75 FR 51806 - Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... case studies describing the approaches currently being taken by four water utilities to assess their... series of case studies describing the approaches currently being taken by four water utilities in the... Vulnerability Assessment: Four Case Studies of Water Utility Practices AGENCY: Environmental Protection Agency...
NASA Astrophysics Data System (ADS)
Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.
2017-12-01
This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops for water resources students, applied scientists, practitioners, reservoir and water quality managers, and other interested stakeholders.
ERIC Educational Resources Information Center
Talbert, Diana E., Comp.
This document provides an overview of Peace Corps water and sanitation activities, five case studies (Thailand, Yemen, Paraguay, Sierra Leone, and Togo), programming guidelines, and training information. Each case study includes: (1) background information on the country's geography, population, and economics; (2) information on the country's…
Resilience in Utility Technologies
NASA Astrophysics Data System (ADS)
Seaton, Roger
The following sections are included: * Scope of paper * Preamble * Background to the case-study projects * Source projects * Resilience * Case study 1: Electricity generation * Context * Model * Case study 2: Water recycling * Context * Model * Case study 3: Ecotechnology and water treatment * Context * The problem of classification: Finding a classificatory solution * Application of the new taxonomy to water treatment * Concluding comments and questions * Conclusions * Questions and issues * Purposive or Purposeful? * Resilience: Flexibility and adaptivity? * Resilience: With respect of what? * Risk, uncertainty, surprise, emergence - What sort of shock, and who says so? * Co-evolutionary friction * References
Lefebvre, A; Bertrand, X; Quantin, C; Vanhems, P; Lucet, J-C; Nuemi, G; Astruc, K; Chavanet, P; Aho-Glélé, L S
2017-07-01
To study the association between the results of water samples and Pseudomonas aeruginosa healthcare-associated cases in a French university hospital. Generalized Estimating Equations were used on complete case and imputed datasets. The spatial unit was the building and the time unit was the quarter. For the period 2004-2013, 2932 water samples were studied; 17% were positive for P. aeruginosa. A higher incidence of P. aeruginosa cases was associated with a higher proportion of positive water samples (P=0.056 in complete case analysis and P=0.031 with the imputed dataset). The association was no longer observed when haematology and intensive care units were excluded, but was significant in analyses of data concerning intensive care units alone (P<0.001). This study suggests that water outlet contamination in hospitals can lead to an increase in healthcare-associated P. aeruginosa cases in wards dealing with susceptible patients, but does not play a significant role in other wards. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Marrie, T. J.; Haldane, D.; MacDonald, S.; Clarke, K.; Fanning, C.; Le Fort-Jost, S.; Bezanson, G.; Joly, J.
1991-01-01
In a setting where potable water is contaminated with Legionella pneumophila serogroup 1, we performed two case control studies. The first case control study consisted of 17 cases of nosocomial Legionnaires' disease (LD) and 33 control (the patients who were admitted to the ward where the case was admitted immediately before and after the case) subjects. Cases had a higher mortality rate 65% vs 12% (P less than 0.004); were more likely to have received assisted ventilation (P less than 0.00001); to have nasogastric tubes (P less than 0.0004) and to be receiving corticosteroids or other immunosuppressive therapy (P less than 0.0001). Based on the results of this study, sterile water was used to flush nasogastric tubes and to dilute nasogastric feeds. Only 3 cases of nosocomial LD occurred during the next year compared with 12 the previous year (P less than 0.0001). Nine cases subsequently occurred and formed the basis for the second case-control study. Eighteen control subjects were those patients admitted to the same unit where the case developed LD, immediately before and after the case. The mortality rate for the cases was 89% vs 6% for controls (P less than 0.00003). The only other significant difference was that cases were more likely to be receiving corticosteroids or other immunosuppressive therapy 89% vs 39% (less than 0.01). We hypothesized that microaspiration of contaminated potable water by immunocompromised patients was a risk factor for nosocomial Legionnaires' disease. From 17 March 1989 onwards such patients were given only sterile potable water. Only two cases of nosocomial LD occurred from June 1989 to September 1990 and both occurred on units where the sterile water policy was not in effect. We conclude that aspiration of contaminated potable water is a possible route for acquisition of nosocomial LD in our hospital and that provision of sterile potable water to high risk patients (those who are receiving corticosteroids or other immunosuppressive drugs; organ transplant recipients or hospitalized in an intensive care unit) should be mandatory. PMID:1752308
Classification of case-II waters using hyperspectral (HICO) data over North Indian Ocean
NASA Astrophysics Data System (ADS)
Srinivasa Rao, N.; Ramarao, E. P.; Srinivas, K.; Deka, P. C.
2016-05-01
State of the art Ocean color algorithms are proven for retrieving the ocean constituents (chlorophyll-a, CDOM and Suspended Sediments) in case-I waters. However, these algorithms could not perform well at case-II waters because of the optical complexity. Hyperspectral data is found to be promising to classify the case-II waters. The aim of this study is to propose the spectral bands for future Ocean color sensors to classify the case-II waters. Study has been performed with Rrs's of HICO at estuaries of the river Indus and GBM of North Indian Ocean. Appropriate field samples are not available to validate and propose empirical models to retrieve concentrations. The sensor HICO is not currently operational to plan validation exercise. Aqua MODIS data at case-I and Case-II waters are used as complementary to in- situ. Analysis of Spectral reflectance curves suggests the band ratios of Rrs 484 nm and Rrs 581 nm, Rrs 490 nm and Rrs 426 nm to classify the Chlorophyll -a and CDOM respectively. Rrs 610 nm gives the best scope for suspended sediment retrieval. The work suggests the need for ocean color sensors with central wavelength's of 426, 484, 490, 581 and 610 nm to estimate the concentrations of Chl-a, Suspended Sediments and CDOM in case-II waters.
One component of the United States Environmental Protection Agency's (EPA) study of the potential impacts of hydraulic fracturing on drinking water resources is prospective case studies, which are being conducted to more fully understand and assess if and how site specific hydrau...
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.
2005-01-01
The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.
Galanis, E; Mak, S; Otterstatter, M; Taylor, M; Zubel, M; Takaro, T K; Kuo, M; Michel, P
2014-10-01
We studied the association between drinking water, agriculture and sporadic human campylobacteriosis in one region of British Columbia (BC), Canada. We compared 2992 cases of campylobacteriosis to 4816 cases of other reportable enteric diseases in 2005-2009 using multivariate regression. Cases were geocoded and assigned drinking water source, rural/urban environment and socioeconomic status (SES) according to the location of their residence using geographical information systems analysis methods. The odds of campylobacteriosis compared to enteric disease controls were higher for individuals serviced by private wells than municipal surface water systems (odds ratio 1·4, 95% confidence interval 1·1-1·8). In rural settings, the odds of campylobacteriosis were higher in November (P = 0·014). The odds of campylobacteriosis were higher in individuals aged ⩾15 years, especially in those with higher SES. In this region of BC, campylobacteriosis risk, compared to other enteric diseases, seems to be mediated by vulnerable drinking water sources and rural factors. Consideration should be given to further support well-water users and to further study the microbiological impact of agriculture on water.
Murphy, H M; Thomas, M K; Medeiros, D T; McFADYEN, S; Pintar, K D M
2016-05-01
The estimated burden of endemic acute gastrointestinal illness (AGI) annually in Canada is 20·5 million cases. Approximately 4 million of these cases are domestically acquired and foodborne, yet the proportion of waterborne cases is unknown. A number of randomized controlled trials have been completed to estimate the influence of tap water from municipal drinking water plants on the burden of AGI. In Canada, 83% of the population (28 521 761 people) consumes tap water from municipal drinking water plants serving >1000 people. The drinking water-related AGI burden associated with the consumption of water from these systems in Canada is unknown. The objective of this research was to estimate the number of AGI cases attributable to consumption of drinking water from large municipal water supplies in Canada, using data from four household drinking water intervention trials. Canadian municipal water treatment systems were ranked into four categories based on source water type and quality, population size served, and treatment capability and barriers. The water treatment plants studied in the four household drinking water intervention trials were also ranked according to the aforementioned criteria, and the Canadian treatment plants were then scored against these criteria to develop four AGI risk groups. The proportion of illnesses attributed to distribution system events vs. source water quality/treatment failures was also estimated, to inform the focus of future intervention efforts. It is estimated that 334 966 cases (90% probability interval 183 006-501 026) of AGI per year are associated with the consumption of tap water from municipal systems that serve >1000 people in Canada. This study provides a framework for estimating the burden of waterborne illness at a national level and identifying existing knowledge gaps for future research and surveillance efforts, in Canada and abroad.
Wang, Ruiping; Cheng, Huijian; Zong, Jun; Yu, Ping; Fu, Weijie; Yang, Fuqiang; Shi, Guoqing; Zeng, Guang
2012-10-01
On 23 May 2012, a university in Jiangxi, China reported a gastroenteritis outbreak. We investigated the outbreak to identify the agent, source and mode of transmission and to recommend control measures. A case was defined as any person from the university with onset of diarrhoea (≥ 3 times/24h) from 1 to 31 May 2012. Active case finding was conducted by reviewing university hospital and drug-store records and interviewing students, workers and teachers. We then conducted a case-control study in which we compared food, water and environmental exposure history. Water samples were collected and tested. We identified 417 cases - an attack rate (AR) of 4.7% (417/8781) for the university. There were 416 student cases (AR = 5.7%) distributed across all 11 colleges, five of which were more heavily affected (AR range = 5.9-14%). In the case-control study, cases had higher odds of having drunk bottled water (odds ratio [OR] = 4.1; 95% confidence interval [CI] = 1.7-9.9), and there was a dose-response relationship (χ(2)trend = 4.6, P < 0.05). Drinking boiled bottled water was inversely associated with being a case (OR = 0.22, 95% CI = 0.07-0.71). Eating in any of the three university canteens or drinking-water from the city water supply was not associated with being a case. Pathogenic Escherichia coli was isolated from two unopened bottled water specimens and from four student cases. This gastroenteritis outbreak was most likely caused by contaminated bottled water. The company in question has been shut down and no further cases have been reported. Increased regulation of bottled water plants and better coordination between different investigators for future outbreaks is recommended.
Primary Datasets for Case Studies of River-Water Quality
ERIC Educational Resources Information Center
Goulder, Raymond
2008-01-01
Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…
Water Resources Management in the Lerma-Chapala Basin, Mexico: A Case Study
ERIC Educational Resources Information Center
Villamagna, Amy M.; Murphy, Brian R.
2008-01-01
Water resources have become an increasingly important topic of discussion in natural resources and environmental management courses. To address the need for more critical thinking in the classroom and to provide an active learning experience for undergraduate students, we present a case study based on water competition and management in the…
BASINs and WEPP Climate Assessment Tools (CAT): Case ...
EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & Non-point Sources (BASINS) and the Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT). The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential effects of climate change on streamflow and water quality. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.
Shen, Ji-chuan; Lin, Jun-fen; Gao, Jie; Yao, Wen-ting; Wen, Dong; Liu, Guang-tao; Han, Jian-kang; Ma, Hui-lai; Zhang, Li-jie; Zhu, Bao-ping
2011-08-01
To study a local hospital reported acute gastroenteritis in a boarding school on its source of infection, mode of transmission and risk factors of the infection. A suspected case was defined as who had developed diarrhea (≥ 3 times/day) or vomiting among teachers or students of the school, during April 19 - 30, 2010. A confirmed case was from a probable case plus tested positive for norovirus in stool specimens by using RT-PCR. Stool specimens of cases and environmental specimens were collected for laboratory diagnosis. In a case-control study, we compared exposures to sources of bottled water, consumption of bottled water, and hygienic habits of 220 probable or confirmed cases from April 21 - 23 in the peak of the outbreak, together with another 220 controls, with frequency-matched by school grade. 20.3% of the 1536 students but none of the teachers developed the disease. 98.6% of the cases (n = 217) and 85.5% (n = 188) of the controls had drunk bottled water in the classroom (OR(M-H) = 12.3, 95%CI: 3.7 - 40.9). 47.9% (n = 104) of the cases and 41.5% (n = 78) of the controls had drunk unboiled bottled water in classroom (OR(M-H) = 3.8, 95%CI: 1.5 - 9.6). 47.9% (n = 104) of the cases and 48.4% (n = 91) of the controls had drunk bottled mixed water (boiled and unboiled) in the classroom (OR(M-H) = 2.8, 95%CI: 1.1 - 7.0). Stool specimens from 3 cases and one bottle of uncovered bottled water in classroom showed positive of having norovirus genotype II. Coliforms was cultured much higher rates than standard deviations in the bottled water. The factory making the bottled water was not licensed or having strict disinfection facilities. Bottled spring water contaminated by norovirus was responsible for this outbreak.
Chang, Chih-Ching; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh
2010-01-01
The relationship between nitrate levels in drinking water and increased risk of non-Hodgkin lymphoma (NHL) development has been inconclusive. A matched cancer case-control and a nitrate ecology study was used to investigate the association between mortality attributed to NHL and nitrate exposure from Taiwan's drinking water. All deaths due to NHL in Taiwan residents from 2000 through 2006 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO(3)-N) levels of drinking water throughout Taiwan were collected from the Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios (OR) for NHL death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.02 (0.87-1.2) and 1.05 (0.89-1.24), respectively. The results of the present study show that there was no statistically significant association between nitrates in drinking water at levels in this investigation and increased risk of death attributed to NHL.
Chiu, Hui-Fen; Tsai, Shang-Shyue; Yang, Chun-Yuh
2007-06-01
The relationship between nitrate levels in drinking water and bladder cancer development is controversial. A matched cancer case-control with nitrate ecology study was used to investigate the association between bladder cancer mortality occurrence and nitrate exposure from Taiwan drinking water. All bladder cancer deaths of Taiwan residents from 1999 through 2003 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth,and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on nitrate-nitrogen (NO3-N) levels in drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios for bladder cancer death for those with high nitrate levels in their drinking water were 1.76 (1.28-2.42) and 1.96 (1.41-2.72) as compared to the lowest tertile. The results of the present study show that there was a significant positive relationship between the levels of nitrate in drinking water and risk of death from bladder cancer.
Craig W. Johnson; Susan Buffler
2008-01-01
This hypothetical case study illustrates how the riparian buffer planning protocol described in the RB handbook is used to plan a buffer for both water quality and wildlife conservation on a specific project site. The case study site includes riparian buffer characteristics typical of the study area-variable topography and soils, flood plain wetlands, seeps, springs,...
Sheng, Minyang; Song, Jianqiang; He, Fan; Qiu, Yinwei; Wu, Haocheng; Lu, Qinbao; Feng, Yan; Lin, Junfen; Chen, Enfu; Chai, Chengliang
2017-01-01
Objectives More than 900 students and teachers at many schools in Jiaxing city developed acute gastroenteritis in February 2014. An immediate epidemiological investigation was conducted to identify the pathogen, infection sources and route of transmission. Methods The probable cases and confirmed cases were defined as students or teachers with diarrhoea or vomiting present since the term began in February 2014. An active search was conducted for undiagnosed cases among students and teachers. Details such as demographic characteristics, gastrointestinal symptoms, and drinking water preference and frequency were collected via a uniform epidemiological questionnaire. A case-control study was implemented, and odds ratios (ORs) and 95% confidence intervals were calculated. Rectal swabs from several patients, food handlers and barrelled water factory workers, as well as water and food samples, were collected to test for potential bacteria and viruses. Results A total of 924 cases fit the definition of the probable case, including 8 cases of laboratory-confirmed norovirus infection at 13 schools in Jiaxing city between February 12 and February 21, 2014. The case-control study demonstrated that barrelled water was a risk factor (OR: 20.15, 95% CI: 2.59–156.76) and that bottled water and boiled barrelled water were protective factors (OR: 0.31, 95% CI: 0.13–0.70, and OR: 0.36, 95% CI: 0.16–0.77). A total of 11 rectal samples and 8 barrelled water samples were detected as norovirus-positive, and the genotypes of viral strains were the same (GII). The norovirus that contaminated the barrelled water largely came from the asymptomatic workers. Conclusions This acute gastroenteritis outbreak was caused by barrelled water contaminated by norovirus. The outbreak was controlled after stopping the supply of barrelled water. The barrelled water supply in China represents a potential source of acute gastroenteritis outbreaks due to the lack of surveillance and supervision. Therefore, more attention should be paid to this area. PMID:28170414
Shang, Xiaopeng; Fu, Xiaofei; Zhang, Peng; Sheng, Minyang; Song, Jianqiang; He, Fan; Qiu, Yinwei; Wu, Haocheng; Lu, Qinbao; Feng, Yan; Lin, Junfen; Chen, Enfu; Chai, Chengliang
2017-01-01
More than 900 students and teachers at many schools in Jiaxing city developed acute gastroenteritis in February 2014. An immediate epidemiological investigation was conducted to identify the pathogen, infection sources and route of transmission. The probable cases and confirmed cases were defined as students or teachers with diarrhoea or vomiting present since the term began in February 2014. An active search was conducted for undiagnosed cases among students and teachers. Details such as demographic characteristics, gastrointestinal symptoms, and drinking water preference and frequency were collected via a uniform epidemiological questionnaire. A case-control study was implemented, and odds ratios (ORs) and 95% confidence intervals were calculated. Rectal swabs from several patients, food handlers and barrelled water factory workers, as well as water and food samples, were collected to test for potential bacteria and viruses. A total of 924 cases fit the definition of the probable case, including 8 cases of laboratory-confirmed norovirus infection at 13 schools in Jiaxing city between February 12 and February 21, 2014. The case-control study demonstrated that barrelled water was a risk factor (OR: 20.15, 95% CI: 2.59-156.76) and that bottled water and boiled barrelled water were protective factors (OR: 0.31, 95% CI: 0.13-0.70, and OR: 0.36, 95% CI: 0.16-0.77). A total of 11 rectal samples and 8 barrelled water samples were detected as norovirus-positive, and the genotypes of viral strains were the same (GII). The norovirus that contaminated the barrelled water largely came from the asymptomatic workers. This acute gastroenteritis outbreak was caused by barrelled water contaminated by norovirus. The outbreak was controlled after stopping the supply of barrelled water. The barrelled water supply in China represents a potential source of acute gastroenteritis outbreaks due to the lack of surveillance and supervision. Therefore, more attention should be paid to this area.
This presentation examines various published reports from two drinking water contamination cases, and discuss the potential roles of wellbore construction and integrity and hydraulic fracturing in the resultant drinking water contamination.
[Water contacts in dracunculiasis-infected patients in Mali: transmission risk activities].
Etard, J F; Kodio, B; Traoré, S; Audibert, M
2002-11-01
The aim of this study lies in the identification of human activities responsible for the transmission of the Guinea worm in an endemic village in Diema Region in Mali. Human water contacts observations started after a census followed by the implementation of a bi-monthly notification system, carried out from May to November 1993. Water contacts were noticed and observed from the mid-July to the end of November of the same year. The first case of dracunculiasis observed was randomly drawn out of a list of the families with obvious cases. The patent case activities involving either surface water, traditional wells or bore-hole water were recorded for 10 consecutive days. During this observation period, contacts made by other patients with the same water sources were also recorded. After 14 days, the case list was updated and a new case selected out of families previously selected. This cycle was repeated until the end of the study period. A "contact at risk for transmission" was defined by a close correspondence between the location of the worm's emergence and the surface of the skin exposed to water, within two weeks following emergence. Contacts were described according to water sources, activities in relation to water, date, gender and age. Observations were made on 103 patients who had 2506 activities in relation with a water body: 1132 of these activities implied a skin contact with the water. Only 133 (9%) of these water contacts were at risk for transmission, 75% took place during the months of August and September, 80% were related to surface waters and 20% to traditional wells. Woman household activities and boys games were the major activities at risk, in contrast to economic activities (watering cattle). The low proportion of "at risk activities" evaluated in this study suggests that a small number of water contacts is sufficient to maintain the transmission. The case implications of the current eradication strategy might not be sufficient alone to break the transmission and should therefore be associated with a reinforcement of the use of filters for drinking water together with an health education.
Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang
2016-02-01
In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets.
Inverse Analysis of Cavitation Impact Phenomena on Structures
2007-07-02
can occur within different types of dynamic water environments of structures. Case study analyses using experimental data are used to demonstrate the...cavitation impact phenomena, and ultimately, with cavitation erosion of structures within turbulent water environments. 02-07-2007 Memorandum Report...of dynamic water environments of structures. Case study analyses using experimental data are used to demonstrate the fundamentals of various aspects
Klise, Katherine A.; Bynum, Michael; Moriarty, Dylan; ...
2017-07-07
Water utilities are vulnerable to a wide variety of human-caused and natural disasters. The Water Network Tool for Resilience (WNTR) is a new open source PythonTM package designed to help water utilities investigate resilience of water distribution systems to hazards and evaluate resilience-enhancing actions. In this paper, the WNTR modeling framework is presented and a case study is described that uses WNTR to simulate the effects of an earthquake on a water distribution system. The case study illustrates that the severity of damage is not only a function of system integrity and earthquake magnitude, but also of the available resourcesmore » and repair strategies used to return the system to normal operating conditions. While earthquakes are particularly concerning since buried water distribution pipelines are highly susceptible to damage, the software framework can be applied to other types of hazards, including power outages and contamination incidents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Katherine A.; Bynum, Michael; Moriarty, Dylan
Water utilities are vulnerable to a wide variety of human-caused and natural disasters. The Water Network Tool for Resilience (WNTR) is a new open source PythonTM package designed to help water utilities investigate resilience of water distribution systems to hazards and evaluate resilience-enhancing actions. In this paper, the WNTR modeling framework is presented and a case study is described that uses WNTR to simulate the effects of an earthquake on a water distribution system. The case study illustrates that the severity of damage is not only a function of system integrity and earthquake magnitude, but also of the available resourcesmore » and repair strategies used to return the system to normal operating conditions. While earthquakes are particularly concerning since buried water distribution pipelines are highly susceptible to damage, the software framework can be applied to other types of hazards, including power outages and contamination incidents.« less
2017-11-01
three models used in this study (HERMES, WASP, and SERAFM) were applied very differently and, in some ways, comparing them in Table 10 is...ER D C/ EL T R- 17 -1 9 Dredging Innovations Group Methylmercury Screening Models for Surface Water Habitat Restoration: A Case Study in...Case Study in Duluth-Superior Harbor Philip T. Gidley, Joseph P. Kreitinger, Mansour Zakikhani, and Burton C. Suedel Environmental Laboratory
Ecotoxicity of waste water from industrial fires fighting
NASA Astrophysics Data System (ADS)
Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.
2012-04-01
As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.
Desktop Techniques for Analyzing Surface-Ground Water Interactions. The Reelfoot Lake Case Study
1988-05-01
Reelfoot Lake Case Study DTlCSELECTE JUN 13 M Research Document No. 28 May 1988 Approved for Public Release. Distribution Unlimited. 86 , l~ g DESKTOP...TECHNIQUES FOR ANALYZING SURFACE-GROUND WATER INTERACTIONS The Reelfoot Lake Case Study Prepared by Dennis B. McLaughlin ’ Ia Prepared for The...Engineers became involved in a study of Reelfoot Lake , a large natural lake in northwestern Tennessee. Although modeling studies of the lake and its
NITRIFICATION AND ARSENIC REMOVAL IN BIOLOGICALLY ACTIVE FILTERS: A CASE STUDY
Ammonia in source waters can cause water treatment and distribution system problems, many of which are associated with biological nitrification. Therefore, in some cases, the removal of ammonia from water is desirable. Biological oxidation of ammonia to nitrate and nitrate (nitr...
Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India.
Mitra, Pubali; Pal, Dilip Kumar; Das, Madhusudan
2018-05-01
The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD.
URBAN DRINKING WATER DISTRIBUTION SYSTEMS: A U.S. PERSPECTIVE
This paper will examine several case studies that illustrate the critical role drinking water treatment and distribution systems play in protecting public health. It will also present a case study that documents the dramatic impact that the regulations promulgated under the Safe...
Hosein, I K; Hill, D W; Tan, T Y; Butchart, E G; Wilson, K; Finlay, G; Burge, S; Ribeiro, C D
2005-10-01
This study reports a two-year programme of attempted eradication of Legionella colonization in the potable water supply of a 1000-bed tertiary care teaching hospital in Wales. There was a simultaneous, point-of-care, sterile-water-only policy for all intensive care units (ICU) and bone marrow and renal transplant units in order to prevent acquisition of nosocomial Legionnaires' disease. The programme was initiated following a case of nosocomial pneumonia caused by Legionella pneumophila serogroup 1-Bellingham-like genotype A on the cardiac ICU. The case occurred 14 days after mitral and aortic valve replacement surgery. Clinical and epidemiological investigations implicated aspiration of hospital potable water as the mechanism of infection. Despite interventions with chlorine dioxide costing over 25000 UK pounds per annum, Legionella has remained persistently present in significant numbers (up to 20000 colony forming units/L) and with little reduction in the number of positive sites. Two further cases of nosocomial disease occurred over the following two-year period; in one case, aspiration of tap water was implicated again, and in the other case, instillation of contaminated water into the right main bronchus via a misplaced nasogastric tube was implicated. These cases arose because of inadvertent non-compliance with the sterile-water-only policy in high-risk locations. Enhanced clinical surveillance over the same two-year period detected no other cases of nosocomial disease. This study suggests that attempts at eradication of Legionella spp. from complex water systems may not be a cost-effective measure for prevention of nosocomial infections, and to the best of our knowledge is the first study from the UK to suggest that the introduction of a sterile-water-only policy for ICUs and other high-risk units may be a more cost-effective approach.
NITRIFICATION AND IRON AND ARSENIC REMOVAL IN BIOLOGICALLY ACTIVE FILTERS: A CASE STUDY
Ammonia in source waters can cause water treatment and distribution system problems, many of which are associated with biological nitrification. Therefore, in some cases, the removal of ammonia from water is desirable. Biological oxidation of ammonia to nitrate and nitrate (nitr...
De Guzman, Alethea; de los Reyes, Vikki Carr; Sucaldito, Ma Nemia; Tayag, Enrique
2015-01-01
In May 2012, there were increasing diarrhoea cases and deaths reported from Nabua, Camarines Sur to the Philippines event-based surveillance system. An investigation was conducted to identify risk factors and determine transmission dynamics. A suspected case was defined as a resident of Nabua with at least three episodes of watery diarrhoea per day from 16 March to 22 June 2012. A confirmed case was defined as a suspected case positive for Vibrio cholerae. An environmental investigation was conducted and rectal swabs and water samples sent to the national reference laboratory for bacterial isolation. A 1:2 case-control study matching for age and sex was conducted. Data were analysed using Epi Info. There were 309 suspected cases with two deaths, and the most affected age group was children under five years (45%). Eight cases were positive for Vibrio cholerae Ogawa El Tor and one for Non-01. Water samples were positive for faecal coliforms and Aeromonas caviae. The case-control study showed that cases had a higher odds than controls of using unchlorinated water sources (odds ratio [OR] = 3.6; 95% confidence interval [CI]:1.6-8.5) and having toilets located within 20 m of a septic tank (OR = 2.7; 95% CI: 1.4-5.3). In multivariate analysis, the only significant factor was drinking from piped water (OR = 0.21; 95% CI: 0.09-0.49). In this cholera outbreak, drinking-water from unchlorinated wells was a significant risk factor. Future cholera control efforts should include not just improving water and sanitation systems but also intensified behaviour change campaigns.
Aragón, Tomás J; Novotny, Suzanne; Enanoria, Wayne; Vugia, Duc J; Khalakdina, Asheena; Katz, Mitchell H
2003-01-01
Background In persons with acquired immunodeficiency syndrome (AIDS), Cryptosporidium parvum causes a prolonged, severe diarrheal illness to which there is no effective treatment, and the risk of developing cryptosporidiosis from drinking tap water in non-outbreak settings remains uncertain. To test the hypothesis that drinking tap water was associated with developing cryptosporidiosis, we conducted a matched case-control study among persons with AIDS in San Francisco. Methods Among patients reported to the San Francisco AIDS Registry from May 1996 through September 1998, we compared patients who developed cryptosporidiosis to those who did not. Cases were individually matched to controls based on age, sex, race/ethnicity, CD4+ T lymphocyte count, date of CD4+ count, and date of case diagnosis. Population attributable fractions (PAFs) were calculated. Results The study consisted of 49 cases and 99 matched controls. In the multivariable analysis with adjustments for confounders, tap water consumption inside and outside the home at the highest exposure categories was associated with the occurrence of cryptosporidiosis (inside the home: odds ratio (OR), 6.76; 95% CI 1.37–33.5, and outside the home: OR 3.16; 95% CI 1.23–8.13). The PAF was 85%; that is, the proportion of cases of cryptosporidiosis in San Francisco AIDS patients attributable to tap water consumption could have been as high as 85%. Conclusions Although the results from this observational study cannot be considered definitive, until there is more data, we recommend persons with AIDS, especially those with compromised immune systems, consider avoiding tap water. PMID:12515584
Aragón, Tomás J; Novotny, Suzanne; Enanoria, Wayne; Vugia, Duc J; Khalakdina, Asheena; Katz, Mitchell H
2003-01-06
In persons with acquired immunodeficiency syndrome (AIDS), Cryptosporidium parvum causes a prolonged, severe diarrheal illness to which there is no effective treatment, and the risk of developing cryptosporidiosis from drinking tap water in non-outbreak settings remains uncertain. To test the hypothesis that drinking tap water was associated with developing cryptosporidiosis, we conducted a matched case-control study among persons with AIDS in San Francisco. Among patients reported to the San Francisco AIDS Registry from May 1996 through September 1998, we compared patients who developed cryptosporidiosis to those who did not. Cases were individually matched to controls based on age, sex, race/ethnicity, CD4+ T lymphocyte count, date of CD4+ count, and date of case diagnosis. Population attributable fractions (PAFs) were calculated. The study consisted of 49 cases and 99 matched controls. In the multivariable analysis with adjustments for confounders, tap water consumption inside and outside the home at the highest exposure categories was associated with the occurrence of cryptosporidiosis (inside the home: odds ratio (OR), 6.76; 95% CI 1.37-33.5, and outside the home: OR 3.16; 95% CI 1.23-8.13). The PAF was 85%; that is, the proportion of cases of cryptosporidiosis in San Francisco AIDS patients attributable to tap water consumption could have been as high as 85%. Although the results from this observational study cannot be considered definitive, until there is more data, we recommend persons with AIDS, especially those with compromised immune systems, consider avoiding tap water.
NASA Astrophysics Data System (ADS)
Rivière, Emmanuel; Marécal, Virginie; Khaykin, Sergey; Amarouche, Nadir; Ghysels, Mélanie; Mappe-Fogaing, Irène; Behera, Abhinna; Held, Gerhard; França, Hermes
2016-04-01
One of the main aims of the TRO-pico project (2010-2015) was to study the variability of overshooting convection at the local scale to try to deduce a typical impact on the TTL water at the global scale. In this study, we've identified local maximum in the water vapour profiles gathered by the balloon-borne hygrometers Pico-SDLA and Flash above Bauru, Brazil (22.3 S) during the TRO-pico campaign. We tried to link them to overshooting cells in the surrounding of Bauru with a trajectory analysis. In this study we select a couple of cases of overshooting convection both sampled by the Bauru S-Band radar and by one of the balloon-borne instruments of the TRO-pico campaign in 2012 and 2013. The selected cases are the case of March 13, 2012 (hereafter M12), sounded by both hygrometers Pico-SDLA and FLASH, and the case of January 26, 2013 (hereafter J13), sounded by Pico-SDLA. For the M12 case, local water vapour enhancements at two different altitudes due to two different cells were reported, with local enhancement of about 0.65 ppmv. For the J26 case, the water enhancement was about 1 ppmv. The corresponding mesoscale simulations with the Brazilian Regional Atmospheric Modelling System (BRAMS) using 3 nested grids with horizontal resolution down to 800 m were carried out. Simulation results are compared to Bauru's radar echo tops and and water vapour in situ measurements. As for the M12 simulation, the model is doing a rather good job in reproducing several overshooting cells, both in severity and timing. Associated stratospheric water budget are computed for each cases.
Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)
EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...
Catling, Louise A; Abubakar, Ibrahim; Lake, Iain R; Swift, Louise; Hunter, Paul R
2008-12-01
The aim of this study is to systematically review and critically assess analytical observational epidemiology studies investigating the association between levels of drinking water hardness and cardiovascular disease. We searched electronic databases and used standardised forms to extract data and assess study quality. Of 2,906 papers identified, 14 met the inclusion criteria (nine case control and five cohort studies). Of the nine case control studies, seven examined both drinking water magnesium and calcium and risk of death from cardiovascular disease. A pooled odds ratio showed a statistically significant inverse association between magnesium and cardiovascular mortality (OR 0.75 (95%CI 0.68, 0.82), p < 0.001). Only two studies reported a statistically significant effect for calcium. Substantial heterogeneity between studies made calculation of a summary estimate for drinking water calcium inappropriate. Of three cohort studies reviewed, two were of good quality. A weak suggestion that soft water was harmful in females and possibly associated with a slightly greater risk of sudden death was reported, but there was no association between water hardness and mortality from stroke or cardiovascular disease. This study found significant evidence of an inverse association between magnesium levels in drinking water and cardiovascular mortality following a meta-analysis of case control studies. Evidence for calcium remains unclear. Copyright IWA Publishing 2008.
Identifying the causes of water crises: A configurational frequency analysis of 22 basins world wide
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Gorelick, S.; Lambin, E.; Rozelle, S.; Thompson, B.
2010-12-01
Freshwater "scarcity" has been identified as being a major problem world-wide, but it is surprisingly hard to assess if water is truly scarce at a global or even regional scale. Most empirical water research remains location specific. Characterizing water problems, transferring lessons across regions, to develop a synthesized global view of water issues remains a challenge. In this study we attempt a systematic understanding of water problems across regions. We compared case studies of basins across different regions of the world using configurational frequency analysis. Because water crises are multi-symptom and multi-causal, a major challenge was to categorize water problems so as to make comparisons across cases meaningful. In this study, we focused strictly on water unsustainability, viz. the inability to sustain current levels of the anthropogenic (drinking water, food, power, livelihood) and natural (aquatic species, wetlands) into the future. For each case, the causes of three outcome variables, groundwater declines, surface water declines and aquatic ecosystem declines, were classified and coded. We conducted a meta-analysis in which clusters of peer-reviewed papers by interdisciplinary teams were considered to ensure that the results were not biased towards factors privileged by any one discipline. Based on our final sample of 22 case study river basins, some clear patterns emerged. The meta-analysis suggests that water resources managers have long overemphasized the factors governing supply of water resources and while insufficient attention has been paid to the factors driving demand. Overall, uncontrolled increase in demand was twice as frequent as declines in availability due to climate change or decreased recharge. Moreover, groundwater and surface water declines showed distinct causal pathways. Uncontrolled increases in demand due to lack of credible enforcement were a key factor driving groundwater declines; while increased upstream abstractions, inadequate infrastructure investments, and pollution were dominant causes of surface water declines.
Understanding virtual water flows: A multiregion input-output case study of Victoria
NASA Astrophysics Data System (ADS)
Lenzen, Manfred
2009-09-01
This article explains and interprets virtual water flows from the well-established perspective of input-output analysis. Using a case study of the Australian state of Victoria, it demonstrates that input-output analysis can enumerate virtual water flows without systematic and unknown truncation errors, an issue which has been largely absent from the virtual water literature. Whereas a simplified flow analysis from a producer perspective would portray Victoria as a net virtual water importer, enumerating the water embodiments across the full supply chain using input-output analysis shows Victoria as a significant net virtual water exporter. This study has succeeded in informing government policy in Australia, which is an encouraging sign that input-output analysis will be able to contribute much value to other national and international applications.
Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India
Mitra, Pubali; Pal, Dilip Kumar
2018-01-01
Purpose The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Materials and Methods Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. Results We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. Conclusions It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD. PMID:29744472
EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as par...
Case Studies of Water Utility Climate Change Vulnerability Assessment [External Review Draft Report
This report presents a series of case studies describing the approaches taken by four water utilities in the United States to assess their vulnerability to climate change. The report is not intended to be a comprehensive listing of assessment approaches or utilities conducting v...
Case Studies on the Impact of Concentrated Animal Feeding Operations (CAFOs) on Ground Water Quality
This report describes a series of case studies involving commercial swine, poultry, dairy, and beef CAFO operations where ground water contamination by nitrate and ammonia has occurred to ascertain whether other stressors in CAFO wastes are also being transported through the vado...
Guidelines for land application of CAFO waste may not be sufficient to prevent ground water contamination by nitrate. A case study is presented illustrating the problem for one field site disposing of swine waste. Data are discussed in context with documented land application ...
Typhoid outbreak investigation in Dzivaresekwa, suburb of Harare City, Zimbabwe, 2011.
Muti, Monica; Gombe, Notion; Tshimanga, Mufuta; Takundwa, Lucia; Bangure, Donewell; Mungofa, Stanley; Chonzi, Prosper
2014-01-01
Typhoid fever is a systemic infection caused by a Gram negative bacterium, Salmonella typhi. Harare City reported 1078 cases of suspected typhoid fever cases from October 2011 to January 2012. We initiated an investigation to identify possible source of transmission so as to institute control measures. An unmatched 1:1 case-control study was conducted. A questionnaire was administered to study participants to identify risk factors for contracting typhoid. A case was a resident of Dzivaresekwa who presented with signs and symptoms of typhoid between October and December 2011. Water samples were collected for microbiological analysis. 115 cases and 115 controls were enrolled. Drinking water from a well (OR=6.2 95% CI (2.01-18.7)), attending a gathering (OR=11.3 95% CI (4.3-29.95)), boiling drinking water (OR=0.21 95% CI (0.06-0.76)) and burst sewer pipe at home (OR=1.19 95% CI (0.67-2.14)) were factors associated with contracting typhoid. Independent risk factors for contracting typhoid were drinking water from a well (AOR=5.8; 95% CI (1.90-17.78)), and burst sewer pipe at home (AOR=1.20; 95% CI (1.10-2.19)). Faecal coli forms and E. coli were isolated from 8/8 well water samples. Stool, urine and blood specimens were cultured and serotyped for Salmonella typhi and 24 cases were confirmed positive. Shigella, Giardia and E coli were also isolated. Ciprofloxacin, X-pen and Rocephin were used for case management. No complications were reported. Contaminated water from unprotected water sources was the probable source of the outbreak. Harare City Engineer must invest in repairing water and sewage reticulation systems in the city.
BASINS and WEPP Climate Assessment Tools (CAT): Case ...
This draft report supports application of two recently developed water modeling tools, the BASINS and WEPP climate assessment tools. The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential future effects of climate change on water resources. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.
Colon cancer and content of nitrates and magnesium in drinking water.
Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh
2010-06-01
The objective of this study was to explore whether magnesium levels (Mg) in drinking water modify the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year-of-birth, and year-of-death. Information on the levels of nitrate-nitrogen (NO3-N) and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO3-N and Mg exposure via drinking water. The results of our study show that there is a significant trend towards an elevated risk of death from colon cancer with increasing nitrate levels in drinking water. Furthermore, we observed evidence of an interaction between drinking water NO3-N and Mg intake via drinking water. This is the first study to report effect modification by Mg intake from drinking water on the association between NO3-N exposure and colon cancer risk.
Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh
2011-09-01
The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.
Comparison of Optimization and Two-point Methods in Estimation of Soil Water Retention Curve
NASA Astrophysics Data System (ADS)
Ghanbarian-Alavijeh, B.; Liaghat, A. M.; Huang, G.
2009-04-01
Soil water retention curve (SWRC) is one of the soil hydraulic properties in which its direct measurement is time consuming and expensive. Since, its measurement is unavoidable in study of environmental sciences i.e. investigation of unsaturated hydraulic conductivity and solute transport, in this study the attempt is to predict soil water retention curve from two measured points. By using Cresswell and Paydar (1996) method (two-point method) and an optimization method developed in this study on the basis of two points of SWRC, parameters of Tyler and Wheatcraft (1990) model (fractal dimension and air entry value) were estimated and then water content at different matric potentials were estimated and compared with their measured values (n=180). For each method, we used both 3 and 1500 kPa (case 1) and 33 and 1500 kPa (case 2) as two points of SWRC. The calculated RMSE values showed that in the Creswell and Paydar (1996) method, there exists no significant difference between case 1 and case 2. However, the calculated RMSE value in case 2 (2.35) was slightly less than case 1 (2.37). The results also showed that the developed optimization method in this study had significantly less RMSE values for cases 1 (1.63) and 2 (1.33) rather than Cresswell and Paydar (1996) method.
Buckwalter, T.F.; Squillace, P.J.
1995-01-01
Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the base of readily observed fresh ground water. Casing depths are selected generally to maximize drilling efficiency and to stop freshwater from entering the well and subsequently interfering with hydrocarbon recovery. The depths of surface casing generally are not selected with ground-water protection in mind. However, on the basis of existing hydrologic data, most freshwater aquifers generally are protected with current casing depths. Minimum surface-casing depths for deep gas wells are prescribed by Pennsylvania Department of Environmental Resources regulations and appear to be adequate to prevent ground-water contamination, in most respects, for the only study area with deep gas fields examined in Crawford County.
NASA Astrophysics Data System (ADS)
Patrick, M. J.; Syme, G. J.; Horwitz, P.
2014-11-01
Social justice is a key outcome of water allocation, management and governance. It is commonly expressed in water policies and strategies in terms of achieving equitable distribution of water resources. In complex multi-level systems just and unjust outcomes can result from the same water allocation decision. In some cases a just outcome at one level may cause an injustice at another level for the same or a different set of stakeholders. The manner in which a water management issue is framed and reframed across different levels within a system influences stakeholder perceptions of whether a water allocation decision is just or unjust, which in turn influences the successful adoption and implementation of such a decision. This paper utilises a case study from the Murray-Darling Basin in Australia to illustrate how reframing a water management issue across multiple scales and levels can help understand stakeholders' perceptions of justice and injustice. In this case study two scales are explored, an institutional and an organisational scale; each comprising levels at the federal, basin, state and region. The water management issue of domestic and stock dams was tracked through the various scales and levels and illustrated how reframing an issue at different levels can influence the analysis of just or equitable outcomes. The case study highlights the need to treat justice in water allocation as an ever evolving problem of the behaviour of a social system rather than the meeting of static principles of what is 'right'. This points to the importance of being attentive to the dynamic and dialogical nature of justice when dealing with water allocation issues across scales and levels of water governance.
Hydraulic fracturing (HF) is used to develop unconventional gas reserves, but the technology requires large volumes of water, placing demands on local water resources and potentially creating conflict with other users and ecosystems. This study examines the balance between water ...
Drinking Water Quality and the Geospatial Distribution of Notified Gastro-Intestinal Infections
GRILC, Eva; GALE, Ivanka; VERŠIČ, Aleš; ŽAGAR, Tina; SOČAN, Maja
2015-01-01
Introduction Even brief episodes of fecal contamination of drinking water can lead directly to illness in the consumers. In water-borne outbreaks, the connection between poor microbial water quality and disease can be quickly identified. The impact of non-compliant drinking water samples due to E. coli taken for regular monitoring on the incidence of notified acute gastrointestinal infections has not yet been studied. Methods The objective of this study was to analyse the geographical distribution of notified acute gastrointestinal infections (AGI) in Slovenia in 2010, with hotspot identification. The second aim of the study was to correlate the fecal contamination of water supply system on the settlement level with the distribution of notified AGI cases. Spatial analysis using geo-information technology and other methods were used. Results Hot spots with the highest proportion of notified AGI cases were mainly identified in areas with small supply zones. The risk for getting AGI was drinking water contaminated with E. coli from supply zones with 50–1000 users: RR was 1.25 and significantly greater than one (p-value less than 0.001). Conclusion This study showed the correlation between the frequency of notified AGI cases and non-compliant results in drinking water monitoring. PMID:27646727
Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G; Liu, Mengling; Cheng, Xin; Parvez, Faruque; Islam, Tariqul; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Jiang, Jieying; Roy, Shantanu; Paul-Brutus, Rachelle; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; VanderWeele, Tyler J; Pierce, Brandon L; Graziano, Joseph H; Ahsan, Habibul; Chen, Yu
2015-05-01
Epidemiologic data on genetic susceptibility to cardiovascular effects of arsenic exposure from drinking water are limited. We investigated whether the association between well-water arsenic and cardiovascular disease (CVD) differed by 170 single nucleotide polymorphisms (SNPs) in 17 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. We conducted a prospective case-cohort study nested in the Health Effects of Arsenic Longitudinal Study, with a random subcohort of 1,375 subjects and 447 incident fatal and nonfatal cases of CVD. Well-water arsenic was measured in 2000 at baseline. The CVD cases, 56 of which occurred in the subcohort, included 238 coronary heart disease cases, 165 stroke cases, and 44 deaths due to other CVD identified during follow-up from 2000 to 2012. Of the 170 SNPs tested, multiplicative interactions between well-water arsenic and two SNPs, rs281432 in ICAM1 (padj = 0.0002) and rs3176867 in VCAM1 (padj = 0.035), were significant for CVD after adjustment for multiple testing. Compared with those with GC or CC genotype in rs281432 and lower well-water arsenic, the adjusted hazard ratio (aHR) for CVD was 1.82 (95% CI: 1.31, 2.54) for a 1-SD increase in well-water arsenic combined with the GG genotype, which was greater than expected given aHRs of 1.08 and 0.96 for separate effects of arsenic and the genotype alone, respectively. Similarly, the joint aHR for arsenic and the rs3176867 CC genotype was 1.34 (95% CI: 0.95, 1.87), greater than expected given aHRs for their separate effects of 1.02 and 0.84, respectively. Associations between CVD and arsenic exposure may be modified by genetic variants related to endothelial dysfunction.
[Study on the automatic parameters identification of water pipe network model].
Jia, Hai-Feng; Zhao, Qi-Feng
2010-01-01
Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.
Kuhn, K Gaardbo; Falkenhorst, G; Emborg, H-D; Ceper, T; Torpdahl, M; Krogfelt, K A; Ethelberg, S; Mølbak, K
2017-03-01
Following an unusually heavy rainfall in June 2009, a community-wide outbreak of Campylobacter gastroenteritis occurred in a small Danish town. The outbreak investigation consisted of (1) a cohort study using an e-questionnaire of disease determinants, (2) microbiological study of stool samples, (3) serological study of blood samples from cases and asymptomatic members of case households, and (4) environmental analyses of the water distribution system. The questionnaire study identified 163 cases (respondent attack rate 16%). Results showed a significant dose-response relationship between consumption of tap water and risk of gastroenteritis. Campylobacter jejuni belonging to two related flaA types were isolated from stool samples. Serum antibody levels against Campylobacter were significantly higher in cases than in asymptomatic persons. Water samples were positive for coliform bacteria, and the likely mode of contamination was found to be surface water leaking into the drinking-water system. This geographically constrained outbreak presented an ideal opportunity to study the serological response in persons involved in a Campylobacter outbreak. The serology indicated that asymptomatic persons from the same household may have been exposed, during the outbreak period, to Campylobacter at doses that did not elicit symptoms or alternatively had been exposed to Campylobacter at a time prior to the outbreak, resulting in residual immunity and thus absence of clinical signs.
Adane, Metadel; Mengistie, Bezatu; Medhin, Girmay; Kloos, Helmut; Mulat, Worku
2017-01-01
The problem of intermittent piped water supplies that exists in low- and middle-income countries is particularly severe in the slums of sub-Saharan Africa. However, little is known about whether there is deterioration of the microbiological quality of the intermittent piped water supply at a household level and whether it is a factor in reducing or increasing the occurrence of acute diarrhea among under-five children in slums of Addis Ababa. This study aimed to determine the association of intermittent piped water supplies and point-of-use (POU) contamination of household stored water by Escherichia coli (E. coli) with acute diarrhea among under-five children in slums of Addis Ababa. A community-based matched case-control study was conducted from November to December, 2014. Cases were defined as under-five children with acute diarrhea during the two weeks before the survey. Controls were matched by age and neighborhood with cases by individual matching. Data were collected using a pre-tested structured questionnaire and E. coli analysis of water from piped water supplies and household stored water. A five-tube method of Most Probable Number (MPN)/100 ml standard procedure was used for E. coli analysis. Multivariable conditional logistic regression with 95% confidence interval (CI) was used for data analysis by controlling potential confounding effects of selected socio-demographic characteristics. During the two weeks before the survey, 87.9% of case households and 51.0% of control households had an intermittent piped water supply for an average of 4.3 days and 3.9 days, respectively. POU contamination of household stored water by E. coli was found in 83.3% of the case households, and 52.1% of the control households. In a fully adjusted model, a periodically intermittent piped water supply (adjusted matched odds ratio (adjusted mOR) = 4.8; 95% CI: 1.3-17.8), POU water contamination in household stored water by E. coli (adjusted mOR = 3.3; 95% CI: 1.1-10.1), water retrieved from water storage containers using handle-less vessels (adjusted mOR = 16.3; 95% CI: 4.4-60.1), and water retrieved by interchangeably using vessels both with and without handle (adjusted mOR = 5.4; 95% CI: 1.1-29.1) were independently associated with acute diarrhea. We conclude that provision of continuously available piped water supplies and education of caregivers about proper water retrieval methods of household stored water can effectively reduce POU contamination of water at the household level and thereby reduce acute diarrhea among under-five children in slums of Addis Ababa. Promotion of household water treatment is also highly encouraged until the City's water authority is able to deliver continuously available piped water supplies.
Nitrates in drinking water and risk of death from rectal cancer in Taiwan.
Kuo, Hsin-Wei; Wu, Trong-Neng; Yang, Chun-Yuh
2007-10-01
The relationship between nitrate levels in drinking water and rectal cancer development has been inconclusive. A matched case-control and nitrate ecology study was used to investigate the association between mortality attributed to rectal cancer and drinking-water nitrate exposure in Taiwan. All deaths due to rectal cancer of Taiwan residents from 1999 through 2003 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO3-N) levels in drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios for rectal cancer death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.22 (0.98-1.52) and 1.36 (1.08-1.70), respectively. The findings of this study warrant further investigation of the role of nitrates in drinking water in the etiology of rectal cancer in Taiwan.
Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt
NASA Astrophysics Data System (ADS)
Mandour, R. A.
2012-09-01
This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.
Risk of Gastric Cancer by Water Source: Evidence from the Golestan Case-Control Study
Eichelberger, Laura; Murphy, Gwen; Etemadi, Arash; Abnet, Christian C.; Islami, Farhad; Shakeri, Ramin; Malekzadeh, Reza; Dawsey, Sanford M.
2015-01-01
Background Gastric cancer (GC) is the world’s fifth most common cancer, and the third leading cause of cancer-related death. Over 70% of incident cases and deaths occur in developing countries. We explored whether disparities in access to improved drinking water sources were associated with GC risk in the Golestan Gastric Cancer Case Control Study. Methods and Findings 306 cases and 605 controls were matched on age, gender, and place of residence. We conducted unconditional logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CI), adjusted for age, gender, ethnicity, marital status, education, head of household education, place of birth and residence, homeownership, home size, wealth score, vegetable consumption, and H. pylori seropositivity. Fully-adjusted ORs were 0.23 (95% CI: 0.05–1.04) for chlorinated well water, 4.58 (95% CI: 2.07–10.16) for unchlorinated well water, 4.26 (95% CI: 1.81–10.04) for surface water, 1.11 (95% CI: 0.61–2.03) for water from cisterns, and 1.79 (95% CI: 1.20–2.69) for all unpiped sources, compared to in-home piped water. Comparing unchlorinated water to chlorinated water, we found over a two-fold increased GC risk (OR 2.37, 95% CI: 1.56–3.61). Conclusions Unpiped and unchlorinated drinking water sources, particularly wells and surface water, were significantly associated with the risk of GC. PMID:26023788
Meng, Xiangyin; Li, Yan
2015-01-01
Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flowers, L.; Miner-Nordstrom, L.
2006-01-01
As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economicallymore » meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.« less
Rebhun, R. B.; Kass, P. H.; Kent, M. S.; Watson, K. D.; Withers, S. S.; Culp, W. T. N.; King, A.M.
2016-01-01
Experimental toxicological studies in laboratory animals and epidemiological human studies have reported a possible association between water fluoridation and osteosarcoma (OSA). To further explore this possibility, a case-control study of individual dogs evaluated by the UC Davis Veterinary Medical Teaching Hospital was conducted using ecologic data on water fluoridation based on the owner’s residence. The case group included 161 dogs with OSA diagnosed between 2008–2012. Two cancer control groups included dogs diagnosed with lymphoma (LSA) or hemangiosarcoma (HSA) during the same period (n = 134 and n = 145, respectively). Dogs with OSA were not significantly more likely to live in an area with optimized fluoride in the water than dogs with LSA or HSA. Additional analyses within OSA patients also revealed no significant differences in age, or skeletal distribution of OSA cases relative to fluoride status. Taken together, these analyses do not support the hypothesis that optimal fluoridation of drinking water contributes to naturally occurring OSA in dogs. PMID:26762869
Rebhun, R B; Kass, P H; Kent, M S; Watson, K D; Withers, S S; Culp, W T N; King, A M
2017-06-01
Experimental toxicological studies in laboratory animals and epidemiological human studies have reported a possible association between water fluoridation and osteosarcoma (OSA). To further explore this possibility, a case-control study of individual dogs evaluated by the UC Davis Veterinary Medical Teaching Hospital was conducted using ecologic data on water fluoridation based on the owner's residence. The case group included 161 dogs with OSA diagnosed between 2008-2012. Two cancer control groups included dogs diagnosed with lymphoma (LSA) or hemangiosarcoma (HSA) during the same period (n = 134 and n = 145, respectively). Dogs with OSA were not significantly more likely to live in an area with optimized fluoride in the water than dogs with LSA or HSA. Additional analyses within OSA patients also revealed no significant differences in age, or skeletal distribution of OSA cases relative to fluoride status. Taken together, these analyses do not support the hypothesis that optimal fluoridation of drinking water contributes to naturally occurring OSA in dogs. © 2016 John Wiley & Sons Ltd.
Chiang, Fu-Tsai; Li, Pei-Jung; Chung, Shih-Ping; Pan, Lung-Fa; Pan, Lung-Kwang
2016-01-01
ABSTRACT This study analyzed multiple biokinetic models using a dynamic water phantom. The phantom was custom-made with acrylic materials to model metabolic mechanisms in the human body. It had 4 spherical chambers of different sizes, connected by 8 ditches to form a complex and adjustable water loop. One infusion and drain pole connected the chambers to an auxiliary silicon-based hose, respectively. The radio-active compound solution (TC-99m-MDP labeled) formed a sealed and static water loop inside the phantom. As clean feed water was infused to replace the original solution, the system mimicked metabolic mechanisms for data acquisition. Five cases with different water loop settings were tested and analyzed, with case settings changed by controlling valve poles located in the ditches. The phantom could also be changed from model A to model B by transferring its vertical configuration. The phantom was surveyed with a clinical gamma camera to determine the time-dependent intensity of every chamber. The recorded counts per pixel in each chamber were analyzed and normalized to compare with theoretical estimations from the MATLAB program. Every preset case was represented by uniquely defined, time-dependent, simultaneous differential equations, and a corresponding MATLAB program optimized the solutions by comparing theoretical calculations and practical measurements. A dimensionless agreement (AT) index was recommended to evaluate the comparison in each case. ATs varied from 5.6 to 48.7 over the 5 cases, indicating that this work presented an acceptable feasibility study. PMID:27286096
WEB-BASED DATABASE ON RENEWAL TECHNOLOGIES ...
As U.S. utilities continue to shore up their aging infrastructure, renewal needs now represent over 43% of annual expenditures compared to new construction for drinking water distribution and wastewater collection systems (Underground Construction [UC], 2016). An increased understanding of renewal options will ultimately assist drinking water utilities in reducing water loss and help wastewater utilities to address infiltration and inflow issues in a cost-effective manner. It will also help to extend the service lives of both drinking water and wastewater mains. This research effort involved collecting case studies on the use of various trenchless pipeline renewal methods and providing the information in an online searchable database. The overall objective was to further support technology transfer and information sharing regarding emerging and innovative renewal technologies for water and wastewater mains. The result of this research is a Web-based, searchable database that utility personnel can use to obtain technology performance and cost data, as well as case study references. The renewal case studies include: technologies used; the conditions under which the technology was implemented; costs; lessons learned; and utility contact information. The online database also features a data mining tool for automated review of the technologies selected and cost data. Based on a review of the case study results and industry data, several findings are presented on tren
Ecosystem Services Insights into Water Resources Management in China: A Case of Xi'an City.
Liu, Jingya; Li, Jing; Gao, Ziyi; Yang, Min; Qin, Keyu; Yang, Xiaonan
2016-11-24
Global climate and environmental changes are endangering global water resources; and several approaches have been tested to manage and reduce the pressure on these decreasing resources. This study uses the case study of Xi'an City in China to test reasonable and effective methods to address water resource shortages. The study generated a framework combining ecosystem services and water resource management. Seven ecosystem indicators were classified as supply services, regulating services, or cultural services. Index values for each indicator were calculated, and based on questionnaire results, each index's weight was calculated. Using the Likert method, we calculated ecosystem service supplies in every region of the city. We found that the ecosystem's service capability is closely related to water resources, providing a method for managing water resources. Using Xi'an City as an example, we apply the ecosystem services concept to water resources management, providing a method for decision makers.
Kwesiga, Benon; Pande, Gerald; Ario, Alex Riolexus; Tumwesigye, Nazarius Mbona; Matovu, Joseph K B; Zhu, Bao-Ping
2017-07-18
In May 2015, a cholera outbreak that had lasted 3 months and infected over 100 people was reported in Kasese District, Uganda, where multiple cholera outbreaks had occurred previously. We conducted an investigation to identify the mode of transmission to guide control measures. We defined a suspected case as onset of acute watery diarrhoea from 1 February 2015 onwards in a Kasese resident. A confirmed case was a suspected case with Vibrio cholerae O1 El Tor, serotype Inaba cultured from a stool sample. We reviewed medical records to find cases. We conducted a case-control study to compare exposures among confirmed case-persons and asymptomatic controls, matched by village and age-group. We conducted environmental assessments. We tested water samples from the most affected area for total coliforms using the Most Probable Number (MPN) method. We identified 183 suspected cases including 61 confirmed cases of Vibrio cholerae 01; serotype Inaba, with onset between February and July 2015. 2 case-persons died of cholera. The outbreak occurred in 80 villages and affected all age groups; the highest attack rate occurred in the 5-14 year age group (4.1/10,000). The outbreak started in Bwera Sub-County bordering the Democratic Republic of Congo and spread eastward through sustained community transmission. The first case-persons were involved in cross-border trading. The case-control study, which involved 49 confirmed cases and 201 controls, showed that 94% (46/49) of case-persons compared with 79% (160/201) of control-persons drank water without boiling or treatment (OR M-H =4.8, 95% CI: 1.3-18). Water collected from the two main sources, i.e., public pipes (consumed by 39% of case-persons and 38% of control-persons) or streams (consumed by 29% of case-persons and 24% control-persons) had high coliform counts, a marker of faecal contamination. Environmental assessment revealed evidence of open defecation along the streams. No food items were significantly associated with illness. This prolonged, community-wide cholera outbreak was associated with drinking water contaminated by faecal matter and cross-border trading. We recommended rigorous disposal of patients' faeces, chlorination of piped water, and boiling or treatment of drinking water. The outbreak stopped 6 weeks after these recommendations were implemented.
2010-01-01
Although many African countries, along the equator, receive a great amount of rainfall and possess a dense hydrographic network, access to drinking-water remains a great challenge. In many households, water is used for various purposes, including domestic and crafts activities. According to the World Health Organization, an estimated four billion cases of diarrheoa occurs worldwide, of which 88% are ascribed to unsafe drinking-water. This study aimed at evaluating health risks in the usage of contaminated drinking-water and its relationship with the prevalence of diarrhoeal diseases in Yaoundé, Cameroon. In this cross-sectional epidemiological design, 3,034 households with children aged less than five years were investigated. Households were selected from among 20 representative neighbourhoods out of 105 that made up the city. The study revealed a diarrheoa prevalence of 14.4% (437 diarrheoa cases out of 3,034 children tested). Among various risk factors examined, water-supply modes and quality of drinking-water were statistically associated with diarrheoa cases. Moreover, levels of diarrheoa attacks varied considerably from one neighbourhood to the other. The spatial analysis helped determine neighbourhoods of higher and lower prevalence of diarrheoa in the city. PMID:20941893
Yongsi, H Blaise Nguendo
2010-10-01
Although many African countries, along the equator, receive a great amount of rainfall and possess a dense hydrographic network, access to drinking-water remains a great challenge. In many households, water is used for various purposes, including domestic and crafts activities. According to the World Health Organization, an estimated four billion cases of diarrheoa occurs worldwide, of which 88% are ascribed to unsafe drinking-water. This study aimed at evaluating health risks in the usage of contaminated drinking-water and its relationship with the prevalence of diarrhoeal diseases in Yaound6, Cameroon. In this cross-sectional epidemiological design, 3,034 households with children aged less than five years were investigated. Households were selected from among 20 representative neighbourhoods out of 105 that made up the city. The study revealed a diarrheoa prevalence of 14.4% (437 diarrheoa cases out of 3,034 children tested). Among various risk factors examined, water-supply modes and quality of drinking-water were statistically associated with diarrheoa cases. Moreover, levels of diarrheoa attacks varied considerably from one neighbourhood to the other. The spatial analysis helped determine neighbourhoods of higher and lower prevalence of diarrheoa in the city.
Tedmund J. Swiecki; Elizabeth Bernhardt
2002-01-01
We conducted a case-control study to examine the role of water stress and various other factors on the development of Phytophthora ramorum cankers in symptomatic (case) and symptomless (control) coast live oak (Quercus agrifolia) and tanoak (Lithocarpus densiflorus). Midday stem water potential (SWP) in ...
Should the Dead Sea Be Sustainable?: Investigating Environmental Issues Using a Case Study
ERIC Educational Resources Information Center
Saunders, Cheston Andrew
2016-01-01
Many students leave the environmental science classroom with misconceptions centered on the availability of natural resources such as water. This article presents a case study where students assume the roles of various stakeholders and articulate their position on whether or not to pipe water from the Red Sea to the Dead Sea. Additionally,…
Radium-contaminated water: a risk factor for cancer of the upper digestive tract.
Hirunwatthanakul, Phatcha; Sriplung, Hutcha; Geater, Alan
2006-01-01
There is a high incidence of oral, pharynx and esophagus cancer among males in Na Mom district in Songkhla Province in Thailand, an area where radium concentration in shallow well water is found to be higher than other areas in this province. A population-based case control study was conducted from June to November 2004 to determine the association of oral exposure to radium-contaminated water and cancer of the upper digestive tract in the district.Thirty-two confirmed cases and 128 sex and five-year birth cohort matched neighborhood controls were selected by multistage sampling from six villages in four sub-districts. All subjects were verified to have been permanent residents in the district for more than 10 years. Thirty cases were dead at the time of the study, thus their relatives were interviewed to determine their amount of water drinking, tobacco smoking, alcohol drinking, betel chewing and exposure to other potential risk factors in the past. The other two cases and all controls were directly interviewed. The concentration of radium in shallow well water at the subject's houses was estimated using a contour map of Ra-226 in the water at the location of their residence. The results showed a strong and dose-dependent associationb etween consumption of radium-contaminated shallow well water and cancer of the upper digestive tract. In multivariate analysis controlled for important risk factors of the cancer, the odds ratios for exposure to oral radium consumption 50-100 mBq/day and >100 mBq/day compared with <50 mBq/day were 2.83 (95% CI: 0.50-16.19) and 29.76 (95% CI: 4.39-201.6) respectively. The risk also increased with consumption of fresh water fish which might have been contaminated by dissolved radium in the water. This study offers the first evidence of the association between radium and cancer of the upper digestive tract to the world literature. Further studies with other methods such as area-wide correlation of radium-uranium concentration and the incidence of the cancer and case-control studies in other populations are needed to confirm the evidence.
Computer software tool REALM for sustainable water allocation and management.
Perera, B J C; James, B; Kularathna, M D U
2005-12-01
REALM (REsource ALlocation Model) is a generalised computer simulation package that models harvesting and bulk distribution of water resources within a water supply system. It is a modeling tool, which can be applied to develop specific water allocation models. Like other water resource simulation software tools, REALM uses mass-balance accounting at nodes, while the movement of water within carriers is subject to capacity constraints. It uses a fast network linear programming algorithm to optimise the water allocation within the network during each simulation time step, in accordance with user-defined operating rules. This paper describes the main features of REALM and provides potential users with an appreciation of its capabilities. In particular, it describes two case studies covering major urban and rural water supply systems. These case studies illustrate REALM's capabilities in the use of stochastically generated data in water supply planning and management, modelling of environmental flows, and assessing security of supply issues.
Liao, Yen-Hsiung; Chen, Pei-Shih; Chiu, Hui-Fen; Yang, Chun-Yuh
2013-01-01
The objective of this study was to explore whether magnesium (Mg) levels in drinking water modified the effects of nitrate on esophageal cancer risk occurrence. A matched cancer case-control study was used to investigate the relationship between the risk of death from esophageal cancer and exposure to nitrate in drinking water in Taiwan. All esophageal cancer deaths of Taiwan residents from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N and Mg exposure via drinking water. Evidence of an interaction was noted between drinking water NO(3)-N and Mg intake. This is the first study to report effect modification by Mg intake originating from drinking water on an association between NO(3)-N exposure and increased risk mortality attributed to esophageal cancer.
Marquès, Montse; Bangash, Rubab Fatima; Kumar, Vikas; Sharp, Richard; Schuhmacher, Marta
2013-12-15
Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and with high probability to face acute water scarcity problem in the coming years. Francolí River basin (NE Spain), located in this vulnerable region is selected as a case study to evaluate the impact of climate change on the delivery of water considering the IPCC scenarios A2 and B1 for the time spans 2011-2040, 2041-2070 and 2071-2100. InVEST model is applied in a low flow river as a new case study, which reported successful results after its model validation. The studied hydrological ecosystem services will be highly impacted by climate change at Francolí River basin. Water yield is expected to be reduced between 11.5 and 44% while total drinking water provisioning will decrease between 13 and 50% having adverse consequences on the water quality of the river. Focusing at regional scale, Prades Mountains and Brugent Tributary provide most of the provision of water and also considered highly vulnerable areas to climate change. However, the most vulnerable part is the northern area which has the lowest provision of water. Francolí River basin is likely to experience desertification at this area drying Anguera and Vallverd tributaries. Copyright © 2013 Elsevier B.V. All rights reserved.
Arsenic Removal from Drinking Water
Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Case Study 2,5), Case Study 3, and 6), Media Regeneration Project. The presentation consists of material presented at other training sess...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez-Jimenez, F.J.; Mateo, D.; Gimenez-Roldan, S.
1992-01-01
Past exposure to well water and pesticides was assessed in 128 unselected Parkinson's disease (PD) patients and 256 age and sex-matched controls. All were residents in a defined urban area of Madrid, Spain. In keeping with other reports, we found that exposure to well water might be a factor associated with the likelihood of developing PD, though only prolonged exposures of 30 years or longer were significantly different between PD and controls (p less than 0.02). In contrast, past exposure to pesticides did not appear to be associated with an increased risk of developing PD. Prolonged well water drinking antedatingmore » the development of PD was not associated with early onset of the disease, nor did such cases progress to greater disability. Future case-control studies addressing prolonged well water consumption as a risk factor in PD should look for differences in the content of substances other than pesticides in the water as determined by the source of water to which patients may have been specifically exposed.« less
NASA Astrophysics Data System (ADS)
Bhattacharya, Atreyee
2012-11-01
Water crises are one the biggest challenges facing humanity in the 21st century. But what exactly is the nature of these crises? Scientists investigated the underlying causes driving water scarcity in 22 of the best studied cases across India, China, South America, Russia, and Australia using a quantitative technique that breaks down exhaustive case studies into measurable parameters. Srinivasan et al. show that in spite of the numerous ways in which humans interact with fresh water, each shortage or crisis is driven by one or more of eight underlying causes—which can be grouped into six “syndromes.” The authors found that just as declining natural supply can drive water shortages, so can human consumption or lack of proper policies.
Case study approach to modeling historical disinfection by-product exposure in Iowa drinking waters.
Krasner, Stuart W; Cantor, Kenneth P; Weyer, Peter J; Hildesheim, Mariana; Amy, Gary
2017-08-01
In the 1980s, a case-control epidemiologic study was conducted in Iowa (USA) to analyze the association between exposure to disinfection by-products (DBPs) and bladder cancer risk. Trihalomethanes (THMs), the most commonly measured and dominant class of DBPs in drinking water, served as a primary metric and surrogate for the full DBP mixture. Average THM exposure was calculated, based on rough estimates of past levels in Iowa. To reduce misclassification, a follow-up study was undertaken to improve estimates of past THM levels and to re-evaluate their association with cancer risk. In addition, the risk associated with haloacetic acids, another class of DBPs, was examined. In the original analysis, surface water treatment plants were assigned one of two possible THM levels depending on the point of chlorination. The re-assessment considered each utility treating surface or groundwater on a case-by-case basis. Multiple treatment/disinfection scenarios and water quality parameters were considered with actual DBP measurements to develop estimates of past levels. The highest annual average THM level in the re-analysis was 156μg/L compared to 74μg/L for the original analysis. This allowed the analysis of subjects exposed at higher levels (>96μg/L). The re-analysis established a new approach, based on case studies and an understanding of the water quality and operational parameters that impact DBP formation, for determining historical exposure. Copyright © 2017. Published by Elsevier B.V.
Nitrate in drinking water and risk of death from pancreatic cancer in Taiwan.
Yang, Chun-Yuh; Tsai, Shang-Shyue; Chiu, Hui-Fen
2009-01-01
The relationship between nitrate levels in drinking water and risk of pancreatic cancer development remains inconclusive. A matched case-control and nitrate ecology study was used to investigate the association between mortality attributed to pancreatic cancer and nitrate exposure from Taiwan's drinking water. All pancreatic cancer deaths of Taiwan residents from 2000 through 2006 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO(3)-N) levels of drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios and confidence limits for pancreatic cancer death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.03 (0.9-1.18) and 1.1 (0.96-1.27), respectively. The results of the present study show that there was no statistically significant association between the levels of nitrate in drinking water and increased risk of death from pancreatic cancer.
Adane, Metadel; Mengistie, Bezatu; Medhin, Girmay; Kloos, Helmut; Mulat, Worku
2017-01-01
Background The problem of intermittent piped water supplies that exists in low- and middle-income countries is particularly severe in the slums of sub-Saharan Africa. However, little is known about whether there is deterioration of the microbiological quality of the intermittent piped water supply at a household level and whether it is a factor in reducing or increasing the occurrence of acute diarrhea among under-five children in slums of Addis Ababa. This study aimed to determine the association of intermittent piped water supplies and point-of-use (POU) contamination of household stored water by Escherichia coli (E. coli) with acute diarrhea among under-five children in slums of Addis Ababa. Methods A community-based matched case-control study was conducted from November to December, 2014. Cases were defined as under-five children with acute diarrhea during the two weeks before the survey. Controls were matched by age and neighborhood with cases by individual matching. Data were collected using a pre-tested structured questionnaire and E. coli analysis of water from piped water supplies and household stored water. A five-tube method of Most Probable Number (MPN)/100 ml standard procedure was used for E. coli analysis. Multivariable conditional logistic regression with 95% confidence interval (CI) was used for data analysis by controlling potential confounding effects of selected socio-demographic characteristics. Main findings During the two weeks before the survey, 87.9% of case households and 51.0% of control households had an intermittent piped water supply for an average of 4.3 days and 3.9 days, respectively. POU contamination of household stored water by E. coli was found in 83.3% of the case households, and 52.1% of the control households. In a fully adjusted model, a periodically intermittent piped water supply (adjusted matched odds ratio (adjusted mOR) = 4.8; 95% CI: 1.3–17.8), POU water contamination in household stored water by E. coli (adjusted mOR = 3.3; 95% CI: 1.1–10.1), water retrieved from water storage containers using handle-less vessels (adjusted mOR = 16.3; 95% CI: 4.4–60.1), and water retrieved by interchangeably using vessels both with and without handle (adjusted mOR = 5.4; 95% CI: 1.1–29.1) were independently associated with acute diarrhea. Conclusion We conclude that provision of continuously available piped water supplies and education of caregivers about proper water retrieval methods of household stored water can effectively reduce POU contamination of water at the household level and thereby reduce acute diarrhea among under-five children in slums of Addis Ababa. Promotion of household water treatment is also highly encouraged until the City’s water authority is able to deliver continuously available piped water supplies. PMID:28723927
A community-based gastroenteritis outbreak after Typhoon Haiyan, Leyte, Philippines, 2013.
Ventura, Ray Justin; Muhi, Edzel; de los Reyes, Vikki Carr; Sucaldito, Ma Nemia; Tayag, Enrique
2015-01-01
Three weeks after Typhoon Haiyan, an increasing number of acute gastroenteritis cases were reported in Kananga, Leyte, an area where evacuated residents had returned home two days after the disaster. An outbreak investigation was conducted to identify the source and risk factors associated with the increase of gastroenteritis. A case was defined as any person in Kananga who developed acute diarrhoea (≥ 3 times/24 hours) and any of the following symptoms: fever, nausea, vomiting or abdominal pain from 11 November 2013 to 10 December 2013. Active case finding was conducted by reviewing medical records, and a case-control study was conducted. Rectal swabs and water samples were tested for bacteriological examination. One hundred and five cases were identified. Multivariate analysis revealed that consumption of untreated drinking-water was associated with illness (adjusted odds ratio: 18.2). Both rectal swabs and municipal water samples tested positive for Aeromonas hydrophila. On inspection of the municipal water system, breaks in the distribution pipes were found with some submerged in river water. This acute gastroenteritis outbreak was most likely caused by Aeromonas hydrophila and transmitted through a contaminated water source. This study highlights that areas less damaged by a disaster that do not require ongoing evacuation centres can still have acute gastroenteritis outbreaks. All affected areas should be monitored during a disaster response, not just those with evacuation centres. Boiling or chlorinating of water should also be recommended for all areas affected by disaster.
NASA Astrophysics Data System (ADS)
Gardini, A.; Maíz Apellániz, J.; Pérez, E.; Quesada, J. A.; Funke, B.
2013-05-01
The Radiative Transfer Model (RTM) and the retrieval algorithm, incorporated in the SCIATRAN 2.2 software package developed at the Institute of Remote Sensing/Institute of Enviromental Physics of Bremen University (Germany), allows to simulate, among other things, radiance/irradiance spectra in the 2400--24 000 Å range. In this work we present applications of RTM to two case studies. In the first case the RTM was used to simulate direct solar irradiance spectra, with different water vapor amounts, for the study of the water vapor content in the atmosphere above Sierra Nevada Observatory. Simulated spectra were compared with those measured with a spectrometer operating in the 8000--10 000 Å range. In the second case the RTM was used to generate telluric model spectra to subtract the atmospheric contribution and correct high-resolution stellar spectra from atmospheric water vapor and oxygen lines. The results of both studies are discussed.
NASA Astrophysics Data System (ADS)
Monaco, Eugenia; Alfieri, Silvia Maria; Basile, Angelo; Menenti, Massimo; Bonfante, Antonello; De Lorenzi, Fracesca
2014-05-01
Climate evolution may lead to changes in the amount and distribution of precipitations and to reduced water availability, with constraints on the cultivation of some crops. Recently, foreseen crop responses to climate change raise a crucial question for the agricultural stakeholders: are the current production systems resilient to this change? An active debate is in progress about the definition of adaptation of agricultural systems, particularly about the integrated assessment of climate stressors, vulnerability and resilece towards the evaluation of climate impact on agricultural systems. Climate change represents a risk for rain-fed agricultural systems, where irrigations cannot compensate reductions in precipitations. The intra-specific biodiversity of crops can be a resource towards adaptation. The knowledge of the responses to environmental conditions (temperature and water availability) of different cultivars can allow to identify options for adaptation to future climate. Simulation models of water flow in the soil-plant-atmosphere system, driven by different climate scenarios, can describe present and foreseen soil water regime. The present work deals with a case-study on the adaptive capacity of durum wheat to climate change. The selected study area is a hilly region in Southern Italy (Fortore Beneventano, Campania Region). Two climate cases were studied: "reference" (1961-1990) and "future" (2021-2050). A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was run to determine the water regime in some soil units, representative of the soil variability in the study area. From model output, the Relative Evapotranspiration Deficit (RETD) was determined as an indicator of hydrological conditions during the crop growing period for each year and climate case; and periods with higher frequencies of soil water deficits were identified. The timing of main crop development stages was calculated. The occurrence of water deficit at different development stages was thus assessed. Moreover, the yield response functions to water availability of several durum wheat cultivars were determined; cultivars' hydrologic requirements were thus defined and compared with the simulated values of RETD. The latter was evaluated against requirements for each soil unit, cultivar and year in both climate cases to assess adaptability. In the future climate scenario a significant reduction (about 80 mm) of rainfall is foreseen. The analyses of inter- and intra-annual courses of the indicator (RETD) showed higher RETD in one soil unit, which resulted less suitable for durum wheat cultivation. According to the soils' water regime and to the cultivar-specific yield responses, the adaptability of durum wheat cultivars was assessed. The difference between the two climate cases was significant; the adaptability of the cultivars was strongly influenced by the different rainfall regime and by the soil physical properties, which strongly affected the soil water balance. The case study showed how in the future climate case, for rainfed durum wheat, the intra-specific variability will allow to maintain the current crop production system. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)
Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G.; Liu, Mengling; Cheng, Xin; Parvez, Faruque; Islam, Tariqul; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Jiang, Jieying; Roy, Shantanu; Paul-Brutus, Rachelle; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; VanderWeele, Tyler J.; Pierce, Brandon L.; Graziano, Joseph H.; Ahsan, Habibul
2015-01-01
Background: Epidemiologic data on genetic susceptibility to cardiovascular effects of arsenic exposure from drinking water are limited. Objective: We investigated whether the association between well-water arsenic and cardiovascular disease (CVD) differed by 170 single nucleotide polymorphisms (SNPs) in 17 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. Method: We conducted a prospective case-cohort study nested in the Health Effects of Arsenic Longitudinal Study, with a random subcohort of 1,375 subjects and 447 incident fatal and nonfatal cases of CVD. Well-water arsenic was measured in 2000 at baseline. The CVD cases, 56 of which occurred in the subcohort, included 238 coronary heart disease cases, 165 stroke cases, and 44 deaths due to other CVD identified during follow-up from 2000 to 2012. Results: Of the 170 SNPs tested, multiplicative interactions between well-water arsenic and two SNPs, rs281432 in ICAM1 (padj = 0.0002) and rs3176867 in VCAM1 (padj = 0.035), were significant for CVD after adjustment for multiple testing. Compared with those with GC or CC genotype in rs281432 and lower well-water arsenic, the adjusted hazard ratio (aHR) for CVD was 1.82 (95% CI: 1.31, 2.54) for a 1-SD increase in well-water arsenic combined with the GG genotype, which was greater than expected given aHRs of 1.08 and 0.96 for separate effects of arsenic and the genotype alone, respectively. Similarly, the joint aHR for arsenic and the rs3176867 CC genotype was 1.34 (95% CI: 0.95, 1.87), greater than expected given aHRs for their separate effects of 1.02 and 0.84, respectively. Conclusions: Associations between CVD and arsenic exposure may be modified by genetic variants related to endothelial dysfunction. Citation: Wu F, Jasmine F, Kibriya MG, Liu M, Cheng X, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Jiang J, Roy S, Paul-Brutus R, Slavkovich V, Islam T, Levy D, VanderWeele TJ, Pierce BL, Graziano JH, Ahsan H, Chen Y. 2015. Interaction between arsenic exposure from drinking water and genetic polymorphisms on cardiovascular disease in Bangladesh: a prospective case-cohort study. Environ Health Perspect 123:451–457; http://dx.doi.org/10.1289/ehp.1307883 PMID:25575156
Lake Michigan, the sixth largest freshwater lake in the world by surface area, was utilized as a water body for assessment within a case study. Field data collected at 116 sampling sites throughout the lake in an intensive monitoring effort were utilized for evaluation of the di...
What's Wrong with Bribery? An Example Utilizing Access to Safe Drinking Water
ERIC Educational Resources Information Center
Dhooge, Lucien J.
2013-01-01
This case study examines the role of bribery in the global marketplace through an example involving access to safe drinking water in the developing world. Parts II and III set out the objectives and methods of classroom delivery for the case study. Part IV is the background reading relating to bribery with particular emphasis on the Foreign…
ERIC Educational Resources Information Center
Hakerem, Gita; And Others
This study reports the efforts of the Water and Molecular Networks Project (WAMNet), a program in which high school chemistry students use computer simulations developed at Boston University (Massachusetts) to model the three-dimensional structure of molecules and the hydrogen bond network that holds water molecules together. This case study…
Dennis W. Hallema; Jonathan A. Lafond; Yann Périard; Silvio J. Gumiere; Ge Sun; Jean Caron
2015-01-01
Organic soils are an excellent substrate for commercial lettuce (Lactuca sativa L.) farming; however, drainage accelerates oxidation of the surface layer and reduces the water holding capacity, which is often lethal for crops that are sensitive to water stress. In this case study, we analyzed 942 peat samples from a large cultivated peatland complex...
NASA Astrophysics Data System (ADS)
García-Santos, Glenda; Madruga de Brito, Mariana; Höllermann, Britta; Taft, Linda; Almoradie, Adrian; Evers, Mariele
2018-06-01
Understanding the interactions between water resources and its social dimensions is crucial for an effective and sustainable water management. The identification of sensitive control variables and feedback loops of a specific human-hydro-scape can enhance the knowledge about the potential factors and/or agents leading to the current water resources and ecosystems situation, which in turn supports the decision-making process of desirable futures. Our study presents the utility of a system dynamics modeling approach for water management and decision-making for the case of a forest ecosystem under risk of wildfires. We use the pluralistic water research concept to explore different scenarios and simulate the emergent behaviour of water interception and net precipitation after a wildfire in a forest ecosystem. Through a case study, we illustrate the applicability of this new methodology.
Mo, Weiwei; Nasiri, Fuzhan; Eckelman, Matthew J; Zhang, Qiong; Zimmerman, Julie B
2010-12-15
A sustainable supply of both energy and water is critical to long-term national security, effective climate policy, natural resource sustainability, and social wellbeing. These two critical resources are inextricably and reciprocally linked; the production of energy requires large volumes of water, while the treatment and distribution of water is also significantly dependent upon energy. In this paper, a hybrid analysis approach is proposed to estimate embodied energy and to perform a structural path analysis of drinking water supply systems. The applicability of this approach is then tested through a case study of a large municipal water utility (city of Kalamazoo) in the Great Lakes region to provide insights on the issues of water-energy pricing and carbon footprints. Kalamazoo drinking water requires approximately 9.2 MJ/m(3) of energy to produce, 30% of which is associated with indirect inputs such as system construction and treatment chemicals.
Toward greener dialysis: a case study to illustrate and encourage the salvage of reject water.
Connor, Andrew; Milne, Steve; Owen, Andrew; Boyle, Gerard; Mortimer, Frances; Stevens, Paul
2010-06-01
Climate change is now considered to be a major global public health concern. However, the very provision of health care itself has a significant impact upon the environment. Action must be taken to reduce this impact. Water is a precious and finite natural resource. Vast quantities of high-grade water are required to provide haemodialysis. The reverse osmosis systems used in the purification process reject approximately two-thirds of the water presented to them. Therefore, around 250 litres of 'reject water' result from the production of the dialysate required for one treatment. This good quality reject water is lost-to-drain in the vast majority of centres worldwide. Simple methodologies exist to recycle this water for alternative purposes. We describe here a case study of the only UK renal service we know to have implemented such water-saving methodologies. We outline the benefits in terms of financial and environmental savings.
NASA Technical Reports Server (NTRS)
Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.
1991-01-01
High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.
NASA Astrophysics Data System (ADS)
Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.
2018-01-01
An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.
NASA Astrophysics Data System (ADS)
Pairan, M. Rasidi; Asmuin, Norzelawati; Isa, Nurasikin Mat; Sies, Farid
2017-04-01
Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. This project studies the water droplet velocity and penetration angle generated by new development mist spray with a flat spray pattern. This research conducted into two part which are experimental and simulation section. The experimental was conducted by using particle image velocimetry (PIV) method, ANSYS software was used as tools for simulation section meanwhile image J software was used to measure the penetration angle. Three different of combination pressure of air and water were tested which are 1 bar (case A), 2 bar (case B) and 3 bar (case C). The flat spray generated by the new development nozzle was examined at 9cm vertical line from 8cm of the nozzle orifice. The result provided in the detailed analysis shows that the trend of graph velocity versus distance gives the good agreement within simulation and experiment for all the pressure combination. As the water and air pressure increased from 1 bar to 2 bar, the velocity and angle penetration also increased, however for case 3 which run under 3 bar condition, the water droplet velocity generated increased but the angle penetration is decreased. All the data then validated by calculate the error between experiment and simulation. By comparing the simulation data to the experiment data for all the cases, the standard deviation for this case A, case B and case C relatively small which are 5.444, 0.8242 and 6.4023.
NASA Astrophysics Data System (ADS)
Li, Shucai; Xu, Shan; Nie, Lichao; Liu, Bin; Liu, Rentai; Zhang, Qingsong; Zhao, Yan; Liu, Quanwei; Wang, Houtong; Liu, Haidong; Guo, Qin
2018-06-01
Water inrush during tunneling is a significant problem in the underground infrastructure construction. Electrical resistivity imaging (ERI) is a technique that can detect and characterize a water body in an open fracture or fault by exploiting the resistivity contrast that exists between the water body and the surrounding materials. ERI is an efficient method for pre-tunneling geological characterization. In this study, a case study is presented in which tunnel-face and borehole ERI (TBERI) is performed by using the probe hole to detect a water body during tunnel construction. The construction site is a metro line site, situated in the city of Qingdao, China. Unlike the traditional cross-hole observation mode, TBERI only use a single borehole. The installation of injection electrodes inside the probe hole and the installation of measuring electrodes on the tunnel face is proposed as the observation mode. Furthermore, a numerical simulation is carried out before the real field experiment, and the simulation results show that the TBERI is capable of detecting a deeply buried water body. In addition, the water body in the field case is also identified by TBERI. The water body appears as a strongly conductive anomaly relative to the background materials. This study highlights the respective strengths and weaknesses of the TBERI for pre-tunneling geological characterization. This method is a relatively rapid means of investigating the studied area. This study clearly demonstrates the suitability of TBERI in a tunneling scenario.
Solar radiation and water vapor pressure to forecast chickenpox epidemics.
Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A
2015-03-01
The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.
NASA Astrophysics Data System (ADS)
Sallam, Osama M.
2014-12-01
The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.
76 FR 71341 - BASINS and WEPP Climate Assessment Tools: Case Study Guide to Potential Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
... report presents a series of short case studies designed to illustrate the capabilities of these tools for... change impacts on water. This report presents a series of short case studies using the BASINS and WEPP climate assessment tools. The case studies are designed to illustrate the capabilities of these tools for...
Khan, Mohammad Zain; Sim, Yei Lin; Lin, Yang Jian; Lai, Ka Man
2013-01-01
The feasibility of reusing hand-washing grey water contaminated with antibacterial hand-washing liquid for irrigation purposes in an urban farm is explored in this case study. Experiments are carried out to investigate if the quality of this grey water allows for its reuse in agriculture as per the guidelines established by the World Health Organization (WHO). However, there is no guideline to test the biological effect of grey water prior to agricultural use. It is plausible that the antibacterial property of the grey water can harm the soil microbial system and plants when applied to land, even if all other water quality parameters satisfy the WHO limit. We use algae (Chlorella vulgaris) and indigenous soil bacteria as initial plant and soil bacteria indicators, respectively, to test the potential inhibition of the water on plants and soil bacteria. Results show that the chemical oxygen demand (COD) of the grey water is 10% higher than the WHO permissible level, while all other water quality parameters are within the limits after four days of our experimental period. An inhibitory effect is observed in all of the biological tests. However, the inhibitory effect on algae and soil bacteria is not observed after the four-day period. The case study demonstrates a new approach for testing the biological effect of grey water, which can be used in conjunction with the WHO guideline, and provides data for this urban farm to set up a future water treatment system for grey-water reuse in irrigation.
Petroselli, Andrea; Giannotti, Maurizio; Marras, Tatiana; Allegrini, Elena
2017-06-03
In dry regions, water resources have become increasingly limited, and the use of alternative sources is considered one of the main strategies in sustainable water management. A highly viable alternative to commonly used water resources is treated municipal wastewater, which could strongly benefit from advanced and low-cost techniques for depuration, such as the integrated system of phytodepuration (ISP). The current manuscript investigates four Italian case studies with different sizes and characteristics. The raw wastewaters and final effluents were sampled on a monthly basis over a period of up to five years, allowing the quantification of the ISP performances. The results obtained show that the investigated plants are characterized by an average efficiency value of approximately 83% for chemical oxygen demand removal, 84% for biochemical oxygen demand, 89% for total nitrogen, 91% for total phosphorus, and 85% for total suspended solids. Moreover, for three of the case studies, the ISP final effluent is suitable for irrigation, and in the fourth case study, the final effluent can be released in surface water.
Evaluating the Economic and Social Benefits of Nutrient ...
New England’s coastal social-ecological systems are subject to chronic environmental problems, including water quality degradation. Researchers at EPA’s Office of Research and Development (ORD) Atlantic Ecology Division (AED) are piloting an effort to further understand how reduced water quality due to nutrient enrichment is affecting and may affect the economic prosperity, social capacity, and ecological integrity of coastal New England communities. This research is part of task 4.61 of ORD’s Sustainable and Healthy Communities Research Program (Integrated Solutions for Sustainable Communities: Social-Ecological Systems for Resilience and Adaptive Management in Communities - A Cape Cod Case Study). Concurrent with this effort, AED researchers are participating in EPA’s three-office effort (Office of Research and Development, Office of Policy, and Office of Water) to quantify and monetize the benefits of water quality improvements across the Nation. AED’s effort is a case study of changes in recreation demand and values due to changes in nutrients in Northeastern estuaries and freshwater ponds. This work is part of task 3.04A of the Safe and Sustainable Waters Research Program (National Water Quality Benefits: Economic Case Studies of Water Quality Benefits). Because of the complementarity between the two projects, this Supporting Statement describes and requests hours for focus groups and interviews for both of these research efforts. Our initial
COPPER PITTING CORROSION: A CASE STUDY
Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...
NASA Astrophysics Data System (ADS)
Dietrich, Jörg; Funke, Markus
Integrated water resources management (IWRM) redefines conventional water management approaches through a closer cross-linkage between environment and society. The role of public participation and socio-economic considerations becomes more important within the planning and decision making process. In this paper we address aspects of the integration of catchment models into such a process taking the implementation of the European Water Framework Directive (WFD) as an example. Within a case study situated in the Werra river basin (Central Germany), a systems analytic decision process model was developed. This model uses the semantics of the Unified Modeling Language (UML) activity model. As an example application, the catchment model SWAT and the water quality model RWQM1 were applied to simulate the effect of phosphorus emissions from non-point and point sources on water quality. The decision process model was able to guide the participants of the case study through the interdisciplinary planning and negotiation of actions. Further improvements of the integration framework include tools for quantitative uncertainty analyses, which are crucial for real life application of models within an IWRM decision making toolbox. For the case study, the multi-criteria assessment of actions indicates that the polluter pays principle can be met at larger scales (sub-catchment or river basin) without significantly compromising cost efficiency for the local situation.
Northeastern Pennsylvania Retrospective Case Study Fact Sheet
EPA conducted a retrospective case study in northeastern Pennsylvania to investigate reported instances of contaminated drinking water resources in areas where hydraulic fracturing activities occurred
Addressing trend-related changes within cumulative effects studies in water resources planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canter, L.W., E-mail: envimptr@aol.com; Chawla, M.K.; Swor, C.T.
2014-01-15
Summarized herein are 28 case studies wherein trend-related causative physical, social, or institutional changes were connected to consequential changes in runoff, water quality, and riparian and aquatic ecological features. The reviewed cases were systematically evaluated relative to their identified environmental effects; usage of analytical frameworks, and appropriate models, methods, and technologies; and the attention given to mitigation and/or management of the resultant causative and consequential changes. These changes also represent important considerations in project design and operation, and in cumulative effects studies associated therewith. The cases were grouped into five categories: institutional changes associated with legislation and policies (seven cases);more » physical changes from land use changes in urbanizing watersheds (eight cases); physical changes from land use changes and development projects in watersheds (four cases); physical, institutional, and social changes from land use and related policy changes in river basins (three cases); and multiple changes within a comprehensive study of land use and policy changes in the Willamette River Basin in Oregon (six cases). A tabulation of 110 models, methods and technologies used in the studies is also presented. General observations from this review were that the features were unique for each case; the consequential changes were logically based on the causative changes; the analytical frameworks provided relevant structures for the studies, and the identified methods and technologies were pertinent for addressing both the causative and consequential changes. One key lesson was that the cases provide useful, “real-world” illustrations of the importance of addressing trend-related changes in cumulative effects studies within water resources planning. Accordingly, they could be used as an “initial tool kit” for addressing trend-related changes.« less
WATERPROTECT: Innovative tools enabling drinking water protection in rural and urban environments
NASA Astrophysics Data System (ADS)
Seuntjens, Piet; Campling, Paul; Joris, Ingeborg; Wauters, Erwin; Lopez de Alda, Miren; Kuczynska, Anna; Lajer Hojberg, Anker; Capri, Ettore; Brabyn, Cristina; Boeckaert, Charlotte; Mellander, Per Erik; Pauwelyn, Ellen; Pop, Edit
2017-04-01
High-quality, safe, and sufficient drinking water is essential for life: we use it for drinking, food preparation and cleaning. Agriculture is the biggest source of pesticides and nitrate pollution in European fresh waters. The overarching objective of the recently approved H2020 project WATERPROTECT is to contribute to effective uptake and realisation of management practices and mitigation measures to protect drinking water resources. Therefore WATERPROTECT will create an integrative multi-actor participatory framework including innovative instruments that enable actors to monitor, to finance and to effectively implement management practices and measures for the protection of water sources. We propose seven case studies involving multiple actors in implementing good practices (land management, farming, product stewardship, point source pollution prevention) to ensure safe drinking water supply. The seven case studies cover different pedo-climatic conditions, different types of farming systems, different legal frameworks, larger and smaller water collection areas across the EU. In close cooperation with actors in the field in the case studies (farmers associations, local authorities, water producing companies, private water companies, consumer organisations) and other stakeholders (fertilizer and plant protection industry, environment agencies, nature conservation agencies, agricultural administrations) at local and EU level, WATERPROTECT will develop innovative water governance models investigating alternative pathways from focusing on the 'costs of water treatment' to 'rewarding water quality delivering farming systems'. Water governance structures will be built upon cost-efficiency analysis related to mitigation and cost-benefit analysis for society, and will be supported by spatially explicit GIS analyses and predictive models that account for temporal and spatial scaling issues. The outcome will be improved participatory methods and public policy instruments to protect drinking water resources.
Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna
2015-12-01
Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.
NASA Astrophysics Data System (ADS)
Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna
2015-12-01
Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.
Closed-Loop Treatment of Electrolytic and Electroless Nickel Rinse Water by Point-Of-Use Ion Exchange: A Case Study.
Dave Szlag1, Joe Leonhardt2, Albert Foster1, Mike Goss1 and Paul Bolger1.
1 U.S. EPA, National Risk Management Research Laboratory, 26 W. M. L. King D...
The effect of compliance on contact lens case contamination.
Tilia, Daniel; Lazon de la Jara, Percy; Zhu, Hua; Naduvilath, Thomas J; Holden, Brien A
2014-03-01
To determine the efficacy of written instructions on contact lens case hygiene and to quantify the effect of noncompliance on contact lens case contamination. Data were retrospectively analyzed from 16 prospective, 3-month daily-wear studies during which six commercially available silicone hydrogel contact lenses and seven lens care solutions (LCS) were tested following a similar protocol. Verbal instructions regarding case hygiene (rinse case with LCS, not tap water) were given in nine studies, while the same instructions were given verbally and in written format in seven studies. A survey on contact lens, LCS, and lens case hygiene was completed at 1- and 3-month visits and compliance with case hygiene instructions was determined. Regular contact lens cases were used for 1 month and collected for microbial analysis at the 1- and 3-month visits. The rate of case contamination and the types of microbes contaminating cases were evaluated. Participants given verbal and written instructions were more likely to be compliant with case hygiene instructions than those just given verbal instructions (odds ratio [OR]: 2.19, p < 0.001, 95% confidence interval [CI]: 1.40-3.44). The overall case contamination rate was 79%. Use of tap water to rinse contact lens cases was associated with significantly more cases contaminated with Gram-negative bacteria (GNB) (30% vs. 10%, p < 0.001), a greater risk of GNB case contamination (OR: 2.91, p < 0.001. 95% CI: 1.72-4.92), and a higher quantity of GNB in cases (mean colony-forming unit/case ± SD: 28,286 ± 131,935 vs. 6477 ± 60,447, p < 0.001). Lens case hygiene can be improved by effective communication of instructions. Contact lens wearers should be actively discouraged from rinsing contact lens cases with tap water because of the increased risk of GNB contamination.
Kabwama, Steven Ndugwa; Bulage, Lilian; Nsubuga, Fred; Pande, Gerald; Oguttu, David Were; Mafigiri, Richardson; Kihembo, Christine; Kwesiga, Benon; Masiira, Ben; Okullo, Allen Eva; Kajumbula, Henry; Matovu, Joseph K B; Makumbi, Issa; Wetaka, Milton; Kasozi, Sam; Kyazze, Simon; Dahlke, Melissa; Hughes, Peter; Sendagala, Juliet Nsimire; Musenero, Monica; Nabukenya, Immaculate; Hill, Vincent R; Mintz, Eric; Routh, Janell; Gómez, Gerardo; Bicknese, Amelia; Zhu, Bao-Ping
2017-01-05
On 6 February 2015, Kampala city authorities alerted the Ugandan Ministry of Health of a "strange disease" that killed one person and sickened dozens. We conducted an epidemiologic investigation to identify the nature of the disease, mode of transmission, and risk factors to inform timely and effective control measures. We defined a suspected case as onset of fever (≥37.5 °C) for more than 3 days with abdominal pain, headache, negative malaria test or failed anti-malaria treatment, and at least 2 of the following: diarrhea, nausea or vomiting, constipation, fatigue. A probable case was defined as a suspected case with a positive TUBEX® TF test. A confirmed case had blood culture yielding Salmonella Typhi. We conducted a case-control study to compare exposures of 33 suspected case-patients and 78 controls, and tested water and juice samples. From 17 February-12 June, we identified 10,230 suspected, 1038 probable, and 51 confirmed cases. Approximately 22.58% (7/31) of case-patients and 2.56% (2/78) of controls drank water sold in small plastic bags (OR M-H = 8.90; 95%CI = 1.60-49.00); 54.54% (18/33) of case-patients and 19.23% (15/78) of controls consumed locally-made drinks (OR M-H = 4.60; 95%CI: 1.90-11.00). All isolates were susceptible to ciprofloxacin and ceftriaxone. Water and juice samples exhibited evidence of fecal contamination. Contaminated water and street-vended beverages were likely vehicles of this outbreak. At our recommendation authorities closed unsafe water sources and supplied safe water to affected areas.
Ecosystem Services Insights into Water Resources Management in China: A Case of Xi’an City
Liu, Jingya; Li, Jing; Gao, Ziyi; Yang, Min; Qin, Keyu; Yang, Xiaonan
2016-01-01
Global climate and environmental changes are endangering global water resources; and several approaches have been tested to manage and reduce the pressure on these decreasing resources. This study uses the case study of Xi’an City in China to test reasonable and effective methods to address water resource shortages. The study generated a framework combining ecosystem services and water resource management. Seven ecosystem indicators were classified as supply services, regulating services, or cultural services. Index values for each indicator were calculated, and based on questionnaire results, each index’s weight was calculated. Using the Likert method, we calculated ecosystem service supplies in every region of the city. We found that the ecosystem’s service capability is closely related to water resources, providing a method for managing water resources. Using Xi’an City as an example, we apply the ecosystem services concept to water resources management, providing a method for decision makers. PMID:27886137
Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)
Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...
Canosa, Joel
2018-01-01
The aim of this study is the application of a software tool to the design of stripping columns to calculate the removal of trihalomethanes (THMs) from drinking water. The tool also allows calculating the rough capital cost of the column and the decrease in carcinogenic risk indeces associated with the elimination of THMs and, thus, the investment to save a human life. The design of stripping columns includes the determination, among other factors, of the height (HOG), the theoretical number of plates (NOG), and the section (S) of the columns based on the study of pressure drop. These results have been compared with THM stripping literature values, showing that simulation is sufficiently conservative. Three case studies were chosen to apply the developed software. The first case study was representative of small-scale application to a community in Córdoba (Spain) where chloroform is predominant and has a low concentration. The second case study was of an intermediate scale in a region in Venezuela, and the third case study was representative of large-scale treatment of water in the Barcelona metropolitan region (Spain). Results showed that case studies with larger scale and higher initial risk offer the best capital investment to decrease the risk. PMID:29562670
NASA Astrophysics Data System (ADS)
Walford, Segayle Cereta
Forecasting subtle, small-scale convective cases in both winter and summer time is an ongoing challenge in weather forecasting. Recent studies have shown that better structure of moisture within the boundary layer is crucial for improving forecasting skills, particularly quantitative precipitation forecasting (QPF). Lidars, which take high temporal observations of moisture, are able to capture very detailed structures, especially within the boundary layer where convection often begins. This study first investigates the extent to which an aerosol and a water vapor lidar are able to capture key boundary layer processes necessary for the development of convection. The results of this preliminary study show that the water vapor lidar is best able to capture the small scale water vapor variability that is necessary for the development of convection. These results are then used to investigate impacts of assimilating moisture from the Howard University Raman Lidar (HURL) for one mesoscale convective case, July 27-28, 2006. The data for this case is from the Water Vapor Validation Experiment-Satellite and Sondes (WAVES) field campaign located at the Howard University Beltsville Site (HUBS) in Beltsville, MD. Specifically, lidar-based water vapor mixing ratio profiles are assimilated into the Weather Research and Forecasting (WRF) regional model over a 4 km grid resolution over Washington, DC. Model verification is conducted using the Meteorological Evaluation Tool (MET) and the results from the lidar run are then compared to a control (no assimilation) run. The findings indicate that quantitatively conclusions cannot be draw from this one case study. However, qualitatively, the assimilation of the lidar observations improved the equivalent potential temperature, and water vapor distribution of the region. This difference changed location, strength and spatial coverage of the convective system over the HUBS region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, W.
1980-03-01
The Endangered Species Act and its implementation are reviewed, with special attention given to the Act's recent Amendments. This Act has played a major role in litigation surrounding several recent water resource developments. A case study of one such, the Missouri Basin Power Project, is discussed. In addition to a short case history, issues covered include the following: the link between the Power Project and its impact on the endangered species, its effect on the distribution of water resurces, its effect on future development on the Platte River, and the extent to which a range of preservation options can bemore » considered under the Act. Tentative general conclusions will be drawn concerning the flexibility of the Act, its cost effectiveness, and its implications for future water resource development.« less
Monitoring and validation of decentralised water and wastewater systems for increased uptake.
Sharma, A K; Cook, S; Chong, M N
2013-01-01
Decentralised water and wastewater systems are being implemented to meet growing demand for municipal services either in combination with centralised systems or as standalone systems. In Australia, there has been increased investment in decentralised water and wastewater systems in response to the capacity constraints of existing centralised systems, an extended period of below average rainfall, uncertainly in traditional water sources due to potential climate change impacts, and the need to reduce the environmental impact of urban development. The implementation of decentralised water systems as a mainstream practice at different development scales is impeded by the knowledge gaps on their actual performance in a range of development types and settings. As the wide-spread uptake of these approaches in modern cities is relatively new compared to centralised approaches, there is limited information available on their planning, design, implementation, reliability and robustness. This paper presents a number of case studies where monitoring studies are under way to validate the performance of decentralised water and wastewater systems. The results from these case studies show the yield and reliability of these decentralised systems, as well as the associated energy demand and ecological footprint. The outputs from these case studies, and other monitoring studies, are important in improving decentralised system design guidelines and developing industry wide management norms for the operation and maintenance of decentralised systems.
Risks and responses to universal drinking water security.
Hope, Robert; Rouse, Michael
2013-11-13
Risks to universal drinking water security are accelerating due to rapid demographic, climate and economic change. Policy responses are slow, uneven and largely inadequate to address the nature and scale of the global challenges. The challenges relate both to maintaining water security in increasingly fragile supply systems and to accelerating reliable access to the hundreds of millions who remain water-insecure. A conceptual framework illustrates the relationship between institutional, operational and financial risks and drinking water security outcomes. We apply the framework to nine case studies from rural and urban contexts in South Asia and sub-Saharan Africa. Case studies are purposively selected based on established and emerging examples of political, technological or institutional reforms that address water security risks. We find broad evidence that improved information flows reduce institutional costs and promote stronger and more transparent operational performance to increase financial sustainability. However, political barriers need to be overcome in all cases through internal or external interventions that require often decadal time frames and catalytic investments. No single model exists, though there is sufficient evidence to demonstrate that risks to drinking water security can be reduced even in the most difficult and challenging contexts.
The Role of Reliability, Vulnerability and Resilience in the Management of Water Quality Systems
NASA Astrophysics Data System (ADS)
Lence, B. J.; Maier, H. R.
2001-05-01
The risk based performance indicators reliability, vulnerability and resilience provide measures of the frequency, magnitude and duration of the failure of water resources systems, respectively. They have been applied primarily to water supply problems, including the assessment of the performance of reservoirs and water distribution systems. Applications to water quality case studies have been limited, although the need to consider the length and magnitude of violations of a particular water quality standard has been recognized for some time. In this research, the role of reliability, vulnerability and resilience in water quality management applications is investigated by examining their significance as performance measures for water quality systems and assessing their potential for assisting in decision making processes. The importance of each performance indicator is discussed and a framework for classifying such systems, based on the relative significance of each of these indicators, is introduced and illustrated qualitatively with various case studies. Quantitative examples drawn from both lake and river water quality modeling exercises are then provided.
Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh
2010-07-01
The objective of this study was to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of pancreatic cancer and to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop pancreatic cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to pancreatic cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All pancreatic cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level < 4.9ppb, the adjusted OR (95% CI) for pancreatic cancer was 1.01 (0.85-1.21) for individuals who resided in municipalities served by drinking water with a TTHM exposure > 4.9ppb. There was no evidence of an interaction of drinking water TTHM levels with low Ca intake via drinking water. However, we observed evidence of an interaction between drinking water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of pancreatic cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing pancreatic cancer risk will aid in public policy making and standard setting. 2010 Elsevier Inc. All rights reserved.
Tsai, Shang-Shyue; Chiu, Hui-Fen; Yang, Chun-Yuh
2013-01-01
The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of esophageal cancer occurrence and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop esophageal cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to esophageal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All esophageal cancer deaths in the 53 municipalities from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level <4.9 ppb, the adjusted odds ratio (OR) with 95% confidence interval (CI) for esophageal cancer was 1.02 (0.84-1.23) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. There was evidence of an interaction between drinking-water TTHM levels and low Ca and Mg intake. Our findings showed that the correlation between TTHM exposure and risk of esophageal cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effect modification by Ca and Mg intake from drinking water on the correlation between TTHM exposure and risk of esophageal cancer occurrence. Increased knowledge of the interaction between Ca, Mg, and TTHM in reducing risk of esophageal cancer development will aid in public policymaking and standard setting for drinking water.
Fluoride exposure in public drinking water and childhood and adolescent osteosarcoma in Texas.
Archer, Natalie P; Napier, Thomas S; Villanacci, John F
2016-07-01
The purpose of this study was to examine the association between fluoride levels in public drinking water and childhood and adolescent osteosarcoma in Texas; to date, studies examining this relationship have been equivocal. Using areas with high and low naturally occurring fluoride, as well as areas with optimal fluoridation, we examined a wide range of fluoride levels in public drinking water. This was a population-based case-control study, with both cases and controls obtained from the Texas Cancer Registry. Eligible cases were Texas children and adolescents <20 years old diagnosed with osteosarcoma between 1996 and 2006. Controls were sampled from children and adolescents diagnosed with either central nervous system (CNS) tumors or leukemia during the same time frame. Using geocoded patient addresses at the time of diagnosis, we estimated patients' drinking water fluoride exposure levels based on the fluoride levels of their residence's public water system (PWS). Unconditional logistic regression models were used to assess the association between osteosarcoma and public drinking water fluoride level, adjusting for several demographic risk factors. Three hundred and eight osteosarcoma cases, 598 leukemia controls, and 604 CNS tumor controls met selection criteria and were assigned a corresponding PWS fluoride level. PWS fluoride level was not associated with osteosarcoma, either in a univariable analysis or after adjusting for age, sex, race, and poverty index. Stratified analyses by sex were conducted; no association between PWS fluoride level and osteosarcoma was observed among either males or females. No relationship was found between fluoride levels in public drinking water and childhood/adolescent osteosarcoma in Texas.
[An outbreak of gastroenteritis caused by contaminated well water in a village, Henan province].
Jiang, Xi-Hong; Tian, Peng; Duan, Jing-Jing; Qian, Jian-Hua; Li, Peng; Zhang, Li-Jie; Ma, Hui-Lai; Zhu, Bao-Ping; Wang, Jia
2010-11-01
To identify the cause and mode of transmission of a gastroenteritis outbreak in a village, Henan province. Gastroenteritis patients were identified through family visits, interviewing the village doctors and reviewing diagnosis and prescription records at the village health clinic. Cases were defined as onset of one of the four symptoms from the village resident during July 20 to August 12, 2010. The symptoms would include diarrhea (≥ 3 times/day), abdominal pain, nausea or vomiting. A retrospective cohort study was conducted to assess the association between drinking raw well water or eating noodles rinsed by raw well water and gastroenteritis. Stools or vomits of the case-patients and the well water samples were tested for bacterial pathogens. Data for 60 case-patients were collected. All cases occurred in the northern part of the village. Persons who used water from a public well in the northern part of the village had an attack rate of 55%, which was 3.5 times of those who did not use the well water (16%) (RR = 3.5, 95%CI: 1.2 - 10). Results from the retrospective cohort study showed that drinking un-boiled water from the well was a risk factor (RR = 1.7, 95%CI: 1.3 - 2.3). Laboratory testing showed that total coliform and E. coli both greatly exceeded the limit considered safe for drinking, indicating there was fecal contamination in the well water. No bacterial pathogens were detected in the patients' stools or vomits. The outbreak was mainly caused by drinking contaminated water from the public well in the northern part of the village.
Real-time hydraulic interval state estimation for water transport networks: a case study
NASA Astrophysics Data System (ADS)
Vrachimis, Stelios G.; Eliades, Demetrios G.; Polycarpou, Marios M.
2018-03-01
Hydraulic state estimation in water distribution networks is the task of estimating water flows and pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of the network as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement uncertainty, standard state estimation may result in inaccurate hydraulic estimates without any measure of the estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this method can be applied to determine the existence of unaccounted-for water in water distribution networks. As a case study, the method is applied to a modified transport network in Cyprus, using actual data in real time.
Nanomaterial Case Studies: Nanoscale Titanium Dioxide (External Review Draft)
This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental asses...
Sezen, F; Aval, E; Ağkurt, T; Yilmaz, Ş; Temel, F; Güleşen, R; Korukluoğlu, G; Sucakli, M B; Torunoğlu, M A; Zhu, B-P
2015-03-01
We investigated a gastroenteritis outbreak in Erzurum city, Turkey in December 2012 to identify its cause and mode of transmission. We defined a probable case as onset of diarrhoea (⩾3 episodes/day) or vomiting, plus fever or nausea or abdominal pain during 19-27 December, 2012 in an Erzurum city resident. In a case-control study we compared exposures of 95 randomly selected probable cases and 95 neighbourhood-matched controls. We conducted bacterial culture and real-time multiplex PCR for identification of pathogens. During the week before illness onset, 72% of cases and 15% of controls only drank water from antique neighbourhood fountains; conversely, 16% of cases and 65% of controls only drank bottled or tap water (adjusted odds ratio 20, 95% confidence interval 4·6-84, after controlling for age and sex using conditional logistic regression). Of eight stool specimens collected, two were positive for Shigella sonnei, one for astrovirus, one for astrovirus and norovirus, and one for astrovirus and rotavirus. Water samples from the fountains had elevated total coliform (38-300/100 ml) and Escherichia coli (22-198/100 ml) counts. In conclusion, drinking contaminated fountain water caused this multi-pathogen outbreak. Residents should stop drinking water from these fountains, and clean water from the water treatment plant should be connected to the fountains.
Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...
Study on water vapor characteristic of typical heavy snowstorm case in Northern Xinjiang
NASA Astrophysics Data System (ADS)
Cui, C.; Zhang, J.
2017-12-01
Using the daily precipitation at 51 weather stations in the Northern Xinjiang from November to March during 2000—2012 and daily water vapor of NCEP/NCAR 6 h 1°×1° reanalysis data, the water vapor characteristics of 11 typical heavy snowstorm cases were studied. The result shows that the 11 cases are classified into 3 types: West of Northern Xinjiang and along Tianshan edge, north and east of Northern Xinjiang, west of Northern Xinjiang and west Tianshan. There are two main water vapor sources: Near the Mediterranean Sea, the Red Sea or near the Persian Gulf. There are two water vapor transport routes which are west, southwest and northwest, respectively. Water vapor from southwest route is more, that from northwest route is less. The top of water vapor is close to 300 hPa. The strongest water vapor transport level is between 650-750 hPa. Before the every occurrence of 11 heavy snowstorm processes, there are water vapor convergence between 600-1000 hPa in Northern Xinjiang.There are positive correlations between the snowstorm intensity and water vapor convergence between 600-1000 hPa, as well as the convergence strength, rang and duration time in Northern Xinjiang. Hence, some lowest values of the strongest water vapor transport, water vapor convergence and the upper and lower level jet streams are resented also and gave useful references for accurate heavy snowstorm forecasting.
NASA Astrophysics Data System (ADS)
March, H.; Hernández, M.; Saurí, D.
2015-05-01
The design of water awareness campaigns could benefit from knowledge of the specific characteristics of domestic water use and the factors that may influence certain water consumption habits. This paper investigates water use in 450 households in 10 municipalities of drought-prone Alicante (Spain). We aim to increase knowledge about existing domestic water behaviors and therefore help to improve the design and implementation of future water awareness campaigns and even to consolidate reductions in water use after drought periods. The survey suggests that awareness campaigns should revise their scope and their channels of diffusion on a regular basis. In a more specific way, for the Alicante case we propose policy-oriented recommendations on the scope of action for further reductions.
NASA Technical Reports Server (NTRS)
1975-01-01
The results of a study of the weather sensitive features of near shore and deep water ocean mining industries are described. Problems with the evaluation of economic benefits for the deep water ocean mining industry are attributed to the relative immaturity and highly proprietary nature of the industry. Case studies on the gold industry, diamond industry, tin industry and sand and gravel industry are cited.
Assessing the environmental impacts of freshwater consumption in LCA.
Pfister, Stephan; Koehler, Annette; Hellweg, Stefanie
2009-06-01
A method for assessing the environmental impacts of freshwater consumption was developed. This method considers damages to three areas of protection: human health, ecosystem quality, and resources. The method can be used within most existing life-cycle impact assessment (LCIA) methods. The relative importance of water consumption was analyzed by integrating the method into the Eco-indicator-99 LCIA method. The relative impact of water consumption in LCIA was analyzed with a case study on worldwide cotton production. The importance of regionalized characterization factors for water use was also examined in the case study. In arid regions, water consumption may dominate the aggregated life-cycle impacts of cotton-textile production. Therefore, the consideration of water consumption is crucial in life-cycle assessment (LCA) studies that include water-intensive products, such as agricultural goods. A regionalized assessment is necessary, since the impacts of water use vary greatly as a function of location. The presented method is useful for environmental decision-support in the production of water-intensive products as well as for environmentally responsible value-chain management.
Liao, Yen-Hsiung; Chen, Chih-Cheng; Chang, Chih-Ching; Peng, Chiung-Yu; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh
2012-01-01
The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of development of kidney cancer and (2) determine whether hardness levels in drinking water modify the effects of TTHM on risk of kidney cancer induction. A matched case-control study was used to investigate the relationship between the risk of death attributed to kidney cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All kidney cancer deaths in the 53 municipalities from 1998 through 2007 were obtained. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels and levels of hardness in drinking water were also collected. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM and hardness exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for kidney cancer was 0.98 (0.77-1.25) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. However, evidence of an interaction was noted between the use of soft water and drinking water TTHM concentrations. Increased knowledge of the interaction between hardness and TTHM levels in reducing risk of kidney cancer development will aid in public policy decision and establishing standards to prevent disease occurrence.
NASA Astrophysics Data System (ADS)
Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George
2017-10-01
The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.
Best Practices Case Study: CDC Realty, Inc. - Centennial Terrace, Tucson, AZ
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-01
Case study on CDC Realty who achieved HERS 70 by putting ducts in a conditioned attic insulated along the roofline with netted cellulose, R-5 rigid insulated sheathing over R-19 wall cavity insulation, and deep overhangs and low-e windows to minimize solar heat gain. The 17 homes are solar-ready for solar water heating and five have integral collector storage hot water systems on the roof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laws, E.A.
1993-01-01
This book systematically covers all aspects of water pollution in marine and freshwater systems. Didactic style, frequent use of case studies and an extensive bibliography facilitate understanding of fundamental concepts. Offers basic, relevant ecological and toxicological information. Straightforward presentation of the scientific aspects of environmental issues. Information updated, particularly the discussion of toxicology and the case studies of water pollution. Three new chapters on acid rain, groundwater pollution and plastics are added.
Raton Basin, Colorado Retrospective Case Study Fact Sheet
EPA conducted a retrospective case study in the Raton Basin of Colorado to investigate reported instances of contaminated drinking water resources in areas where hydraulic fracturing activities occurred.
Fujino, Yasuhisa; Inoue, Yoshihiro; Onodera, Makoto; Yaegashi, Yasunori; Sato, Nobuhiro; Endo, Shigeatsu; Omori, Hiroaki; Suzuki, Kazuyuki
2005-09-01
We studied 13 emergency cases of liver abscess. Five cases of septic shock or clouding of consciousness were identified on admission. Six patients had diabetes mellitus. Twelve patients met the diagnostic criteria for systemic inflammatory response syndrome, and nine met the criteria for disseminated intravascular coagulation. Plasma endotoxin levels improved rapidly after drainage. Causative organisms were isolated in all patients, and the most common organism was Klebsiella pneumoniae (seven cases). Percutaneous transhepatic abscess drainage (PTAD) was performed not only in single cases but also in multiple cases with main huge abscesses. Surgical treatment was performed in the following three cases: a ruptured abscess, an ineffective PTAD, and a case of peritonitis after PTAD. Irrigation of abscesses with strong acidic electrolyzed water revealed a significant decrease in treatment duration. In the majority of our cases, severe conditions were identified on admission. Strong acidic electrolyzed water was useful for management of PTAD.
Havens, K E; Hauxwell, J; Tyler, A C; Thomas, S; McGlathery, K J; Cebrian, J; Valiela, I; Steinman, A D; Hwang, S J
2001-01-01
The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in marine and freshwater systems. In this paper we examine four case studies and test whether these models generally apply. We also identify other complex interactions among the autotrophs that may influence ecosystem response to cultural eutrophication. The marine case studies focus on macroalgae and its interactions with sediments and vascular plants. The freshwater case studies focus on interactions between phytoplankton, epiphyton, and benthic microalgae. In Waquoit Bay, MA (estuary), controlled experiments documented that blooms of macroalgae were responsible for the loss of eelgrass beds at nutrient-enriched locations. Macroalgae covered eelgrass and reduced irradiance to the extent that the plants could not maintain net growth. In Hog Island Bay, VA (estuary), a dense lawn of macroalgae covered the bottom sediments. There was reduced sediment-water nitrogen exchange when the algae were actively growing and high nitrogen release during algal senescence. In Lakes Brobo (West Africa) and Okeechobee (FL), there were dramatic seasonal changes in the biomass and phosphorus content of planktonic versus attached algae, and these changes were coupled with changes in water level and abiotic turbidity. Deeper water and/or greater turbidity favored dominance by phytoplankton. In Lake Brobo there also was evidence that phytoplankton growth was stimulated following a die-off of vascular plants. The case studies from Waquoit Bay and Lake Okeechobee support conceptual models of succession from vascular plants to benthic algae to phytoplankton along gradients of increasing nutrients and decreasing under-water irradiance. The case studies from Hog Island Bay and Lake Brobo illustrate additional effects (modified sediment-water nutrient fluxes, allelopathy or nutrient release during plant senescence) that could play a role in ecosystem response to nutrient stress.
[Malaria in Moscow (2006-2007): monitoring of the situation and assessment of antimalaria measures].
Ivanova, T M; Timoshenko, N I; Baranova, A M
2009-01-01
The malaria situation in Moscow in 2007 versus 2006 improved--the cases of malaria reduced by 16.3%. A total of 30 new cases of malaria were notified (46 cases in 2006), of them there were 34 imported cases and 4 secondary cases to imported ones. In 2007, the proportion of tertian malaria cases reduced to 55.3% versus 60.9% in 2006. As compared with 2005, in 2007 the cases of locally transmitted malaria decreased by 5 times--from 20 to 4, only 1 case of infection occurred in Moscow (Central Administrative District) and 3 cases took place in the Moscow Region (Ramensky, Stupinsky, and Dmitrovsky districts). Cases of malaria were notified in all administrative districts, with their largest number in the South-Western Administrative District of Moscow due to the detection of ill students from the Russian University of People's Friendship who had come to study from African countries. In accordance to the performed certification of water reservoirs in 2007, a total of 722 Moscow water reservoirs of an area of 1569 ha were registered at the Administration of the Russian Agency for Consumer Surveillance. The examination frequency of all water reservoirs was about 13 per season, including 20 anopheles-containing ones. The larvae of bloodsucking mosquitoes inhabited 541 (75%) water reservoirs, including 461 (63%) water reservoirs occupied by the malaria vector. As compared with 2006, the area of treatments increased by 351 ha. In the summer, a total of 2133.3 ha ofwater reservoirs were treated, including 2009.5 ha against larvae of malaria mosquitoes. The bulk of water reservoirs were exposed to triple-quadruple treatments.
Balance in Training for Latin American Water and Wastewater Utilities
ERIC Educational Resources Information Center
Carefoot, Neil F.
1977-01-01
Using a Peru case study, this article examines the problem of training imbalance for water and wastewater operators. Guidelines towards achieving adequate training for all water and wastewater personnel are suggested. (Author/MA)
Connecting Humans and Water: The Case for Coordinated Data Collection
NASA Astrophysics Data System (ADS)
Braden, J. B.; Brown, D. G.; Jolejole-Foreman, C.; Maidment, D. R.; Marquart-Pyatt, S. T.; Schneider, D. W.
2012-12-01
"Water problems" are fundamentally human problems -- aligning water quality and quantity with human aspirations. In the U.S., however, the few ongoing efforts to repeatedly observe humans in relation to water at large scale are disjointed both with each other and with observing systems for water quality and quantity. This presentation argues for the systematic, coordinated, and on-going collection of primary data on humans, spanning beliefs, perceptions, behaviors, and institutions, alongside the water environments in which they are embedded. Such an enterprise would advance not only water science and related policy and management decisions, but also generate basic insights into human cognition, decision making, and institutional development as they relate to the science of sustainability. In support of this argument, two types of original analyses are presented. First, two case studies using existing data sets illustrate methodological issues involved in integrating natural system data with social data at large scale: one concerns the influence of water quality conditions on personal efforts to conserve water and contribute financially to environmental protection; the other explores relationships between recreation behavior and water quality. Both case studies show how methodological differences between data programs seriously undercut the potential to draw inference about human responses to water quality while also illustrating the scientific potential that could be realized from linking human and scientific surveys of the water environment. Second, the results of a survey of water scientists concerning important scientific and policy questions around humans and water provide insight into data collection priorities for a coordinated program of observation.
Velarde and the Llano Canal: A Case Study
ERIC Educational Resources Information Center
Horvath, Rosemary
1976-01-01
In arid New Mexico, decisions about water have always been a particularly strong source of tension between local communities and the bureaucracy. In one revent case, the community of Velarde had successfully blocked plans for a diversion dam and canal which would have brought new water into the Espanola valley, but would also have destroyed…
Maintenance Work, Maintenance Skills: The Case of a Major Water Company in the UK.
ERIC Educational Resources Information Center
Cooke, Fang Lee
2002-01-01
A case study of a British water company found that technological change had only a moderate impact on technical skills but increased the need for diagnostic and information technology skills for the maintenance of electronic equipment. Organizational restructuring increased requirements for functional flexibility and interpersonal skills.…
Arizona Conserve Water Educators Guide
ERIC Educational Resources Information Center
Project WET Foundation, 2007
2007-01-01
This award-winning, 350-page, full-color book provides a thorough study of Arizona water resources from a water conservation perspective. Its background section contains maps, graphs, diagrams and photos that facilitate the teaching of 15 interactive, multi-disciplinary lessons to K-12 students. In addition, 10 Arizona case studies are highlighted…
The study evaluates the technical, economic, and administrative aspects of establishing water quality trading (WQT) programs where the nutrient removal capacity of wetlands is used to improve water quality. WQT is a potentially viable approach for wastewater dischargers to cost-e...
NASA Astrophysics Data System (ADS)
Kordana, Sabina; Słys, Daniel
2017-11-01
The paper analyses the profitability of the use of Drain Water Heat Recovery units. An original simulation model was used for this purpose, and a detached residential building located in Poland was selected as the test facility. The conducted analysis proved that the type of the hot water heater has decisive influence on the profitability level of such an investment. Application of the abovementioned technology is particularly profitable, when water is heated with the use of an electrical device. When the energy source in the system is a gas water heater, the obtained calculation results are not as favourable, and the period of investment return in many cases exceeds the expected service life of these devices. Moreover, the analysis demonstrated that the potential energy savings, and thus also the financial savings, may be in both cases increased as a result of simultaneous intake of water from various water taps.
Principles and guidelines for good practice in Indigenous engagement in water planning
NASA Astrophysics Data System (ADS)
Jackson, Sue; Tan, Poh-Ling; Mooney, Carla; Hoverman, Suzanne; White, Ian
2012-12-01
SummaryIndigenous rights, values and interests relating to water have been identified by Australia's National Water Commission as a national priority area, requiring greater understanding, research attention and government action. Yet Indigenous water values are rarely addressed in water planning, despite objectives in national policy requiring Indigenous participation and the identification of Indigenous social, spiritual and customary values in water plans. Water planners are presently equipped with a very limited number of engagement tools tailored to the water resource management context to redress the historical neglect of Indigenous interests. In an Australian research project focused on water planning, seven participatory planning tools were employed in three Australian case studies with different social and hydrological characteristics to improve the way in which Indigenous values are elicited and incorporated and to enhance the status of Indigenous knowledge in water planning. The results from the two Murray Darling Basin (MDB) case studies reveal the many ways in which Indigenous values have been adversely affected by recent water resource developments and concomitant water scarcity. In the third case on the Tiwi Islands in the Northern Territory, where land title to the entire water planning area is vested in Indigenous traditional owners, methods were refined to ensure engagement and generate capacity to manage the development of a solely Indigenous-owned, first-generation Water Management Strategy, in collaboration with a range of stakeholders. This paper describes the needs and aspirations of Indigenous people, the engagement strategies employed to elicit Indigenous knowledge, assess Indigenous values, and incorporate the results into three developing water plans. In addition, it outlines a set of general principles to guide water planning in other regions and thereby to improve Indigenous access to water.
First record of parasitism of water mite larva (Acari: Hydrachnidia) on the pupa of Trichoptera.
Buczyńska, Edyta; Buczyński, Paweł; Zawal, Andrzej; Michoński, Grzegorz; Szlauer-Łukaszewska, Agnieszka
2015-06-01
During the studies on ecology of Trichoptera of anthropogenic water bodies we have unexpectedly discovered the parasitic larvae of water mites of the species Tiphys torris on the pupa of Triaenodes bicolor. This is the first documented case of the parasitism of water mites on the caddisfly pupa as well as the first ever record of the species which is regarded as a dipteran parasite on caddisflies. The situation is very untypical for preimaginal stages of caddisflies are used by phoretic and not parasitic water mite larvae. Parasitism has been confirmed in this case by the formation of stylostomes and enlarged sizes of the bodies of the larvae. This is probably the case of facultative parasitism in which the pupa has served as a substitute of the adult form of a caddisfly.
Data Reports for Retrospective Case Study in Killdeer, North Dakota
Data from sampling events conducted in Killdeer, North Dakota as part of EPA's Study of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources, retrospective case study
Data Reports for Retrospective Case Study in Wise County, Texas
Data reports from sampling events collected in wise county, texas as part of EPA's Study of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources, retrospective case study.
21st Century Water Asset Accounting - Case Studies Report (WERF Report INFR6R12a)
America’s decaying water infrastructure presents significant financial and logistical challenges for water utilities. Green infrastructure has been gaining traction as a viable alternative and complement to traditional “grey” infrastructure for water management. Current accounti...
Sustaining Louisiana's Freshwater Aquifers - A Case Study Brining Community and Industry Together
For wells in the Haynesville Shale, operators use ground water for fracking. Since it requires a lot of water, the Louisiana Office of Conservation pursued alternatives to satisfy the water needs of fracking, but avoiding water impacts for the community.
Drinking water treatment and risk of cancer death in Wisconsin.
Kanarek, M S; Young, T B
1982-01-01
A case control study of drinking water treatment practices and female cancer mortality was conducted in Wisconsin. Cancer deaths for 1972-1977 from 28 Wisconsin counties and noncancer deaths matched to cancer deaths on age, year of death and county of residence, were compared for characteristics of drinking water supplied to their places of residence. Using logistic regression, estimates of relative risk associated with chlorinated water were examined allowing for the influence of indicators of water organics and the potential confounders of occupation, marital status and urbanicity. Only colon cancer appeared to be related significantly to chlorination in all models explored. A dose-response relationship was found between crude indicators of trihalomethane level (chlorination X organic contamination) and colon cancer death. The odds ratio for chlorinated surface water for colon cancer was 2.81 (p less than 0.01); approximately half this risk was found for chlorinated ground water. Consequently, a case control study of colon cancer and drinking water quality utilizing newly diagnosed patients is being conducted in Wisconsin. PMID:7151760
Rural Self Development in India: Two Case Studies. A Curriculum Supplement.
ERIC Educational Resources Information Center
Grant, Thomas N.
Case studies of two, successful, rural, self-development programs in India are presented in this document, which is designed to supplement the study of India in the social studies curriculum. After a brief introduction to India's village system, the two projects are discussed. The first case study presents a water collection system in Bagrunda…
A controlled experiment in ground water flow model calibration
Hill, M.C.; Cooley, R.L.; Pollock, D.W.
1998-01-01
Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic test case used for such a study, this work investigates using nonlinear regression in ground water model calibration. Results of the study fall into two categories. First, the study demonstrates how systematic use of a well designed nonlinear regression method can indicate the importance of different types of data and can lead to successive improvement of models and their parameterizations. Our method differs from previous methods presented in the ground water literature in that (1) weighting is more closely related to expected data errors than is usually the case; (2) defined diagnostic statistics allow for more effective evaluation of the available data, the model, and their interaction; and (3) prior information is used more cautiously. Second, our results challenge some commonly held beliefs about model calibration. For the test case considered, we show that (1) field measured values of hydraulic conductivity are not as directly applicable to models as their use in some geostatistical methods imply; (2) a unique model does not necessarily need to be identified to obtain accurate predictions; and (3) in the absence of obvious model bias, model error was normally distributed. The complexity of the test case involved implies that the methods used and conclusions drawn are likely to be powerful in practice.Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic test case used for such a study, this work investigates using nonlinear regression in ground water model calibration. Results of the study fall into two categories. First, the study demonstrates how systematic use of a well designed nonlinear regression method can indicate the importance of different types of data and can lead to successive improvement of models and their parameterizations. Our method differs from previous methods presented in the ground water literature in that (1) weighting is more closely related to expected data errors than is usually the case; (2) defined diagnostic statistics allow for more effective evaluation of the available data, the model, and their interaction; and (3) prior information is used more cautiously. Second, our results challenge some commonly held beliefs about model calibration. For the test case considered, we show that (1) field measured values of hydraulic conductivity are not as directly applicable to models as their use in some geostatistical methods imply; (2) a unique model does not necessarily need to be identified to obtain accurate predictions; and (3) in the absence of obvious model bias, model error was normally distributed. The complexity of the test case involved implies that the methods used and conclusions drawn are likely to be powerful in practice.
Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.
Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang
2013-10-01
In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (p<0.05). The biomasses of zooplankton and benthos were also improved after the vegetation replanting. The study confirmed that vegetation replanting could alleviate the increasing water pollution and rehabilitate the degraded aquatic ecosystem. The case study would be an example for polluted urban waters restoration in the middle-downstream area of Yangtze River Base.
Zanjanian, Hossein; Abdolabadi, Hamid; Niksokhan, Mohammad Hossein; Sarang, Amin
2018-05-15
Allocating water to organizational stakeholders poses a vital challenge to water managers. Organizations which benefit from water as the primary factor input attempt to achieve their objectives using cost-effective and quick-return strategies, such as increasing the water rights. In such circumstances, lack of water probably results in the conflict. Recognizing the management approaches, organizational priorities, and the stakeholders' influence power can play a dominant role in analyzing the future of such conflicts. In this paper, we analyzed the conflict of water allocation in Ilam dam among organizational stakeholders. We defined the strategies based on the background of the game and organizational objectives. The influence power of stakeholders and the numerical weights of strategies were quantified based on the expert judgment method. The relative priorities of strategies were then calculated for each state of the conflict. We used the GMCR + model to study the actions of stakeholders. Results suggest that the Jihad Agriculture Organization and the Water and Wastewater Company withdraw more water; hence, there exists no water to meet the environmental water right. In this case, the participation of the third party, such as the Governorship and the Justice can change the future of the conflict, and result in moving to the optimal state. However, results from Inverse GMCR analysis demonstrate that Justice is the most influential third party that can move the conflict towards a desired equilibrium (optimal case). Copyright © 2018 Elsevier Ltd. All rights reserved.
Mi, Jing; Peng, Wenjia; Jia, Xianjie; Wei, Binggan; Yang, Linsheng; Hu, Liming; Lu, Rong'an
2015-01-01
To explore the relationship of crocidolite pollution in drinking water with the risk of gastrointestinal cancer's death in Dayao County. A 1:2 matched case-control study involving 54 death cases of gastrointestinal cancer from a population-based cohort of twenty-seven years and 108 controls matched by age, gender, death time, etc was conducted to analyze the effect of local water condition on the risk of gastrointestinal cancer in Dayao County. Results from logistic regression analysis suggested the longer of asbestos furnace use over time, the higher the mortality risk of gastrointestinal cancer (6 - 10 years: OR = 2.920, 95% CI 1.501 - 5.604. 11 - 15 years: OR = 3.966, 95% CI 2.156 -7.950. Over 15 years: OR = 4.122, 95% CI 1.211 - 7. 584). Drinking unboiled water leaded to an increased risk of gastrointestinal cancer (OR = 1.43, 95% CI 1.07 - 1.88). Type of drinking water was associated with gastrointestinal cancer. When compared with drinking tap water, OR for drinking well water was 1.770 (95% CI 1.001 - 2.444), 2.442 for drinking river water (95% CI 0.956 - 3.950), 2.554 for drinking house and field ditch water (95% CI 1.961 - 6.584), and 3.121 for drinking pond water (95% CI 1.872 - 6.566). Related factors of drinking water in crocidolite-contaminated area in Dayao County were significantly associated with the mortality of gastrointestinal cancer.
Tularaemia outbreaks in Sakarya, Turkey: case-control and environmental studies.
Meric, M; Sayan, M; Dundar, D; Willke, A
2010-08-01
Tularaemia is an important zoonotic disease that leads to outbreaks. This study aimed to compare the epidemiological characteristics of two tularaemia outbreaks that occurred in the Sakarya region of Turkey, analyse the risk factors for the development of outbreaks and identify Francisella (F.) tularensis in the water samples. Two tularaemia outbreaks occurred in the Kocadongel village in 2005 and 2006. A field investigation and a case-control study with 47 cases and 47 healthy households were performed during the second outbreak. Clinical samples from the patients and filtrated water samples were analysed for F. tularensis via real-time polymerase chain reaction. From the two outbreaks, a total of 58 patients were diagnosed with oropharyngeal tularaemia based on their clinical and serological results. Both outbreaks occurred between the months of January and April, and the number of patients peaked in February. Logistic regression analysis revealed that the consumption of natural spring water was the only significant risk factor for tularaemia infection (odds ratio 3.5, confidence interval 1.23-10.07). F. tularensis was detected in eight clinical samples and in the filtrated natural spring water. This study is the first report of tularaemia from this region. The results show that both tularaemia outbreaks were related to the consumption of untreated natural spring water. To prevent waterborne tularaemia, community water supplies should be treated and checked periodically.
Application of electrical geophysics to the release of water resources, case of Ain Leuh (Morocco)
NASA Astrophysics Data System (ADS)
Zitouni, A.; Boukdir, A.; El Fjiji, H.; Baite, W.; Ekouele Mbaki, V. R.; Ben Said, H.; Echakraoui, Z.; Elissami, A.; El Maslouhi, M. R.
2018-05-01
Being seen needs in increasing waters in our contry for fine domestics, manufactures and agricultural, the prospecting of subterranean waters by geologic and hydrogeologic classic method remains inaplicable in the cases of the regions where one does not arrange drillings or polls (soundings) of gratitude (recongnition) in very sufficient (self-important) number. In that case of figure, the method of prospecting geophysics such as the method of nuclear magnetic resonance (NMR) and the method of the geophysics radar are usually used most usually because they showed, worldwide, results very desive in the projects of prospecting and evaluation of the resources in subterranean waters. In the present work, which concerns only the methodology of the electric resistivity, we treat the adopted methodological approach and the study of the case of application in the tray of Ajdir Ain Leuh.
Biological Water Quality Criteria
Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.
Arcega-Cabrera, F; Fargher, L F; Oceguera-Vargas, I; Noreña-Barroso, E; Yánez-Estrada, L; Alvarado, J; González, L; Moo-Puc, R; Pérez-Herrera, N; Quesadas-Rojas, M; Pérez-Medina, S
2017-10-01
Studies investigating the correlation between metal content in water and metal levels in children are scarce worldwide, but especially in developing nations. Therefore, this study investigates the correlation between arsenic, chromium, and mercury concentrations in drinking and cooking water and in blood and urine samples collected from healthy and supposedly non-exposed children from a rural area in Yucatan, Mexico. Mercury in water shows concentrations above the recommended World Health Organization (WHO) value for drinking and cooking water. Also, 25% of the children show mercury in urine above the WHO recommended value. Multivariate analyses show a significant role for drinking and cooking water as a vector of exposure in children. Also, the factor analysis shows chronic exposure in the case of arsenic, as well as an ongoing detoxification process through urine in the case of mercury. Further studies should be done in order to determine other potential metal exposure pathways among children.
Mahjouri, Najmeh; Ardestani, Mojtaba
2011-01-01
In this paper, two cooperative and non-cooperative methodologies are developed for a large-scale water allocation problem in Southern Iran. The water shares of the water users and their net benefits are determined using optimization models having economic objectives with respect to the physical and environmental constraints of the system. The results of the two methodologies are compared based on the total obtained economic benefit, and the role of cooperation in utilizing a shared water resource is demonstrated. In both cases, the water quality in rivers satisfies the standards. Comparing the results of the two mentioned approaches shows the importance of acting cooperatively to achieve maximum revenue in utilizing a surface water resource while the river water quantity and quality issues are addressed.
Assessment of domestic water quality: case study, Beirut, Lebanon.
Korfali, Samira Ibrahim; Jurdi, Mey
2007-12-01
In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.
Water footprint characteristic of less developed water-rich regions: Case of Yunnan, China.
Qian, Yiying; Dong, Huijuan; Geng, Yong; Zhong, Shaozhuo; Tian, Xu; Yu, Yanhong; Chen, Yihui; Moss, Dana Avery
2018-03-30
Rapid industrialization and urbanization pose pressure on water resources in China. Virtual water trade proves to be an increasingly useful tool in water stress alleviation for water-scarce regions, while bringing opportunities and challenges for less developed water-rich regions. In this study, Yunnan, a typical province in southwest China, was selected as the case study area to explore its potential in socio-economic development in the context of water sustainability. Both input-output analysis and structural decomposition analysis on Yunnan's water footprint for the period of 2002-2012 were performed at not only an aggregated level but also a sectoral level. Results show that although the virtual water content of all economic sectors decreased due to technological progress, Yunnan's total water footprint still increased as a result of economic scale expansion. From the sectoral perspective, sectors with large water footprints include construction sector, agriculture sector, food manufacturing & processing sector, and service sector, while metal products sector and food manufacturing & processing sector were the major virtual water exporters, and textile & clothing sector and construction sector were the major importers. Based on local conditions, policy suggestions were proposed, including economic structure and efficiency optimization, technology promotion and appropriate virtual water trade scheme. This study provides valuable insights for regions facing "resource curse" by exploring potential socio-economic progress while ensuring water security. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fournier, Eric D; Keller, Arturo A; Geyer, Roland; Frew, James
2016-02-16
This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.
Terahertz Measurement of the Water Content Distribution in Wood Materials
NASA Astrophysics Data System (ADS)
Bensalem, M.; Sommier, A.; Mindeguia, J. C.; Batsale, J. C.; Pradere, C.
2018-02-01
Recently, THz waves have been shown to be an effective technique for investigating the water diffusion within porous media, such as biomaterial or insulation materials. This applicability is due to the sufficient resolution for such applications and the safe levels of radiation. This study aims to achieve contactless absolute water content measurements at a steady state case in semi-transparent solids (wood) using a transmittance THz wave range setup. First, a calibration method is developed to validate an analytical model based on the Beer-Lambert law, linking the absorption coefficient, the density of the solid, and its water content. Then, an estimation of the water content on a local scale in a transient-state case (drying) is performed. This study shows that THz waves are an effective contactless, safe, and low-cost technique for the measurement of water content in a porous medium, such as wood.
Rao, Carol Y; Pachucki, Constance; Cali, Salvatore; Santhiraj, Mangai; Krankoski, Kathi L K; Noble-Wang, Judith A; Leehey, David; Popli, Subhash; Brandt, Mary E; Lindsley, Mark D; Fridkin, Scott K; Arduino, Matthew J
2009-09-01
We investigated a cluster of cases of bloodstream infection (BSI) due to the mold Phialemonium at a hemodialysis center in Illinois and conducted a cohort study to identify risk factors. Environmental assessment and cohort study. A hemodialysis center in a tertiary care hospital. A case patient was defined as a person who underwent dialysis at the center and had a blood sample that tested positive for Phialemonium curvatum on culture. We reviewed microbiology and medical records and tested water, surface, and dialysate samples by culture. Molds isolated from environmental and clinical specimens were identified by their morphological features and confirmed by sequencing DNA. We identified 2 case patients with BSI due to P. curvatum. Both became febrile and hypotensive while undergoing dialysis on the same machine at the same treatment station, although on different days. Dialysis machines were equipped with waste handling option ports that are used to discard dialyzer priming fluid. We isolated P. curvatum from the product water (ie, water used for dialysis purposes) at 2 of 19 treatment stations, one of which was the implicated station. The source of P. curvatum was likely the water distribution system. To our knowledge, this is the first report of patients acquiring a mold BSI from contaminated product water. The route of exposure in these cases of BSI due to P. curvatum may be related to the malfunction and improper maintenance of the waste handling option ports. Waste handling option ports have been previously implicated as the source of bacterial BSI due to the backflow of waste fluid into a patient's blood line. No additional cases of infection were noted after remediation of the water distribution system and after discontinuing use of waste handling option ports at the facility.
Oguttu, David W; Okullo, A; Bwire, G; Nsubuga, P; Ario, A R
2017-10-10
On 12 October 2015, a cholera outbreak involving 65 cases and two deaths was reported in a fishing village in Hoima District, Western Uganda. Despite initial response by the local health department, the outbreak persisted. We conducted an investigation to identify the source and mode of transmission, and recommend evidence-led interventions to control and prevent cholera outbreaks in this area. We defined a suspected case as the onset of acute watery diarrhoea from 1 October to 2 November 2015 in a resident of Kaiso Village. A confirmed case was a suspected case who had Vibrio cholerae isolated from stool. We found cases by record review and active community case finding. We performed descriptive epidemiologic analysis for hypothesis generation. In an unmatched case-control study, we compared exposure histories of 61 cases and 126 controls randomly selected among asymptomatic village residents. We also conducted an environmental assessment and obtained meteorological data from a weather station. We identified 122 suspected cases, of which six were culture-confirmed, 47 were confirmed positive with a rapid diagnostic test and two died. The two deceased cases had onset of the disease on 2 October and 10 October, respectively. Heavy rainfall occurred on 7-11 October; a point-source outbreak occurred on 12-15 October, followed by continuous community transmission for two weeks. Village residents usually collected drinking water from three lakeshore points - A, B and C: 9.8% (6/61) of case-persons and 31% (39/126) of control-persons were found to usually use point A, 21% (13/61) of case-persons and 37% (46/126) of control-persons were found to usually use point B (OR = 1.8, 95% CI: 0.64-5.3), and 69% (42/61) of case-persons and 33% (41/126) of control-persons were found to usually use point C (OR = 6.7; 95% CI: 2.5-17) for water collection. All case-persons (61/61) and 93% (117/126) of control-persons reportedly never treated/boiled drinking water (OR = ∞, 95% CI Fisher : 1.0 - ∞). The village's piped water system had been vandalised and open defecation was common due to a lack of latrines. The lake water was found to be contiminated due to a gully channel that washed the faeces into the lake at point C. This outbreak was likely caused by drinking lake water contaminated by faeces from a gully channel. We recommend treatment of drinking water, fixing the vandalised piped-water system and constructing latrines.
Mexia, Ricardo; Bruun, Tone; Kapperud, Georg; Lange, Heidi; Nygård, Karin; Vold, Line
2015-01-01
Background Campylobacteriosis is the most frequently reported food- and waterborne infection in Norway. We investigated the risk factors for sporadic Campylobacter infections in Norway in order to identify areas where control and prevention measures could be improved. Methods A national prospective case-control study of factors associated with Campylobacter infection was conducted from July 2010 to September 2011. Cases were recruited from the Norwegian Surveillance System of Communicable Diseases (MSIS). Controls were randomly selected from the Norwegian Population Registry. Cases and controls were mailed a paper questionnaire with a prepaid return envelope. Univariable analyses using logistic regression were conducted for all exposures. A final parsimonious multivariable model was developed using regularized/penalized logistic regression, and adjusted odds ratios were calculated. Results A total of 995 cases and 1501 controls were included in the study (response proportion 55% and 30%, respectively). Exposures that had significant increases in odds of Campylobacter infection in multivariable analysis were drinking water directly from river, stream, or lake (OR: 2.96), drinking purchased bottled water (OR: 1.78), eating chicken (1.69), eating meat that was undercooked (OR: 1.77), eating food made on a barbecue (OR: 1.55), living on a farm with livestock (OR: 1.74), having a dog in the household (OR: 1.39), and having household water supply serving fewer than 20 houses (OR: 1.92). Conclusions Consumption of poultry and untreated water remain important sources of Campylobacter infection in Norway, despite ongoing control efforts. The results justify the need for strengthening education for consumers and food handlers about the risks of cross-contamination when preparing poultry and with consuming raw or undercooked chicken. The public should also be reminded to take precautions when drinking untreated water in nature and ensure continued vigilance in order to protect and maintain the quality of water from small-scale water supply systems. PMID:26431341
MacDonald, Emily; White, Richard; Mexia, Ricardo; Bruun, Tone; Kapperud, Georg; Lange, Heidi; Nygård, Karin; Vold, Line
2015-01-01
Campylobacteriosis is the most frequently reported food- and waterborne infection in Norway. We investigated the risk factors for sporadic Campylobacter infections in Norway in order to identify areas where control and prevention measures could be improved. A national prospective case-control study of factors associated with Campylobacter infection was conducted from July 2010 to September 2011. Cases were recruited from the Norwegian Surveillance System of Communicable Diseases (MSIS). Controls were randomly selected from the Norwegian Population Registry. Cases and controls were mailed a paper questionnaire with a prepaid return envelope. Univariable analyses using logistic regression were conducted for all exposures. A final parsimonious multivariable model was developed using regularized/penalized logistic regression, and adjusted odds ratios were calculated. A total of 995 cases and 1501 controls were included in the study (response proportion 55% and 30%, respectively). Exposures that had significant increases in odds of Campylobacter infection in multivariable analysis were drinking water directly from river, stream, or lake (OR: 2.96), drinking purchased bottled water (OR: 1.78), eating chicken (1.69), eating meat that was undercooked (OR: 1.77), eating food made on a barbecue (OR: 1.55), living on a farm with livestock (OR: 1.74), having a dog in the household (OR: 1.39), and having household water supply serving fewer than 20 houses (OR: 1.92). Consumption of poultry and untreated water remain important sources of Campylobacter infection in Norway, despite ongoing control efforts. The results justify the need for strengthening education for consumers and food handlers about the risks of cross-contamination when preparing poultry and with consuming raw or undercooked chicken. The public should also be reminded to take precautions when drinking untreated water in nature and ensure continued vigilance in order to protect and maintain the quality of water from small-scale water supply systems.
Using Omics to Study Microbial Water Quality
Water is one of the most important resources of all natural ecosystems. Not only is water important to life, but it is also a habitat for a large diversity of microbial forms, in many cases carrying critical geochemical functions. In other instances, water is implicated in outbre...
Using Omics to Study Microbial Water Quality - abstract
Water is one of the most important resources of all natural ecosystems. Not only is water important to life, but it is also a habitat for a large diversity of microbial forms, in many cases carrying critical geochemical functions. In other instances, water is implicated in outbre...
Regional water footprint evaluation in China: a case of Liaoning.
Dong, Huijuan; Geng, Yong; Sarkis, Joseph; Fujita, Tsuyoshi; Okadera, Tomohiro; Xue, Bing
2013-01-01
Water-related problems are currently second only to energy issues as threats to human society. North China is a region that is facing severe water scarcity problems. In order to provide appropriate water mitigation policies a regional study is completed. Under this circumstance, Liaoning Province, a typical heavy industrial province in north China is chosen as a case study region. The input-output analysis method is employed in order to evaluate the water footprint both from production and consumption perspectives. The results show that the total water footprint of Liaoning in 2007 was 7.30 billionm(3), a 84.6% of internal water footprint and a 15.4% external water footprint. The water trade balance of Liaoning was 2.68 billionm(3), indicating that Liaoning was a net water export region, although water shortages are becoming a more serious concern. The "Agriculture" and "Food and beverage production" sectors are found to have the highest water footprint, water intensity, water exports, and water trade balance. Based upon Liaoning realities policy implications and suggestions are made, including industrial and trade structure adjustment, application of water efficient technology and management measures, and appropriate capacity-building efforts. The methodology and findings may be useful for investigation of water footprints throughout various regions of the world. Copyright © 2012 Elsevier B.V. All rights reserved.
National Environmental Change Information System Case Study
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Ritschard, R.; Estes, M. G., Jr.; Hatch, U.
2001-01-01
The Global Hydrology and Climate Center and NASA's Marshall Space Flight Center conducted a fact-finding case study for the Data Management Working Group (DMWG), now referred to as the Data and Information Working Group (DIWG), of the U.S. Global Change Research Program (USGCRP) to determine the feasibility of an interagency National Environmental Change Information System (NECIS). In order to better understand the data and information needs of policy and decision makers at the national, state, and local level, the DIWG asked the case study team to choose a regional water resources issue in the southeastern United States that had an impact on a diverse group of stakeholders. The southeastern United States was also of interest because the region experiences interannual climatic variations and impacts due to El Nino and La Nina. Jointly, with input from the DIWG, a focus on future water resources planning in the Apalachicola-Chattahoochee-Flint (ACF) River basins of Alabama, Georgia, and Florida was selected. A tristate compact and water allocation formula is currently being negotiated between the states and U.S. Army Corps of Engineers (COE) that will affect the availability of water among competing uses within the ACF River basin. All major reservoirs on the ACF are federally owned and operated by the U.S. Army COE. A similar two-state negotiation is ongoing that addresses the water allocations in the adjacent Alabama-Coosa-Tallapoosa (ACT) River basin, which extends from northwest Georgia to Mobile Bay. The ACF and ACT basins are the subject of a comprehensive river basin study involving many stakeholders. The key objectives of this case study were to identify specific data and information needs of key stakeholders in the ACF region, determine what capabilities are needed to provide the most practical response to these user requests, and to identify any limitations in the use of federal data and information. The NECIS case study followed the terms of reference developed by the interagency DIWG. The case study "lessons learned" and "key findings" offer guidelines and considerations to the DMWG for the development and implementation of a NECIS that would support the data and information needs of policy and decision makers at the national, state, and local level.
Institutional conditions for IWRM: the Israeli case.
Fischhendler, Itay
2008-01-01
Many places in the world are experiencing a water crisis. This water crisis is attributed to a governance crisis, whereas often fragmented institutional and physical water structures are used to explain a policy of overexploitation. The Israeli water system, which adopted integrated water resource management (IWRM), is often cited as a model for other countries struggling with fragmented water systems. Yet, despite the exceptional degree of integration, Israel in the past two decades has adopted an unsustainable water policy. The aim of this study is to understand this failure and thereby to postulate on the institutional conditions required for successful implementation of IWRM. The study focuses on the politics of water allocation during the drought of 1999 to 2002. It was found that the failure originates in setting administrative divisions in the decision-making process and in differential checks, with no balances implicitly instituted within the integrated water system. These two factors have resulted in a water system that is physically integrated but is not coupled by a balanced institutional structure. This case study teaches us that when reforming the water sector along IWRM lines, measures must be taken to ensure that the physical integration coincides with a balanced institutional integration-otherwise the results may be worse than if there were no integration at all.
Controls on Water Use for Thermoelectric Generation: Case Study Texas, U.S.
2013-01-01
Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km3), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km3) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. PMID:23937226
Controls on water use for thermoelectric generation: case study Texas, US.
Scanlon, Bridget R; Reedy, Robert C; Duncan, Ian; Mullican, William F; Young, Michael
2013-10-01
Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km(3)), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km(3)) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000.
Contaminated drinking water in one town manifesting as an outbreak of cryptosporidiosis in another.
McAnulty, J M; Keene, W E; Leland, D; Hoesly, F; Hinds, B; Stevens, G; Fleming, D W
2000-08-01
In early 1992 we identified an outbreak of cryptosporidiosis in Oregon and sought to identify and control its source. We used a series of studies to identify risk factors for illness: (i) a case-control study among employees of a long-term-care facility (LTCF); (ii) a matched case-control study of the general community; (iii) a cohort study of wedding attendees; and (iv) a cross-sectional survey of the general community. Drinking Talent water was associated with illness in the LTCF (OR = 22.7, 95 % CI = 2.7-1009.0), and in the community (matched OR = 9.5, 95% CI 2.3-84.1). Drinking Talent water was associated with illness only among non-Talent residents who attended the wedding (P < 0.001) and in the community (RR = 6.5, 95 % CI 3.3-12.9). The outbreak was caused by contaminated municipal water from Talent in the absence of a discernible outbreak among Talent residents, suggesting persons exposed to contaminated water may develop immunity to cryptosporidiosis.
An alternative approach for socio-hydrology: case study research
NASA Astrophysics Data System (ADS)
Mostert, Erik
2018-01-01
Currently the most popular approach in socio hydrology is to develop coupled human-water models. This article proposes an alternative approach, qualitative case study research, involving a systematic review of (1) the human activities affecting the hydrology in the case, (2) the main human actors, and (3) the main factors influencing the actors and their activities. Moreover, this article presents a case study of the Dommel Basin in Belgium and the Netherlands, and compares this with a coupled model of the Kissimmee Basin in Florida. In both basins a pendulum swing
from water resources development and control to protection and restoration can be observed. The Dommel case study moreover points to the importance of institutional and financial arrangements, community values, and broader social, economic, and technical developments. These factors are missing from the Kissimmee model. Generally, case studies can result in a more complete understanding of individual cases than coupled models, and if the cases are selected carefully and compared with previous studies, it is possible to generalize on the basis of them. Case studies also offer more levers for management and facilitate interdisciplinary cooperation. Coupled models, on the other hand, can be used to generate possible explanations of past developments and quantitative scenarios for future developments. The article concludes that, given the limited attention they currently get and their potential benefits, case studies deserve more attention in socio-hydrology.
ERIC Educational Resources Information Center
Black, Maggie
The case histories of water and sanitation schemes described in this volume can best be understood by identifying the moments at which critical hurdles were encountered and surmounted. The first case study, which concerns Bangladesh, discusses promising prospects that existed amid the pollution and the technical and managerial expansion of the…
Ho, Chi-Kung; Yang, Ya-Hui; Yang, Chun-Yuh
2011-01-01
The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from brain cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the influence of nitrates on development of brain cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death from brain cancer and exposure to nitrates in drinking water in Taiwan. All brain cancer deaths of Taiwan residents from 2003 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO₃-N), Ca, and Mg in drinking water was obtained from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was <0.38 ppm, the adjusted OR (95% CI) for brain cancer occurrence was 1.04 (0.85-1.27) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure ≥ 0.38 ppm. No marked effect modification was observed due to Ca and Mg intake via drinking water on brain cancer occurrence.
Case study research: training interdisciplinary engineers with context-dependent knowledge
NASA Astrophysics Data System (ADS)
Chanan, Amit; Vigneswaran, Saravanamuth; Kandasamy, Jaya
2012-03-01
It is now widely acknowledged that water management discipline is transforming, from being a public health and flood prevention challenge of the nineteenth century to a multi-dimensional challenge of water security for the twenty-first century. In order to train water engineers to be capable of working with this holistic multi-dimensional approach, a new paradigm in engineering education is required. Adjustments already made to undergraduate coursework are not enough; this new paradigm requires modifications to the PhD in engineering, with greater emphasis on interdisciplinary case study research. Such a change can deliver PhD graduates with both sufficient social and technical knowledge, who can then go on to become the hybrid lecturers crucially needed for training future water engineers.
Werber, D; Lausević, D; Mugosa, B; Vratnica, Z; Ivanović-Nikolić, L; Zizić, L; Alexandre-Bird, A; Fiore, L; Ruggeri, F M; Di Bartolo, I; Battistone, A; Gassilloud, B; Perelle, S; Nitzan Kaluski, D; Kivi, M; Andraghetti, R; Pollock, K G J
2009-12-01
On 24 August 2008, an outbreak alert regarding cases of acute gastroenteritis in Podgorica triggered investigations to guide control measures. From 23 August to 7 September, 1699 cases were reported in Podgorica (population 136 000) and we estimated the total size of the outbreak to be 10 000-15 000 corresponding to an attack rate of approximately 10%. We conducted an age- and neighbourhood-matched case-control study, microbiologically analysed faecal and municipal water samples and assessed the water distribution system. All cases (83/83) and 90% (80/90) [corrected] of controls drank unboiled chlorinated municipal water [matched odds ratio (mOR) 11.2, 95% confidence interval (CI), 1.6-infinity]. Consumption of bottled water was inversely associated with illness (mOR 0.3, 95% CI 0.1-0.8). Analyses of faecal samples identified six norovirus genotypes (21/38 samples) and occasionally other viruses. Multiple defects in the water distribution system were noted. These results suggest that the outbreak was caused by faecally contaminated municipal water. It is unusual to have such a large outbreak in a European city especially when the municipal water supply is chlorinated. Therefore, it is important to establish effective multiple-barrier water-treatment systems whenever possible, but even with an established chlorinated supply, sustained vigilance is central to public health.
Primary biliary cirrhosis: an epidemiological study.
Triger, D R
1980-01-01
A three-year study (1977-9) of primary biliary cirrhosis in the city of Sheffield disclosed 34 cases, a point prevalence of 54 per million population. Closer inspection showed an apparent clustering of cases, and the prevalence in relation to one water reservoir appeared to be more than ten times that of the other reservoirs. Nevertheless, analyses of the water showed no significant relevant differences between the reservoir serving areas with a high prevalence of cirrhosis and other reservoirs. Despite the inconclusive results of the water analyses, these findings do suggest that an environmental agent may be a cause of primary biliary cirrhosis and that further epidemiological studies may help to elucidate the cause. PMID:7427444
Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...
Water Intrusion Problems in Transit Tunnels
DOT National Transportation Integrated Search
1986-05-01
This report presents the findings of five case studies in which an in-depth analysis was made of tunnel water intrusion problems in transit tunnels. Water intrusion parameters of transit systems in Atlanta, Boston, Buffalo, New York and Washington, D...
Landsat and water: case studies of the uses and benefits of landsat imagery in water resources
Serbina, Larisa O.; Miller, Holly M.
2014-01-01
The Landsat program has been collecting and archiving moderate resolution earth imagery since 1972. The number of Landsat users and uses has increased exponentially since the enactment of a free and open data policy in 2008, which made data available free of charge to all users. Benefits from the information Landsat data provides vary from improving environmental quality to protecting public health and safety and informing decision makers such as consumers and producers, government officials and the public at large. Although some studies have been conducted, little is known about the total benefit provided by open access Landsat imagery. This report contains a set of case studies focused on the uses and benefits of Landsat imagery. The purpose of these is to shed more light on the benefits accrued from Landsat imagery and to gain a better understanding of the program’s value. The case studies tell a story of how Landsat imagery is used and what its value is to different private and public entities. Most of the case studies focus on the use of Landsat in water resource management, although some other content areas are included.
Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-03-01
The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.
The dynamic crossover in water does not require bulk water.
Turton, David A; Corsaro, Carmelo; Martin, David F; Mallamace, Francesco; Wynne, Klaas
2012-06-14
Many of the anomalous properties of water may be explained by invoking a second critical point that terminates the coexistence line between the low- and high-density amorphous states in the liquid. Direct experimental evidence of this point, and the associated polyamorphic liquid-liquid transition, is elusive as it is necessary for liquid water to be cooled below its homogeneous-nucleation temperature. To avoid crystallization, water in the eutectic LiCl solution has been studied but then it is generally considered that "bulk" water cannot be present. However, recent computational and experimental studies observe cooperative hydration in which case it is possible that sufficient hydrogen-bonded water is present for the essential characteristics of water to be preserved. For femtosecond optical Kerr-effect and nuclear magnetic resonance measurements, we observe in each case a fractional Stokes-Einstein relation with evidence of the dynamic crossover appearing near 220 K and 250 K respectively. Spectra obtained in the glass state also confirm the complex nature of the hydrogen-bonding modes reported for neat room-temperature water and support predictions of anomalous diffusion due to "worm-hole" structure.
NASA Astrophysics Data System (ADS)
Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang
2018-01-01
Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.
Villanueva, Cristina M; Gracia-Lavedan, Esther; Bosetti, Cristina; Righi, Elena; Molina, Antonio José; Martín, Vicente; Boldo, Elena; Aragonés, Nuria; Perez-Gomez, Beatriz; Pollan, Marina; Acebo, Ines Gomez; Altzibar, Jone M; Zabala, Ana Jiménez; Ardanaz, Eva; Peiró, Rosana; Tardón, Adonina; Chirlaque, Maria Dolores; Tavani, Alessandra; Polesel, Jerry; Serraino, Diego; Pisa, Federica; Castaño-Vinyals, Gemma; Espinosa, Ana; Espejo-Herrera, Nadia; Palau, Margarita; Moreno, Victor; La Vecchia, Carlo; Aggazzotti, Gabriella; Nieuwenhuijsen, Mark J; Kogevinas, Manolis
2017-01-01
Evidence on the association between colorectal cancer and exposure to disinfection by-products in drinking water is inconsistent. We assessed long-term exposure to trihalomethanes (THMs), the most prevalent group of chlorination by-products, to evaluate the association with colorectal cancer. A multicenter case-control study was conducted in Spain and Italy in 2008-2013. Hospital-based incident cases and population-based (Spain) and hospital-based (Italy) controls were interviewed to ascertain residential histories, type of water consumed in each residence, frequency and duration of showering/bathing, and major recognized risk factors for colorectal cancer. We estimated adjusted odds ratios (OR) for colorectal cancer in association with quartiles of estimated average lifetime THM concentrations in each participant's residential tap water (micrograms/liter; from age 18 to 2 years before the interview) and estimated average lifetime THM ingestion from drinking residential tap water (micrograms/day). We analyzed 2,047 cases and 3,718 controls. Median values (ranges) for average lifetime residential tap water concentrations of total THMs, chloroform, and brominated THMs were 30 (0-174), 17 (0-63), and 9 (0-145) μg/L, respectively. Total THM concentration in residential tap water was not associated with colorectal cancer (OR = 0.92, 95% CI: 0.66, 1.28 for highest vs. lowest quartile), but chloroform concentrations were inversely associated (OR = 0.31, 95% CI: 0.24, 0.41 for highest vs. lowest quartile). Brominated THM concentrations showed a positive association among men in the highest versus the lowest quartile (OR = 1.43, 95% CI: 0.83, 2.46). Patterns of association were similar for estimated average THM ingestion through residential water consumption. We did not find clear evidence of an association between detailed estimates of lifetime total THM exposure and colorectal cancer in our large case-control study population. Negative associations with chloroform concentrations and ingestion suggest differences among specific THMs, but these findings should be confirmed in other study populations. Citation: Villanueva CM, Gracia-Lavedan E, Bosetti C, Righi E, Molina AJ, Martín V, Boldo E, Aragonés N, Perez-Gomez B, Pollan M, Gomez Acebo I, Altzibar JM, Jiménez Zabala A, Ardanaz E, Peiró R, Tardón A, Chirlaque MD, Tavani A, Polesel J, Serraino D, Pisa F, Castaño-Vinyals G, Espinosa A, Espejo-Herrera N, Palau M, Moreno V, La Vecchia C, Aggazzotti G, Nieuwenhuijsen MJ, Kogevinas M. 2017. Colorectal cancer and long-term exposure to trihalomethanes in drinking water: a multicenter case---control study in Spain and Italy. Environ Health Perspect 125:56-65; http://dx.doi.org/10.1289/EHP155.
Scholz, Miklas
2004-12-01
The purpose of this case study was to optimise design, operation and maintenance guidelines, and to assess the water treatment potential of a storm water pond system after 15 months of operation. The system was based on a combined silt trap, attenuation pond and vegetated infiltration basin. This combination was used as the basis for construction of a roof water runoff system from a single domestic property. United Kingdom Building Research Establishment and Construction Industry Research and Information Association, and German Association for Water, Wastewater and Waste design guidelines were tested. These design guidelines failed because they did not consider local conditions. The infiltration function for the infiltration basin was logarithmic. Algal control techniques were successfully applied, and treatment of rainwater runoff from roofs was found to be largely unnecessary for recycling (e.g., watering plants). However, seasonal and diurnal variations of biochemical oxygen demand, dissolved oxygen and pH were recorded.
An urban, water-borne outbreak of diarrhoea and shigellosis in a district town in eastern India.
Saha, T; Murhekar, M; Hutin, Y J; Ramamurthy, T
2009-01-01
In September 2007, the Gayeshpur municipality reported a cluster of cases with diarrhoea. We aimed to identify the causative agent and the source of the disease. We defined a case as the occurrence of diarrhoea (> 3 loose stools/day) with fever or bloody stools in a resident of Gayeshpur in September-October 2007. We asked healthcare facilities to report cases, collected stool specimens from patients, constructed an epidemic curve, drew a map and calculated the incidence by age and sex. We also conducted a matched case-control study (58 in each group), calculated matched odds ratio (MOR) and population attributable fraction (PAF), as well as assessed the environment. We identified 461 cases (attack rate: 46/1000 population) and isolated Shigella flexneri (serotype 2a and 3a) from 3 of 4 stool specimens. The attack rate was higher among females (52/1000) and those in the age group of 45-59 years (71/1000). The outbreak started on 22 September, peaked multiple times and subsided on 12 October 2007. Cases were clustered distal to a leaking pipeline that crossed an open drain to intermittently supply non-chlorinated water to taps. The 58 cases and 58 controls were matched for age and sex. Drinking tap water (MOR: 10; 95% CI: 3-32; PAF: 89%), washing utensils in tap water (MOR: 3.7; 95% CI: 1.2-11.3) and bathing in tap water (MOR: 3.5; 95% CI: 1.1-11) were associated with the illness. This outbreak of diarrhoea and Shigella flexneri dysentery was caused by contamination of tap water and subsided following repair of the pipeline. We recommended regular chlorination of the water and maintenance of pipelines.
This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...
This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...
NASA Astrophysics Data System (ADS)
Wegehenkel, M.
In this paper, long-term effects of different afforestation scenarios on landscape wa- ter balance will be analyzed taking into account the results of a regional case study. This analysis is based on using a GIS-coupled simulation model for the the spatially distributed calculation of water balance.For this purpose, the modelling system THE- SEUS with a simple GIS-interface will be used. To take into account the special case of change in forest cover proportion, THESEUS was enhanced with a simple for- est growth model. In the regional case study, model runs will be performed using a detailed spatial data set from North-East Germany. This data set covers a mesoscale catchment located at the moraine landscape of North-East Germany. Based on this data set, the influence of the actual landuse and of different landuse change scenarios on water balance dynamics will be investigated taking into account the spatial distributed modelling results from THESEUS. The model was tested using different experimen- tal data sets from field plots as well as obsverded catchment discharge. Additionally to such convential validation techniques, remote sensing data were used to check the simulated regional distribution of water balance components like evapotranspiration in the catchment.
Calcium and magnesium in drinking-water and risk of death from lung cancer in women.
Cheng, Meng-Hsuan; Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Chih-Cheng; Yang, Chun-Yuh
2012-01-01
The possible association between the risk of lung cancer in women and the levels of calcium (Ca) and magnesium (Mg) in drinking-water from municipal supplies was investigated in a matched, case-control study in Taiwan. All eligible female lung cancer deaths (3,532 cases) of Taiwan residents, from 2000 through to 2008, were compared with deaths from other causes (3,532 controls), and the levels of Ca and Mg in drinking-water of these residents were determined. Data on Ca and Mg levels in drinking-water throughout Taiwan were obtained from the Taiwan Water Supply Corporation (TWSC). The control group consisted of people who died from other causes, and the controls were pair-matched to the cases by sex, year of birth, and year of death. The adjusted odd ratios were not statistically significant for the relationship between Ca levels in drinking-water and lung cancer in women. The adjusted odd ratios for female lung cancer deaths for those with higher Mg levels in their drinking-water, as compared to the lowest tertile, were 0.82 (95% CI = 0.72-0.93) and 0.80 (95% CI = 0.69-0.93), respectively. The results of the present study show that there is a significant trend toward a decreased risk of lung cancer in women with increasing Mg levels in drinking-water.
Risk factors for typhoid outbreak in Sungai Congkak Recreational Park, Selangor 2009.
Anita, S; Amir, K M; Fadzilah, K; Ahamad, J; Noorhaida, U; Marina, K; Paid, M Y; Hanif, Z
2012-02-01
Typhoid fever continues to pose public health problems in Selangor where cases are found sporadically with occasional outbreaks reported. In February 2009, Hospital Tengku Ampuan Rahimah (HTAR) reported a cluster of typhoid fever among four children in the pediatric ward. We investigated the source of the outbreak, risk factors for the infection to propose control measures. We conducted a case-control study to identify the risk factors for the outbreak. A case was defined as a person with S. typhi isolated from blood, urine or stool and had visited Sungai Congkak recreational park on 27th January 2010. Controls were healthy household members of cases who have similar exposure but no isolation of S. typhi in blood, urine or stool. Cases were identified from routine surveillance system, medical record searching from the nearest clinic and contact tracing other than family members including food handlers and construction workers in the recreational park. Immediate control measures were initiated and followed up. Twelve (12) cases were identified from routine surveillance with 75 household controls. The Case-control study showed cases were 17 times more likely to be 12 years or younger (95% CI: 2.10, 137.86) and 13 times more likely to have ingested river water accidentally during swimming (95% CI: 3.07, 58.71). River water was found contaminated with sewage disposal from two public toilets which effluent grew salmonella spp. The typhoid outbreak in Sungai Congkak recreational park resulted from contaminated river water due to poor sanitation. Children who accidentally ingested river water were highly susceptible. Immediate closure and upgrading of public toilet has stopped the outbreak.
Kuo, Hsin-Wei; Chen, Pei-Shih; Ho, Shu-Chen; Wang, Li-Yu; Yang, Chun-Yuh
2010-01-01
The objectives of this study were (1) to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of rectal cancer development and (2) to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of TTHM on risk of developing rectal cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to rectal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All rectal cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from the Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for rectal cancer occurrence was 1.04 (0.88-1.22) for individuals who resided in municipalities served by drinking water with a TTHM exposure >or=4.9 ppb. There was no evidence of an interaction of drinking-water TTHM levels with low Ca intake via drinking water. However, evidence of an interaction was noted between drinking-water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of rectal cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing rectal cancer risk will aid in public policymaking and standard setting.
Nguyen, Von D; Sreenivasan, Nandini; Lam, Eugene; Ayers, Tracy; Kargbo, David; Dafae, Foday; Jambai, Amara; Alemu, Wondimagegnehu; Kamara, Abdul; Islam, M Sirajul; Stroika, Steven; Bopp, Cheryl; Quick, Robert; Mintz, Eric D; Brunkard, Joan M
2014-03-01
During 2012, Sierra Leone experienced a cholera epidemic with 22,815 reported cases and 296 deaths. We conducted a matched case-control study to assess risk factors, enrolling 49 cases and 98 controls. Stool specimens were analyzed by culture, polymerase chain reaction (PCR), and pulsed-field gel electrophoresis (PFGE). Conditional logistic regression found that consuming unsafe water (matched odds ratio [mOR]: 3.4; 95% confidence interval [CI]: 1.1, 11.0), street-vended water (mOR: 9.4; 95% CI: 2.0, 43.7), and crab (mOR: 3.3; 95% CI: 1.03, 10.6) were significant risk factors for cholera infection. Of 30 stool specimens, 13 (43%) showed PCR evidence of toxigenic Vibrio cholerae O1. Six specimens yielded isolates of V. cholerae O1, El Tor; PFGE identified a pattern previously observed in seven countries. We recommended ensuring the quality of improved water sources, promoting household chlorination, and educating street vendors on water handling practices.
Scalding in Turkish children: comparison of burns caused by hot water and hot milk.
Tarim, Akin; Nursal, Tarik Zafer; Basaran, Ozgür; Yildirim, Sedat; Türk, Emin; Moray, Gökhan; Haberal, Mehmet
2006-06-01
Our aim in this study was to compare the clinical differences and etiologic risk factors for hot water and hot milk scald burns in Turkish children. The retrospective study examined the cases of 140 children aged 0.1-7 years who had scald burns treated in three burn units of a Turkish hospital network between March 2000 and December 2004. The patients were categorized in two groups: hot water burns or hot milk burns. Ninety-five (67.9%) patients had hot water burns and 45 (47.1%) had hot milk burns. The proportion of patients with hot milk burns who lived in rural areas was significantly higher than the corresponding proportion for the hot water cases (75.6% versus 52.6%, respectively; p<0.01). In 20 (44%) of the hot milk cases, the burn was caused by milk being boiled in large pots outdoors for cheese production. The other 25 hot milk cases were caused by milk being boiled in the kitchen. The mean (+/-S.D.) percentage total body surface area burned in the hot milk cases was higher than that in the hot water cases (33.6+/-2.24% versus 21.42+/-1.43%, respectively; p<0.001), and the corresponding mean percentages of TBSA with full-thickness burns were 9.2+/-2.52% versus 3.13+/-0.83%, respectively; (p=0.083). The mean percentages of TBSA with second-degree burns showed the same trend (29.0+/-12.39% versus 18.8+/-1.47%, respectively; p<0.001) higher percentage of the children with hot milk burns required antibiotics (78% versus 52.8%, respectively; p<0.006). Seven (7.4%) of the hot water burn patients and 15 (33.3%) of the hot milk burn patients died during the study period (p=0.025; overall mortality rate 15.7%). Children scalded with hot milk tend to have more extensive burns, and thus have higher mortality, than those scalded with hot water. To create effective programs for preventing scald injuries in Turkey and elsewhere, it is essential to consider ethnic and cultural issues based on these characteristics. Simple precautions should be explained and methods of using liquids such as hot milk should be researched in different geographic locations in order to formulate good prevention strategies.
Urban food-energy-water nexus: a case study of Beijing
NASA Astrophysics Data System (ADS)
Wu, Z.; Shao, L.
2017-12-01
The interactions between the food, energy and water sectors are of great importance to urban sustainable development. This work presents a framework to analyze food-energy-water (FEW) nexus of a city. The method of multi-scale input-output analysis is applied to calculate consumption-based energy and water use that is driven by urban final demand. It is also capable of accounting virtual energy and water flows that is embodied in trade. Some performance indicators are accordingly devised for a comprehensive understanding of the urban FEW nexus. A case study is carried out for the Beijing city. The embodied energy and water use of foods, embodied water of energy industry and embodied energy of water industry are analyzed. As a key node of economic network, Beijing exchanges a lot of materials and products with external economic systems, especially other Chinese provinces, which involves massive embodied energy and water flows. As a result, Beijing relies heavily on outsourcing energy and water to meet local people's consumption. It is revealed that besides the apparent supply-demand linkages, the underlying interconnections among food, water and energy sectors are critical to create sustainable urban areas.
Coastal groundwater/surface-water interactions: a Great Lakes case study
Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.
2006-01-01
Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.
Water Use for Unconventional Energy Development: How Much, What Kind, and to What Reaction?
NASA Astrophysics Data System (ADS)
Grubert, E.
2017-12-01
Water resources—access to water, protection of water, and allocation of water in particular—are a major priority for Americans, but water use for the energy sector has not previously been well characterized. Water use and management associated with unconventional energy development is of special interest, in part because it is often new to the locations and contexts where it occurs. This presentation focuses on three major questions about water use for unconventional energy development, drawing on both engineering and anthropological research. First, using results from a recent study of water use for energy in the entire United States, how much water does the US use for unconventional energy resources, and how does that compare with water use for more mature fuel cycles? Second, based on that same study, what kind of water is used for these unconventional energy resource fuel cycles? Specifically, where does the water come from, and what is its quality? Finally, drawing on recent case studies in the US and elsewhere, what has the reaction been to these water uses, and why does that matter? Case studies focused on oil and natural gas resources illustrate societal reactions to issues of both water management, particularly related to induced seismicity associated with produced water injection, and water allocation, particularly related to hydraulic fracturing. Overall, recent work finds that public concern about water used for unconventional energy resources is often better explained by observed or anticipated local impacts and the uncertainty surrounding these impacts than by specifics about quantities, allocation, and management techniques. This work provides both quantitative and qualitative characterization of water management and allocation for unconventional energy development.
A system dynamics model of human-water interaction in anthropogenic droughts
NASA Astrophysics Data System (ADS)
Blair, Peter; Buytaert, Wouter
2016-04-01
Modelling is set to be a key part of socio-hydrology's quest to understand the dynamics and long-term consequences of human-water interactions. As a subject in its infancy, still learning the questions to ask, conceptual models are of particular use in trying to understand the general nature of human-water systems. The conceptual model of Di Baldassarre et al. (2013), which investigates human-flood interactions, has been widely discussed, prompting great steps forward in understanding and coverage of socio-hydrology. The development of further conceptual models could generate further discussion and understanding. Flooding is one archetypal example of a system of human-water interaction; another is the case of water stress and drought. There has been a call to recognise and understand anthropogenic drought (Aghakouchak et al. 2015), and so this study investigates the nature of the socio-hydrological dynamics involved in these situations. Here we present a system dynamics model to simulate human-water interactions in the context of water-stressed areas, where drought is induced via a combination of lower than usual water availability and relatively high water use. It is designed based on an analysis of several case-studies where recent droughts have occurred, or where the prospect of drought looms. The locations investigated are Spain, Southeast Brazil, Northeast China and California. The numerical system dynamics model is based on causal loop, and stocks and flows diagrams, which are in turn developed from the qualitative analysis of the different cases studied. The study uses a comparative approach, which has the advantage of eliciting general system characteristics from the similarities between cases, while using the differences to determine the important factors which lead to different system behaviours. References: Aghakouchak, A., Feldman, D., Hoerling, M., Huxman, T., Lund, J., 2015. Recognize anthropogenic drought. Nature, 524, pp.409-411. Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., Blöschl, G., 2013. Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 17(8), pp.3295-3303. Available at: http://www.hydrol-earth-syst-sci.net/17/3295/2013/ [Accessed August 8, 2014].
HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)
Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...
Hydrogeologic Case Studies (Seattle, WA)
Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...
HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)
Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...
MULTIPLE CONTAMINANTS CASE STUDIES
The presentation provides information taken from the arsenic demonstration program projects that have treatment systems removing multiply contaminants from drinking water. The case studies sited in the presentation consist of projects that have arsenic along with either nitrate, ...
NASA Astrophysics Data System (ADS)
Jackson, Sue; Pollino, Carmel; Maclean, Kirsten; Bark, Rosalind; Moggridge, Bradley
2015-03-01
The multi-dimensional relationships that Indigenous peoples have with water are only recently gaining recognition in water policy and management activities. Although Australian water policy stipulates that the native title interests of Indigenous peoples and their social, cultural and spiritual objectives be included in water plans, improved rates of Indigenous access to water have been slow to eventuate, particularly in those regions where the water resource is fully developed or allocated. Experimentation in techniques and approaches to both identify and determine Indigenous water requirements will be needed if environmental assessment processes and water sharing plans are to explicitly account for Indigenous water values. Drawing on two multidisciplinary case studies conducted in Australia's Murray-Darling Basin, we engage Indigenous communities to (i) understand their values and explore the application of methods to derive water requirements to meet those values; (ii) assess the impact of alternative water planning scenarios designed to address over-allocation to irrigation; and (iii) define additional volumes of water and potential works needed to meet identified Indigenous requirements. We provide a framework where Indigenous values can be identified and certain water needs quantified and advance a methodology to integrate Indigenous social, cultural and environmental objectives into environmental flow assessments.
Impact of Drinking Water Fluoride on Human Thyroid Hormones: A Case- Control Study.
Kheradpisheh, Zohreh; Mirzaei, Masoud; Mahvi, Amir Hossein; Mokhtari, Mehdi; Azizi, Reyhane; Fallahzadeh, Hossein; Ehrampoush, Mohammad Hassan
2018-02-08
The elevated fluoride from drinking water impacts on T 3 , T 4 and TSH hormones. The aim was study impacts of drinking water fluoride on T 3 , T 4 and TSH hormones inYGA (Yazd Greater Area). In this case- control study 198 cases and 213 controls were selected. Fluoride was determined by the SPADNS Colorimetric Method. T 3 , T 4 and TSH hormones tested in the Yazd central laboratory by RIA (Radio Immuno Assay) method. The average amount of TSH and T 3 hormones based on the levels of fluoride in two concentration levels 0-0.29 and 0.3-0.5 (mg/L) was statistically significant (P = 0.001 for controls and P = 0.001 for cases). In multivariate regression logistic analysis, independent variable associated with Hypothyroidism were: gender (odds ratio: 2.5, CI 95%: 1.6-3.9), family history of thyroid disease (odds ratio: 2.7, CI 95%: 1.6-4.6), exercise (odds ratio: 5.34, CI 95%: 3.2-9), Diabetes (odds ratio: 3.7, CI 95%: 1.7-8), Hypertension (odds ratio: 3.2, CI 95%: 1.3-8.2), water consumption (odds ratio: 4, CI 95%: 1.2-14). It was found that fluoride has impacts on TSH, T 3 hormones even in the standard concentration of less than 0.5 mg/L. Application of standard household water purification devices was recommended for hypothyroidism.
Betanzo, Elin A.; Hagen, Erik R.; Wilson, John T.; Reckhow, Kenneth H.; Hayes, Laura; Argue, Denise M.; Cangelosi, Allegra A.
2016-01-01
Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, new technologies for oil and gas development or alternative energy sources may present new risks for water resources both above and below ground. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers and whether those data are currently available. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Susquehanna River Basin, a data-rich area expected to be a best-case scenario in terms of water data availability.
NASA Astrophysics Data System (ADS)
Liu, Xiaofei; Zhang, Qiuwen
2016-11-01
Studies have considered the many factors involved in the mechanism of reservoir seismicity. Focusing on the correlation between reservoir-induced seismicity and the water level, this study proposes to utilize copula theory to build a correlation model to analyze their relationships and perform the risk analysis. The sequences of reservoir induced seismicity events from 2003 to 2011 in the Three Gorges reservoir in China are used as a case study to test this new methodology. Next, we construct four correlation models based on the Gumbel, Clayton, Frank copula and M-copula functions and employ four methods to test the goodness of fit: Q-Q plots, the Kolmogorov-Smirnov (K-S) test, the minimum distance (MD) test and the Akaike Information Criterion (AIC) test. Through a comparison of the four models, the M-copula model fits the sample better than the other three models. Based on the M-copula model, we find that, for the case of a sudden drawdown of the water level, the possibility of seismic frequency decreasing obviously increases, whereas for the case of a sudden rising of the water level, the possibility of seismic frequency increasing obviously increases, with the former being greater than the latter. The seismic frequency is mainly distributed in the low-frequency region (Y ⩽ 20) for the low water level and in the middle-frequency region (20 < Y ≤ 80) for both the medium and high water levels; the seismic frequency in the high-frequency region (Y > 80) is the least likely. For the conditional return period, it can be seen that the period of the high-frequency seismicity is much longer than those of the normal and medium frequency seismicity, and the high water level shortens the periods.
NASA Astrophysics Data System (ADS)
La Jeunesse, Isabelle; Fustec, Klervi; Larrue, Corinne; Trottier, Julie
2010-05-01
We propose to address the question of security threats through an analysis of water uses and competitions in the current situation, on one hand, and in conditions of climate change, on the other hand, in order to have an operational dissemination of hydrological modelling results. This will be carried out for each case study of the EU project CLIMB (7th EU FP). In this particular case, climate change impacts are to be considered in relation with water uses and rivalries. Taking them into account while involving stakeholders should allow us to have a deep impact on water uses regulation under conditions of climate change. The originality of this methodology, the first objective of which within the project is to disseminate project results and interact with stakeholders, is to use the dissemination phase as a means of involving stakeholder knowledge concerning water uses and competitions. The idea is to let the stakeholders identify themselves, in each case study, by means of interactive methods, the impact of the change of hydrological regime on their own water uses and competitions. We propose to use a real "bottom-up" strategy to assess the potential water uses and rivalries in the context of water scarcity (or flood) due to climate change. Such an approach will allow us to evaluate the risk of an increase in water rivalries and threats to security following climate change impacts scenarios at the river basin scale.
Monteverde, Malena; Cipponeri, Marcos; Angelaccio, Carlos; Gianuzzi, Leda
2013-04-01
The aim of this study is to analyze the origin and quality of water used for consumption in a sample of households in Matanza-Riachuelo river basin area in Greater Buenos Aires, Argentina. The results of drinking water by source indicated that 9% of water samples from the public water system, 45% of bottled water samples and 80% of well water samples were not safe for drinking due to excess content of coliforms, Escherichia coli or nitrates. Individuals living in households where well water is the main source of drinking water have a 55% higher chance of suffering a water-borne disease; in the cases of diarrheas, the probability is 87% higher and in the case of dermatitis, 160% higher. The water for human consumption in this region should be provided by centralized sources that assure control over the quality of the water.
Page, Declan; Dillon, Peter; Toze, Simon; Bixio, Davide; Genthe, Bettina; Jiménez Cisneros, Blanca Elena; Wintgens, Thomas
2010-03-01
A quantitative microbial risk assessment (QMRA) was performed at four managed aquifer recharge (MAR) sites (Australia, South Africa, Belgium, Mexico) where reclaimed wastewater and stormwater is recycled via aquifers for drinking water supplies, using the same risk-based approach that is used for public water supplies. For each of the sites, the aquifer treatment barrier was assessed for its log(10) removal capacity much like for other water treatment technologies. This information was then integrated into a broader risk assessment to determine the human health burden from the four MAR sites. For the Australian and South African cases, managing the aquifer treatment barrier was found to be critical for the schemes to have low risk. For the Belgian case study, the large treatment trains both in terms of pre- and post-aquifer recharge ensures that the risk is always low. In the Mexico case study, the risk was high due to the lack of pre-treatment and the low residence times of the recharge water in the aquifer. A further sensitivity analysis demonstrated that human health risk can be managed if aquifers are integrated into a treatment train to attenuate pathogens. However, reduction in human health disease burden (as measured in disability adjusted life years, DALYs) varied depending upon the number of pathogens in the recharge source water. The beta-Poisson dose response curve used for translating rotavirus and Cryptosporidium numbers into DALYs coupled with their slow environmental decay rates means poor quality injectant leads to aquifers having reduced value to reduce DALYs. For these systems, like the Mexican case study, longer residence times are required to meet their DALYs guideline for drinking water. Nevertheless the results showed that the risks from pathogens can still be reduced and recharging via an aquifer is safer than discharging directly into surface water bodies. Copyright 2009 Elsevier Ltd. All rights reserved.
Nonpoint source pollution is the leading cause of impairment to our nations water resources. Both drinking and wastewater utilities are challenged to comply with existing and proposed federal Safe Drinking Water Act (SDWA) and Clean Water Act (CWA) regulations. Federal and state ...
A Water Chemistry Perspective on Flowback Reuse with Several Case Studies, March 30, 2011
This presentation discusses the reuse of frac flowback from a water chemistry perspective. Two examples of flowback reuse, where a minimal water treatment has been used, describe the rationale for why the practice is considered acceptable.
HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)
Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...
NASA Astrophysics Data System (ADS)
Angulo, Ana; Atwi, Majed; Barberán, Ramón; Mur, Jesús
2014-08-01
Despite the growing economic importance of tourism, and its impact on relative water shortage, little is known about the role that water plays in the productive process of hotels and restaurants and, therefore, the possible implications of water demand management policy for this sector. This study aims to fill this gap. It is based on the microdata of 676 firms in the sector, operating in the city of Zaragoza (Spain) for a 12 year period. Based on the Translog cost function, we estimate the shadow price of water in the short run and, from a long-run perspective, its direct price elasticity, its cross elasticities relative to labor, capital, and supplies, and its elasticity with respect to the level of output. The results obtained show that water provides sector firms returns that are on average higher than its price, although in the case of hotels the margin is really narrow. This situation provides policy makers with a margin for applying price increases without affecting the sector's viability, with some caution in the case of hotels. Water demand elasticity equals -0.38 in the case of hotels, but it is not significant in the case of restaurants and bar-cafes; hence, only in hotels is there potential for influencing water use patterns, encouraging the resource's conservation through pricing policy. Moreover, capital is a substitutive factor of water, and the elasticity of water with respect to output is 0.40, all of which should also be considered by policy makers in water resource management.
NASA Astrophysics Data System (ADS)
Touahir, S.; Khenter, K.; Remini, B.; Saad, H.
2017-08-01
Isser River is one of North Algeria’s major resources. It is vulnerable to water soil erosion because of favourable conjunctions of different geomorphological, hydro-climatic and lithologic factors. This case study has been carried out on the Beni Amrane dam Catchment, which is located in the bottom of Isser River, in North Algeria. The study involves a mapping of main factors of water erosion: rainfall erosivity, soil erodibility, slope and land use. Essentially a data mapping specification analysis shows, on each factor, how to identify the areas that are prone to water erosion. 04 classes of multifactorial vulnerability to water erosion have been identified: areas with low vulnerability (10 per cent); area with middle vulnerability (49 per cent); areas with high and very high vulnerability (38 per cent and 3 per cent). This could be a first guidance document for a rational use of land in the region and better secure the Beni Amrane dam against reservoir siltation.
Shock wave attenuation by water droplets
NASA Astrophysics Data System (ADS)
Eliasson, Veronica; Wan, Qian; Deiterding, Ralf
2017-11-01
The ongoing research on shock wave attenuation is fueled by the desire to predict and avoid damage caused by shock and blast waves. For example, during an explosion in an underground mine or subway tunnel, the shock front is forced to propagate in the direction of the channel. In this work, numerical simulations using water droplets in a 2D channel are conducted to study shock wave attenuation. Four different droplet configurations (1x1, 2x2, 3x3, and 4x4) are considered, where the total volume of water is kept constant throughout all the cases. Meanwhile, the incident shock Mach number was varied from 1.1 to 1.4 with increments of 0.1. The physical motion of the water droplets, such as the center-of-mass drift and velocity, and the energy exchange between air and water are quantitatively studied. Results for center-of-mass velocity, maximum peak pressure and impulse will be presented for all different cases that were studied. NSF CBET-1437412.
The Wealth of Water: The Value of an Essential Resource
ERIC Educational Resources Information Center
Rathburn, Melanie K.; Baum, Karina J.
2011-01-01
Many students take water availability for granted and yet, by 2025, two-thirds of the world will not have access to clean drinking water. This case study is designed to encourage students to think about water as a limited natural resource and is used to highlight how the exploitation of water can have far-reaching social, political, and economic…
Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill
Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping
2016-01-01
In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627
Rodriguez-Alvarez, María S; Moraña, Liliana B; Salusso, María M; Gil, José; Seghezzo, Lucas
2018-03-20
In this study, we analyzed the reports of the health care center located in Vaqueros (Salta, Argentina) over an 8-month period. Moreover, we determined the concentration of Escherichia coli and Giardia spp. cysts in samples from four different drinking water sources. A statistical relationship between water quality and cases of diarrhea could not be found. However, using an odds ratio calculation, it was possible to determine that one of the studied drinking water systems acts as a protection factor in cases of diarrhea. The present work provides useful information for planning preventive measures by the local health system. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Arsenic Removal from Drinking Water - Web cast
Web cast presentation covered six topics: (1) Arsenic Chemistry, (2) Technology Selection/Arsenic Demonstration Program, (3) Case Study 1, (4) Caser Study 2, (5) Case Study 3, and (6) Media Regeneration Project. The presentation was considered a training session and consist of m...
Arsenic Removal from Drinking Water - Web Cast Presentation
Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Caser Study 2, 5), Case Study 3, and 6), Media Regeneration Project. The presentation was considered a training session and consist of m...
Numerical and Experimental Case Study of Blasting Works Effect
NASA Astrophysics Data System (ADS)
Papán, Daniel; Valašková, Veronika; Drusa, Marian
2016-10-01
This article introduces the theoretical and experimental case study of dynamic monitoring of the geological environment above constructed highway tunnel. The monitored structure is in this case a very important water supply pipeline, which crosses the tunnel and was made from steel tubes with a diameter of 800 mm. The basic dynamic parameters had been monitored during blasting works, and were compared with the FEM (Finite Element Method) calculations and checked by the Slovak standard limits. A calibrated FEM model based on the experimental measurement data results was created and used in order to receive more realistic results in further predictions, time and space extrapolations. This case study was required and demanded by the general contractor company and also by the owner of water pipeline, and it was an answer of public safety evaluation of risks during tunnel construction.
NASA Astrophysics Data System (ADS)
Zainol, M. R. R. M. A.; Kamaruddin, M. A.; Zawawi, M. H.; Wahab, K. A.
2017-11-01
Smooth Particle Hydrodynamic is the three-dimensional (3D) model. In this research work, three cases and one validation have been simulate using DualSPHysics. Study area of this research work was at Sarawak Barrage. The cases have different water level at the downstream. This study actually to simulate riverbed erosion and scouring properties by using multi-phases cases which use sand as sediment and water. The velocity and the scouring profile have been recorded as the result and shown in the result chapter. The result of the validation is acceptable where the scouring profile and the velocity were slightly different between laboratory experiment and simulation. Hence, it can be concluded that the simulation by using SPH can be used as the alternative to simulate the real cases.
Bentanzo, Elin A.; Choquette, Anne F.; Reckhow, Kenneth H.; Hayes, Laura; Hagan, Erik R; Argue, Denise M.; Cangelosi, A.A.
2015-01-01
Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, informed conservation and use of the nation’s finite fresh water resources in the context of increasingly intensive land development is a priority for today’s policy decisionmakers. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Lake Erie drainage basin, a data-rich area expected to be a best-case scenario in terms of water data availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young Cho; Alexander Fridman
2009-04-02
The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filtermore » membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the present fouling experiments for three different cases: no treatment, PWT coil only, and PWT coil plus self-cleaning filter. Fouling resistances decreased by 59-72% for the combined case of PWT coil plus filter compared with the values for no-treatment cases. SEM photographs showed much smaller particle sizes for the combined case of PWT coil plus filter as larger particles were continuously removed from circulating water by the filter. The x-ray diffraction data showed calcite crystal structures for all three cases.« less
The impact of an inadequate municipal water system on the residents of Chinhoyi town, Zimbabwe.
Schwartz, U; Siziya, S; Tshimanga, M; Barduagni, P; Chauke, T L
1999-06-01
To assess the use and impact of the water reticulation system in Chinhoyi on its residents. Cross sectional and case series studies. Chinhoyi town. 600 Chinhoyi residents. Practices and perceptions of Chinhoyi residents on the water system, and distribution of water-related diseases per area of residence. Out of 600 respondents, 565 (99.3%) had access to piped water and 558 (98.0%) to flush toilets. Breakdowns of water supply and functioning of toilet facility were reported by 308 (77.0%) and 110 (28.0%) respondents in the previous six months, respectively. Main complaints of Chinhoyi residents were about low water quality (36.2%), inadequate sewage system (31.3%) and environmental pollution (26.5%). Cases of water-related diseases were not associated with natural water bodies. Chinhoyi residents have good access to the municipal water and an adequate sanitation system. However, low quality of the water, frequent system breakdowns and the degradation and loss of amenity of the environment impair their quality of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, Joshua B.; Ramaswami, Anu
This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less
Sperling, Joshua B.; Ramaswami, Anu
2017-11-03
This article reviews city case studies to inform a framework for developing urban infrastructure design standards and policy instruments that together aim to pursue energy efficiency and greenhouse gas mitigation through city carbon budgets and water use efficiency and climate risk adaptation through city water budgets. Here, this article also proposes combining carbon and water budgeting at the city-scale for achieving successful coupled city carbon and water budget (CCCWB) programs. Under a CCCWB program, key actors including local governments, infrastructure designers/operators, and households would be assigned a GHG emissions and water 'budget' and be required by state or federal levelsmore » to keep within this budget through the use of flexibility mechanisms, incentive programs, and sanctions. Multiple incentives and cross-scale governance arrangements would be tied to energy-water systems integration, resource-efficient transportation and infrastructure development, and effective monitoring and management of energy use, emissions, climate risks to, and security of energy-water-transport-food and other critical systems. As a first step to promote strategies for CCCWB development, we systematically review approaches of and shortcomings to existing budget-based programs in the UK and US, and suggest improvements in three areas: measurement, modeling effectiveness of interventions for staying within a budget, and governance. To date, the majority of climate action or sustainability plans by cities, while mentioning climate impacts as a premise for the plan, do not address these impacts in the plan. They focus primarily on GHG mitigation while ignoring resource depletion challenges and energy-climate-water linkages, whereby water supplies can begin to limit energy production and energy shifts to mitigate climate change can limit water availability. Coupled carbon-water budget plans, programs, and policies - described in this study- may address these concerns as well as the emerging trends that will exacerbate these problems - e.g., including population growth, climatic changes, and emerging policy choices that are not coordinated. Cities and 'Budget-Based' Management of the Energy-Water-Climate Nexus: Case Studies to Inform Strategy for Integrated Performance- and Incentive-Based Design and Policy Instruments.« less
Real-time control of combined surface water quantity and quality: polder flushing.
Xu, M; van Overloop, P J; van de Giesen, N C; Stelling, G S
2010-01-01
In open water systems, keeping both water depths and water quality at specified values is critical for maintaining a 'healthy' water system. Many systems still require manual operation, at least for water quality management. When applying real-time control, both quantity and quality standards need to be met. In this paper, an artificial polder flushing case is studied. Model Predictive Control (MPC) is developed to control the system. In addition to MPC, a 'forward estimation' procedure is used to acquire water quality predictions for the simplified model used in MPC optimization. In order to illustrate the advantages of MPC, classical control [Proportional-Integral control (PI)] has been developed for comparison in the test case. The results show that both algorithms are able to control the polder flushing process, but MPC is more efficient in functionality and control flexibility.
NASA Astrophysics Data System (ADS)
Abdelbaki, Chérifa; Benchaib, Mohamed Mouâd; Benziada, Salim; Mahmoudi, Hacène; Goosen, Mattheus
2017-06-01
For more effective management of water distribution network in an arid region, Mapinfo GIS (8.0) software was coupled with a hydraulic model (EPANET 2.0) and applied to a case study region, Chetouane, situated in the north-west of Algeria. The area is characterized not only by water scarcity but also by poor water management practices. The results showed that a combination of GIS and modeling permits network operators to better analyze malfunctions with a resulting more rapid response as well as facilitating in an improved understanding of the work performed on the network. The grouping of GIS and modeling as an operating tool allows managers to diagnosis a network, to study solutions of problems and to predict future situations. The later can assist them in making informed decisions to ensure an acceptable performance level for optimal network operation.
NASA Astrophysics Data System (ADS)
Hurford, Anthony; Harou, Julien
2014-05-01
Water related eco-system services are important to the livelihoods of the poorest sectors of society in developing countries. Degradation or loss of these services can increase the vulnerability of people decreasing their capacity to support themselves. New approaches to help guide water resources management decisions are needed which account for the non-market value of ecosystem goods and services. In case studies from Brazil and Kenya we demonstrate the capability of many objective Pareto-optimal trade-off analysis to help decision makers balance economic and non-market benefits from the management of existing multi-reservoir systems. A multi-criteria search algorithm is coupled to a water resources management simulator of each basin to generate a set of Pareto-approximate trade-offs representing the best case management decisions. In both cases, volume dependent reservoir release rules are the management decisions being optimised. In the Kenyan case we further assess the impacts of proposed irrigation investments, and how the possibility of new investments impacts the system's trade-offs. During the multi-criteria search (optimisation), performance of different sets of management decisions (policies) is assessed against case-specific objective functions representing provision of water supply and irrigation, hydropower generation and maintenance of ecosystem services. Results are visualised as trade-off surfaces to help decision makers understand the impacts of different policies on a broad range of stakeholders and to assist in decision-making. These case studies show how the approach can reveal unexpected opportunities for win-win solutions, and quantify the trade-offs between investing to increase agricultural revenue and negative impacts on protected ecosystems which support rural livelihoods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... writing concerning the energy performance or water performance (in the case of faucets, showerheads, water... standard or water performance standard (in the case of faucets, showerheads, water closets, and urinals... standard (in the case of faucets, showerheads, water closets, and urinals) shall be based on the testing...
Gastrointestinal upsets associated with ingestion of copper-contaminated water.
Knobeloch, L; Ziarnik, M; Howard, J; Theis, B; Farmer, D; Anderson, H; Proctor, M
1994-01-01
During 1992 and 1993 the Wisconsin Division of Health investigated five cases in which copper-contaminated drinking water was suspected of causing gastrointestinal upsets. Each of these case studies was conducted after our office was notified of high copper levels in drinking water or notified of unexplained illnesses. Our findings suggest that drinking water that contains copper at levels above the federal action limit of 1.3 mg/l may be a relatively common cause of diarrhea, abdominal cramps, and nausea. These symptoms occurred most frequently in infants and young children and among resident of newly constructed or renovated homes. Images p958-a PMID:9738210
Ferreccio, Catterina; Smith, Allan H; Durán, Viviana; Barlaro, Teresa; Benítez, Hugo; Valdés, Rodrigo; Aguirre, Juan José; Moore, Lee E; Acevedo, Johanna; Vásquez, María Isabel; Pérez, Liliana; Yuan, Yan; Liaw, Jane; Cantor, Kenneth P; Steinmaus, Craig
2013-09-01
Millions of people worldwide are exposed to arsenic in drinking water. The International Agency for Research on Cancer has concluded that ingested arsenic causes lung, bladder, and skin cancer. However, a similar conclusion was not made for kidney cancer because of a lack of research with individual data on exposure and dose-response. With its unusual geology, high exposures, and good information on past arsenic water concentrations, northern Chile is one of the best places in the world to investigate the carcinogenicity of arsenic. We performed a case-control study in 2007-2010 of 122 kidney cancer cases and 640 population-based controls with individual data on exposure and potential confounders. Cases included 76 renal cell, 24 transitional cell renal pelvis and ureter, and 22 other kidney cancers. For renal pelvis and ureter cancers, the adjusted odds ratios by average arsenic intakes of <400, 400-1,000, and >1,000 µg/day (median water concentrations of 60, 300, and 860 µg/L) were 1.00, 5.71 (95% confidence interval: 1.65, 19.82), and 11.09 (95% confidence interval: 3.60, 34.16) (Ptrend < 0.001), respectively. Odds ratios were not elevated for renal cell cancer. With these new findings, including evidence of dose-response, we believe there is now sufficient evidence in humans that drinking-water arsenic causes renal pelvis and ureter cancer.
Risk factors for the transmission of diarrhoea in children: a case-control study in rural Malaysia.
Knight, S M; Toodayan, W; Caique, W C; Kyi, W; Barnes, A; Desmarchelier, P
1992-08-01
In response to a recorded increasing incidence of diarrhoea in Tumpat District, Malaysia, a case-control study was performed to identify modifiable risk factors for the transmission of diarrhoea, in children aged 4-59 months. Ninety-eight pairs of children, matched on age and sex, were recruited prospectively from health centres. Exposure status was determined during a home visit. Interviewers were 'blinded' as to the disease status of each child. Odds ratios were measured through matched pair analysis and conditional logistic regression. Risk factors for diarrhoea identified were: reported--drinking of unboiled water, storage of cooked food before consumption and bottle feeding; and observations--animals inside the house and absence of washing water in latrines. Water quality, source of drinking water, reported hand washing behaviour, indiscriminate defecation by children, cup use and the absence of a functional latrine were not associated with diarrhoea. Nonsignificant associations were found for: accessibility of washing water source, type of water storage container and use of fly covers for food.
Environmental health aspects of drinking water-borne outbreak due to karst flooding: case study.
Dura, Gyula; Pándics, Tamás; Kádár, Mihály; Krisztalovics, Katalin; Kiss, Zoltánné; Bodnár, Judit; Asztalos, Agnes; Papp, Erzsébet
2010-09-01
Climate change may increase the incidence of waterborne diseases due to extreme rainfall events, and consequent microbiological contamination of the water source and supply. As a result of the complexity of the pathways from the surface to the consumer, it is difficult to detect an association between rainfall and human disease. The water supply of a Hungarian city, Miskolc (174,000 inhabitant), is mainly based on karstic water, a vulnerable underground water body. A large amount of precipitation fell on the catchment area of the karstic water source, causing an unusually strong karstic water flow and flooding, and subsequent microbiological contamination. The presence of several potential sources of contamination in the protective zone of the karstic water source should be emphasized. The water supplier was unprepared to treat the risk of waterborne outbreak caused by an extreme weather event. Public health intervention and hygienic measures were taken in line with epidemiological actions, focusing on the protection of consumers by providing safe drinking water. The contamination was identified, and measures were taken for risk reduction and prevention. This case study underlines the increasing importance of preparedness for extreme water events in order to protect the karstic water sources and to avoid waterborne outbreaks.
NASA Astrophysics Data System (ADS)
Manase, G.; Nkuna, Z.; Ngorima, E.
South Africa is faced by a number of challenges that include low water and sanitation coverage in rural and peri-urban areas, high unemployment and increasing inequality between the rich and the poor as indicated by a Gini coefficient of 0.77; the second highest inequality in the world after Brazil. The situation is compounded by high HIV prevalence with South Africa having the largest HIV infection in the world. This case study demonstrates how water and sanitation is used as an entry point to address these major challenges and to empower communities. The project has two main components: the Small Medium Enterprise (SME) that trades in water and sanitation facilities and a community garden that ensures food security and nutrition for people living with HIV/AIDS. Income generated through these activities is ploughed back into the community through construction of sanitation facilities, maintenance of water pipes and paying school fees for orphans. In addition to creating employment, the project has also empowered the community to mobilise and address other challenges such as gender, child abuse and crime. The case study identifies weaknesses with projects designed solely to provide domestic drinking water and sanitation and calls for an integrated approach that uses water and sanitation as an entry point to unlock opportunities and empower the targeted communities.
Zhou, Shenbei; Du, Amin; Bai, Minghao
2015-01-01
The equitable allocation of water governance responsibilities is very important yet difficult to achieve, particularly for a basin which involves many stakeholders and policymakers. In this study, the environmental Gini coefficient model was applied to evaluate the inequality of water governance responsibility allocation, and an environmental Gini coefficient optimisation model was built to achieve an optimal adjustment. To illustrate the application of the environmental Gini coefficient, the heavily polluted transboundary Taihu Lake Basin in China, was chosen as a case study. The results show that the original environmental Gini coefficient of the chemical oxygen demand (COD) was greater than 0.2, indicating that the allocation of water governance responsibilities in Taihu Lake Basin was unequal. Of seven decision-making units, three were found to be inequality factors and were adjusted to reduce the water pollutant emissions and to increase the water governance inputs. After the adjustment, the environmental Gini coefficient of the COD was less than 0.2 and the reduction rate was 27.63%. The adjustment process provides clear guidance for policymakers to develop appropriate policies and improve the equality of water governance responsibility allocation.
Detailed validation of the bidirectional effect in various Case I and Case II waters.
Gleason, Arthur C R; Voss, Kenneth J; Gordon, Howard R; Twardowski, Michael; Sullivan, James; Trees, Charles; Weidemann, Alan; Berthon, Jean-François; Clark, Dennis; Lee, Zhong-Ping
2012-03-26
Simulated bidirectional reflectance distribution functions (BRDF) were compared with measurements made just beneath the water's surface. In Case I water, the set of simulations that varied the particle scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models. In Case II water, however, the simulations using fixed phase functions agreed well with the data and were nearly indistinguishable from each other, on average. The results suggest that BRDF corrections in Case II water are feasible using single, average, particle scattering phase functions, but that the existing approach using variable particle scattering phase functions is still warranted in Case I water.
2011-01-01
Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110
VanDerslice, James
2011-12-01
Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight.
A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks
NASA Astrophysics Data System (ADS)
De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio
2016-05-01
This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.
Potentials and problems of sustainable irrigation with water high in salts
NASA Astrophysics Data System (ADS)
Ben-Gal, Alon
2015-04-01
Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current trends and technologies allowing economically feasible desalination at large scales present a sustainable alternative where salts are removed from water prior to irrigation.
NASA Astrophysics Data System (ADS)
Shangguan, Donghui; Ding, Yongjian; Liu, Shiyin; Xie, Zunyi; Pieczonka, Tino; Xu, Junli; Moldobekov, Bolot
2017-10-01
Glacial meltwater and ice calving contribute to the flood volume of glacial lakes such as Lake Merzbacher in the Tian Shan Mountains of central Asia. In this study, we simulated the lake's volume by constructing an empirical relationship between the area of Lake Merzbacher, determined from satellite images, and the lake's water storage, derived from digital elevation models. Results showed that the lake water supply rate before Glacial Lake Outburst Floods (GLOFs) generally agreed well with those during the GLOFs from 2009 to 2012 but not in 2008 and 2015. Furthermore, we found that the combination of glacial meltwater and ice calving is not enough to fully explain the supply rate during GLOFs in 1996 and 1999, suggesting other factors affect the supply rate during GLOFs as well. To examine this further, we compared the water supply rate before and during GLOF events in 1999 and 2008. We inferred that quickly released short-term and intermediate-term water storage by glaciers have likely contributed to both flood events in those years. This study highlights the need to improve our understanding of the supply component of outburst floods, such as irregularly released stored water may lead to GLOF events with generally three different types: case I (singular event-triggered englacial water release), case II (glacier melt due to temperature changes), and case III (englacial water release mixed with glacier melt).
Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Hoeschele, E. Weitzel, C. Backman
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements.« less
Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho
NASA Astrophysics Data System (ADS)
Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.
2014-12-01
We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.
This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaggs, Richard; Hibbard, Kathleen A.; Frumhoff, Peter
2012-03-01
This report provides a framework to characterize and understand the important elements of climate and energy-water-land (EWL) system interactions. It identifies many of the important issues, discusses our understanding of those issues, and presents a long-term research program research needs to address the priority scientific challenges and gaps in our understanding. Much of the discussion is organized around two discrete case studies with the broad themes of (1) extreme events and (2) regional intercomparisons. These case studies help demonstrate unique ways in which energy-water-land interactions can occur and be influenced by climate.
Lu Hao; Ge Sun; Yongqiang Liu; Hong Qian
2015-01-01
Water resource management is becoming increasingly challenging in northern China because of the rapid increase in water demand and decline in water supply due to climate change. We provide a case study demonstrating the importance of integrated watershed management in sustaining water resources in Chifeng City, northern China. We examine the consequences of various...
Chang, Chih-Ching; Chen, Chih-Cheng; Wu, Deng-Chuang; Yang, Chun-Yuh
2010-01-01
The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and increased risk of death from rectal cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on development of rectal cancer. A matched case-control study was used to investigate the relationship between the risk of death from rectal cancer and exposure to nitrate in drinking water in Taiwan. All rectal cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water was collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure level was <0.38 ppm, the adjusted odds ratio (OR) (95% CI) for rectal cancer occurrence was 1.15 (1.01-1.32) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure > or =0.38 ppm. There was no apparent evidence of an interaction between drinking water NO(3)-N levels with low Mg intake via drinking water. However, evidence of a significant interaction was noted between drinking-water NO(3)-N concentrations and Ca intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of rectal cancer development was influenced by Ca in drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of rectal cancer occurrence. Increased knowledge of the mechanistic interaction between Ca and NO(3)-N in reducing rectal cancer risk will aid in public policymaking and setting threshold standards.
Water environmental management with the aid of remote sensing and GIS technology
NASA Astrophysics Data System (ADS)
Chen, Xiaoling; Yuan, Zhongzhi; Li, Yok-Sheung; Song, Hong; Hou, Yingzi; Xu, Zhanhua; Liu, Honghua; Wai, Onyx W.
2005-01-01
Water environment is associated with many disciplinary fields including sciences and management which makes it difficult to study. Timely observation, data getting and analysis on water environment are very important for decision makers who play an important role to maintain the sustainable development. This study focused on developing a plateform of water environment management based on remote sensing and GIS technology, and its main target is to provide with necessary information on water environment through spatial analysis and visual display in a suitable way. The work especially focused on three points, and the first one is related to technical issues of spatial data organization and communication with a combination of GIS and statistical software. A data-related model was proposed to solve the data communication between the mentioned systems. The second one is spatio-temporal analysis based on remote sensing and GIS. Water quality parameters of suspended sediment concentration and BOD5 were specially analyzed in this case, and the results suggested an obvious influence of land source pollution quantitatively in a spatial domain. The third one is 3D visualization of surface feature based on RS and GIS technology. The Pearl River estuary and HongKong's coastal waters in the South China Sea were taken as a case in this study. The software ARCGIS was taken as a basic platform to develop a water environmental management system. The sampling data of water quality in 76 monitoring stations of coastal water bodies and remote sensed images were selected in this study.
Daily intake of magnesium and calcium from drinking water in relation to myocardial infarction.
Rosenlund, Mats; Berglind, Niklas; Hallqvist, Johan; Bellander, Tom; Bluhm, Gösta
2005-07-01
A decreased risk for cardiovascular disease has been related to the hardness of drinking water, particularly high levels of magnesium. However, the evidence is still uncertain, especially in relation to individual intake from water. We used data from the Stockholm Heart Epidemiology Program, a population-based case-control study conducted during 1992-1994, to study the association between myocardial infarction and the daily intake of drinking water magnesium and calcium. Our analyses are based on 497 cases age 45-70 years, and 677 controls matched on age, sex, and hospital catchment area. Individual data on magnesium, calcium, and hardness of the domestic drinking water were assessed from waterwork registers or analyses of well water. After adjustment for the matching variables and smoking, hypertension, socioeconomic status, job strain, body mass index, diabetes, and physical inactivity, the odds ratio for myocardial infarction was 1.09 (95% confidence interval = 0.81-1.46) associated with a tap water hardness above the median (>4.4 German hardness degrees) and 0.88 (0.67-1.15) associated with a water magnesium intake above the median (>1.86 mg/d). There was no apparent sign of any exposure-response pattern related to water intake of magnesium or calcium. This study does not support previous reports of a protective effect on myocardial infarction associated with consumption of drinking water with higher levels of hardness, magnesium, or calcium.
Holistic Analysis of the Urban Water Systems in Greater Cincinnati Region
Urban water and wastewater systems with two utilities in Greater Cincinnati region were evaluated as a case study to elucidates a bigger picture of a typical centralized urban water system. Two different integrated assessment metrics were used to analyze the same system. LCA an...
COPPER PITTING CORROSION AND PINHOLE LEAKS: A CASE STUDY
Localized corrosion, or "pitting", of copper drinking water pipe continues is a problem for many water utilities and their customers. Extreme attack leads to pinhole leaks that can potentially lead to water damage, mold growth, and costly repairs for the homeowners, as well as th...
This webinar presentation will highlight research case studies on innovative drinking water treatment alternatives for small community water systems. Emphasis will be placed on media and membrane filtration technologies capable of meeting the requirements of the Long-Term 2 Enha...
Chiu, Hui-Fen; Kuo, Chao-Hung; Tsai, Shang-Shyue; Chen, Chih-Cheng; Wu, Deng-Chuang; Wu, Trong-Neng; Yang, Chun-Yuh
2012-01-01
The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from gastric cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on the risk of gastric cancer development. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to gastric cancer and exposure to nitrate in drinking water in Taiwan. All deaths due to gastric cancer in Taiwan residents from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Deaths from other causes served as controls and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure levels were <0.38 ppm, the adjusted odds ratio (OR) and 95% confidence interval (CI) for gastric cancer occurrence was 1.16 (1.05-1.29) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure ≥ 0.38 ppm. There was apparent evidence of an interaction between drinking water NO(3)-N levels and low Ca and Mg intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of gastric cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effects modification by Ca and Mg intake from drinking water on the relationship between NO(3)-N exposure and risk of gastric cancer occurrence. Increased knowledge of the mechanistic interactions between Ca, Mg, and NO(3)-N in reducing risk of gastric cancer development will aid in public policy decisions and setting threshold standards.
NASA Astrophysics Data System (ADS)
Pahlevan, Nima
Monitoring coastal or inland waters, recognized as case II waters, using the existing Landsat technology is somewhat restricted because of its low Signal-to-Noise ratio (SNR) as well as its relatively poor radiometric resolution. As a primary task, we introduce a novel technique, which integrates the Landsat-7 data as a surrogate for LDCM with a 3D hydrodynamic model to monitor the dynamics of coastal waters near river discharges as well as in a small lake environment. The proposed approach leverages both the thermal and the reflective Landsat-7 imagery to calibrate the model and to retrieve the concentrations of optically active components of the water. To do so, the model is first calibrated by optimizing its thermal outputs with the surface temperature maps derived from the Landsat-7 data. The constituent retrieval is conducted in the second phase where multiple simulated concentration maps are provided to an in-water radiative transfer code (Hydrolight) to generate modeled surface reflectance maps. Prior to any remote sensing task, one has to ensure that a dataset comes from a well-calibrated imaging system. Although the calibration status of Landsat-7 has been regularly monitored over multiple desert sites, it was desired to evaluate its performance over dark waters relative to a well-calibrated instrument designed specifically for water studies. In the light of this, several Landsat- 7 images were cross-calibrated against the Terra-MODIS data over deep, dark waters whose optical properties remain relatively stable. This study is intended to lay the groundwork and provide a reference point for similar studies planned for the new Landsat. In an independent case study, the potential of the new Landsat sensor was examined using an EO-1 dataset and applying a spectral optimization approach over case II waters. The water constituent maps generated from the EO-1 imagery were compared against those derived from Landsat-7 to fully analyze the improvement levels pertaining to the new Landsat's enhanced features in a water constituent retrieval framework.
An axisymmetric non-hydrostatic model for double-diffusive water systems
NASA Astrophysics Data System (ADS)
Hilgersom, Koen; Zijlema, Marcel; van de Giesen, Nick
2018-02-01
The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.
Using stable isotopes to examine watershed connectivity to ...
Water bodies within the USA are protected by the US Clean Water Act when they have a significant nexus to downstream navigable waters. As a research scientist with the US Environmental Protection Agency, I have used water stable isotopes to examine hydrologic connectivity dynamics. I will share two case studies. In the first case, we used the isotopic evaporation signal in water to examine wetland-stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie-pothole wetlands. Prairie-Pothole wetlands are a special case of wetlands whose protection needs to be determined under the Clean Water Rule. Pipestem Creek exhibited an evaporated-water signal that had approximately half the isotopic-enrichment signal found in most evaporatively enriched prairie-pothole wetlands. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment. Using isotopic theory and discharge data, we estimated the area of surface water necessary to generate the evaporation signal found within Pipestem Creek over two years. Our results indicated that prairie-pothole wetlands were important sources of stream flow in Pipestem Creek throughout the summer, as well as during snowmelt. They also demonstrated that at the lowest flows, the stream itself became disconnected from headwater stream reaches. In the second ca
Nanomaterial Case Studies: Nanoscale Titanium Dioxide ...
This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA’s research strategy to support nanomaterial risk assessments. The complex properties of various nanomaterials make evaluating them in the abstract or with generalizations difficult if not impossible. Thus, this document focuses on two specific uses of nano-TiO2, as a drinking water treatment and as topical sunscreen. These case studies do not represent completed or even preliminary assessments; rather, they present the structure for identifying and prioritizing research needed to support future assessments.
Nguyen, Von D.; Sreenivasan, Nandini; Lam, Eugene; Ayers, Tracy; Kargbo, David; Dafae, Foday; Jambai, Amara; Alemu, Wondimagegnehu; Kamara, Abdul; Islam, M. Sirajul; Stroika, Steven; Bopp, Cheryl; Quick, Robert; Mintz, Eric D.; Brunkard, Joan M.
2014-01-01
During 2012, Sierra Leone experienced a cholera epidemic with 22,815 reported cases and 296 deaths. We conducted a matched case-control study to assess risk factors, enrolling 49 cases and 98 controls. Stool specimens were analyzed by culture, polymerase chain reaction (PCR), and pulsed-field gel electrophoresis (PFGE). Conditional logistic regression found that consuming unsafe water (matched odds ratio [mOR]: 3.4; 95% confidence interval [CI]: 1.1, 11.0), street-vended water (mOR: 9.4; 95% CI: 2.0, 43.7), and crab (mOR: 3.3; 95% CI: 1.03, 10.6) were significant risk factors for cholera infection. Of 30 stool specimens, 13 (43%) showed PCR evidence of toxigenic Vibrio cholerae O1. Six specimens yielded isolates of V. cholerae O1, El Tor; PFGE identified a pattern previously observed in seven countries. We recommended ensuring the quality of improved water sources, promoting household chlorination, and educating street vendors on water handling practices. PMID:24470563
Suthar, Surindra
2011-02-01
Access to safe drinking water is an important issue of health and development at national, regional, and local levels. The concept of safe drinking water assumes greater significance in countries like India where the majority of the population lives in villages with bare infrastructures and poor sanitation facilities. This review presents an overview of drinking water quality in rural habitations of northern Rajasthan, India. Although fluoride is an endemic problem to the groundwater of this region, recently, other anthropogenic chemicals has also been reported in the local groundwater. Recent case studies indicate that about 95% of sites of this region contain a higher fluoride level in groundwater than the maximum permissible limit as decided by the Bureau of Indian Standards. Nitrate (as NO3-) contamination has appeared as another anthropogenic threat to some intensively cultivable rural habitations of this region. Biological contamination has appeared as another issue of unsafe drinking water resources in rural areas of the state. Recent studies have claimed a wide variety of pathogenic bacteria including members of the family Enterobacteriaceae in local drinking water resources. Overall, the quality of drinking water in this area is not up to the safe level, and much work is still required to establish a safe drinking water supply program in this area.
Drinking water chlorination and cancer-a historical cohort study in Finland.
Koivusalo, M; Pukkala, E; Vartiainen, T; Jaakkola, J J; Hakulinen, T
1997-03-01
Chlorination of water rich in organic material is known to produce a complex mixture of organochlorine compounds, including mutagenic and carcinogenic substances. A historical cohort study of 621,431 persons living in 56 towns in Finland was conducted in order to assess the relation between historical exposure to drinking water mutagenicity and cancer. Exposure to quantity of mutagenicity was calculated on the basis of historical information of raw water quality and water treatment practices using an empirical equation relating mutagenicity and raw water pH, KMnO4 value and chlorine dose. Cancer cases were derived from the population-based Finnish Cancer Registry and follow-up time in the study started in 1970. Age, gender, time period, social class, and urban residence were taken into account in Poisson regression analysis of the observed numbers of cases using expected numbers of cases standardized for age and gender as a basis. Excess risks were calculated using a continuous variable for mutagenicity for 3,000 net rev/l exposure representing an average exposure in a town using chlorinated surface water. After adjustment for confounding, a statistically significant excess risk was observed for women in cancers of the bladder (relative risk [RR] = 1.48, 95 percent confidence interval [CI] = 1.01-2.18), rectum (RR = 1.38, CI = 1.03-1.85), esophagus (RR = 1.90, CI = 1.02-3.52), and breast (RR = 1.11, CI = 1.01-1.22). These results support the magnitude of excess risks for rectal and bladder cancers found in earlier epidemiologic studies on chlorination by-products and give additional information on exposure-response concerning the mutagenic compounds. Nevertheless, due to the public health importance of water chlorination, uncertainty related to the magnitude of observed risks, and the fact that excess risks were observed only for women, the results of the study should be interpreted with caution.
Megdal, Sharon B; Gerlak, Andrea K; Huang, Ling-Yee; Delano, Nathaniel; Varady, Robert G; Petersen-Perlman, Jacob D
2017-05-01
Groundwater is an increasingly important source of freshwater, especially where surface water resources are fully or over-allocated or becoming less reliable due to climate change. Groundwater reliance has created new challenges for sustainable management. This article examines how regional groundwater users coordinate and collaborate to manage shared groundwater resources, including attention to what drives collaboration. To identify and illustrate these facets, this article examines three geographically diverse cases of groundwater governance and management from the United States Sun Belt: Orange County Water District in southern California; Prescott Active Management Area in north-central Arizona; and the Central Florida Water Initiative in central Florida. These regions have different surface water laws, groundwater allocation and management laws and regulations, demographics, economics, topographies, and climate. These cases were selected because the Sun Belt faces similar pressures on groundwater due to historical and projected population growth and limited availability of usable surface water supplies. Collectively, they demonstrate groundwater governance trends in the United States, and illustrate distinctive features of regional groundwater management strategies. Our research shows how geophysical realities and state-level legislation have enabled and/or stimulated regions to develop groundwater management plans and strategies to address the specific issues associated with their groundwater resources. We find that litigation involvement and avoidance, along with the need to finance projects, are additional drivers of regional collaboration to manage groundwater. This case study underscores the importance of regionally coordinated and sustained efforts to address serious groundwater utilization challenges faced by the regions studied and around the world.
NASA Astrophysics Data System (ADS)
Megdal, Sharon B.; Gerlak, Andrea K.; Huang, Ling-Yee; Delano, Nathaniel; Varady, Robert G.; Petersen-Perlman, Jacob D.
2017-05-01
Groundwater is an increasingly important source of freshwater, especially where surface water resources are fully or over-allocated or becoming less reliable due to climate change. Groundwater reliance has created new challenges for sustainable management. This article examines how regional groundwater users coordinate and collaborate to manage shared groundwater resources, including attention to what drives collaboration. To identify and illustrate these facets, this article examines three geographically diverse cases of groundwater governance and management from the United States Sun Belt: Orange County Water District in southern California; Prescott Active Management Area in north-central Arizona; and the Central Florida Water Initiative in central Florida. These regions have different surface water laws, groundwater allocation and management laws and regulations, demographics, economics, topographies, and climate. These cases were selected because the Sun Belt faces similar pressures on groundwater due to historical and projected population growth and limited availability of usable surface water supplies. Collectively, they demonstrate groundwater governance trends in the United States, and illustrate distinctive features of regional groundwater management strategies. Our research shows how geophysical realities and state-level legislation have enabled and/or stimulated regions to develop groundwater management plans and strategies to address the specific issues associated with their groundwater resources. We find that litigation involvement and avoidance, along with the need to finance projects, are additional drivers of regional collaboration to manage groundwater. This case study underscores the importance of regionally coordinated and sustained efforts to address serious groundwater utilization challenges faced by the regions studied and around the world.
For the case studies, the MTBE, TBA, and BTEX plume will be studied in a longitudinal transect along the center-line of the plume, and at least two transects perpendicular to ground water flow. Water samples will be analyzed for the concentration of MTBE, TBA, BTEX, methane, sulf...
Cardiovascular disease and arsenic exposure in Inner Mongolia, China: a case control study
BACKGROUND: Millions of people are at risk from the adverse effects of arsenic exposure through drinking water. Increasingly, non-cancer effects such as cardiovascular disease have been associated with drinking water arsenic exposures. However, most studies have been conducted in...
This case study defines well integrity by the prevention of vertical migration of fluids to protect drinking water resources. A generic shale development well is presented, including design, construction, operational phase, and its plug and abandonment.
Gao, Jingjing; Christensen, Per; Li, Wei
2017-08-01
This article investigated how the use of a water resources assessment model contributed to one of the first strategic environmental assessments (SEA) conducted for arid/semi-arid regions in China. The study was based on the SEA of a coal industry development plan in Ordos, an arid/semi-arid region of northwest China, where a temporally and spatially simplified version of the WEAP (Water Evaluation And Planning System) model was applied for assessing the impact of the planned activities on local water resource system. Four scenarios were developed to simulate various alternatives using a diverse range of water utilisation measures such as irrigation efficiency, treatment and the reuse of water. The WEAP model itself was found to be a useful tool for efficient water resources assessment in SEA: 1) WEAP provides built-in simulation modules for water assessment, which improve the SEA's efficiency significantly; 2) WEAP temporally has the flexibility in both delivering information on a reasonably aggregated level by evaluating water resource on an annual time step, which fits most SEA cases, and being possible to take a finer time step analysis monthly, weekly even daily; 3) Spatially, WEAP has advantage in dealing with distributed demand sites in large spatial scale. However, although WEAP appears as a useful tool in providing support for decision-making, in this SEA case we experienced difficulty in building a feasible scenario to mitigate the impact of the proposed activities on the local water system, so that solution had to be found outside of the assessed scenarios - which led to the discussion on the fact that the proposed activities in SEA cases are rarely regarded as an uncertainty. Therefore future research on the scope of SEA scenarios could be valuable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benefit transfer protocol for long-term health risk valuation: A case of surface water contamination
NASA Astrophysics Data System (ADS)
Kask, Susan B.; Shogren, Jason F.
1994-10-01
In response to scarce financial resources, economists have promoted the concept of benefit transfer as a cost-effective alternative to new nonmarket valuation studies. Recent discussion on benefit transfer for improved water quality has focused on recreational benefits. While useful, the discussion must now be expanded to include another key benefit from improved water quality: the reduction in risk to public health. This paper develops a protocol for benefit transfer of long-term health risk reduction and presents a case study for surface water contamination. Challenges such as the multiple sources of risk, the mortality and morbidity effects indicated by a variety of symptoms, the long latency period between cause and effect, and an individual's ability to privately or collectively reduce the probability or severity of the risk are discussed.
David, J M; Pollari, F; Pintar, K D M; Nesbitt, A; Butler, A J; Ravel, A
2017-11-01
Campylobacteriosis, the most frequent bacterial enteric disease, shows a clear yet unexplained seasonality. The study purpose was to explore the influence of seasonal fluctuation in the contamination of and in the behaviour exposures to two important sources of Campylobacter on the seasonality of campylobacteriosis. Time series analyses were applied to data collected through an integrated surveillance system in Canada in 2005-2010. Data included sporadic, domestically-acquired cases of Campylobacter jejuni infection, contamination of retail chicken meat and of surface water by C. jejuni, and exposure to each source through barbequing and swimming in natural waters. Seasonal patterns were evident for all variables with a peak in summer for human cases and for both exposures, in fall for chicken meat contamination, and in late fall for water contamination. Time series analyses showed that the observed campylobacteriosis summer peak could only be significantly linked to behaviour exposures rather than sources contamination (swimming rather than water contamination and barbequing rather than chicken meat contamination). The results indicate that the observed summer increase in human cases may be more the result of amplification through more frequent risky exposures rather than the result of an increase of the Campylobacter source contamination.
González-Castro, A; Ortiz-Lasa, M; Leizaola, O; Salgado, E; Irriguible, T; Sánchez-Satorra, M; Lomas-Fernández, C; Barral-Segade, P; Cordero-Vallejo, M; Rodrigo-Calabia, E; Dierssen-Sotos, T
2017-05-01
To analyse the association between water balance during the first 24h of admission to ICU and the variables related to chloride levels (chloride loading, type of fluid administered, hyperchloraemia), with the development of acute kidney injury renal replacement therapy (AKI-RRT) during patients' admission to ICU. Multicentre case-control study. Hospital-based, national, carried out in 6 ICUs. Cases were patients older than 18 years who developed an AKI-RRT. Controls were patients older than 18 years admitted to the same institutions during the study period, who did not develop AKI-RRT during ICU admission. Pairing was done by APACHE-II. An analysis of unconditional logistic regression adjusted for age, sex, APACHE-II and water balance (in evaluating the type of fluid). We analysed the variables of 430 patients: 215 cases and 215 controls. An increase of 10% of the possibility of developing AKI-RRT per 500ml of positive water balance was evident (OR: 1.09 [95% CI: 1.05 to 1.14]; P<.001). The study of mean values of chloride load administered did not show differences between the group of cases and controls (299.35±254.91 vs. 301.67±234.63; P=.92). The water balance in the first 24h of ICU admission relates to the development of IRA-TRR, regardless of chloraemia. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Presentation for the American Water Works Association Water Sustainability Conference. The presentation highlights latest results from water quality trading research conducted by ORD using the East Fork Watershed in Southwestern Ohio as a case study. The watershed has a nutrient ...
This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...
Water dynamics and population pressure in the Nepalese Himalayas.
Schreier, H; Shah, P B
1996-10-01
The authors investigate the impact of water shortages, especially water for irrigation, on development in Nepal. "The problems associated with hydropower development will be illustrated by using the Kulekhani watershed project as a case study." The possible future effects on food supplies and health are discussed. excerpt
EPA Method 544: A Case Study in USEPA Drinking Water Method Develpment
The 1996 amendments to the Safe Drinking Water Act required the U.S. Environmental Protection Agency (USEPA) to establish a Drinking Water Contaminant Candidate List (CCL) of chemicals and microbes that the Agency will consider for future regulation. One of the key pieces of info...
A case-control study on the risk factors of urinary calculus in Uyghur children in the Kashi region.
Wang, H C; Liu, C; He, H Y; Wang, M X
2015-06-01
The incidence of urinary calculus (UC) is very high in Uyghur children in the Kashi region of Xinjiang, China, which seriously affects the growth and life quality of these children. This study was aimed at investigating the risk factors of UC in Uyghur children in Kashi region. One hundred fifteen Uyghur children (age <7 years) with UC who were treated in First People's Hospital in Kashi were enrolled in the case group. A 1:1 case-control study with a questionnaire was performed. The results showed that, among the 115 UC patients, there were more boys (71.3%) than girls (28.7%), and most cases had an onset age of 1-3 years (75.7%). A lower than primary school education in the mother, drinking unboiled water, water intake <500 mL/day, and eating too much sweets were risk factors [odds ratio (OR) = 2.385, 9.160, 3.263, and 8.945, respectively], whereas vegetable intake and exposure to summer sunshine of <2 h/day were protective factors against UC onset (OR = 0.154 and 0.344, respectively). Analysis of UC-related factors in 99 cases of <3-year-old children revealed that breastfeeding was also a protective factor (OR = 0.007), whereas frequent cow's milk intake within 5 months (OR = 2.414) and frequent "panada" intake (OR = 2.529) were risk factors. The occurrence of UC in Uyghur children in the Kashi region is mainly affected by maternal educational background, quality of drinking water, water intake volume, and dietary pattern. Furthermore, geography may also have a role.
NASA Astrophysics Data System (ADS)
Burke, Sophia; Mulligan, Mark
2017-04-01
Water scarcity is not just a problem of its own right (hydrological drought) but cascades the hydro-economic system to create problems for crop growth and livestock (agricultural drought) and thus for wellbeing and economic productivity (economic drought). One of these cascades is the impact of reduced water quantity on water quality as a result of non-point source pollutant concentration in water bodies such as rivers, lakes and wetlands. This paper investigates the impact of seasonal water shortages on the quality of supplied water to urban centres with a view to better understanding how land use management can reduce dry-season pollutant spikes. We apply a widely used spatial hydrological model (WaterWorld) and its water quality index (the human footprint on water quality, HFWQ) to examine to what extent HFWQ of water flowing into urban water intakes is affected by flow seasonality and by typical "dry year" events. A global analysis shows trends across climatic and land use gradients and is followed by a regional analysis of the Magdalena basin in Colombia: a large basin with 79% of the countries population and a mixture of intensively farmed and protected lands along a seasonality gradient from South to North. The Magdalena is a case study basin of the EartH2Observe project.
Shortage and surplus of water in the socio-hydrological context
NASA Astrophysics Data System (ADS)
Schumann, A.; Nijssen, d.
2014-09-01
Balancing the temporal variability of hydrological conditions in the long- and short-term is often essential for steady socio-economic conditions. However, this equilibrium is very fragile in many cases. Hydrological changes or socio-economic changes may destroy it in a short time. If we extend the bearing capacity of socio-hydrological systems we increase, in many cases, the harmful consequences of failures. Here, two case studies are discussed to illustrate these problems. The limited success at adapting water resources to increasing human requirements without consideration of the natural capacities will be discussed with the example of water use for irrigation in northeastern China. The demand for a new planning approach, which is based on a combination of monitoring, model-based impact assessments and spatial distributed planning, is demonstrated. The problems of water surplus, which becomes evident during floods, are discussed in a second case study. It is shown that flood protection depends strongly on expectations of flood characteristics. The gap between the social requirement for complete flood prevention and the remaining risk of flood damage becomes obvious. An increase of risk-awareness would be more sustainable than promises of flood protection, which are the basis for technical measures to affect floods and (or) to prevent flood damages.
Lamei, A; van der Zaag, P; Imam, E
2009-01-01
Hotels in arid coastal areas use mainly desalinated water (using reverse osmosis) for their domestic water supply, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their potable and non-potable water needs. There is normally a contractual agreement stating a minimum amount of water that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). Hotels have to carefully analyse their water requirements in order to determine which percentage of the hotel's peak water demand should be used in the contract in order to reduce water costs and avoid the risk of water shortage. This paper describes a model to optimise the contracted-for irrigation water supply with the objective function to minimise total water cost to hotels. It analyses what the contracted-for irrigation water supply of a given hotel should be, based on the size of the green irrigated area on one hand and the unit prices of the different types of water on the other hand. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh (Sharm), Egypt. This paper presents costs of wastewater treatment using waste stabilisation ponds, which is the prevailing treatment mechanism in the case study area for centralised plants, as well as aerobic/anaerobic treatment used for decentralised wastewater treatment plants in the case study area. There is only one centralised wastewater treatment plant available in the city exerting monopoly and selling treated wastewater to hotels at a much higher price than the actual cost that a hotel would bear if it treated its own wastewater. Contracting for full peak irrigation demand is the highest total cost option. Contracting for a portion of the peak irrigation demand and complementing the rest from desalination water is a cheaper option. A better option still is to complement the excess irrigation demand from the company that treats and sells wastewater, if available or from another wastewater treatment company at a higher cost (but at a cost cheaper than that of desalination water) mainly due to the high demand season and the additional cost of trucking. In some cases, however, like in Sharm, the amount of treated wastewater is limited and variable during the year and some hotels have no choice but to partially use desalination water for irrigation. A conscious strategy for water management should rely solely on treated wastewater on-site. This can be achieved by: increasing the efficiency of the irrigation system, reducing the area of high-water consuming plantation (e.g. turf grass) and/or shifting to drought resistant plants including less water-consuming or salt tolerant turf grass.
Nitrates in drinking water and the risk of death from childhood brain tumors in Taiwan.
Weng, Hsu-Huei; Tsai, Shang-Shyue; Wu, Trong-Neng; Sung, Fung-Chang; Yang, Chun-Yuh
2011-01-01
The objective of this study was to (1) examine the relationship between nitrate (NO₃-N) levels in public water supplies and risk of death from childhood brain tumors (CBT) and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of NO₃-N on development of CBT. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to CBT and exposure to NO₃-N in drinking water in Taiwan. All CBT deaths of Taiwan residents from 1999 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen NO₃-N, Ca, and Mg in drinking water were collected from Taiwan Water Supply Corporation. The municipality of residence for CBT cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was ≤ 0.31 ppm, and the adjusted odds ration (OR) (95% confidence interval [CI]) for CBT occurrence was 1.4 (1.07-1.84) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure > 0.31 ppm. No significant effect modification was observed by Ca and Mg intake via drinking water. Data suggest that exposure to NO₃-N in drinking water is associated with a higher risk of CBT development in Taiwan.
Integrated Hydrographical Basin Management. Study Case - Crasna River Basin
NASA Astrophysics Data System (ADS)
Visescu, Mircea; Beilicci, Erika; Beilicci, Robert
2017-10-01
Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case study for Crasna river basin, with the use of MIKE HYDRO Basin advanced hydroinformatic tool for integrated hydrographical basin analysis, planning and management.
HIV/AIDS and access to water: A case study of home-based care in Ngamiland, Botswana
NASA Astrophysics Data System (ADS)
Ngwenya, B. N.; Kgathi, D. L.
This case study investigates access to potable water in HIV/AIDS related home-based care households in five rural communities in Ngamiland, Botswana. Primary data collected from five villages consisted of two parts. The first survey collected household data on demographic and rural livelihood features and impacts of HIV/AIDS. A total of 129 households were selected using a two-stage stratified random sampling method. In the second survey, a total of 39 family primary and community care givers of continuously ill, bed-ridden or non-bed-ridden HIV/AIDS patients were interviewed. A detailed questionnaire, with closed and open-ended questions, was used to collect household data. In addition to using the questionnaire, data were also collected through participant observation, informal interviews and secondary sources. The study revealed that there are several sources of water for communities in Ngamiland such as off-plot, outdoor (communal) and on-plot outdoor and/or indoor (private) water connections, as well as other sources such as bowsed water, well-points, boreholes and open perennial/ephemeral water from river channels and pans. There was a serious problem of unreliable water supply caused by, among other things, the breakdown of diesel-powered water pumps, high frequency of HIV/AIDS related absenteeism, and the failure of timely delivery of diesel fuel. Some villages experienced chronic supply disruptions while others experienced seasonal or occasional water shortages. Strategies for coping with unreliability of water supply included economizing on water, reserve storage, buying water, and collection from river/dug wells or other alternative sources such as rain harvesting tanks in government institutions. The unreliability of water supply resulted in an increase in the use of water of poor quality and other practices of poor hygiene as well as a high opportunity cost of water collection. In such instances, bathing of patients was cut from twice daily to once or not at all. Depending on the severity of HIV/AIDS related symptoms, e.g. diarrhoea, 20-80 additional litres of water could be required daily. The case study demonstrates that, at individual level, access to water is an integral element of the patient’s holistic healing process and psychosocial well being. At household and community levels, access to sufficient supplies of potable water when and where it is needed is central to mitigation of HIV/AIDS impacts. Access to water should therefore not be treated strictly as an economic good due to its importance as a basic human need, a social good and indeed a human right.
Sustainability in Housing: A Curriculum Case Study.
ERIC Educational Resources Information Center
Parrott, Kathleen; Emmel, Joann M.
2001-01-01
Explores the influence of environmental issues on the field of housing, from the perspective of sustainable housing. Presents a case study of the development of a college course to address these issues by integrating energy management, air quality, water quality, and waste management. (Author)
WMOST v2 Case Study: Monponsett Ponds
This webinar presents an overview of the preliminary results of a case study application of EPA's Watershed Management Optimization Support Tool v2 (WMOST) for stakeholders in the Monponsett Ponds Watershed Workgroup. Monponsett Ponds is a large water system consisting of two ba...
EVALUATION OF GROUNDWATER EXTRACTION REMEDIES - VOLUME II
This volume was prepared as part of an evaluation of groundwater extraction remedies completed under EPA Contract No. 68-W8-0098. It presents 19 case studies of individual sites where ground-water extraction systems have been implemented. These case studies present site characte...
NASA Astrophysics Data System (ADS)
Mohammed, R. A.; Khatibi, S.
2017-12-01
One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.
NASA Astrophysics Data System (ADS)
Hendriks, Rob F. A.; van den Akker, Jan J. A.
2017-04-01
Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.
Outbreak of legionnaires' disease from a cooling water system in a power station.
Morton, S; Bartlett, C L; Bibby, L F; Hutchinson, D N; Dyer, J V; Dennis, P J
1986-09-01
In September and October 1981 six cases of pneumonia occurred among men working in a power station under construction. Three were identified as cases of legionella pneumonia and two others had serology suggestive of legionella infection. In a sample of 92 men from the site 10 had low levels of antibodies to legionella; a similar sample of men working on an adjacent site showed none with positive serology. In a case control study it was found that cases of pneumonia were more likely than controls to have worked on a part of the site where four small capacity cooling towers were located. Legionella pneumophila serogroup 1 was isolated from the water systems of these four towers but was not found in samples from any other cooling towers or hot or cold water outlets on the site. It would appear that there was airborne spread of the organism from these cooling water systems which had not received conventional treatment to inhibit corrosion and organic growth. This is the first outbreak of legionnaires' disease to be recorded in an industrial setting in the United Kingdom. No cases of legionella infection have occurred on the site since the introduction of control measures.
This report describes the retrospective case study in north central Texas, conducted at three locations in Wise County where both conventional and unconventional gas production occurred in the past. Currently unconventional gas production occurs from the Mississippian-aged Barne...
This report describes the retrospective case study for northeastern Pennsylvania, which was conducted in Bradford and Susquehanna Counties where some of the most intensive unconventional gas production from the Devonian-age Marcellus Shale has occurred. Gas production from the M...
This report describes the retrospective case study for southwestern Pennsylvania, which was conducted in Amwell, Cross Creek, Hopewell, and Mount Pleasant Townships in Washington County, locations that have witnessed unconventional gas production from the Devonian-age Marcellus S...
The United States Environmental Protection Agency (US EPA) and its predecessors have conducted three distinct series of epidemiological studies beginning in 1948 on the relationship between bathing water quality and swimmers' illnesses. Keeping pace with advances in microbial tec...
Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L
2011-01-01
Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion.
Ikonnikova, Svetlana A; Male, Frank; Scanlon, Bridget R; Reedy, Robert C; McDaid, Guinevere
2017-12-19
Production of oil from shale and tight reservoirs accounted for almost 50% of 2016 total U.S. production and is projected to continue growing. The objective of our analysis was to quantify the water outlook for future shale oil development using the Eagle Ford Shale as a case study. We developed a water outlook model that projects water use for hydraulic fracturing (HF) and flowback and produced water (FP) volumes based on expected energy prices; historical oil, natural gas, and water-production decline data per well; projected well spacing; and well economics. The number of wells projected to be drilled in the Eagle Ford through 2045 is almost linearly related to oil price, ranging from 20 000 wells at $30/barrel (bbl) oil to 97 000 wells at $100/bbl oil. Projected FP water volumes range from 20% to 40% of HF across the play. Our base reference oil price of $50/bbl would result in 40 000 additional wells and related HF of 265 × 10 9 gal and FP of 85 × 10 9 gal. The presented water outlooks for HF and FP water volumes can be used to assess future water sourcing and wastewater disposal or reuse, and to inform policy discussions.
USDA-ARS?s Scientific Manuscript database
Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.
2016-06-01
Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.
NASA Astrophysics Data System (ADS)
Maraseni, T. N.; Mushtaq, S.; Reardon-Smith, K.
2012-09-01
The Australian Government is currently addressing the challenge of increasing water scarcity through significant on-farm infrastructure investment to facilitate the adoption of new water-efficient pressurized irrigation systems. However, it is highly likely that conversion to these systems will increase on-farm energy consumption and greenhouse gas (GHG) emissions, suggesting potential conflicts in terms of mitigation and adaptation policies. This study explored the trade-offs associated with the adoption of more water efficient but energy-intensive irrigation technologies by developing an integrated assessment framework. Integrated analysis of five case studies revealed trade-offs between water security and environmental security when conversion to pressurized irrigation systems was evaluated in terms of fuel and energy-related emissions, except in cases where older hand-shift sprinkler irrigation systems were replaced. These results suggest that priority should be given, in implementing on-farm infrastructure investment policy, to replacing inefficient and energy-intensive sprinkler irrigation systems such as hand-shift and roll-line. The results indicated that associated changes in the use of agricultural machinery and agrochemicals may also be important. The findings of this study support the use of an integrated approach to avoid possible conflicts in designing national climate change mitigation and adaptation policies, both of which are being developed in Australia.
An Earth longwave radiation climate model
NASA Technical Reports Server (NTRS)
Yang, S. K.
1984-01-01
An Earth outgoing longwave radiation (OLWR) climate model was constructed for radiation budget study. Required information is provided by on empirical 100mb water vapor mixing ratio equation of the mixing ratio interpolation scheme. Cloud top temperature is adjusted so that the calculation would agree with NOAA scanning radiometer measurements. Both clear sky and cloudy sky cases are calculated and discussed for global average, zonal average and world-wide distributed cases. The results agree well with the satellite observations. The clear sky case shows that the OLWR field is highly modulated by water vapor, especially in the tropics. The strongest longitudinal variation occurs in the tropics. This variation can be mostly explained by the strong water vapor gradient. Although in the zonal average case the tropics have a minimum in OLWR, the minimum is essentially contributed by a few very low flux regions, such as the Amazon, Indonesian and the Congo.
Price, V.; Temples, T.; Hodges, R.; Dai, Z.; Watkins, D.; Imrich, J.
2007-01-01
This document discusses results of applying the Integrated Ground-Water Monitoring Strategy (the Strategy) to actual waste sites using existing field characterization and monitoring data. The Strategy is a systematic approach to dealing with complex sites. Application of such a systematic approach will reduce uncertainty associated with site analysis, and therefore uncertainty associated with management decisions about a site. The Strategy can be used to guide the development of a ground-water monitoring program or to review an existing one. The sites selected for study fall within a wide range of geologic and climatic settings, waste compositions, and site design characteristics and represent realistic cases that might be encountered by the NRC. No one case study illustrates a comprehensive application of the Strategy using all available site data. Rather, within each case study we focus on certain aspects of the Strategy, to illustrate concepts that can be applied generically to all sites. The test sites selected include:Charleston, South Carolina, Naval Weapons Station,Brookhaven National Laboratory on Long Island, New York,The USGS Amargosa Desert Research Site in Nevada,Rocky Flats in Colorado,C-Area at the Savannah River Site in South Carolina, andThe Hanford 300 Area.A Data Analysis section provides examples of detailed data analysis of monitoring data.
This report describes the retrospective case study conducted near Killdeer, Dunn County, North Dakota. The Killdeer study area is the location of historical oil and gas production, with current unconventional oil and gas production occurring in the late Devonian/early Mississipp...
Fragile to strong crossover and Widom line in supercooled water: A comparative study
NASA Astrophysics Data System (ADS)
De Marzio, Margherita; Camisasca, Gaia; Rovere, Mauro; Gallo, Paola
2018-02-01
The aim of this paper is to discuss the relationship between the dynamics and thermodynamics of water in the supercooled region. Reviewed case studies comprehend bulk water simulated with the SPC/E, TIP4P and TIP4P/2005 potentials, water at protein interfaces, and water in solution with electrolytes. Upon supercooling, the fragile to strong crossover in the α-relaxation of water is found to occur when the Widom line emanating from the liquid-liquid critical point is crossed. This appears to be a general characteristic of supercooled water, not depending on the applied interaction potential and/or different local environments.
Neelam, Taneja; Malkit, Singh; Pooja, Rao; Manisha, Biswal; Shiva, Priya; Ram, Chander; Meera, Sharma
2012-12-01
Acute gastroenteritis due to Vibrio cholerae and Enterotoxigenic E. coli is a common problem faced in the hot and humid summer months in north India. The study was undertaken to evaluate drinking water supplies for fecal coliforms, V. cholerae and Enterotoxigenic E. coli in urban, semiurban and rural areas in and around Chandigarh and correlate with occurrence of acute gastroenteritis occurring from the same region. Drinking water sample were collected from various sources from April to October 2004 from a defined area. Samples were tested for fecal coliforms and E. coli count. E. coli were screened for heat labile toxin (LT) also. Stool samples from cases of acute gastroenteritis from the same region and time were collected and processed for V. cholerae, Enterotoxigenic E. coli (ETEC) and others like Salmonella, Shigella and Aeromonas spp. A total of 364 water samples were collected, (251 semi urban, 41 rural and 72 from urban areas). 116 (31.8%) samples were contaminated with fecal coliforms (58.5% rural, 33.4% semiurban and 11.1% of samples from urban areas). E. coli were grown from 58 samples. Ninety two isolates of E. coli were tested for enterotoxins of which 8 and 24 were positive for LT and ST respectively. V. cholerae were isolated from 2 samples during the outbreak investigation. Stored water samples showed a significantly higher level of contamination and most of Enterotoxigenic E. coli were isolated from stored water samples. A total of 780 acute gastroenteritis cases occurred; 445 from semiurban, 265 rural and 70 from urban areas. Out of 189 stool samples submitted, ETEC were the commonest (30%) followed by V. cholerae (19%), Shigellae (8.4%), Salmonellae (2.1%) and Aeromonas (2.6%). ST-ETEC (40/57) were commoner than LT-ETEC (17/57). In the present study, high levels of contamination of drinking water supplies (32.1%) correlated well with cases of acute gastroenteritis. Majority of cases of acute gastroenteritis occurred in the semi urban corresponding with high level of contamination (33.4%). The highest level of water contamination was seen in rural areas (58.5%) but the number of acute gastroenteritis cases were lesser (33.9%) as ponds were infrequently used for drinking purpose. Safer household water storage and treatment is recommended to prevent acute gastroenteritis, together with point-of-use water quality monitoring.
French, Megan; Alem, Natalie; Edwards, Stephen J; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar
2017-10-01
Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.
NASA Astrophysics Data System (ADS)
French, Megan; Alem, Natalie; Edwards, Stephen J.; Blanco Coariti, Efraín; Cauthin, Helga; Hudson-Edwards, Karen A.; Luyckx, Karen; Quintanilla, Jorge; Sánchez Miranda, Oscar
2017-10-01
Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake Poopó Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≥ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≤ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.
SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop
NASA Astrophysics Data System (ADS)
Zeyliger, Anatoly; Ermolaeva, Olga
2013-04-01
The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web geo database and used for experiment program managment. Quite good agreement between measured and calculated biomass and LAI were obtained. Estimation of effectiveness of water efficiency as well as estimation of applied water losses were done in the base of supplied irrigation water provided by local operating irrigation water supply companies and data of soil moisture monitoring. Following analyse of the remote sensing use to estimate of crop water requirement will be presented. ACKNOWLEDGMENTS. This study was financially supported by G2G project
Hammer, Monica; Balfors, Berit; Mörtberg, Ulla; Petersson, Mona; Quin, Andrew
2011-03-01
In this article, focusing on the ongoing implementation of the EU Water Framework Directive, we analyze some of the opportunities and challenges for a sustainable governance of water resources from an ecosystem management perspective. In the face of uncertainty and change, the ecosystem approach as a holistic and integrated management framework is increasingly recognized. The ongoing implementation of the Water Framework Directive (WFD) could be viewed as a reorganization phase in the process of change in institutional arrangements and ecosystems. In this case study from the Northern Baltic Sea River Basin District, Sweden, we focus in particular on data and information management from a multi-level governance perspective from the local stakeholder to the River Basin level. We apply a document analysis, hydrological mapping, and GIS models to analyze some of the institutional framework created for the implementation of the WFD. The study underlines the importance of institutional arrangements that can handle variability of local situations and trade-offs between solutions and priorities on different hierarchical levels.
Perceptions of water scarcity: The case of Genadendal and outstations
NASA Astrophysics Data System (ADS)
Noemdoe, S.; Jonker, L.; Swatuk, L. A.
The water resources management regime has shifted from one focusing almost exclusively on augmenting supply to one where ensuring access, equity and sustainability are an integral part of process. It is widely recognized that South Africa will face water scarcity in the near future. But ‘scarcity’, as we show in our case study, is a relative concept. This paper interrogates perceptions of scarcity in the small South African rural community of Greater Genadendal. Using a wide variety of data, we explore the intersection between poverty alleviation and adequate water supply. The results show that notwithstanding sufficient water being available, the community experiences what Mehta [Mehta, L., 2001. The manufacture of popular perceptions of scarcity: dams and water-related narratives in Gujarat, India. World Development 29 (12), 2025-2041] calls ‘manufactured scarcity’. This is due to inadequate infrastructure, institutional incapacity and a history of political inequality. In the case of Greater Genadendal, these forms of scarcity are present simultaneously leading to a very complex situation. Overcoming these types of scarcity, however, require more than just new infrastructure. They require socio-economic and socio-political types of intervention that target the bases for manufactured scarcity: abiding poverty and socio-inequality. However, there appears to be a lack of social capital, in particular the trust that would enable government and local people to work together for improved livelihoods and sustainable water supplies. Joint resource rehabilitation activities may be one way of building social capital and moving toward IWRM in the study area.
Chen, Jing; Cheng, Hui-jian; Zhang, Li-jie; Zong, Jun; Ma, Hui-lai; Zhu, Bao-ping
2011-10-01
A hepatitis A outbreak in a primary school was reported by Gan County Center for Disease Control and Province (CDC) and an investigation was conducted to identify the possible source of infection and risk factors for transmission. A probable case was defined as having onset of jaundice (yellow urine, sclera or skin) or a 2-fold increase in Alanine aminotransferase with 2 or more, of the followings symptoms: anorexia, disgust of oil, abdominal pain, nausea, fatigue, vomiting, in students and staff of the primary school between 1 November 2008 and 14 February 2009. A confirmed case was IgM positive for hepatitis A, added on a probable case. We searched for cases through reviewing medical records in the township hospital and village clinics and conducting symptom screening among students or teachers. We also conducted a case-control study to compare the exposure histories of 19 cases and 53 anti-HAV-IgM negative controls randomly selected from those asymptomatic students in the same grade. 21 cases from all the students was identified, with the attack rate as 3.5%. The epidemic curve showed the two peaks of the outbreak were 28 days apart, both indicating that they were related to the exposure of the source of origin. 74% of the case-students drank the unboiled Well B water, compared to 42% of control-students (OR = 4.0, 95%CI: 1.1 - 15). The total bacterial count was 600 cfu/ml and the total coliform was 23 MPN/100 ml in one sample collected from the well water. This hepatitis A outbreak was caused by drinking contaminated water in Well B. We recommended that all the schools should use chlorinated municipal pipe water. Public health authorities should strengthen the supervision of quality of water in schools.
Energy-Water Microgrid Opportunity Analysis at the University of Arizona's Biosphere 2 Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, Jennifer A; Kandt, Alicen J; Macknick, Jordan E
Microgrids provide reliable and cost-effective energy services in a variety of conditions and locations. There has been minimal effort invested in developing energy-water microgrids that demonstrate the feasibility and leverage synergies of operating renewable energy and water systems in a coordinated framework. Water systems can be operated in ways to provide ancillary services to the electrical grid and renewable energy can be utilized to power water-related infrastructure, but the potential for co-managed systems has not yet been quantified or fully characterized. Energy-water microgrids could be a promising solution to improve energy and water resource management for islands, rural communities, distributedmore » generation, Defense operations, and many parts of the world lacking critical infrastructure. NREL and the University of Arizona have been jointly researching energy-water microgrid opportunities at the University's Biosphere 2 (B2) research facility. B2 is an ideal case study for an energy-water microgrid test site, given its size, its unique mission and operations, the criticality of water and energy infrastructure, and its ability to operate connected to or disconnected from the local electrical grid. Moreover, the B2 is a premier facility for undertaking agricultural research, providing an excellent opportunity to evaluate connections and tradeoffs at the food-energy-water nexus. In this study, NREL used the B2 facility as a case study for an energy-water microgrid test site, with the potential to catalyze future energy-water system integration research. The study identified opportunities for energy and water efficiency and estimated the sizes of renewable energy and storage systems required to meet remaining loads in a microgrid, identified dispatchable loads in the water system, and laid the foundation for an in-depth energy-water microgrid analysis. The foundational work performed at B2 serves a model that can be built upon for identifying relevant energy-water microgrid data, analytical requirements, and operational challenges associated with development of future energy-water microgrids.« less
Verstraeten, Ingrid M.; Heberer, T.; Vogel, J.R.; Speth, T.; Zuehlke, S.; Duennbier, U.
2003-01-01
Research on the fate and transport of endocrine-disrupting compounds and other organic wastewater compounds released into the environment and their potential presence in drinking water is in its infancy. Studies conducted during the last decade in Lincoln, Nebraska, and Berlin, Germany, indicate that removal of less polar compounds probably can be obtained through bank filtration, ground-water enrichment, and additional drinking-water and wastewater treatment processes. Polar compounds, such as atrazine and some metabolites, occur in drinking water obtained from contaminated surface water or ground water, but at concentrations generally lower than those occurring in wastewater and surface water. The results of the studies also suggest that concentrations of nonpolar estrogenic compounds decrease during drinking-water pretreatment processes such as bank filtration and ground-water enrichment.
SmartStuff: A case study of a smart water bottle.
Jovanov, Emil; Nallathimmareddygari, Vindhya R; Pryor, Jonathan E
2016-08-01
The rapid growth of Internet of Things (IoT) and miniature wearable biosensors have generated new opportunities for personalized eHealth and mHealth services. Smart objects equipped with physiological sensors can provide robust monitoring of activities of daily living and context for wearable physiological sensors. We present a case study of an intelligent water bottle that can precisely measure the amount of liquid in the bottle, monitor activity using inertial sensors, and physiological parameters using a touch and photoplethysmographic sensor. We evaluate two system configurations: a smart water bottle integrated into a personal body sensor network and a cloud based device. This paper presents system organization and the results from preliminary field testing of the prototype device.
Mavrommati, Georgia; Baustian, Melissa M; Dreelin, Erin A
2014-04-01
Applying sustainability at an operational level requires understanding the linkages between socioeconomic and natural systems. We identified linkages in a case study of the Lake St. Clair (LSC) region, part of the Laurentian Great Lakes system. Our research phases included: (1) investigating and revising existing coupled human and natural systems frameworks to develop a framework for this case study; (2) testing and refining the framework by hosting a 1-day stakeholder workshop and (3) creating a causal loop diagram (CLD) to illustrate the relationships among the systems' key components. With stakeholder assistance, we identified four interrelated pathways that include water use and discharge, land use, tourism and shipping that impact the ecological condition of LSC. The interrelationships between the pathways of water use and tourism are further illustrated by a CLD with several feedback loops. We suggest that this holistic approach can be applied to other case studies and inspire the development of dynamic models capable of informing decision making for sustainability.
THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES
Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...
THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES.
Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...
The purpose of this study is to discuss the use of gas and co-produced formation water geochemistry for identifying the source of natural gas and present gas geochemistry for the northern Appalachian Basin.
Bloodstream infections in pediatric oncology outpatients: a new healthcare systems challenge.
Smith, Theresa L; Pullen, Gregg T; Crouse, Vonda; Rosenberg, Jon; Jarvis, William R
2002-05-01
To investigate a perceived increase in central venous catheter (CVC)-associated bloodstream infections (BSIs) among pediatric hematology-oncology outpatients. A case-control study. A pediatric hematology-oncology outpatient clinic at Fresno Children's Hospital. Pediatric hematology-oncology clinic outpatients with CVCs at Fresno Children's Hospital between November 1994 and October 1997. A case-patient was defined as any hematology-oncology outpatient with a CVC-associated BSI at Fresno Children's Hospital from November 1996 to October 1997 (study period) without a localizable infection. To identify case-patients, we reviewed Fresno Children's Hospital records for all hematology-oncology clinic patients, those with CVCs and those with CVCs and BSIs. Control-patients were randomly selected hematology-oncology outpatients with a CVC but no BSI during the study period. Case-patient and control-patient demographics, diagnoses, caretakers, catheter types, catheter care, and water exposure were compared. Twenty-five case-patients had 42 CVC-associated BSIs during the study period. No significant increase in CVC-associated BSI rates occurred among pediatric hematology-oncology patients. However, there was a statistically significant increase in nonendogenous, gram-negative (eg, Pseudomonas species) BSIs during summer months (May-October) compared with the rest of the year. Case-patients and control-patients differed only in catheter type; case-patients were more likely than control-patients to have a transcutaneous CVC. Summertime recreational water exposures were similar and high in the two groups. Hematology-oncology clinic patients with transcutaneous CVCs are at greater risk for CVC-associated BSI, particularly during the summer. Caretakers should be instructed on proper care of CVCs, particularly protection of CVCs during bathing and recreational summer water activities, to reduce the risk of nonendogenous, gram-negative BSIs.
Gibney, Katherine B; O'Toole, Joanne; Sinclair, Martha; Leder, Karin
2017-06-01
AbstractUniversal access to safe drinking water is a global priority. To estimate the annual disease burden of campylobacteriosis, nontyphoidal salmonellosis, cryptosporidiosis, giardiasis, and norovirus attributable to waterborne transmission in Australia, we multiplied regional World Health Organization (WHO) estimates of the proportion of cases attributable to waterborne transmission by estimates of all-source disease burden for each study pathogen. Norovirus was attributed as causing the most waterborne disease cases (479,632; 95% uncertainty interval [UI]: 0-1,111,874) followed by giardiasis and campylobacteriosis. The estimated waterborne disability-adjusted life year (DALY) burden for campylobacteriosis (2,004; 95% UI: 0-5,831) was 7-fold greater than other study pathogens and exceeded the WHO guidelines for drinking water quality (1 × 10 -6 DALY per person per year) by 90-fold. However, these estimates include disease transmitted via either drinking or recreational water exposure. More precise country-specific and drinking water-specific attribution estimates would better define the health burden from drinking water and inform changes to treatment requirements.
Shtull-Trauring, E; Bernstein, N
2018-05-01
Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.
Cost Analysis of Water Transport for Climate Change Impact Assessment
NASA Astrophysics Data System (ADS)
Szaleniec, V.; Buytaert, W.
2012-04-01
It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.
NASA Astrophysics Data System (ADS)
Kumar, I.; Josset, L.; e Silva, E. C.; Possas, J. M. C.; Asfora, M. C.; Lall, U.
2017-12-01
The financial health and sustainability, ensuring adequate supply, and adapting to climate are fundamental challenges faced by water managers. These challenges are worsened in semi-arid regions with socio-economic pressures, seasonal supply of water, and projected increase in intensity and frequency of droughts. Over time, probabilistic rainfall forecasts are improving and for water managers, it could be key in addressing the above challenges. Using forecasts can also help make informed decisions about future infrastructure. The study proposes a model to minimize cost of water supply (including cost of deficit) given ensemble forecasts. The model can be applied to seasonal to annual ensemble forecasts, to determine the least cost solution. The objective of the model is to evaluate the resiliency and cost associated to supplying water. A case study is conducted in one of the largest reservoirs (Jucazinho) in Pernambuco state, Brazil, and four other reservoirs, which provide water to nineteen municipalities in the Jucazinho system. The state has been in drought since 2011, and the Jucazinho reservoir, has been empty since January 2017. The importance of climate adaptation along with risk management and financial sustainability are important to the state as it is extremely vulnerable to droughts, and has seasonal streamflow. The objectives of the case study are first, to check if streamflow forecasts help reduce future supply costs by comparing k-nearest neighbor ensemble forecasts with a fixed release policy. Second, to determine the value of future infrastructure, a new source of supply from Rio São Francisco, considered to mitigate drought conditions. The study concludes that using forecasts improve the supply and financial sustainability of water, by reducing cost of failure. It also concludes that additional infrastructure can help reduce the risks of failure significantly, but does not guarantee supply during prolonged droughts like the one experienced currently.
Environmental and occupational risk factors for progressive supranuclear palsy: Case-control study.
Litvan, Irene; Lees, Peter S J; Cunningham, Christopher R; Rai, Shesh N; Cambon, Alexander C; Standaert, David G; Marras, Connie; Juncos, Jorge; Riley, David; Reich, Stephen; Hall, Deborah; Kluger, Benzi; Bordelon, Yvette; Shprecher, David R
2016-05-01
The cause of progressive supranuclear palsy (PSP) is largely unknown. Based on evidence for impaired mitochondrial activity in PSP, we hypothesized that the disease may be related to exposure to environmental toxins, some of which are mitochondrial inhibitors. This multicenter case-control study included 284 incident PSP cases of 350 cases and 284 age-, sex-, and race-matched controls primarily from the same geographical areas. All subjects were administered standardized interviews to obtain data on demographics, residential history, and lifetime occupational history. An industrial hygienist and a toxicologist unaware of case status assessed occupational histories to estimate past exposure to metals, pesticides, organic solvents, and other chemicals. Cases and controls were similar on demographic factors. In unadjusted analyses, PSP was associated with lower education, lower income, more smoking pack-years, more years of drinking well water, more years living on a farm, more years living 1 mile from an agricultural region, more transportation jobs, and more jobs with exposure to metals in general. However, in adjusted models, only more years of drinking well water was significantly associated with PSP. There was an inverse association with having a college degree. We did not find evidence for a specific causative chemical exposure; higher number of years of drinking well water is a risk factor for PSP. This result remained significant after adjusting for income, smoking, education and occupational exposures. This is the first case-control study to demonstrate PSP is associated with environmental factors. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Hu, Xiao-Jun; Xiong, You-Cai; Li, Yong-Jin; Wang, Jian-Xin; Li, Feng-Min; Wang, Hai-Yang; Li, Lan-Lan
2014-12-01
Water scarcity is a critical policy issue in the arid regions of northwest China. The local government has widely adopted integrated water resources management (IWRM), but lacks support from farmers and farm communities. We undertook a case study in the Minqin oasis of northwest China to examine farmers' responses to IWRM and understand why farmer water users' associations (WUAs) are not functioning effectively at the community level. Results of quantitative and qualitative surveys of 392 farmers in 27 administrative villages showed that over 70% of farmers disapprove of the IWRM market-based reforms. In particular, the failure of farmer WUAs can be attributed to overlapping organizational structures between the WUAs and the villagers' committees; mismatches between the organizational scale of the WUAs and practical irrigation management by the farmers themselves; marginalization of rural women in water decision-making processes; and the inflexibility of IWRM implementation. An important policy implication from this study is that rebuilding farmer WUAs is key to overcoming the difficulties of IWRM. The current water governance structure, which is dominated by administrative systems, must be thoroughly reviewed to break the vicious cycle of tension and distrust between farmers and the government. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molecular dynamics study on the microscopic details of the evaporation of water.
Mason, Phillip E
2011-06-16
Molecular dynamics simulations were conducted on a drop of water (containing 4890 TIP3P waters) at 350 K. About 70 evaporation events were found and characterized in enough detail to determine significant patterns relating to the mechanism of evaporation. It was found that in almost all evaporation events that a single, high-energy state immediately preceded the evaporation event. In ∼50% of the cases, this high-energy state involved a short oxygen-oxygen distance, suggesting a van der Waals collision, whereas in the remaining cases, a short hydrogen-hydrogen distance was found, suggesting an electrostatic "collision". Of the high-energy states that led to evaporation, about half occurred when the coordination number of water was 1, and about half, when the coordination number was 2. It was found that the 1-coordinated waters (∼1% of the surface waters) and 2-coordinated waters (6% of the surface waters) were responsible for almost all the evaporation events. © 2011 American Chemical Society
Ge Sun; Catalina Segura
2013-01-01
The aim of the special issue âInteractions of Forests, Climate, Water Resources, and Humans in a Changing Environmentâ is to present case studies on the influences of natural and human disturbances on forest water resources under a changing climate. Studies in this collection of six papers cover a wide range of geographic regions from Australia to Nigeria with spatial...
NASA Astrophysics Data System (ADS)
Williams, M. W.; Wireman, M.; Liu, F.; Gertson, J.
2008-12-01
A state of emergency was declared in February 2008 because of fears that a blocked drainage tunnel in the Leadville mining district of Colorado could cause a catastrophic flood. An estimated 1 billion gallons of metals-laden water poses an eminent threat to the city of Leadville and the headwaters of the Arkansas river. Within days of the declaration of a state of emergency, Governor Ritter and Senator Salazer of Colorado, along with a host of other local and statewide politicians, visited the site and emphasized the need to develop a fast yet safe mitigation plan. Here we provide information from a case study that illustrates how a suite of isotopic and hydrologic tools enables identification of critical, site-specific variables essential in developing a science plan to guide targeted remediation of the Leadville drainage tunnel. The isotopic tools, including both stable and radiogenic isotopes, provided clear and compelling evidence of water sources and flowpaths in an area that has undergone extensive perturbations, including the drilling of more than 2,000 mine shafts. This forensic evidence was the key information in developing a plan to plug the drainage tunnel several hundred feet underground, divert a major source of polluted water from reaching the collapsed tunnel and piping it to an existing treatment plant, and guidance on where to place pumps in additional mine shafts, and the drilling of new wells to pump water in case the plugging of the tunnel caused water to pool up and raise the water table to dangerous heights. This particular case of forensic hydrology using isotopic tools not only provides the scientific basis for an operational plan to defuse a life- and property-threatening situation, it also provides the basis for decommissioning an existing water treatment plant, which will result in savings of over 1 million annually in operational costs. Decommissioning the existing water treatment plant will pay for the tunnel mitigation within several years.
Sorlini, S; Palazzini, D; Mbawala, A; Ngassoum, M B; Collivignarelli, M C
2013-12-01
Within a cooperation project coordinated by the Association for Rural Cooperation in Africa and Latin America (ACRA) Foundation, water supplies were sampled across the villages of the Logone valley (Chad-Cameroon) mostly from boreholes, open wells, rivers and lakes as well as from some piped water. Microbiological analyses and sanitary inspections were carried out at each source. The microbiological quality was determined by analysis of indicators of faecal contamination, Escherichia coli, Enterococci and Salmonellae, using the membrane filtration method. Sanitary inspections were done using WHO query forms. The assessment confirmed that there are several parameters of health concern in the studied area; bacteria of faecal origins are the most significant. Furthermore, this study demonstrated that Joint Monitoring Programme (JMP) classification and E. coli measurement are not sufficient to state water safety. In fact, in the studied area, JMP defined 'improved sources' may provide unsafe water depending on their structure and sources without E. coli may have Enterococci and Salmonellae. Sanitary inspections also revealed high health risks for some boreholes. In other cases, sources with low sanitary risk and no E. coli were contaminated by Enterococci and Salmonellae. Better management and protection of the sources, hygiene improvement and domestic water treatment before consumption are possible solutions to reduce health risks in the Logone valley.
NASA Astrophysics Data System (ADS)
Lamaro, Anabel Alejandra; Mariñelarena, Alejandro; Torrusio, Sandra Edith; Sala, Silvia Estela
2013-02-01
Monitoring of warm distribution in water is fundamental to understand the performance and functioning of reservoirs and lakes. Surface water temperature is a key parameter in the physics of aquatic systems processes since it is closely related to the energy fluxes through the water-atmosphere interface. Remote sensing applied to water quality studies in inland waterbodies is a powerful tool that can provide additional information difficult to achieve by other means. The combination of good real-time coverage, spatial resolution and free availability of data makes Landsat system a proper alternative. Many papers have developed algorithms to retrieve surface temperature (principally, land surface temperature) from at-sensor and surface emissivity data. The aim of this study is to apply the single-channel generalized method (SCGM) developed by Jiménez-Muñoz and Sobrino (2003) for the estimation of water surface temperature from Landsat 7 ETM+ thermal bands. We consider a constant water emissivity value (0.9885) and we compare the results with radiative transfer classic method (RTM). We choose Embalse del Río Tercero (Córdoba, Argentina) as case study because it is a reservoir affected by the outlet of the cooling system of a nuclear power plant, whose thermal plume could influence the biota's distribution and biodiversity. These characteristics and the existence of long term studies make it an adequate place to test the methodology. Values of estimated and observed water surface temperatures obtained by the two compared methods were correlated applying a simple regression model. Correlation coefficients were significant (R2: 0.9498 for SCGM method and R2: 0.9584 for RTM method) while their standard errors were acceptable in both cases (SCGM method: RMS = 1.2250 and RTM method: RMS = 1.0426). Nevertheless, SCGM could estimate rather small differences in temperature between sites consistently with the results obtained in field measurements. Besides, it has the advantage that it only uses values of atmospheric water vapor and it can be applied to different thermal sensors using the same equation and coefficients.
Case Study Research: Training Interdisciplinary Engineers with Context-Dependent Knowledge
ERIC Educational Resources Information Center
Chanan, Amit; Vigneswaran, Saravanamuth; Kandasamy, Jaya
2012-01-01
It is now widely acknowledged that water management discipline is transforming, from being a public health and flood prevention challenge of the nineteenth century to a multi-dimensional challenge of water security for the twenty-first century. In order to train water engineers to be capable of working with this holistic multi-dimensional…
Reducing Lead in School Drinking Water: A Case Study.
ERIC Educational Resources Information Center
Odell, Lee
1991-01-01
The Seattle School District began a program in 1990 to identify lead levels in the district's drinking water and to implement measures to lower any high lead levels. Recounts each of the seven steps of the program, discusses what the district found, and explains how it lowered lead levels in the drinking water. (MLF)
A three-volume report was developed relative to the modelling of investment strategies for regional water supply planning. Volume 1 is the study of capacity expansion over time. Models to aid decision making for the deterministic case are presented, and a planning process under u...
Presentation covered five topics; arsenic chemistry, best available technology (BAT), surface water technology, ground water technology and case studies of arsenic removal. The discussion on arsenic chemistry focused on the need and method of speciation for AsIII and AsV. BAT me...
Haloacetic acids in drinking water and risk for stillbirth.
King, W D; Dodds, L; Allen, A C; Armson, B A; Fell, D; Nimrod, C
2005-02-01
Trihalomethanes (THMs) occurring in public drinking water sources have been investigated in several epidemiological studies of fetal death and results support a modest association. Other classes of disinfection by-products found in drinking water have not been investigated. To investigate the effects of haloacetic acid (HAA) compounds in drinking water on stillbirth risk. A population based case-control study was conducted in Nova Scotia and Eastern Ontario, Canada. Estimates of daily exposure to total and specific HAAs were based on household water samples and questionnaire information on water consumption at home and work. The analysis included 112 stillbirth cases and 398 live birth controls. In analysis without adjustment for total THM exposure, a relative risk greater than 2 was observed for an intermediate exposure category for total HAA and dichloroacetic acid measures. After adjustment for total THM exposure, the risk estimates for intermediate exposure categories were diminished, the relative risk associated with the highest category was in the direction of a protective effect, and all confidence intervals included the null value. No association was observed between HAA exposures and stillbirth risk after controlling for THM exposures.
Fundamental studies of coal liquefaction. Quarterly report No. 8, July 1, 1993--October 1, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, D.S.
In the last report the effects of water, tetralin, and argon were discussed as media during the heating of Illinois No. 6 coal. In studies in which the temperature was ramped from ambient to 460{degrees}C at 30{degrees}C/min particles were observed to shrink in the case of both water and tetralin, and first swell and then collapse back to particles with their starting shapes in the case of argon. The result with tetralin was expected, but that for water was not. Similarly, the results in argon were not in accord with some models of coal pyrolysis which suggest that coals fullymore » liquefy when heated (Solomon, et al.). The work described here includes discussion of additional work with Illinois No. 6 coal with argon and water, and new work with n-undecane as medium.« less
Economic assessments of small-scale drinking-water interventions in pursuit of MDG target 7C.
Cameron, John; Jagals, Paul; Hunter, Paul R; Pedley, Steve; Pond, Katherine
2011-12-01
This paper uses an applied rural case study of a safer water intervention in South Africa to illustrate how three levels of economic assessment can be used to understand the impact of the intervention on people's well-being. It is set in the context of Millennium Development Goal 7 which sets a target (7C) for safe drinking-water provision and the challenges of reaching people in remote rural areas with relatively small-scale schemes. The assessment moves from cost efficiency to cost effectiveness to a full social cost-benefit analysis (SCBA) with an associated sensitivity test. In addition to demonstrating techniques of analysis, the paper brings out many of the challenges in understanding how safer drinking-water impacts on people's livelihoods. The SCBA shows the case study intervention is justified economically, though the sensitivity test suggests 'downside' vulnerability. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bąk, Joanna
2018-02-01
At high air temperatures persisting for a long time, water temperature in the fountains may also increase significantly. This can cause a sudden and significant increase in Legionella bacteria, which results in secondary water contamination. This phenomenon with water - air aerosol generated by fountains can be very dangerous for people. During the test, water temperature measurements in fountains in Poland were made. These research tests was conducted in the spring and summer. The research was conducted in order to determine whether there is a possibility of growth of Legionella bacteria. One of the aims of the study was to determine what temperature range occurs in the fountains and how the temperature changes in the basin of the fountain and when the highest temperature occurs. Single temperature measurements were made and also the temperature distribution was measured during daylight hours. The water temperature in most cases was greater than 20°C, but in no case exceed 26°C. The paper presents also the review about the effect of water temperature on the presence and bacterial growth. The study confirmed the existence of the risk of increasing the number of bacteria of the genus Legionella in the water in the fountains.
NASA Astrophysics Data System (ADS)
Scott, D.; Burgholzer, R.; Kleiner, J.; Brogan, C. O.; Julson, C.; Withers, E.
2017-12-01
Across the eastern United States, successful management of water resources to satisfy the competing demands for human consumption, industry, agriculture, and ecosystems requires both water quality and water quantity considerations. Over the last 2 decades, low streamflows during dry summers have increased scrutiny on water supply withdrawals. Within Virginia, a statewide hydrologic model provides quantitative assessments on impacts from proposed water withdrawals to downstream river flow. Currently, evaporative losses are only accounted for from the large reservoirs. In this study, we sought to provide a baseline estimate for the cumulative evaporation from impoundments across all of the major river basins in Virginia. Virginia provides an ideal case study for the competing water demands in the mid-Atlantic region given the unique tracking of water withdrawals throughout the river corridor. In the over 73,000 Virginia impoundments, the cumulative annual impoundment evaporation was 706 MGD, or 49% of the permitted water withdrawal. The largest reservoirs (>100 acres) represented over 400 MGD, and 136 MGD for the smaller impoundments (< 5 acres). In regions with high impoundment density, impoundment evaporation tended to be a significant fraction of the total amount of water loss (evaporation + demand), with some areas where impoundment evaporation was greater than human water demand. Seasonally, our results suggest that cumulative impoundment evaporation in some watersheds greatly impacts streamflow during low flow periods. Our results demonstrate that future water supply planning will require not only understanding evaporation within large reservoirs, but also the thousands of small impoundments across the landscape.
Sui, Jin Ling; Liu, Miao; Li, Chun Lin; Hu, Yuan Man; Wu, Yi Lin; Liu, Chong
2017-03-18
With the expansion of urban area, many cities are facing urban water environment issues, i.e., water resources shortage, lack of groundwater reserves, water pollution, urban waterlogging. For resolving these urban issues, 'sponge city' was proposed in 2015 in China. Liaodong Bay area of Panjin City in Liaoning Province of China was chosen as case study. Based on 'Sponge City Construction Technology Guide: Low Impact Development Rainwater System Building (Trial)', the underlying surface and types of land use in the typical area were analyzed. Sponge city plan of the study area was designed through combining topography, hydrology, rainfall intensity and other factors, and selecting LID measures. The results showed that when the study area reached the ove-rall target control rate (the control rate of the total annual runoff was >75%), the subsidence greenbelt rate was 1%-31%, with a total area of 13.73 km 2 ; the pervious pavement rate was 1%-13%, with a total area of 2.29 km 2 . This study could provide a case study for planning and designing of 'sponge city', proposing new ideas and methods for the research on landscape pattern and process.
Sitzenfrei, Robert; Möderl, Michael; Rauch, Wolfgang
2013-01-01
Traditional urban water management relies on central organised infrastructure, the most important being the drainage network and the water distribution network. To meet upcoming challenges such as climate change, the rapid growth and shrinking of cities and water scarcity, water infrastructure needs to be more flexible, adaptable and sustainable (e.g., sustainable urban drainage systems, SUDS; water sensitive urban design, WSUD; low impact development, LID; best management practice, BMP). The common feature of all solutions is the push from a central solution to a decentralised solution in urban water management. This approach opens up a variety of technical and socio-economic issues, but until now, a comprehensive assessment of the impact has not been made. This absence is most likely attributable to the lack of case studies, and the availability of adequate models is usually limited because of the time- and cost-intensive preparation phase. Thus, the results of the analysis are based on a few cases and can hardly be transferred to other boundary conditions. VIBe (Virtual Infrastructure Benchmarking) is a tool for the stochastic generation of urban water systems at the city scale for case study research. With the generated data sets, an integrated city-scale analysis can be performed. With this approach, we are able to draw conclusions regarding the technical effect of the transition from existing central to decentralised urban water systems. In addition, it is shown how virtual data sets can assist with the model building process. A simple model to predict the shear stress performance due to changes in dry weather flow production is developed and tested. PMID:24210508
Assessing the effect, on animal model, of mixture of food additives, on the water balance.
Friedrich, Mariola; Kuchlewska, Magdalena
2013-01-01
The purpose of this study was to determine, on the animal model, the effect of modification of diet composition and administration of selected food additives on water balance in the body. The study was conducted with 48 males and 48 females (separately for each sex) of Wistar strain rats divided into four groups. For drinking, the animals from groups I and III were receiving water, whereas the animals from groups II and IV were administered 5 ml of a solution of selected food additives (potassium nitrate - E 252, sodium nitrite - E 250, benzoic acid - E 210, sorbic acid - E 200, and monosodium glutamate - E 621). Doses of the administered food additives were computed taking into account the average intake by men, expressed per body mass unit. Having drunk the solution, the animals were provided water for drinking. The mixture of selected food additives applied in the experiment was found to facilitate water retention in the body both in the case of both male and female rats, and differences observed between the volume of ingested fluids and the volume of excreted urine were statistically significant in the animals fed the basal diet. The type of feed mixture provided to the animals affected the site of water retention - in the case of animals receiving the basal diet analyses demonstrated a significant increase in water content in the liver tissue, whereas in the animals fed the modified diet water was observed to accumulate in the vascular bed. Taking into account the fact of water retention in the vascular bed, the effects of food additives intake may be more adverse in the case of females.
Building Rain Water Tanks and Building Skills: A Case Study of a Women's Organization in Uganda
ERIC Educational Resources Information Center
Payne, Deborah; Nakato, Margaret; Nabalango, Caroline
2008-01-01
Water collection in rural areas of Uganda is left primarily to women and children. Katosi Women Development Trust, an NGO based in rural Uganda has focused on addressing the gender-linked issue of increased water sources near the home through the construction of rain water collection tanks. In an effort to improve the income of members as well as…
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Lambin, E. F.; Gorelick, S. M.; Thompson, B. H.; Rozelle, S.
2012-10-01
Freshwater scarcity has been cited as the major crisis of the 21st century, but it is surprisingly hard to describe the nature of the global water crisis. We conducted a meta-analysis of 22 coupled human-water system case studies, using qualitative comparison analysis (QCA) to identify water resource system outcomes and the factors that drive them. The cases exhibited different outcomes for human wellbeing that could be grouped into a six "syndromes": groundwater depletion, ecological destruction, drought-driven conflicts, unmet subsistence needs, resource capture by elite, and water reallocation to nature. For syndromes that were not successful adaptations, three characteristics gave cause for concern: (1) unsustainability—a decline in the water stock or ecosystem function that could result in a long-term steep decline in future human wellbeing; (2) vulnerability—high variability in water resource availability combined with inadequate coping capacity, leading to temporary drops in human wellbeing; (3) chronic scarcity—persistent inadequate access and hence low conditions of human wellbeing. All syndromes could be explained by a limited set of causal factors that fell into four categories: demand changes, supply changes, governance systems, and infrastructure/technology. By considering basins as members of syndrome classes and tracing common causal pathways of water crises, water resource analysts and planners might develop improved water policies aimed at reducing vulnerability, inequity, and unsustainability of freshwater systems.
Family relationship, water contact and occurrence of Buruli ulcer in Benin.
Sopoh, Ghislain Emmanuel; Barogui, Yves Thierry; Johnson, Roch Christian; Dossou, Ange Dodji; Makoutodé, Michel; Anagonou, Sévérin Y; Kestens, Luc; Portaels, Françoise
2010-07-13
Mycobacterium ulcerans disease (Buruli ulcer) is the most widespread mycobacterial disease in the world after leprosy and tuberculosis. How M. ulcerans is introduced into the skin of humans remains unclear, but it appears that individuals living in the same environment may have different susceptibilities. This study aims to determine whether frequent contacts with natural water sources, family relationship or the practice of consanguineous marriages are associated with the occurrence of Buruli ulcer (BU). Case control study. Department of Atlantique, Benin. BU-confirmed cases that were diagnosed and followed up at the BU detection and treatment center (CDTUB) of Allada (Department of the Atlantique, Benin) during the period from January 1st, 2006, to June 30th, 2008, with three matched controls (persons who had no signs or symptoms of active or inactive BU) for age, gender and village of residence per case. Contact with natural water sources, BU history in the family and the practice of consanguineous marriages. A total of 416 participants were included in this study, including 104 cases and 312 controls. BU history in the family (p<0.001), adjusted by daily contact with a natural water source (p = 0.007), was significantly associated with higher odds of having BU (OR; 95% CI = 5.5; 3.0-10.0). The practice of consanguineous marriage was not associated with the occurrence of BU (p = 0.40). Mendelian disorders could explain this finding, which may influence individual susceptibility by impairing immunity. This study suggests that a combination of genetic factors and behavioral risk factors may increase the susceptibility for developing BU.
Water and Benefit Sharing in Transboundary River Basins
NASA Astrophysics Data System (ADS)
Arjoon, D.; Tilmant, A.; Herrmann, M.
2015-12-01
Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.
NASA Astrophysics Data System (ADS)
Beller-Simms, N.; Metchis, K.
2014-12-01
Water utilities, reeling from increased impacts of successive extreme events such as floods, droughts, and derechos, are taking a more proactive role in preparing for future incursions. A recent study by Federal and water foundation investigators, reveals how six US water utilities and their regions prepared for, responded to, and coped with recent extreme weather and climate events and the lessons they are using to plan future adaptation and resilience activities. Two case studies will be highlighted. (1) Sonoma County, CA, has had alternating floods and severe droughts. In 2009, this area, home to competing water users, namely, agricultural crops, wineries, tourism, and fisheries faced a three-year drought, accompanied at the end by intense frosts. Competing uses of water threatened the grape harvest, endangered the fish industry and resulted in a series of regulations, and court cases. Five years later, new efforts by partners in the entire watershed have identified mutual opportunities for increased basin sustainability in the face of a changing climate. (2) Washington DC had a derecho in late June 2012, which curtailed water, communications, and power delivery during a record heat spell that impacted hundreds of thousands of residents and lasted over the height of the tourist-intensive July 4th holiday. Lessons from this event were applied three months later in anticipation of an approaching Superstorm Sandy. This study will help other communities in improving their resiliency in the face of future climate extremes. For example, this study revealed that (1) communities are planning with multiple types and occurrences of extreme events which are becoming more severe and frequent and are impacting communities that are expanding into more vulnerable areas and (2) decisions by one sector can not be made in a vacuum and require the scientific, sectoral and citizen communities to work towards sustainable solutions.
Masthi, N R Ramesh; Madhusudan, M; Puthussery, Yannick P
2015-11-01
The global positioning system (GPS) technology along with Google Earth is used to measure (spatial map) the accurate distribution of morbidity, mortality and planning of interventions in the community. We used this technology to find out its role in the investigation of a cholera outbreak, and also to identify the cause of the outbreak. This study was conducted in a village near Bengaluru, Karnataka in June 2013 during a cholera outbreak. House-to-house survey was done to identify acute watery diarrhoea cases. A hand held GPS receiver was used to record north and east coordinates of the households of cases and these values were subsequently plotted on Google Earth map. Water samples were collected from suspected sources for microbiological analysis. A total of 27 cases of acute watery diarrhoea were reported. Fifty per cent of cases were in the age group of 14-44 yr and one death was reported. GPS technology and Google Earth described the accurate location of household of cases and spot map generated showed clustering of cases around the suspected water sources. The attack rate was 6.92 per cent and case fatality rate was 3.7 per cent. Water samples collected from suspected sources showed the presence of Vibrio cholera O1 Ogawa. GPS technology and Google Earth were easy to use, helpful to accurately pinpoint the location of household of cases, construction of spot map and follow up of cases. Outbreak was found to be due to contamination of drinking water sources.
This report describes the retrospective case study that was conducted in the Colorado portion of the Raton Basin, located within Las Animas and Huerfano counties. These locations are the focus of unconventional gas production of coalbed methane (CBM) from several coal-bearing st...
Auvinen, Anssi; Kurttio, Päivi; Pekkanen, Juha; Pukkala, Eero; Ilus, Taina; Salonen, Laina
2002-11-01
We assessed the effect of natural uranium and other radionuclides in drinking water on risk of leukemia. The subjects (n = 144,627) in the base cohort had lived outside the municipal tapwater system during 1967-1980. A subcohort was formed as a stratified random sample of the base cohort and subjects using drinking water from drilled wells prior to 1981 were identified. A case-cohort design was used comparing exposure among cases with leukemia (n = 35) with a stratified random sample (n = 274) from the subcohort. Activity concentrations of uranium, radium-226, and radon in the drinking water were analyzed using radiochemical and alpha-spectrometric methods. The median activity concentration of uranium in well water was 0.08 Bq/L for the leukemia cases and 0.06 Bq/L for the reference group, radon concentrations 80 and 130 Bq/L, respectively, and radium-226 concentrations 0.01 Bq/L for both groups. The hazard ratio of leukemia for uranium was 0.91 (95% confidence interval 0.73-1.13) per Bq/L. for radon 0.79 per Bq/L (95% CI 0.27-2.29), and for radium-226 0.80 (95% CI 0.46-1.39) per Bq/L. Our results do not indicate an increased risk of leukemia from ingestion of natural uranium or other radionuclides through drinking water at these exposure levels.
EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & ...
Schrøder, Stine; Homøe, Preben; Wagner, Niels; Vataire, Anne-Lise; Lundager Madsen, Hans Erik; Bardow, Allan
2015-01-01
Objectives Sialolithiasis, or salivary stones, is not a rare disease of the major salivary glands. However, the aetiology and incidence remain largely unknown. Since sialoliths are comprised mainly of calcium phosphate salts, we hypothesise that drinking water calcium levels and other elements in drinking water could play a role in sialolithiasis. Owing to substantial intermunicipality differences in drinking water composition, Denmark constitutes a unique environment for testing such relations. Design An epidemiological study based on patient data extracted from the National Patient Registry and drinking water data from the Geological Survey of Denmark and Greenland retrieved as weighted data on all major drinking water constituents for each of the 3364 waterworks in Denmark. All patient cases with International Statistical Classification of Diseases 10th Revision (ICD-10) codes for sialolithiasis registered between the years 2000 and 2010 were included in the study (n=3014) and related to the drinking water composition on a municipality level (n=98). Primary and secondary outcome measures Multiple regression analysis using iterative search and testing among all demographic and drinking water variables with sialolithiasis incidence as the outcome in search of possible relations among the variables tested. Results The nationwide incidence of hospital-admitted sialolithiasis was 5.5 cases per 100 000 citizens per year in Denmark. Strong relations were found between the incidence of sialolithiasis and the drinking water concentration of calcium, magnesium and hydrogen carbonate, however, in separate models (p<0.001). Analyses also confirmed correlations between drinking water calcium and magnesium and their concentration in saliva whereas this was not the case for hydrogen carbonate. Conclusions Differences in drinking water calcium and magnesium may play a role in the incidence of sialolithiasis. These findings are of interest because many countries have started large-scale desalination programmes of drinking water. PMID:25941183
Guthmann, Jean-Paul; Klovstad, Hilde; Boccia, Delia; Hamid, Nuha; Pinoges, Loretxu; Nizou, Jacques-Yves; Tatay, Mercedes; Diaz, Francisco; Moren, Alain; Grais, Rebecca Freeman; Ciglenecki, Iza; Nicand, Elisabeth; Guerin, Philippe Jean
2006-06-15
The conflict in Darfur, Sudan, was responsible for the displacement of 1.8 million civilians. We investigated a large outbreak of hepatitis E virus (HEV) infection in Mornay camp (78,800 inhabitants) in western Darfur. To describe the outbreak, we used clinical and demographic information from cases recorded at the camp between 26 July and 31 December 2004. We conducted a case-cohort study and a retrospective cohort study to identify risk factors for clinical and asymptomatic hepatitis E, respectively. We collected stool and serum samples from animals and performed a bacteriological analysis of water samples. Human samples were tested for immunoglobulin G and immunoglobulin M antibody to HEV (for serum samples) and for amplification of the HEV genome (for serum and stool samples). In 6 months, 2621 hepatitis E cases were recorded (attack rate, 3.3%), with a case-fatality rate of 1.7% (45 deaths, 19 of which involved were pregnant women). Risk factors for clinical HEV infection included age of 15-45 years (odds ratio, 2.13; 95% confidence interval, 1.02-4.46) and drinking chlorinated surface water (odds ratio, 2.49; 95% confidence interval, 1.22-5.08). Both factors were also suggestive of increased risk for asymptomatic HEV infection, although this was not found to be statistically significant. HEV RNA was positively identified in serum samples obtained from 2 donkeys. No bacteria were identified from any sample of chlorinated water tested. Current recommendations to ensure a safe water supply may have been insufficient to inactivate HEV and control this epidemic. This research highlights the need to evaluate current water treatment methods and to identify alternative solutions adapted to complex emergencies.
Making the Business Case for Regional and National Water Data Collection
NASA Astrophysics Data System (ADS)
Pinero, E.
2017-12-01
Water-related risks are becoming more and more of a concern with organizations that either depend on water use or are responsible for water services provision. Yet this concern does not always translate into a business case to support large scale water data collection. One reason is that water demand varies across sectors and physical setting. There is typically no single parameter or reason where a given entity would be interested in national or even regional scale data. Even for public sector entities, water issues are local and their jurisdiction does not span regional scale coverage. Therefore, to make the case for adequate data collection not only are technology and web platforms necessary, but one also needs a compelling business case. One way to make the case will involve raising awareness of the critical cross-cutting role of water such that sectors see the need for water data to support sustainability of other systems, such as energy, food, and resilience. Another factor will be understanding the full life cycle role of water, especially in the supply chain, and that there are many variables that drive water demand. Such an understanding will make clearer the need for more regional scale understanding. This will begin to address the apparent catch 22 that there is a need for data to understand the scope of the challenge, but until the scope of the challenge is understood, there is nno impelling business case to collect data. Examples, such as the Alliance for Water Stewardship standard and CEO Water Mandate Water Action Hub will be discussed to illustrate recent innovations in making a case for efficient collection of watershed scale and regional data.
Alman, Breanna L; Coffman, Evan; Siega-Riz, Anna Maria; Luben, Thomas J
2017-02-15
Water and water-based beverages constitute a major part of daily fluid intake for pregnant women, yet few epidemiologic studies have investigated the role of water consumption on birth outcomes. We used data from the National Birth Defects Prevention Study to conduct a case-control study investigating associations between maternal water consumption during pregnancy and birth defects (BD). We used interview data on water consumption during the first trimester of pregnancy in 14,454 cases (major BDs n ≥ 50) and 5,063 controls. Total water consumption was analyzed as a continuous variable and in quartiles. We evaluated the role of dietary quality and sugar sweetened beverage consumption. Logistic regression models were used to assess effects of water consumption on risk of BDs with adjustment for relevant covariates. Mean daily maternal water consumption among controls was 4.4 eight-ounce glasses. We observed decreases in estimated risk associated with increases in water consumption for several BDs, including neural tube defects (spina bifida), oral clefts (cleft lip), musculoskeletal defects (gastroschisis, limb deficiencies), and congenital heart defects (hypoplastic left heart syndrome, right-sided obstructions, pulmonary valve stenosis). Our results were generally unchanged when an indicator for overall dietary quality was included; however, there was evidence of effect measure modification by heavy consumption of sugar-sweetened beverages for some defects, but not all. These analyses suggest the importance of sufficient water consumption during early pregnancy, above and beyond it being a marker of higher diet quality. Additional analyses are warranted to understand the biological mechanism for this association. Birth Defects Research 109:193-202, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rapid detection of bacteria in drinking water and water contamination case studies
NASA Astrophysics Data System (ADS)
Deininger, Rolf A.; Lee, Jiyoung; Clark, Robert M.
2011-12-01
Water systems are inherently vulnerable to physical, chemical and biologic threats that might compromise a systems' ability to reliably deliver safe water. The ability of a water supply to provide water to its customers can be compromised by destroying or disrupting key physical elements of the water system. However, contamination is generally viewed as the most serious potential terrorist threat to water systems. Chemical or biologic agents could spread throughout a distribution system and result in sickness or death among the consumers and for some agents the presence of the contaminant might not be known until emergency rooms report an increase in patients with a particular set of symptoms. Even without serious health impacts, just the knowledge that a water system had been breached could seriously undermine consumer confidence in public water supplies. Therefore, the ability to rapidly detect contamination, especially microbiological contamination, is highly desirable. The authors summarize water contamination case studies and discuss a technique for identifying microbiological contamination based on ATP bioluminescence. This assay allows an estimation of bacterial populations within minutes and can be applied using a local platform. Previous ATP-based methods requires one hour, one liter of water, and has a sensitivity of 100000 cells for detection. The improved method discussed here is 100 times more sensitive, requires one-hundredth of the sample volume, and is over 10 times faster than standard method. This technique has a great deal of potential for application in situations in which a water system has been compromised.
NASA Astrophysics Data System (ADS)
Sobotkova, Martina; Snehota, Michal; Tesar, Miroslav
2017-04-01
Isothermal and non-isothermal infiltration experiments with tracer breakthrough were carried out in the laboratory on intact column of sandy loam soil taken from Roklan site (Sumava Mountains, Czech Republic). In the case of isothermal experiment, the temperature of infiltrating water was almost equal to the initial temperature of the sample. For the non-isothermal case the infiltration was performed using water approximately 10 °C colder than was the initial temperature of soil sample. The experiments were otherwise conducted under the same initial and boundary conditions. Pressure heads and temperatures in two depths (8.8 and 15.3 cm) inside the soil were monitored as well as the temperature of water entering and leaving the sample. Water drained freely through the perforated plate at the bottom of the sample by gravity and outflow was measured using tipping bucket flowmeter. Permeability of the sample calculated for steady state stages of the experiment showed that significant difference between water flow rates recorded during two experiment could not be justified only by temperature induced changes of water viscosity and density. Results of deuterium breakthrough were nearly identical for isothermal and non-isothermal conditions.
The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water
NASA Astrophysics Data System (ADS)
Chandler, David; Limmer, David
2013-03-01
Our detailed and controlled studies of free energy surfaces for models of water find no evidence for reversible polyamorphism, and a general theoretical analysis of the phase behavior of cold water in nano pores shows that measured behaviors of these systems reflect surface modulation and dynamics of ice, not a liquid-liquid critical point. A few workers reach different conclusions, reporting evidence of a liquid-liquid critical point in computer simulations of supercooled water. In some cases, it appears that these contrary results are based upon simulation algorithms that are inconsistent with principles of statistical mechanics, such as using barostats that do not reproduce the correct distribution of volume fluctuations. In other cases, the results appear to be associated with difficulty equilibrating the supercooled material and mistaking metastability for coarsening of the ordered ice phase. In this case, sufficient information is available for us to reproduce the contrary results and to establish that they are artifacts of finite time sampling. This finding leads us to the conclusion that two distinct, reversible liquid phases do not exist in models of supercooled water.
When water saving limits recycling: Modelling economy-wide linkages of wastewater use.
Luckmann, Jonas; Grethe, Harald; McDonald, Scott
2016-01-01
The reclamation of wastewater is an increasingly important water source in parts of the world. It is claimed that wastewater recycling is a cheap and reliable form of water supply, which preserves water resources and is economically efficient. However, the quantity of reclaimed wastewater depends on water consumption by economic agents connected to a sewage system. This study uses a Computable General Equilibrium (CGE) model to analyse such a cascading water system. A case study of Israel shows that failing to include this linkage can lead to an overestimation of the potential of wastewater recycling, especially when economic agents engage in water saving. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using Case Studies to Teach Interdisciplinary Water Resource Sustainability
NASA Astrophysics Data System (ADS)
Orr, C. H.; Tillotson, K.
2012-12-01
Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts in precipitation which will alter both water availability and dilution capacity. Possible stakeholders include not only municipal, agricultural and industrial water users but also several levels of regulatory governance as the watershed crosses state lines and includes tribal lands. While the water system is bound by the limits of stratigraphy and hydrology, there are feedbacks to the physical system revealed feedbacks to the physical system resulting from decisions, preferences, and beliefs of the stakeholders. The complexity of these feedbacks are most easily explored through discussion of the specific case, which can then be generalized. The course design encourages participation and let students discuss, argue, and think critically about real problems they can identify with and that interest them. Walking through the cases shows students how complicated environmental problem-solving can be in a way that they internalize and how these ideas are then transferable to other situations.
How much should customers be compensated for interruptions in the drinking water supply?
Molinos-Senante, María; Sala-Garrido, Ramon
2017-05-15
Water supply interruptions directly affect customers, and customers should be compensated accordingly. However, few water regulators have applied compensation policies given the difficulty of estimating the economic value of compensation to customers. In this study, a pioneering approach based on the concept of shadow prices is proposed to determine the compensation that customers should receive for unplanned water interruptions. The Chilean water industry was selected as a case study because there is an ongoing policy discussion between the use of penalties or compensation as an incentive to prevent water supply interruptions. The estimated results indicate that for 2014, the value of compensation ranges between 2.4% and 35.4% of the fixed charge of the water tariff. The methodology and findings of this study are of great relevance to water regulators in defining incentives to prompt water companies to provide reliable water service. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of arsenic contaminated drinking water on human chromosome: a case study.
Singh, Asha Lata; Singh, Vipin Kumar; Srivastava, Anushree
2013-10-01
Arsenic contamination of ground water has become a serious problem all over the world. Large number of people from Uttar Pradesh, Bihar and West Bengal of India are suffering due to consumption of arsenic contaminated drinking water. Study was carried out on 30 individuals residing in Ballia District, UP where the maximum concentration of arsenic was observed around 0.37 ppm in drinking water. Blood samples were collected from them to find out the problem related with arsenic. Cytogenetic study of the blood samples indicates that out of 30, two persons developed Klinefelter syndrome.
Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique
2014-12-15
Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). Copyright © 2014 Elsevier Ltd. All rights reserved.
Groundwater potential for water supply during droughts in Korea
NASA Astrophysics Data System (ADS)
Hyun, Y.; Cha, E.; Moon, H. J.
2016-12-01
Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water infrastructure and high groundwater use potential. For concrete conclusions, rigorous study on performance evaluation of water supply using groundwater is further needed.
NASA Astrophysics Data System (ADS)
Reed, P. M.
2013-12-01
Water resources planning and management has always required the consideration of uncertainties and the associated system vulnerabilities that they may cause. Despite the long legacy of these issues, our decision support frameworks that have dominated the literature over the past 50 years have struggled with the strongly multiobjective and deeply uncertain nature of water resources systems. The term deep uncertainty (or Knightian uncertainty) refers to factors in planning that strongly shape system risks that maybe unknown and even if known there is a strong lack of consensus on their likelihoods over decadal planning horizons (population growth, financial stability, valuation of resources, ecosystem requirements, evolving water institutions, regulations, etc). In this presentation, I will propose and demonstrate the many-objective robust decision making (MORDM) framework for water resources management under deep uncertainty. The MORDM framework will be demonstrated using an urban water portfolio management test case. In the test case, a city in the Lower Rio Grande Valley managing population and drought pressures must cost effectively maintain the reliability of its water supply by blending permanent rights to reservoir inflows with alternative strategies for purchasing water within the region's water market. The case study illustrates the significant potential pitfalls in the classic Cost-Reliability conception of the problem. Moreover, the proposed MORDM framework exploits recent advances in multiobjective search, visualization, and sensitivity analysis to better expose these pitfalls en route to identifying highly robust water planning alternatives.
This draft report supports application of two recently developed water modeling tools, the BASINS and WEPP climate assessment tools. The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments...
A Case Study of a School-Based Curriculum Development as a Model for INSET.
ERIC Educational Resources Information Center
Keiny, Shoshana; Weiss, Tzila
1986-01-01
Using a school-based curriculum development approach, the Israeli Environmental Education Project constructed a conceptual model for environmental education curriculum development. A team of teachers sharing knowledge developed a case study about water regulation and its consequences in a desert environment, which is described. (MT)
On the Capabilities of Using AIRSAR Data in Surface Energy/Water Balance Studies
NASA Technical Reports Server (NTRS)
Moreno, Jose F.; Saatchi, Susan S.
1996-01-01
The capabilities of using remote sensing data, and in particular multifrequency/multipolarization SAR data, like AIRSAR, for the retrieval of surface parameters, depend considerably on the specificity of each application. The potentials, and limitations, of SAR data in ecological investigations are well known. Because the chemistry is a major component in such studies and because of the almost lacking chemical information at the wavelengths of SAR data, the capabilities of using SAR-derived information in such studies are considerably limited. However, in the case of surface energy/water balance studies, the determination of the amount of water content, both in the soil and in the plants, is a major component in all modeling approaches. As the information about water content is present in the SAR signal, then the role of SAR data in studies where water content is to be determined becomes clearly predominant. Another situation where the role of SAR data becomes dominant over other remote sensing systems is the case of dense canopies. Because of the penetration capabilities of microwave data, which is especially superior as compared to optical data, information about the canopy as a whole and even the underlying soil is contained in the SAR data, while only the top canopy provides the information content in the case of optical data. In the case of relatively dense canopies, as has been demonstrated in this study, such different penetration capabilities provide very different results in terms of the derived total canopy water content, for instance. However, although all such capabilities are well known, unfortunately there are also well known limitations. Apart from calibration-related aspects (that we will not consider in this study), and apart from other intrinsic problems (like image noise, topographic corrections, etc.) which also significantly affect the derived results, we will concentrate on the problem of extracting information from the data. Even at this level, methods are still not fully well established, especially over vegetation-covered areas. In this paper, an algorithm is described which allows derivation of three fundamental parameters from SAR data: soil moisture, soil roughness and canopy water content, accounting for the effects of vegetation cover by using optical (Landsat) data as auxiliary. Capabilities and limitations of the data and algorithms are discussed, as well as possibilities to use these data in energy/water balance modeling studies. All the data used in this study were acquired as part of the Intensive Observation Period in June-July 1991 (European Multisensor Aircraft Campaign-91), as part of the European Field Experiment in a Desertification- threatened Area (EFEDA), a European contribution to the global-change research sponsored by the IGBP program (Bolle et al., 1993).
Application of Habitat Equivalency Analysis to USACE Projects
2009-04-01
reef, open - water bay bottoms, and water column habitats. Of the four case studies, Craney Island is the only one where the logic behind the choice of...Act (NEPA) of 1969, the Federal Water Pollution Act (Clean Water Act) of 1972, and the Water Resources Development Act (WRDA) of 1986, as well as...mitigation. These habitats support a diverse assemblage of sponges, algae , and soft and hard corals, provide habitat for larval fish, and are considered
Rosa, Ghislaine; Kelly, Paul; Clasen, Thomas
2016-01-01
Household water treatment (HWT) can improve drinking water quality and prevent disease, if used correctly and consistently. While international monitoring suggests that 1.8 billion people practice HWT, these estimates are based on household surveys that may overstate the level of consistent use and do not address microbiological effectiveness. We sought to examine how HWT is practiced among households identified as HWT users according to international monitoring standards. Case studies were conducted in urban and rural Zambia. After a baseline survey (urban: 203 households, rural: 276 households) to identify HWT users, 95 urban and 82 rural households were followed up for 6 weeks. Consistency of HWT reporting was low; only 72.6% of urban and 50.0% of rural households reported to be HWT users in the subsequent visit. Similarly, availability of treated water was low, only 23.3% and 4.2% of urban and rural households, respectively, had treated water on all visits. Drinking water was significantly worse than source water in both settings. Only 19.6% of urban and 2.4% of rural households had drinking water free of thermotolerant coliforms on all visits. Our findings raise questions about the value of the data gathered through the international monitoring of HWT practices as predictors of water quality in the home. PMID:26572868
Nerkar, Sandeep S; Tamhankar, Ashok J; Khedkar, Smita U; Lundborg, Cecilia Stålsby
2014-06-01
In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV) compared to integrated watershed management villages (IWMV) (95% CI 0.8–6.45, p = 0.081). The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05) was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.
[Problems of epidemic safety of drinking water use by the population of Russia].
Nedachin, A E; Artemova, T Z; Dmitrieva, R A; Doskina, T V; Talaeva, Iu G; Ivanova, L V; Butorina, N N; Lavrova, D V; Sanamian, A G; Zagaĭnova, A V; Aleshnia, V V; Zhuravlev, P V; Golovina, S V; Panasovets, O P; Savilov, E D; Mamontova, L M; Anganova, E V
2005-01-01
Quantitative relationships were studied between the indicators (common coliform bacteria (CCP), glucose-positive bacteria (GPB), thermoduric bacteria (TDB), coliform bacteria, enterococci, clostridia, coliphages) and the opportunistic (Pseudomonas aeruginosa, Proteus, Klebsiella) and pathogenetic (Salmonella and intestinal viruses) microorganisms at the stages of effluent purification and decontamination, in processes of self-purification in the water reservoirs and of water preparation at water-supplying stations, as well as in the association with the incidence of acute intestinal infections of bacterial and viral genesis in different climatic zones of the country. Salmonella and the opportunistic bacteria of the Enterobacteriaceae family and Pseudomonas aeruginosa were found to be highly resistant to detoxifying agents and environmental factors, adaptable, able to reproduce in pure water, to long survive in underground waters, and to accumulate when water is desalinated at the erections. The cases of intestinal infections were found in the population using the portable water of the standard quality in terms of E. coli, TDB, CCB, and enterococci. In this case only the wider integral index of GPB, which includes the indices of E. coli, TDB, CCB, as well as lactose-negative pathogenic and opportunistic species retains its sanitary significance in terms of all signs and is a reliable indicator of the potential epidemic hazard of drinking water use. Long-term studies have provided evidence for the sanitary value of coliphages as indicators of viral drinking water contamination.
NASA Astrophysics Data System (ADS)
Xie, Chen; Yang, Fan; Liu, Guoqing; Liu, Yang; Wang, Long; Fan, Ziwu
2017-01-01
Water environment of urban rivers suffers degradation with the impacts of urban expansion, especially in Yangtze River Delta. The water area in cites decreased sharply, and some rivers were cut off because of estate development, which brings the problems of urban flooding, flow stagnation and water deterioration. The approach aims to enhance flood control capability and improve the urban river water quality by planning gate-pump stations surrounding the cities and optimizing the locations and functions of the pumps, sluice gates, weirs in the urban river network. These gate-pump stations together with the sluice gates and weirs guarantee the ability to control the water level in the rivers and creating hydraulic gradient artificially according to mathematical model. Therefore the flow velocity increases, which increases the rate of water exchange, the DO concentration and water body self-purification ability. By site survey and prototype measurement, the river problems are evaluated and basic data are collected. The hydrodynamic model of the river network is established and calibrated to simulate the scenarios. The schemes of water quality improvement, including optimizing layout of the water distribution projects, improvement of the flow discharge in the river network and planning the drainage capacity are decided by comprehensive Analysis. Finally the paper introduces the case study of the approach in Changshu City, where the approach is successfully implemented.
Nerkar, Sandeep S.; Tamhankar, Ashok J.; Khedkar, Smita U.; Stålsby Lundborg, Cecilia
2014-01-01
In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV) compared to integrated watershed management villages (IWMV) (95% CI 0.8–6.45, p = 0.081). The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05) was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV. PMID:24991664
Developing a national framework for safe drinking water--case study from Iceland.
Gunnarsdottir, Maria J; Gardarsson, Sigurdur M; Bartram, Jamie
2015-03-01
Safe drinking water is one of the fundaments of society and experience has shown that a holistic national framework is needed for its effective provision. A national framework should include legal requirements on water protection, surveillance on drinking water quality and performance of the water supply system, and systematic preventive management. Iceland has implemented these requirements into legislation. This case study analyzes the success and challenges encountered in implementing the legislation and provide recommendations on the main shortcomings identified through the Icelandic experience. The results of the analysis show that the national framework for safe drinking water is mostly in place in Iceland. The shortcomings include the need for both improved guidance and control by the central government; and for improved surveillance of the water supply system and implementation of the water safety plan by the Local Competent Authorities. Communication to the public and between stakeholders is also insufficient. There is also a deficiency in the national framework regarding small water supply systems that needs to be addressed. Other elements are largely in place or on track. Most of the lessons learned are transferable to other European countries where the legal system around water safety is built on a common foundation from EU directives. The lessons can also provide valuable insights into how to develop a national framework elsewhere. Copyright © 2014 Elsevier GmbH. All rights reserved.
Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants
NASA Astrophysics Data System (ADS)
Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo
2016-10-01
The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.
NASA Astrophysics Data System (ADS)
Foglia, L.; Borsi, I.; Cannata, M.; De Filippis, G.; Criollo, R.; Mehl, S.; Rossetto, R.
2017-12-01
The interaction of environmental, physical, and socioeconomic processes alter and are altered by water and by how human can affect water use. For example, a warming climate increases the chance of warm temperatures and lack of precipitation, and when combined with growing population requires understanding of impact on water resources and on all the processes related to the water budget including evapotranspiration. On this foundation, humans add engineered and social systems to control, manage, utilize, and alter our water environment for a variety of uses and through a variety of organizational and individual decisions. Some engineered systems have mixed consequences, for example groundwater helped sustain agriculture during drought periods, but then groundwater levels critically decrease with no chances to recover in some parts of the world. Innovative ICT tools have been demonstrated as a helpful tool for enhancing human understanding of the effect that societal, economical, and policy-based decisions have on the water resources and on the environment in general. Here we apply the new FREEWAT platform to demonstrate the importance of developing ad-hoc database and hydrological models to simulate different scenarios using a participatory approach. Stakeholders have been involved in data collection, database design and model development during the entire project period and discussion between researcher and stakeholders have been fostered during Focus Groups and workshops organized in many countries in Europe and beyond (including case studies in Ukraine and Africa). FREEWAT is an open source and public domain GIS integrated modelling environment for simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and related Directives. Fourteen case studies have been considered and database and models have been developed and discussed with the local stakeholders. Here a summary of the drawbacks and successes of this approach will be presented using careful analysis of the case study implemented within the project.
NASA Astrophysics Data System (ADS)
Bespalov, Yurii G.; Nosov, Konstantin V.; Vysotska, Olena V.; Porvan, Andrii P.; Omiotek, Zbigniew; Burlibay, Aron; Assembay, Azat; Szatkowska, Małgorzata
2017-08-01
This study aims at mathematical modeling of systemic factors threatening the sanitary and hygienic state of sources of water supply. It is well-known, that this state affects health of population consuming water from different water sources (lakes, reservoirs, rivers). In particular, water quality problem may cause allergic reactions that are the important problem of health care. In the paper, the authors present the mathematical model, that enables on the basis of observations of a natural system to predict the system's behavior and determine the risks related to deterioration of drinking water resources. As a case study, we uses supply of drinking water from Lake Sevan, but the approach developed in the study can be applied to wide area of adjacent problems.
ERIC Educational Resources Information Center
Willermet, Cathy; Drake, Eron; Mueller, Anja; Juris, Stephen J.; Chhetri, Pratik; Upadhaya, Samik
2014-01-01
In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, "Water as Life, Death, and Power," brought together topics from the fields of anthropology, biology and chemistry to explore…
USDA-ARS?s Scientific Manuscript database
This volume of the Advances in Agricultural Systems Modeling series presents 14 different case studies of model applications to help make the best use of limited water in agriculture. These examples show that models have tremendous potential and value in enhancing site-specific water management for ...
Over the last 10 years the EPA has invested in analytic elements as a computational method used in public domain software supporting capture zone delineation for source water assessments and wellhead protection. The current release is called WhAEM2000 (wellhead analytic element ...
This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...
The use of Indices of Biotic Integrity (IBI) to assess aquatic waters has become an acceptable practice for many Clean Water Act (CWA) agencies. For states that share waters such as Minnesota and Wisconsin along the Mississippi River, the states’ respective IBIs may show vastly d...
Groundwater contaminations and health perspectives in developing world case study: Gaza Strip.
Shomar, B
2011-04-01
Groundwater is the only source of water in the Gaza Strip. The results of a 10-year monitoring program revealed that more than 90% of the available water is not suitable for drinking purposes as a result of elevated chemical contaminants as well as microbiological organisms. The archives of the local hospitals showed catastrophic records on diseases caused by water directly and indirectly. Methemoglobinemia and dental fluorosis are well-known diseases caused by elevated nitrate and fluoride, respectively. Water-borne diseases are currently high and will increase if water, sanitation, and food-control services are not restored, or are allowed to deteriorate further. Heavy use and misuse of banned and prohibited pesticides may show other hard diseases in the near future. Geography, politics, and war combine to make the Gaza Strip a worst-case scenario for water-resource planners. Urgent alternative water resources should be secured and the human health should be given the highest priority.
Yard flooding by irrigation canals increased the risk of West Nile disease in El Paso, Texas
Cardenas, Victor M.; Jaime, Javier; Ford, Paula B.; Gonzalez, Fernando J.; Carrillo, Irma; Gallegos, Jorge E.; Watts, Douglas M.
2011-01-01
Purpose To investigate the effects of use of water from irrigation canals to flood residential yards on the risk of West Nile disease in El Paso, Texas. Methods West Nile disease confirmed cases in 2009–2010 were compared with a random sample of 50 residents of the county according to access to and use of water from irrigation canals by subjects or their neighbors, as well as geo-referenced closest distance between their home address and the nearest irrigation canal. A windshield survey of 600 meters around the study subjects’ home address recorded the presence of irrigation canals. The distance from the residence of 182 confirmed cases of West Nile disease reported in 2003–2010 to canals was compared to that of the centroids of 182 blocks selected at random. Results Cases were more likely than controls to report their neighbors flooded their yards with water from canals. Irrigation canals were more often observed in neighborhoods of cases than of controls. Using the set of addresses of 182 confirmed cases and 182 hypothetic controls the authors found a statistically significant inverse relation with risk of West Nile disease. Conclusions Flooding of yards with water from canals increased the risk of West Nile disease. PMID:21943648
Yard flooding by irrigation canals increased the risk of West Nile disease in El Paso, Texas.
Cardenas, Victor M; Jaime, Javier; Ford, Paula B; Gonzalez, Fernando J; Carrillo, Irma; Gallegos, Jorge E; Watts, Douglas M
2011-12-01
To investigate the effects of use of water from irrigation canals to flood residential yards on the risk of West Nile disease in El Paso, Texas. West Nile disease confirmed cases in 2009 through 2010 were compared with a random sample of 50 residents of the county according to access to and use of water from irrigation canals by subjects or their neighbors, as well as geo-referenced closest distance between their home address and the nearest irrigation canal. A windshield survey of 600 m around the study subjects' home address recorded the presence of irrigation canals. The distance from the residence of 182 confirmed cases of West Nile disease reported in 2003 through 2010 to canals was compared with that of the centroids of 182 blocks selected at random. Cases were more likely than controls to report their neighbors flooded their yards with water from canals. Irrigation canals were more often observed in neighborhoods of cases than of controls. Using the set of addresses of 182 confirmed cases and 182 hypothetical controls the authors found a significant, inverse relation with risk of West Nile disease. Flooding of yards with water from canals increased the risk of West Nile disease. Copyright © 2011 Elsevier Inc. All rights reserved.
A case-control study of Yersinia enterocolitica infections in Auckland.
Satterthwaite, P; Pritchard, K; Floyd, D; Law, B
1999-10-01
To identify major risk factors for Yersinia enterocolitica (YE) and identify measures to reduce YE infections. A prospective case control study, group age matched, using 186 cases of YE identified by community pathology laboratories and 379 randomly selected controls. Conducted between April 1995 and June 1996 in Auckland, New Zealand. Face-to-face interviews used a standardised questionnaire examining exposures to factors potentially associated with YE infections including untreated water, unreticulated sewerage, consumption of selected foods, selected food handling practices and socio-demographic factors. Multivariate logistic regression was used to calculate adjusted odds ratios for the potential risk factors. Population attributable risk (PAR) was calculated for significant exposures. Having more than two people living in the home was more common among cases than controls (OR = 2.2). Town supply water (OR = 0.2), reticulated sewerage (OR = 0.34) and looking after a young child (OR = 0.51) were significantly less common. Of the meats, only pork (OR = 1.34) had a higher consumption rate, while bacon (OR = 0.75) and smallgoods (OR = 0.73) were consumed less frequently by cases than controls. Eating food from a sandwich bar was more frequent among cases (OR = 1.18). Fruit and vegetable consumption was marginally less (OR = 0.98). The population attributable risk of these factors was 0.89, implying that 89% of YE would be eliminated if adverse exposures were removed. The risk of YE illness is increased by contact with untreated water, unreticulated sewerage and consumption of pork. Investigation of non-town water supply, informal sewerage systems and methods of preparation and consumption of pork are recommended to determine how YE enters the human food chain.
Sustainable yields from large diameter wells in shallow weathered aquifers
NASA Astrophysics Data System (ADS)
Rushton, K. R.; de Silva, C. S.
2016-08-01
Large diameter wells in shallow weathered aquifers provide a valuable source of water for domestic and agricultural purposes in many locations including the Indian subcontinent. However, when used for irrigation, these wells often fail towards the end of the dry season. By considering two case studies in the dry and intermediate rainfall zones of Sri Lanka, reasons for the limited yield of these wells are identified. The first case study is concerned with a sloping catchment; a significant proportion of the precipitation during the rainy season either becomes runoff or passes down-gradient through the aquifer and is discharged at the ground surface. Furthermore, during the dry season, groundwater discharge continues. In the second case study the topography is generally flat but, even though the aquifer fills most years during the rainy season, there is often only sufficient water to irrigate about half of each farmer's holding. These investigations are based on field information and the development of conceptual and computational models. Of critical importance in assessing the long term yield of a well is the formation of a seepage face on the side of the well, with the water table a significant distance above the pumping water level. Consequently the water table may only be lowered to about half the depth of the well. The paper concludes with recommendations for the exploitation of groundwater from shallow weathered aquifers to minimise the risk of failure during the dry season.
Leskens, J G; Brugnach, M; Hoekstra, A Y
2014-01-01
Water simulation models are available to support decision-makers in urban water management. To use current water simulation models, special expertise is required. Therefore, model information is prepared prior to work sessions, in which decision-makers weigh different solutions. However, this model information quickly becomes outdated when new suggestions for solutions arise and are therefore limited in use. We suggest that new model techniques, i.e. fast and flexible computation algorithms and realistic visualizations, allow this problem to be solved by using simulation models during work sessions. A new Interactive Water Simulation Model was applied for two case study areas in Amsterdam and was used in two workshops. In these workshops, the Interactive Water Simulation Model was positively received. It included non-specialist participants in the process of suggesting and selecting possible solutions and made them part of the accompanying discussions and negotiations. It also provided the opportunity to evaluate and enhance possible solutions more often within the time horizon of a decision-making process. Several preconditions proved to be important for successfully applying the Interactive Water Simulation Model, such as the willingness of the stakeholders to participate and the preparation of different general main solutions that can be used for further iterations during a work session.
Bräuner, Elvira Vaclavik; Nordsborg, Rikke Baastrup; Andersen, Zorana Jovanovic; Tjønneland, Anne; Loft, Steffen
2014-01-01
Background: Established causes of diabetes do not fully explain the present epidemic. High-level arsenic exposure has been implicated in diabetes risk, but the effect of low-level arsenic exposure in drinking water remains unclear. Objective: We sought to determine whether long-term exposure to low-level arsenic in drinking water in Denmark is associated with an increased risk of diabetes using a large prospective cohort. Methods: During 1993–1997, we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water-supply areas. We estimated individual exposure to arsenic using all addresses from 1 January 1971 until the censoring date. Cox proportional hazards models were used to model the association between arsenic exposure and diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition in which cases of diabetes based solely on blood glucose results were excluded. Results: Over a mean follow-up period of 9.7 years for 52,931 eligible participants, there were a total of 4,304 (8.1%) diabetes cases, and 3,035 (5.8%) cases of diabetes based on the more strict definition. The adjusted incidence rate ratios (IRRs) per 1-μg/L increment in arsenic levels in drinking water were as follows: IRR = 1.03 (95% CI: 1.01, 1.06) and IRR = 1.02 (95% CI: 0.99, 1.05) for all and strict diabetes cases, respectively. Conclusions: Long-term exposure to low-level arsenic in drinking water may contribute to the development of diabetes. Citation: Bräuner EV, Nordsborg RB, Andersen ZJ, Tjønneland A, Loft S, Raaschou-Nielsen O. 2014. Long-term exposure to low-level arsenic in drinking water and diabetes incidence: a prospective study of the Diet, Cancer and Health cohort. Environ Health Perspect 122:1059–1065; http://dx.doi.org/10.1289/ehp.1408198 PMID:24927198
Doorn, Neelke
2017-03-01
The focus of the present study is on the allocation of responsibilities for addressing environmental risks in transboundary water governance. Effective environmental management in transboundary situations requires coordinated and cooperative action among diverse individuals and organizations. Currently, little insight exists on how to foster collective action such that individuals and organizations take the responsibility to address transboundary environmental risks. On the basis of 4 cases of transboundary water governance, it will be shown how certain allocation principles are more likely to encourage cooperative action. The main lesson from these case studies is that the allocation of responsibilities should be seen as a risk distribution problem, including considerations of effectiveness, efficiency, and fairness. Integr Environ Assess Manag 2017;13:371-375. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; Boyce, S. E.; Hanson, R. T.; Llewellyn, D.
2014-12-01
It is well established that groundwater pumping affects surface-water availability by intercepting groundwater that would otherwise discharge to streams and/or by increasing seepage from surface-water channels. Conversely, surface-water management operations effect groundwater availability by altering the timing, location, and quantity of groundwater recharge and demand. Successful conjunctive use may require analysis with an integrated approach that accounts for the many interactions and feedbacks between surface-water and groundwater availability and their joint management. In order to improve simulation and analysis of conjunctive use, Bureau of Reclamation and USGS are collaborating to develop a surface-water operations module within MODFLOW One Water Hydrologic Flow Model (MF-OWHM), a new version of the USGS Modular Groundwater Flow Model (MODFLOW). Here we describe the development and application of the surface-water operations module. We provide an overview of the conceptual approach used to simulate surface-water operations—including surface-water storage, allocation, release, diversion, and delivery on monthly to seasonal time frames—in a fully-integrated manner. We then present results from a recent case study analysis of the Rio Grande Project, a large-scale irrigation project located in New Mexico and Texas, under varying surface-water operations criteria and climate conditions. Case study results demonstrate the importance of integrated hydrologic simulation of surface water and groundwater operations in analysis and management of conjunctive-use systems.
America`s water: Federal roles and responsibilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, P.
1993-12-31
The author has developed a history and source book of federal water policies. Only a small amount of guidance is given for evaluating these policies. For example. all federal acts, authorizations, and court decisions since 1776 are given by year. Fifteen significant policy studies in the 20th century are cited. A basic summary of water hydrology is provided. The author`s discussion of political imperatives describes the interactions of interest groups, politicians, voters, and the relevant agencies in producing water legislation and case studies to illustrate the processes.
BIOMONITORING TO ACHIEVE CONTROL OF TOXIC EFFLUENTS
This 48 - page Technology Transfer Report provides a case study of how water quality-based toxicity control procedures can be combined with chemical analyses and biological stream surveys to achieve more effective water pollution control. t describes how regulatory agencies used ...
Devendra Amatya; Timothy Callahan; William Hansen; Carl Trettin; Artur Radecki-Pawlik; Patrick Meire
2015-01-01
Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21st century. Watershed-scale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was...
Risk Assessment in Relation to the Effect of Climate Change on Water Shortage in the Taichung Area
NASA Astrophysics Data System (ADS)
Hsiao, J.; Chang, L.; Ho, C.; Niu, M.
2010-12-01
Rapid economic development has stimulated a worldwide greenhouse effect and induced global climate change. Global climate change has increased the range of variation in the quantity of regional river flows between wet and dry seasons, which effects the management of regional water resources. Consequently, the influence of climate change has become an important issue in the management of regional water resources. In this study, the Monte Carlo simulation method was applied to risk analysis of shortage of water supply in the Taichung area. This study proposed a simulation model that integrated three models: weather generator model, surface runoff model, and water distribution model. The proposed model was used to evaluate the efficiency of the current water supply system and the potential effectiveness of two additional plans for water supply: the “artificial lakes” plan and the “cross-basin water transport” plan. A first-order Markov Chain method and two probability distribution models, exponential distribution and normal distribution, were used in the weather generator model. In the surface runoff model, researchers selected the Generalized Watershed Loading Function model (GWLF) to simulate the relationship between quantity of rainfall and basin outflow. A system dynamics model (SD) was applied to the water distribution model. Results of the simulation indicated that climate change could increase the annual quantity of river flow in the Dachia River and Daan River basins. However, climate change could also increase the difference in the quantity of river flow between wet and dry seasons. Simulation results showed that in current system case or in the additional plan cases, shortage status of water for both public and agricultural uses with conditions of climate change will be mostly worse than that without conditions of climate change except for the shortage status for the public use in the current system case. With or without considering the effect of climate change, the additional plans, especially the “cross-basin water transport” plan, for water supply could significantly increase the supply of water for public use. The proposed simulation model and results of analysis in this study could provide valuable reference for decision-makers in regards to risk analysis of regional water supply.
Trihalomethanes in public water supplies and risk of stillbirth.
Dodds, Linda; King, Will; Allen, Alexander C; Armson, B Anthony; Fell, Deshayne B; Nimrod, Carl
2004-03-01
The chlorine used to disinfect public drinking water supplies reacts with naturally occurring organic matter to form a number of chemical byproducts. Recent studies have implicated exposure to chlorination byproducts in drinking water, trihalomethanes (THMs), in particular, with intrauterine death. We conducted a population-based case-control study in Nova Scotia and Eastern Ontario, Canada, to examine the effect of exposure to THMs on stillbirth risk. Cases were women who had a stillborn infant, and controls were a random sample of women with live births. Subjects were interviewed, and women with a public water source provided a residential water sample. Risks were examined according to residential THM level in tap water and to a total exposure metric incorporating tap water ingestion, showering, and bathing. We enrolled 112 stillbirth cases and 398 live birth controls. Women with a residential total THM level of 80 or more microg/L had twice the risk of a stillbirth compared with women with no exposure to THMs (adjusted odds ratio [OR] = 2.2; 95% confidence interval [CI] = 1.1-4.4). The highest quintile of total THM exposure using the total exposure metric was associated with an adjusted odds ratio of 2.4 (95% CI = 1.2-4.6) compared with women not exposed to THMs. Similar results were seen for specific THM compounds. A monotonic dose-response relationship was not seen. Our results provide evidence for an increased risk of stillbirth associated with exposure to chlorination byproducts through ingestion and showering and bathing, although there was not a clear dose-response relationship.
Building America Case Study: Assessment of a Hybrid Retrofit Gas Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the half-inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unit withmore » lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska...
Role of phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh.
Islam, M Sirajul; Islam, M Shafiqul; Mahmud, Zahid H; Cairncross, Sandy; Clemens, John D; Collins, Andrew E
2015-09-01
In Bangladesh, cholera is endemic and maintains a regular seasonal pattern. The role of phytoplankton in maintaining endemicity and seasonality of cholera was monitored in Matlab, Bangladesh. Phytoplankton and water samples were collected from two ponds bi-weekly for 1 year. The association of Vibrio cholerae O1 with phytoplankton was studied by culture and direct fluorescent antibody techniques. The bio-physicochemical parameters of water were measured and data for cases of cholera were collected from the records of Matlab hospital. The correlation of cholera cases with levels of phytoplankton, V. cholerae and bio-physicochemical parameters of water was carried out using Pearson's correlation coefficients. V. cholerae O1 survived for 48 days in association with Anabaena variabilis in a culturable state, but survived for a year in a viable but non-culturable (VBNC) state. V. cholerae survived for 12 and 32 days in a culturable state in control water (without algae) and water with algae, respectively. There was a significant correlation between changing levels of cholera cases in the community and the blue green algae and total phytoplankton in the aquatic environment. A significant correlation was also found between the cholera cases and chlorophyll-a and VBNC V. cholerae O1 in the aquatic environment. This study demonstrated the role of phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Medellín, G.; Brinkkemper, J. A.; Torres-Freyermuth, A.; Appendini, C. M.; Mendoza, E. T.; Salles, P.
2016-01-01
We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatán (Mexico). Wave information from a 30-year wave hindcast is validated with in situ measurements at 8 m water depth. The maximum dissimilarity algorithm is employed for the selection of 600 representative cases, encompassing different combinations of wave characteristics and tidal level. The selected cases are propagated from 8 m water depth to the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic nonlinear shallow-water equation model. Extreme wave run-up, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30-year time series using an interpolation algorithm. Downscaling results show run-up saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2 = 0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water levels is conducted at the study area by employing the two approaches (reconstruction/parameterization) and a storm impact scale. The 30-year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.
Fluoride in drinking water and risk of hip fracture in the UK: a case-control study.
Hillier, S; Cooper, C; Kellingray, S; Russell, G; Hughes, H; Coggon, D
2000-01-22
Although the benefits of water fluoridation for dental health are widely accepted, concerns remain about possible adverse effects, particularly effects on bone. Several investigators have suggested increased rates of hip fracture in places with high concentrations of fluoride in drinking water, but this finding has not been consistent, possibly because of unrecognised confounding effects. We did a case-control study of men and women aged 50 years and older from the English county of Cleveland, and compared patients with hip fracture with community controls. Current addresses were ascertained for all participants; for those who agreed to an interview and who passed a mental test, more detailed information was obtained about lifetime residential history and exposure to other known and suspected risk factors for hip fracture. Exposures to fluoride in water were estimated from the residential histories and from information provided by water suppliers. Analysis was by logistic regression. 914 cases and 1196 controls were identified, of whom 514 and 527, respectively, were interviewed. Among those interviewed, hip fracture was strongly associated with low body-mass index (p for trend <0.001) and physical inactivity (p for trend <0.001). Estimated average lifetime exposure to fluoride in drinking water ranged from 0.15 to 1.79 ppm. Current residence in Hartlepool was a good indicator for high lifetime exposure to fluoride. After adjustment for potential confounders, the odds ratio associated with an average lifetime exposure to fluoride > or =0.9 ppm was 1.0 [95% CI 0.7-1.5]. There is a low risk of hip fracture for people ingesting fluoride in drinking water at concentrations of about 1 ppm. This low risk should not be a reason for withholding fluoridation of water supplies.
Kunz, Nadja C; Fischer, Manuel; Ingold, Karin; Hering, Janet G
2015-07-21
Although the recycling of municipal wastewater can play an important role in water supply security and ecosystem protection, the percentage of wastewater recycled is generally low and strikingly variable. Previous research has employed detailed case studies to examine the factors that contribute to recycling success but usually lacks a comparative perspective across cases. In this study, 25 water utilities in New South Wales, Australia, were compared using fuzzy-set Qualitative Comparative Analysis (fsQCA). This research method applies binary logic and set theory to identify the minimal combinations of conditions that are necessary and/or sufficient for an outcome to occur within the set of cases analyzed. The influence of six factors (rainfall, population density, coastal or inland location, proximity to users; cost recovery and revenue for water supply services) was examined for two outcomes, agricultural use and "heavy" (i.e., commercial/municipal/industrial) use. Each outcome was explained by two different pathways, illustrating that different combinations of conditions are associated with the same outcome. Generally, while economic factors are crucial for heavy use, factors relating to water stress and geographical proximity matter most for agricultural reuse. These results suggest that policies to promote wastewater reuse may be most effective if they target uses that are most feasible for utilities and correspond to the local context. This work also makes a methodological contribution through illustrating the potential utility of fsQCA for understanding the complex drivers of performance in water recycling.
Understanding the influence of climate change on the embodied energy of water supply.
Mo, Weiwei; Wang, Haiying; Jacobs, Jennifer M
2016-05-15
The current study aims to advance understandings on how and to what degree climate change will affect the life cycle chemical and energy uses of drinking water supply. A dynamic life cycle assessment was performed to quantify historical monthly operational embodied energy of a selected water supply system located in northeast US. Comprehensive multivariate and regression analyses were then performed to understand the statistical correlation among monthly life cycle energy consumptions, three water quality indicators (UV254, pH, and water temperature), and five climate indicators (monthly mean temperature, monthly mean maximum/minimum temperatures, total precipitation, and total snow fall). Thirdly, a calculation was performed to understand how volumetric and total life cycle energy consumptions will change under two selected IPCC emission scenarios (A2 and B1). It was found that volumetric life cycle energy consumptions are highest in winter months mainly due to the higher uses of natural gas in the case study system, but total monthly life cycle energy consumptions peak in both July and January because of the increasing water demand in summer months. Most of the variations in chemical and energy uses can be interpreted by water quality and climate variations except for the use of soda ash. It was also found that climate change might lead to an average decrease of 3-6% in the volumetric energy use of the case study system by the end of the century. This result combined with conclusions reached by previous climate versus water supply studies indicates that effects of climate change on drinking water supply might be highly dependent on the geographical location and treatment process of individual water supply systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments
NASA Astrophysics Data System (ADS)
Lainer, M.; Kämpfer, N.; Tschanz, B.; Nedoluha, G. E.; Ka, S.; Oh, J. J.
2015-08-01
The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a network of ground-based remote sensing instruments to synthesize hemispheric maps of water vapor.
Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments
NASA Astrophysics Data System (ADS)
Lainer, M.; Kämpfer, N.; Tschanz, B.; Nedoluha, G. E.; Ka, S.; Oh, J. J.
2015-04-01
The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different datasets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of travelling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown, a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a network of ground-based remote sensing instruments to synthesize hemispheric maps of water vapor.
Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.
Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob
2017-06-12
A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO 3 - and NO 2 - in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg 2+ , Ca 2+ , and Ba 2+ from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.
Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant
NASA Astrophysics Data System (ADS)
Makungo, R.; Odiyo, J. O.; Tshidzumba, N.
The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of Mutshedzi WTP. These have been confirmed in literature to be widespread in similar WTPs in SA. It is recommended that water meters be provided and the community be advised to subsidise the cost of water supply. The study recommended that the treatments of turbidity and fluoride should form critical functions of the plant to ensure that final water for domestic use is always safe from any harmful substances or disease causing pathogens. The study concluded that the WTP only needs minor improvement to boost its efficiency with regard to the treatment of raw water. This will also ensure that the plant achieves 100% compliance for final water.
Emergency Response and Long Term Planning: Two sides of the Coin for Managing Water Resources
NASA Astrophysics Data System (ADS)
Metchis, K.; Beller-Simms, N.
2014-12-01
As projected by the US National Climate Assessment and the IPCC, extreme climate and weather events are occurring more frequently and with more intensity across the nation. Communities - and the water resource managers that serve them - are facing difficult choices to increase emergency preparedness, recover from costly impacts, and increase long term resilience. The presentation is based on a recent set of case studies about what happened in six communities that experienced one or more extreme events, focusing on water resource management. Two of the case studies will be presented, revealing that building climate resilience is not just about long term planning - it is also about taking the steps to be prepared for - and to be able to recover from - emergency events. The results of this study have implications for educating local officials on ways to think about resilience to balance both long-term and short-term preparedness.
[Waterborne diseases outbreaks in the Czech Republic, 1995-2005].
Kozísek, F; Jeligová, H; Dvoráková, A
2009-08-01
Despite considerable advances in drinking water safety assurance and adherence to the public health standards, waterborne diaseases outbreaks have still been observed even in industrialized countries. The study objective was to map such outbreaks in the Czech Republic in 1995-2005. In this study, an outbreak is the occurrence of more cases of disease than normally expected within a specific place over a given period of time and a waterborne disease is a disease where water is the vehicle or source of infection. The data on waterborne outbreaks was obtained from the EPIDAT database (national infectious diseases reporting system) information provided by epidemiologists of all regional public health authorities and the National Reference Laboratory for Legionella. In 1995 - 2005, 33 outbreaks with water indicated as the route of transmission were recorded in the Czech Republic. The leading cause was unsafe drinking water (27 outbreaks), mainly from wells (19 outbreaks); nevertheless, the most serious consequences were observed in two outbreaks caused by microbiologically contaminated hot water. Other sources of waterborne infection were mineral water springs, a swimming pool and a brook. The total of reported cases of waterborne diseases was 1655, 356 hospitalisations and ten deaths due to legionellosis were recorded. The highest number of outbreaks (7) as well as the highest number of cases (841) were reported in 1997. Comparison of two five-year periods, i.e. 1996-2000 and 2001-2005, showed a nearly one third decrease in the total of outbreaks and a half reduction in the total of cases in the latter. In view of the limited length of monitoring, it is not possible to say with certainty whether it is a random distribution or an actual trend. Almost two thirds of cases were diagnosed as acute gastroenteritis of probable infectious origin and other frequent waterborne diseases were viral hepatitis A and bacillary dysentery. When analyzing the described outbreaks, it should be taken into account that only the diagnosed and reported outbreak cases are covered, while the actual number of cases is likely to be underreported. Although no evidence is available that any vast and serious waterborne diseases outbreaks escaped reporting, some small and less serious outbreaks may have occurred unnoticed. In the future, the diagnosis, investigation and evaluation of waterborne diseases outbreaks should be improved, among others by implementing an evidence-based classification system and issuing regular surveys of outbreaks and their causes which would be helpful in preventing failures in other similar water sources.
Extending the application of deuterium excess as a tracer in surface and groundwaters
NASA Astrophysics Data System (ADS)
Hurst, S.; Krishnamurthy, R. V.
2017-12-01
Stable isotopes of surface and ground waters provide invaluable information on the processes involved in their genesis. A starting point in these applications is the relationship between hydrogen (δ2H) and oxygen (δ18O), exemplified in the so-called Global Meteoric Water Line where δ2H=8δ18O+10 [1]. From this line Dansgaard [2] defined the parameter deuterium excess where d=δ2H-8δ18O. Generally, the d-excess value is fixed at the source, predominantly the equatorial oceans and retained. At an average humidity of about 85% the expected d-excess value is 10. Deviations indicate secondary changes in the air mass or a water body thus making d-excess a useful geophysical tracer. For instance, evaporation results in a higher d-excess in the vapor. Mixing of this water vapor with overhead air mass results in precipitation exhibiting d-excess values higher than Global Meteoric Water Line [3]. Alternatively, the fraction of liquid remaining will have low d-excess and in extreme cases negative d-excess. In this case a plot of d-excess-δ2H will give a straight line with a negative slope. This can be demonstrated from pan evaporation experiments [4]. Deviation from a perfect straight line on the d-excess-δ2H plot indicates a combination of mixing from various source waters and evaporation. This study will discuss various case studies from multiple environments applying this approach using d-excess. References [1] Craig, H. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters. Science 133, 1833-1834 (1961). [2] Dansgaard, W. Stable isotopes in precipitation. Tellus A 16: 436-468 (1964). [3] Machavaram, M. &, Krishnamurthy, R.V. Earth surface evaporative process: a case study from the Great Lakes region of the United States based on deuterium excess in precipitation. Geochim. et Cosmochem. Acta 59, 4279-4283 (1995). [4] Simpson, H.J., Hamza, M.S., & White, J.W.C. Evaporative enrichment of deuterium and 18O in arid zone irrigation. IAEA, 241-256 (1987).
Does wastewater discharge have relations with increase of Turner syndrome and Down syndrome?
Choi, Intae
2017-01-01
The purpose of this study is to examine whether water and air pollutants have a relationship with an increase in the genetic disorders Turner syndrome and Down syndrome, which are caused by congenital chromosomal abnormalities, and to generate a hypothesis about the genetic health effects of environmental pollutants. A panel regression based on random effect was conducted on Korea's metropolitan councils from 2012 to 2014. The dependent variable was the number of Turner syndrome and Down syndrome cases, and the main independent variables were those regarding the water and air pollution. Air pollutants did not have a significant impact on the number of Turner syndrome and Down syndrome cases; however, the increase in number of wastewater discharge companies did have a significant relationship with the number of cases. The more the number of wastewater discharge companies, the more the number Turner syndrome and Down syndrome cases were observed. Therefore, scientific investigation on water and air pollutants in relation with genetic health effects needs to be performed.
NASA Astrophysics Data System (ADS)
Kasprzyk, J. R.; Reed, P. M.; Kirsch, B. R.; Characklis, G. W.
2009-12-01
Risk-based water supply management presents severe cognitive, computational, and social challenges to planning in a changing world. Decision aiding frameworks must confront the cognitive biases implicit to risk, the severe uncertainties associated with long term planning horizons, and the consequent ambiguities that shape how we define and solve water resources planning and management problems. This paper proposes and demonstrates a new interactive framework for sensitivity informed de novo programming. The theoretical focus of our many-objective de novo programming is to promote learning and evolving problem formulations to enhance risk-based decision making. We have demonstrated our proposed de novo programming framework using a case study for a single city’s water supply in the Lower Rio Grande Valley (LRGV) in Texas. Key decisions in this case study include the purchase of permanent rights to reservoir inflows and anticipatory thresholds for acquiring transfers of water through optioning and spot leases. A 10-year Monte Carlo simulation driven by historical data is used to provide performance metrics for the supply portfolios. The three major components of our methodology include Sobol globoal sensitivity analysis, many-objective evolutionary optimization and interactive tradeoff visualization. The interplay between these components allows us to evaluate alternative design metrics, their decision variable controls and the consequent system vulnerabilities. Our LRGV case study measures water supply portfolios’ efficiency, reliability, and utilization of transfers in the water supply market. The sensitivity analysis is used interactively over interannual, annual, and monthly time scales to indicate how the problem controls change as a function of the timescale of interest. These results have been used then to improve our exploration and understanding of LRGV costs, vulnerabilities, and the water portfolios’ critical reliability constraints. These results demonstrate how we can adaptively improve the value and robustness of our problem formulations by evolving our definition of optimality to discover key tradeoffs.
HSPF Modeling for Compliance and Enforcement: An Urban Case Study
NASA Astrophysics Data System (ADS)
Marshalonis, D.
2017-12-01
Stormwater runoff is one of the most significant challenges to water quality facing surface waters globally. In the United States, the Environmental Protection Agency (EPA) regulates stormwater flows through its National Pollutant Discharge Elimination System (NPDES) program permits. When egregious violations occur, EPA may develop its case and prove those violations through the legal dispute process. However, evidence in stormwater-related cases is ephemeral, difficult to collect due to unpredictable weather dynamics, and there are usually no witnesses. The work presented here illustrates an approach EPA takes for certain wet weather cases: introduce results from hydrologic and hydraulic models as evidence to meet legal burden of proof standards. The challenges and opportunities of using models in stormwater discharge modeling are highlighted.
Opare, Jkl; Ohuabunwo, C; Afari, E; Wurapa, F; Sackey, So; Der, J; Afakye, K; Odei, E
2012-09-01
In October 2010 an outbreak of cholera began among a group of small-scale gold miners in the East-Akim Municipality (EAM), Eastern Region. We investigated to verify the diagnosis, identify risk factors and recommend control measures. We conducted a descriptive investigation, active case-search and an unmatched case-control study. A cholera case-patient was a person with acute watery diarrhoea, with or without vomiting in EAM from 1st October to 20(th) November, 2010. Stool from case-patients and water samples were taken for laboratory diagnosis. We performed univariate and bivariate analysis using epi-info version 3.3. Of 136 case-patients, 77 (56.6%) were males, of which 40% were miners or from miners households. Index case, a 20 yr-old male miner from Apapam village reported on October 13(th), and case-patients peaked (18.4%) 20 days later. Attack rate was 2/1000 population with no fatality. Ages ranged from 1-84 years; mean of 34±18 yrs. Age-group 20-29 yrs was mostly affected (30.1%) with Apapam village having most case-patients (19.9%). Vibrio cholera serotype ogawa was isolated from stool samples. The main water source, Birim river was polluted by small-scale miners through defecation, post-defecation baths and sand-washings. Compared to controls, case-patients were more likely to have drunk from Birim-River [OR= 6.99, 95% CI: 2.75-18]. Vibrio cholera serotype ogawa caused the EAM cholera-outbreak affecting many young adult-males. Drinking water from contaminated community-wide -River was the major risk factors. Boiling or chlorination of water was initiated based on our recommendations and this controlled the outbreak.
Gestational diabetes insipidus: a morphological study of the placenta.
Castiglione, F; Buccoliero, A M; Garbini, F; Gheri, C F; Moncini, D; Poggi, G; Saladino, V; Rossi Degl'Innocenti, D; Gheri, R G; Taddei, G L
2009-12-01
Gestational diabetes insipidus (GDI) refers to the state of excessive water intake and hypotonic polyuria. Those cases manifesting in pregnancy and referred to as GDI may persist thereafter or may be a transient latent form that resolves after delivery. Microscopic examination of affected subjects has not been previously reported. In the literature, there are various case reports and case series on diabetes insipidus in pregnancy. In this study, we present a case that had transient diabetes insipidus during pregnancy in which the placenta was examined.
Taneja, Pinky; Labhasetwar, Pawan; Nagarnaik, Pranav; Ensink, Jeroen H J
2017-08-01
The objective of the present study was to determine the effect of nitrates on the incidence of gastrointestinal (GI) cancer development. Nitrate converted to nitrite under reducing conditions of gut results in the formation of N-nitrosamines which are linked to an increased gastric cancer risk. A population of 234 individuals with 78 cases of GI cancer and 156 controls residing at urban and rural settings in Nagpur and Bhandara districts of India were studied for 2 years using a case-control study. A detailed survey of 16 predictor variables using Formhub software was carried out. Nitrate concentrations in vegetables and primary drinking water supplies were measured. The logistic regression model showed that nitrate was statistically significant in predicting increasing risk of cancer when potential confounders were kept at base level (P value of 0.001 nitrate in drinking water; 0.003 for nitrate in vegetable) at P < 0.01. Exposure to nitrate in drinking water at >45 mg/L level of nitrate was associated with a higher risk of GI cancers. Analysis suggests that nitrate concentration in drinking water was found statistically significant in predicting cancer risk with an odds ratio of 1.20.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? You may...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? You may...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? You may...
Covering Water Issues Through a Climate Lens
NASA Astrophysics Data System (ADS)
Freedman, A. C.
2017-12-01
Media portrayals of critical water issues can help or hinder decision makers' understanding of critical, complex water issues. Through a series of case studies, this presentation will provide examples of how today's media - complete with its 5-minute news cycle - has uncovered water quality scandals (Flint), investigated chronic flooding that will worsen with climate change (Houston), and more. It will also delve into why reporters often fail to convey the magnitude of water supply challenges in the West (Colorado River) and around the world (Middle East, Southeast Asia).
NASA Astrophysics Data System (ADS)
Peck, Jaron Joshua
Water is used in power generation for cooling processes in thermoelectric power. plants and currently withdraws more water than any other sector in the U.S. Reducing water. use from power generation will help to alleviate water stress in at risk areas, where droughts. have the potential to strain water resources. The amount of water used for power varies. depending on many climatic aspects as well as plant operation factors. This work presents. a model that quantifies the water use for power generation for two regions representing. different generation fuel portfolios, California and Utah. The analysis of the California Independent System Operator introduces the methods. of water energy modeling by creating an overall water use factor in volume of water per. unit of energy produced based on the fuel generation mix of the area. The idea of water. monitoring based on energy used by a building or region is explored based on live fuel mix. data. This is for the purposes of increasing public awareness of the water associated with. personal energy use and helping to promote greater energy efficiency. The Utah case study explores the effects more renewable, and less water-intensive, forms of energy will have on the overall water use from power generation for the state. Using a similar model to that of the California case study, total water savings are quantified. based on power reduction scenarios involving increased use of renewable energy. The. plausibility of implementing more renewable energy into Utah’s power grid is also. discussed. Data resolution, as well as dispatch methods, economics, and solar variability, introduces some uncertainty into the analysis.
Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi.
Kayser, Georgia L; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E
2015-04-01
Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries-Brazil, Ecuador, and Malawi-as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers.
Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi
Kayser, Georgia L.; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E.
2015-01-01
Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries—Brazil, Ecuador, and Malawi—as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers. PMID:25798068
Oller-Arlandis, Vanessa; Sanz-Valero, Javier
2012-12-01
To evaluate the association between exposure to the main chemical contaminants in drinking water and the rise in cancer cases among the population under age 19. A systematic review was undertaken of the scientific literature compiled in the MEDLINE (via PubMed©), EMBASE©, Web of Knowledge, Cochrane Library Plus, Latin American and Caribbean Literature on Health Sciences (LILACS), SCOPUS, and SCIRUS databases. The descriptors used were "neoplasms" and "water pollution, chemical," limited to studies that included people under age 19. Articles selected were of any type in any language, from the inception of the indexing of the primary source until March of 2011. The search generated 266 articles, from which 20 were selected after applying the inclusion and exclusion criteria. Drinking water contaminants analyzed were arsenic, disinfection byproducts, nitrogen compounds, petroleum derivatives, agricultural pesticides, radionuclides, and others of industrial origin. The majority of the studies did not find a significant link between exposure to drinking water contaminants and the increase in cancer cases in the under-19 population segment. In some of the studied populations a significant dose-response relationship was observed. Taking into account that the articles located were insufficiently up-to-date, more studies are required in order to know the effect of drinking water contamination on cancer rates, in particular among children and youths, who are more susceptible.
1989-01-01
respecting the Rights and Duties of Neutral Powers and Persons in Case of War on Land, 18 October 1907 Hague VII Hague Convention No. VII relating to the...their internal waters, archipelagic waters, territorial seas and exclusive economic zones, and on their continental shelves. In the case of artificial... Studies , v.61, 1980). For the ambiguous Soviet views, see Franckx, The U.S.S.R. Position on the Innocent Passage of Warships Through Foreign Territorial
The enabling institutional context for integrated water management: lessons from Melbourne.
Ferguson, Briony C; Brown, Rebekah R; Frantzeskaki, Niki; de Haan, Fjalar J; Deletic, Ana
2013-12-15
There is widespread international acceptance that climate change, demographic shifts and resource limitations impact on the performance of water servicing in cities. In response to these challenges, many scholars propose that a fundamental move away from traditional centralised infrastructure towards more integrated water management is required. However, there is limited practical or scholarly understanding of how to enable this change in practice and few modern cities have done so successfully. This paper addresses this gap by analysing empirical evidence of Melbourne's recent experience in shifting towards a hybrid of centralised and decentralised infrastructure to draw lessons about the institutional context that enabled this shift. The research was based on a qualitative single-case study, involving interviews and envisioning workshops with urban water practitioners who have been directly involved in Melbourne's water system changes. It was found that significant changes occurred in the cultural-cognitive, normative and regulative dimensions of Melbourne's water system. These included a shift in cultural beliefs for the water profession, new knowledge through evidence and learning, additional water servicing goals and priorities, political leadership, community pressure, better coordinated governance arrangements and strong market mechanisms. The paper synthesises lessons from the case study that, with further development, could form the basis of prescriptive guidance for enabling the shift to new modes of water servicing to support more liveable, sustainable and resilient outcomes for future cities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Part I is an analysis of the determinants of local government expenditures on water pollution abatement facilities. Part II is an investigation of the incidence of costs and benefits of public environmental programs.
SUSCEPTIBILITY TO ASTHMA CONTROLLED BY MODIFYING THE ENVIRONMENT
In a just completed five year study in Cleveland area water-damaged homes of asthmatics, EPA ORD researchers, in collaboration with Case Western Reserve University Medical School, established that specific molds were statistically more common in water-damaged homes. When the mol...
Evaluation of hydrothermal resources of North Dakota. Phase II. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, K.L.; Howell, F.L.; Winczewski, L.M.
1981-06-01
The Phase II activities dealt with three main topical areas: geothermal gradient and heat-flow studies, stratigraphic studies, and water quality studies. Efforts were concentrated on Mesozoic and Cenozoic rocks. The geothermal gradient and heat-flow studies involved running temperature logs in groundwater observation holes in areas of interest, and locating, obtaining access to, and casing holes of convenience to be used as heat-flow determination sites. The stratigraphic and water quality studies involved two main efforts: updating and expanding WELLFILE and assembling a computer library system (WELLCAT) for all water wells drilled in the state. WATERCAT combines data from the United Statesmore » Geological Survey Water Resources Division's WATSTOR and GWST computer libraries; and includes physical, stratigraphic, and water quality data. Goals, methods, and results are presented.« less
Rat-bites of an epidemic proportion in Peshawar vale; a GIS based approach in risk assessment.
Fatima, Syeda Hira; Zaidi, Farrah; Adnan, Muhammad; Ali, Asad; Jamal, Qaiser; Khisroon, Muhammad
2018-03-19
Contemporary studies demonstrate that rodent bites do not occur frequently. However, a huge number of cases were reported from Peshawar vale, Pakistan during 2016. Two species, the local black rat Rattus rattus (Linnaeus, 1758) and the invasive brown rat Rattus norvegicus (Berkenhout, 1769) might be the suspected cause. Several studies indicated the invasion of brown rats into Pakistan presumably via port city of Karachi. In this study, we modeled geospatial distribution of rodent bites for risk assessment in the region. Bite cases reported to tertiary care lady reading hospital were monitored from January 1 to August 31, 2016. Among 1747 cases, statistically informative data (n = 1295) was used for analyses. MaxEnt algorithm was employed for geospatial modeling, taking into account various environmental variables (temperature, precipitation, humidity, and elevation) and anthropogenic factors (human population density, distance from roads, distance from water channels, and land use/land cover). MaxEnt results revealed that urban slums (84.5%) are at highest risk followed by croplands (10.9%) and shrublands (2.7%). Anthropogenic factors affecting incidence of rodent bites included host density (contribution: 34.7), distance from water channels (3.2), land use/land cover (2.8), and distance from roads (2). Most of the cases occurred within a radius of 0.3 km from roads and 5 km from water channels. Rodent bite incidence is currently at its peak in Peshawar vale. Factors significantly affecting rodents' bite activity and their distribution and dispersal include urbanization, distance from roads, and water channels. Further studies are needed to determine the impact of invasion by brown rat on bite incidence.
NASA Astrophysics Data System (ADS)
Hatzaki, M.; Argyraki, A.; Gkiouleka, I.; Paternoster, M.; Hatipoglu Bagci, Z.; Shammout, M.; Moraetis, D.; Dermatas, D.; Christou, A.
2017-12-01
The shortage of water and the water quality problems in Mediterranean countries appear more severe under climate change due to the intensive agricultural activities and the urban and industrial development that require reforms in the water policy approach. The ERANETMED CrITERIA project aims to assist water management organizations and water users in decision making when coping with water scarcity, climate extremes and contaminated water. Case areas of Mediterranean countries (Italy, Greece, Turkey, Cyprus, Jordan) with Cr(VI) contaminated waters are used as an example of a specific water pressure problem that has to be tackled through integrated water resources management. Moreover, Oman represents the arid-end member in identifying the different pathways of Cr(VI) contamination in surface and groundwater due to arid conditions. Thus, areas of similar geology can be used as analogs of areas passing from semi-arid to arid conditions. From a climate change perspective, it is important to investigate the impacts of changing precipitation patterns and, thus, assess the vulnerability of the aquifers. Thus, a high spatial resolution analysis is performed with observational data and climate model simulations on several time-scales drought and extreme precipitation, providing a concise picture of drought and flooding events for the present and the future climate. We use CORDEX experiment simulations under RCPs 4.5 and 8.5, further downscaled over the case study areas providing high spatial resolution information. The case studies inter-comparison stresses the diverse needs on water management along the Mediterranean and at the same time identifies common messages related to the future changes on water resources. RCP 4.5 shows a mild decrease in precipitation that becomes more severe towards the end of the century, though under the RCP 8.5 intense decrease is explicit in most timescales. The significant increase of precipitation variability and short and long-term drought are likely to affect freshwater systems and water quality by intensifying surface runoff, aiding in the erosion of ophiolithic occurrences present in the studied areas, elevating and even inflicting changes in the groundwater table. Acknowledgment: The ERANETMED CrITERIA project (T3ERA-00004) is co-funded by Greece, the Scientific and Technological Research Council of Turkey-TÜBİTAK (Project No 115Y844) and the European Union.
NASA Astrophysics Data System (ADS)
La Jeunesse, Isabelle; Sellami, Haykel; Cirelli, Claudia
2014-05-01
The latest reports of the intergovernmental panel on climate change explained that the Mediterranean regions are especially vulnerable to the impacts of climate change. These latest are expected to have strong impacts on the management of water resources and on regional economies. The aim of this paper is to discuss impacts of climate changes on the Thau case study in relation to the evolution of water balance, water uses and adaptation to climate change. The Thau coastal lagoon is located in the Mediterranean coast in south of France in the Languedoc-Roussillon Region. Economic activities are diverse from shellfish farming, fertilizers industries to agriculture and tourism. However, tourism and shellfish farming are of major importance for local economy. If tourism is mainly turned to the Sea coast, shellfishes grow within the lagoon and rely on water quality. Previous studies have demonstrated the link between the coastal lagoon water quality and inputs of freshwater from the catchment. Thus, changes in rainfalls, runoff and water balance would not only affect water uses but also water quality. Climate changes projections are presented following the implementation of 4 downscaled climatic models. Impacts on water balance are modelled with SWAT (Soil Water Assessment Tool) for 2041-2070 compared to the 1971-2000 reference period. The decrease of precipitations and water balance will impact discharges and thus decrease the freshwater inputs to the coastal lagoon. A study of water uses conducted in interactions with stakeholders within the Thau area has permitted to assess both current and evolution of water uses. It has revealed local water resources are depleting while water demand is increasing and is planned to continue to increase in the really near future. To prevent water scarcity events, mainly due to the climate change context, the Regional authorities have connected the catchment to the Rhône river to import water. The conclusion of this study is while expected impacts of climate changes on the Thau system were expected to be linked to water balance depletion in the catchment, the main threats are now linked to the impact on water quality of the introduction of the Rhône river waters within the system. This study is conducted in the CLIMB EU-FP7 project (2010-2014).
Beatty, Mark E; Jack, Tom; Sivapalasingam, Sumathi; Yao, Sandra S; Paul, Irene; Bibb, Bill; Greene, Kathy D; Kubota, Kristy; Mintz, Eric D; Brooks, John T
2004-01-01
In December 2000, physicians in the Republic of the Marshall Islands reported the first known outbreak of Vibrio cholerae O1 infection (biotype El Tor, serotype Ogawa) from this country. In a matched case-control study on Ebeye Island, patients with cholera (n=53) had greater odds than persons without cholera (n=104) to have drunk adequately chlorinated water collected from a US military installation on neighboring Kwajalein Island and transported back to Ebeye (matched odds ratio [MOR], 8.0; P=.01). Transporting or storing drinking water in a water cooler with a spout and a tight-fitting lid was associated with reduced odds of illness (MOR, 0.24; P<.01), as was drinking bottled water (MOR, 0.08; P<.01), boiled water (MOR, 0.47; P=.02), or water flavored with powdered drink mixes (MOR, 0.18; P<.01). No cases of cholera were reported among Kwajalein residents. This outbreak highlights the critical importance of handling and storing drinking water safely, especially during outbreaks of gastrointestinal illness.
Hristovski, Kiril D; Pacemska-Atanasova, Tatjana; Olson, Larry W; Markovski, Jasmina; Mitev, Trajce
2016-08-01
Potential health implications of deficient sanitation infrastructure and reduced surface water flows due to climate change are examined in the case study of the Republic of Macedonia. Changes in surface water flows and wastewater discharges over the period 1955-2013 were analyzed to assess potential future surface water contamination trends. Simple model predictions indicated a decline in surface water hydrology over the last half century, which caused the surface waters in Macedonia to be frequently dominated by >50% of untreated sewage discharges. The surface water quality deterioration is further supported by an increasing trend in modeled biochemical oxygen demand trends, which correspond well with the scarce and intermittent water quality data that are available. Facilitated by the climate change trends, the increasing number of severe weather events is already triggering flooding of the sewage-dominated rivers into urban and non-urban areas. If efforts to develop a comprehensive sewage collection and treatment infrastructure are not implemented, such events have the potential to increase public health risks and cause epidemics, as in the 2015 case of a tularemia outbreak.
Remote Sensing of Suspended Sediments and Shallow Coastal Waters
NASA Technical Reports Server (NTRS)
Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.
2002-01-01
Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
Lake Michigan, the sixth largest freshwater lake in the world by surface area, was utilized as a water body for assessment within a case study. Field data collected at 116 sediment sampling sites throughout the lake in an intensive monitoring effort were utilized for assessment ...
Many recent pilot tests have demonstrated the benefits and cost effectiveness of point-of-use treatment technologies as opposed to centralized wastewater treatment for all sizes of plating facilities. A 9-month case study at a small plating facility in Cincinnati, OH utilizing po...
Sun, Caiyun; Xu, Liang; Sun, Dazhi; Chen, Libo; Zou, Jiying; Zhang, Zhenxing
2017-08-29
This case study investigated the distribution and fate of organic pollutants in aquatic environments based on laboratory experiments and modeling. Pyrene (Pyr) is a hydrocarbon pollutant with adverse effects on aquatic ecosystems and human health, and was thus selected for this case study. The movement of Pyr was primarily influenced by its sorption from water onto sediment, and its desorption from sediment into water. Its elimination was mainly via biodegradation by microorganisms in sediment and by volatilization from water into air. The transport and elimination rates for Pyr were considerably influenced by temperature and moisture. Results of modeling with Markov chains revealed that the elimination of Pyr from water/sediment systems was the most rapid under wet conditions. Under average conditions, a Pyr concentration of 100 μg/L of in water in such a system declined to a negligible level over 250 h. Under wet conditions, this decrease occurred over 120 h. Finally, under dry conditions, it took 550 h to achieve the same degree of elimination.
A Decision-Support System for Sustainable Water Distribution System Planning.
Freund, Alina; Aydin, Nazli Yonca; Zeckzer, Dirk; Hagen, Hans
2017-01-01
An interactive decision-support system (DSS) can help experts prepare water resource management plans for decision makers and stakeholders. The design of the proposed prototype incorporates visualization techniques such as circle views, grid layout, small multiple maps, and node simplification to improve the data readability of water distribution systems. A case study with three urban water management and sanitary engineering experts revealed that the proposed DSS is satisfactory, efficient, and effective.
Practice of first aid in burn related injuries in a developing country.
Fadeyibi, Idowu Olusegun; Ibrahim, Nasiru Akanmu; Mustafa, Ibrahim Akinwunmi; Ugburo, Andrew Omotayo; Adejumo, Adedeji Olusola; Buari, Adedayo
2015-09-01
First aid with cool running water reduces the severity of burn. Low level of knowledge of first aid in burns was shown in previous studies with few patients receiving first aid by water lavage. A study investigating the use of water lavage as first aid in patients presenting to hospital with burn in Lagos, Nigeria was carried out. Patients admitted to a University Teaching Hospital for treatment of burns were recruited for this prospective study. Data detailing demographics, scene and aetiology of burns, material used for first aid, who administered first aid, level of education and relationship of first-aider with patients, length of hospital stay, complications and outcome of treatment were collected and statistical analysis performed. 168 patients; 73 (43.4%) children and 95 (56.6%) adults were seen. Burns were sustained at home in 95 (74.2%) cases and outside in 33 (25.8%). Water lavage was used in 49 (29.2%) cases, raw eggs in 21 (12.5%), pap in 16 (9.5%) and other materials in 48.8%. 40 (23.8%) patients had not received any form of first aid at presentation. Patients that received no water first aid had higher complication rate (35.3% versus 18.4%) compared with those that had water first aid. The use of water first aid in burns was shown to reduce complication rate in this study. People should be educated on the efficacy of water first aid in pre-hospital care of burns. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Patrick C. Eisenhauer; Nicolas P. Zegre; Samuel J. Lamont
2013-01-01
To evaluate surface water withdrawals used for Marcellus shale natural gas development and to assess potential impacts on water yield, a regional water balance model was developed for the Pine Creek watershed, located primarily in Lycoming County, Pennsylvania. Marcellus shale development has increased rapidly in Lycoming County since 2007. We used precipitation,...
Dominant clonal Eucalyptus grandis x urophylla trees use water more efficiently
Marina Shinkai Gentil Otto; Robert M. Hubbard; Dan Binkley; Jose Luis Stape
2014-01-01
Wood growth in trees depends on the acquisition of resources, and can vary with tree size leading to a variety of stand dynamics. Typically, larger trees obtain more resources and grow faster than smaller trees, but while light has been addressed more often, few case studies have investigated the contributions of water use and water use efficiency (WUE) within stands...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects were competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This report highlights the findings of a case study of one such GSHP demonstration projects that uses a recycled water heat pump (RWHP) system installed at the Denver Museum of Nature & Science in Denver, Colorado. Themore » RWHP system uses recycled water from the city’s water system as the heat sink and source for a modular water-to-water heat pump (WWHP). This case study was conducted based on the available measured performance data from December 2014 through August 2015, utility bills of the building in 2014 and 2015, construction drawings, maintenance records, personal communications, and construction costs. The annual energy consumption of the RWHP system was calculated based on the available measured data and other related information. It was compared with the performance of a baseline scenario— a conventional VAV system using a water-cooled chiller and a natural gas fired boiler, both of which have the minimum energy efficiencies allowed by ASHRAE 90.1-2010. The comparison was made to determine energy savings, operating cost savings, and CO2 emission reductions achieved by the RWHP system. A cost analysis was performed to evaluate the simple payback of the RWHP system. Summarized below are the results of the performance analysis, the learned lessons, and recommended improvement in the operation of the RWHP system.« less
Gon, Giorgia; Monzon-Llamas, Laura; Benova, Lenka; Willey, Barbara; Campbell, Oona M R
2014-12-01
To estimate the effect of unimproved household water and toilet facilities on pregnancy-related mortality in Afghanistan. The data source was a population-based cross-sectional study, the Afghan Mortality Survey 2010. Descriptive, univariate and multivariate logistic regression analyses were carried out, comparing 69 pregnancy-related deaths (cases) and 15386 surviving women (non-cases) who had a live birth or stillbirth between 2007 and 2010. After adjusting for confounders, households with unimproved water access had 1.91 the odds of pregnancy-related mortality [95% confidence interval (CI) 1.11-3.30] compared to households with improved water access. We also found an association between unimproved toilet facilities and pregnancy-related mortality (OR = 2.25; 95% CI 0.71-7.19; P-value = 0.169), but it was not statistically significant. Unimproved household water access was an important risk factor for pregnancy-related mortality in Afghanistan. However, we were unable to discern whether unimproved water source is a marker of unhygienic environments or socio-economic position. There was weak evidence for the association between unimproved toilet facilities and pregnancy-related mortality; this association requires confirmation from larger studies. © 2014 John Wiley & Sons Ltd.
A 1D-2D coupled SPH-SWE model applied to open channel flow simulations in complicated geometries
NASA Astrophysics Data System (ADS)
Chang, Kao-Hua; Sheu, Tony Wen-Hann; Chang, Tsang-Jung
2018-05-01
In this study, a one- and two-dimensional (1D-2D) coupled model is developed to solve the shallow water equations (SWEs). The solutions are obtained using a Lagrangian meshless method called smoothed particle hydrodynamics (SPH) to simulate shallow water flows in converging, diverging and curved channels. A buffer zone is introduced to exchange information between the 1D and 2D SPH-SWE models. Interpolated water discharge values and water surface levels at the internal boundaries are prescribed as the inflow/outflow boundary conditions in the two SPH-SWE models. In addition, instead of using the SPH summation operator, we directly solve the continuity equation by introducing a diffusive term to suppress oscillations in the predicted water depth. The performance of the two approaches in calculating the water depth is comprehensively compared through a case study of a straight channel. Additionally, three benchmark cases involving converging, diverging and curved channels are adopted to demonstrate the ability of the proposed 1D and 2D coupled SPH-SWE model through comparisons with measured data and predicted mesh-based numerical results. The proposed model provides satisfactory accuracy and guaranteed convergence.
Effects of warm water inflows on the dispersion of pollutants in small reservoirs.
Palancar, María C; Aragón, José M; Sánchez, Fernando; Gil, Roberto
2006-11-01
The effects of the warm water discharged by a nuclear power plant (NPP) into a small reservoir are studied. A case study is presented (José Cabrera NPP-Zorita Hidráulica Reservoir) with experimental data of the reservoir stratification and predicted data of the dispersion of radioactive pollutants from operative or accidental releases. The vertical and longitudinal temperature profiles, electrical conductivity and transparency of the reservoir water were measured for an annual cycle. The results indicate that the continuous warm water discharge from the NPP causes permanent and artificial reservoir stratification. The stratification is significant within 1500 m upstream and 1000 m downstream from the warm water outfall. The pollutant dispersion has been predicted by using a flow model based on N(T) perfect-mixing compartments in series with feedback. The model parameter, N(T), is calculated from the longitudinal diffusion coefficient. The prediction of pollutant dispersion by means of this model shows that the stratification slows down the vertical mixing in the whole water body, and reduces the reservoir volume that is effective for the dilution and dispersion of pollutants. This means that, in the case of a radioactive pollutant release, the reservoir radioactivity level could increase significantly.
NASA Astrophysics Data System (ADS)
Du, Xiaorong
2017-04-01
Water is the basic condition for human survival and development. As China is the most populous country, rural drinking water safety problems are most conspicuous. Therefore, the Chinese government keeps increasing investment and has built a large number of rural drinking water safety projects. Scientific evaluation of project performance is of great significance to promote the sustainable operation of the project and the sustainable development of rural economy. Previous studies mainly focus on the economic benefits of the project, while ignoring the fact that the rural drinking water safety project is quasi-public goods, which has economic, social and ecological benefits. This paper establishes a comprehensive evaluation model for rural drinking water safety performance, which adapts the rules of "5E" (economy, efficiency, effectiveness, equity and environment) as the value orientation, and selects a rural drinking water safety project as object in case study at K District, which is in the north of Jiangsu Province, China. The results shows: 1) the comprehensive performance of K project is in good condition; 2) The performance of every part shows that the scores of criteria "efficiency", "environment" and "effect" are higher than the mean performance, while the "economy" is slightly lower than the mean and the "equity" is the lowest. 3) The performance of indicator layer shows that: the planned completion rate of project, the reduction rate of project cost and the penetration rate of water-use population are significantly lower than other indicators. Based on the achievements of previous studies and the characteristics of rural drinking water safety project, this study integrates the evaluation dimensions of equity and environment, which can contribute to a more comprehensive and systematic assessment of project performance and provide empirical data for performance evaluation and management of rural drinking water safety project. Key Words: Rural drinking water safety project; Performance evaluation; 5E rules; Comprehensive evaluation model
Fantin, Valentina; Scalbi, Simona; Ottaviano, Giuseppe; Masoni, Paolo
2014-04-01
The purpose of this study is to propose a method for harmonising Life Cycle Assessment (LCA) literature studies on the same product or on different products fulfilling the same function for a reliable and meaningful comparison of their life-cycle environmental impacts. The method is divided in six main steps which aim to rationalize and quicken the efforts needed to carry out the comparison. The steps include: 1) a clear definition of the goal and scope of the review; 2) critical review of the references; 3) identification of significant parameters that have to be harmonised; 4) harmonisation of the parameters; 5) statistical analysis to support the comparison; 6) results and discussion. This approach was then applied to the comparative analysis of the published LCA studies on tap and bottled water production, focussing on Global Warming Potential (GWP) results, with the aim to identify the environmental preferable alternative. A statistical analysis with Wilcoxon's test confirmed that the difference between harmonised GWP values of tap and bottled water was significant. The results obtained from the comparison of the harmonised mean GWP results showed that tap water always has the best environmental performance, even in case of high energy-consuming technologies for drinking water treatments. The strength of the method is that it enables both performing a deep analysis of the LCA literature and obtaining more consistent comparisons across the published LCAs. For these reasons, it can be a valuable tool which provides useful information for both practitioners and decision makers. Finally, its application to the case study allowed both to supply a description of systems variability and to evaluate the importance of several key parameters for tap and bottled water production. The comparative review of LCA studies, with the inclusion of a statistical decision test, can validate and strengthen the final statements of the comparison. Copyright © 2014 Elsevier B.V. All rights reserved.
Bräuner, Elvira Vaclavik; Nordsborg, Rikke Baastrup; Andersen, Zorana Jovanovic; Tjønneland, Anne; Loft, Steffen; Raaschou-Nielsen, Ole
2014-10-01
Established causes of diabetes do not fully explain the present epidemic. High-level arsenic exposure has been implicated in diabetes risk, but the effect of low-level arsenic exposure in drinking water remains unclear. We sought to determine whether long-term exposure to low-level arsenic in drinking water in Denmark is associated with an increased risk of diabetes using a large prospective cohort. During 1993-1997, we recruited 57,053 persons. We followed each cohort member for diabetes occurrence from enrollment until 31 December 2006. We traced and geocoded residential addresses of the cohort members and used a geographic information system to link addresses with water-supply areas. We estimated individual exposure to arsenic using all addresses from 1 January 1971 until the censoring date. Cox proportional hazards models were used to model the association between arsenic exposure and diabetes incidence, separately for two definitions of diabetes: all cases and a more strict definition in which cases of diabetes based solely on blood glucose results were excluded. Over a mean follow-up period of 9.7 years for 52,931 eligible participants, there were a total of 4,304 (8.1%) diabetes cases, and 3,035 (5.8%) cases of diabetes based on the more strict definition. The adjusted incidence rate ratios (IRRs) per 1-μg/L increment in arsenic levels in drinking water were as follows: IRR = 1.03 (95% CI: 1.01, 1.06) and IRR = 1.02 (95% CI: 0.99, 1.05) for all and strict diabetes cases, respectively. Long-term exposure to low-level arsenic in drinking water may contribute to the development of diabetes.
Nakamura, Hideaki
2018-05-08
In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.
Vosoogh, Ali; Saeedi, Mohsen; Lak, Raziyeh
2016-11-01
Some pollutants can qualitatively affect aquatic freshwater such as rivers, and heavy metals are one of the most important pollutants in aquatic fresh waters. Heavy metals can be found in the form of components dissolved in these waters or in compounds with suspended particles and surface sediments. It can be said that heavy metals are in equilibrium between water and sediment. In this study, the amount of heavy metals is determined in water and different sizes of sediment. To obtain the relationship between heavy metals in water and size-fractionated sediments, a canonical correlation analysis (CCA) was utilized in rivers of the southwestern Caspian Sea. In this research, a case study was carried out on 18 sampling stations in nine rivers. In the first step, the concentrations of heavy metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, and Cd) were determined in water and size-fractionated sediment samples. Water sampling sites were classified by hierarchical cluster analysis (HCA) utilizing squared Euclidean distance with Ward's method. In addition, for interpreting the obtained results and the relationships between the concentration of heavy metals in the tested river water and sample sediments, canonical correlation analysis (CCA) was utilized. The rivers were grouped into two classes (those having no pollution and those having low pollution) based on the HCA results obtained for river water samples. CCA results found numerous relationships between rivers in Iran's Guilan province and their size-fractionated sediments samples. The heavy metals of sediments with 0.038 to 0.125 mm size in diameter are slightly correlated with those of water samples.
Brender, Jean D; Weyer, Peter J; Romitti, Paul A; Mohanty, Binayak P; Shinde, Mayura U; Vuong, Ann M; Sharkey, Joseph R; Dwivedi, Dipankar; Horel, Scott A; Kantamneni, Jiji; Huber, John C; Zheng, Qi; Werler, Martha M; Kelley, Katherine E; Griesenbeck, John S; Zhan, F Benjamin; Langlois, Peter H; Suarez, Lucina; Canfield, Mark A
2013-09-01
Previous studies of prenatal exposure to drinking-water nitrate and birth defects in offspring have not accounted for water consumption patterns or potential interaction with nitrosatable drugs. We examined the relation between prenatal exposure to drinking-water nitrate and selected birth defects, accounting for maternal water consumption patterns and nitrosatable drug exposure. With data from the National Birth Defects Prevention Study, we linked addresses of 3,300 case mothers and 1,121 control mothers from the Iowa and Texas sites to public water supplies and respective nitrate measurements. We assigned nitrate levels for bottled water from collection of representative samples and standard laboratory testing. Daily nitrate consumption was estimated from self-reported water consumption at home and work. With the lowest tertile of nitrate intake around conception as the referent group, mothers of babies with spina bifida were 2.0 times more likely (95% CI: 1.3, 3.2) to ingest ≥ 5 mg nitrate daily from drinking water (vs. < 0.91 mg) than control mothers. During 1 month preconception through the first trimester, mothers of limb deficiency, cleft palate, and cleft lip cases were, respectively, 1.8 (95% CI: 1.1, 3.1), 1.9 (95% CI: 1.2, 3.1), and 1.8 (95% CI: 1.1, 3.1) times more likely than control mothers to ingest ≥ 5.42 mg of nitrate daily (vs. < 1.0 mg). Higher water nitrate intake did not increase associations between prenatal nitrosatable drug use and birth defects. Higher water nitrate intake was associated with several birth defects in offspring, but did not strengthen associations between nitrosatable drugs and birth defects.
Acanthamoeba keratitis in Scotland: risk factors for contact lens wearers.
Seal, D V; Kirkness, C M; Bennett, H G; Peterson, M
1999-01-01
To investigate risk factors for Acanthamoeba keratitis amongst contact lens wearers in Scotland. Patients with Acanthamoeba keratitis in the Scottish study, all of whom wore contact lenses, were compared with 46 healthy asymptomatic contact lens-wearing controls. They were all visited at home for contact lens and environmental microbiological sampling. In addition, all 288 optical practices in the West of Scotland were polled for contact lens types and disinfecting solutions sold in 1995, and a sample, each of whom fitted more than 500 contact lenses per year, were polled for a second time. Independently, a poll was commissioned by the Eyecare Information Service in July/August 1995 to estimate the numbers of contact lens wearers in Scotland and the UK. Industry was polled for numbers of each contact lens disinfecting regimen sold in Scotland in 1995. West of Scotland, UK. All contact lens wearers among the 3 million population of the West of Scotland Health Board Areas. Risk factors for Acanthamoeba infection and recommendations for its prevention. When Acanthamoeba infection occurred, patients' home water systems were frequently (54%) found to be colonised by this amoeba. Patients more frequently washed their storage cases in tap water than controls (P<0.05) with resulting contamination, kept storage cases wet rather than air drying them (P<0.05), and had coliform bacteria cultured from the storage case (P<0.05) and had viable Acanthamoeba within the storage case (P<0.0001). Overall, patients were found to have significantly more risk factors than controls (P<0.0001). The noncompliant use of chlorine tablet disinfection, or failure to disinfect contact lenses at all, was associated with increased risk (P<0.05). Ionic high water content contact lenses (FDA group 4 material), when used without disinfection or with non-compliant use of low chlorine (Soflab) tablet-based disinfection, were associated with increased risk of Acanthamoeba infection (P<0.05). In log-linear modelling of risky hygiene behaviours associated with contamination of storage cases with Acanthamoeba, the most significant behaviour was found to be use of the less effective disinfection methods (chlorine tablets or no disinfection). However further investigation showed that these methods were associated with an increased probability of rinsing the storage case in tap water, so that these two behaviours are confounded in the group studied. Failure to disinfect contact lenses, non-compliant use of chlorine tablets and/or introduction of tap water rinsing of storage cases were associated with increased risk of Acanthamoeba infection. New multipurpose solutions and hydrogen peroxide gave the lowest risk of Acanthamoeba infection, with no statistically significant difference between them. Ionic high-water content (FDA group 4) contact lenses were at increased risk of being associated with Acanthamoeba keratitis if used without effective disinfection (multipurpose solutions or hydrogen peroxide). The use of domestic tap water for contact lens and storage case hygiene must be avoided, as a chain-of-causation' was identified from the home water supply.
2004-04-15
Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians SERDP Project # CP-1251...2004 4. TITLE AND SUBTITLE Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians 5a. CONTRACT... cnidarians ? 9 Indicators of ballast water exchange 9 Materials and Methods 11 Phase I. Specimens 11 DNA
NASA Astrophysics Data System (ADS)
Rangecroft, Sally; Van Loon, Anne; Bosman, Marianne; Wanders, Niko; Di Baldassarre, Giuliano; AghaKouchak, Amir
2017-04-01
Human activities can have a large influence on changes in the hydrological system and hydrological extremes, more than climate variability and climate change in some cases. However, there are currently only a limited number of studies which aim to quantify the human impact on hydrological droughts. Here we present a synthesis study of existing and new results that aims to summarize and quantify the anthropogenic impact on hydrological drought from case studies and observations. By combining a large number of case studies, we allow conclusions to be drawn about the effects of different human activities. This work suggests ways forward to increase our understanding on how human activities are influencing drought characteristics; invaluable information for water resource management and adaptation. During this project, the impact of different human activities (e.g. water abstraction, reservoir building, urbanisation, etc) on drought frequency, duration and deficit has been calculated in a consistent manner, allowing for an improved understanding to how they have impacted droughts. This consistent methodology is a necessary element for this comparative hydrology exercise, yet we use one which is flexible and applicable to different case study set ups and data availability. The methodology used here depends on available observation data, with three possible approaches: i) paired catchment approach; ii) upstream-downstream comparison; iii) observation modelling framework. The synthesised results of the existing and new case studies cover a number of human activities, hydro-climatic and socio-economic contexts. In particular, we remove the climate dependency in the results by using case studies from multiple climatic regions, including UK, Italy, US, Australia, Mexico and Chile. For groundwater abstraction, it is clear across all the relevant case studies that abstraction activities worsen drought events. This is especially prominent in the deficit volumes, with nearly all results showing at least a 50% increase in deficit compared to the natural situation due to the human activity. However, for the reservoir case studies we find mixed results with some catchments showing drought alleviation and others demonstrating an aggravation of drought. These results show us that the impact of reservoirs on droughts downstream is dependent on reservoir management and purpose. From the urbanised case studies we find urbanisation to be a more difficult human activity to quantify and analyse. Mixed results indicate possible conflicting processes occurring due to urbanisation, and the need for further case studies and discussions. This is the first step towards quantifying the human influence on drought on the global scale using catchment scale observation-based studies, which will provide important information for global scale modellers, water managers and drought policy makers.
Ahmad, Sheikh Saeed; Aziz, Neelam; Butt, Amna; Shabbir, Rabia; Erum, Summra
2015-09-01
One of the features of medical geography that has made it so useful in health research is statistical spatial analysis, which enables the quantification and qualification of health events. The main objective of this research was to study the spatial distribution patterns of malaria in Rawalpindi district using spatial statistical techniques to identify the hot spots and the possible risk factor. Spatial statistical analyses were done in ArcGIS, and satellite images for land use classification were processed in ERDAS Imagine. Four hundred and fifty water samples were also collected from the study area to identify the presence or absence of any microbial contamination. The results of this study indicated that malaria incidence varied according to geographical location, with eco-climatic condition and showing significant positive spatial autocorrelation. Hotspots or location of clusters were identified using Getis-Ord Gi* statistic. Significant clustering of malaria incidence occurred in rural central part of the study area including Gujar Khan, Kaller Syedan, and some part of Kahuta and Rawalpindi Tehsil. Ordinary least square (OLS) regression analysis was conducted to analyze the relationship of risk factors with the disease cases. Relationship of different land cover with the disease cases indicated that malaria was more related with agriculture, low vegetation, and water class. Temporal variation of malaria cases showed significant positive association with the meteorological variables including average monthly rainfall and temperature. The results of the study further suggested that water supply and sewage system and solid waste collection system needs a serious attention to prevent any outbreak in the study area.
2010-01-01
Background A community in northern Italy was previously reported to have an excess incidence of amyotrophic lateral sclerosis among residents exposed to high levels of inorganic selenium in their drinking water. Methods To assess the extent to which such association persisted in the decade following its initial observation, we conducted a population-based case-control study encompassing forty-one newly-diagnosed cases of amyotrophic lateral sclerosis and eighty-two age- and sex-matched controls. We measured long-term intake of inorganic selenium along with other potentially neurotoxic trace elements. Results We found that consumption of drinking water containing ≥ 1 μg/l of inorganic selenium was associated with a relative risk for amyotrophic lateral sclerosis of 5.4 (95% confidence interval 1.1-26) after adjustment for confounding factors. Greater amounts of cumulative inorganic selenium intake were associated with progressively increasing effects, with a relative risk of 2.1 (95% confidence interval 0.5-9.1) for intermediate levels of cumulative intake and 6.4 (95% confidence interval 1.3-31) for high intake. Conclusion Based on these results, coupled with other epidemiologic data and with findings from animal studies that show specific toxicity of the trace element on motor neurons, we hypothesize that dietary intake of inorganic selenium through drinking water increases the risk for amyotrophic lateral sclerosis. PMID:21134276
NASA Astrophysics Data System (ADS)
Minatour, Yasser; Bonakdari, Hossein; Zarghami, Mahdi; Bakhshi, Maryam Ali
2015-09-01
The purpose of this study was to develop a group fuzzy multi-criteria decision-making method to be applied in rating problems associated with water resources management. Thus, here Chen's group fuzzy TOPSIS method extended by a difference technique to handle uncertainties of applying a group decision making. Then, the extended group fuzzy TOPSIS method combined with a consistency check. In the presented method, initially linguistic judgments are being surveyed via a consistency checking process, and afterward these judgments are being used in the extended Chen's fuzzy TOPSIS method. Here, each expert's opinion is turned to accurate mathematical numbers and, then, to apply uncertainties, the opinions of group are turned to fuzzy numbers using three mathematical operators. The proposed method is applied to select the optimal strategy for the rural water supply of Nohoor village in north-eastern Iran, as a case study and illustrated example. Sensitivity analyses test over results and comparing results with project reality showed that proposed method offered good results for water resources projects.
NASA Astrophysics Data System (ADS)
Eiswerth, Mark E.; Kashian, Russell D.; Skidmore, Mark
2008-11-01
We use contingent behavior (CB) analysis to examine the potential impacts of a hypothetical change in the clarity of a lake. We collect and use both CB and revealed preference data to estimate a pooled negative binomial count data travel cost model. From this analysis we calculate the consumer surplus per angling party day for our case study lake to be about $104, or a total annual consumer surplus of $1.4 million. Using this consumer surplus measure and changes in the intended number of visits obtained from the CB survey, we estimate the loss in consumer surplus associated with a decline in water clarity from 10 to 3 feet (1 foot = 0.3048 m) to be about $522,000 annually (a 38% decrease). Since this is the first such application of CB analysis to estimate the effects of a water clarity change, the study may illustrate a method well suited to analyzing changes in water quality attributes that are easily observable and well understood by recreators.
Grinberg, Alex; Midwinter, Anne C.; Marshall, Jonathan C.; Collins-Emerson, Julie M.; French, Nigel P.
2016-01-01
ABSTRACT Campylobacteriosis is one of the most important foodborne diseases worldwide and a significant health burden in New Zealand. Campylobacter jejuni is the predominant species worldwide, accounting for approximately 90% of human cases, followed by Campylobacter coli. Most studies in New Zealand have focused on C. jejuni; hence, the impact of C. coli strains on human health is not well understood. The aim of this study was to genotype C. coli isolates collected in the Manawatu region of New Zealand from clinical cases, fresh poultry meat, ruminant feces, and environmental water sources, between 2005 and 2014, to study their population structure and estimate the contribution of each source to the burden of human disease. Campylobacter isolates were identified by PCR and typed by multilocus sequence typing. C. coli accounted for 2.9% (n = 47/1,601) of Campylobacter isolates from human clinical cases, 9.6% (n = 108/1,123) from poultry, 13.4% (n = 49/364) from ruminants, and 6.4% (n = 11/171) from water. Molecular subtyping revealed 27 different sequence types (STs), of which 18 belonged to clonal complex ST-828. ST-1581 was the most prevalent C. coli sequence type isolated from both human cases (n = 12/47) and poultry (n = 44/110). When classified using cladistics, all sequence types belonged to clade 1 except ST-7774, which belonged to clade 2. ST-854, ST-1590, and ST-4009 were isolated only from human cases and fresh poultry, while ST-3232 was isolated only from human cases and ruminant sources. Modeling indicated ruminants and poultry as the main sources of C. coli human infection. IMPORTANCE We performed a molecular epidemiological study of Campylobacter coli infection in New Zealand, one of few such studies globally. This study analyzed the population genetic structure of the bacterium and included a probabilistic source attribution model covering different animal and water sources. The results are discussed in a global context. PMID:27208097
NASA Astrophysics Data System (ADS)
Heo, J.
2015-12-01
This study investigates an interconnected system of climate change - land cover - water resources for a watershed in humid subtropical climate from 1970 to 2009. A 0.7°C increase in temperature and a 16.3% increase in precipitation were observed in our study area where temperature had no obvious increase trend and precipitation showed definite increasing trend compared to previous studies. The main trend of land-cover change was conversion of vegetation and barren lands to developed and crop lands affected by human intervention, and forest and grass to bush/shrub which considered to be caused by natural climate system. Precipitation contribution to the other hydrologic parameters for a humid subtropical basin is estimated to be 51.9% of evapotranspiration, 16.3% of surface runoff, 0.9% of groundwater discharge, 19.3% of soil water content, and 11.6% of water storage. It shows little higher evapotranspiration and considerably lower surface runoff compare to other humid climate area due to vegetation dominance of land cover. Hydrologic responses to climate and land cover changes are increases of surface runoff, soil water content, evapotranspiration by 15.0%, 2.7%, and 20.1%, respectively, and decrease of groundwater discharge decreased by 9.2%. Surface runoff is relatively stable with precipitation while groundwater discharge and soil water content are sensitive to land cover changes especially human intervention. If temperature is relatively stable, it is considered to be land cover plays important role in evapotranspiration. Citation: Heo, J., J. Yu, J. R. Giardino, and H. Cho (2015), Impacts of climate and land-cover changes on water resources in a humid subtropical watershed: a case study from East Texas, USA, Water Environ. J., 29, doi:10.1111/wej.12096
Influence of natural vs. anthropogenic stresses on water resource sustainability: a case study.
Fennell, J; Zawadzki, A; Cadman, C
2006-01-01
Climate change has been identified as a major influence on basin water balances. However, land use and water use practices have also been identified as players. This case study was completed to better understand a changing water balance affecting a major basin in Alberta. The Beaver River basin is located in east central Alberta. Much of the basin has been developed for agricultural use; however, a number of heavy oil operations also exist. Both sectors use surface and groundwater. Evidence exists that the basin hydrology has changed since the mid-1970s. Coincidently, it was at this time that much of the land was cleared for agricultural development and commercial-scale oil development began. Oil industry use of water was suspected as the main cause for the changes observed. To investigate this further, data from regional hydrometric and meteorological stations were assessed along with water well hydrographs and historical satellite images. A significant correlation was found between basin responses and a climate phenomenon known as the Pacific decadal oscillation. Although the correlation between the Pacific decadal oscillation and basin hydrology appeared strong, deforestation for agricultural development also seemed to have an effect. Use of the local water resources was found to be of minor significance.
Cartwright, Jennifer M.; Caldwell, Casey; Nebiker, Steven; Knight, Rodney
2017-01-01
This paper presents a conceptual framework to operationalize flow–ecology relationships into decision-support systems of practical use to water-resource managers, who are commonly tasked with balancing multiple competing socioeconomic and environmental priorities. We illustrate this framework with a case study, whereby fish community responses to various water-management scenarios were predicted in a partially regulated river system at a local watershed scale. This case study simulates management scenarios based on interactive effects of dam operation protocols, withdrawals for municipal water supply, effluent discharges from wastewater treatment, and inter-basin water transfers. Modeled streamflow was integrated with flow–ecology relationships relating hydrologic departure from reference conditions to fish species richness, stratified by trophic, reproductive, and habitat characteristics. Adding a hypothetical new water-withdrawal site was predicted to increase the frequency of low-flow conditions with adverse effects for several fish groups. Imposition of new reservoir release requirements was predicted to enhance flow and fish species richness immediately downstream of the reservoir, but these effects were dissipated further downstream. The framework presented here can be used to translate flow–ecology relationships into evidence-based management by developing decision-support systems for conservation of riverine biodiversity while optimizing water availability for human use.
Regime shifts and panarchies in regional scale social-ecological water systems
In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive gove...
CASE STUDY: SITE CONCEPTUAL MODEL FOR ENHANCED MNA OF ARSENIC
Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into the Halls Brook Holding Area (HBHA) Pond at the Industri-Plex Superfund Site in Massachusetts. The ground water plume contains elevated levels of arsenic...
THE EMPACT BEACHES: A CASE STUDY IN RECREATIONAL WATER SAMPLING
Various chapters describe sample and experimental design, use of a geometric mean or an arithmetic mean, modeling and forecasting, and risk assessment in relation to monitoring recreational waters for fecal indicators. All of these aspects of monitoring are dependent on the spat...
The primer from the National Corn Growers Association includes information on the Clean Water Act, TMDLs, a hypothetical TMDL case study and opportunities for the agricultural community's involvement in development and implementation of TMDLs.
An EMSO data case study within the INDIGO-DC project
NASA Astrophysics Data System (ADS)
Monna, Stephen; Marcucci, Nicola M.; Marinaro, Giuditta; Fiore, Sandro; D'Anca, Alessandro; Antonacci, Marica; Beranzoli, Laura; Favali, Paolo
2017-04-01
We present our experience based on a case study within the INDIGO-DataCloud (INtegrating Distributed data Infrastructures for Global ExplOitation) project (www.indigo-datacloud.eu). The aim of INDIGO-DC is to develop a data and computing platform targeting scientific communities. Our case study is an example of activities performed by INGV using data from seafloor observatories that are nodes of the infrastructure EMSO (European Multidisciplinary Seafloor and water column Observatory)-ERIC (www.emso-eu.org). EMSO is composed of several deep-seafloor and water column observatories, deployed at key sites in the European waters, thus forming a widely distributed pan-European infrastructure. In our case study we consider data collected by the NEMO-SN1 observatory, one of the EMSO nodes used for geohazard monitoring, located in the Western Ionian Sea in proximity of Etna volcano. Starting from the case study, through an agile approach, we defined some requirements for INDIGO developers, and tested some of the proposed INDIGO solutions that are of interest for our research community. Given that EMSO is a distributed infrastructure, we are interested in INDIGO solutions that allow access to distributed data storage. Access should be both user-oriented and machine-oriented, and with the use of a common identity and access system. For this purpose, we have been testing: - ONEDATA (https://onedata.org), as global data management system. - INDIGO-IAM as Identity and Access Management system. Another aspect we are interested in is the efficient data processing, and we have focused on two types of INDIGO products: - Ophidia (http://ophidia.cmcc.it), a big data analytics framework for eScience for the analysis of multidimensional data. - A collection of INDIGO Services to run processes for scientific computing through the INDIGO Orchestrator.
Assessment of a specifically developed bullet casing gun for the stunning of water buffaloes.
Meichtry, Carmen; Glauser, Urs; Glardon, Matthieu; Ross, Steffen G; Lechner, Isabel; Kneubuehl, Beat P; Gascho, Dominic; Spadavecchia, Claudia; von Rotz, Alois; Stojiljkovic, Ana; Stoffel, Michael H
2018-01-01
Water buffaloes and cattle differ considerably with respect to the anatomy of the head. As a result, captive bolt stunners often fail to reliably produce adequate loss of consciousness in water buffaloes and, thus, do not fulfill animal welfare requirements. The goal of the present study was to assess and validate a new stunning device for water buffaloes meeting animal welfare and occupational safety requirements. The newly designed bullet casing gun uses .357Mag/10.2g hollow point bullets and has additional safety features. Its effectiveness and usability were assessed under practical conditions in an abattoir as based on widely accepted criteria. Stunning resulted in deep unconsciousness in 19 out of 20 water buffaloes. One 9-year old male did not immediately collapse. Except for very old bulls, the device presented herewith provides a means to stun water buffaloes of both sexes effectively and reliably while keeping occupational hazards to a minimum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arsenic exposure and risk of preeclampsia in a Mexican mestizo population.
Sandoval-Carrillo, Ada; Méndez-Hernández, Edna M; Antuna-Salcido, Elizabeth I; Salas-Pacheco, Sergio M; Vázquez-Alaniz, Fernando; Téllez-Valencia, Alfredo; Aguilar-Durán, Marisela; Barraza-Salas, Marcelo; Castellanos-Juárez, Francisco X; La Llave-León, Osmel; Salas-Pacheco, José M
2016-07-11
Exposure to arsenic in drinking water has been associated with various complications of pregnancy including fetal loss, low birth weight, anemia, gestational diabetes and spontaneous abortion. However, to date, there are no studies evaluating its possible association with preeclampsia. This case-control study involved 104 preeclamptic and 202 healthy pregnant women. The concentrations of arsenic in drinking water and urine were measured using a Microwave Plasma-Atomic Emission Spectrometer. We found relatively low levels of arsenic in household tap water (range of 2.48-76.02 μg/L) and in the urine of the participants (7.1 μg/L vs 6.78 μg/L in cases and controls, respectively). The analysis between groups showed for the first time that at these lower levels of exposure there is no association with preeclampsia.
Blakey, Karen; Feltbower, Richard G; Parslow, Roger C; James, Peter W; Gómez Pozo, Basilio; Stiller, Charles; Vincent, Tim J; Norman, Paul; McKinney, Patricia A; Murphy, Michael F; Craft, Alan W; McNally, Richard J Q
2014-02-01
Artificial fluoridation of drinking water to improve dental health has long been a topic of controversy. Opponents of this public health measure have cited the possibility of bone cancer induction. The study objective was to examine whether increased risk of primary bone cancer was associated with living in areas with higher concentrations of fluoride in drinking water. Case data on osteosarcoma and Ewing sarcoma, diagnosed at ages 0-49 years in Great Britain (GB) (defined here as England, Scotland and Wales) during the period 1980-2005, were obtained from population-based cancer registries. Data on fluoride levels in drinking water in England and Wales were accessed through regional water companies and the Drinking Water Inspectorate. Scottish Water provided data for Scotland. Negative binomial regression was used to examine the relationship between incidence rates and level of fluoride in drinking water at small area level. The study analysed 2566 osteosarcoma and 1650 Ewing sarcoma cases. There was no evidence of an association between osteosarcoma risk and fluoride in drinking water [relative risk (RR) per one part per million increase in the level of fluoride = 1·001; 90% confidence interval (CI) 0·871, 1·151] and similarly there was no association for Ewing sarcoma (RR = 0·929; 90% CI 0·773, 1·115). The findings from this study provide no evidence that higher levels of fluoride (whether natural or artificial) in drinking water in GB lead to greater risk of either osteosarcoma or Ewing sarcoma.
Morris, Daniel O; Davis, Meghan F; Palmeiro, Brian S; O'Shea, Kathleen; Rankin, Shelley C
2017-02-01
Pseudomonas aeruginosa is an opportunistic pathogen of the canine ear canal and occupies aquatic habitats in the environment. Nosocomial and zoonotic transmission of P. aeruginosa have been documented, including clonal outbreaks. The primary objective of this study was to assess various environmental exposures as potential risk factors for canine Pseudomonas otitis. It was hypothesized that isolates derived from infected ears would be clonal to isolates derived from household water sources and the mouths of human and animal companions of the study subjects. Seventy seven privately owned dogs with otitis were enrolled, along with their human and animal household companions, in a case-control design. Data on potential risk factors for Pseudomonas otitis were collected. Oral cavities of all study subjects, their human and animal companions, and household water sources were sampled. Pulsed field gel electrophoresis was used to estimate clonal relatedness of P. aeruginosa isolates. In a multivariate model, visiting a dog park was associated with 77% increased odds of case status (P = 0.048). Strains clonal to the infection isolates were obtained from subjects' mouths (n = 18), companion pets' mouths (n = 5), pet owners' mouths (n = 2), water bowls (n = 7) and water taps (n = 2). Clonally related P. aeruginosa isolates were obtained from dogs that had no clear epidemiological link. Genetic homology between otic and environmental isolates is consistent with a waterborne source for some dogs, and cross-contamination with other human and animal members within some households. © 2016 ESVD and ACVD.
Molecular modeling of the dissociation of methane hydrate in contact with a silica surface.
Bagherzadeh, S Alireza; Englezos, Peter; Alavi, Saman; Ripmeester, John A
2012-03-15
We use constant energy, constant volume (NVE) molecular dynamics simulations to study the dissociation of the fully occupied structure I methane hydrate in a confined geometry between two hydroxylated silica surfaces between 36 and 41 Å apart, at initial temperatures of 283, 293, and 303 K. Simulations of the two-phase hydrate/water system are performed in the presence of silica, with and without a 3 Å thick buffering water layer between the hydrate phase and silica surfaces. Faster decomposition is observed in the presence of silica, where the hydrate phase is prone to decomposition from four surfaces, as compared to only two sides in the case of the hydrate/water simulations. The existence of the water layer between the hydrate phase and the silica surface stabilizes the hydrate phase relative to the case where the hydrate is in direct contact with silica. Hydrates bound between the silica surfaces dissociate layer-by-layer in a shrinking core manner with a curved decomposition front which extends over a 5-8 Å thickness. Labeling water molecules shows that there is exchange of water molecules between the surrounding liquid and intact cages in the methane hydrate phase. In all cases, decomposition of the methane hydrate phase led to the formation of methane nanobubbles in the liquid water phase. © 2012 American Chemical Society
Towards adaptive and integrated management paradigms to meet the challenges of water governance.
Halbe, J; Pahl-Wostl, C; Sendzimir, J; Adamowski, J
2013-01-01
Integrated Water Resource Management (IWRM) aims at finding practical and sustainable solutions to water resource issues. Research and practice have shown that innovative methods and tools are not sufficient to implement IWRM - the concept needs to also be integrated in prevailing management paradigms and institutions. Water governance science addresses this human dimension by focusing on the analysis of regulatory processes that influence the behavior of actors in water management systems. This paper proposes a new methodology for the integrated analysis of water resources management and governance systems in order to elicit and analyze case-specific management paradigms. It builds on the Management and Transition Framework (MTF) that allows for the examination of structures and processes underlying water management and governance. The new methodology presented in this paper combines participatory modeling and analysis of the governance system by using the MTF to investigate case-specific management paradigms. The linking of participatory modeling and research on complex management and governance systems allows for the transfer of knowledge between scientific, policy, engineering and local communities. In this way, the proposed methodology facilitates assessment and implementation of transformation processes towards IWRM that require also the adoption of adaptive management principles. A case study on flood management in the Tisza River Basin in Hungary is provided to illustrate the application of the proposed methodology.
Rosa, Ghislaine; Kelly, Paul; Clasen, Thomas
2016-02-01
Household water treatment (HWT) can improve drinking water quality and prevent disease, if used correctly and consistently. While international monitoring suggests that 1.8 billion people practice HWT, these estimates are based on household surveys that may overstate the level of consistent use and do not address microbiological effectiveness. We sought to examine how HWT is practiced among households identified as HWT users according to international monitoring standards. Case studies were conducted in urban and rural Zambia. After a baseline survey (urban: 203 households, rural: 276 households) to identify HWT users, 95 urban and 82 rural households were followed up for 6 weeks. Consistency of HWT reporting was low; only 72.6% of urban and 50.0% of rural households reported to be HWT users in the subsequent visit. Similarly, availability of treated water was low, only 23.3% and 4.2% of urban and rural households, respectively, had treated water on all visits. Drinking water was significantly worse than source water in both settings. Only 19.6% of urban and 2.4% of rural households had drinking water free of thermotolerant coliforms on all visits. Our findings raise questions about the value of the data gathered through the international monitoring of HWT practices as predictors of water quality in the home. © The American Society of Tropical Medicine and Hygiene.
Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daw, J.; Hallett, K.; DeWolfe, J.
2012-01-01
Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less
Engaging Students in Water Resources Issues in Developing Countries (Invited)
NASA Astrophysics Data System (ADS)
Thomas, J.; Lutz, A.
2010-12-01
When all is said and done, what does it mean to work in the developing world? The need for access to clean water and sanitation and the desire to end poverty and disease cannot be disputed. But as engineers and physical scientists, we often step into a scenario with a problem-identification-and-solving approach. However, to successfully apply engineering and science in developing countries, we should also consider questions such as: how the problems have come to be; have our approaches been appropriate; and what have the effects of projects been on local populations? A short course to help us better address critical needs begins with readings that cover the history of development, development theories, review of “players” in development, case studies, and possibilities on the road ahead. It is also important to include key guest speakers with experience in developing countries as part of an international course curriculum. Within this overall course context, discussion of case studies provides an opportunity to critically assess positive, negative, and a combination of outcomes for communities. These case studies are building blocks for solving some of the most important water and sanitation issues in developing countries.
Kourgialas, Nektarios N; Karatzas, George P; Dokou, Zoi; Kokorogiannis, Andreas
2018-02-15
In many Mediterranean islands with limited surface water resources, the growth of agricultural and touristic sectors, which are the main water consumers, highly depends on the sustainable water resources management. This work highlights the crucial role of groundwater footprint (GF) as a tool for the sustainable management of water resources, especially in water scarce islands. The groundwater footprint represents the water budget between inflows and outflows in an aquifer system and is used as an index of the effect of groundwater use in natural resources and environmental flows. The case study presented in this paper is the island of Crete, which consists of 11 main aquifer systems. The data used for estimating the groundwater footprint in each system were groundwater recharges, abstractions through 412 wells, environmental flows (discharges) from 76 springs and 19 streams present in the area of study. The proposed methodology takes into consideration not only the water quantity but also the water quality of the aquifer systems and can be used as an integrated decision making tool for the sustainable management of groundwater resources. This methodology can be applied in any groundwater system. The results serve as a tool for assessing the potential of sustainable use and the optimal distribution of water needs under the current and future climatic conditions, considering both quantitative and qualitative factors. Adaptation measures and water policies that will effectively promote sustainable development are also proposed for the management of the aquifer systems that exhibit a large groundwater footprint. Copyright © 2017 Elsevier B.V. All rights reserved.
Review of epidemiological studies on drinking water hardness and cardiovascular diseases.
Monarca, Silvano; Donato, Francesco; Zerbini, Ilaria; Calderon, Rebecca L; Craun, Gunther F
2006-08-01
Major risk factors do not entirely explain the worldwide variability of morbidity and mortality due to cardiovascular disease. Environmental exposures, including drinking water minerals may affect cardiovascular disease risks. We conducted a qualitative review of the epidemiological studies of cardiovascular disease and drinking water hardness and calcium and magnesium levels. Many but not all ecological studies found an inverse (i.e., protective) association between cardiovascular disease mortality and water hardness, calcium, or magnesium levels; but results are not consistent. Some case-control studies and one cohort study found either a reduced cardiovascular disease mortality risk with increased drinking water magnesium levels or an increased risk with low magnesium levels. However, the analytical studies provide little evidence that cardiovascular risks are associated with drinking water hardness or calcium levels. Information from epidemiological and other studies supports the hypothesis that a low intake of magnesium may increase the risk of dying from, and possibly developing, cardiovascular disease or stroke. Thus, not removing magnesium from drinking water, or in certain situations increasing the magnesium intake from water, may be beneficial, especially for populations with an insufficient dietary intake of the mineral.
Heterogeneous dermatitis complaints after change in drinking water treatment: a case report
Weintraub, June M; Berger, Magdalena; Bhatia, Rajiv
2006-01-01
Background The disinfectant monochloramine minimizes the formation of potentially hazardous and regulated byproducts, and many drinking water utilities are shifting to its use. Case presentation After a drinking water utility serving 2.4 million people switched to monochloramine for residual disinfection, a small number of residents complained of dermatitis reactions. We interviewed 17 people about their symptoms. Skin appearance, symptoms, and exposures were heterogeneous. Five respondents had history of hives or rash that preceded the switch to monochloramine. Conclusion The complaints described were heterogeneous, and many of the respondents had underlying or preexisting conditions that would offer plausible alternative explanations for their symptoms. We did not recommend further study of these complaints. PMID:16764728
Davis, Michael J; Janke, Robert
2018-01-04
The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.
NASA Astrophysics Data System (ADS)
Davis, Michael J.; Janke, Robert
2018-05-01
The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.
The Impact of the Extreme Amazonian Flood Season on the Incidence of Viral Gastroenteritis Cases.
Vieira, Carmen Baur; de Abreu Corrêa, Adriana; de Jesus, Michele Silva; Luz, Sérgio Luiz Bessa; Wyn-Jones, Peter; Kay, David; Rocha, Mônica Simões; Miagostovich, Marize Pereira
2017-06-01
During the Amazonian flood season in 2012, the Negro River reached its highest level in 110 years, submerging residential and commercial areas which appeared associated with an elevation in the observed gastroenteritis cases in the city of Manaus. The aim of this study was to evaluate the microbiological water quality of the Negro River basin during this extreme flood to investigate this apparent association between the illness cases and the population exposed to the contaminated waters. Forty water samples were collected and analysed for classic and emerging enteric viruses. Human adenoviruses, group A rotaviruses and genogroup II noroviruses were detected in 100, 77.5 and 27.5% of the samples, respectively, in concentrations of 10 3 -10 6 GC/L. All samples were compliant with local bacteriological standards. HAdV2 and 41 and RVA G2, P[6], and P[8] were characterised. Astroviruses, sapoviruses, genogroup IV noroviruses, klasseviruses, bocaviruses and aichiviruses were not detected. Statistical analyses showed correlations between river stage level and reported gastroenteritis cases and, also, significant differences between virus concentrations during this extreme event when compared with normal dry seasons and previous flood seasons of the Negro River. These findings suggest an association between the extreme flood experienced and gastrointestinal cases in the affected areas providing circumstantial evidence of causality between the elevations in enteric viruses in surface waters and reported illness.
Surface interactions between silica particles and water and organic solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douillard, J.M.; Elwafir, M.; Partyka, S.
1994-04-01
A silica sample has been studied by vapor adsorption and by microcalorimetric methods. The combination of these two methods in the case of water allows one to calculate all the thermodynamic terms related to the adhesion on this silica. Adhesion between silica and miscellaneous solvents has been studied by immersion microcalorimetry. The silica is slightly hydrophobic, but the enthalpy of immersion into water is the most energetic one of all the solvents studied. It appears a clear graduation of the enthalpies of immersion due to the presence of delocalized electrons in the studied solvents.
Epidemiological evidence of carcinogenicity of chlorinated organics in drinking water.
Cantor, K P
1982-12-01
Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer risk and byproducts of chlorination. Preliminary data from measures of halogenated volatiles and personal exposure histories from respondents in a large epidemiologic study of bladder cancer are presented. These data support the use in epidemiologic studies of categorical measures of exposure and suggest that results from completed case-control studies, based on death certificates, may have underestimated the true risk of exposure to chlorination by-products. The current generation of studies which use a case-control interview design offer many advantages over earlier efforts to evaluate this issue.
Epidemiological evidence of carcinogenicity of chlorinated organics in drinking water.
Cantor, K P
1982-01-01
Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer risk and byproducts of chlorination. Preliminary data from measures of halogenated volatiles and personal exposure histories from respondents in a large epidemiologic study of bladder cancer are presented. These data support the use in epidemiologic studies of categorical measures of exposure and suggest that results from completed case-control studies, based on death certificates, may have underestimated the true risk of exposure to chlorination by-products. The current generation of studies which use a case-control interview design offer many advantages over earlier efforts to evaluate this issue. PMID:6759108
Gerten, Dieter; Rockström, Johan; Heinke, Jens; Steffen, Will; Richardson, Katherine; Cornell, Sarah
2015-06-12
Jaramillo and Destouni claim that freshwater consumption is beyond the planetary boundary, based on high estimates of water cycle components, different definitions of water consumption, and extrapolation from a single case study. The difference from our analysis, based on mainstream assessments of global water consumption, highlights the need for clearer definitions of water cycle components and improved models and databases. Copyright © 2015, American Association for the Advancement of Science.
Effect of water and ionic liquids on biomolecules.
Saha, Debasis; Mukherjee, Arnab
2018-02-08
The remarkable progress in the field of ionic liquids (ILs) in the last two decades has involved investigations on different aspects of ILs in various conditions. The nontoxic and biocompatible nature of ILs makes them a suitable substance for the storage and application of biomolecules. In this regard, the aqueous IL solutions have attracted a large number of studies to comprehend the role of water in modulating various properties of biomolecules. Here, we review some of the recent studies on aqueous ILs that concern the role of water in altering the behavior of ILs in general and in case of biomolecules solvated in ILs. The different structural and dynamic effects caused by water have been highlighted. We discuss the different modes of IL interaction that are responsible for stabilization and destabilization of proteins and enzymes followed by examples of water effect on this. The role of water in the case of nucleic acid storage in ILs, an area which has mostly been underrated, also has been emphasized. Our discussions highlight the fact that the effects of water on IL behavior are not general and are highly dependent on the nature of the IL under consideration. Overall, we aim to draw attention to the significance of water dynamics in the aqueous IL solutions, a better understanding of which can help in developing superior storage materials for application purposes.