This contrasted with CLT where total counts (TC) played an important role. However, most interrelationships were less pronounced. Principal component analysis (PCA) confirmed the correlation analysis and further showed that the factor loadings of the biotic and abiotic parameters differed in strength and direction in the two regions. More importantly, the processes of mineralization by bacteria and uptake by phytoplankton are obviously more coupled off TVM as evidenced by the clustering of the related parameters in the PCA biplot. Canonical correspondence analysis also complements these findings and demonstrated that the abiotic factors influenced phytoplankton and bacteria similarly at TVM but differently at CLT. The impact on the trophic interrelationships is evident by the close association

  3. Climatic control of trophic interaction strength: the effect of lizards on spiders.

    PubMed

    Spiller, David A; Schoener, Thomas W

    2008-01-01

    We investigated how temporal variation in rainfall influences the impact of lizards on spiders inhabiting small islands in Abaco, Bahamas. Annual censuses of web spiders were conducted on nine lizard islands and on eight no-lizard islands 1994-2003. Repeated-measures ANOVA showed that annual variation in spider density (time) and in the lizard effect on spider density (lizard x time) were both significant. Correlation coefficients between the lizard effect (ln ratio of no-lizard to lizard spider densities) and number of rainfall days were generally negative, and strengthened with length of the time period during which rainfall was measured prior to annual spider censuses. Spider density was also negatively correlated with rainfall days and strengthened with length of the prior time period. Longer time intervals included the hurricane season, suggesting that the strong negative correlations were linked to high rainfall years during which tropical storms impacted the region and reduced spider and lizard densities. Split-plot ANOVA showed that rainfall during the hurricane season had a significant effect on the lizard effect and on spider density. Results in this study are opposite to those found in our previous 10-year study (1981-1990) conducted in the Exuma Cays, a moderately xeric region of the Bahamas, where the relation between rainfall and the lizard effect on spider density was positive. Combined data from the Exuma and Abaco studies produce a unimodal relation between trophic interaction strength and rainfall; we suggest that the negative effect of storms associated with rainfall was paramount in the present study, whereas the positive bottom-up effect of rainfall prevailed in our previous study. We conclude that climatic variability has a major impact on the trophic interaction and suggest that a substantial change in precipitation in either direction may weaken the interaction significantly.

  4. Cascading effects of predator-detritivore interactions depend on environmental context in a Tibetan alpine meadow.

    PubMed

    Wu, Xinwei; Griffin, John N; Sun, Shucun

    2014-05-01

    Studies of grazing food webs show that species traits can interact with environmental factors to determine the strength of trophic cascades, but analogous context dependencies in detrital food webs remain poorly understood. In predator-detritivore-plant interaction chains, predators are expected to indirectly suppress plant biomass by reducing the density of plant-facilitating detritivores. However, this outcome can be reversed where above-ground predators drive burrowing detritivores to lower soil levels, strengthening their plant-facilitating effects. Here, we show that these trait-mediated indirect interactions further depend on environmental context in a Tibetan alpine meadow. In our study system, undulating topography generates higher (dry soil) patches interspersed with lower (wet soil) patches. Because the ability of detritivores to form deep burrows is likely to be limited by oxygen availability in low patches (wet soil), we hypothesized that (i) burrowing detritivores would undergo a vertical habitat shift, allowing them to more effectively avoid predation, in high - but not low - patches, and (ii) this shift would transmit positive effects of predators to plants in high patches by improving conditions in the lower soil layer. We tested these hypotheses using complementary field and glasshouse experiments examining whether the cascading effects of above-ground predatory beetles (presence/absence) on the density and behaviour of tunnel-forming detritivorous beetles, soil properties, and plant growth varied with patch type (low/high). Results revealed that predatory beetles did not reduce the density of detritivores in either patch type but had context-dependent trait-mediated effects, increasing the tunnelling depth of detritivores, improving soil conditions and ultimately increasing plant biomass in the high but not low patches. This study adds to an emerging predictive framework linking predators to plants in detritus food webs, demonstrating that these

  5. Trophic diversity in two grassland ecosystems.

    PubMed

    Pearson, Clark V; Dyer, Lee A

    2006-01-01

    The roles of consumers (top-down forces) versus resources (bottom-up forces) as determinants of alpha diversity in a community are not well studied. Numerous community ecology models and empirical studies have provided a framework for understanding how density at various trophic levels responds to variation in the relative strength of top-down and bottom-up forces. The resulting trophic theory can be applied to understanding variation in insect diversity at different trophic levels. The objective of this research was to elucidate the strengths of direct and indirect interactions between plants and entire arthropod communities to determine the effects of trophic interactions on arthropod diversity. Grassland plant and insect diversity was measured in July 2001 to document patterns of diversity at multiple trophic levels. The study site includes riparian grasslands in North-Central Colorado on the Carpenter Ranch, owned and managed by The Nature Conservancy. This pastureland consists of sites with different management regimes: unmanaged pasture intermixed along riparian forest, and cattle grazed pasture with flood irrigation. Plant abundance and richness were higher on the grazed-irrigated pasture versus the unmanaged field. Path analysis revealed strong effects of herbivore diversity on diversity of other trophic levels. For the managed fields, top-down forces were important, with increases in enemy diversity depressing herbivore diversity, which in turn depressed plant abundance. For the unmanaged fields, bottom-up forces dominated, with increases in plant diversity causing increased herbivore diversity, which in turn increased enemy diversity. These results support hypotheses from other empirical studies, demonstrating that changes in diversity of a single trophic level can cascade to effect diversity at other, nonadjacent trophic levels.

  6. Trophic interactions in the plankton of Malyi Sevan in July, 1984

    SciTech Connect

    Gulelmacher, B.L.; Simonyan, A.A.

    1986-09-01

    This paper describes some studies of the trophic interactions in the plankton in Lchashenskaya Bay in Malyi Sevan in July, 1984. The goal was to study the feeding characteristics of the major crustacean species and their influence on the phytoplankton. To study the effect of the planktonic crustaceans on the phytoplankton, a flask with an added 50 Acanthodiaptomus and a flask without crustaceans were exposed for 24 h after which a radioactive carbon isotope was added to them in the form of sodium carbonate. The radioactivity of the filters and working solutions was measured and autoradiographic preparations were made. It is shown that the more than threefold drop in the quantity of algae in a flask resulting from crustacean feeding did not lead to a significant decrease in primary production.

  7. Vole and lemming activity observed from space: trophic cascade driven interannual vegetation cycles at a regional scale

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Tömmervik, H.; Callaghan, T.

    2011-12-01

    Present global warming requires an understanding of the factors controlling plant biomass and production. The extent to which plant biomass and production is controlled by bottom-up drivers like climate, nutrient and water availability and by top down drivers like herbivory and diseases in terrestrial systems is still under debate. By annually recording plant biomass and community composition in grazed control plots and in herbivore-free exclosures, at twelve sites in a subarctic ecosystem, we were able to show that the regular interannual density fluctuations of voles and lemmings drive synchronous interannual fluctuations in biomass of ground and field layer vegetation (Fig. 1). The effect of the rodents on the vegetation is so strong that it can be detected in fluctuations of NDVI estimates from satellite images of a 20km2 area of tundra heathland. Plant biomass in the field layer was between 9 and 23% lower and NDVI was between 1 % and 25 % lower, the year after a vole peak than the year before. The synchronous decline of most dominant shrub species in the winter following an autumn rodent peak drives the fluctuations in total plant biomass. That the rodent cycles are detectable from satellite images, despite the wide range of abiotic, biotic and antropogenic forces that influence the vegetation, shows that the effects of rodents are strong enough to influence how primary production, carbon storage and biodiversity will respond to ongoing and future climate change. Changes of the rodent cycle may thus cause cascading changes of ecosystem functioning in a changing climate.

  8. Indirect trophic interactions with an invasive species affect phenotypic divergence in a top consumer.

    PubMed

    Hirsch, P E; Eklöv, P; Svanbäck, R

    2013-05-01

    While phenotypic responses to direct species interactions are well studied, we know little about the consequences of indirect interactions for phenotypic divergence. In this study we used lakes with and without the zebra mussel to investigate effects of indirect trophic interactions on phenotypic divergence between littoral and pelagic perch. We found a greater phenotypic divergence between littoral and pelagic individuals in lakes with zebra mussels and propose a mussel-mediated increase in pelagic and benthic resource availability as a major factor underlying this divergence. Lakes with zebra mussels contained higher densities of large plankton taxa and large invertebrates. We suggest that this augmented resource availability improved perch foraging opportunities in both the littoral and pelagic zones. Perch in both habitats could hence express a more specialized foraging morphology, leading to an increased divergence of perch forms in lakes with zebra mussels. As perch do not prey on mussels directly, we conclude that the increased divergence results from indirect interactions with the mussels. Our results hence suggest that species at lower food web levels can indirectly affect phenotypic divergence in species at the top of the food chain.

  9. Study of a tri-trophic prey-dependent food chain model of interacting populations.

    PubMed

    Haque, Mainul; Ali, Nijamuddin; Chakravarty, Santabrata

    2013-11-01

    The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf-Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper.

  10. Imprudent fishing harvests and consequent trophic cascades on the West Florida shelf over the last half century: A harbinger of increased human deaths from paralytic shellfish poisoning along the southeastern United States, in response to oligotrophication?

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Tomas, C. R.; Steidinger, K. A.; Lenes, J. M.; Chen, F. R.; Weisberg, R. H.; Zheng, L.; Landsberg, J. H.; Vargo, G. A.; Heil, C. A.

    2011-06-01

    Within the context of ubiquitous overfishing of piscivores, recent consequent increments of jellyfish and clupeids have occurred at the zooplanktivore trophic level in the eastern Gulf of Mexico (GOM), after overfishing of one of their predators, i.e. red snapper. Initiation of a local trophic cascade thence led to declines of herbivore stocks, documented here on the West Florida shelf. These exacerbating world-wide trophic cascades have resulted in larger harmful algal blooms (HABs), already present at the base of most coastal food webs. Impacts on human health have thus far been minimal within nutrient-rich coastal regions. To provide a setting for past morbidities, consideration is given to chronologies of other trophic cascades within eutrophic, cold water marine ecosystems of the Scotian Sea, in the Gulf of Alaska, off Southwest Africa, within the Barents, White, and Black Seas, in the Gulf of Maine, and finally in the North Sea. Next, comparison is now made here of recent ten-fold increments within Florida waters of both relatively benign and saxitoxic HABs, some of which are fatal to humans. These events are placed in a perspective of other warm shelf systems of the South China and Caribbean Seas to assess prior and possible future poison toxicities of oligotrophic coastal habitats. Past wide-spread kills of fishes and sea urchins over the Caribbean Sea and the downstream GOM are examined in relation to the potential transmission of dinoflagellate saxitoxin and other epizootic poison vectors by western boundary currents over larger "commons" than local embayments. Furthermore, since some HABs produce more potent saxitoxins upon nutrient depletion, recent decisions to ban seasonal fertilizer applications to Florida lawns may have unintended consequences. In the future, human-killing phytoplankton, rather than relatively benign fish-killing HABs of the past, may be dispersed along the southeastern United States seaboard.

  11. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior.

    PubMed

    Pearson, Dean E

    2009-03-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa), has fundamentally altered the architecture of native grassland vegetation. Here, I use long-term monitoring, observational studies, and field experiments to document how changes in vegetation architecture have affected native web spider populations and predation rates. Native spiders that use vegetation as web substrates were collectively 38 times more abundant in C. maculosa-invaded grasslands than in uninvaded grasslands. This increase in spider abundance was accompanied by a large shift in web spider community structure, driven primarily by the strong response of Dictyna spiders to C. maculosa invasion. Dictyna densities were 46-74 times higher in C. maculosa-invaded than native grasslands, a pattern that persisted over 6 years of monitoring. C. maculosa also altered Dictyna web building behavior and foraging success. Dictyna webs on C. maculosa were 2.9-4.0 times larger and generated 2.0-2.3 times higher total prey captures than webs on Achillea millefolium, their primary native substrate. Dictyna webs on C. maculosa also captured 4.2 times more large prey items, which are crucial for reproduction. As a result, Dictyna were nearly twice as likely to reproduce on C. maculosa substrates compared to native substrates. The overall outcome of C. maculosa invasion and its transformative effects on vegetation architecture on Dictyna density and web building behavior were to increase Dictyna predation on invertebrate prey >/=89 fold. These results indicate that invasive plants that change the architecture of native vegetation can substantially impact native food webs via nontraditional plant --> predator --> consumer

  12. Fishers' knowledge about fish trophic interactions in the southeastern Brazilian coast.

    PubMed

    Ramires, Milena; Clauzet, Mariana; Barrella, Walter; Rotundo, Matheus M; Silvano, Renato Am; Begossi, Alpina

    2015-03-05

    Data derived from studies of fishers' local ecological knowledge (LEK) can be invaluable to the proposal of new studies and more appropriate management strategies. This study analyzed the fisher's LEK about trophic relationships of fishes in the southeastern Brazilian coast, comparing fishers' LEK with scientific knowledge to provide new hypotheses. The initial contacts with fishers were made through informal visits in their residences, to explain the research goals, meet fishers and their families, check the number of resident fishers and ask for fishers' consent to participate in the research. After this initial contact, fishers were selected to be included in the interviews through the technique of snowball sampling. The fishers indicated by others who attended the criteria to be included in the research were interviewed by using a semi-structured standard questionnaire. There were interviewed 26 artisanal fishers from three communities of the Ilhabela: Jabaquara, Fome and Serraria. The interviewed fishers showed a detailed knowledge about the trophic interactions of the studied coastal fishes, as fishers mentioned 17 food items for these fishes and six fish and three mammals as fish predators. The most mentioned food items were small fish, shrimps and crabs, while the most mentioned predators were large reef fishes. Fishers also mentioned some predators, such as sea otters, that have not been reported by the biological literature and are poorly known. The LEK of the studied fishers showed a high degree of concordance with the scientific literature regarding fish diet. This study evidenced the value of fishers' LEK to improve fisheries research and management, as well as the needy to increase the collaboration among managers, biologists and fishers.

  13. The effects of urbanization on trophic interactions in a desert landscape

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: Trophic systems can be affected through top-down (predators) and bottom-up (resources) impacts. Human activity can alter trophic systems by causing predators to avoid areas (top-down) or by providing increased resources through irrigation and decorative plants that attra...

  14. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.

    PubMed

    Wang, Gang; Or, Dani

    2014-10-24

    The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia.

  15. NanoSIMS study of trophic interactions in the coral-dinoflagellate endosymbiosis

    NASA Astrophysics Data System (ADS)

    Kopp, Christophe; Mathieu, Pernice; Domart-Coulon, Isabelle; Djediat, Chakib; Spangenberg, Jorge; Alexander, Duncan; Hignette, Michel; Meziane, Tarik; Meibom, Anders

    2013-04-01

    Tropical and subtropical reef-building corals generally form a stable endosymbiotic association with autotrophic single-celled dinoflagellate algae, commonly known as "zooxanthellae", which is crucial for the development of coral reef ecosystems. In the present work, the spatial and temporal dynamics of trophic interactions between corals and their dinoflagellates was investigated in situ and at a subcellular level in the reef-building coral Pocillopora damicornis. Transmission electron microscopy (TEM) and quantitative NanoSIMS isotopic imaging of tissue ultra-thin sections (70 nm) were combined to precisely track the assimilation and the fate of 15N-labeled compounds (ammonium, nitrate and aspartic acid) within each symbiotic partner of the coral-dinoflagellate association. Among our main results, we found that (i) both dinoflagellate algae and coral tissue rapidly assimilate ammonium and aspartic acid from the environment, (ii) however only the dinoflagellates assimilate nitrate, (ii) nitrogen is rapidly and temporary stored within the dinoflagellate cells into uric acid crystals, and (iii) the dinoflagellate endosymbionts translocate nitrogenous compounds to their coral host. This study paves the way for exploring in details the wide range of metabolic interactions between partners of any symbiosis in the biosphere.

  16. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon.

    PubMed

    Sobral, Mar; Silvius, Kirsten M; Overman, Han; Oliveira, Luiz F B; Rabb, Ted K; Fragoso, José M V

    2017-10-09

    Biodiversity affects many ecosystem functions and services, including carbon cycling and retention. While it is known that the efficiency of carbon capture and biomass production by ecological communities increases with species diversity, the role of vertebrate animals in the carbon cycle remains undocumented. Here, we use an extensive dataset collected in a high-diversity Amazonian system to parse out the relationship between animal and plant species richness, feeding interactions, tree biomass and carbon concentrations in soil. Mammal and tree species richness is positively related to tree biomass and carbon concentration in soil-and the relationship is mediated by organic remains produced by vertebrate feeding events. Our research advances knowledge of the links between biodiversity and carbon cycling and storage, supporting the view that whole community complexity-including vertebrate richness and trophic interactions-drives ecosystem function in tropical systems. Securing animal and plant diversity while protecting landscape integrity will contribute to soil nutrient content and carbon retention in the biosphere.A high-diversity Amazonian system reveals the influence of mammalian diversity on the carbon cycle, mediated through vertebrate feeding events.

  17. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces

    PubMed Central

    Wang, Gang; Or, Dani

    2014-01-01

    The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia. PMID:25343307

  18. Anaerobic trophic interactions of contrasting methane-emitting mire soils: processes versus taxa.

    PubMed

    Hunger, Sindy; Gößner, Anita S; Drake, Harold L

    2015-05-01

    Natural wetlands such as mires contribute up to 33% to the global emission of methane. The emission of methane is driven by trophic interactions of anaerobes that collectively degrade biopolymers. The hypothesis of this study was that these interactions in contrasting methane-emitting mire soils are functionally similar but linked to dissimilar taxa. This hypothesis was addressed by evaluating anaerobic processes and microbial taxa of eutrophic, mesotrophic and oligotrophic mire soils. Glucose was fermented to various products (e.g. H2, CO2, butyrate, acetate). Acetoclastic methanogenesis occurred, and acetogenesis and methanogenesis transformed H2-CO2 to acetate and methane, respectively. Although product profiles, cultivable cell numbers and gene copy numbers [mcrA (encodes alpha-subunit of methyl-CoM reductase) and 16S rRNA genes] were similar for all mire soils, only approximately 15% of detected family-level bacteria and species-level methanogens were shared by all mire soils. Approximately, 40% of the detected family-level taxa of each mire soil have no cultured isolates. Acidic conditions appeared to restrict the number of dominant phylotypes. The results indicated (a) that microbial processes which drive methanogenesis are similar but facilitated by dissimilar microbial communities in contrasting mire soils and (b) that mire soils harbor a large number of taxa with no cultured isolates.

  19. Cascading and feedback in interactive models of production: a reflection of forward modeling?

    PubMed

    Dell, Gary S

    2013-08-01

    Interactive theories of lexical retrieval in language production assume that activation cascades from earlier to later processing levels, and feeds back in the reverse direction. This commentary invites Pickering & Garrod (P&G) to consider whether cascading and feedback can be seen as a form of forwarding modeling within a hierarchical production system.

  20. Predator effects on a detritus-based food web are primarily mediated by non-trophic interactions.

    PubMed

    Majdi, Nabil; Boiché, Anatole; Traunspurger, Walter; Lecerf, Antoine

    2014-07-01

    Predator effects on ecosystems can extend far beyond their prey and are often not solely lethally transmitted. Change in prey traits in response to predation risk can have important repercussions on community assembly and key ecosystem processes (i.e. trait-mediated indirect effects). In addition, some predators themselves alter habitat structure or nutrient cycling through ecological engineering effects. Tracking these non-trophic pathways is thus an important, yet challenging task to gain a better grasp of the functional role of predators. Multiple lines of evidence suggest that, in detritus-based food webs, non-trophic interactions may prevail over purely trophic interactions in determining predator effects on plant litter decomposition. This hypothesis was tested in a headwater stream by modulating the density of a flatworm predator (Polycelis felina) in enclosures containing oak (Quercus robur) leaf litter exposed to natural colonization by small invertebrates and microbial decomposers. Causal path modelling was used to infer how predator effects propagated through the food web. Flatworms accelerated litter decomposition through positive effects on microbial decomposers. The biomass of prey and non-prey invertebrates was not negatively affected by flatworms, suggesting that net predator effect on litter decomposition was primarily determined by non-trophic interactions. Flatworms enhanced the deposition and retention of fine sediments on leaf surface, thereby improving leaf colonization by invertebrates - most of which having strong affinities with interstitial habitats. This predator-induced improvement of habitat availability was attributed to the sticky nature of the mucus that flatworms secrete in copious amount while foraging. Results of path analyses further indicated that this bottom-up ecological engineering effect was as powerful as the top-down effect on invertebrate prey. Our findings suggest that predators have the potential to affect substantially

  1. Food Web Architecture and Basal Resources Interact to Determine Biomass and Stoichiometric Cascades along a Benthic Food Web

    PubMed Central

    Guariento, Rafael D.; Carneiro, Luciana S.; Caliman, Adriano; Leal, João J. F.; Bozelli, Reinaldo L.; Esteves, Francisco A.

    2011-01-01

    Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé – RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry. PMID:21789234

  2. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel C.; Malamud, Bruce D.

    2016-08-01

    This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability

  3. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy.

    PubMed

    Dell, Anthony I; Pawar, Samraat; Savage, Van M

    2014-01-01

    distributions and phenologies are altered, such that previously noninteracting species come into contact. 6. By using characteristics of trophic interactions that are often well known, such as body size, foraging strategy, thermy and environmental temperature, our framework should allow more accurate predictions about the thermal dependence of consumer-resource interactions. Ultimately, integration of our theory into models of food web and ecosystem dynamics should be useful in understanding how natural systems will respond to current and future temperature change.

  4. Weak trophic interactions among birds, insects and white oak saplings (Quercus alba)

    USGS Publications Warehouse

    Lichtenberg, J.S.; Lichtenberg, D.A.

    2002-01-01

    We examined the interactions among insectivorous birds, arthropods and white oak saplings (Quercus alba L.) in a temperate deciduous forest under 'open' and 'closed' canopy environments. For 2 y, we compared arthropod densities, leaf damage and sapling growth. Saplings from each canopy environment were assigned to one of four treatments: (1) reference, (2) bird exclosure, (3) insecticide and (4) exclosure + insecticide. Sap-feeding insects were the most abundant arthropod feeding guild encountered and birds reduced sap-feeder densities in 1997, but not in 1998. Although there was no detectable influence of birds on leaf-chewer densities in either year, leaf damage to saplings was greater within bird exclosures than outside of bird exclosures in 1997. Insecticide significantly reduced arthropod densities and leaf damage to saplings, but there was no corresponding increase in sapling growth. Growth and biomass were greater for saplings in more open canopy environments for both years. Sap-feeder densities were higher on closed canopy than open canopy saplings in 1997, but canopy environment did not influence the effects of birds on lower trophic levels. Although previous studies have found birds to indirectly influence plant growth and biomass, birds did not significantly influence the growth or biomass of white oak saplings during our study.

  5. [Pollinators of Bertholletia excelsa (Lecythidales: Lecythidaceae): interactions with stingless bees (Apidae: Meliponini) and trophic niche].

    PubMed

    Santos, Charles F; Absy, Maria L

    2010-01-01

    This paper presents an analysis of the foraging behavior and interactions of Xylocopa frontalis Olivier (Apidae: Xylocopini) and Eulaema mocsaryi (Friese) (Apidae: Euglossini) in the presence of stingless bees (Apidae: Meliponini) in flowers of Bertholletia excelsa, the Brazilian nut. The palynological load carried by both species was also examined. This study was conducted in the farm Aruanã, Itacoatiara/ Amazonas state, Brazil, during the flowering peak of B. excelsa. The visitation by the main pollinators X. frontalis and E. mocsaryi were influenced by the presence and activities of stingless bees in the flowers of B. excelsa. Meliponini bees did not have any effect on the visits and collection of floral resources by X. frontalis, while negatively affecting the number of visits by E. mocsaryi. The stingless bees presented a variety of strategies to get access to pollen grains of B. excelsa, grouped into two categories: opportunism -Frieseomelitta trichocerata Moure, Tetragona goettei (Friese), and Tetragona kaieteurensis (Schwarz), and stealing -Trigona branneri Cockerell, Trigona fuscipennis Friese, and Trigona guianae Cockerell. The palynological analysis from X. frontalis showed that the bee collected pollen in a few species of plants, but mainly on B. excelsa. The pollen grains of B. excelsa were poorly represented in the pollen shipments of E. mocsaryi, due to its large trophic niche in the locality.

  6. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary

    USGS Publications Warehouse

    Alpine, A.E.; Cloern, J.E.

    1992-01-01

    San Francisco Bay has recently been invaded by the suspension-feeding clam Potamocorbula amurensis. Previous work has shown that phytoplankton biomass in the upper estuary is low (2-3 mg Chl a m-3) during seasonal periods of high river flow and short residence time and it is usually high (peak >30 mg Chl a m-3) during the summer-autumn seasons of low river flow and long residence time. However since P. amurensis became widespread and abundant in 1987, the summer phytoplankton biomass maximum has disappeared, presumably because of increased grazing pressure by this newly introduced species. For 1977-1990, mean estimated primary production was only 39 g C m-2 yr-1 during years when bivalve suspension feeders were abundant (>2000 m-2), compared to 106 g C m-2 yr-1 when bivalves were absent or present in low numbers. These observations support the hypothesis that seasonal and interannual fluctuations in estuarine phytoplankton biomass and primary production can be regulated jointly by direct physical effects (eg river-driven transport) and trophic interactions (episodes of enhanced grazing pressure by immigrant populations of benthic suspension feeders). -from Authors

  7. Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Malamud, Bruce D.

    2016-04-01

    Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.

  8. Complex trophic interactions of calanoid copepods in the Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Schukat, Anna; Auel, Holger; Teuber, Lena; Lahajnar, Niko; Hagen, Wilhelm

    2014-01-01

    Life-cycle adaptations, dietary preferences and trophic levels of calanoid copepods from the northern Benguela Current off Namibia were determined via lipid classes, marker fatty acids and stable isotope analyses, respectively. Trophic levels of copepod species were compared to other zooplankton and top consumers. Lipid class analyses revealed that three of the dominant calanoid copepod species stored wax esters, four accumulated triacylglycerols and another three species were characterised by high phospholipid levels. The two biomarker approaches (via fatty acids and stable isotopes) revealed a complex pattern of trophic positions for the various copepod species, but also highlighted the dietary importance of diatoms and dinoflagellates. Calanoides carinatus and Nannocalanus minor occupied the lowest trophic level (predominantly herbivorous) corresponding to high amounts of fatty acid markers for diatoms (e.g. 16:1(n - 7)) and dinoflagellates (e.g. 18:4(n - 3)). These two copepod species represent the classical link between primary production and higher trophic levels. All other copepods belonged to secondary or even tertiary (some deep-sea copepods) consumers. The calanoid copepod species cover the entire range of δ15N ratios, as compared to δ15N ratios of all non-calanoid taxa investigated, from salps to adult fish. These data emphasise that the trophic roles of calanoid copepods are far more complex than just interlinking primary producers with pelagic fish, which should also be considered in the process of developing realistic food-web models of coastal upwelling systems.

  9. Human Disruption of Coral Reef Trophic Structure.

    PubMed

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Cinner, Joshua E; Huchery, Cindy; Holmes, Thomas H

    2017-01-23

    The distribution of biomass among trophic levels provides a theoretical basis for understanding energy flow and the hierarchical structure of animal communities. In the absence of energy subsidies [1], bottom-heavy trophic pyramids are expected to predominate, based on energy transfer efficiency [2] and empirical evidence from multiple ecosystems [3]. However, the predicted pyramid of biomass distribution among trophic levels may be disrupted through trophic replacement by alternative organisms in the ecosystem, trophic cascades, and humans preferentially impacting specific trophic levels [4-6]. Using empirical data spanning >250 coral reefs, we show how trophic pyramid shape varies given human-mediated gradients along two orders of magnitude in reef fish biomass. Mean trophic level of the assemblage increased modestly with decreasing biomass, contrary to predictions of fishing down the food web [7]. The mean trophic level pattern is explained by trophic replacement of herbivorous fish by sea urchins at low biomass and the accumulation of slow-growing, large-bodied, herbivorous fish at high biomass. Further, at high biomass, particularly where fishers are not selectively removing higher trophic level individuals, a concave trophic distribution emerges. The concave trophic distribution implies a more direct link between lower and upper trophic levels, which may confer greater energy efficiency. This trophic distribution emerges when community biomass exceeds ∼650 kg/ha, suggesting that fisheries for upper trophic level species will only be supported under lightly fished scenarios.

  10. The Tri-Trophic Interactions Hypothesis: Interactive Effects of Host Plant Quality, Diet Breadth and Natural Enemies on Herbivores

    PubMed Central

    Mooney, Kailen A.; Pratt, Riley T.; Singer, Michael S.

    2012-01-01

    Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores. PMID:22509298

  11. Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities.

    PubMed

    Bassman, John H

    2004-05-01

    The potential role of ultraviolet-B (UV-B)-induced secondary plant metabolites as mediators of multiple trophic responses in terrestrial ecosystems is considered through review of the major classes of secondary metabolites, the pathways for their biosynthesis, interactions with primary and secondary consumers and known UV effects on their induction. Gross effects of UV-B radiation on plant growth and survival under realistic spectral balances in the field have been generally lacking, but subtle changes in carbon allocation and partitioning induced by UV-B, in particular production of secondary metabolites, can affect ecosystem-level processes. Secondary metabolites are important in plant-herbivore interactions and may affect pathogens. They act as feeding or oviposition deterrents to generalists and nonadapted specialists, but adapted specialists are stimulated to feed by these same compounds, which they detoxify and often sequester for use against their predators. This provides a route for tritrophic effects of enhanced UV-B radiation whereby herbivory may be increased while predation on the herbivore is simultaneously reduced. It is in this context that secondary metabolites may manifest their most important role. They can be the demonstrable mechanism establishing cause and effect at higher trophic levels because the consequences of their induction can be established at all trophic levels.

  12. Interaction of warm acclimation, low salinity, and trophic fluoride on plasmatic constituents of the Antarctic fish Notothenia rossii Richardson, 1844.

    PubMed

    Rodrigues, E; Feijó-Oliveira, M; Vani, G S; Suda, C N K; Carvalho, C S; Donatti, L; Lavrado, H P; Rodrigues, E

    2013-12-01

    The adaptive evolution of the Notothenia rossii occurred under the selective pressure of stable and low temperatures. It is an opportunistic feeder of Antarctic krill and the fluoride in the krill carapace is apparently not toxic. We investigated the interactive effect of fluoride, elevated temperatures, and low salinity on the plasmatic constituents of this Antarctic fish. The experiments were conducted at the Brazilian Antarctic Station Comandante Ferraz (EACF), located on King George Island. The Antarctic fish N. rossii was acclimatized to eight thermo-saline-trophic conditions, combining two temperatures (0 and 4 °C), two salinities (35 and 20), and two trophic conditions (with/without fluoride) for an 11-day period. Trophic fluoride was not able to alter the plasmatic levels of glucose, cholesterol, plasmatic protein, Cl⁻, Mg²⁺, Ca²⁺, and inorganic phosphate, but induced an acute elevation of triglycerides at 0 °C and salinity of 35. At low salinity, hyperglycemia, hypertriglyceridemia, and hypocalcemia were observed. The thermo-saline interaction at 4 °C was able to minimize the effects of fluoride and low salinity on the plasmatic constituents levels.

  13. Trophic dynamics in a simple experimental ecosystem: Interactions among centipedes, Collembola and introduced earthworms

    Treesearch

    Meixiang Gao; Melanie K. Taylor; Mac A. Callaham

    2017-01-01

    Invasive earthworms in North America are known to have dramatic influences on soil ecosystems, including negative effects on other soil fauna. In general, studies examining this phenomenon have focused on invasive earthworm impacts on organisms at the same or lower trophic level as the earthworms themselves (i.e., detritivores and decomposers). In contrast, there have...

  14. Trophic Interactions of Infant Bifidobacteria and Eubacterium hallii during L-Fucose and Fucosyllactose Degradation.

    PubMed

    Schwab, Clarissa; Ruscheweyh, Hans-Joachim; Bunesova, Vera; Pham, Van Thanh; Beerenwinkel, Niko; Lacroix, Christophe

    2017-01-01

    . suis were able to utilize L-fucose. This study identified a trophic interaction of infant bifidobacteria and E. hallii during L-fucose degradation, and pointed at E. hallii as a metabolically versatile species that occurs in infants and utilizes intermediates of bifidobacterial HMO fermentation.

  15. Trophic Interactions of Infant Bifidobacteria and Eubacterium hallii during L-Fucose and Fucosyllactose Degradation

    PubMed Central

    Schwab, Clarissa; Ruscheweyh, Hans-Joachim; Bunesova, Vera; Pham, Van Thanh; Beerenwinkel, Niko; Lacroix, Christophe

    2017-01-01

    . longum subsp. suis were able to utilize L-fucose. This study identified a trophic interaction of infant bifidobacteria and E. hallii during L-fucose degradation, and pointed at E. hallii as a metabolically versatile species that occurs in infants and utilizes intermediates of bifidobacterial HMO fermentation. PMID:28194144

  16. Interaction between nonviral reprogrammed fibroblast stem cells and trophic factors for brain repair.

    PubMed

    Liu, G; Anisman, H; Bobyn, J; Hayley, S

    2014-10-01

    There are currently no known treatment options that actually halt or permanently reverse the pathology evident in any neurodegenerative condition. Arguably, one of the most promising avenues for creating viable neuronal treatments could involve the combined use of cell replacement and gene therapy. Given the complexity of the neurodegenerative process, it stands to reason that adequate therapy should involve not only the replacement of loss neurons/synapses but also the interruption of multiple pro-death pathways. Thus, we propose the use of stem cells that are tailored to express specific trophic factors, thereby potentially encouraging synergistic effects between the stem cell properties and those of the trophic factors. The trophic factors, brain-derived neurotropic factor (BDNF), glial cell-derived neurotropic factor (GDNF), fibroblast growth factor (FGF) 2, and insulin-like growth factor (IGF) 1, in particular, have demonstrated neuroprotective actions in a number of animal models. Importantly, we use a nonviral approach, thereby minimizing the potential risk for DNA integration and tumor formation. The present study involved the development of a nonviral reprogramming system to transform adult mature mouse fibroblasts into progressive stages of cell development. We also tailored these stem cells to individually express each of the trophic factors, including BDNF, GDNF, FGF2, and IGF1. Significantly, central infusion of BDNF-expressing stem cells prevented the in vivo loss of neurons associated with infusion of the endotoxin, lipopolysaccharide (LPS). This is particularly important in light of the role of inflammatory processes that are posited to play in virtually all neurodegenerative states. Hence, the present results support the utility of using combined gene and cell-targeting approaches for neuronal pathology.

  17. Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem

    DTIC Science & Technology

    2015-09-30

    in the California Current Ecosystem Jerome Fiechter UC Santa Cruz Institute of Marine Sciences 1156 High Street Santa Cruz, CA 95064 phone... Ecosystem (CCLME), the long-term goal of our modeling approach is to better understand and characterize biological “hotspots” (i.e., the aggregation...of multiple marine organisms over multiple trophic levels) off the U.S. west coast and in other regions where similar fully-coupled ecosystem models

  18. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    SciTech Connect

    Miller, Lance D; Mosher, Jennifer J; Venkateswaran, Amudhan; Yang, Zamin Koo; Palumbo, Anthony Vito; Phelps, Tommy Joe; Podar, Mircea; Schadt, Christopher Warren; Keller, Martin

    2010-01-01

    Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors.

  19. Trophic Interactions in Louisiana Salt Marshes: Combining Stomach Content, Stable Isotope, and Fatty Acid Approaches

    NASA Astrophysics Data System (ADS)

    Lopez-Duarte, P. C.; Able, K.; Fodrie, J.; McCann, M. J.; Melara, S.; Noji, C.; Olin, J.; Pincin, J.; Plank, K.; Polito, M. J.; Jensen, O.

    2016-02-01

    Multiple studies conducted over five years since the 2010 Macondo oil spill in the Gulf of Mexico indicate that oil impacts vary widely among taxonomic groups. For instance, fishes inhabiting the marsh surface show no clear differences in either community composition or population characteristics between oiled and unoiled sites, despite clear evidence of physiological impacts on individual fish. In contrast, marsh insects and spiders are sensitive to the effects of hydrocarbons. Both insects and spiders are components of the marsh food web and represent an important trophic link between marsh plants and higher trophic levels. Because differences in oil impacts throughout the marsh food web have the potential to significantly alter food webs and energy flow pathways and reduce food web resilience, our goal is to quantify differences in marsh food webs between oiled and unoiled sites to test the hypothesis that oiling has resulted in simpler and less resilient food webs. Diets and food web connections were quantified through a combination of stomach content, stable isotope, and fatty acid analysis. The combination of these three techniques provides a more robust approach to quantifying trophic relationships than any of these methods alone. Stomach content analysis provides a detailed snapshot of diets, while fatty acid and stable isotopes reflect diets averaged over weeks to months. Initial results focus on samples collected in May 2015 from a range of terrestrial and aquatic consumer species, including insects, mollusks, crustaceans, and piscivorous fishes.

  20. Trophic omnivory across a productivity gradient: intraguild predation theory and the structure and strength of species interactions.

    PubMed

    Novak, Mark

    2013-09-07

    Intraguild predation theory centres on two predictions: (i) for an omnivore and an intermediate predator (IG-prey) to coexist on shared resources, the IG-prey must be the superior resource competitor, and (ii) increasing resource productivity causes the IG-prey's equilibrium abundance to decline. I tested these predictions with a series of species-rich food webs along New Zealand's rocky shores, focusing on two predatory whelks, Haustrum haustorium, a trophic omnivore, and Haustrum scobina, the IG-prey. In contrast to theory, the IG-prey's abundance increased with productivity. Furthermore, feeding rates and allometric considerations indicate a competitive advantage for the omnivore when non-shared prey are considered, despite the IG-prey's superiority for shared prey. Nevertheless, clear and regular cross-gradient changes in network structure and interaction strengths were observed that challenge the assumptions of current theory. These insights suggest that the consideration of consumer-dependent functional responses, non-equilibrium dynamics, the dynamic nature of prey choice and non-trophic interactions among basal prey will be fruitful avenues for theoretical development.

  1. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies.

    PubMed

    Shi, PeiJian; Hui, Cang; Men, XingYuan; Zhao, ZiHua; Ouyang, Fang; Ge, Feng; Jin, XianShi; Cao, HaiFeng; Li, B Larry

    2014-07-01

    Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology. We explore the effects of crop species richness on the diversity of pest insects and their natural enemies. Using data from a four-year experiment with five levels of crop species richness, we found that crop species richness significantly affected the pest species richness, but there were no significant effects on richness of the pests' natural enemies. In contrast, the species richness of pest insects significantly affected their natural enemies. These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels, while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level. High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops. Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.

  2. DNA-ligand interactions gained and lost: light-induced ligand redistribution in a supramolecular cascade.

    PubMed

    Berdnikova, Daria V; Aliyeu, Tseimur M; Paululat, Thomas; Fedorov, Yuri V; Fedorova, Olga A; Ihmels, Heiko

    2015-03-21

    A supramolecular five-component cascade is presented that enables light-controlled transport of an in situ modified ligand between three host systems based on the different complexation preferences of cyclodextrin, cucurbituril, and double-stranded DNA. The results point out novel approaches for the control of drug-DNA interactions in DNA-targeting therapy.

  3. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules.

    PubMed

    Wang, Ming-Jie; Cai, Wen-Jie; Zhu, Yi-Chun

    2016-05-15

    As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases.

  4. Elevated atmospheric CO{sub 2} alters root-microbe interactions and belowground trophic structure

    SciTech Connect

    Klironomos, J.N.; Rillig, M.C.; Allen, M.F.

    1995-09-01

    Various aspects of plant and ecosystem responses to elevated atmospheric carbon dioxide have been described. However, very little is known about the fate of carbon allocated belowground, microbial activity, and trophic structure in the rhizosphere. Rhizosphere microbes are fed primarily by root-derived substrates, fulfill functions such as mineralization, immobilization, decomposition, pathogeneity, and improvement of plant nutrition, and form the base of the below-ground food web. Belowground processes have so far been monitored using a black-box approach, thereby ignoring effects of global change at a finer (functional group) level of resolution. This study is the first to describe shifts in the activity and dominance between microbial functional groups, and the results of this on higher trophic levels. We observed that, in a nutrient-rich soil, carbon flow in the plant-soil system was shunted from a mutualistic-closed, mycorrhizal dominated flow to an opportunist-open, saprobe/pathogen dominated one. This indicates that elevated atmospheric CO{sub 2} may lead to far less predictable consequences than previously thought.

  5. Benchmark Solution For The Category 3, Problem 2: Cascade - Gust Interaction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2004-01-01

    The benchmark solution for the cascade-gust interaction problem is computed using a linearized Euler code called LINFLUX. The inherently three-dimensional code is run in the thin-annulus limit to compute the two-dimensional cascade response. The calculations are carried out in the frequency-domain and the unsteady response at each of the gust s three frequency component is computed. The results are presented on modal basis for pressure perturbations (i.e., acoustic modes) as well as velocity perturbations (i.e., convected gust modes) at each frequency.

  6. Interactions between displacement cascades and Σ3<110> tilt grain boundaries in Cu

    NASA Astrophysics Data System (ADS)

    Li, Bo; Long, Xiao-Jiang; Shen, Zhao-Wu; Luo, Sheng-Nian

    2016-12-01

    With large-scale molecular dynamics simulations, we investigate systematically the interaction of displacement cascades with a set of Σ3<110> tilt grain boundaries (GBs) in Cu bicrystals at low ambient temperatures, as regards irradiation-induced defect production/absorption and GB migration/faceting. Except for coherent twin boundary, GBs exhibit pronounced preferential absorption of interstitials, which depends on initial primary knock-on atom distance from GB plane and inclination angle. GB migration occurs when displacement cascades overlap with a GB plane, as induced by recrystallization of thermal spike, and concurrent asymmetric grain growth. Faceting occurs via expanding coherent twin boundaries for asymmetric GBs.

  7. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    PubMed Central

    2010-01-01

    Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network. PMID:20497531

  8. The Potential for Signal Integration and Processing in Interacting Map Kinase Cascades

    PubMed Central

    Schwacke, John H.; Voit, Eberhard O.

    2009-01-01

    The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the Mitogen Activated Protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for

  9. Trophic Level Stability-Inducing Effects of Predaceous Early Juvenile Fish in an Estuarine Mesocosm Study

    PubMed Central

    Wasserman, Ryan J.; Noyon, Margaux; Avery, Trevor S.; Froneman, P. William

    2013-01-01

    Background Classically, estuarine planktonic research has focussed largely on the physico-chemical drivers of community assemblages leaving a paucity of information on important biological interactions. Methodology/Principal Findings Within the context of trophic cascades, various treatments using in situ mesocosms were established in a closed estuary to highlight the importance of predation in stabilizing estuarine plankton abundances. Through either the removal (filtration) or addition of certain planktonic groups, five different trophic systems were established. These treatments contained varied numbers of trophic levels and thus different “predators” at the top of the food chain. The abundances of zooplankton (copepod and polychaete), ciliate, micro-flagellate, nano-flagellate and bacteria were investigated in each treatment, over time. The reference treatment containing apex zooplanktivores (early juvenile mullet) and plankton at natural densities mimicked a natural, stable state of an estuary. Proportional variability (PV) and coefficient of variation (CV) of temporal abundances were calculated for each taxon and showed that apex predators in this experimental ecosystem, when compared to the other systems, induced stability. The presence of these predators therefore had consequences for multiple trophic levels, consistent with trophic cascade theory. Conclusions/Significance PV and CV proved useful indices for comparing stability. Apex predators exerted a stabilizing pressure through feeding on copepods and polychaetes which cascaded through the ciliates, micro-flagellates, nano-flagellates and bacteria. When compared with treatments without apex predators, the role of predation in structuring planktonic communities in closed estuaries was highlighted. PMID:23565294

  10. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels

    PubMed Central

    Van der Putten, Wim H.; Macel, Mirka; Visser, Marcel E.

    2010-01-01

    Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection during climate change vary depending on how their trophic interactions become disrupted. Plant abundance can be controlled by aboveground and belowground multitrophic level interactions with herbivores, pathogens, symbionts and their enemies. We discuss how these interactions may alter during climate change and the resulting species range shifts. We suggest conceptual analogies between species responses to climate warming and exotic species introduced in new ranges. There are also important differences: the herbivores, pathogens and mutualistic symbionts of range-expanding species and their enemies may co-migrate, and the continuous gene flow under climate warming can make adaptation in the expansion zone of range expanders different from that of cross-continental exotic species. We conclude that under climate change, results of altered species interactions may vary, ranging from species becoming rare to disproportionately abundant. Taking these possibilities into account will provide a new perspective on predicting species distribution under climate change. PMID:20513711

  11. The inverted trophic cascade in tropical plankton communities: impacts of exotic fish in the Middle Rio Doce lake district, Minas Gerais, Brazil.

    PubMed

    Pinto-Coelho, R M; Bezerra-Neto, J F; Miranda, F; Mota, T G; Resck, R; Santos, A M; Maia-Barbosa, P M; Mello, N A S T; Marques, M M; Campos, M O; Barbosa, F A R

    2008-11-01

    The present study deals with the ecological impacts of the introduction of two alien species of piscivorous fish in several lakes of the Middle Rio Doce lake district in Minas Gerais, Brazil. It was demonstrated that these effects were not restricted only to the fish community. The introduction of the predatory red piranha Pygocentrus nattereri and the tucunaré Cichla cf. ocellaris caused not only a sharp decrease in the number of native fish species, but also major shifts in other trophic levels. Just after the fish were introduced, most lakes began to show conspicuous changes in phytoplankton species composition, in which Cyanophyceae gradually came to dominate. The zooplankton community lost several species, and in some cases, such as Lake Carioca, all the cladoceran species disappeared. On the other hand, invertebrate predators, represented by the dipteran Chaoboridae, boomed in the lake, with higher densities of exotic species, probably as a result of the 'ecological release' by reduction of the original fish fauna. There was a general trend of species loss in different trophic levels. All these changes are apparently associated with decreases in water quality. The present situation in these lakes demands new approaches to the management and conservation of these ecosystems.

  12. Dynamical interaction of helium bubbles with cascade damage in Fe-9Cr ferritic alloy.

    SciTech Connect

    Ono, K.; Miyamoto, M.; Arakawa, K.; Birtcher, R. C.; Materials Science Division; Shimane Univ.; Osaka Univ.

    2008-12-01

    Dynamic interaction of helium bubble with cascade damage in Fe-9Cr ferritic alloy has been studied using in situ irradiation and electron microscopy. During the irradiation of the alloy by 400 keV Fe{sup +} ions at temperatures where no thermal motion takes place, induced displacement of small helium bubbles was observed: the bubbles underwent sporadic and instant displacement. The displacement was of the order of a few nanometers. The experimentally determined displacement probability of helium bubbles is consistent with the calculated probability of their dynamic interaction with sub-cascades introduced by the irradiation. Furthermore, during the irradiation of the alloy at higher temperatures, both retarded and accelerated Brownian type motions were observed. These results are discussed on the basis of dynamic interaction of helium bubbles with point defects that survive through high-energy self-ion irradiation.

  13. Interaction of displacement cascade with helium bubbles in alpha-iron: Computer simulation

    SciTech Connect

    Pu, Jin; Yang, Li; Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Zu, Xiaotao T.

    2008-09-01

    Molecular dynamics (MD) method has been performed to study the interaction of displacement cascade with He bubbles with two sets of potentials. The results show that the stability of He bubbles depends much on the initial He-vacancy (He/V) ratio and the recoil energy. For an initial He/V ratio of 3, the cascade leads to the increase in the number of vacancies in the He bubble and the decrease in the He/V ratio. For an initial He/V ratio of 0.5, the interaction of a cascade with the He/V bubble results in the decrease in the number of vacancies and the increase in the He/V ratio. For an initial He/V ratio of 1, the stability of the bubbles slightly depends on the primary knock-on atom (PKA) energy. Furthermore, a large number of self-interstitial atom clusters are formed after cascade collision for the He/V ratio of 3, while large vacancy clusters are observed for the He/V ratio of 0.5. However, some differences of defect production and clustering between the two sets of potentials are observed, which may be associated the formation energies of He-V clusters, the binding energies of vacancies and He atoms to the clusters and the probability of subcascade formation.

  14. Trophic interactions of common elasmobranchs in deep-sea communities of the Gulf of Mexico revealed through stable isotope and stomach content analysis

    NASA Astrophysics Data System (ADS)

    Churchill, Diana A.; Heithaus, Michael R.; Vaudo, Jeremy J.; Grubbs, R. Dean; Gastrich, Kirk; Castro, José I.

    2015-05-01

    Deep-water sharks are abundant and widely distributed in the northern and eastern Gulf of Mexico. As mid- and upper-level consumers that can range widely, sharks likely are important components of deep-sea communities and their trophic interactions may serve as system-wide baselines that could be used to monitor the overall health of these communities. We investigated the trophic interactions of deep-sea sharks using a combination of stable isotope (δ13C and δ15N) and stomach content analyses. Two hundred thirty-two muscle samples were collected from elasmobranchs captured off the bottom at depths between 200 and 1100 m along the northern slope (NGS) and the west Florida slope (WFS) of the Gulf of Mexico during 2011 and 2012. Although we detected some spatial, temporal, and interspecific variation in apparent trophic positions based on stable isotopes, there was considerable isotopic overlap among species, between locations, and through time. Overall δ15N values in the NGS region were higher than in the WFS. The δ15N values also increased between April 2011 and 2012 in the NGS, but not the WFS, within Squalus cf. mitsukurii. We found that stable isotope values of S. cf. mitsukurii, the most commonly captured elasmobranch, varied between sample regions, through time, and also with sex and size. Stomach content analysis (n=105) suggested relatively similar diets at the level of broad taxonomic categories of prey among the taxa with sufficient sample sizes. We did not detect a relationship between body size and relative trophic levels inferred from δ15N, but patterns within several species suggest increasing trophic levels with increasing size. Both δ13C and δ15N values suggest a substantial degree of overlap among most deep-water shark species. This study provides the first characterization of the trophic interactions of deep-sea sharks in the Gulf of Mexico and establishes system baselines for future investigations.

  15. The role of life histories and trophic interactions in population recovery.

    PubMed

    Audzijonyte, Asta; Kuparinen, Anna

    2016-08-01

    Factors affecting population recovery from depletion are at the focus of wildlife management. Particularly, it has been debated how life-history characteristics might affect population recovery ability and productivity. Many exploited fish stocks have shown temporal changes towards earlier maturation and reduced adult body size, potentially owing to evolutionary responses to fishing. Whereas such life-history changes have been widely documented, their potential role on stock's ability to recover from exploitation often remains ignored by traditional fisheries management. We used a marine ecosystem model parameterized for Southeastern Australian ecosystem to explore how changes towards "faster" life histories might affect population per capita growth rate r. We show that for most species changes towards earlier maturation during fishing have a negative effect (3-40% decrease) on r during the recovery phase. Faster juvenile growth and earlier maturation were beneficial early in life, but smaller adult body sizes reduced the lifetime reproductive output and increased adult natural mortality. However, both at intra- and inter-specific level natural mortality and trophic position of the species were as important in determining r as species longevity and age of maturation, suggesting that r cannot be predicted from life-history traits alone. Our study highlights that factors affecting population recovery ability and productivity should be explored in a multi-species context, where both age-specific fecundity and survival schedules are addressed simultaneously. It also suggests that contemporary life-history changes in harvested species are unlikely to increase their resilience and recovery ability.

  16. All-optical tunable group-velocity control of femtosecond pulse by quadratic nonlinear cascading interactions.

    PubMed

    Lu, Wenjie; Chen, Yuping; Miu, Lihong; Chen, Xianfeng; Xia, Yuxing; Zeng, Xianglong

    2008-01-07

    Based on cascading nonlinear interactions of second harmonic generation (SHG) and difference frequency generation (DFG), we present a novel scheme to control the group velocity of femtosecond pulse in MgO doped periodically poled lithium niobate crystal. Group velocity of tunable signal pulse can be controlled by another pump beam within a wide bandwidth of 180nm. Fractional advancement of 2.4 and fractional delay of 4 are obtained in our simulations.

  17. Modeling Microbial Dynamics in Aquifers Considering the Interaction Between the Higher Trophic Levels

    NASA Astrophysics Data System (ADS)

    Bajracharya, B. M.; Cirpka, O. A.; Lu, C.

    2014-12-01

    Models of microbial dynamics coupled to solute transport in aquifers typically require the introduction of a bacterial carrying capacity term to prevent excessive microbial growth close to substrate-injection boundaries. The factors controlling this carrying capacity, however, are not fully understood. Most explanations for the occurrence of a carrying capacity discussed are based on the assumption of a bottom-up control of groundwater ecosystems. An alternative explanation is based on top-down control. Our model considers substrate, bacteria and higher trophic levels, such as grazers or bacteriophages. The dissolved substrate is transported with water flow whereas the biomasses of bacteria and grazers are considered essentially immobile. The one-dimensional reactive transport model also accounts for substrate dispersion and a random walk of grazers influenced by the bacteria concentration. The grazers grow on the bacteria, leading to a negative feedback on the bacteria concentration which may limit the turnover of the substrate. A single retentostat model with Monod kinetics of bacterial growth and a second-order grazing shows that the system oscillates but approaches a stable steady state with non-zero concentrations of substrate, bacteria, and grazers. The steady-state concentration of the bacteria biomass is independent of the substrate concentration in the inflow. When coupling several retentostats in a series to mimic a groundwater column, the steady-state bacteria concentrations remain at a constant level over a significant travel distance. The results show that grazing is a possible explanation of the carrying capacity, provided that there is enough substrate to sustain bacteria and grazers.

  18. Trophic Interactions Between Insects and Stream-Associated Amphibians in Steep, Cobble-Bottom Streams of the Pacific Coast of North America

    PubMed Central

    Atwood, Trisha; Richardson, John S.

    2012-01-01

    Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition), and may also “bulldoze” insect larvae from the surfaces of stones (interference competition). Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems. PMID:26466536

  19. Trophic Interactions Between Insects and Stream-Associated Amphibians in Steep, Cobble-Bottom Streams of the Pacific Coast of North America.

    PubMed

    Atwood, Trisha; Richardson, John S

    2012-04-10

    Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition), and may also "bulldoze" insect larvae from the surfaces of stones (interference competition). Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems.

  20. Direct and indirect trophic effects of predator depletion on basal trophic levels.

    PubMed

    Chen, Huili; Hagerty, Steven; Crotty, Sinead M; Bertness, Mark D

    2016-02-01

    Human population growth and development have heavily degraded coastal ecosystems with cascading impacts across multiple trophic levels. Understanding both the direct and indirect trophic effects of human activities is important for coastal conservation. In New England, recreational overfishing has triggered a regional trophic cascade. Predator depletion releases the herbivorous purple marsh crab from consumer control and leads to overgrazing of marsh cordgrass and salt marsh die-off. The direct and indirect trophic effects of predator depletion on basal trophic levels, however, are not understood. Using observational and experimental data, we examined the hypotheses that (1) direct trophic effects of predator depletion decrease meiofaunal abundance by releasing deposit feeding fiddler crabs from consumer control, and/or (2) indirect trophic effects of predator depletion increase meiofaunal abundance by releasing blue carbon via the erosion of centuries of accreted marsh peat. Experimental deposit feeder removal led to 23% higher meiofaunal density at die-off than at healthy sites, while reciprocally transplanting sediment from die-off and healthy sites revealed that carbon-rich die-off sediment increased meiofauna density by over 164%: six times stronger than direct trophic effects. Recovering sites had both carbon-rich sediment and reduced deposit feeding leading to higher meiofauna densities than both die-off and healthy sites. This suggests that consequences of the trophic downgrading of coastal habitats can be driven by both direct and indirect trophic mechanisms that may vary in direction and magnitude, making their elucidation dependent on experimental manipulations.

  1. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model.

    PubMed

    Fernandes, Jose A; Cheung, William W L; Jennings, Simon; Butenschön, Momme; de Mora, Lee; Frölicher, Thomas L; Barange, Manuel; Grant, Alastair

    2013-08-01

    Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment. © 2013 John Wiley & Sons Ltd.

  2. Trophic organisation and predator-prey interactions among commercially exploited demersal finfishes in the coastal waters of the southeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Abdurahiman, K. P.; Nayak, T. H.; Zacharia, P. U.; Mohamed, K. S.

    2010-05-01

    Trophic interactions in commercially exploited demersal finfishes in the southeastern Arabian Sea of India were studied to understand trophic organization with emphasis on ontogenic diet shifts within the marine food web. In total, the contents of 4716 stomachs were examined from which 78 prey items were identified. Crustaceans and fishes were the major prey groups to most of the fishes. Based on cluster analysis of predator feeding similarities and ontogenic diet shift within each predator, four major trophic guilds and many sub-guilds were identified. The first guild 'detritus feeders' included all size groups of Cynoglossus macrostomus, Pampus argenteus, Leiognathus bindus and Priacanthus hamrur. Guild two, named 'Shrimp feeders', was the largest guild identified and included all size groups of Rhynchobatus djiddensis and Nemipterus mesoprion, medium and large Nemipterus japonicus, P. hamrur and Grammoplites suppositus, small and medium Otolithes cuvieri and small Lactarius lactarius. Guild three, named 'crab and squilla feeders', consisted of few predators. The fourth trophic guild, 'piscivores', was mainly made up of larger size groups of all predators and all size groups of Pseudorhombus arsius and Carcharhinus limbatus. The mean diet breadth and mean trophic level showed strong correlation with ontogenic diet shift. The mean trophic level varied from 2.2 ± 0.1 in large L. bindus to 4.6 ± 0.2 in large Epinephelus diacanthus and the diet breadth from 1.4 ± 0.3 in medium P. argenteus to 8.3 ± 0.2 in medium N. japonicus. Overall, the present study showed that predators in the ecosystem have a strong feeding preference for the sergestid shrimp Acetes indicus, penaeid shrimps, epibenthic crabs and detritus.

  3. Dominance and interloci interactions in transcriptional activation cascades: models explaining compensatory mutations and inheritance patterns.

    PubMed

    Bost, Bruno; Veitia, Reiner A

    2014-01-01

    Mutations in human genes encoding transcription factors are often dominant because one active allele cannot ensure a normal phenotype (haploinsufficiency). In other instances, heterozygous mutations of two genes are required for a phenotype to appear (combined haploinsufficiency). Here, we explore with models (i) the basis of haploinsufficiency and combined haploinsufficiency owing to mutations in transcription activators, and (ii) how the effects of such mutations can be amplified or buffered by subsequent steps in a transcription cascade. We propose that the non-linear (sigmoidal) response of transcription to the concentration of activators can explain haploinsufficiency. We further show that the sigmoidal character of the output of a cascade increases with the number of steps involved, the settings of which will determine the buffering or enhancement of the effects of a decreased concentration of an upstream activator. This exploration provides insights into the bases of compensatory mutations and on interloci interactions underlying oligogenic inheritance patterns.

  4. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade

    PubMed Central

    2012-01-01

    Background The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and

  5. Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica.

    PubMed

    Gao, Feng; Zhu, San-Rong; Sun, Yu-Cheng; Du, Li; Parajulee, Meghan; Kang, Le; Ge, Feng

    2008-02-01

    Information on the effects of enriched CO2 on both the chemical composition of plants and the consequences of such changes for performance of a herbivore and its predator is an important first step in understanding the responses of plants and insects to global environmental change. We examined interactions across three trophic levels, cotton, Gossypium hirsutum, an aphid herbivore, Aphis gossypii Glover, and a coccinellid predator, Propylaea japonica (Thunberg), as affected by elevated CO2 concentrations and crop cultivars. Plant carbon:nitrogen (C:N) ratios, condensed tannin, and gossypol content were significantly higher, and nitrogen content was significantly lower in plants exposed to elevated CO2 levels compared with that in plants exposed to ambient CO2. Cotton aphid survivorship significantly increased and free fatty acid content decreased with increased CO2 concentrations. No significant differences in survival and lifetime fecundity of P. japonica were observed between cultivars and CO2 concentration treatments. However, stage-specific larval durations of the lady beetle were significantly longer when fed aphids from elevated CO2 concentrations. Our results indicate that high gossypol in the cotton host plant had an antibiotic effect on A. gossypii and produced a positive effect on growth and development of P. japonica at the third trophic level. However, elevated CO2 concentrations showed a negative effect on P. japonica. We speculate that A. gossypii may become a more serious pest under an environment with elevated CO2 concentrations because of increased survivorship of aphid and longer development time of lady beetle.

  6. Dynamic behavior of the interaction between epidemics and cascades on heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Jiang, Lurong; Jin, Xinyu; Xia, Yongxiang; Ouyang, Bo; Wu, Duanpo

    2014-12-01

    Epidemic spreading and cascading failure are two important dynamical processes on complex networks. They have been investigated separately for a long time. But in the real world, these two dynamics sometimes may interact with each other. In this paper, we explore a model combined with the SIR epidemic spreading model and a local load sharing cascading failure model. There exists a critical value of the tolerance parameter for which the epidemic with high infection probability can spread out and infect a fraction of the network in this model. When the tolerance parameter is smaller than the critical value, the cascading failure cuts off the abundance of paths and blocks the spreading of the epidemic locally. While the tolerance parameter is larger than the critical value, the epidemic spreads out and infects a fraction of the network. A method for estimating the critical value is proposed. In simulations, we verify the effectiveness of this method in the uncorrelated configuration model (UCM) scale-free networks.

  7. Artificial "ping-pong" cascade of PIWI-interacting RNA in silkworm cells.

    PubMed

    Shoji, Keisuke; Suzuki, Yutaka; Sugano, Sumio; Shimada, Toru; Katsuma, Susumu

    2017-01-01

    PIWI-interacting RNAs (piRNAs) play essential roles in the defense system against selfish elements in animal germline cells by cooperating with PIWI proteins. A subset of piRNAs is predicted to be generated via the "ping-pong" cascade, which is mainly controlled by two different PIWI proteins. Here we established a cell-based artificial piRNA production system using a silkworm ovarian cultured cell line that is believed to possess a complete piRNA pathway. In addition, we took advantage of a unique silkworm sex-determining one-to-one ping-pong piRNA pair, which enabled us to precisely monitor the behavior of individual artificial piRNAs. With this novel strategy, we successfully generated artificial piRNAs against endogenous protein-coding genes via the expected back-and-forth traveling mechanism. Furthermore, we detected "primary" piRNAs from the upstream region of the artificial "ping-pong" site in the endogenous gene. This artificial piRNA production system experimentally confirms the existence of the "ping-pong" cascade of piRNAs. Also, this system will enable us to identify the factors involved in both, or each, of the "ping" and "pong" cascades and the sequence features that are required for efficient piRNA production.

  8. Consistent role of weak and strong interactions in high- and low-diversity trophic food webs.

    PubMed

    Gellner, Gabriel; McCann, Kevin S

    2016-04-12

    The growing realization of a looming biodiversity crisis has inspired considerable progress in the quest to link biodiversity, structure and ecosystem function. Here we construct a method that bridges low- and high-diversity approaches to food web theory by elucidating the connection between the stability of the basic building block of food webs and the mean stability properties of large random food web networks. Applying this theoretical framework to common food web models reveals two key findings. First, in almost all cases, high-diversity food web models yield a stability relationship between weak and strong interactions that are compatible in every way to simple low-diversity models. And second, the models that generate the recently discovered phenomena of being purely stabilized by increasing interaction strength correspond to the biologically implausible assumption of perfect interaction strength symmetry.

  9. Consistent role of weak and strong interactions in high- and low-diversity trophic food webs

    PubMed Central

    Gellner, Gabriel; McCann, Kevin S.

    2016-01-01

    The growing realization of a looming biodiversity crisis has inspired considerable progress in the quest to link biodiversity, structure and ecosystem function. Here we construct a method that bridges low- and high-diversity approaches to food web theory by elucidating the connection between the stability of the basic building block of food webs and the mean stability properties of large random food web networks. Applying this theoretical framework to common food web models reveals two key findings. First, in almost all cases, high-diversity food web models yield a stability relationship between weak and strong interactions that are compatible in every way to simple low-diversity models. And second, the models that generate the recently discovered phenomena of being purely stabilized by increasing interaction strength correspond to the biologically implausible assumption of perfect interaction strength symmetry. PMID:27068000

  10. Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems.

    PubMed

    Rudolf, Volker H W

    2012-05-01

    1. Theory suggests that the relationship between predator diversity and prey suppression should depend on variation in predator traits such as body size, which strongly influences the type and strength of species interactions. Prey species often face a range of different sized predators, and the composition of body sizes of predators can vary between communities and within communities across seasons. 2. Here, I test how variation in size structure of predator communities influences prey survival using seasonal changes in the size structure of a cannibalistic population as a model system. Laboratory and field experiments showed that although the per-capita consumption rates increased at higher predator-prey size ratios, mortality rates did not consistently increase with average size of cannibalistic predators. Instead, prey mortality peaked at the highest level of predator body size diversity. 3. Furthermore, observed prey mortality was significantly higher than predictions from the null model that assumed no indirect interactions between predator size classes, indicating that different sized predators were not substitutable but had more than additive effects. Higher predator body size diversity therefore increased prey mortality, despite the increased potential for behavioural interference and predation among predators demonstrated in additional laboratory experiments. 4. Thus, seasonal changes in the distribution of predator body sizes altered the strength of prey suppression not only through changes in mean predator size but also through changes in the size distribution of predators. In general, this indicates that variation (i.e. diversity) within a single trait, body size, can influence the strength of trophic interactions and emphasizes the importance of seasonal shifts in size structure of natural food webs for community dynamics.

  11. Trophic downgrading of planet Earth.

    PubMed

    Estes, James A; Terborgh, John; Brashares, Justin S; Power, Mary E; Berger, Joel; Bond, William J; Carpenter, Stephen R; Essington, Timothy E; Holt, Robert D; Jackson, Jeremy B C; Marquis, Robert J; Oksanen, Lauri; Oksanen, Tarja; Paine, Robert T; Pikitch, Ellen K; Ripple, William J; Sandin, Stuart A; Scheffer, Marten; Schoener, Thomas W; Shurin, Jonathan B; Sinclair, Anthony R E; Soulé, Michael E; Virtanen, Risto; Wardle, David A

    2011-07-15

    Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind's most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.

  12. A viscous-inviscid interactive procedure for rotational flow in cascades of two dimensional airfoils of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Johnston, W. A.

    1983-01-01

    A viscous-inviscid interactive calculation procedure is developed for application to flow in cascades of two-dimensional airfoils. This procedure has essentially three components. First, a numerical solution of the Eulers equations which can accommodate an arbitrarily specified cascade geometry of the cascade. A method of grid generation has been used which relics in part on a succession of conformal mappings. Second, a viscous solution for use in boundary layers and wake regions was programmed. Finally, an interactive scheme which takes the form of a source-sink distribution along the blade surface and wake centerline is employed. Results were obtained with this procedure for several cascade flow situations, and some comparisons with experiment are presented.

  13. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications

    PubMed Central

    Clare, Elizabeth L

    2014-01-01

    The emerging field of ecological genomics contains several broad research areas. Comparative genomic and conservation genetic analyses are providing great insight into adaptive processes, species bottlenecks, population dynamics and areas of conservation priority. Now the same technological advances in high-throughput sequencing, coupled with taxonomically broad sequence repositories, are providing greater resolution and fundamentally new insights into functional ecology. In particular, we now have the capacity in some systems to rapidly identify thousands of species-level interactions using non-invasive methods based on the detection of trace DNA. This represents a powerful tool for conservation biology, for example allowing the identification of species with particularly inflexible niches and the investigation of food-webs or interaction networks with unusual or vulnerable dynamics. As they develop, these analyses will no doubt provide significant advances in the field of restoration ecology and the identification of appropriate locations for species reintroduction, as well as highlighting species at ecological risk. Here, I describe emerging patterns that have come from the various initial model systems, the advantages and limitations of the technique and key areas where these methods may significantly advance our empirical and applied conservation practices. PMID:25553074

  14. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics.

    PubMed

    Lindroth, Richard L

    2010-01-01

    Prominent among the many factors now affecting the sustainability of forest ecosystems are anthropogenically-generated carbon dioxide (CO2) and ozone (O3). CO2 is the substrate for photosynthesis and thus can accelerate tree growth, whereas O3 is a highly reactive oxygen species and interferes with basic physiological functions. This review summarizes the impacts of CO2 and O3 on tree chemical composition and highlights the consequences thereof for trophic interactions and ecosystem dynamics. CO2 and O3 influence phytochemical composition by altering substrate availability and biochemical/physiological processes such as photosynthesis and defense signaling pathways. Growth of trees under enriched CO2 generally leads to an increase in the C/N ratio, due to a decline in foliar nitrogen and concomitant increases in carbohydrates and phenolics. Terpenoid levels generally are not affected by atmospheric CO2 concentration. O3 triggers up-regulation of antioxidant defense pathways, leading to the production of simple phenolics and flavonoids (more so in angiosperms than gymnosperms). Tannins levels generally are unaffected, while terpenoids exhibit variable responses. In combination, CO2 and O3 exert both additive and interactive effects on tree chemical composition. CO2-and O3-mediated changes in plant chemistry influence host selection, individual performance (development, growth, reproduction), and population densities of herbivores (primarily phytophagous insects) and soil invertebrates. These changes can effect shifts in the amount and temporal pattern of forest canopy damage and organic substrate deposition. Decomposition rates of leaf litter produced under elevated CO2 and O3 may or may not be altered, and can respond to both the independent and interactive effects of the pollutants. Overall, however, CO2 and O3 effects on decomposition will be influenced more by their impacts on the quantity, rather than quality, of litter produced. A prominent theme to emerge

  15. Trophic Interactions of Proteolytic Bacteria Proteinivorax tanatarense in an Alkalinphilic Microbial Community.

    PubMed

    Boltyanskaya, Yu V; Kevbrin, V V

    2016-07-01

    Lythic action of an anaerobic proteolytic bacterium Proteinivorax tanatarense on organisms with different cell wall types was studied. In the absence of photosynthetic oxygen release, this proteolytic was able to grow on intact biomass of cyanobacteria belonging to various systematic groups. Itis probably their usual saprotrophic-satellite responsible for the regulation of abundance of primary producers during the dark phase. Growth also occurred on the biomass of a nonphototrophic gram-negative microorganism-Halomonas campisalis, a common component of alkaliphilic. microbial communities: Comparative analysis of the interaction of the proteolytic with.H. campisalis cells at different physiological states revealed the lytic action to be re- stricted to dead and/or weakened cells, rather than the actively dividing ones. Strict specificity of the action of the proteolytic bacterium on gram-negative microorganisms with no effect on gram-positive ones was shown.

  16. Notch-activated signaling cascade interacts with mitochondrial remodeling proteins to regulate cell survival

    PubMed Central

    Perumalsamy, Lakshmi R.; Nagala, Manjula; Sarin, Apurva

    2010-01-01

    Survival of differentiated cells is one of several processes regulated by Notch activity, although the general principles underlying this function remain to be characterized. Here, we probe the mechanism underlying Notch-mediated survival, building on emerging evidence that apoptotic responses coordinated by specialized intermediates converge on mitochondria, identifying a core event in death pathways. The Bcl-2 family protein Bax is one such intermediate, which in a unifying response to diverse apoptotic stimuli nucleates multiprotein assemblies on mitochondria, committing cells to irrevocable damage. Using Bax as the prototype stimulus, we analyze Notch signaling for potential interactions with mitochondria, probe intrinsic properties of the Notch receptor, and describe key intermediates in the Notch-activated signaling cascade. Ligand-dependent processing was necessary to generate the Notch intracellular domain (NIC) although signaling was independent of canonical interactions with nuclear factors. Notably, antiapoptotic activity was recapitulated by NIC recombinants, localized outside the nucleus, and compromised by enforced nuclear sequestration. NIC signaled via the kinase Akt to prevent the loss of mitochondrial function, contiguity, and consequent nuclear damage, outcomes critically depend on mitochondrial remodeling proteins Mitofusins-(Mfn)-1 and 2. Thus, the NIC-Akt-Mfn signaling cascade identifies a pathway regulating cell-survival, independent of canonical functions associated with NIC activity. PMID:20339081

  17. Trophic interactions and population growth rates: describing patterns and identifying mechanisms.

    PubMed Central

    Hudson, Peter J; Dobson, Andy P; Cattadori, Isabella M; Newborn, David; Haydon, Dan T; Shaw, Darren J; Benton, Tim G; Grenfell, Bryan T

    2002-01-01

    While the concept of population growth rate has been of central importance in the development of the theory of population dynamics, few empirical studies consider the intrinsic growth rate in detail, let alone how it may vary within and between populations of the same species. In an attempt to link theory with data we take two approaches. First, we address the question 'what growth rate patterns does theory predict we should see in time-series?' The models make a number of predictions, which in general are supported by a comparative study between time-series of harvesting data from 352 red grouse populations. Variations in growth rate between grouse populations were associated with factors that reflected the quality and availability of the main food plant of the grouse. However, while these results support predictions from theory, they provide no clear insight into the mechanisms influencing reductions in population growth rate and regulation. In the second part of the paper, we consider the results of experiments, first at the individual level and then at the population level, to identify the important mechanisms influencing changes in individual productivity and population growth rate. The parasitic nematode Trichostrongylus tenuis is found to have an important influence on productivity, and when incorporated into models with their patterns of distribution between individuals has a destabilizing effect and generates negative growth rates. The hypothesis that negative growth rates at the population level were caused by parasites was demonstrated by a replicated population level experiment. With a sound and tested model framework we then explore the interaction with other natural enemies and show that in general they tend to stabilize variations in growth rate. Interestingly, the models show selective predators that remove heavily infected individuals can release the grouse from parasite-induced regulation and allow equilibrium populations to rise. By contrast, a

  18. Trophic dynamics in an aquatic community: interactions among primary producers, grazers, and a pathogenic fungus.

    PubMed

    Buck, Julia C; Scholz, Katharina I; Rohr, Jason R; Blaustein, Andrew R

    2015-05-01

    Free-living stages of parasites are consumed by a variety of predators, which might have important consequences for predators, parasites, and hosts. For example, zooplankton prey on the infectious stage of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen responsible for amphibian population declines and extinctions worldwide. Predation on parasites is predicted to influence community structure and function, and affect disease risk, but relatively few studies have explored its consequences empirically. We investigated interactions among Rana cascadae tadpoles, zooplankton, and Bd in a fully factorial experiment in outdoor mesocosms. We measured growth, development, survival, and infection of amphibians and took weekly measurements of the abundance of zooplankton, phytoplankton (suspended algae), and periphyton (attached algae). We hypothesized that zooplankton might have positive indirect effects on tadpoles by consuming Bd zoospores and by consuming phytoplankton, thus reducing the shading of a major tadpole resource, periphyton. We also hypothesized that zooplankton would have negative effects on tadpoles, mediated by competition for algal resources. Mixed-effects models, repeated-measures ANOVAs, and a structural equation model revealed that zooplankton significantly reduced phytoplankton but had no detectable effects on Bd or periphyton. Hence, the indirect positive effects of zooplankton on tadpoles were negligible when compared to the indirect negative effect mediated by competition for phytoplankton. We conclude that examination of host-pathogen dynamics within a community context may be necessary to elucidate complex community dynamics.

  19. Variation in plant defences among populations of a range-expanding plant: consequences for trophic interactions.

    PubMed

    Fortuna, Taiadjana M; Eckert, Silvia; Harvey, Jeffrey A; Vet, Louise E M; Müller, Caroline; Gols, Rieta

    2014-12-01

    Although plant-herbivore-enemy interactions have been studied extensively in cross-continental plant invasions, little is known about intra-continental range expanders, despite their rapid spread globally. Using an ecological and metabolomics approach, we compared the insect performance of a generalist and specialist herbivore and a parasitoid, as well as plant defence traits, among native, exotic invasive and exotic non-invasive populations of the Turkish rocket, Bunias orientalis, a range-expanding species across parts of Eurasia. In the glasshouse, the generalist herbivore, Mamestra brassicae, and its parasitoid, Microplitis mediator, performed better on non-native than on native plant populations. Insect performance did not differ between the two non-native origins. By contrast, the specialist herbivore, Pieris brassicae, developed poorly on all populations. Differences in trichome densities and in the metabolome, particularly in the family-specific secondary metabolites (i.e. glucosinolates), may explain population-related variation in the performance of the generalist herbivore and its parasitoid. Total glucosinolate concentrations were significantly induced by herbivory, particularly in native populations. Native populations of B. orientalis are generally better defended than non-native populations. The role of insect herbivores and dietary specialization as a selection force on defence traits in the range-expanding B. orientalis is discussed. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Mast Pulses Shape Trophic Interactions between Fluctuating Rodent Populations in a Primeval Forest

    PubMed Central

    Selva, Nuria; Hobson, Keith A.; Cortés-Avizanda, Ainara; Zalewski, Andrzej; Donázar, José Antonio

    2012-01-01

    How different functional responses of consumers exploiting pulsed resources affect community dynamics is an ongoing question in ecology. Tree masting is a common resource pulse in terrestrial ecosystems that can drive rodent population cycles. Using stable isotope (δ13C, δ15N) analyses, we investigated the dietary response of two fluctuating rodent species, the yellow-necked mouse Apodemus flavicollis and the bank vole Myodes glareolus, to mast events in Białowieża Forest (NE Poland). Rodent hair samples were obtained non-invasively from faeces of their predators for an 11-year period that encompassed two mast events. Spectacular seed crops of deciduous trees, namely oak Quercus robur and hornbeam Carpinus betulus, occur after several intermediate years of moderate seed production, with a post-mast year characterised by a nil crop. While a Bayesian isotopic (SIAR) mixing model showed a variety of potential vegetation inputs to rodent diets, the isotopic niche of the yellow-necked mouse was strongly associated with mast of deciduous trees (>80% of diet), showing no variation among years of different seed crop. However, bank voles showed a strong functional response; in mast years the vole shifted its diet from herbs in deciduous forest (∼66% of diet) to mast (∼74%). Only in mast years did the isotopic niche of both rodent species overlap. Previous research showed that bank voles, subordinate and more generalist than mice, showed higher fluctuations in numbers in response to masting. This study provides unique data on the functional response of key pulse consumers in forest food webs, and contributes to our understanding of rodent population fluctuations and the mechanisms governing pulse–consumer interactions. PMID:23251475

  1. Gyrokinetic turbulence cascade via predator-prey interactions between different scales

    SciTech Connect

    Kobayashi, Sumire Gurcan, Ozgur D.

    2015-05-15

    Gyrokinetic simulations in a closed fieldline geometry are presented to explore the physics of nonlinear transfer in plasma turbulence. As spontaneously formed zonal flows and small-scale turbulence demonstrate “predator-prey” dynamics, a particular cascade spectrum emerges. The electrostatic potential and the density spectra appear to be in good agreement with the simple theoretical prediction based on Charney-Hasegawa-Mima equation | ϕ{sup ~}{sub k} |{sup 2}∼| n{sup ~}{sub k} |{sup 2}∝k{sup −3}/(1+k{sup 2}){sup 2}, with the spectra becoming anisotropic at small scales. The results indicate that the disparate scale interactions, in particular, the refraction and shearing of larger scale eddies by the self-consistent zonal flows, dominate over local interactions, and contrary to the common wisdom, the comprehensive scaling relation is created even within the energy injection region.

  2. Multi-trophic level interactions in a cassava-maize mixed cropping system in the humid tropics of West Africa.

    PubMed

    Schulthess, F; Chabi-Olaye, A; Gounou, S

    2004-06-01

    Multi-trophic level interactions in a mixed crop, involving cassava and maize, were studied in derived-savanna in Benin, West Africa. Two trials were planted, one during the short rainy season two months before onset of the dry season and one during the long rainy season in spring. Key pests under study on maize were the noctuid Sesamia calamistis Hampson and the pyralids Eldana saccharina Walker and Mussidia nigrivenella Ragonot, and on cassava, the exotic mealybug, Phenacoccus manihoti Matile-Ferrero and its encyrtid parasitoid Apoanagyrus lopezi De Santis. Both crops received insecticide treatments to assess the crop loss by a pest species. On maize, intercropping with cassava reduced egg and immature numbers of S. calamistis by 67 and 83%, respectively, as a result of reduced host finding by the ovipositing adult moth and of higher egg parasitism by Telenomus spp. Both trials showed similar effects on maize yields: on insecticide-treated maize, intercropping with cassava reduced maize yields by 9-16%, while on untreated maize the net effect of reduced pest density and increased plant competition resulted in zero yield differences; yield losses were lower in inter- compared to monocropped maize. For cassava, cropping system had no effect on parasitism by A. lopezi. Yield differences between mono- and intercropped cassava depended on time of harvest: they were large at the beginning and zero at final harvest. Land equivalent ratios were mostly > 1.5 indicating that a maize/cassava mixed crop, protected or unprotected, considerably increased the productivity per unit area of land.

  3. Primary afferent second messenger cascades interact with specific integrin subunits in producing inflammatory hyperalgesia.

    PubMed

    Dina, Olayinka A; Hucho, Tim; Yeh, Jenny; Malik-Hall, Misbah; Reichling, David B; Levine, Jon D

    2005-05-01

    We recently reported that hyperalgesia induced by the inflammatory mediator prostaglandin E(2) (PGE(2)) requires intact alpha1, alpha3 and beta1 integrin subunit function, whereas epinephrine-induced hyperalgesia depends on alpha5 and beta1. PGE(2)-induced hyperalgesia is mediated by protein kinase A (PKA), while epinephrine-induced hyperalgesia is mediated by a combination of PKA, protein kinase Cepsilon (PKCepsilon) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). We hypothesized that inflammatory mediator-induced hyperalgesia involves specific interactions between different subsets of integrin subunits and particular second messenger species. In the present study, function-blocking anti-integrin antibodies and antisense oligodeoxynucleotides were used to elucidate these interactions in rat. Hyperalgesia produced by an activator of adenylate cyclase (forskolin) depended on alpha1, alpha3 and beta1 integrins. However, hyperalgesia induced by activation of the cascade at a point farther downstream (by cAMP analog or PKA catalytic subunit) was independent of any integrins tested. In contrast, hyperalgesia induced by a specific PKCepsilon agonist depended only on alpha5 and beta1 integrins. Hyperalgesia induced by agonism of MAPK/ERK depended on all four integrin subunits tested (alpha1, alpha3, alpha5 and beta1). Finally, disruption of lipid rafts antagonized hyperalgesia induced by PGE(2) and by forskolin, but not that induced by epinephrine. Furthermore, alpha1 integrin, but not alpha5, was present in detergent-resistant membrane fractions (which retain lipid raft components). These observations suggest that integrins play a critical role in inflammatory pain by interacting with components of second messenger cascades that mediate inflammatory hyperalgesia, and that such interaction with the PGE(2)-activated pathway may be organized by lipid rafts.

  4. The comparative uptake and interaction of several radionuclides in the trophic levels surrounding the Los Alamos Meson Physics Facility (LAMPF) waste water ponds

    SciTech Connect

    Brooks, G.H. Jr.

    1989-08-01

    A study was undertaken to examine the uptake, distribution, and interaction of five activation products (Co-57, Be-7, Cs-134, Rb-83, and Mn-54) within the biotic and abiotic components surrounding the waste treatment lagoons of the Los Alamos Meson Physics Facility (LAMPF). The study attempted to ascertain where, and what specific interactions were taking place among the isotopes and the biotic/abiotic components. A statistical approach, utilizing Multivariate Analysis of Variance (MANOVA), was conducted testing the radioisotopic concentrations by (1) the trophic levels (TROPLVL) in each position sampled on the grid, (2) where sampled on the grid (TRAN), (3) where sampled with-in each grid line (PLOT), and (4) the side with which sampled (SIDE). This provided both the dependent and independent variables that would be tested. The Null Hypothesis (Ho) tested the difference in the mean values of the isotopes within/between each of the four independent variables. The Rb-83 statistic indicated an accumulation within the TRAN and PLOT variables within the sampled area. The Co-57 test statistic provided a value which indicated that accumulation of this isotope within TROPLVL was taking place. Mn-54 test values indicated that accumulation was also taking place at the higher trophic levels within the PLOT, TRAN, and SIDE positions. Cs-134 was found to accumulate to third level in this trophic level structure (TROPLVL-(vegetation)), and then decrease from there. The Be-7 component provided no variance from known compartmental transfers. 210 refs., 17 figs., 4 tabs.

  5. Species co-occurrence affects the trophic interactions of two juvenile reef shark species in tropical lagoon nurseries in Moorea (French Polynesia).

    PubMed

    Matich, Philip; Kiszka, Jeremy J; Mourier, Johann; Planes, Serge; Heithaus, Michael R

    2017-06-01

    Food web structure is shaped by interactions within and across trophic levels. As such, understanding how the presence and absence of predators, prey, and competitors affect species foraging patterns is important for predicting the consequences of changes in species abundances, distributions, and behaviors. Here, we used plasma δ(13)C and δ(15)N values from juvenile blacktip reef sharks (Carcharhinus melanopterus) and juvenile sicklefin lemon sharks (Negaprion acutidens) to investigate how species co-occurrence affects their trophic interactions in littoral waters of Moorea, French Polynesia. Co-occurrence led to isotopic niche partitioning among sharks within nurseries, with significant increases in δ(15)N values among sicklefin lemon sharks, and significant decreases in δ(15)N among blacktip reef sharks. Niche segregation likely promotes coexistence of these two predators during early years of growth and development, but data do not suggest coexistence affects life history traits, such as body size, body condition, and ontogenetic niche shifts. Plasticity in trophic niches among juvenile blacktip reef sharks and sicklefin lemon sharks also suggests these predators are able to account for changes in community structure, resource availability, and intra-guild competition, and may fill similar functional roles in the absence of the other species, which is important as environmental change and human impacts persist in coral reef ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs.

    PubMed

    Thompson, Ross M; Hemberg, Martin; Starzomski, Brian M; Shurin, Jonathan B

    2007-03-01

    The concept of trophic levels is one of the oldest in ecology and informs our understanding of energy flow and top-down control within food webs, but it has been criticized for ignoring omnivory. We tested whether trophic levels were apparent in 58 real food webs in four habitat types by examining patterns of trophic position. A large proportion of taxa (64.4%) occupied integer trophic positions, suggesting that discrete trophic levels do exist. Importantly however, the majority of those trophic positions were aggregated around integer values of 0 and 1, representing plants and herbivores. For the majority of the real food webs considered here, secondary consumers were no more likely to occupy an integer trophic position than in randomized food webs. This means that, above the herbivore trophic level, food webs are better characterized as a tangled web of omnivores. Omnivory was most common in marine systems, rarest in streams, and intermediate in lakes and terrestrial food webs. Trophic-level-based concepts such as trophic cascades may apply to systems with short food chains, but they become less valid as food chains lengthen.

  7. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: a review.

    PubMed

    van Duijvendijk, Gilian; Sprong, Hein; Takken, Willem

    2015-12-18

    The tick Ixodes ricinus is the main vector of the spirochaete Borrelia burgdorferi sensu lato, the causal agent of Lyme borreliosis, in the western Palearctic. Rodents are the reservoir host of B. afzelii, which can be transmitted to I. ricinus larvae during a blood meal. The infected engorged larvae moult into infected nymphs, which can transmit the spirochaetes to rodents and humans. Interestingly, even though only about 1% of the larvae develop into a borreliae-infected nymph, the enzootic borreliae lifecycle can persist. The development from larva to infected nymph is a key aspect in this lifecycle, influencing the density of infected nymphs and thereby Lyme borreliosis risk. The density of infected nymphs varies temporally and geographically and is influenced by multi-trophic (tick-host-borreliae) interactions. For example, blood feeding success of ticks and spirochaete transmission success differ between rodent species and host-finding success appears to be affected by a B. afzelii infection in both the rodent and the tick. In this paper, we review the major interactions between I. ricinus, rodents and B. afzelii that influence this development, with the aim to elucidate the critical factors that determine the epidemiological risk of Lyme borreliosis. The effects of the tick, rodent and B. afzelii on larval host finding, larval blood feeding, spirochaete transmission from rodent to larva and development from larva to nymph are discussed. Nymphal host finding, nymphal blood feeding and spirochaete transmission from nymph to rodent are the final steps to complete the enzootic B. afzelii lifecycle and are included in the review. It is concluded that rodent density, rodent infection prevalence, and tick burden are the major factors affecting the development from larva to infected nymph and that these interact with each other. We suggest that the B. afzelii lifecycle is dependent on the aggregation of ticks among rodents, which is manipulated by the pathogen

  8. General strategy for understanding intracellular molecular interaction cascades that elicit stimulus-invoked biological processes

    PubMed Central

    OKAYAMA, Hiroto

    2016-01-01

    Recent advances in biology have been driven by chemical analyses of the substances that form living organisms. Such analyses are extremely powerful as way of learning about the static properties of molecular species, but relatively powerless for understanding their dynamic behaviors even though this dynamism is essential for organisms to perform various biological processes that perpetuate their lives. Thus, attempts to identify individual species and molecular interaction cascades that drive specific responses to external stimuli or environmental changes often fail. Here I propose a general strategy to address this problem. The strategy comprises two key elements: functional manipulation of a given protein molecule coupled with close monitoring of its biological effect, and construction of a knowledge base tailored for conjecture-driven experimentation. The original idea for this strategy co-evolved with and greatly helped a series of studies we recently performed to discover critical signal cascades and cellular components that regulate the cell cycle transition from G1 to S phase. PMID:27725475

  9. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  10. An analysis for high Reynolds number inviscid/viscid interactions in cascades

    NASA Technical Reports Server (NTRS)

    Barnett, Mark; Verdon, Joseph M.; Ayer, Timothy C.

    1993-01-01

    An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena such as viscous-layer separation, shock/boundary-layer interaction, and trailing-edge/near-wake interaction in turbomachinery blade passages is needed as part of a comprehensive analytical blade design prediction system. Such an analysis is described. It uses an inviscid/viscid interaction approach, in which the flow in the outer inviscid region is assumed to be potential, and that in the inner or viscous-layer region is governed by Prandtl's equations. The inviscid solution is determined using an implicit, least-squares, finite-difference approximation, the viscous-layer solution using an inverse, finite-difference, space-marching method which is applied along the blade surfaces and wake streamlines. The inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure, which permits the prediction of boundary-layer separation and other strong-interaction phenomena. Results are presented for three cascades, with a range of inlet flow conditions considered for one of them, including conditions leading to large-scale flow separations. Comparisons with Navier-Stokes solutions and experimental data are also given.

  11. Interaction of Dirac Fermion excitons and biexciton-exciton cascade in graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Ozfidan, Isil; Korkusinski, Marek; Hawrylak, Pawel

    2015-03-01

    We present a microscopic theory of interacting Dirac quasi-electrons and quasi-holes confined in graphene quantum dots. The single particle states of quantum dots are described using a tight binding model and screened direct, exchange, and scattering Coulomb matrix elements are computed using Slater pz orbitals. The many-body ground and excited states are expanded in a finite number of electron-hole pair excitations from the Hartree-Fock ground state and computed using exact diagonalization techniques. The resulting exciton and bi-exciton spectrum reflects the degeneracy of the top of the valence and bottom of the conduction band characteristic of graphene quantum dots with C3 symmetry. We study the interaction of multi-electron and hole complexes as a function of quantum dot size, shape and strength of Coulomb interactions. We identify two degenerate bright exciton (X) states and a corresponding biexciton (XX) state as XX-X cascade candidates, a source of entangled photon pairs. We next calculate the exciton to bi-exciton transitions detected in transient absorption experiments to extract the strength of exciton-exciton interactions and biexciton binding energies. We further explore the possibility of excitonic instability.

  12. Ants at Plant Wounds: A Little-Known Trophic Interaction with Evolutionary Implications for Ant-Plant Interactions.

    PubMed

    Staab, Michael; Fornoff, Felix; Klein, Alexandra-Maria; Blüthgen, Nico

    2017-09-01

    Extrafloral nectaries (EFNs) allow plants to engage in mutualisms with ants, preventing herbivory in exchange for food. EFNs occur scattered throughout the plant phylogeny and likely evolved independent from herbivore-created wounds subsequently visited by ants collecting leaked sap. Records of wound-feeding ants are, however, anecdotal. By surveying 38,000 trees from 40 species, we conducted the first quantitative ecological study of this overlooked behavior. Ant-wound interactions were widespread (0.5% of tree individuals) and occurred on 23 tree species. Interaction networks were opportunistic, closely resembling ant-EFN networks. Fagaceae, a family lacking EFNs, was strongly overrepresented. For Fagaceae, ant occurrence at wounds correlated with species-level leaf damage, potentially indicating that wounds may attract mutualistic ants, which supports the hypothesis of ant-tended wounds as precursors of ant-EFN mutualisms. Given that herbivore wounds are common, wound sap as a steadily available food source might further help to explain the overwhelming abundance of ants in (sub)tropical forest canopies.

  13. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions.

    PubMed

    Ling, S D; Johnson, C R

    2012-06-01

    Spatial closures in the marine environment are widely accepted as effective conservation and fisheries management tools. Given increasing human-derived stressors acting on marine ecosystems, the need for such effective action is urgently clear. Here we explore mechanisms underlying the utility of marine reserves to reinstate trophic dynamics and to increase resilience of kelp beds against climate-driven phase shift to sea urchin barrens on the rapidly warming Tasmanian east coast. Tethering and tagging experiments were used to examine size- and shelter-specific survival of the range-extending sea urchin Centrostephanus rodgersii (Diadematidae) translocated to reefs inside and outside no-take Tasmanian marine reserves. Results show that survival rates of C. rodgersii exposed on flat reef substratum by tethering were approximately seven times (small urchins 10.1 times; large urchins 6.1 times) lower on protected reef within marine reserve boundaries (high abundance of large predatory-capable lobsters) compared to fished reef (large predatory lobsters absent). When able to seek crevice shelter, tag-resighting models estimated that mortality rates of C. rodgersii were lower overall but remained 3.3 times (small urchins 2.1 times; large urchins 6.4 times) higher in the presence of large lobsters inside marine reserves, with higher survival of small urchins owing to greater access to crevices relative to large urchins. Indeed, shelter was 6.3 times and 3.1 times more important to survival of small and large urchins, respectively, on reserved relative to fished reef. Experimental results corroborate with surveys throughout the range extension region, showing greater occurrence of overgrazing on high-relief rocky habitats where shelter for C. rodgersii is readily available. This shows that ecosystem impacts mediated by range extension of such habitat-modifying organisms will be heterogeneous in space, and that marine systems with a more natural complement of large and thus

  14. Electron-phonon interaction in three-barrier nanosystems as active elements of quantum cascade detectors

    SciTech Connect

    Tkach, N. V. Seti, Ju. A.; Grynyshyn, Yu. B.

    2015-04-15

    The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperature shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.

  15. Effects of an invasive plant transcend ecosystem boundaries through a dragonfly-mediated trophic pathway.

    PubMed

    Burkle, Laura A; Mihaljevic, Joseph R; Smith, Kevin G

    2012-12-01

    Trophic interactions can strongly influence the structure and function of terrestrial and aquatic communities through top-down and bottom-up processes. Species with life stages in both terrestrial and aquatic systems may be particularly likely to link the effects of trophic interactions across ecosystem boundaries. Using experimental wetlands planted with purple loosestrife (Lythrum salicaria), we tested the degree to which the bottom-up effects of floral density of this invasive plant could trigger a chain of interactions, changing the behavior of terrestrial flying insect prey and predators and ultimately cascading through top-down interactions to alter lower trophic levels in the aquatic community. The results of our experiment support the linkage of terrestrial and aquatic food webs through this hypothesized pathway, with high loosestrife floral density treatments attracting high levels of visiting insect pollinators and predatory adult dragonflies. High floral densities were also associated with increased adult dragonfly oviposition and subsequently high larval dragonfly abundance in the aquatic community. Finally, high-flower treatments were coupled with changes in zooplankton species richness and shifts in the composition of zooplankton communities. Through changes in animal behavior and trophic interactions in terrestrial and aquatic systems, this work illustrates the broad and potentially cryptic effects of invasive species, and provides additional compelling motivation for ecologists to conduct investigations that cross traditional ecosystem boundaries.

  16. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes

    NASA Astrophysics Data System (ADS)

    Alfaro, Andrea C.; Thomas, François; Sergent, Luce; Duxbury, Mark

    2006-10-01

    Fatty acid biomarkers and stable isotope signatures were used to identify the trophic dynamics of a mangrove/seagrass estuarine food web at Matapouri, northern New Zealand. Specific fatty acids were used to identify the preferred food sources (i.e., mangroves, seagrass, phytoplankton, macroalgae, bacteria, and zooplankton) of dominant fauna (i.e., filter feeders, grazing snails, scavenger/predatory snails, shrimp, crabs, and fish), and their presence in water and sediment samples throughout the estuary. The diets of filter feeders were found to be dominated by dinoflagellates, whereas grazers showed a higher diatom contribution. Bacteria associated with organic debris on surface sediments and brown algal ( Hormosira banksii) material in the form of suspended organic matter also accounted for a high proportion of most animal diets. Animals within higher trophic levels had diverse fatty acid profiles, revealing their varied feeding strategies and carbon sources. The stable isotope (δ 13C and δ 15N) analyses of major primary producers and consumers/predators revealed a trend of 15N enrichment with increasing trophic level, while δ 13C values provided a generally good description of carbon flow through the food web. Overall results from both fatty acid profiles and stable isotopes indicate that a variety of carbon sources with a range of trophic pathways typify this food web. Moreover, none of the animals studied was dependent on a single food source. This study is the first to use a comprehensive fatty acid biomarker and stable isotope approach to investigate the food web dynamics within a New Zealand temperate mangrove/seagrass estuary. This quantitative research may contribute to the currently developing management strategies for estuaries in northern New Zealand, especially for those perceived to have expanding mangrove fringes.

  17. Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Wang, Na; Zhang, Jing; Wan, Ruijing; Dai, Fangqun; Jin, Xianshi

    2016-09-01

    The composition and compound-specific isotopes of fatty acids were studied within food webs in the East China Sea. Lipid-normalized stable carbon isotopes of total organic carbon had a good correlation with trophic level. Variations in fatty acid compositions among diff erent species were observed but were unclear. Diff erent dietary structures could be traced from molecular isotopes of selected fatty acids in the Shiba shrimp ( Matapenaeus joyneri), the coastal mud shrimp ( Solenocera crassicornis) and the northern Maoxia shrimp ( Acetes chinensis). Both M. joyneri and S. crassicornis are mainly benthos feeders, while A. chinensis is a pelagic species, although they have a similar fatty acid composition. There was a good correlation for isotopes of arachidonic acid (C20:4n6; ARA) and docosahexaenoic acid (C22:6n3; DHA) among pelagic species from higher trophic levels. The isotopic compositions of DHA in benthic species were more negative than those of pelagic species at the same trophic level. The fact that the diet of benthic species contains more degraded items, the carbon isotopes of which are derived from a large biochemical fraction, may be the reason for this variation. A comparative study of benthic and pelagic species demonstrated the diff erent carbon sources in potential food items and the presence of a more complex system at the water-sediment interface.

  18. Habitat complexity influences cascading effects of multiple predators.

    PubMed

    Grabowski, Jonathan H; Hughes, A Randall; Kimbro, David L

    2008-12-01

    Although multiple predator effects and trophic cascades have both been demonstrated in a wide variety of ecosystems, ecologists have yet to incorporate these studies into an experimental framework that also manipulates a common and likely important factor, spatial heterogeneity. We manipulated habitat complexity, the presence of two top predators (toadfish and blue crabs), and one intermediate predator (mud crabs) to determine whether habitat complexity influences the strength of multiple predator interactions across multiple trophic levels in experimental oyster reef communities. In the absence of toadfish, blue crabs caused significant mud crab mortality. Despite also directly consuming mud crabs, toadfish indirectly benefited this intermediate predator by decreasing blue crab consumption of mud crabs. Toadfish suppression of mud crab foraging activity, and thus decreased mud crab encounters with blue crabs, is likely responsible for this counterintuitive result. Contrary to previous investigations which suggest that more complex habitats reduce interference interactions among predators, reef complexity strengthened emergent multiple predator effects (MPEs) on mud crabs. The degree to which these MPEs cascaded down to benefit juvenile oysters (basal prey) depended on both habitat complexity and nonconsumptive effects derived from predator-predator interactions. Habitat complexity reduced the foraging efficiency of each crab species individually but released crab interference interactions when together, so that the two crabs collectively consumed more oysters on complex reefs. Regardless of reef complexity, toadfish consistently decreased consumption of oysters by both crab species individually and when together. Therefore, interactions between predator identity and habitat complexity structure trophic cascades on oyster reefs. Furthermore, these cascading effects of multiple predators were largely mediated by nonconsumptive effects in this system.

  19. Energy cascading by triple-bubble interactions via time-delayed control

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Liang; Chang, Chia-Ming; Yang, I.-Da; Chieng, Ching-Chang; Tseng, Fan-Gang

    2012-01-01

    The triple-bubble interaction controlled by a precise time-delayed technique was investigated in detail with respect to different ignition times, heater spaces and sequential firing modes to promote efficient energy cascading and concentration. The target bubble, which was generated under a specific delay time with two auxiliary bubbles, can have a volume that is two or almost three times larger than that of a single bubble. This result overcomes the limitation of energy usage on an explosive microbubble under a constant heat flux. As the heater space decreases, stronger bubble-bubble interactions were obtained due to the hydrodynamic effect and the intensive pressure wave emission, resulting in highly enhancing and depressing bubble dynamics. Other interesting phenomena, such as bubble shifting, mushroom-shape bubble, rod-shape bubble and bubble extension among heaters, were also recorded by a high-speed phase-averaged stroboscopic technique, displaying special non-spherical bubble dynamics. Artificial manipulation of bubble behavior was further conducted in a two-level sequential firing process. Using various volumetric combinations, the adjustable multi-level fluid transportation can be realized by a digital time-delayed control. The above-mentioned information can be applied to not only the design and operation of inkjet printheads but also cavitation research and fluid pumping in microdevices.

  20. Trophic interactions of the pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid and stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Petursdottir, H.; Gislason, A.; Falk-Petersen, S.; Hop, H.; Svavarsson, J.

    2008-01-01

    Trophic relationships of the important oceanic crustacean species Calanus finmarchicus, Meganyctiphanes norvegica and Sergestes arcticus, as well as the mesopelagic fishes Maurolicus muelleri, Benthosema glaciale and Sebastes mentella, were investigated over the Reykjanes Ridge in June 2003 and in June 2004. Measurements were performed of length, wet weight, dry weight, total lipid, lipid class, fatty acid and fatty alcohol profiles and stable isotopes (δ 13C and δ 15N). High amounts of the Calanus lipid markers, 20:1(n-9) and 22:1(n-11) in these species confirm the importance of Calanus spp. in this ecosystem. Comparisons of fatty acid/alcohol profiles by multivariate analysis revealed two main trophic pathways over the Reykjanes Ridge. In one pathway, Calanus spp. was an important part of the diet for the small mesopelagic fish species M. muelleri and B. glaciale and the shrimp S. arcticus, whereas in the other pathway, the euphausiid M. norvegica was the dominant food for the redfish S. mentella, and Calanus spp. were of less importance. M. muelleri and the smaller B. glaciale feed on C. finmarchicus, whereas the larger B. glaciale and S. arcticus select the larger, deeper-living C. hyperboreus. All investigated species are true pelagic species except for the shrimp S. arcticus, which seems to have a benthic feeding habit as well. The δ 15N levels show that of the species investigated, C. finmarchicus occupies the lowest trophic level (2.0) and the redfish, S. mentella, the highest (4.2). All the species were lipid rich, typical for subarctic pelagic ecosystem. Calanus finmarchicus, S. arcticus and B. glaciale store wax esters as their lipid stores, while M. norvegica, M. muelleri and S. mentella store triacylglycerols.

  1. Plasticity of trophic interactions among sharks from the oceanic south-western Indian Ocean revealed by stable isotope and mercury analyses

    NASA Astrophysics Data System (ADS)

    Kiszka, Jeremy J.; Aubail, Aurore; Hussey, Nigel E.; Heithaus, Michael R.; Caurant, Florence; Bustamante, Paco

    2015-02-01

    Sharks are a major component of the top predator guild in oceanic ecosystems, but the trophic relationships of many populations remain poorly understood. We examined chemical tracers of diet and habitat (δ15N and δ13C, respectively) and total mercury (Hg) concentrations in muscle tissue of seven pelagic sharks: blue shark (Prionace glauca), short-fin mako shark (Isurus oxyrinchus), oceanic whitetip shark (Carcharhinus longimanus), scalloped hammerhead shark (Sphyrna lewini), pelagic thresher shark (Alopias pelagicus), crocodile shark (Pseudocarcharias kamoharai) and silky shark (Carcharhinus falciformis), from the data poor south-western tropical Indian Ocean. Minimal interspecific variation in mean δ15N values and a large degree of isotopic niche overlap - driven by high intraspecific variation in δ15N values - was observed among pelagic sharks. Similarly, δ13C values of sharks overlapped considerably for all species with the exception of P. glauca, which had more 13C-depleted values indicating possibly longer residence times in purely pelagic waters. Geographic variation in δ13C, δ15N and Hg were observed for P. glauca and I. oxyrinchus. Mean Hg levels were similar among species with the exception of P. kamoharai which had significantly higher Hg concentrations likely related to mesopelagic feeding. Hg concentrations increased with body size in I. oxyrinchus, P. glauca and C. longimanus. Values of δ15N and δ13C varied with size only in P. glauca, suggesting ontogenetic shifts in diets or habitats. Together, isotopic data indicate that - with few exceptions - variance within species in trophic interactions or foraging habitats is greater than differentiation among pelagic sharks in the south-western Indian Ocean. Therefore, it is possible that this group exhibits some level of trophic redundancy, but further studies of diets and fine-scale habitat use are needed to fully test this hypothesis.

  2. Cadmium and cellular signaling cascades: interactions between cell death and survival pathways.

    PubMed

    Thévenod, Frank; Lee, Wing-Kee

    2013-10-01

    Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival

  3. The Dynamics of Cascaded Monod System Models Through Five Levels

    NASA Technical Reports Server (NTRS)

    Blackwell, Charles C.; Kliss, Mark (Technical Monitor)

    1998-01-01

    A Monod system model is a set of ordinary differential equations where the terms resemble those which Monod described in his 1949 paper. We focus on the multiple trophic level case in which each trophic level uses only one of the trophic levels for its perpetuation, and no two trophic entities use the same trophic cascaded level. The treatment derives from a primary producer progressively through five trophic levels. Stability types are identified and are related to persistence, and the consequences of some intuitive scaling structures are developed. These considerations are useful to some theoretical questions in ecology and to applications such as bioreactor operation.

  4. A new cascaded control strategy for paralleled line-interactive UPS with LCL filter

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Zhang, X. H.; Li, L.; Luo, F.; Zhang, Y. S.

    2016-08-01

    Traditional uninterrupted power supply (UPS) is difficult to meet the output voltage quality and grid-side power quality requirements at the same time, and usually has some disadvantage, such as multi-stage conversion, complex structure, or harmonic current pollution to the utility grid and so on. A three-phase three-level paralleled line-interactive UPS with LCL filter is presented in this paper. It can achieve the output voltage quality and grid-side power quality control simultaneously with only single-conversion power stage, but the multi-objective control strategy design is difficult. Based on the detailed analysis of the circuit structure and operation mechanism, a new cascaded control strategy for the power, voltage, and current is proposed. An outer current control loop based on the resonant control theory is designed to ensure the grid-side power quality. An inner voltage control loop based on the capacitance voltage and capacitance current feedback is designed to ensure the output voltage quality and avoid the resonance peak of the LCL filter. Improved repetitive controller is added to reduce the distortion of the output voltage. The setting of the controller parameters is detailed discussed. A 100kVA UPS prototype is built and experiments under the unbalanced resistive load and nonlinear load are carried out. Theoretical analysis and experimental results show the effectiveness of the control strategy. The paralleled line-interactive UPS can not only remain constant three-phase balanced output voltage, but also has the comprehensive power quality management functions with three-phase balanced grid active power input, low THD of output voltage and grid current, and reactive power compensation. The UPS is a green friendly load to the utility.

  5. Building trophic modules into a persistent food web

    PubMed Central

    Kondoh, Michio

    2008-01-01

    Understanding what maintains species and perpetuates their coexistence in a network of feeding relationships (the food web) is of great importance for biodiversity conservation. A food web can be viewed as consisting of a number of simple subunits called trophic modules. Intraguild predation (IGP), in which a prey and its predator compete for the same resource, is one of the best-studied trophic modules. According to theory, there are two ways to yield a large persistent system from such modules: (i) to use persistent subunits as building blocks or (ii) to arrange the subunits in a way that externally supports the nonpersistent subunits. Here, I show that the complex food web of the Caribbean marine ecosystem is constructed in both ways. I show that IGP modules, which convey internal persistence because of the fact that prey are superior competitors for the resources, are overrepresented in the Caribbean ecosystem. The other modules, consisting of competitively inferior prey, are not persistent in isolation. However, competitively inferior prey in these modules tend to receive more advantage from extra-module interactions, which allows persistence of the IGP module. In addition, those exterior interactions tend to be provided by intrinsically persistent IGP modules to prevent cascading extinction of interacting IGP modules. The food web can be viewed as a set of interacting modules, nonrandomly arranged to enhance the maintenance of biodiversity. PMID:18936484

  6. Building trophic modules into a persistent food web.

    PubMed

    Kondoh, Michio

    2008-10-28

    Understanding what maintains species and perpetuates their coexistence in a network of feeding relationships (the food web) is of great importance for biodiversity conservation. A food web can be viewed as consisting of a number of simple subunits called trophic modules. Intraguild predation (IGP), in which a prey and its predator compete for the same resource, is one of the best-studied trophic modules. According to theory, there are two ways to yield a large persistent system from such modules: (i) to use persistent subunits as building blocks or (ii) to arrange the subunits in a way that externally supports the nonpersistent subunits. Here, I show that the complex food web of the Caribbean marine ecosystem is constructed in both ways. I show that IGP modules, which convey internal persistence because of the fact that prey are superior competitors for the resources, are overrepresented in the Caribbean ecosystem. The other modules, consisting of competitively inferior prey, are not persistent in isolation. However, competitively inferior prey in these modules tend to receive more advantage from extra-module interactions, which allows persistence of the IGP module. In addition, those exterior interactions tend to be provided by intrinsically persistent IGP modules to prevent cascading extinction of interacting IGP modules. The food web can be viewed as a set of interacting modules, nonrandomly arranged to enhance the maintenance of biodiversity.

  7. Phylogenetic diversity and co-evolutionary signals among trophic levels change across a habitat edge.

    PubMed

    Peralta, Guadalupe; Frost, Carol M; Didham, Raphael K; Varsani, Arvind; Tylianakis, Jason M

    2015-03-01

    Incorporating the evolutionary history of species into community ecology enhances understanding of community composition, ecosystem functioning and responses to environmental changes. Phylogenetic history might partly explain the impact of fragmentation and land-use change on assemblages of interacting organisms and even determine potential cascading effects across trophic levels. However, it remains unclear whether phylogenetic diversity of basal resources is reflected at higher trophic levels in the food web. In particular, phylogenetic determinants of community structure have never been incorporated into habitat edge studies, even though edges are recognized as key factors affecting communities in fragmented landscapes. Here, we test whether phylogenetic diversity at different trophic levels (plants, herbivores and parasitoids) and signals of co-evolution (i.e. phylogenetic congruence) among interacting trophic levels change across an edge gradient between native and plantation forests. To ascertain whether there is a signal of co-evolution across trophic levels, we test whether related consumer species generally feed on related resource species. We found differences across trophic levels in how their phylogenetic diversity responded to the habitat edge gradient. Plant and native parasitoid phylogenetic diversity changed markedly across habitats, while phylogenetic variability of herbivores (which were predominantly native) did not change across habitats, though phylogenetic evenness declined in plantation interiors. Related herbivore species did not appear to feed disproportionately on related plant species (i.e. there was no signal of co-evolution) even when considering only native species, potentially due to the high trophic generality of herbivores. However, related native parasitoid species tended to feed on related herbivore species, suggesting the presence of a co-evolutionary signal at higher trophic levels. Moreover, this signal was stronger in

  8. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; Cao, L. H.; He, X. T.

    2017-07-01

    Anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascades have been researched using the Vlasov-Maxwell simulation. In high-intensity laser-plasma interactions, stimulated anti-Stokes Brillouin scattering (SABS) will occur after second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. In the early phase of SBS evolution, only first stage SBS appears and total SBS reflectivity comes from first stage SBS. However, when high-stage SBS and SABS occur, SBS reflectivity will display burst behavior and the total reflectivity comes from the SBS cascade and SABS superimposition. The SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, SBS rescattering including SABS is an important saturation mechanism of SBS and should be taken into account in high-intensity laser-plasma interaction.

  9. Trophic Interactions and Distribution of Some Squaliforme Sharks, Including New Diet Descriptions for Deania calcea and Squalus acanthias

    PubMed Central

    Dunn, Matthew R.; Stevens, Darren W.; Forman, Jeffrey S.; Connell, Amelia

    2013-01-01

    Squaliforme sharks are a common but relatively vulnerable bycatch in many deep water fisheries. Eleven species of squaliforme shark are commonly caught at depths of 200–1200 m on Chatham Rise, New Zealand, and their diversity suggests they might occupy different niches. The diets of 133 Deania calcea and 295 Squalus acanthias were determined from examination of stomach contents. The diet of D. calcea was characterised by mesopelagic fishes, and S. acanthias by benthic to pelagic fishes, but was more adaptive and included likely scavenging. Multivariate analyses found the most important predictors of diet variability in S. acanthias were year, bottom temperature, longitude, and fish weight. The diet of the nine other commonly caught squaliforme sharks was reviewed, and the spatial and depth distribution of all species on Chatham Rise described from research bottom trawl survey catches. The eleven species had a variety of different diets, and depth and location preferences, consistent with niche separation to reduce interspecific competition. Four trophic groups were identified, characterised by: mesopelagic fishes and invertebrates (Centroselachus crepidater, D. calcea, and Etmopterus lucifer); mesopelagic and benthopelagic fishes and invertebrates (Centroscymnus owstoni, Etmopterus baxteri); demersal and benthic fishes (Centrophorus squamosus, Dalatias licha, Proscymnodon plunketi); and a generalist diet of fishes and invertebrates (S. acanthias). The trophic levels of the species in each of the four groups were estimated as 4.18–4.24, 4.20–4.23, 4.24–4.48, and 3.84 respectively. The diet of Oxynotus bruniensis and Squalus griffini are unknown. The different niches occupied by different species are likely to influence their vulnerability to bottom trawl fisheries. Some species may benefit from fisheries through an increased availability of scavenged prey. PMID:23536896

  10. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication.

    PubMed

    Zhu, Xiaoli; Sun, Liya; Chen, Yangyang; Ye, Zonghuang; Shen, Zhongming; Li, Genxi

    2013-09-15

    Graphene, a single atom thick and two dimensional carbon nano-material, has been proven to possess many unique properties, one of which is the recent discovery that it can interact with single-stranded DNA through noncovalent π-π stacking. In this work, we demonstrate that a new strategy to fabricate many kinds of biosensors can be developed by combining this property with cascade chemical reactions. Taking the fabrication of glucose sensor as an example, while the detection target, glucose, may regulate the graphene-DNA interaction through three cascade chemical reactions, electrochemical techniques are employed to detect the target-regulated graphene-DNA interaction. Experimental results show that in a range from 5μM to 20mM, the glucose concentration is in a natural logarithm with the logarithm of the amperometric response, suggesting a best detection limit and detection range. The proposed biosensor also shows favorable selectivity, and it has the advantage of no need for labeling. What is more, by controlling the cascade chemical reactions, detection of a variety of other targets may be achieved, thus the strategy proposed in this work may have a wide application potential in the future.

  11. Species Richness and Trophic Diversity Increase Decomposition in a Co-Evolved Food Web

    PubMed Central

    Baiser, Benjamin; Ardeshiri, Roxanne S.; Ellison, Aaron M.

    2011-01-01

    Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators — larvae of the pitcher-plant mosquito — indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species. PMID:21673992

  12. Protein-Protein Interactions in the Yeast Pheromone Response Pathway: Ste5p Interacts with All Members of the Map Kinase Cascade

    PubMed Central

    Printen, J. A.; Sprague-Jr., G. F.

    1994-01-01

    We have used the two-hybrid system of Fields and Song to identify protein-protein interactions that occur in the pheromone response pathway of the yeast Saccharomyces cerevisiae. Pathway components Ste4p, Ste5p, Ste7p, Ste11p, Ste12p, Ste20p, Fus3p and Kss1p were tested in all pairwise combinations. All of the interactions we detected involved at least one member of the MAP kinase cascade that is a central element of the response pathway. Ste5p, a protein of unknown biochemical function, interacted with protein kinases that operate at each step of the MAP kinase cascade, specifically with Ste11p (an MEKK), Ste7p (an MEK), and Fus3p (a MAP kinase). This finding suggests that one role of Ste5p is to serve as a scaffold to facilitate interactions among members of the kinase cascade. In this role as facilitator, Ste5p may make both signal propagation and signal attenuation more efficient. Ste5p may also help minimize cross-talk with other MAP kinase cascades and thus ensure the integrity of the pheromone response pathway. We also found that both Ste11p and Ste7p interact with Fus3p and Kss1p. Finally, we detected an interaction between one of the MAP kinases, Kss1p, and a presumptive target, the transcription factor Ste12p. We failed to detect interactions of Ste4p or Ste20p with any other component of the response pathway. PMID:7851759

  13. Scale-dependent bi-trophic interactions in a semi-arid savanna: how herbivores eliminate benefits of nutrient patchiness to plants.

    PubMed

    van der Waal, Cornelis; de Kroon, Hans; van Langevelde, Frank; de Boer, Willem F; Heitkönig, Ignas M A; Slotow, Rob; Pretorius, Yolanda; Prins, Herbert H T

    2016-08-01

    The scale of resource heterogeneity may influence how resources are locally partitioned between co-existing large and small organisms such as trees and grasses in savannas. Scale-related plant responses may, in turn, influence herbivore use of the vegetation. To examine these scale-dependent bi-trophic interactions, we varied fertilizer [(nitrogen (N)/phosphorus (P)/potassium (K)] applications to patches to create different scales of nutrient patchiness (patch size 2 × 2 m, 10 × 10 m, or whole-plot 50 × 50 m) in a large field experiment in intact African savanna. Within-patch fertilizer concentration and the total fertilizer load per plot were independently varied. We found that fertilization increased the leaf N and P concentrations of trees and grasses, resulting in elevated utilization by browsers and grazers. Herbivory off-take was particularly considerable at higher nutrient concentrations. Scale-dependent effects were weak. The net effect of fertilization and herbivory was that plants in fertilized areas tended to grow less and develop smaller rather than larger standing biomass compared to plants growing in areas that remained unfertilized. When all of these effects were considered together at the community (plot) level, herbivory completely eliminated the positive effects of fertilization on the plant community. While this was true for all scales of fertilization, grasses tended to profit more from coarse-grained fertilization and trees from fine-grained fertilization. We conclude that in herbivore-dominated communities, such as the African savanna, nutrient patchiness results in the herbivore community profiting rather more than the plant community, irrespective of the scale of patchiness. At the community level, the allometric scaling theory's prediction of plant-and probably also animal-production does not hold or may even be reversed as a result of complex bi-trophic interactions.

  14. Multiplication of the frequency shift of optical radiation by means of cascade acousto-optic interaction

    SciTech Connect

    Kotov, V M

    2000-04-30

    A method for increasing the frequency shift of optical radiation by means of cascade acousto-optic diffraction of light is proposed and studied. The method is based on special features of anisotropic diffraction in an anisotropic medium and optical properties of gyrotropic media. Five-cascade diffraction of radiation from a He - Ne laser ({lambda}=0.633 {mu}m) in a TeO{sub 2} single crystal with an efficiency of 8% was obtained experimentally. (laser applications and other topics in quantum electronics)

  15. Competitive Interactions between Invasive Nile Tilapia and Native Fish: The Potential for Altered Trophic Exchange and Modification of Food Webs

    PubMed Central

    Martin, Charles W.; Valentine, Marla M.; Valentine, John F.

    2010-01-01

    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important. PMID:21200433

  16. Importance of interactions between food quality, quantity, and gut transit time on consumer feeding, growth, and trophic dynamics.

    PubMed

    Mitra, Aditee; Flynn, Kevin J

    2007-05-01

    Ingestion kinetics of animals are controlled by both external food availability and feedback from the quantity of material already within the gut. The latter varies with gut transit time (GTT) and digestion of the food. Ingestion, assimilation efficiency, and thus, growth dynamics are not related in a simple fashion. For the first time, the important linkage between these processes and GTT is demonstrated; this is achieved using a biomass-based, mechanistic multinutrient model fitted to experimental data for zooplankton growth dynamics when presented with food items of varying quality (stoichiometric composition) or quantity. The results show that trophic transfer dynamics will vary greatly between the extremes of feeding on low-quantity/high-quality versus high-quantity/low-quality food; these conditions are likely to occur in nature. Descriptions of consumer behavior that assume a constant relationship between the kinetics of grazing and growth irrespective of food quality and/or quantity, with little or no recognition of the combined importance of these factors on consumer behavior, may seriously misrepresent consumer activity in dynamic situations.

  17. [Trophic interactions of the six most abundant fish species in the artisanal fishery in two bays, central Mexican Pacific].

    PubMed

    Flores Ortega, J R; Godínez Domínguez, E; Rojo Vázquez, J A; Corgos, A; Galván Piña, V H; Sansón González, G

    2010-03-01

    We surveyed the trophic components in six species of Bahía de Navidad and Bahía de Chamela: Microlepidotus brevipinnis, Caranx caballus, Haemulon flaviguttatum, Lutjanus guttatus, L. argentiventris and Mulloidichthys dentatus. Two main seasonal periods were considered: 1) North Equatorial Counter Current NECC period influence (T1) and 2) California Current CC period influence (T2). In Bahía de Navidad 78 prey taxa were identified in the stomachs. From July to December (T1), 64 prey taxa were found, and from January to June (T2), 45 prey items. In Bahía de Chamela 93 prey items were identified; 74 during T1 and 60 during T2. The highest prey number was found in the stomachs of M. dentatus during T1 in Bahía de Navidad and the lowest prey number (7) was recorded in H. flaviguttatum in Bahía de Navidad in the same period. Crustaceans were the most frequently recorded prey items, followed by fishes, mollusks, polychaetes, and echinoderms in both seasonal periods and sites. The six fish species studied are considered as specialist feeders due the low values of the niche breadth index. There was little similarity among the diets.

  18. Competitive interactions between invasive Nile tilapia and native fish: the potential for altered trophic exchange and modification of food webs.

    PubMed

    Martin, Charles W; Valentine, Marla M; Valentine, John F

    2010-12-21

    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important.

  19. Computation of Gust-Cascade Interaction Using the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Wang, X.-Y.; Himansu, A.; Chang, S.-C.; Jorgenson, P. C. E.

    2004-01-01

    The problem 2 in Category 3 of the 4th Computational Aeroacoustic(CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem models rotor-stator interaction in a 2D cascade. It involves complex geometries and flow physics including vortex shedding and acoustic radiation. The parallel version of the 2D nonlinear Euler solver is used with an unstructured triangular mesh to solve this problem. The Giles approach is incorporated with the CE/SE method to handle non-equal pitches of the rotor and stator. Validation on the Giles approach is performed using Problem 3.1 in the 2nd CAA Workshop. The space-time CE/SE method is a finite volume method with second-order accuracy in both space and time. The flux conservation is enforced in both space and time instead of space only. It has low numerical dissipation and dispersion errors. It uses simple non-reflecting boundary conditions and is compatible with unstructured meshes. It is simple, flexible, and generate reasonably accurate solutions. The CE/SE method has been successfully applied to solve numerous practical problems, especially aeroacoustic problems. Some preliminary numerical results of the benchmark problem 3.2 of the 4th CAA Workshop are shown. The steady-state pressure contour is plotted. The mean pressure distribution on the blade surface is compared with Turbo solution showing a good agreement. The sound pressure level versus the rotor harmonic n at the six designated positions on the blade surface, three locations at inlet plane, and three locations at the outlet plane are plotted. It can be seen that the acoustic response exists only at the excitation frequencies (n = 1,2,3). On the blade surface, the acoustic wave at n = 1 is dominant, while at the inlet and outlet planes, the sound pressure level at n = 2 becomes the largest, which is similar to the results presented. The distribution of sound pressure level at different spatial modes along the z

  20. Trophic interactions of the endangered Southern river otter ( Lontra provocax) in a Chilean Ramsar wetland inferred from prey sampling, fecal analysis, and stable isotopes

    NASA Astrophysics Data System (ADS)

    Franco, Marcela; Guevara, Giovany; Correa, Loreto; Soto-Gamboa, Mauricio

    2013-04-01

    Non-invasive methodological approaches are highly recommended and commonly used to study the feeding ecology of elusive and threatened mammals. In this study, we use multiple lines of evidence to assess the feeding strategies of the endangered Southern river otter, by determining seasonal prey availability (electrofishing), analysis of undigested prey remains (spraints), and the use of stable isotopes (δ15N and δ13C) in otter spraints ( n = 262) and prey in a wetland ecosystem of southern Chile (39°49'S, 73°15'W). Fecal and isotopic analyses suggest that the otter diet is restricted to a few prey items, particularly the less-mobile, bottom-living, and larger prey such as crayfish ( Samastacus spinifrons, 86.11 %) and crabs ( Aegla spp., 32.45 %), supplemented opportunistically by cyprinids ( Cyprinus carpio, 9.55 %) and catfish ( Diplomystes camposensis, 5.66 %). The results suggest that the river otter is highly specialized in bottom foraging. Isotopic signatures of food sources and feces revealed a mid-upper trophic position for the Southern river otter, with either higher or lower δ15N values than their potential prey items. δ13C values for river otters were less enriched than their potential food resources. We suggest that due to their narrow trophic niche and possible dependence on only a few food items, this species may be highly vulnerable to the reduction in its prey populations. Finally, maintaining the ecological interactions between Southern river otters and their prey is considered a central priority for the survival of this endangered carnivore mammal.

  1. Trophic interactions of the endangered Southern river otter (Lontra provocax) in a Chilean Ramsar wetland inferred from prey sampling, fecal analysis, and stable isotopes.

    PubMed

    Franco, Marcela; Guevara, Giovany; Correa, Loreto; Soto-Gamboa, Mauricio

    2013-04-01

    Non-invasive methodological approaches are highly recommended and commonly used to study the feeding ecology of elusive and threatened mammals. In this study, we use multiple lines of evidence to assess the feeding strategies of the endangered Southern river otter, by determining seasonal prey availability (electrofishing), analysis of undigested prey remains (spraints), and the use of stable isotopes (δ(15)N and δ(13)C) in otter spraints (n = 262) and prey in a wetland ecosystem of southern Chile (39°49'S, 73°15'W). Fecal and isotopic analyses suggest that the otter diet is restricted to a few prey items, particularly the less-mobile, bottom-living, and larger prey such as crayfish (Samastacus spinifrons, 86.11%) and crabs (Aegla spp., 32.45%), supplemented opportunistically by cyprinids (Cyprinus carpio, 9.55%) and catfish (Diplomystes camposensis, 5.66%). The results suggest that the river otter is highly specialized in bottom foraging. Isotopic signatures of food sources and feces revealed a mid-upper trophic position for the Southern river otter, with either higher or lower δ(15)N values than their potential prey items. δ(13)C values for river otters were less enriched than their potential food resources. We suggest that due to their narrow trophic niche and possible dependence on only a few food items, this species may be highly vulnerable to the reduction in its prey populations. Finally, maintaining the ecological interactions between Southern river otters and their prey is considered a central priority for the survival of this endangered carnivore mammal.

  2. Interactions among three trophic levels and diversity of parasitoids: a case of top-down processes in Mexican tropical dry forest.

    PubMed

    Cuevas-Reyes, Pablo; Quesada, Mauricio; Hanson, Paul; Oyama, Ken

    2007-08-01

    The objective of this study was to analyze the relationship between plant hosts, galling insects, and their parasitoids in a tropical dry forest at Chamela-Cuixmala Biosphere Reserve in western Mexico. In 120 transects of 30 by 5 m (60 in deciduous forest and 60 in riparian habitats), 29 galling insects species were found and represented in the following order: Diptera (Cecidomyiidae, which induced the greatest abundance of galls with 22 species; 76%), Homoptera (Psylloidea, 6.9%; Psyllidae, 6.9%; Triozidae, 3.4%), Hymenoptera (Tanaostigmatidae, 3.4%; which were rare), and one unidentified morphospecies (3.4%). In all cases, there was a great specificity between galling insect species and their host plant species; one galling insect species was associated with one specific plant species. In contrast, there was no specificity between parasitoid species and their host galling insect species. Only 11 species of parasitoids were associated with 29 galling insect species represented in the following families: Torymidae (18.2%), Eurytomidae (18.2%), Eulophidae (18.2%), Eupelmidae (9.1%), Pteromalidae (9.1%), family Braconidae (9.1%), Platygastridae (9.1%), and one unidentified (9.1%). Most parasitoid species parasitized several gall species (Torymus sp.: 51.1%, Eurytoma sp.: 49.7%, Torymoides sp.: 46.9%). Therefore, the effects of variation in plant defenses do not extend to the third trophic level, because a few species of parasitoids can determine the community structure and composition of galling insect species in tropical plants, and instead, top-down processes seem to be regulating trophic interactions of galling insect species in tropical gall communities.

  3. Density-dependent effects of omnivorous stream crayfish on benthic trophic dynamics

    USGS Publications Warehouse

    Ludlam, J.P.; Banks, BT; Magoulick, Daniel D.

    2015-01-01

    Crayfish are abundant and important consumers in aquatic food webs and crayfish invasions have demonstrated strong effects of crayfish on multiple trophic levels. Density may be an important factor determining the role of omnivorous crayfish in benthic communities, especially if density alters the strength of trophic interactions. The effect of crayfish density on a simple benthic food web using ceramic tiles was examined in three treatments (crayfish exclusion cage, cage control (open to crayfish), and exposed ceramic tiles) in mesocosms stocked with 6, 12, or 18 crayfish·m-2. We hypothesized that at low densities crayfish consumption of herbivorous chironomids would increase algal abundance, but at high densities crayfish would reduce both periphyton and invertebrates. In the experiment, periphyton and chironomid abundance increased with declining crayfish biomass on day 30 but not day 15. The magnitude of crayfish effects on day 15 periphyton chlorophyll a abundance increased with crayfish biomass, but crayfish effects on day 30 periphyton chlorophyll a or chironomid biomass did not increase with crayfish biomass. In this experiment there was little evidence for a trophic cascade at low crayfish densities and strong omnivory by crayfish dominated trophic dynamics.

  4. Table scraps: inter-trophic food provisioning by pumas.

    PubMed

    Elbroch, L Mark; Wittmer, Heiko U

    2012-10-23

    Large carnivores perform keystone ecological functions through direct predation, or indirectly, through food subsidies to scavengers or trophic cascades driven by their influence on the distributions of their prey. Pumas (Puma concolor) are an elusive, cryptic species difficult to study and little is known about their inter-trophic-level interactions in natural communities. Using new GPS technology, we discovered that pumas in Patagonia provided 232 ± 31 kg of edible meat/month/100 km(2) to near-threatened Andean condors (Vultur gryphus) and other members of a diverse scavenger community. This is up to 3.1 times the contributions by wolves (Canis lupus) to communities in Yellowstone National Park, USA, and highlights the keystone role large, solitary felids play in natural systems. These findings are more pertinent than ever, for managers increasingly advocate controlling pumas and other large felids to bolster prey populations and mitigate concerns over human and livestock safety, without a full understanding of the potential ecological consequences of their actions.

  5. Table scraps: inter-trophic food provisioning by pumas

    PubMed Central

    Elbroch, L. Mark; Wittmer, Heiko U.

    2012-01-01

    Large carnivores perform keystone ecological functions through direct predation, or indirectly, through food subsidies to scavengers or trophic cascades driven by their influence on the distributions of their prey. Pumas (Puma concolor) are an elusive, cryptic species difficult to study and little is known about their inter-trophic-level interactions in natural communities. Using new GPS technology, we discovered that pumas in Patagonia provided 232 ± 31 kg of edible meat/month/100 km2 to near-threatened Andean condors (Vultur gryphus) and other members of a diverse scavenger community. This is up to 3.1 times the contributions by wolves (Canis lupus) to communities in Yellowstone National Park, USA, and highlights the keystone role large, solitary felids play in natural systems. These findings are more pertinent than ever, for managers increasingly advocate controlling pumas and other large felids to bolster prey populations and mitigate concerns over human and livestock safety, without a full understanding of the potential ecological consequences of their actions. PMID:22696284

  6. Ecotoxicity and genotoxicity of cadmium in different marine trophic levels.

    PubMed

    Pavlaki, Maria D; Araújo, Mário J; Cardoso, Diogo N; Silva, Ana Rita R; Cruz, Andreia; Mendo, Sónia; Soares, Amadeu M V M; Calado, Ricardo; Loureiro, Susana

    2016-08-01

    Cadmium ecotoxicity and genotoxicity was assessed in three representative species of different trophic levels of marine ecosystems - the calanoid copepod Acartia tonsa, the decapod shrimp, Palaemon varians and the pleuronectiform fish Solea senegalensis. Ecotoxicity endpoints assessed in this study were adult survival, hatching success and larval development ratio (LDR) for A. tonsa, survival of the first larval stage (zoea I) and post-larvae of P. varians, egg and larvae survival, as well as the presence of malformations in the larval stage of S. senegalensis. In vivo genotoxicity was assessed on adult A. tonsa, the larval and postlarval stage of P. varians and newly hatched larvae of S. senegalensis using the comet assay. Results showed that the highest sensitivity to cadmium is displayed by A. tonsa, with the most sensitive endpoint being the LDR of nauplii to copepodites. Sole eggs displayed the highest tolerance to cadmium compared to the other endpoints evaluated for all tested species. Recorded cadmium toxicity was (by increasing order): S. senegalensis eggs < P. varians post-larvae < P. varians zoea I < S. senegalensis larvae < A. tonsa eggs < A. tonsa LDR. DNA damage to all species exposed to cadmium increased with increasing concentrations. Overall, understanding cadmium chemical speciation is paramount to reliably evaluate the effects of this metal in marine ecosystems. Cadmium is genotoxic to all three species tested and therefore may differentially impact individuals and populations of marine taxa. As A. tonsa was the most sensitive species and occupies a lower trophic level, it is likely that cadmium contamination may trigger bottom-up cascading effects in marine trophic interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Computation of a Single Airfoil Gust Response and Gust-Cascade Interaction Using the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Himansu, Ananda; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2004-01-01

    The problems 1 and 2 in Category 3 are solved using the space-time conservation element and solution element (CE/SE) method. Problem 1 concerns the acoustic field generated by the interaction of a harmonic vertical gust with a single isolated airfoil. Problem 2 models rotor-stator interaction in a 2D cascade. Both problems involve complex geometries and flow physics including vortex shielding and acoustic radiation. An unstructured triangular mesh is used to solve both problems. For problem 2, the Giles approach is incorporated with the CE/SE method to handle non-equal pitches of the rotor and stator. Numerical solution of both near and far fields of problem 1 are presented and compared with a frequency-domain solver GUST3D and a time-domain high-order Discontinuous Spectra Element Method (DSEM) solutions. For problem 2, numerical solutions on the blade surface, inlet and outlet planes are presented.

  8. Short-term disturbance of a grazer has long-term effects on bacterial communities--relevance of trophic interactions for recovery from pesticide effects.

    PubMed

    Foit, Kaarina; Chatzinotas, Antonis; Liess, Matthias

    2010-08-15

    Little is known about the transfer of pesticide effects from higher trophic levels to bacterial communities by grazing. We investigated the effects of pulse exposure to the pyrethroid Fenvalerate on a grazer-prey system that comprised populations of Daphnia magna and bacterial communities. We observed the abundance and population size structure of D. magna by image analysis. Aquatic bacteria were monitored with regard to abundance (by cell staining) and community structure (by a 16S ribosomal RNA fingerprinting method). Shortly after exposure (2 days), the abundance of D. magna decreased. In contrast, the abundance of bacteria increased; in particular fast-growing bacteria proliferated, which changed the bacterial community structure. Long after pulse exposure (26 days), the size structure of D. magna was still affected and dominated by a cohort of small individuals. This cohort of small D. magna grazed actively on bacteria, which resulted in low bacterial abundance and low percentage of fast-growing bacteria. We identified grazing pressure as an important mediator for translating long-term pesticide effects from a grazer population on its prey. Hence, bacterial communities are potentially affected throughout the period that their grazers show pesticide effects concerning abundance or population size structure. Owing to interspecific interactions, the recovery of one species can only be assessed by considering its community context.

  9. Mutualistic and antagonistic trophic interactions in canola: the role of aphids in shaping pest and predator populations

    USDA-ARS?s Scientific Manuscript database

    Aphids have important effects on the abundance and occurrence of tending ants, predators, and pests in agronomic systems, and DNA-based gut content analysis can aid in establishing predator-prey interactions. The purpose of this study was to determine how the presence of aphids, ants, and pest indiv...

  10. Cascading ecological effects of eliminating fishery discards

    PubMed Central

    Heath, Michael R.; Cook, Robin M.; Cameron, Angus I.; Morris, David J.; Speirs, Douglas C.

    2014-01-01

    Discarding by fisheries is perceived as contrary to responsible harvesting. Legislation seeking to end the practice is being introduced in many jurisdictions. However, discarded fish are food for a range of scavenging species; so, ending discarding may have ecological consequences. Here we investigate the sensitivity of ecological effects to discarding policies using an ecosystem model of the North Sea—a region where 30–40% of trawled fish catch is currently discarded. We show that landing the entire catch while fishing as usual has conservation penalties for seabirds, marine mammals and seabed fauna, and no benefit to fish stocks. However, combining landing obligations with changes in fishing practices to limit the capture of unwanted fish results in trophic cascades that can benefit birds, mammals and most fish stocks. Our results highlight the importance of considering the broader ecosystem consequences of fishery management policy, since species interactions may dissipate or negate intended benefits. PMID:24820200

  11. Cascading ecological effects of eliminating fishery discards.

    PubMed

    Heath, Michael R; Cook, Robin M; Cameron, Angus I; Morris, David J; Speirs, Douglas C

    2014-05-13

    Discarding by fisheries is perceived as contrary to responsible harvesting. Legislation seeking to end the practice is being introduced in many jurisdictions. However, discarded fish are food for a range of scavenging species; so, ending discarding may have ecological consequences. Here we investigate the sensitivity of ecological effects to discarding policies using an ecosystem model of the North Sea--a region where 30-40% of trawled fish catch is currently discarded. We show that landing the entire catch while fishing as usual has conservation penalties for seabirds, marine mammals and seabed fauna, and no benefit to fish stocks. However, combining landing obligations with changes in fishing practices to limit the capture of unwanted fish results in trophic cascades that can benefit birds, mammals and most fish stocks. Our results highlight the importance of considering the broader ecosystem consequences of fishery management policy, since species interactions may dissipate or negate intended benefits.

  12. Indirect multi-trophic interactions mediated by induced plant resistance: impact of caterpillar feeding on aphid parasitoids

    PubMed Central

    Hagenbucher, Steffen; Wäckers, Felix L.; Romeis, Jörg

    2014-01-01

    Cotton produces insecticidal terpenoids that are induced by tissue-feeding herbivores. Damage by Heliothis virescens caterpillars increases the terpenoid content, which reduces the abundance of aphids. This effect is not evident in Bt-transgenic cotton, which is resistant to H. virescens. We determined whether induction of terpenoids by caterpillars influences the host quality of Aphis gossypii for the parasitoid Lysiphlebus testaceipes and whether this interaction is influenced by Bt cotton. The exposure of parasitoids to terpenoids was determined by quantifying terpenoids in the aphids. We detected several terpenoids in aphids and found a positive relationship between their concentrations in plants and aphids. When L. testaceipes was allowed to parasitize aphids on Bt and non-Bt cotton that was infested or uninfested with H. virescens, fewer parasitoid mummies were found on infested non-Bt than on Bt cotton. Important parasitoid life-table parameters, however, were not influenced by induced resistance following H. virescens infestation, or the Bt trait. Our study provides an example of a tritrophic indirect interaction web, where organisms are indirectly linked through changes in plant metabolites. PMID:24522627

  13. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study

    NASA Astrophysics Data System (ADS)

    Hatami, F.; Feghhi, S. A. H.; Arjhangmehr, A.; Esfandiarpour, A.

    2016-11-01

    In this paper, we investigate interaction of primary cascades with grain boundaries (GBs) in α-Zr using the atomistic-scale simulations, and intend to study the influence of different GB structures on production and evolution of defects on picosecond timescale. We observe that, contrary to the previous results in cubic metals, GBs in α-Zr are not necessarily biased toward interstitials, and can preferentially absorb vacancies. Further, in terms of energetic and kinetic behavior, we find that GBs act as defect sinks due to the substantial reduction of defect formation energies and migration barriers in close vicinity of the GB center, with either a preference toward interstitials or vacancies which depends on the atomic structure of the boundaries. Finally, using continuous ion bombardment, we investigate the stability of GBs in sever irradiation environment. The results indicate that the sink strength and efficiency of boundaries varies with increasing accumulated defects in GB region.

  14. Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact.

    PubMed

    Audzijonyte, Asta; Kuparinen, Anna; Gorton, Rebecca; Fulton, Elizabeth A

    2013-04-23

    Humans are changing marine ecosystems worldwide, both directly through fishing and indirectly through climate change. One of the little explored outcomes of human-induced change involves the decreasing body sizes of fishes. We use a marine ecosystem model to explore how a slow (less than 0.1% per year) decrease in the length of five harvested species could affect species interactions, biomasses and yields. We find that even small decreases in fish sizes are amplified by positive feedback loops in the ecosystem and can lead to major changes in natural mortality. For some species, a total of 4 per cent decrease in length-at-age over 50 years resulted in 50 per cent increase in predation mortality. However, the magnitude and direction in predation mortality changes differed among species and one shrinking species even experienced reduced predation pressure. Nevertheless, 50 years of gradual decrease in body size resulted in 1-35% decrease in biomasses and catches of all shrinking species. Therefore, fisheries management practices that ignore contemporary life-history changes are likely to overestimate long-term yields and can lead to overfishing.

  15. Radioactive tracers as a tool for the study of in situ meiofaunal-microbial trophic interactions in marine sediments

    SciTech Connect

    Carman, K.R.

    1989-01-01

    Three methods of delivering labeled substrates to natural cores of sediments were compared. Slurried sediments disrupted the sedimentary structure and significantly altered uptake of labeled substrates by copepod species. Thus, disruption of sedimentary structure can significantly alter microbial-meiofaunal interactions and influence the results of grazing studies. The ({sup 3}H)-thymidine technique for measuring bacterial production was evaluated. The metabolic fate of labeled thymidine in a coastal marine sediment was not consistent with assumptions necessary for measuring bacterial production or its consumption by meiofauna. Microautoradiography was used to demonstrate the sedimentary microalgae and heterotrophic bacteria can be selectively labeled with ({sup 14}C)bicarbonate and labeled organic substrates, respectively. A study was performed to determine if radioactivity measured in copepods from grazing experiments was the result of ingestion of labeled microorganisms or the result of uptake by non-feeding processes. Uptake of label by copepods from ({sup 14}C)-bicarbonate was due almost exclusively to grazing on microalgae. Uptake of label by copepods from ({sup 14}C)-acetate, however, resulted from activity by epicuticular bacteria and was not due to ingestion of labeled bacteria.

  16. Self-illuminative cascade-reaction-driven anticancer therapeutic cassettes made of cooperatively interactive nanocomplexes.

    PubMed

    Song, Woo Chul; Shin, Seung Won; Park, Kyung Soo; Jang, Min Su; Choi, Jin-Ha; Oh, Byung-Keun; Um, Soong Ho

    2015-02-01

    Therapeutic options based on near-infrared (NIR) wavelengths have attracted attention owing to in vivo lowest-background interventions and the development of several nano-architectures with localized surface plasmon resonance. Because of their limited tissue penetration, the clinical use of NIR light-driven treatments is not widespread; this technology is inapplicable to infection sites in the deeper areas of internal tissues. In this study, we demonstrate a self-illuminative therapeutic cassette able to exert anticancer effects via a series of enzymatic, chemical, and optical cooperative cascade reactions. It consists of (1) NIR-illuminative nanocomplexes and (2) NIR-sensitive therapeutic cassettes, which demonstrate a 60% chemically-induced killing effect in a prostate cancer model without external NIR irradiation. This technology can also be actively exploited as an imaging agent due to adaptation of a self-illuminating nanocomplex. Consequently, these novel therapeutic cassettes, which work not only as a powerful internal NIR stimulant, but also as a biological imaging platform, provide a new rational design concept for biomedical use.

  17. Toll-like receptor cascade and gene polymorphism in host–pathogen interaction in Lyme disease

    PubMed Central

    Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa

    2016-01-01

    Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages. PMID:27330321

  18. Interactions between fish, grazing invertebrates and algae in a New Zealand stream: a trophic cascade mediated by fish-induced changes to grazer behaviour?

    PubMed

    McIntosh, Angus R; Townsend, Colin R

    1996-10-01

    Experiments in laboratory stream channels compared the behaviour of Deleatidium mayfly nymphs in the absence of fish with that in the presence of either native common river galaxias (Galaxias vulgaris Stokell) or introduced brown trout (Salmo trutta L.). Galaxias present similar predation risks to prey during day and night but are more active at night. Whereas, trout present a higher predation risk during the day. Deleatidium maintained a fixed nocturnal drift periodicity that is characteristic of streams containing visually feeding fish regardless of the nature of the predation regime presented in the laboratory. However, the number on the substratum surface, and therefore able to graze algae, was lower when fish were present than when they were absent. The number was lower during the day in the presence of trout, when they present the highest predation risk, and lower during the night compared to the day in trials with galaxias when galaxias activity disturbs Deleatidium from the substratum. Increases in the probability of Deleatidium leaving a patch, reductions in the proportion of mayflies on high quality patches and reductions in the distance travelled from refuge also reflected variations in the predation regime. Similar differences in positioning were observed under the same predation regimes in in situ channels in the Shag River and these were associated with differences in algal biomass. Algal ash-free dry mass (AFDM) and chlorophyll a (chl a) were higher on the tops of cobbles when fish were present. Fish also affected the biomass and the distribution of algae on cobbles as AFDM and chl a were higher on the sides of cobbles from channels with trout compared to those with galaxias. Changes in grazing behaviour, caused by predator avoidance, are likely to have been responsible for differences in algal biomass because no significant differences were detected between treatments in the biomass of Deleatidium or of total invertebrates.

  19. Influence of mean loading on noise generated by the interaction of gusts with a cascade: downstream radiation

    NASA Astrophysics Data System (ADS)

    Peake, N.; Kerschen, E. J.

    2004-09-01

    We consider the effects of blade mean loading on the noise generated by the interaction between convected vorticity and a blade row. The blades are treated as flat plates aligned at a non-zero incidence angle, delta, to the oncoming stream, and we take harmonic components of the incident vorticity field with reduced frequency k, and use asymptotic analysis in the realistic limit k {≫} 1, delta {≪} 1 with kdelta=O(1). In a previous paper (Peake & Kerschen, J. Fluid Mech., vol. 347 (1997), pp. 315 346) we have analysed the sound radiated back upstream, but the field in the blade passages and the sound radiated downstream are also of considerable practical interest, and are considered in this paper. The flow is seen to consist of inner regions around each leading edge, in which sound is generated by the local gust airfoil and gust flow interactions, and an outer region in which the incident gust and the acoustic radiation interact with the non-uniform mean flow and the other blades. It is shown that the complicated multiple interactions between the blades can be represented by images in potential streamfunction space, yielding closed-form expressions for the phase distortion experienced by sound waves propagating down the blade passages. The acoustic radiation downstream of the cascade at O(1) distances is dominated by the duct-mode beams that emanate from the passages, while the far downstream field is generated by the diffraction of the duct modes by the trailing edges. The modal amplitudes of the radiation field far downstream tend to be largest when the mode direction is close to the propagation direction of the duct mode which generated it, corresponding to the way (in uniform flow) in which the radiation from a single blade passage tends to be beamed in the duct-mode directions. Although the diffraction coefficient for the scattering from a single trailing edge is singular in these directions, we show how uniformly valid expressions can be derived by

  20. Interaction of Alzheimer's beta -amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade.

    PubMed

    Taru, Hidenori; Iijima, Ko-Ichi; Hase, Momoko; Kirino, Yutaka; Yagi, Yoshimasa; Suzuki, Toshiharu

    2002-05-31

    We have isolated a novel protein based on its association with Drosophila APP-like protein (APPL), a homolog of the beta-amyloid precursor protein (APP) that is implicated in Alzheimer's disease. This novel APPL-interacting protein 1 (APLIP1) contains a Src homology 3 domain and a phosphotyrosine interaction domain and is expressed abundantly in neural tissues. The phosphotyrosine interaction domain of APLIP1 interacts with a sequence containing GYENPTY in the cytoplasmic domain of APPL. APLIP1 is highly homologous to the carboxyl-terminal halves of mammalian c-Jun NH(2)-terminal kinase (JNK)-interacting protein 1b (JIP1b) and 2 (JIP2), which also contain Src homology 3 and phosphotyrosine interaction domains. The similarity of APLIP1 to JIP1b and JIP2 includes interaction with component(s) of the JNK signaling pathway and with the motor protein kinesin and the formation of homo-oligomers. JIP1b interacts strongly with the cytoplasmic domain of APP (APPcyt), as APLIP1 does with APPL, but the interaction of JIP2 with APPcyt is weak. Overexpression of JIP1b slightly enhances the JNK-dependent threonine phosphorylation of APP in cultured cells, but that of JIP2 suppresses it. These observations suggest that the interactions of APP family proteins with APLIP1, JIP1b, and JIP2 are conserved and play important roles in the metabolism and/or the function of APPs including the regulation of APP phosphorylation by JNK. Analysis of APP family proteins and their associated proteins is expected to contribute to understanding the molecular process of neural degeneration in Alzheimer's disease.

  1. Influence of cooling intensity on shock wave boundary layer interaction region in turbine cascade

    NASA Astrophysics Data System (ADS)

    Kaczyński, P.; Szwaba, R.

    2016-10-01

    The shock wave boundary layer interaction on the suction side of a transonic turbine blade was one of the main objectives of the TFAST project. For this purpose a model of a turbine passage was designed, manufactured and assembled in a transonic wind tunnel. The paper presents the experimental investigations concerning the flow structure on the transonic turbine blade. A clean case (without a cooling system) with a normal shock wave interacting with a laminar boundary layer and also the influence of the blade cooling system with three different coolant blowing intensities on the laminar interaction region were investigated.

  2. Gut contents as direct indicators for trophic relationships in the Cambrian marine ecosystem.

    PubMed

    Vannier, Jean

    2012-01-01

    Present-day ecosystems host a huge variety of organisms that interact and transfer mass and energy via a cascade of trophic levels. When and how this complex machinery was established remains largely unknown. Although exceptionally preserved biotas clearly show that Early Cambrian animals had already acquired functionalities that enabled them to exploit a wide range of food resources, there is scant direct evidence concerning their diet and exact trophic relationships. Here I describe the gut contents of Ottoia prolifica, an abundant priapulid worm from the middle Cambrian (Stage 5) Burgess Shale biota. I identify the undigested exoskeletal remains of a wide range of small invertebrates that lived at or near the water sediment interface such as hyolithids, brachiopods, different types of arthropods, polychaetes and wiwaxiids. This set of direct fossil evidence allows the first detailed reconstruction of the diet of a 505-million-year-old animal. Ottoia was a dietary generalist and had no strict feeding regime. It fed on both living individuals and decaying organic matter present in its habitat. The feeding behavior of Ottoia was remarkably simple, reduced to the transit of food through an eversible pharynx and a tubular gut with limited physical breakdown and no storage. The recognition of generalist feeding strategies, exemplified by Ottoia, reveals key-aspects of modern-style trophic complexity in the immediate aftermath of the Cambrian explosion. It also shows that the middle Cambrian ecosystem was already too complex to be understood in terms of simple linear dynamics and unique pathways.

  3. Interaction of Gold Nuclei with Photoemulsion Nuclei at Energies in the Range 100-1200 MeV per Nucleon and Cascade-Evaporation Model

    SciTech Connect

    Bogdanov, S.D.; Shablya, E.Ya.; Kosmach, V.F.; Vokal, S.; Plyuschev, V.A.

    2005-09-01

    The interaction of gold nuclei with photoemulsion nuclei at energies in the range 100-1200 MeV per nucleon was studied experimentally. A consistent comparison of the experimental data obtained in this way with the results of the calculations based on the cascade-evaporation model is performed.

  4. Cascading processes and interactions in torrent catchments and their influence on the damage pattern

    NASA Astrophysics Data System (ADS)

    Keiler, Margreth; Gebbers, David

    2014-05-01

    Research on single geomorphological processes during damaging events has a long history; however, comprehensive documentations and analyses of the events have been conducted not until the late 1980s. Thus, for highly damaging events insights about triggering, the evolution and the impacts of processes during an event and the resulting damage were produced. Though, in the majority of cases the processes were studied in a well-defined procedure of one disciplinary focus. These focused studies neglect mutable influences which may alter the sequence of the process or the event. During damaging events multiple geomorphological processes are active which leads to the assumption that they have a certain impact on each other and the course of damaging effect. Consequently, for a comprehensive hazard and risk analysis all processes of a catchment have to be analysed and evaluated quantitatively and qualitatively (MARZOCCHI, 2007). Although the demand for a sophisticated risk management is increasing, the research on interactions as well as on physical vulnerability to multiple hazards, including the different processes impact effects, is still very limited (KAPPES et al., 2010, 2011). The challenges in this field are the quantity of data needed, and furthermore to conduct this kind of analysis is very complex and complicated (KAPPES et al. 2012). Yet, knowledge about possible interactions and resulting impact effects could significantly contribute to the reduction of risk in a region. The objective of this study is to analyse, i) how geomorphological processes interact with each other and with other factors of the surrounding during a damaging event, ii) what influences those interactions have on the resulting damage of the event and iii) whether or not different events are comparable in terms of those interactions and their impacts. To meet these objectives, 15 damaging torrent events, which occurred between 2000 and 2011 in the Bernese Oberland and the Pennine Alps

  5. Cascading top-down effects of changing oceanic predator abundances.

    PubMed

    Baum, Julia K; Worm, Boris

    2009-07-01

    1. Top-down control can be an important determinant of ecosystem structure and function, but in oceanic ecosystems, where cascading effects of predator depletions, recoveries, and invasions could be significant, such effects had rarely been demonstrated until recently. 2. Here we synthesize the evidence for oceanic top-down control that has emerged over the last decade, focusing on large, high trophic-level predators inhabiting continental shelves, seas, and the open ocean. 3. In these ecosystems, where controlled manipulations are largely infeasible, 'pseudo-experimental' analyses of predator-prey interactions that treat independent predator populations as 'replicates', and temporal or spatial contrasts in predator populations and climate as 'treatments', are increasingly employed to help disentangle predator effects from environmental variation and noise. 4. Substantial reductions in marine mammals, sharks, and piscivorous fishes have led to mesopredator and invertebrate predator increases. Conversely, abundant oceanic predators have suppressed prey abundances. Predation has also inhibited recovery of depleted species, sometimes through predator-prey role reversals. Trophic cascades have been initiated by oceanic predators linking to neritic food webs, but seem inconsistent in the pelagic realm with effects often attenuating at plankton. 5. Top-down control is not uniformly strong in the ocean, and appears contingent on the intensity and nature of perturbations to predator abundances. Predator diversity may dampen cascading effects except where nonselective fisheries deplete entire predator functional groups. In other cases, simultaneous exploitation of predator and prey can inhibit prey responses. Explicit consideration of anthropogenic modifications to oceanic foodwebs should help inform predictions about trophic control. 6. Synthesis and applications. Oceanic top-down control can have important socio-economic, conservation, and management implications as

  6. Multi-tissue stable isotope analysis and acoustic telemetry reveal seasonal variability in the trophic interactions of juvenile bull sharks in a coastal estuary.

    PubMed

    Matich, Philip; Heithaus, Michael R

    2014-01-01

    Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions

  7. The evolution of trophic structure.

    PubMed

    Bell, G

    2007-11-01

    The trophic relationships of an ecological community were represented by digital individuals consuming resources or prey within a simulated ecosystem and producing offspring that may differ from their parents. When individuals meet, a few simple rules are used to decide the outcome of their interaction. Trophically complex systems persist for long periods of time even in finite communities, provided that the strength of predator-prey interaction is sufficient to repay the cost of maintenance. The topology of the food web and important system-level attributes such as overall productivity follow from the rules of engagement: that is, the macroscopic properties of the ecosystem follow from the microscopic attributes of individuals, without the need to invoke the emergence of novel processes at the level of the whole system. Evolutionarily stable webs exist only when the pool of available species is small. If the pool is large, or speciation is allowed, species composition changes continually, while overall community properties are maintained. Ecologically separate and topologically different source webs based on the same pool of resources usually coexist for long periods of time, through negative frequency-dependent selection at the level of the source web as a whole. Thus, the evolved food web of species-rich communities is a highly dynamic structure with continual species turnover. It both imposes selection on each species and itself responds to selection, but selection does not necessarily maximize stability, productivity or any other community property.

  8. Eco-Evolutionary Trophic Dynamics: Loss of Top Predators Drives Trophic Evolution and Ecology of Prey

    PubMed Central

    Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T.

    2011-01-01

    Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a “sharpening” of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. PMID:21526156

  9. Cascading effects of fire retardant on plant-microbe interactions, community composition, and invasion.

    PubMed

    Marshall, Abigail; Waller, Lauren; Lekberg, Ylva

    2016-06-01

    Climate change, historical fire suppression, and a rise in human movements in urban-forest boundaries have resulted in an increased use of long-term fire retardant (LTFR). While LTFR is an effective fire-fighting tool, it contains high concentrations of nitrogen and phosphorus, and little is known about how this nutrient pulse affects terrestrial ecosystems. We used field surveys and greenhouse experiments to quantify effects of LTFR on plant productivity, community composition, and plant interactions with the ubiquitous root symbiont arbuscular mycorrhizal fungi (AMF). In the field, LTFR applications were associated with persistent shifts in plant communities toward exotic annuals with little or no dependency of AMF. Plants exposed to LTFR were less colonized by AMF, both in field surveys and in the greenhouse, and this was most likely due to the substantial and persistent increase in soil available phosphorus. All plants grew bigger with LTFR in the greenhouse, but the invasive annual cheatgrass (Bromus tectorum) benefitted most. While LTFR can control fires, it may cause long-term changes in soil nutrient availabilities, disrupt plant interactions with beneficial soil microbes, and exasperate invasion by some exotic plants.

  10. The Dynamics of Cascaded Monod System Models Through Five Levels

    NASA Technical Reports Server (NTRS)

    Blackwell, Charles; Kliss, Mark (Technical Monitor)

    1998-01-01

    In the context of this paper, a Monod system model is a set of ordinary differential equations in which the terms resemble those which Motion presented in his 1949 paper. Attention is directed to the multiple trophic level case in which each trophic level exploits only one of the trophic levels for its perpetuation, and no two trophic entities exploit the same trophic level (cascaded). The treatment expands from a primary producer progressively through five trophic levels. Types of stability are identified and are related to persistence, and the consequences of some intuitive scaling structures are developed. These considerations are relevant to some theoretical questions in ecology and to applications such as bioreactor operation.

  11. Trophic shift, not collapse

    USGS Publications Warehouse

    Madenjian, Charles P.; Rutherford, Edward S.; Stow, Craig A.; Roseman, Edward F.; He, Ji X.

    2013-01-01

    scientists who are closely monitoring Lake Huron’s food web, we believe that the ongoing changes are more accurately characterized as a trophic shift in which benthic pathways have become more prominent. While decreases in abundance have occurred for some species, others are experiencing improved reproduction resulting in the restoration of several important native species.

  12. Species Introductions and Their Cascading Impacts on Biotic Interactions in desert riparian ecosystems.

    PubMed

    Hultine, Kevin R; Bean, Dan W; Dudley, Tom L; Gehring, Catherine A

    2015-10-01

    Desert riparian ecosystems of North America are hotspots of biodiversity that support many sensitive species, and are in a region experiencing some of the highest rates of climatic alteration in North America. Fremont cottonwood, Populus fremontii, is a foundation tree species of this critical habitat, but it is threatened by global warming and regional drying, and by a non-native tree/shrub, Tamarix spp., all of which can disrupt the mutualism between P. fremontii and its beneficial mycorrhizal fungal communities. Specialist herbivorous leaf beetles (Diorhabda spp.) introduced for biocontrol of Tamarix are altering the relationship between this shrub and its environment. Repeated episodic feeding on Tamarix foliage by Diorhabda results in varying rates of dieback and mortality, depending on genetic variation in allocation of resources, growing conditions, and phenological synchrony between herbivore and host plant. In this article, we review the complex interaction between climatic change and species introductions and their combined impacts on P. fremontii and their associated communities. We anticipate that (1) certain genotypes of P. fremontii will respond more favorably to the presence of Tamarix and to climatic change due to varying selection pressures to cope with competition and stress; (2) the ongoing evolution of Diorhabda's life cycle timing will continue to facilitate its expansion in North America, and will over time enhance herbivore impact to Tamarix; (3) defoliation by Diorhabda will reduce the negative impact of Tamarix on P. fremontii associations with mycorrhizal fungi; and (4) spatial variability in climate and climatic change will modify the capacity for Tamarix to survive episodic defoliation by Diorhabda, thereby altering the relationship between Tamarix and P. fremontii, and its associated mycorrhizal fungal communities. Given the complex biotic/abiotic interactions outlined in this review, conservation biologists and riparian ecosystem

  13. Rapid and robust signaling in the CsrA cascade via RNA–protein interactions and feedback regulation

    PubMed Central

    Adamson, David Nellinger; Lim, Han N.

    2013-01-01

    Bacterial survival requires the rapid propagation of signals through gene networks during stress, but how this is achieved is not well understood. This study systematically characterizes the signaling dynamics of a cascade of RNA–protein interactions in the CsrA system, which regulates stress responses and biofilm formation in Escherichia coli. Noncoding RNAs are at the center of the CsrA system; target mRNAs are bound by CsrA proteins that inhibit their translation, CsrA proteins are sequestered by CsrB noncoding RNAs, and the degradation of CsrB RNAs is increased by CsrD proteins. Here, we show using in vivo experiments and quantitative modeling that the CsrA system integrates three strategies to achieve rapid and robust signaling. These strategies include: (i) the sequestration of stable proteins by noncoding RNAs, which rapidly inactivates protein activity; (ii) the degradation of stable noncoding RNAs, which enables their rapid removal; and (iii) a negative-feedback loop created by CsrA repression of CsrD production, which reduces the time for the system to achieve steady state. We also demonstrate that sequestration in the CsrA system results in signaling that is robust to growth rates because it does not rely on the slow dilution of molecules via cell division; therefore, signaling can occur even during growth arrest induced by starvation or antibiotic treatment. PMID:23878244

  14. Rapid and robust signaling in the CsrA cascade via RNA-protein interactions and feedback regulation.

    PubMed

    Adamson, David Nellinger; Lim, Han N

    2013-08-06

    Bacterial survival requires the rapid propagation of signals through gene networks during stress, but how this is achieved is not well understood. This study systematically characterizes the signaling dynamics of a cascade of RNA-protein interactions in the CsrA system, which regulates stress responses and biofilm formation in Escherichia coli. Noncoding RNAs are at the center of the CsrA system; target mRNAs are bound by CsrA proteins that inhibit their translation, CsrA proteins are sequestered by CsrB noncoding RNAs, and the degradation of CsrB RNAs is increased by CsrD proteins. Here, we show using in vivo experiments and quantitative modeling that the CsrA system integrates three strategies to achieve rapid and robust signaling. These strategies include: (i) the sequestration of stable proteins by noncoding RNAs, which rapidly inactivates protein activity; (ii) the degradation of stable noncoding RNAs, which enables their rapid removal; and (iii) a negative-feedback loop created by CsrA repression of CsrD production, which reduces the time for the system to achieve steady state. We also demonstrate that sequestration in the CsrA system results in signaling that is robust to growth rates because it does not rely on the slow dilution of molecules via cell division; therefore, signaling can occur even during growth arrest induced by starvation or antibiotic treatment.

  15. Concentrations and trophic interactions of novel brominated flame retardants, HBCD, and PBDEs in zooplankton and fish from Lake Maggiore (Northern Italy).

    PubMed

    Poma, Giulia; Volta, Pietro; Roscioli, Claudio; Bettinetti, Roberta; Guzzella, Licia

    2014-05-15

    Following the release of the international regulations on PBDEs and HBCD, the aim of this study is to evaluate the concentrations of novel brominated flame retardants (NBFRs), including 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), hexabromobenzene (HBB), and pentabromoethylbenzene (PBEB), in an Italian subalpine lake located in a populated and industrial area. The study investigated specifically the potential BFR biomagnification in a particular lake's pelagic food web, whose structure and dynamics were evaluated using the Stable Isotope Analysis. The potential BFR biomagnification was investigated by using the trophic-level adjusted BMFs and Trophic Magnification Factors (TMFs), confirming that HBCD and some PBDE congeners are able to biomagnify within food webs. Comparing the calculated values of BMFTL and TMF, a significant positive correlation was observed between the two factors, suggesting that the use of BMFTL to investigate the biomagnification potential of organic chemical compounds might be an appropriate approach when a simple food web is considered.

  16. Dilution of /sup 210/Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment-water interactions

    SciTech Connect

    Binford, M.W.; Brenner, M.

    1986-05-01

    Lake sediments reflect conditions in the water column and can be used for rapid, integrative measurements of limnological variables. Examination of /sup 210/Pb-dated cores from 12 Florida lakes of widely differing trophic state (expressed as Carlson's trophic state index: TSI) shows that net accumulation rate of organic matter is related to primary productivity in the water column. In 26 other lakes the activity of unsupported /sup 210/Pb g/sup -1/ organic matter in surficial sediments is inversely related to trophic state and, therefore, to organic accumulation rate. From this observation, the authors develop a new method that uses fallout /sup 210/Pb as a dilution tracer to calculate net sedimentary accumulation rates of any material in surface mud. They demonstrate strong relationships between net loss rate of biologically important materials (C, N, P, and pigments) and their respective water concentrations (expressed as TSI). Multiple regression models incorporating net sediment accumulation rates of all four variables explain up to 70% of the lake-to-lake variation of TSI. The /sup 210/Pb-dilution method has application for studies for material cycling, paleolimnology, and sediment accumulation processes.

  17. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host–parasitoid food chain

    PubMed Central

    Moser, Andrea; van Veen, F. J. Frank

    2016-01-01

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host–parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary–secondary–tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ15N increased with trophic level, with trophic discrimination factors (Δ15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host–parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. PMID:26962141

  18. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain.

    PubMed

    Sanders, Dirk; Moser, Andrea; Newton, Jason; van Veen, F J Frank

    2016-03-16

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host-parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary-secondary-tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ(15)N increased with trophic level, with trophic discrimination factors (Δ(15)N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host-parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. © 2016 The Authors.

  19. Expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and mitochondrial oxidative phosphorylation in septic patients

    PubMed Central

    Nucci, Laura A.; Santos, Sidnéia S.; Brunialti, Milena K. C.; Sharma, Narendra Kumar; Machado, Flavia R.; Assunção, Murillo; de Azevedo, Luciano C. P.

    2017-01-01

    Background and objectives Sepsis is a complex disease that is characterized by activation and inhibition of different cell signaling pathways according to the disease stage. Here, we evaluated genes involved in the TLR signaling pathway, oxidative phosphorylation and oxidative metabolism, aiming to assess their interactions and resulting cell functions and pathways that are disturbed in septic patients. Materials and methods Blood samples were obtained from 16 patients with sepsis secondary to community acquired pneumonia at admission (D0), and after 7 days (D7, N = 10) of therapy. Samples were also collected from 8 healthy volunteers who were matched according to age and gender. Gene expression of 84 genes was performed by real-time polymerase chain reactions. Their expression was considered up- or down-regulated when the fold change was greater than 1.5 compared to the healthy volunteers. A p-value of ≤ 0.05 was considered significant. Results Twenty-two genes were differently expressed in D0 samples; most of them were down-regulated. When gene expression was analyzed according to the outcomes, higher number of altered genes and a higher intensity in the disturbance was observed in non-survivor than in survivor patients. The canonical pathways altered in D0 samples included interferon and iNOS signaling; the role of JAK1, JAK2 and TYK2 in interferon signaling; mitochondrial dysfunction; and superoxide radical degradation pathways. When analyzed according to outcomes, different pathways were disturbed in surviving and non-surviving patients. Mitochondrial dysfunction, oxidative phosphorylation and superoxide radical degradation pathway were among the most altered in non-surviving patients. Conclusion Our data show changes in the expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and oxidative phosphorylation. Importantly, distinct patterns are clearly observed in surviving and non-surviving patients. Interferon signaling, marked by

  20. Trophic interaction of invertebrate zooplankton on either side of the Charlie Gibbs Fracture Zone/Subpolar Front of the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Letessier, T. B.; Pond, David W.; McGill, Rona A. R.; Reid, William D. K.; Brierley, Andrew S.

    2012-06-01

    Trophic relationships and vertical distribution patterns of dominant mesozooplankton (2-20 mm) and macrozooplankton (> 20 mm) invertebrates (Euphausiacea, Copepoda, Decapoda, Amphipoda, Thecosomata and Lophogastrida) were investigated within the epi- and meso-pelagic zone (0-200 and 200-800 m depth), north (54° N) and south (49° N) of the Subpolar Front (SPF) on the Mid-Atlantic Ridge (MAR). Dietary relationships were explored using stable isotope ratios of nitrogen and carbon, and fatty acid trophic markers (FATM). Individuals from the southern stations (~ 49° N) had higher concentrations of the dinoflagellate FATM (22:6(n-3)), and individuals from northern stations had higher concentration in Calanus sp. and storage FATMs (20:1(n-9) and 22:1(n-9)). Energy pathways on either side of the SPF showed retention of δ13C differences (as measured in POM) in bathypelagic species. Observations of FATM levels and abundance patterns are consistent with present theories pertaining to primary production patterns at the base of the food chain, which states that the peak of the production is higher in the northern sector than in the south.

  1. Multiplicities of secondaries in interactions of 1.8 GeV/nucleon Fe-56 nuclei with photoemulsion and the cascade evaporation model

    SciTech Connect

    Dudkin, V.E; Kovalev, E.E.; Nefedov, N.A.; Antonchik, V.A.; Bogdanov, S.D.; Ostroumov, V.I.; Crawford, H.J.; Benton, E.V. ||

    1995-03-01

    A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of Fe-56 nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.

  2. Multiplicities of secondaries in interactions of 1.8 GeV/nucleon Fe-56 nuclei with photoemulsion and the cascade evaporation model

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Ostroumov, V. I.; Crawford, H. J.; Benton, E. V.

    1995-01-01

    A nuclear photographic emulsion method was used to study the charge-state, ionization, and angular characteristics of secondaries produced in inelastic interactions of Fe-56 nuclei at 1.8 GeV/nucleon with H, CNO, and AgBr nuclei. The data obtained are compared with the results of calculations made in terms of the Dubna version of the cascade evaporation model (DCM). The DCM has been shown to satisfactorily describe most of the interaction characteristics for two nuclei in the studied reactions. At the same time, quantitative differences are observed in some cases.

  3. Effects of plant intraspecific diversity across three trophic levels: Underlying mechanisms and plant traits.

    PubMed

    Abdala-Roberts, Luis; Hernández-Cumplido, Johnattan; Chel-Guerrero, Luis; Betancur-Ancona, David; Benrey, Betty; Moreira, Xoaquín

    2016-10-01

    Although there is increasing recognition of the effects of plant intraspecific diversity on consumers, the mechanisms by which such effects cascade-up to higher trophic levels remain elusive. We evaluated the effects of plant (lima bean, Phaseolus lunatus) intraspecific diversity on a suite of insect herbivores (leaf-chewers, aphids, and seed-eating beetles) and their third trophic-level associates (parasitoids and aphid-tending ants). We established plots of three plants, classified as monocultures of one population source or polycultures with mixtures of three of the four population sources (N = 16 plots per level of diversity). Within each plot, plants were individually placed in pots and canopy contact was prevented, therefore eliminating diversity effects on consumers arising from changes in plant traits due to plant physical interactions. Plant diversity reduced damage by leaf-chewers as well as aphid abundance, and the latter effect in turn reduced ant abundance. In contrast, plant diversity increased the abundance of seed-eating beetles, but did not influence their associated parasitoids. There were no effects of diversity on seed traits potentially associated with seed predation, suggesting that differences in early season herbivory between monocultures and polycultures (a likely mechanism of diversity effects on plants since plant interactions were prevented) did not drive concomitant changes in plant traits. This study emphasizes that effects of plant intraspecific diversity on consumers are contingent upon differences in associate responses within and among higher trophic levels and suggests possible mechanisms by which such effects propagate up this food web. © 2016 Botanical Society of America.

  4. Trophic flexibility and the persistence of understory birds in intensively logged rainforest.

    PubMed

    Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C

    2013-10-01

    Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. © 2013 Society for Conservation Biology.

  5. Climate Change and Baleen Whale Trophic Cascades in Greenland

    DTIC Science & Technology

    2009-09-30

    approach by combining observations of movements, foraging ecology and phenology collected by satellite and archival telemetry with intensive and...whale species in West Greenland. We use a multidisciplinary approach by combining observations of movements, foraging ecology and phenology collected...including the time individuals spend feeding in each site and the phenology of the use of the focal areas. These data are related to long-term physical

  6. Climate Change and Baleen Whale Trophic Cascades in Greenland

    DTIC Science & Technology

    2012-03-19

    approach by combining observations of movements, foraging ecology and phenology collected by satellite and archival telemetry with intensive and localized... phenology of the use of the focal areas. These data were related to long-term physical and biological monitoring program in Nuuk Fjord and on the coast...of West Greenland, where long-term fishery data are collected to quantify seasonal and inter-annual variations in the biological and geophysical

  7. Climate Change and Baleen Whale Trophic Cascades in Greenland

    DTIC Science & Technology

    2008-01-01

    species in West Greenland. We use a multidisciplinary approach by combining observations of foraging ecology and phenology collected by satellite and...feeding in each site and the phenology of the use of the focal areas. These data are related to long-term physical and biological monitoring program...in Nuuk Fjord and on the coast of West Greenland, where long-term fishery data are collected to quantify seasonal and inter-annual variations in the

  8. Climate Change and Baleen Whale Trophic Cascades in Greenland

    DTIC Science & Technology

    2010-01-01

    species in West Greenland. We use a multidisciplinary approach by combining observations of movements, foraging ecology and phenology collected by...along the coast using probabilistic spatial techniques, including the time individuals spend feeding in each site and the phenology of the use of...where long-term fishery data are collected to quantify seasonal and inter-annual variations in the biological and geophysical properties of the marine

  9. Time- and frequency-domain computations of broadband noise due to interaction between incident turbulence and rectilinear cascade of flat plates

    NASA Astrophysics Data System (ADS)

    Kim, Daehwan; Cheong, Cheolung

    2012-10-01

    Time-domain computational aeroacoustic (CAA) techniques are developed to investigate the broadband noise resulting from the interaction of a rectilinear cascade of flat plates with incident homogeneous, isotropic turbulence. The investigation is carried out by comparing the prediction results obtained by employing the time-domain CAA method with those using existing frequency-domain methods. A semi-analytic model (Wei & Cheong, 2010) and a full three-dimensional rectilinear cascade model (Lloyd & Peake, 2008; Lloyd, 2009) are adopted for the frequency-domain computations. By comparing these computation results, the three-dimensional characteristics of inflow turbulence noise are investigated; in particular, the effects of the wavenumber components of ingested turbulence in the spanwise direction are taken into consideration in the investigation. First, CAA results are compared with those from the semi-analytic model. The results for the acoustic modes of relatively low spanwise wavenumbers obtained using both methods show good agreement, but as the spanwise wavenumber increases, the results obtained by the two methods become increasingly different. To investigate in detail the reason for these differences, mode-decomposition analysis is performed by adopting a hybrid method as well as by employing the CAA and the semi-analytic method. The hybrid method involves the following two sequential computations: (i) the upwash velocities on the flat plate airfoils of the rectilinear cascade are first predicted using the frequency-domain method, and (ii) the acoustic wave propagation is subsequently analyzed using time-domain CAA techniques, with these upwash velocities applied as the boundary conditions on the flat plate. It is seen that the results of the time-domain CAA technique and the hybrid method show good agreement, irrespective of the wavenumber and frequency. However, comparisons of the acoustic solutions from three computations reveal that the prediction results

  10. Trophic classification of selected Colorado lakes

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.; Boland, D. H. P.

    1979-01-01

    Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators. Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state.

  11. Tracking Earthquake Cascades

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2011-12-01

    In assessing their risk to society, earthquakes are best characterized as cascades that can propagate from the natural environment into the socio-economic (built) environment. Strong earthquakes rarely occur as isolated events; they usually cluster in foreshock-mainshock-aftershock sequences, seismic swarms, and extended sequences of large earthquakes that propagate along major fault systems. These cascades are regulated by stress-mediated interactions among faults driven by tectonic loading. Within these cascades, each large event can itself cause a chain reaction in which the primary effects of faulting and ground shaking induce secondary effects, including tsunami, landslides, liquefaction, and set off destructive processes within the built environment, such as fires and radiation leakage from nuclear plants. Recent earthquakes have demonstrated how the socio-economic effects of large earthquakes can reverberate for many years. To reduce earthquake risk and improve the resiliency of communities to earthquake damage, society depends on five geotechnologies for tracking earthquake cascades: long-term probabilistic seismic hazard analysis (PSHA), short-term (operational) earthquake forecasting, earthquake early warning, tsunami warning, and the rapid production of post-event information for response and recovery (see figure). In this presentation, I describe how recent advances in earthquake system science are leading to improvements in this geotechnology pipeline. In particular, I will highlight the role of earthquake simulations in predicting strong ground motions and their secondary effects before and during earthquake cascades

  12. Estimating trophic levels and trophic magnification factors using Bayesian inference.

    PubMed

    Starrfelt, Jostein; Borgå, Katrine; Ruus, Anders; Fjeld, Eirik

    2013-10-15

    Food web biomagnification is increasingly assessed by estimating trophic magnification factors (TMF) where solvent (often lipid) normalized contaminant concentration is regressed onto the trophic level, and TMFs are represented by the slope of the relationship. In TMF regressions, the uncertainty in the contaminant concentrations is appreciated, whereas the trophic levels are assumed independent and not associated with variability or uncertainty pertaining to e.g. quantification. In reality, the trophic levels may vary due to measurement error in stable isotopes of nitrogen (δ(15)N) of each sample, in δ(15)N in selected reference baseline trophic level, and in the enrichment factor of δ(15)N between two trophic levels (ΔN), which are all needed to calculate trophic levels. The present study used a Markov Chain Monte Carlo method, with knowledge about the food web structure, which resulted in a dramatic increase in the precision in the TMF estimates. This also lead to a better understanding of the uncertainties in bioaccumulation measures; instead of using point estimates of TMF, the uncertainty can be quantified (i.e., TMF >1, namely positive biomagnification, with an estimated X % probability).

  13. Trophic coherence determines food-web stability

    PubMed Central

    Johnson, Samuel; Domínguez-García, Virginia; Donetti, Luca; Muñoz, Miguel A.

    2014-01-01

    Why are large, complex ecosystems stable? Both theory and simulations of current models predict the onset of instability with growing size and complexity, so for decades it has been conjectured that ecosystems must have some unidentified structural property exempting them from this outcome. We show that trophic coherence—a hitherto ignored feature of food webs that current structural models fail to reproduce—is a better statistical predictor of linear stability than size or complexity. Furthermore, we prove that a maximally coherent network with constant interaction strengths will always be linearly stable. We also propose a simple model that, by correctly capturing the trophic coherence of food webs, accurately reproduces their stability and other basic structural features. Most remarkably, our model shows that stability can increase with size and complexity. This suggests a key to May’s paradox, and a range of opportunities and concerns for biodiversity conservation. PMID:25468963

  14. Trophic coherence determines food-web stability.

    PubMed

    Johnson, Samuel; Domínguez-García, Virginia; Donetti, Luca; Muñoz, Miguel A

    2014-12-16

    Why are large, complex ecosystems stable? Both theory and simulations of current models predict the onset of instability with growing size and complexity, so for decades it has been conjectured that ecosystems must have some unidentified structural property exempting them from this outcome. We show that trophic coherence--a hitherto ignored feature of food webs that current structural models fail to reproduce--is a better statistical predictor of linear stability than size or complexity. Furthermore, we prove that a maximally coherent network with constant interaction strengths will always be linearly stable. We also propose a simple model that, by correctly capturing the trophic coherence of food webs, accurately reproduces their stability and other basic structural features. Most remarkably, our model shows that stability can increase with size and complexity. This suggests a key to May's paradox, and a range of opportunities and concerns for biodiversity conservation.

  15. Richness–productivity relationships between trophic levels in a detritus-based system: significance of abundance and trophic linkage

    PubMed Central

    Yee, Donald A.; Yee, Susan Harrell; Kneitel, Jamie M.; Juliano, Steven A.

    2009-01-01

    Most theoretical and empirical studies of productivity–species richness relationships fail to consider linkages among trophic levels. We quantified productivity–richness relationships in detritus-based, water-filled tree-hole communities for two trophic levels: invertebrate consumers and the protozoans on which they feed. By analogy to theory for biomass partitioning among trophic levels, we predicted that consumer control would result in richness of protozoans in the lower trophic level being unaffected by increases in productivity, whereas richness of invertebrate consumers would increase with productivity. Our data were consistent with this prediction: consumer richness increased linearly, but protozoan richness was unrelated to changes in productivity. The productivity–richness relationships for all taxa combined were not necessarily consistent with relationships within each trophic level. We used path analysis to investigate the mechanisms that may produce the observed responses of trophic levels to changes in productivity. We tested the importance of the direct effect of productivity on richness and the indirect effect of productivity mediated by effects on total abundance. For protozoans, only direct effects of productivity on richness were important, but both direct and indirect effects of productivity on richness were important for invertebrates. Protozoan richness was strongly affected by top-down impacts of abundance of invertebrates. These results are consistent with theory on biomass partitioning among trophic levels and suggest a strong link between richness and abundance within and between trophic levels. Understanding how trophic level interactions determine productivity–richness relationships will likely be necessary in order for us to achieve a comprehensive understanding of the determinants of diversity. PMID:17713787

  16. Richness-productivity relationships between trophic levels in a detritus-based system: significance of abundance and trophic linkage.

    PubMed

    Yee, Donald A; Yee, Susan Harrell; Kneitel, Jamie M; Juliano, Steven A

    2007-11-01

    Most theoretical and empirical studies of productivity-species richness relationships fail to consider linkages among trophic levels. We quantified productivity-richness relationships in detritus-based, water-filled tree-hole communities for two trophic levels: invertebrate consumers and the protozoans on which they feed. By analogy to theory for biomass partitioning among trophic levels, we predicted that consumer control would result in richness of protozoans in the lower trophic level being unaffected by increases in productivity, whereas richness of invertebrate consumers would increase with productivity. Our data were consistent with this prediction: consumer richness increased linearly, but protozoan richness was unrelated to changes in productivity. The productivity-richness relationships for all taxa combined were not necessarily consistent with relationships within each trophic level. We used path analysis to investigate the mechanisms that may produce the observed responses of trophic levels to changes in productivity. We tested the importance of the direct effect of productivity on richness and the indirect effect of productivity mediated by effects on total abundance. For protozoans, only direct effects of productivity on richness were important, but both direct and indirect effects of productivity on richness were important for invertebrates. Protozoan richness was strongly affected by top-down impacts of abundance of invertebrates. These results are consistent with theory on biomass partitioning among trophic levels and suggest a strong link between richness and abundance within and between trophic levels. Understanding how trophic level interactions determine productivity-richness relationships will likely be necessary in order for us to achieve a comprehensive understanding of the determinants of diversity.

  17. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras.

    PubMed Central

    Jaiswal, R K; Moodie, S A; Wolfman, A; Landreth, G E

    1994-01-01

    Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway. Images PMID:7935411

  18. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs

    PubMed Central

    Monterroso, Pedro; Garrote, Germán; Serronha, Ana; Santos, Emídio; Delibes-Mateos, Miguel; Abrantes, Joana; Perez de Ayala, Ramón; Silvestre, Fernando; Carvalho, João; Vasco, Inês; Lopes, Ana M.; Maio, Elisa; Magalhães, Maria J.; Mills, L. Scott; Esteves, Pedro J.; Simón, Miguel Ángel; Alves, Paulo C.

    2016-01-01

    Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60–70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs. PMID:27796353

  19. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs.

    PubMed

    Monterroso, Pedro; Garrote, Germán; Serronha, Ana; Santos, Emídio; Delibes-Mateos, Miguel; Abrantes, Joana; Perez de Ayala, Ramón; Silvestre, Fernando; Carvalho, João; Vasco, Inês; Lopes, Ana M; Maio, Elisa; Magalhães, Maria J; Mills, L Scott; Esteves, Pedro J; Simón, Miguel Ángel; Alves, Paulo C

    2016-10-31

    Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60-70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs.

  20. The sign of cascading predator effects varies with prey traits in a detrital system.

    PubMed

    Wu, Xinwei; Griffin, John N; Xi, Xinqiang; Sun, Shucun

    2015-11-01

    Theory and experiments show that the nature of 'green' trophic cascades, between predators, herbivores and plants, varies with several key species traits: predator hunting mode and predator and prey habitat domains. Meanwhile, 'brown' cascades between predators, environment-modifying detritivores and plants have been largely overlooked and the roles of species traits, particularly prey traits, in determining the nature of these cascades remains unclear. We hypothesize that, in predator-detritivore-plant interaction chains, the burrowing ability of plant-facilitating detritivores determines their response to predators and thus the sign of indirect effect transmitted. In the dung-decomposer food web of an alpine meadow, we predicted that in the presence of above-ground predacious beetles: (i) non-burrowing detritivores will suffer mortality due to predation and transmit negative indirect effects to plants, whereas (ii) burrowing detritivores will escape predation by retreating deeper into the soil, transmitting positive indirect effects to plants. In support of predictions, experiments showed that a single species of predacious beetle (i) reduced the density of the non-burrowing species and indirectly reduced dung loss rate, soil nutrient concentrations and plant biomass, but (ii) drove the burrowing species deeper, indirectly improved soil conditions and increased plant biomass. These results show that the burrowing ability of a detritivore can determine whether it transmits a negative indirect effect mediated by a reduction in its density, or a positive indirect effect mediated by its behavioural response to predation risk. We call for further tests of our detritivore-trait hypothesis in different regions and ecosystems to further develop a general trait-based framework for trophic cascades in detrital food webs. We further advance the general hypothesis that the locomotion traits of prey species (e.g. burrowing/flying ability) may help explain their behavioural

  1. Collisional Cascades Revisited

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke; Pan, M.

    2013-01-01

    Collisional cascades are believed to be the primary mechanism operating in circumstellar dusty debris disks, and are thought to be important in the Kuiper and Asteroid belt. Collisional cascades transfer mass via destructive collisions from larger bodies to smaller ones. Their widespread occurrence and potential importance in understanding planet formation and planet-disk interactions have motivated detailed studies of collisional cascades. The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. We relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan & Sari (2005) can steepen to values as large as q = 3.26. These differences in the size distribution power law index are very important when estimating the total disk mass, including larger bodies, by extrapolating from the observed dust masses. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies in, for example, extrasolar debris disks may constrain the total mass in large bodies stirring the cascade as well as the colliding bodies

  2. Trophic interactions in the benthic boundary layer of the Beaufort Sea shelf, Arctic Ocean: Combining bulk stable isotope and fatty acid signatures

    NASA Astrophysics Data System (ADS)

    Connelly, Tara L.; Deibel, Don; Parrish, Christopher C.

    2014-01-01

    The food web structure and diets of 26 taxa of benthic boundary layer (BBL) zooplankton on the Beaufort Sea shelf were studied using carbon and nitrogen stable isotopes and fatty acids. Mean δ15N values ranged from 7.3‰ for the amphipod Melita formosa to 14.9‰ for an unidentified polychaete, suggesting that taxa sampled came from three trophic levels. For 8 taxa, the lightest carbon signature occurred near the mouth of the Mackenzie River. Stable isotope ratios helped clarify the origin of signature fatty acids. Levels of certain polyunsaturated fatty acids (PUFA) were negatively correlated with δ15N, with the exception of 22:6ω3, which was positively correlated with δ15N, suggesting that this essential PUFA was retained through the food web. Discriminant analysis proved to be a powerful tool, predicting taxa from fatty acid profiles with 99% accuracy, and revealing strong phylogenetic trends in fatty acid profiles. The amphipod Arrhis phyllonyx had higher levels of ω6 PUFA, especially 20:4ω6 with several possible sources, than other peracarid crustaceans. The holothurian had high levels of odd numbered and branched chain fatty acids, indicative of bacterial consumption, while fatty acids of phytoplankton origin were important discriminants for Calanus hyperboreus and the chaetognaths Eukrohnia hamata and Parasagitta elegans. This relationship indicates that the conventional phytoplankton-copepod-chaetognath food web found in the water column also exists in the BBL. This observation, as well as generally low δ15N and high levels of certain PUFA in samples with lower δ15N, strongly suggests that BBL zooplankton on the Beaufort Sea shelf have access to fresh material of phytoplankton origin either by feeding on sedimenting matter or by active migration to surface waters.

  3. Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning.

    PubMed

    Hines, Jes; Gessner, Mark O

    2012-11-01

    1. Primary production and decomposition, two fundamental processes determining the functioning of ecosystems, may be sensitive to changes in biodiversity and food web interactions. 2. The impacts of food web interactions on ecosystem functioning are generally quantified by experimentally decoupling these linked processes and examining either primary production-based (green) or decomposition-based (brown) food webs in isolation. This decoupling may strongly limit our ability to assess the importance of food web interactions on ecosystem processes. 3. To evaluate how consumer trophic diversity mediates predator effects on ecosystem functioning, we conducted a mesocosm experiment and a field study using an assemblage of invertebrates that naturally co-occur on North Atlantic coastal saltmarshes. We measured the indirect impact of predation on primary production and leaf decomposition as a result of prey communities composed of herbivores alone, detritivores alone or both prey in combination. 4. We find that primary consumers can influence ecosystem process rates not only within, but also across green and brown sub-webs. Moreover, by feeding on a functionally diverse consumer assemblage comprised of both herbivores and detritivores, generalist predators can diffuse consumer effects on decomposition, primary production and feedbacks between the two processes. 5. These results indicate that maintaining functional diversity among primary consumers can alter the consequences of traditional trophic cascades, and they emphasize the role of the detritus-based sub-web when seeking key biotic drivers of plant production. Clearly, traditional compartmentalization of empirical food webs can limit our ability to predict the influence of food web interactions on ecosystem functioning.

  4. Alternative ubiquitin activation/conjugation cascades interact with N-end rule ubiquitin ligases to control degradation of RGS proteins.

    PubMed

    Lee, Peter C W; Sowa, Mathew E; Gygi, Steven P; Harper, J Wade

    2011-08-05

    Vertebrates express two enzymes for activation of ubiquitin-UBA1, which is responsible for activation of the vast majority of E2 conjugating enzymes, and UBA6, which uses the dedicated E2, USE1. However, targets and E3s for UBA6-USE1 are unknown. Here, we demonstrate that UBA6-USE1 functions with the UBR1-3 subfamily of N-recognin E3s to degrade the N-end rule substrates RGS4, RGS5, and Arg (R)-GFP. This pathway functions in the cytoplasm in parallel with the UBA1-UBE2A/B-UBR2 cascade, which promotes turnover of nuclear RGS4/5 proteins and an apparently phenotypically distinct pool of cytoplasmic RGS4/5. UBR2 promotes Lys48 (K48)-specific ubiquitin discharge from, and RGS4 ubiquitylation by, both USE1 and UBE2A in vitro. This work provides insight into the machinery employed by the UBA6-USE1 cascade to promote protein turnover and suggests that the UBA6 and UBA1 pathways can function in parallel with the same E3 to degrade the same targets in a spatially distinct manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Alternative Ubiquitin Activation/Conjugation Cascades Interact with N-end rule Ubiquitin Ligases to Control Degradation of RGS Proteins

    PubMed Central

    Lee, Peter C.W.; Sowa, Mathew E.; Gygi, Steven P.; Harper, J. Wade

    2011-01-01

    Vertebrates express two enzymes for activation of ubiquitin – UBA1, which is responsible for activation of the vast majority of E2 conjugating enzymes, and UBA6, which uses the dedicated E2, USE1. However, targets and E3s for UBA6-USE1 are unknown. Here, we demonstrate that UBA6-USE1 functions with the UBR1-3 subfamily of N-recognin E3s to degrade the N-end rule substrates RGS4, RGS5, and Arg(R)-GFP. This pathway functions in the cytoplasm in parallel with the UBA1-UBE2A/B-UBR2 cascade, which promotes turnover of nuclear RGS4/5 proteins and an apparently phenotypically distinct pool of cytoplasmic RGS4/5. UBR2 promotes Lys48 (K48)-specific ubiquitin discharge from, and RGS4 ubiquitylation by, both USE1 and UBE2A in vitro. This work provides insight into the machinery employed by the UBA6-USE1 cascade to promote protein turnover, and suggests that the UBA6 and UBA1 pathways can function in parallel with the same E3 to degrade the same targets in a spatially distinct manner. PMID:21816346

  6. Coupled 2-dimensional cascade theory for noise and unsteady aerodynamics of blade row interaction in turbofans. Volume 1: Theory development and parametric studies

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1994-01-01

    Typical analytical models for interaction between rotor and stator in a turbofan analyze the effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby generating noise. Reflection/transmission characteristics of the rotor are sometimes added in a separate calculation. In those models, there is a one-to-one relationship between wake harmonics and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the BPF noise harmonic, etc. This report presents a more complete model in which flow tangency boundary conditions are satisfied on two cascades in relative motion for several harmonics simultaneously. By an extension of S.N. Smith's code for two dimensional flat plate cascades, the noise generation/frequency scattering/blade row reflection problem is solved in a single matrix inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy in the higher BPF harmonics due to relative motion between the blade rows. Furthermore, when swirl between the rotor and stator is modeled, a 'mode trapping' effect occurs which explains observations on fans operating at rotational speeds below BFP cuton: the BPF mode amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. However, energy scattered into higher harmonics does propagate and dominates the spectrum at two and three times BPF. This report presents the complete derivation of the theory, comparison with a previous (more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and rotor/stator interaction. For generality, the analysis applies to stages where the rotor is either upstream or downstream of the stator and to counter rotation stages. The theory has been coded in a FORTRAN program called CUP2D, documented in Volume 2 of this report. It is

  7. Inferring network structure from cascades

    NASA Astrophysics Data System (ADS)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  8. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions.

    PubMed

    Yun, Seungman; Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian A

    2013-04-01

    Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an "energy-labeled reabsorption" process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20-40 keV.

  9. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions

    SciTech Connect

    Yun, Seungman; Tanguay, Jesse; Cunningham, Ian A.; Kim, Ho Kyung

    2013-04-15

    Purpose: Theoretical models of the detective quantum efficiency (DQE) of x-ray detectors are an important step in new detector development by providing an understanding of performance limitations and benchmarks. Previous cascaded-systems analysis (CSA) models accounted for photoelectric interactions only. This paper describes an extension of the CSA approach to incorporate coherent and incoherent interactions, important for low-Z detectors such as silicon and selenium. Methods: A parallel-cascade approach is used to describe the three types of x-ray interactions. The description of incoherent scatter required developing expressions for signal and noise transfer through an 'energy-labeled reabsorption' process where the parameters describing reabsorption are random functions of the scatter photon energy. The description of coherent scatter requires the use of scatter form factors that may not be accurate for some crystalline detector materials. The model includes the effects of scatter reabsorption and escape, charge collection, secondary quantum sinks, noise aliasing, and additive noise. Model results are validated by Monte Carlo calculations for Si and Se detectors assuming free-atom atomic form factors. Results: The new signal and noise transfer expressions were validated by showing agreement with Monte Carlo results. Coherent and incoherent scatter can degrade the DQE of Si and sometimes Se detectors depending on detector thickness and incident-photon energy. Incoherent scatter can produce a substantial low-frequency drop in the modulation transfer function and DQE. Conclusions: A generally useful CSA model of the DQE is described that is believed valid for any single-Z material up to 10 cycles/mm at both mammographic and radiographic energies within the limitations of Fourier-based linear-systems models and the use of coherent-scatter form factors. The model describes a substantial low-frequency drop in the DQE of Si systems due to incoherent scatter above 20

  10. Stochastic background of atmospheric cascades

    SciTech Connect

    Wilk, G. ); Wlodarczyk, Z. )

    1993-06-15

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions.

  11. Interaction of pro-apoptotic protein HGTD-P with heat shock protein 90 is required for induction of mitochondrial apoptotic cascades.

    PubMed

    Kim, Jee-Youn; Kim, Su-Mi; Ko, Jeong-Hun; Yim, Ji-Hye; Park, Jin-Hae; Park, Jae-Hoon

    2006-05-29

    HGTD-P is a hypoxia-responsive pro-apoptotic protein that transmits hypoxic signals directly to mitochondria. When overexpressed, HGTD-P induces cell death via typical mitochondrial apoptotic cascades. However, much is unknown about post-transcriptional modification and signaling networks of HGTD-P in association with cell death-regulating proteins. We performed yeast two-hybrid screening to identify the molecules involved in HGTD-P-mediated cell death pathways. In this study, we show that heat shock protein 90 physically interacts with HGTD-P and that suppression of Hsp90 activity by low concentrations of geldanamycin reduced HGTD-P-induced mitochondrial catastrophe through inhibition of mitochondrial translocation of HGTD-P.

  12. Trophic mismatch requires seasonal heterogeneity of warming.

    PubMed

    Straile, Dietmar; Kerimoglu, Onur; Peeters, Frank

    2015-10-01

    Climate warming has been shown to advance the phenology of species. Asynchronous changes in phenology between interacting species may disrupt feeding interactions (phenological mismatch), which could have tremendous consequences for ecosystem functioning. Long-term field observations have suggested asynchronous shifts in phenology with warming, whereas experimental studies have not been conclusive. Using proxy-based modeling of three trophic levels (algae, herbivores, and fish), we .show that asynchronous changes in phenology only occur if warming is seasonally heterogeneous, but not if warming is constant throughout the year. If warming is seasonally heterogeneous, the degree and even direction of asynchrony depends on the specific seasonality of the warming. Conclusions about phenological mismatches in food web interactions may therefore produce controversial results if the analyses do not distinguish between seasonally constant and seasonal specific warming. Furthermore, our results suggest that predicting asynchrony between interacting species requires reliable warming predictions that resolve sub-seasonal time scales.

  13. Trophic structure of pelagic species in the northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Albo-Puigserver, Marta; Navarro, Joan; Coll, Marta; Layman, Craig A.; Palomera, Isabel

    2016-11-01

    Ecological knowledge of food web interactions within pelagic marine communities is often limited, impairing our capabilities to manage these ecologically and economically important marine fish species. Here we used stable isotope analyses to investigate trophic interactions in the pelagic ecosystem of the northwestern Mediterranean Sea during 2012 and 2013. Our results suggest that European sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, Sardinella aurita, appeared to be located at a higher trophic level than the other small pelagic fish species, although previous studies found similarity in their diets. Isotope data suggested that trophic niches of species within the genera Trachurus spp. and Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic levels than other species. Despite some intraspecific seasonal variability for some species, community trophic structure appeared relatively stable through the year. These data provide an important step for developing models of food web dynamics in the northwestern Mediterranean Sea.

  14. Eastern Scotian Shelf trophic dynamics: A review of the evidence for diverse hypotheses

    NASA Astrophysics Data System (ADS)

    Sinclair, Michael; Power, Michael; Head, Erica; Li, William K. W.; McMahon, Michael; Mohn, Robert; O'Boyle, Robert; Swain, Douglas; Tremblay, John

    2015-11-01

    Two hypotheses have been proposed to account for trophic dynamic control of the eastern Scotian Shelf ecosystem off Atlantic Canada: (1) top-down: fishery induced trophic cascade and (2) bottom-up: climate variability. We evaluate the evidence in support of these hypotheses: including observations on top-down drivers (fishing effort and predation by grey seals), bottom-up drivers (nutrient supply and water column stratification), and the several trophic levels (groundfish, macro-invertebrates, small pelagic fish, and plankton). There is limited support for the fishery-induced trophic cascade hypothesis. The predictions of the climate variability hypothesis are generally met for the lower and middle trophic levels, but the ongoing high levels of natural mortality of groundfish are not accounted for. We propose an alternative hypothesis encompassing concurrent top-down and bottom-up processes, and conclude that many species of groundfish (including cod) and small pelagic fish stocks (including herring) will not recover with the ongoing high levels of natural mortality generated by grey seal predation. Predictions on future trends in abundance of the commercially important macro-invertebrate species (lobster, snow crab, and shrimp) are not possible based on the available evidence.

  15. Discovery of novel inhibitors disrupting HIF-1α/von Hippel–Lindau interaction through shape-based screening and cascade docking

    PubMed Central

    Xue, Xin; Zhao, Ning-Yi; Yu, Hai-Tao; Sun, Yuan; Kang, Chen; Huang, Qiong-Bin; Sun, Hao-Peng

    2016-01-01

    Major research efforts have been devoted to the discovery and development of new chemical entities that could inhibit the protein–protein interaction between HIF-1α and the von Hippel–Lindau protein (pVHL), which serves as the substrate recognition subunit of an E3 ligase and is regarded as a crucial drug target in cancer, chronic anemia, and ischemia. Currently there is only one class of compounds available to interdict the HIF-1α/pVHL interaction, urging the need to discover chemical inhibitors with more diversified structures. We report here a strategy combining shape-based virtual screening and cascade docking to identify new chemical scaffolds for the designing of novel inhibitors. Based on this strategy, nine active hits have been identified and the most active hit, 9 (ZINC13466751), showed comparable activity to pVHL with an IC50 of 2.0 ± 0.14 µM, showing the great potential of utilizing these compounds for further optimization and serving as drug candidates for the inhibition of HIF-1α/von Hippel–Lindau interaction. PMID:27994971

  16. Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis.

    PubMed

    Luo, Jinghui; Wärmländer, Sebastian K T S; Gräslund, Astrid; Abrahams, Jan Pieter

    2016-08-05

    Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-β (Aβ) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aβ and other amyloid proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Contrasting cascades: insectivorous birds increase pine but not parasitic mistletoe growth.

    PubMed

    Mooney, Kailen A; Linhart, Yan B

    2006-03-01

    1. Intraguild predation occurs when top predators feed upon both intermediate predators and herbivores. Intraguild predators may thus have little net impact on herbivore abundance. Variation among communities in the strength of trophic cascades (the indirect effects of predators on plants) may be due to differing frequencies of intraguild predation. Less is known about the influence of variation within communities in predator-predator interactions upon trophic cascade strength. 2. We compared the effects of a single predator community between two sympatric plants and two herbivore guilds. We excluded insectivorous birds with cages from ponderosa pine Pinus ponderosa trees parasitized by dwarf mistletoe Arceuthobium vaginatum. For 3 years we monitored caged and control trees for predatory arthropods that moved between the two plants, foliage-feeding caterpillars and sap-feeding hemipterans that were host-specific, and plant damage and growth. 3. Excluding birds increased the abundance of ant-tended aphids on pine and resulted in an 11% reduction in pine woody growth. Mutualist ants protected pine-feeding aphids from predatory arthropods, allowing aphid populations to burgeon in cages even though predatory arthropods also increased in cages. By protecting pine-feeding aphids from predatory arthropods but not birds, mutualist ants created a three-tiered linear food chain where bird effects cascaded to pine growth via aphids. 4. In contrast to the results for tended aphids on pine, bird exclusion had no net effects on untended pine herbivores, the proportion of pine foliage damaged by pine-feeding caterpillars, or the proportion of mistletoe plants damaged by mistletoe-feeding caterpillars. These results suggest that arthropod predators, which were more abundant in cages as compared with control trees, compensated for bird predation of untended pine and mistletoe herbivores. 5. These contrasting effects of bird exclusion support food web theory: where birds were

  18. Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation.

    PubMed

    Driben, Rodislav; Mitschke, Fedor; Zhavoronkov, Nickolai

    2010-12-06

    The complex mechanism of multiple interactions between solitary and dispersive waves at the advanced stage of supercontinuum generation in photonic crystal fiber is studied in experiment and numerical simulations. Injection of high power negatively chirped pulses near zero dispersion frequency results in an effective soliton fission process with multiple interactions between red shifted Raman solitons and dispersive waves. These interactions may result in relative acceleration of solitons with further collisions between them of quasi-elastic or quasi-plastic kinds. In the spectral domain these processes result in enhancement of certain wavelength regions within the spectrum or development of a new significant band at the long wavelength side of the spectrum.

  19. Hadron cascades produced by electromagnetic cascades

    SciTech Connect

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps.

  20. Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.

    PubMed

    Lauria, Valentina; Attrill, Martin J; Pinnegar, John K; Brown, Andrew; Edwards, Martin; Votier, Stephen C

    2012-01-01

    Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66 ± 0.02 °C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = -0.305 ± 0.125; 1-group: p = 0.04, slope = -0.410 ± 0.193). Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 ± 0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 ± 0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.

  1. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass.

    PubMed

    Deraison, Hélène; Badenhausser, Isabelle; Loeuille, Nicolas; Scherber, Christoph; Gross, Nicolas

    2015-12-01

    Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre-emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait-based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning. © 2015 John Wiley & Sons Ltd/CNRS.

  2. A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition

    PubMed Central

    Mathieu, A.; Cournède, P. H.; Letort, V.; Barthélémy, D.; de Reffye, P.

    2009-01-01

    Background and Aims The strong influence of environment and functioning on plant organogenesis has been well documented by botanists but is poorly reproduced in most functional–structural models. In this context, a model of interactions is proposed between plant organogenesis and plant functional mechanisms. Methods The GreenLab model derived from AMAP models was used. Organogenetic rules give the plant architecture, which defines an interconnected network of organs. The plant is considered as a collection of interacting ‘sinks’ that compete for the allocation of photosynthates coming from ‘sources’. A single variable characteristic of the balance between sources and sinks during plant growth controls different events in plant development, such as the number of branches or the fruit load. Key Results Variations in the environmental parameters related to light and density induce changes in plant morphogenesis. Architecture appears as the dynamic result of this balance, and plant plasticity expresses itself very simply at different levels: appearance of branches and reiteration, number of organs, fructification and adaptation of ecophysiological characteristics. Conclusions The modelling framework serves as a tool for theoretical botany to explore the emergence of specific morphological and architectural patterns and can help to understand plant phenotypic plasticity and its strategy in response to environmental changes. PMID:19297366

  3. [Trophic function of phytophagous rotifers (Rotatoria). Experiment and modelling].

    PubMed

    Tiutiunov, Iu V; Titova, L I; Surkov, F A; Bakaeva, E N

    2010-01-01

    Three predator-dependent trophic functions have been fitted to experimental data on individual ration of two phytophagous rotifers (Brachionus calyciflorus and Philodina acuticornis) in laboratory monocultures of microalgae (Chlorella vulgaris Beyer, Scenedesmus quadricauda Brev. and Synechocistis sp.). The best fit was obtained with theoretical dependence proposed in that generalises the Arditi-Ginzburg ratio-dependent trophic function, approaching the Holling type II expression when either predator or prey density becomes low. At the same time the obtained results suggest that the original ratio-dependent function of Arditi-Ginzburg can be effectively used for modelling trophic interactions in the considered systems, because individual ration of rotifers is determined by the ratio of microalgae to consumer abundances.

  4. Interaction of 1/3?11 0?(0001) edge dislocation with point defect clusters created in displacement cascades in a-zirconium.

    SciTech Connect

    Voskoboinikov, Roman E; Osetskiy, Yury N; Bacon, David J

    2005-01-01

    Atomic-scale details of the interaction of a 1/3 11{bar 2}0 (0001) edge dislocation, which dissociates in the basal plane, with four typical vacancy and self-interstitial atom (SIA) clusters created by displacement cascades in a-zirconium are investigated by computer modelling. A triangular cluster of SIAs lying within a basal atomic plane adjacent to the dislocation glide plane is not absorbed by the dislocation but is pushed along by the leading partial. A 3-D SIA cluster lying across the glide plane is completely absorbed by the dislocation by creation of two super-jogs. The dislocation also climbs by interaction with a prismatic vacancy cluster, but only half of the vacancies are absorbed in this case. For a cluster formed from a basal platelet of vacancies, the dislocation experiences a glide resistance, but both the line and cluster are fully restored after breakaway. Stress-strain curves and the critical stress for dislocation breakaway from a cluster are presented.

  5. A cascade of evolutionary change alters consumer-resource dynamics and ecosystem function

    PubMed Central

    Walsh, Matthew R.; DeLong, John P.; Hanley, Torrance C.; Post, David M.

    2012-01-01

    It is becoming increasingly clear that intraspecific evolutionary divergence influences the properties of populations, communities and ecosystems. The different ecological impacts of phenotypes and genotypes may alter selection on many species and promote a cascade of ecological and evolutionary change throughout the food web. Theory predicts that evolutionary interactions across trophic levels may contribute to hypothesized feedbacks between ecology and evolution. However, the importance of ‘cascading evolutionary change’ in a natural setting is unknown. In lakes in Connecticut, USA, variation in migratory behaviour and feeding morphology of a fish predator, the alewife (Alosa pseudoharengus), drives life-history evolution in a species of zooplankton prey (Daphnia ambigua). Here we evaluated the reciprocal impacts of Daphnia evolution on ecological processes in laboratory mesocosms. We show that life-history evolution in Daphnia facilitates divergence in rates of population growth, which in turn significantly alters consumer-resource dynamics and ecosystem function. These experimental results parallel trends observed in lakes. Such results argue that a cascade of evolutionary change, which has occurred over contemporary timescales, alters community and ecosystem processes. PMID:22628469

  6. Diversity cascades in alfalfa fields: from plant quality to agroecosystem diversity.

    PubMed

    Pearson, Clark V; Massad, Tara J; Dyer, Lee A

    2008-08-01

    To examine top-down and bottom-up influences on managed terrestrial communities, we manipulated plant resources and arthropod abundance in alfalfa (Medicago sativa L.) fields. We modified arthropod communities using three nonfactorial manipulations: pitfall traps to remove selected arthropods, wooden crates to create habitat heterogeneity, and an arthropod removal treatment using a reversible leaf blower. These manipulations were crossed with fertilizer additions, which were applied to half of the plots. We found strong effects of fertilizer on plant quality and biomass, and these effects cascaded up to increase herbivore abundance and diversity. The predator community also exhibited a consistent positive effect on the maintenance of herbivore species richness and abundance. These top-down changes in arthropods did not cascade down to affect plant biomass; however, plant quality (saponin content) increased with higher herbivore densities. These results corroborate previous studies in alfalfa that show complex indirect effects, such as trophic cascades, can operate in agricultural systems, but the specifics of the interactions depend on the assemblages of arthropods involved.

  7. Trophic interactions between two herbivorous insects, Galerucella calmariensis and Myzus lythri, feeding on purple loosestrife, Lythrum salicaria, and two insect predators, Harmonia axyridis and Chrysoperla carnea.

    PubMed

    Matos, Bethzayda; Obrycki, John J

    2007-01-01

    The effects of two herbivorous insects, Galerucella calmariensis Duftschmid and Myzus lythri L. (Coleoptera: Chrysomelidae), feeding on purple loosestrife, Lythrum salicaria L. (Myrtiflorae: Lythraceae), were measured in the presence of two insect predators, Harmonia axyridis Pallas (Coleoptera: Coccinellidae) and Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). A greenhouse cage experiment examined the direct effects of these predators on these herbivores, and indirect effects of predation on aboveground biomass, defoliation, number of leaves, and internode length. Eight treatment combinations with G. calmariensis, M. lythri, H. axyridis and C. carnea were applied to caged L. salicaria. The experiment ended when G. calmariensis adults were observed, 11 to 13 days after release of first instar G. calmariensis. G. calmariensis larvae alone removed significant amounts of leaf tissue and reduced the number of L. salicaria leaves. Predators did not reduce levels of defoliation by G. calmariensis. C. carnea had no effect on G. calmariensis survival, but H. axyridis reduced G. calmariensis survival in the presence of M. lythri. Both predators reduced the survival of M. lythri. This short duration greenhouse study did not demonstrate that predator-prey interactions altered herbivore effects on L. salicaria.

  8. Temporal variation in the biochemical ecology of lower trophic levels in the Northern California Current

    NASA Astrophysics Data System (ADS)

    Miller, J. A.; Peterson, W. T.; Copeman, L. A.; Du, X.; Morgan, C. A.; Litz, M. N. C.

    2017-06-01

    There is strong correlative evidence that variation in the growth and survival of secondary consumers is related to the copepod species composition within the Northern California Current. Potential mechanisms driving these correlations include: (1) enhanced growth and survival of secondary consumers when lipid-rich, boreal copepod species are abundant, with cascading effects on higher trophic levels; (2) the regulation of growth and condition of primary and secondary consumers by the relative proportion of certain essential fatty acids (FAs) in primary producers; or (3) a combination of these factors. Disentangling the relative importance of taxonomic composition, lipid quantity, and FA composition on the nutritional quality of copepods requires detailed information on both the consumer and primary producers. Therefore, we collected phytoplankton and copepods at an oceanographic station for 19 months and completed species community analyses and generated detailed lipid profiles, including lipid classes and FAs, for both groups. There was strong covariation between species and biochemistry within and across trophic levels and distinct seasonal differences. The amount of total lipid within both the phytoplankton and copepod communities was twice as high in spring and summer than in fall and winter, and certain FAs, such as diatom indicators 20:5ω3 and 16:1ω7, comprised a greater proportion of the FA pool in spring and summer. Indicators of bacterial production within the copepod community were proportionally twice as high during fall and winter than spring and summer. Seasonal transitions in copepod FA composition were consistently offset from transitions in copepod species composition by approximately two weeks. The timing of the seasonal transition in copepod FAs reflected seasonal shifts in the species composition and/or biochemistry of primary producers more than seasonal shifts in the copepod species composition. These results emphasize the importance of

  9. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators

    PubMed Central

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A.

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  10. Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators.

    PubMed

    Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-01-01

    Host plant defenses are known to cascade up food chains to influence herbivores and their natural enemies, but how herbivore and predator traits and identity mediate such tri-trophic dynamics is largely unknown. We assessed the influence of plant defense on aphid and coccinellid performance in laboratory trials with low- vs. high-glucosinolate varieties of Brassica napus, a dietary specialist (Brevicoryne brassicae) and generalist (Myzus persicae) aphid, and five species of aphidophagous coccinellids. The performance of the specialist and generalist aphids was similar and unaffected by variation in plant defense. Aphid glucosinolate concentration and resistance to predators differed by aphid species and host plant defense, and these effects acted independently. With respect to aphid species, the dietary generalist aphid (vs. specialist) had 14% lower glucosinolate concentration and coccinellid predators ate three-fold more aphids. With respect to host plant variety, the high-glucosinolate plants (vs. low) increased aphid glucosinolate concentration by 21%, but had relatively weak effects on predation by coccinellids and these effects varied among coccinellid species. In turn, coccinellid performance was influenced by the interactive effects of plant defense and aphid species, as the cascading, indirect effect of plant defense was greater when feeding upon the specialist than generalist aphid. When feeding upon specialist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by 78% and accelerated development by 14%. In contrast, when feeding upon generalist aphids, low- (vs. high-) glucosinolate plants increased coccinellid mass gain by only 11% and had no detectable effect on development time. These interactive effects of plant defense and aphid diet breadth on predator performance also varied among coccinellid species; the indirect negative effects of plant defenses on predator performance was consistent among the five predators when

  11. Legacy of top-down herbivore pressure ricochets back up multiple trophic levels in forest canopies over 30 years

    Treesearch

    Tim Nuttle; Ellen H. Yerger; Scott H. Stoleson; Todd E. Ristau

    2011-01-01

    Removal of top-down control on herbivores can result in a trophic cascade where herbivore pressure on plants results in changes in plant communities. These altered plant communities are hypothesized to exert bottom-up control on subsequent herbivory via changes in plant quality or productivity. But it remains untested whether top-down perturbation causes long term...

  12. The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells.

    PubMed

    Shokouhi, Behnaz; Coban, Cevayir; Hasirci, Vasif; Aydin, Erkin; Dhanasingh, Anandhan; Shi, Nian; Koyama, Shohei; Akira, Shizuo; Zenke, Martin; Sechi, Antonio S

    2010-08-01

    Biomaterials are used in several health-related applications ranging from tissue regeneration to antigen-delivery systems. Yet, biomaterials often cause inflammatory reactions suggesting that they profoundly alter the homeostasis of host immune cells such as dendritic cells (DCs). Thus, there is a major need to understand how biomaterials affect the function of these cells. In this study, we have analysed the influence of chemically and physically diverse biomaterials on DCs using several murine knockouts. DCs can sense biomedical polymers through a mechanism, which involves multiple TLR/MyD88-dependent signalling pathways, in particular TLR2, TLR4 and TLR6. TLR-biomaterial interactions induce the expression of activation markers and pro-inflammatory cytokines and are sufficient to confer on DCs the ability to activate antigen-specific T cells. This happens through a direct biomaterial-DC interaction although, for degradable biomaterials, soluble polymer molecules can also alter DC function. Finally, the engagement of TLRs by biomaterials profoundly alters DC adhesive properties. Our findings could be useful for designing structure-function studies aimed at developing more bioinert materials. Moreover, they could also be exploited to generate biomaterials for studying the molecular mechanisms of TLR signalling and DC activation aiming at fine-tuning desired and pre-determined immune responses. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Epibiotic mutualists alter coral susceptibility and response to biotic disturbance through cascading trait-mediated indirect interactions

    NASA Astrophysics Data System (ADS)

    Bergsma, G. S.

    2012-06-01

    Biotic disturbances are important drivers of community structure, but interactions among community members can determine trajectories of response and recovery. On coral reefs in French Polynesia, epibiotic amphipods induce the formation of branch-like "fingers" on flat colonies of encrusting Montipora coral. The fingers form as coral encrusts the amphipods' tubes and lead to significant changes in colony morphology. I tested whether the induced morphological changes affect Montipora's susceptibility to predation by pincushion ( Culcita novaeguineae) and crown-of-thorns sea stars ( Acanthaster planci). Montipora with fingers were less likely to be attacked and more likely to survive attack than colonies without fingers. Furthermore, the presence of fingers altered A. planci prey preference. Sea stars preferred Montipora without fingers over other common coral genera, but preferred other genera when Montipora had fingers. Amphipods indirectly affected Montipora's resistance and resilience to predation, and the susceptibility of other coral genera to predation, through induced morphological changes. Such trait-mediated indirect interactions likely play an important role in determining how species respond to periodic sea star outbreaks.

  14. Ecological speciation in a generalist consumer expands the trophic niche of a dominant predator.

    PubMed

    Thomas, Stephen M; Harrod, Chris; Hayden, Brian; Malinen, Tommi; Kahilainen, Kimmo K

    2017-08-18

    Ecological speciation - whereby an ancestral founder species diversifies to fill vacant niches - is a phenomenon characteristic of newly formed ecosystems. Despite such ubiquity, ecosystem-level effects of such divergence remain poorly understood. Here, we compared the trophic niche of European whitefish (Coregonus lavaretus) and their predators in a series of contrasting subarctic lakes where this species had either diversified into four ecomorphologically distinct morphs or instead formed monomorphic populations. We found that the trophic niche of whitefish was almost three times larger in the polymorphic than in the monomorphic lakes, due to an increase in intraspecific specialisation. This trophic niche expansion was mirrored in brown trout (Salmo trutta), a major predator of whitefish. This represents amongst the first evidence for ecological speciation directly altering the trophic niche of a predator. We suggest such mechanisms may be a common and important - though presently overlooked - factor regulating trophic interactions in diverse ecosystems globally.

  15. Smad4-Shh-Nfic signaling cascade-mediated epithelial-mesenchymal interaction is crucial in regulating tooth root development.

    PubMed

    Huang, Xiaofeng; Xu, Xun; Bringas, Pablo; Hung, Yee Ping; Chai, Yang

    2010-05-01

    Transforming growth factor beta (TGF-beta)/bone morphogenetic protein (BMP) signaling is crucial for regulating epithelial-mesenchymal interaction during organogenesis, and the canonical Smad pathway-mediated TGF-beta/BMP signaling plays important roles during development and disease. During tooth development, dental epithelial cells, known as Hertwig's epithelial root sheath (HERS), participate in root formation following crown development. However, the functional significance of HERS in regulating root development remains unknown. In this study we investigated the signaling mechanism of Smad4, the common Smad for TGF-beta/BMP signaling, in HERS in regulating root development. Tissue-specific inactivation of Smad4 in HERS results in abnormal enamel and dentin formation in K14-Cre;Smad4(fl/fl) mice. HERS enlarges but cannot elongate to guide root development without Smad4. At the molecular level, Smad4-mediated TGF-beta/BMP signaling is required for Shh expression in HERS and Nfic (nuclear factor Ic) expression in the cranial neural crest (CNC)-derived dental mesenchyme. Nfic is crucial for root development, and loss of Nfic results in a CNC-derived dentin defect similar to the one of K14-Cre;Smad4(fl/fl) mice. Significantly, we show that ectopic Shh induces Nfic expression in dental mesenchyme and partially rescues root development in K14-Cre;Smad4(fl/fl) mice. Taken together, our study has revealed an important signaling mechanism in which TGF-beta/BMP signaling relies on a Smad-dependent mechanism in regulating Nfic expression via Shh signaling to control root development. The interaction between HERS and the CNC-derived dental mesenchyme may guide the size, shape, and number of tooth roots.

  16. [Trophic types of the nematodes].

    PubMed

    Kornobis, Franciszek Wojciech

    2008-01-01

    The aim of the article is to present trophic types (i.e non-systematic groups feeding on the same kind of food) of the nematodes. Seven trophic types (covering all known species) are described: (1) microbivores (nematodes feeding on unicellular microorganisms) with two examples: C. elegans and the nematodes of two families: Steinernematidae and Heterorhabditidae, (2) parasites of Vertebrates, (3) parasites of Invertebrates with example of the family Acugutturidae, (4) parasites of plants with two examples: Tylenchorhynchus dubius and Heterodera schachtii, (5) parasites of fungi, (6) predatory nematodes, (7) omnivores (nematodes feeding on different kinds of food). Basic information on the anatomy of the alimentary canal and feeding behaviour of the nematodes are also provided.

  17. Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    PubMed Central

    Reynolds, Pamela L.; Bruno, John F.

    2012-01-01

    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions. PMID:22693549

  18. Effects of trophic skewing of species richness on ecosystem functioning in a diverse marine community.

    PubMed

    Reynolds, Pamela L; Bruno, John F

    2012-01-01

    Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.

  19. Interaction between pathogenic bacteria and intrauterine leukocytes triggers alternative molecular signaling cascades leading to labor in women.

    PubMed

    Estrada-Gutierrez, Guadalupe; Gomez-Lopez, Nardhy; Zaga-Clavellina, Veronica; Giono-Cerezo, Silvia; Espejel-Nuñez, Aurora; Gonzalez-Jimenez, Marco Antonio; Espino y Sosa, Salvador; Olson, David M; Vadillo-Ortega, Felipe

    2010-11-01

    Increased risk of preterm labor has been linked to cervicovaginal infection with Ureaplasma urealyticum and group B streptococci. Although various experimental models have been developed to study the role of amniochorion infection in preterm labor, they typically exclude the initial interaction between intrauterine leukocytes (recruited from decidual vessels into the avascular fetal membranes) and infecting bacteria. In this work, we ascertained whether inflammatory molecules secreted by bacterium-activated intrauterine leukocytes stimulate the amniochorion production of mediators involved in human labor. Using a two-step process beginning with placental circulating leukocytes as a proxy for intrauterine leukocytes, we found that coincubation of amniochorion explants with plasma from placental whole blood preincubated with group B streptococci resulted in a significant increase in tumor necrosis factor alpha (TNF-α) and matrix metalloproteinase 9 (MMP-9) levels in tissue. Extensive changes in the connective tissue arrangement and a decrease in collagen content demonstrated the degradation of the extracellular matrix following this treatment. In contrast, plasma from blood preconditioned with U. urealyticum induced a highly significant secretion of interleukin-1β (IL-1β) and prostaglandin E(2) (PGE(2)) by the amniochorion without changes in the extracellular matrix organization or content. These data demonstrate that group B streptococci induce degradation of the amniochorion as a result of MMP-9 production, probably via TNF-α, whereas U. urealyticum stimulates the secretion of PGE(2), probably via IL-1β, potentially stimulating myometrial contraction. Our study provides novel evidence that the immunological cells circulating within the uterine microenvironment respond differentially to an infectious agent, triggering alternative molecular signaling pathways leading to human labor.

  20. Trophic Ecology of Benthic Marine Invertebrates with Bi-Phasic Life Cycles: What Are We Still Missing?

    PubMed

    Calado, Ricardo; Leal, Miguel Costa

    2015-01-01

    The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions. © 2015 Elsevier Ltd. All rights reserved.

  1. Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities.

    PubMed

    García-Comas, Carmen; Sastri, Akash R; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-Hao

    2016-02-10

    Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models.

  2. Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities

    PubMed Central

    García-Comas, Carmen; Sastri, Akash R.; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models. PMID:26865298

  3. Body size and trophic position in a temperate estuarine food web

    NASA Astrophysics Data System (ADS)

    Akin, Senol; Winemiller, K. O.

    2008-03-01

    We used stomach contents and stable isotope ratios of fishes and macroinvertebrates, collected bi-monthly over 18 months from Mad Island Marsh, a small tidal estuary on the northwestern Gulf of Mexico coast, to examine potential body size-trophic position relationships. Mean body size (length) of predator taxa yielding measurable prey items were significantly correlated with body size (length) of their prey and mean volume of their stomach contents, however, the strength of the correlation was greater when two larger detrivores (i.e., striped mullet and gizzard shad) were excluded from the analysis. Similarly, trophic positions estimated by volumetric stomach contents were also significantly related to predator body size but not related to mean volume of stomach contents, but again excluding those detrivores from the analyses increased the strength of the relationship. Trophic positions estimated from stable isotopes and δ15N as an index of trophic position were also unrelated to predator body length, but significantly related to predator body mass. Although estimates of trophic positions in this tidal estuary using both methods were largely concordant, there were some exceptional zooplanktivorous and detritivorous species that had higher trophic levels according to nitrogen isotope ratios. Excluding those species from the analyses increased the strength of relationships between size and trophic positions of predators. A significant relationship between body sizes of consumers and their prey supports the view that body size is a key variable influencing trophic interactions and the structure of aquatic food webs. Our results also suggest that body size (especially consumer mass) is a good predictor of trophic levels estimated by stable isotopes, whereas consumer length is an important trait predicting the trophic level estimated from stomach contents in this tidal estuarine system.

  4. Mesoscale Eddies Are Oases for Higher Trophic Marine Life

    PubMed Central

    Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294

  5. Mesoscale eddies are oases for higher trophic marine life.

    PubMed

    Godø, Olav R; Samuelsen, Annette; Macaulay, Gavin J; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

  6. Cascading effects of defaunation on the coexistence of two specialized insect seed predators.

    PubMed

    Peguero, Guille; Muller-Landau, Helene C; Jansen, Patrick A; Wright, S Joseph

    2017-01-01

    Identification of the mechanisms enabling stable coexistence of species with similar resource requirements is a central challenge in ecology. Such coexistence can be facilitated by species at higher trophic levels through complex multi-trophic interactions, a mechanism that could be compromised by ongoing defaunation. We investigated cascading effects of defaunation on Pachymerus cardo and Speciomerus giganteus, the specialized insect seed predators of the Neotropical palm Attalea butyracea, testing the hypothesis that vertebrate frugivores and granivores facilitate their coexistence. Laboratory experiments showed that the two seed parasitoid species differed strongly in their reproductive ecology. Pachymerus produced many small eggs that it deposited exclusively on the fruit exocarp (exterior). Speciomerus produced few large eggs that it deposited exclusively on the endocarp, which is normally exposed only after a vertebrate handles the fruit. When eggs of the two species were deposited on the same fruit, Pachymerus triumphed only when it had a long head start, and the loser always succumbed to intraguild predation. We collected field data on the fates of 6569 Attalea seeds across sites in central Panama with contrasting degrees of defaunation and wide variation in the abundance of vertebrate frugivores and granivores. Speciomerus dominated where vertebrate communities were intact, whereas Pachymerus dominated in defaunated sites. Variation in the relative abundance of Speciomerus across all 84 sampling sites was strongly positively related to the proportion of seeds attacked by rodents, an indicator of local vertebrate abundance.

  7. Cascades frog conservation assessment

    Treesearch

    Karen Pope; Catherine Brown; Marc Hayes; Gregory Green; Diane Macfarlane

    2014-01-01

    The Cascades frog (Rana cascadae) is a montane, lentic-breeding amphibian that has become rare in the southern Cascade Range and remains relatively widespread in the Klamath Mountains of northern California. In the southern Cascades, remaining populations occur primarily in meadow habitats where the fungal disease, chytridiomycosis, and habitat...

  8. Southern cascades bioregion

    Treesearch

    Carl N. Skinner; Alan H. Taylor

    2006-01-01

    The Cascade Range extends from British Columbia, Canada, south to northern California where it meets the Sierra Nevada. The Southern Cascades bioregion in California is bounded on the west by the Sacramento Valley and the Klamath Mountains, and on the east by the Modoc Plateau and Great Basin. The bioregion encompasses the Southern Cascades section of Miles and Goudey...

  9. The evolution of trophic transmission

    USGS Publications Warehouse

    Lafferty, Kevin D.

    1999-01-01

    Parasite increased trophic transmission (PITT) is one of the more fascinating tales of parasite evolution. The implications of this go beyond cocktail party anecdotes and science fiction plots as the phenomenon is pervasive and likely to be ecologically and evolutionarily important. Although the subject has already received substantial review, Kevin Lafferty here focuses on evolutionary aspects that have not been fully explored, specifically: (1) How strong should PITT be? (2) How might sexual selection and limb autotomy facilitate PITT? (3) How might infrapopulation regulation in final hosts be important in determining avoidance of infected prey? And (4) what happens when more than one species of parasite is in the same intermediate host?

  10. Diversity Effects on Productivity Are Stronger within than between Trophic Groups in the Arbuscular Mycorrhizal Symbiosis

    PubMed Central

    Koch, Alexander M.; Antunes, Pedro M.; Klironomos, John N.

    2012-01-01

    Background The diversity of plants and arbuscular mycorrhizal fungi (AMF) has been experimentally shown to alter plant and AMF productivity. However, little is known about how plant and AMF diversity interact to shape their respective productivity. Methodology/Principal Findings We co-manipulated the diversity of both AMF and plant communities in two greenhouse studies to determine whether the productivity of each trophic group is mainly influenced by plant or AMF diversity, respectively, and whether there is any interaction between plant and fungal diversity. In both experiments we compared the productivity of three different plant species monocultures, or their respective 3-species mixtures. Similarly, in both studies these plant treatments were crossed with an AMF diversity gradient that ranged from zero (non-mycorrhizal controls) to a maximum of three and five taxonomically distinct AMF taxa, respectively. We found that within both trophic groups productivity was significantly influenced by taxon identity, and increased with taxon richness. These main effects of AMF and plant diversity on their respective productivities did not depend on each other, even though we detected significant individual taxon effects across trophic groups. Conclusions/Significance Our results indicate that similar ecological processes regulate diversity-productivity relationships within trophic groups. However, productivity-diversity relationships are not necessarily correlated across interacting trophic levels, leading to asymmetries and possible biotic feedbacks. Thus, biotic interactions within and across trophic groups should be considered in predictive models of community assembly. PMID:22629347

  11. Consistent multi-level trophic effects of marine reserve protection across northern New Zealand

    PubMed Central

    Edgar, Graham J.; Stuart-Smith, Rick D.; Thomson, Russell J.; Freeman, Debbie J.

    2017-01-01

    Through systematic Reef Life Survey censuses of rocky reef fishes, invertebrates and macroalgae at eight marine reserves across northern New Zealand and the Kermadec Islands, we investigated whether a system of no-take marine reserves generates consistent biodiversity outcomes. Ecological responses of reef assemblages to protection from fishing, including potential trophic cascades, were assessed using a control-impact design for the six marine reserves studied with associated reference sites, and also by comparing observations at reserve sites with predictions from random forest models that assume reserve locations are fished. Reserve sites were characterised by higher abundance and biomass of large fishes than fished sites, most notably for snapper Chrysophrys auratus, with forty-fold higher observed biomass inside relative to out. In agreement with conceptual models, significant reserve effects not only reflected direct interactions between fishing and targeted species (higher large fish biomass; higher snapper and lobster abundance), but also second order interactions (lower urchin abundance), third order interactions (higher kelp cover), and fourth order interactions (lower understory algal cover). Unexpectedly, we also found: (i) a consistent trend for higher (~20%) Ecklonia cover across reserves relative to nearby fished sites regardless of lobster and urchin density, (ii) an inconsistent response of crustose coralline algae to urchin density, (iii) low cover of other understory algae in marine reserves with few urchins, and (iv) more variable fish and benthic invertebrate communities at reserve relative to fished locations. Overall, reef food webs showed complex but consistent responses to protection from fishing in well-enforced temperate New Zealand marine reserves. The small proportion of the northeastern New Zealand coastal zone located within marine reserves (~0.2%) encompassed a disproportionately large representation of the full range of fish and

  12. Amniotic fluid: Source of trophic factors for the developing intestine

    PubMed Central

    Dasgupta, Soham; Arya, Shreyas; Choudhary, Sanjeev; Jain, Sunil K

    2016-01-01

    The gastrointestinal tract (GIT) is a complex system, which changes in response to requirements of the body. GIT represents a barrier to the external environment. To achieve this, epithelial cells must renew rapidly. This renewal of epithelial cells starts in the fetal life under the influence of many GIT peptides by swallowing amniotic fluid (AF). Development and maturation of GIT is a very complex cascade that begins long before birth and continues during infancy and childhood by breast-feeding. Many factors like genetic preprogramming, local and systemic endocrine secretions and many trophic factors (TF) from swallowed AF contribute and modulate the development and growth of the GIT. GIT morphogenesis, differentiation and functional development depend on the activity of various TF in the AF. This manuscript will review the role of AF borne TF in the development of GIT. PMID:26909227

  13. Trophic amplification of climate warming.

    PubMed

    Kirby, Richard R; Beaugrand, Gregory

    2009-12-07

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems.

  14. Trophic amplification of climate warming

    PubMed Central

    Kirby, Richard R.; Beaugrand, Gregory

    2009-01-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882

  15. Phytoplasma infection of a tropical root crop triggers bottom-up cascades by favoring generalist over specialist herbivores

    PubMed Central

    Graziosi, Ignazio; Burra, Dharani Dhar; Walter, Abigail Jan

    2017-01-01

    Global interest on plant-microbe-insect interactions is rapidly growing, revealing the multiple ways in which microorganisms mediate plant-herbivore interactions. Phytopathogens regularly alter whole repertoires of plant phenotypic traits, and bring about shifts in key chemical or morphological characteristics of plant hosts. Pathogens can also cause cascading effects on higher trophic levels, and eventually shape entire plant-associated arthropod communities. We tested the hypothesis that a Candidatus Phytoplasma causing cassava witches’ broom (CWB) on cassava (Manihot esculenta Grantz) is altering species composition of invasive herbivores and their associated parasitic hymenopterans. We conducted observational studies in cassava fields in eastern Cambodia to assess the effect of CWB infection on abundance of specialist and generalist mealybugs (Homoptera: Pseudococcidae), and associated primary and hyper-parasitoid species. CWB infection positively affects overall mealybug abundance and species richness at a plant- and field-level, and disproportionately favors a generalist mealybug over a specialist feeder. CWB phytoplasma infection led to increased parasitoid richness and diversity, with richness of ‘comparative’ specialist taxa being the most significantly affected. Parasitism rate did not differ among infected and uninfected plants, and mealybug host suppression was not impacted. CWB phytoplasma modifies host plant quality for sap-feeding homopterans, differentially affects success rates of two invasive species, and generates niche opportunities for higher trophic orders. By doing so, a Candidatus phytoplasma affects broader food web structure and functioning, and assumes the role of an ecosystem engineer. Our work unveils key facets of phytoplasma ecology, and sheds light upon complex multi-trophic interactions mediated by an emerging phytopathogen. These findings have further implications for invasion ecology and management. PMID:28813469

  16. [Treatment of patients with trophic ulcer].

    PubMed

    Karapetian, G É; Iakimov, S V; Mikitin, I L; Kochetova, L V; Pakhomova, R A

    2014-01-01

    The authors present the investigation of inpatient treatment of 137 patients with trophic ulcers of venous aethiology. All the patients were hospitalized in the "Road clinical hospital" on the Krasnoyarsk station. A comparative analysis of treatment results of the patients with trophic ulcers using different medical methods was made. The efficacy of combined use of low-frequency ultrasound and ozone therapy was proved.

  17. Fuel treatments, fire suppression, and their interaction with wildfire and its impacts: the Warm Lake experience during the Cascade Complex of wildfires in central Idaho, 2007

    Treesearch

    Russell T. Graham; Theresa B. Jain; Mark Loseke

    2009-01-01

    Wildfires during the summer of 2007 burned over 500,000 acres within central Idaho. These fires burned around and through over 8,000 acres of fuel treatments designed to offer protection from wildfire to over 70 summer homes and other buildings located near Warm Lake. This area east of Cascade, Idaho, exemplifies the difficulty of designing and implementing fuel...

  18. Trophic Shifts of a Generalist Consumer in Response to Resource Pulses

    PubMed Central

    Shaner, Pei-Jen L.; Macko, Stephen A.

    2011-01-01

    Trophic shifts of generalist consumers can have broad food-web and biodiversity consequences through altered trophic flows and vertical diversity. Previous studies have used trophic shifts as indicators of food-web responses to perturbations, such as species invasion, and spatial or temporal subsidies. Resource pulses, as a form of temporal subsidies, have been found to be quite common among various ecosystems, affecting organisms at multiple trophic levels. Although diet switching of generalist consumers in response to resource pulses is well documented, few studies have examined if the switch involves trophic shifts, and if so, the directions and magnitudes of the shifts. In this study, we used stable carbon and nitrogen isotopes with a Bayesian multi-source mixing model to estimate proportional contributions of three trophic groups (i.e. producer, consumer, and fungus-detritivore) to the diets of the White-footed mouse (Peromyscus leucopus) receiving an artificial seed pulse or a naturally-occurring cicadas pulse. Our results demonstrated that resource pulses can drive trophic shifts in the mice. Specifically, the producer contribution to the mouse diets was increased by 32% with the seed pulse at both sites examined. The consumer contribution to the mouse diets was also increased by 29% with the cicadas pulse in one of the two grids examined. However, the pattern was reversed in the second grid, with a 13% decrease in the consumer contribution with the cicadas pulse. These findings suggest that generalist consumers may play different functional roles in food webs under perturbations of resource pulses. This study provides one of the few highly quantitative descriptions on dietary and trophic shifts of a key consumer in forest food webs, which may help future studies to form specific predictions on changes in trophic interactions following resource pulses. PMID:21437248

  19. Taxonomic and trophic-level differences in the climate sensitivity of seasonal events

    NASA Astrophysics Data System (ADS)

    Høye, T. T.; Thackeray, S.; Henrys, P. A.; Hemming, D.; Bell, J. R.; Botham, M. S.; Burthe, S.; Helaouet, P.; Johns, D.; Jones, I. D.; Leech, D. I.; Mackay, E. B.; Massimino, D.; Atkinson, S.; Bacon, P. J.; Brereton, T. M.; Carvalho, L.; Clutton-Brock, T. H.; Duck, C.; Edwards, M.; Elliott, J. M.; Hall, S.; Harrington, R.; Pearce-Higgins, J. W.; Kruuk, L. E.; Pemberton, J. M.; Sparks, T. H.; Thompson, P. M.; White, I.; Winfield, I. J.; Wanless, S.

    2015-12-01

    Among-species differences in phenological responses to climate change are of sufficient magnitude to desynchronise key ecological interactions, threatening ecosystem function and services. To assess these threats, it is vital to quantify the relative impact of climate change on species at different trophic levels. Here we apply a novel Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, quantifying among-species variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms sharing taxonomic affinities or trophic position. Despite this, we detected a systematic difference in the direction and magnitude, but not seasonal timing, of phenological climate sensitivity among trophic levels. Secondary consumers showed consistently lower climate sensitivity than other groups and are projected to lag behind phenological changes at lower trophic levels, potentially making them at higher risk of disconnection with seasonal resources.

  20. A freshwater predator hit twice by the effects of warming across trophic levels.

    PubMed

    Jonsson, Tomas; Setzer, Malin

    2015-01-14

    Many ecological responses to climate change have been documented. However, due to indirect effects, some responses can be complex and difficult to predict. For example, our understanding of effects on consumers involving responses on several trophic levels is limited. Here, combining the knowledge of trophic interactions in the EU's fourth largest lake with long-term climate and catch data, we analyse potential drivers of change in this system's apex predator. We show that warm winters correlate with later poor catches of great Arctic charr (Salvelinus umbla), and that in recent years predator-prey cycles involving this species have disappeared. The likely mechanisms are trophic mismatches directly and indirectly affecting two stages of charr, the fry and the juveniles, respectively. Our study illustrates how a long-lived consumer may be subjected to double jeopardy from the effects of warming across trophic levels, and that a food web approach can aid in disentangling the chain of mechanisms responsible.

  1. South Cascade Glacier bibliography

    SciTech Connect

    Fountain, A.G.; Fulk, M.A.

    1984-01-01

    South Cascade Glacier, in Washington State, resides in a well-defined basin with mainly unglacierized divides making it ideal for most glaciological and hydrological studies. This bibliography is divided into three cateogories: (1) studies done about South Cascade Glacier specifically; (2) studies that use data from South Cascade Glacier but do not focus on or give insight to the glacier itself; and (3) instrumentation studies and non-glacier projects including snow studies done in the basin. (ACR)

  2. Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment.

    PubMed

    Hughes, Adam D; Brunner, Lars; Cook, Elizabeth J; Kelly, Maeve S; Wilson, Ben

    2012-01-01

    The trophic interactions of sea urchins are known to be the agents of phase shifts in benthic marine habitats such as tropical and temperate reefs. In temperate reefs, the grazing activity of sea urchins has been responsible for the destruction of kelp forests and the formation of 'urchin barrens', a rocky habitat dominated by crustose algae and encrusting invertebrates. Once formed, these urchin barrens can persist for decades. Trophic plasticity in the sea urchin may contribute to the stability and resilience of this alternate stable state by increasing diet breadth in sea urchins. This plasticity promotes ecological connectivity and weakens species interactions and so increases ecosystem stability. We test the hypothesis that sea urchins exhibit trophic plasticity using an approach that controls for other typically confounding environmental and genetic factors. To do this, we exposed a genetically homogenous population of sea urchins to two very different trophic environments over a period of two years. The sea urchins exhibited a wide degree of phenotypic trophic plasticity when exposed to contrasting trophic environments. The two populations developed differences in their gross morphology and the test microstructure. In addition, when challenged with unfamiliar prey, the response of each group was different. We show that sea urchins exhibit significant morphological and behavioural phenotypic plasticity independent of their environment or their nutritional status.

  3. Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests

    NASA Astrophysics Data System (ADS)

    Leclerc, Jean-Charles; Riera, Pascal; Laurans, Martial; Leroux, Cédric; Lévêque, Laurent; Davoult, Dominique

    2015-01-01

    Worldwide kelp forests have been the focus of several studies concerning ecosystem dysfunction in the past decades. Multifactorial kelp threats have been described and include deforestation due to human impact, cascading effects and climate change. Here, we compared community and trophic structure in two contrasting kelp forests off the coasts of Brittany. One has been harvested five years before sampling and shelters abundant omnivorous predators, almost absent from the other, which has been treated as preserved from kelp harvest. δ15N analyses conducted on the overall communities were linked to the tropho-functional structure of different strata featuring these forests (stipe and holdfast of canopy kelp and rock). Our results yielded site-to-site differences of community and tropho-functional structures across kelp strata, particularly contrasting in terms of biomass on the understorey. Similarly, isotope analyses inferred the top trophic position of Marthasterias glacialis and Echinus esculentus which may be considered as strong interactors in the sub-canopy. We interrogate these patterns and propose a series of probable and testable alternative hypotheses to explain them. For instance, we propose that differences of trophic structure and functioning result from confounded effects of contrasting wave dissipation depending on kelp size-density structure and community cascading involving these omnivorous predators. Given the species diversity and complexity of food web highlighted in these habitats, we call for further comprehensive research about the overall strata and tropho-functional groups for conservation management in kelp forests.

  4. Emergence of event cascades in inhomogeneous networks

    PubMed Central

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-01-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network. PMID:27625183

  5. Emergence of event cascades in inhomogeneous networks

    NASA Astrophysics Data System (ADS)

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-09-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network.

  6. Cascading Effects Following Intervention

    PubMed Central

    Patterson, Gerald R.; Forgatch, Marion S.; DeGarmo, David S.

    2010-01-01

    Four different sources for cascade effects were examined using 9-year process and outcome data from a randomized controlled trial (RCT) of a preventive intervention using Parent Management Training – Oregon Model (PMTO™). The social interaction learning (SIL) model of child antisocial behavior serves as one basis for predicting change. A second source addresses the issue of comorbid relationships among clinical diagnoses. The third source, collateral changes, describes events in which changes in one family member correlate with changes in another. The fourth component is based on the long-term effects of reducing coercion and increasing positive interpersonal processes within the family. New findings from the 9-year follow-up show that mothers experienced benefits as measured by standard of living (i.e., income, occupation, education, and financial stress) and frequency of police arrests. It is assumed that PMTO reduces the level of coercion, which sets the stage for a massive increase in positive social interaction. In effect, PMTO alters the family environment and thereby opens doors to healthy new social environments. PMID:20883592

  7. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  8. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses.

    PubMed

    Bache, M; Bang, O; Zhou, B B; Moses, J; Wise, F W

    2011-11-07

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2.2 - 4.5 μm range when pumping at λ₁ = 1.2 - 1.8 μm. The exact phase-matching point depends on the soliton wavelength, and we show that a simple longpass filter can separate the Cherenkov waves from the solitons. The Cherenkov waves are born few-cycle with an excellent Gaussian pulse shape, and the conversion efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses.

  9. A stochastic model of cascades in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Peter D.

    2012-10-01

    The dual cascade of energy and enstrophy in 2D turbulence cannot easily be understood in terms of an analog to the Richardson-Kolmogorov scenario describing the energy cascade in 3D turbulence. The coherent upscale and downscale fluxes point to non-locality of interactions in spectral space, and thus the specific spatial structure of the flow could be important. Shell models, which lack spatial structure and have only local interactions in spectral space, indeed fail in reproducing the correct scaling for the inverse cascade of energy. In order to exclude the possibility that non-locality of interactions in spectral space is crucial for the dual cascade, we introduce a stochastic spectral model of the cascades which is local in spectral space and which shows the correct scaling for both the direct enstrophy and the inverse energy cascade.

  10. Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system.

    PubMed

    Jabiol, Jérémy; McKie, Brendan G; Bruder, Andreas; Bernadet, Caroline; Gessner, Mark O; Chauvet, Eric

    2013-09-01

    1. Understanding the functional significance of species interactions in ecosystems has become a major challenge as biodiversity declines rapidly worldwide. Ecosystem consequences arising from the loss of diversity either within trophic levels (horizontal diversity) or across trophic levels (vertical diversity) are well documented. However, simultaneous losses of species at different trophic levels may also result in interactive effects, with potentially complex outcomes for ecosystem functioning. 2. Because of logistical constraints, the outcomes of such interactions have been difficult to assess in experiments involving large metazoan species. Here, we take advantage of a detritus-based model system to experimentally assess the consequences of biodiversity change within both horizontal and vertical food-web components on leaf-litter decomposition, a fundamental process in a wide range of ecosystems. 3. Our concurrent manipulation of fungal decomposer diversity (0, 1 or 5 species), detritivore diversity (0, 1 or 3 species), and the presence of predatory fish scent showed that trophic complexity is key to eliciting diversity effects on ecosystem functioning. Specifically, although fungi and detritivores tended to promote decomposition individually, rates were highest in the most complete community where all trophic levels were represented at the highest possible species richness. In part, the effects were trait-mediated, reflected in the contrasting foraging responses of the detritivore species to predator scent. 4. Our results thus highlight the importance of interactive effects of simultaneous species loss within multiple trophic levels on ecosystem functioning. If a common phenomenon, this outcome suggests that functional ecosystem impairment resulting from widespread biodiversity loss could be more severe than inferred from previous experiments confined to varying diversity within single trophic levels.

  11. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem.

    PubMed

    Shackell, Nancy L; Frank, Kenneth T; Fisher, Jonathan A D; Petrie, Brian; Leggett, William C

    2010-05-07

    Globally, overfishing large-bodied groundfish populations has resulted in substantial increases in their prey populations. Where it has been examined, the effects of overfishing have cascaded down the food chain. In an intensively fished area on the western Scotian Shelf, Northwest Atlantic, the biomass of prey species increased exponentially (doubling time of 11 years) even though the aggregate biomass of their predators remained stable over 38 years. Concomitant reductions in herbivorous zooplankton and increases in phytoplankton were also evident. This anomalous trophic pattern led us to examine how declines in predator body size (approx. 60% in body mass since the early 1970s) and climatic regime influenced lower