Sample records for cases high resolution

  1. Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT.

    PubMed

    Umehara, Kensuke; Ota, Junko; Ishida, Takayuki

    2017-10-18

    In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.

  2. High Resolution Spectroscopy of 1,2-Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling

    DTIC Science & Technology

    1992-05-29

    Spectroscopy of 1,2- Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling by Steven W. Mork, C. Cameron Miller, and Laura A...and sale; its distribution is unlimited. 92-14657 l9lll l l l , II a HIGH RESOLUTION SPECTROSCOPY OF 1,2- DIFLUOROETHANE IN A MOLECULAR BEAM: A CASE...14853-1301 Abstract The high resolution infrared spectrum of 1,2- difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1

  3. Subtle trisomy 12q24.3 and subtle monosomy 22q13.3: three new cases and review.

    PubMed

    Rodríguez, Laura; Martínez Guardia, Nieves; Herens, Christian; Jamar, Mauricette; Verloes, Alain; López, Fermina; Santos Muñoz, José; Martínez-Frías, María Luisa

    2003-10-01

    The high resolution G-bands (850 bands) karyotype have made it possible to identify small chromosome anomalies (5 megabases) which are now microscopically visible. New techniques have been improved, such as the Fluorescent in situ hybridization (FISH) with subtelomeric probes, which can be employed to detect cryptic chromosome alterations not visible microscopically. We present three cases which had been remitted for a high resolution karyotype. The high resolution G-band karyotype and the FISH techniques led us to conclude that the three cases were carriers of a similar subtle chromosomal alteration. Case I is a new born female with developmental and psychomotor delay, hypotonia, and long limbs with arachnodactily. A high resolution G-band karyotype showed an abnormal chromosome 22. FISH techniques confirmed a der(22)t(12;22)(q24.31;q13.3). Case II is a 12-year-old girl, with growth retardation, long shaped face with thick eyebrows, smooth philtrum, and thin upper lip with severe mental retardation (still no language), with a phenotype very similar to that of his sister: long shaped face, thick eyebrows, smooth philtrum, and thin upper lip. A high resolution G-band karyotype also showed in Case II and III an abnormal chromosome 22, studied by FISH techniques which confirmed a der(22)t(12;22)(q24.3;q13.3) in both cases. Copyright 2003 Wiley-Liss, Inc.

  4. High-resolution chromosomal microarrays in prenatal diagnosis significantly increase diagnostic power.

    PubMed

    Oneda, Beatrice; Baldinger, Rosa; Reissmann, Regina; Reshetnikova, Irina; Krejci, Pavel; Masood, Rahim; Ochsenbein-Kölble, Nicole; Bartholdi, Deborah; Steindl, Katharina; Morotti, Denise; Faranda, Marzia; Baumer, Alessandra; Asadollahi, Reza; Joset, Pascal; Niedrist, Dunja; Breymann, Christian; Hebisch, Gundula; Hüsler, Margaret; Mueller, René; Prentl, Elke; Wisser, Josef; Zimmermann, Roland; Rauch, Anita

    2014-06-01

    The objective of this study was to determine for the first time the reliability and the diagnostic power of high-resolution microarray testing in routine prenatal diagnostics. We applied high-resolution chromosomal microarray testing in 464 cytogenetically normal prenatal samples with any indication for invasive testing. High-resolution testing revealed a diagnostic yield of 6.9% and 1.6% in cases of fetal ultrasound anomalies and cases of advanced maternal age (AMA), respectively, which is similar to previous studies using low-resolution microarrays. In three (0.6%) additional cases with an indication of AMA, an aberration in susceptibility risk loci was detected. Moreover, one case (0.2%) showed an X-linked aberration in a female fetus, a finding relevant for future family planning. We found the rate of cases, in which the parents had to be tested for interpretation of unreported copy number variants (3.7%), and the rate of remaining variants of unknown significance (0.4%) acceptably low. Of note, these findings did not cause termination of pregnancy after expert genetic counseling. The 0.4% rate of confined placental mosaicism was similar to that observed by conventional karyotyping and notably involved a case of placental microdeletion. High-resolution prenatal microarray testing is a reliable technique that increases diagnostic yield by at least 17.3% when compared with conventional karyotyping, without an increase in the frequency of variants of uncertain significance. © 2014 John Wiley & Sons, Ltd.

  5. Development of High-Resolution Dynamic Dust Source Function - A Case Study with a Strong Dust Storm in a Regional Model

    NASA Technical Reports Server (NTRS)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul

    2017-01-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  6. Development of High-Resolution Dynamic Dust Source Function -A Case Study with a Strong Dust Storm in a Regional Model

    PubMed Central

    Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul

    2018-01-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events. PMID:29632432

  7. Development of High-Resolution Dynamic Dust Source Function -A Case Study with a Strong Dust Storm in a Regional Model.

    PubMed

    Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul

    2017-06-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  8. Improving Barotropic Tides by Two-way Nesting High and Low Resolution Domains

    NASA Astrophysics Data System (ADS)

    Jeon, C. H.; Buijsman, M. C.; Wallcraft, A. J.; Shriver, J. F.; Hogan, P. J.; Arbic, B. K.; Richman, J. G.

    2017-12-01

    In a realistically forced global ocean model, relatively large sea-surface-height root-mean-square (RMS) errors are observed in the North Atlantic near the Hudson Strait. These may be associated with large tidal resonances interacting with coastal bathymetry that are not correctly represented with a low resolution grid. This issue can be overcome by using high resolution grids, but at a high computational cost. In this paper we apply two-way nesting as an alternative solution. This approach applies high resolution to the area with large RMS errors and a lower resolution to the rest. It is expected to improve the tidal solution as well as reduce the computational cost. To minimize modification of the original source codes of the ocean circulation model (HYCOM), we apply the coupler OASIS3-MCT. This coupler is used to exchange barotropic pressures and velocity fields through its APIs (Application Programming Interface) between the parent and the child components. The developed two-way nesting framework has been validated with an idealized test case where the parent and the child domains have identical grid resolutions. The result of the idealized case shows very small RMS errors between the child and parent solutions. We plan to show results for a case with realistic tidal forcing in which the resolution of the child grid is three times that of the parent grid. The numerical results of this realistic case are compared to TPXO data.

  9. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.

  10. Comparing Magnetic Resonance Imaging and High-Resolution Dynamic Ultrasonography for Diagnosis of Plantar Plate Pathology: A Case Series.

    PubMed

    Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael

    Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Image super-resolution via sparse representation.

    PubMed

    Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi

    2010-11-01

    This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.

  12. A comparison of GLAS SAT and NMC high resolution NOSAT forecasts from 19 and 11 February 1976

    NASA Technical Reports Server (NTRS)

    Atlas, R.

    1979-01-01

    A subjective comparison of the Goddard Laboratory for Atmospheric Sciences (GLAS) and the National Meteorological Center (NMC) high resolution model forecasts is presented. Two cases where NMC's operational model in 1976 had serious difficulties in forecasting for the United States were examined. For each of the cases, the GLAS model forecasts from initial conditions which included satellite sounding data were compared directly to the NMC higher resolution model forecasts, from initial conditions which excluded the satellite data. The comparison showed that the GLAS satellite forecasts significantly improved upon the current NMC operational model's predictions in both cases.

  13. T85C polymorphisms of the dihydropyrimidine dehydrogenase gene detected in gastric cancer tissues by high-resolution melting curve analysis.

    PubMed

    Fang, Weijia; Xu, Nong; Jin, Dazhi; Chen, Yu; Chen, Xiaogang; Zheng, Yi; Shen, Hong; Yuan, Ying; Zheng, Shusen

    2012-01-01

    Dihydropyrimidine dehydrogenase is a key enzyme acting on the metabolic pathway of medications for gastric cancer. High-resolution melting curve technology, which was developed recently, can distinguish the wild-type dihydropyrimidine dehydrogenase gene from multiple polymorphisms by fluorescent quantitative polymerase chain reaction products in a direct and effective manner. T85C polymorphisms of dihydropyrimidine dehydrogenase in the peripheral blood of 112 Chinese gastric cancer patients were detected by real-time polymerase chain reaction combined with high-resolution melting curve technology. Primer design, along with the reaction system and conditions, was optimized based on the GenBank sequence. Seventy nine cases of wild-type (TT, [70.5%]), 29 cases of heterozygous (TC, [25.9%]), and 4 cases of homozygous mutant (CC, [3.6%]) were observed. The result was completely consistent with the results of the sequencing. Real-time polymerase chain reaction combined with high-resolution melting curve technology is a rapid, simple, reliable, direct-viewing, and convenient method for the detection and screening of polymorphisms.

  14. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  15. Motivation and Prospects for Spatio-spectral Interferometry in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2013-01-01

    Consensus developed through a series of workshops, starting in 1998. Compelling science case for high angular resolution imaging and spectroscopy, and mission concepts. A robust plan - it has evolved over the years, but has consistently called for high resolution.

  16. Heterozygous mapping strategy (HetMapps)for high resolution genotyping-by-sequencing markers: a case study in grapevine

    USDA-ARS?s Scientific Manuscript database

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low per-sample genotyping cost, but missing data and under-calling of heterozygotes complicate the creation of GBS linkage maps for highly heterozygous species. To overcome these issues, we developed ...

  17. CNV detection method optimized for high-resolution arrayCGH by normality test.

    PubMed

    Ahn, Jaegyoon; Yoon, Youngmi; Park, Chihyun; Park, Sanghyun

    2012-04-01

    High-resolution arrayCGH platform makes it possible to detect small gains and losses which previously could not be measured. However, current CNV detection tools fitted to early low-resolution data are not applicable to larger high-resolution data. When CNV detection tools are applied to high-resolution data, they suffer from high false-positives, which increases validation cost. Existing CNV detection tools also require optimal parameter values. In most cases, obtaining these values is a difficult task. This study developed a CNV detection algorithm that is optimized for high-resolution arrayCGH data. This tool operates up to 1500 times faster than existing tools on a high-resolution arrayCGH of whole human chromosomes which has 42 million probes whose average length is 50 bases, while preserving false positive/negative rates. The algorithm also uses a normality test, thereby removing the need for optimal parameters. To our knowledge, this is the first formulation for CNV detecting problems that results in a near-linear empirical overall complexity for real high-resolution data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Resolution analysis of archive films for the purpose of their optimal digitization and distribution

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2017-09-01

    With recent high demand for ultra-high-definition (UHD) content to be screened in high-end digital movie theaters but also in the home environment, film archives full of movies in high-definition and above are in the scope of UHD content providers. Movies captured with the traditional film technology represent a virtually unlimited source of UHD content. The goal to maintain complete image information is also related to the choice of scanning resolution and spatial resolution for further distribution. It might seem that scanning the film material in the highest possible resolution using state-of-the-art film scanners and also its distribution in this resolution is the right choice. The information content of the digitized images is however limited, and various degradations moreover lead to its further reduction. Digital distribution of the content in the highest image resolution might be therefore unnecessary or uneconomical. In other cases, the highest possible resolution is inevitable if we want to preserve fine scene details or film grain structure for archiving purposes. This paper deals with the image detail content analysis of archive film records. The resolution limit in captured scene image and factors which lower the final resolution are discussed. Methods are proposed to determine the spatial details of the film picture based on the analysis of its digitized image data. These procedures allow determining recommendations for optimal distribution of digitized video content intended for various display devices with lower resolutions. Obtained results are illustrated on spatial downsampling use case scenario, and performance evaluation of the proposed techniques is presented.

  19. High Resolution Chest Computerized Tomography in the Diagnosis of Ocular Sarcoidosis in a High TB Endemic Population.

    PubMed

    Babu, Kalpana; Shukla, Sai Bhakti; Philips, Mariamma

    2017-04-01

    To review the role of high resolution chest computed tomography (HRCT) in ocular sarcoidosis in a high TB endemic population. This was a retrospective study. Out of 140 cases, 54 had ocular sarcoidosis, while 86 cases had ocular tuberculosis. Abnormal HRCT findings was noted in 52 cases (96.3%) of ocular sarcoidosis compared with 55 cases (64.7%) of ocular tuberculosis (p = 0.001). Mediastinal lymphadenopathy was the most common finding in both groups (p = 0.544). Hilar lymphadenopathy and fissural nodules were significantly seen in ocular sarcoidosis (p = 0.001). Necrosis was seen in three cases of ocular sarcoidosis. In nearly half of the cases, it was not possible to differentiate between sarcoidosis and tuberculosis on HRCT. HRCT is a useful diagnostic tool in ocular sarcoidosis. Bilateral hilar lymphadenopathy and fissural nodules are significant findings in ocular sarcoidosis. A confident diagnosis of ocular sarcoidosis is made by the amalgamation of results of clinical, radiologic, and other laboratory investigations.

  20. Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for supermassive black holes

    NASA Astrophysics Data System (ADS)

    Beckmann, R. S.; Slyz, A.; Devriendt, J.

    2018-07-01

    Whilst in galaxy-size simulations, supermassive black holes (SMBHs) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion on to a point mass, and the related estimate of the drag force exerted on to a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply-limited accretion scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force, it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates on to the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

  1. Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Beckmann, R. S.; Slyz, A.; Devriendt, J.

    2018-04-01

    Whilst in galaxy-size simulations, supermassive black holes (SMBH) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion onto a point mass, and the related estimate of the drag force exerted onto a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply limited accretion (SLA) scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates onto the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

  2. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland

    PubMed Central

    2013-01-01

    Background As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases. Methods Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season. Results Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high season. Both models proved useful at predicting the locations of local cases identified in 2012. Conclusions The high-resolution mapping approaches described here can help elimination programmes understand the epidemiology of a disappearing disease. Generating case-based risk maps at high spatial and temporal resolution will allow control programmes to direct interventions proactively according to evidence-based measures of risk and ensure that the impact of limited resources is maximized to achieve and maintain malaria elimination. PMID:23398628

  3. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland.

    PubMed

    Cohen, Justin M; Dlamini, Sabelo; Novotny, Joseph M; Kandula, Deepika; Kunene, Simon; Tatem, Andrew J

    2013-02-11

    As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases. Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season. Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high season. Both models proved useful at predicting the locations of local cases identified in 2012. The high-resolution mapping approaches described here can help elimination programmes understand the epidemiology of a disappearing disease. Generating case-based risk maps at high spatial and temporal resolution will allow control programmes to direct interventions proactively according to evidence-based measures of risk and ensure that the impact of limited resources is maximized to achieve and maintain malaria elimination.

  4. Photoionization Rate of Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    Meier, R. R.; McLaughlin, B. M.; Warren, H. P.; Bishop, J.

    2006-05-01

    Accurate knowledge of the photoionization rate of atomic oxygen is important for the study and understanding of the ionospheres and emission processes of terrestrial, planetary, and cometary atmospheres. Past calculations of the photoionization rate have been carried out at various spectral resolutions, but none were at sufficiently high resolution to accommodate accidental resonances between solar emission lines and highly structured auto-ionization features in the photoionization cross section. A new version of the NRLEUV solar spectral irradiance model (at solar minimum) and a new model of the O photoionization cross section enable calculations at very high spectral resolution. We find unattenuated photoionization rates computed at 0.001 nm resolution are larger than those at moderate resolution (0.1 nm) by amounts approaching 20%. Allowing for attenuation in the terrestrial atmosphere, we find differences in photoionization rates computed at high and moderate resolution to vary with altitude, especially below 200 km where deviations of plus or minus 20% occur between the two cases.

  5. The effects of spatial sampling choices on MR temperature measurements.

    PubMed

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  6. Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca; Palmer, Kevin; Deutsch, Clayton V.

    High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit inmore » South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.« less

  7. High-resolution DEM Effects on Geophysical Flow Models

    NASA Astrophysics Data System (ADS)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be addressed. We discuss the effect on the flow model output and present possible solutions for rectification of the problem.

  8. Improving Numerical Weather Predictions of Summertime Precipitation Over the Southeastern U.S. Through a High-Resolution Initialization of the Surface State

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.

    2011-01-01

    It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.

  9. Refinement procedure for the image alignment in high-resolution electron tomography.

    PubMed

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Avoiding pitfalls in molecular genetic testing: case studies of high-resolution array comparative genomic hybridization testing in the definitive diagnosis of Mowat-Wilson syndrome.

    PubMed

    Kluk, Michael Joseph; An, Yu; James, Philip; Coulter, David; Harris, David; Wu, Bai-Lin; Shen, Yiping

    2011-05-01

    The molecular testing options available for the diagnosis of genetic disorders are numerous and include a variety of different assay platforms. The consultative input of molecular pathologists and cytogeneticists, working closely with the ordering clinicians, is often important for definitive diagnosis. Herein, we describe two patients who had long histories of unexplained signs and symptoms with a high clinical suspicion of an underlying genetic etiology. Initial molecular testing in both cases was negative, but the application of high-resolution array comparative genomic hybridization technology lead to definitive diagnosis in both cases. We summarize the clinical findings and molecular testing in each case, discuss the differential diagnoses, and review the clinical and pathological findings of Mowat-Wilson syndrome. This report highlights the importance for those involved in molecular testing to know the nature of the underlying genetic abnormalities associated with the suspected diagnosis, to recognize the limitations of each testing platform, and to persistently pursue repeat testing using high-resolution technologies when indicated. This concept is applicable to both germline and somatic molecular genetic testing. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. MRI Superresolution Using Self-Similarity and Image Priors

    PubMed Central

    Manjón, José V.; Coupé, Pierrick; Buades, Antonio; Collins, D. Louis; Robles, Montserrat

    2010-01-01

    In Magnetic Resonance Imaging typical clinical settings, both low- and high-resolution images of different types are routinarily acquired. In some cases, the acquired low-resolution images have to be upsampled to match with other high-resolution images for posterior analysis or postprocessing such as registration or multimodal segmentation. However, classical interpolation techniques are not able to recover the high-frequency information lost during the acquisition process. In the present paper, a new superresolution method is proposed to reconstruct high-resolution images from the low-resolution ones using information from coplanar high resolution images acquired of the same subject. Furthermore, the reconstruction process is constrained to be physically plausible with the MR acquisition model that allows a meaningful interpretation of the results. Experiments on synthetic and real data are supplied to show the effectiveness of the proposed approach. A comparison with classical state-of-the-art interpolation techniques is presented to demonstrate the improved performance of the proposed methodology. PMID:21197094

  12. Magnetic Resonance Imaging of the anal canal using high resolution sequences and phased array coil: visualization of anal sphincter complex.

    PubMed

    Laghi, A; Iafrate, F; Paolantonio, P; Iannaccone, R; Baeli, I; Ferrari, R; Catalano, C; Passariello, R

    2002-04-01

    To assess the normal anatomy of the anal sphincter complex using high-resolution MR imaging with phased -array coil. Twenty patients, 13 males and 7 females, ranging in age between 27 and 56 years underwent MRI evaluation of the pelvic region, using a superconductive 1.5 T magnet (maximum gradient strength, 25 mT/m; minimum rise time 600 microseconds, equipped with phased-array coil. High-resolution T2-weighted Turbo Spin Echo sequences (TR, 4055 ms; TE, 132 ms; matrix 390x512; in-plane resolution, 0.67x0.57 mm) were acquired on multiple axial, sagittal and coronal planes. Images were reviewed by two experienced gastrointestinal radiologists in order to evaluate the normal anal sphincter complex. Optimal image quality of the anal sphincter complex was obtained in all cases. Different muscular layers were observed between the upper and lower aspects of the anal canal. In the lower part of the anal canal, internal and external sphincter muscles could be observed; in the upper part, puborectal and internal sphincter muscles were depicted. Good visualization of intersphincteric space, levator ani muscle and ischioanal space was also obtained in all cases. High-resolution MR images with phased-array coil provide optimal depiction of the anal canal and the anal sphincter complex.

  13. Toward seamless high-resolution flash flood forecasting over Europe based on radar nowcasting and NWP: An evaluation with case studies

    NASA Astrophysics Data System (ADS)

    Park, Shinju; Berenguer, Marc; Sempere-Torres, Daniel; Baugh, Calum; Smith, Paul

    2017-04-01

    Flash floods induced by heavy rain are one of the hazardous natural events that significantly affect human lives. Because flash floods are characterized by their rapid onset, forecasting flash flood to lead an effective response requires accurate rainfall predictions with high spatial and temporal resolution and adequate representation of the hydrologic and hydraulic processes within a catchment that determine rainfall-runoff accumulations. We present extreme flash flood cases which occurred throughout Europe in 2015-2016 that were identified and forecasted by two real-time approaches: 1) the European Rainfall-Induced Hazard Assessment System (ERICHA) and 2) the European Runoff Index based on Climatology (ERIC). ERICHA is based on the nowcasts of accumulated precipitation generated from the pan-European radar composites produced by the EUMETNET project OPERA. It has the advantage of high-resolution precipitation inputs and rapidly updated forecasts (every 15 minutes), but limited forecast lead time (up to 8 hours). ERIC, on the other hand, provides 5-day forecasts based on the COSMO-LEPS NWP simulations updated 2 times a day but is only produced at a 7 km resolution. We compare the products from both systems and focus on showing the advantages, limitations and complementarities of ERICHA and ERIC for seamless high-resolution flash flood forecasting.

  14. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  15. Public Good or Commercial Opportunity: Case Studies in Remote Sensing Commercialization

    NASA Technical Reports Server (NTRS)

    Johnston, Shaida; Cordes, Joseph

    2002-01-01

    The U.S. Government is once again attempting to commercialize the Landsat program and is asking the private sector to develop a next generation mid-resolution remote sensing system that will provide continuity with the thirty-year data archive of Landsat data. Much of the case for commercializing the Landsat program rests on the apparently successful commercialization of high-resolution remote sensing activities coupled with the belief that conditions have changed since the failed attempt to commercialize Landsat in the 1980s. This paper analyzes the economic, political and technical conditions that prevailed in the 1980s as well as conditions that might account for the apparent success of the emerging high-resolution remote sensing industry today. Lessons are gleaned for the future of the Landsat program.

  16. High-resolution terahertz inline digital holography based on quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Deng, Qinghua; Li, Weihua; Wang, Xuemin; Li, Zeyu; Huang, Haochong; Shen, Changle; Zhan, Zhiqiang; Zou, Ruijiao; Jiang, Tao; Wu, Weidong

    2017-11-01

    A key requirement to put terahertz (THz) imaging systems into applications is high resolution. Based on a self-developed THz quantum cascade laser (QCL), we demonstrate a THz inline digital holography imaging system with high lateral resolution. In our case, the lateral resolution of this holography imaging system is pushed to about 70 μm, which is close to the intrinsic resolution limit of this system. To the best of our knowledge, this is much smaller than what has been reported up to now. This is attributed to a series of improvements, such as shortening the QCL wavelength, increasing Nx and Ny by the synthetic aperture method, smoothing the source beam profile, and diminishing vibration due to the cryorefrigeration device. This kind of holography system with a resolution smaller than 100 μm opens the door for many imaging experiments. It will turn the THz imaging systems into applications.

  17. Application of Convolutional Neural Network in Classification of High Resolution Agricultural Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H.

    2017-09-01

    With the rapid development of Precision Agriculture (PA) promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN). For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  18. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelides, Michael, E-mail: mihalismihailidis@gmail.com; Papas, Stylianos, E-mail: vascular@drpapas.com; Pantziara, Maria, E-mail: mgpantziara@gmail.com

    2013-05-14

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  19. Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study

    PubMed Central

    van Veluw, Susanne J.; Charidimou, Andreas; van der Kouwe, Andre J.; Lauer, Arne; Reijmer, Yael D.; Costantino, Isabel; Gurol, M. Edip; Biessels, Geert Jan; Frosch, Matthew P.; Viswanathan, Anand; Greenberg, Steven M.

    2016-01-01

    Cerebral amyloid angiopathy is a common neuropathological finding in the ageing human brain, associated with cognitive impairment. Neuroimaging markers of severe cerebral amyloid angiopathy are cortical microbleeds and microinfarcts. These parenchymal brain lesions are considered key contributors to cognitive impairment. Therefore, they are important targets for therapeutic strategies and may serve as surrogate neuroimaging markers in clinical trials. We aimed to gain more insight into the pathological basis of magnetic resonance imaging-defined microbleeds and microinfarcts in cerebral amyloid angiopathy, and to explore the pathological burden that remains undetected, by using high and ultra-high resolution ex vivo magnetic resonance imaging, as well as detailed histological sampling. Brain samples from five cases (mean age 85 ± 6 years) with pathology-proven cerebral amyloid angiopathy and multiple microbleeds on in vivo clinical magnetic resonance imaging were subjected to high-resolution ex vivo 7 T magnetic resonance imaging. On the obtained high-resolution (200 μm isotropic voxels) ex vivo magnetic resonance images, 171 microbleeds were detected compared to 66 microbleeds on the corresponding in vivo magnetic resonance images. Of 13 sampled microbleeds that were matched on histology, five proved to be acute and eight old microhaemorrhages. The iron-positive old microhaemorrhages appeared approximately four times larger on magnetic resonance imaging compared to their size on histology. In addition, 48 microinfarcts were observed on ex vivo magnetic resonance imaging in three out of five cases (two cases exhibited no microinfarcts). None of them were visible on in vivo 1.5 T magnetic resonance imaging after a retrospective analysis. Of nine sampled microinfarcts that were matched on histology, five were confirmed as acute and four as old microinfarcts. Finally, we explored the proportion of microhaemorrhage and microinfarct burden that is beyond the detection limits of ex vivo magnetic resonance imaging, by scanning a smaller sample at ultra-high resolution, followed by serial sectioning. At ultra-high resolution (75 μm isotropic voxels) magnetic resonance imaging we observed an additional 48 microbleeds (compared to high resolution), which proved to correspond to vasculopathic changes (i.e. morphological changes to the small vessels) instead of frank haemorrhages on histology. After assessing the serial sections of this particular sample, no additional haemorrhages were observed that were missed on magnetic resonance imaging. In contrast, nine microinfarcts were found in these sections, of which six were only retrospectively visible at ultra-high resolution. In conclusion, these findings suggest that microbleeds on in vivo magnetic resonance imaging are specific for microhaemorrhages in cerebral amyloid angiopathy, and that increasing the resolution of magnetic resonance images results in the detection of more ‘non-haemorrhagic’ pathology. In contrast, the vast majority of microinfarcts currently remain under the detection limits of clinical in vivo magnetic resonance imaging. PMID:27645801

  20. Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA

    Treesearch

    Wenli Huang; Anu Swatantran; Kristofer Johnson; Laura Duncanson; Hao Tang; Jarlath O' Neil Dunne; George Hurtt; Ralph Dubayah

    2015-01-01

    Continental-scale aboveground biomass maps are increasingly available, but their estimates vary widely, particularly at high resolution. A comprehensive understanding of map discrepancies is required to improve their effectiveness in carbon accounting and local decision-making. To this end, we compare four continental-scale maps with a recent high-resolution lidar-...

  1. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  2. [Pulmonary paracoccidioidomycosis: a case report with high-resolution computed tomography findings].

    PubMed

    Armas, M; Ruivo, C; Alves, R; Gonçalves, M; Teixeira, L

    2012-01-01

    Paracoccidioidomycosis is a systemic mycosis which is endemic in rural areas of Latin America, an important European source of immigrants and a growing European touristic destination as well, with most cases occurring in Brazil, Argentina, Venezuela and Colombia. The authors report a case of a 43 year old man who previously worked in Venezuela and is living in Portugal for 8 years, presenting with a single cutaneous lesion. Despite the absence of valuable respiratory complaints, severe lung damage was found with high-resolution computed tomography (HRCT). Biopsy of the cutaneous lesion and mycologic sputum examination were performed revealing Paracoccidioides brasiliensis infection. Copyright © 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  3. Effects of spatial resolution ratio in image fusion

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2008-01-01

    In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.

  4. Optical design of a Michelson wide-field multiple-aperture telescope

    NASA Astrophysics Data System (ADS)

    Cassaing, Frederic; Sorrente, Beatrice; Fleury, Bruno; Laubier, David

    2004-02-01

    Multiple-Aperture Optical Telescopes (MAOTs) are a promising solution for very high resolution imaging. In the Michelson configuration, the instrument is made of sub-telescopes distributed in the pupil and combined by a common telescope via folding periscopes. The phasing conditions of the sub-pupils lead to specific optical constraints in these subsystems. The amplitude of main contributors to the wavefront error (WFE) is given as a function of high level requirements (such as field or resolution) and free parameters, mainly the sub-telescope type, magnification and diameter. It is shown that for the periscopes, the field-to-resolution ratio is the main design driver and can lead to severe specifications. The effect of sub-telescopes aberrations on the global WFE can be minimized by reducing their diameter. An analytical tool for the MAOT design has been derived from this analysis, illustrated and validated in three different cases: LEO or GEO Earth observation and astronomy with extremely large telescopes. The last two cases show that a field larger than 10 000 resolution elements can be covered with a very simple MAOT based on Mersenne paraboloid-paraboloid sub-telescopes. Michelson MAOTs are thus a solution to be considered for high resolution wide-field imaging, from space or ground.

  5. Capturing Multiscale Phenomena via Adaptive Mesh Refinement (AMR) in 2D and 3D Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Ferguson, J. O.; Jablonowski, C.; Johansen, H.; McCorquodale, P.; Ullrich, P. A.; Langhans, W.; Collins, W. D.

    2017-12-01

    Extreme atmospheric events such as tropical cyclones are inherently complex multiscale phenomena. Such phenomena are a challenge to simulate in conventional atmosphere models, which typically use rather coarse uniform-grid resolutions. To enable study of these systems, Adaptive Mesh Refinement (AMR) can provide sufficient local resolution by dynamically placing high-resolution grid patches selectively over user-defined features of interest, such as a developing cyclone, while limiting the total computational burden of requiring such high-resolution globally. This work explores the use of AMR with a high-order, non-hydrostatic, finite-volume dynamical core, which uses the Chombo AMR library to implement refinement in both space and time on a cubed-sphere grid. The characteristics of the AMR approach are demonstrated via a series of idealized 2D and 3D test cases designed to mimic atmospheric dynamics and multiscale flows. In particular, new shallow-water test cases with forcing mechanisms are introduced to mimic the strengthening of tropical cyclone-like vortices and to include simplified moisture and convection processes. The forced shallow-water experiments quantify the improvements gained from AMR grids, assess how well transient features are preserved across grid boundaries, and determine effective refinement criteria. In addition, results from idealized 3D test cases are shown to characterize the accuracy and stability of the non-hydrostatic 3D AMR dynamical core.

  6. The sensitivity of biological finite element models to the resolution of surface geometry: a case study of crocodilian crania

    PubMed Central

    Evans, Alistair R.; McHenry, Colin R.

    2015-01-01

    The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context. PMID:26056620

  7. Creation of a Multiresolution and Multiaccuracy Dtm: Problems and Solutions for Heli-Dem Case Study

    NASA Astrophysics Data System (ADS)

    Biagi, L.; Carcano, L.; Lucchese, A.; Negretti, M.

    2013-01-01

    The work is part of "HELI-DEM" (HELvetia-Italy Digital Elevation Model) project, funded by the European Regional Development Fund within the Italy-Switzerland cooperation program. The aim of the project is the creation of a unique DTM for the alpine and subalpine area between Italy (Piedmont, Lombardy) and Switzerland (Ticino and Grisons Cantons); at present, different DTMs, that are in different reference frames and have been obtained with different technologies, accuracies, and resolutions, have been acquired. The final DTM should be correctly georeferenced and produced validating and integrating the data that are available for the project. DTMs are fundamental in hydrogeological studies, especially in alpine areas where hydrogeological risks may exist. Moreover, when an event, like for example a landslide, happens at the border between countries, a unique and integrated DTM which covers the interest area is useful to analyze the scenario. In this sense, HELI-DEM project is helpful. To perform analyses along the borders between countries, transnational geographic information is needed: a transnational DTM can be obtained by merging regional low resolution DTMs. Moreover high resolution local DTMs should be used where they are available. To be merged, low and high resolution DTMs should be in the same three dimensional reference frame, should not present biases and should be consistent in the overlapping areas. Cross-validation between the different DTMs is therefore needed. Two different problems should be solved: the merging of regional, partly overlapping low and medium resolution DTMs into a unique low/medium resolution DTM and the merging with other local high resolution/high accuracy height data. This paper discusses the preliminary processing of the data for the fusion of low and high resolution DTMs in a study-case area within the Lombardy region: Valtellina valley. In this region the Lombardy regional low resolution DTM is available, with a horizontal resolution of 20 meters; in addition a LiDAR DTM with a horizontal resolution of 1 meter, which covers only the main hydrographic basins, is also available. The two DTMs have been transformed into the same reference frame. The cross-validation of the two datasets has been performed comparing the low resolution DTM with the local high resolution DTM. Then, where significant differences are present, GPS survey have been used as external validation. The results are presented. Moreover, a possible strategy for the future fusion of the data, is shortly summarized at the end of the paper.

  8. Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    PubMed Central

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161

  9. Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil.

    PubMed

    Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich

    2014-03-01

    Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  10. D Mapping of Cultural Heritage: Special Problems and best Practices in Extreme Case-Studies

    NASA Astrophysics Data System (ADS)

    Patias, P.; Kaimaris, D.; Georgiadis, Ch.; Stamnas, A.; Antoniadis, D.; Papadimitrakis, D.

    2013-07-01

    Photogrammetrey has a long successful history in the area of 3D modelling and documentation of cultural heritage monuments. In some cases an extensive study, preparation and the application of novel solutions is required for the successful documentation and 3D modelling of monuments. In most of the cases the problem that we have to face is difficulties regarding accessing, photographing, and measuring the monument from the optimal distance, in combination with the need for a high spatial resolution mapping. This paper is highlighting the special problems and the novel solutions, performed during mapping of two significant cultural heritage monuments in Greece. The Roussanou monastery (1527-1529 A.C., Meteora, Center Greece) and its underlying rock, had to be photographed and measured from a far distance and measured with various spatial resolutions. In the lakeside Neolithic settlement of Dispilio (6.000 B.C., western Greece) the enclosure which is covered with vegetation above a height of 3 m, had to be measured with high spatial resolution. The combined use of a laser scanner, a digital camera equipped with a telephoto lens and UAV allowed the successful mapping and the production of orthophotomaps in each case.

  11. Rhabdomyolysis resulting in concurrent Horner's syndrome and brachial plexopathy: a case report.

    PubMed

    Lee, Susan C; Geannette, Christian; Wolfe, Scott W; Feinberg, Joseph H; Sneag, Darryl B

    2017-08-01

    This case report describes a 29-year-old male who presented with immediate onset of Horner's syndrome and ipsilateral brachial plexopathy after sleeping with his arm dangling outside a car window for 8 h. Outside workup and imaging revealed rhabdomyolysis of the left neck musculature. Subsequent electrodiagnostic testing and high-resolution brachial plexus magnetic resonance imaging at the authors' institution attributed the Horner's syndrome and concurrent brachial plexopathy to rhabdomyolysis of the longus colli and scalene musculature, which had compressed-and consequently scar tethered-the cervical sympathetic trunk and brachial plexus. This case of co-existent Horner's syndrome and brachial plexopathy demonstrates the role of high-resolution brachial plexus MRI in diagnosing plexopathy and the importance of being familiar with plexus and paravertebral muscle anatomy.

  12. Use of high-resolution 3.0-T magnetic resonance imaging to characterize atherosclerotic plaques in patients with cerebral infarction

    PubMed Central

    XU, PENG; LV, LULU; LI, SHAODONG; GE, HAITAO; RONG, YUTAO; HU, CHUNFENG; XU, KAI

    2015-01-01

    The present study aimed to evaluate the utility of high-resolution magnetic resonance imaging (MRI) in the characterization of atherosclerotic plaques in patients with acute and non-acute cerebral infarction. High-resolution MRI of unilateral stenotic middle cerebral arteries was performed to evaluate the degree of stenosis, the wall and plaque areas, plaque enhancement patterns and lumen remodeling features in 15 and 17 patients with acute and non-acute cerebral infarction, respectively. No significant difference was identified in the vascular stenosis rate between acute and non-acute patients. Overall, plaque eccentricity was observed in 29 patients, including 13 acute and 16 non-acute cases, with no significant difference identified between these groups. The wall area of stenotic arteries and the number of cases with plaque enhancement were significantly greater in the acute patients, but no significant difference in plaque or lumen area was identified between the 2 patient groups. Lumen remodeling patterns of stenotic arteries significantly differed between the acute and non-acute patients; the former predominantly demonstrated positive remodeling, and the latter group demonstrated evidence of negative remodeling. In conclusion, patients with acute and non-acute cerebral infarction exhibit specific characteristics in stenotic arteries and plaques, which can be effectively evaluated by high-resolution MRI. PMID:26668651

  13. Influence of air quality model resolution on uncertainty associated with health impacts

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2012-10-01

    We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx), we ran a modeling episode with meteorological inputs simulating conditions as they occurred during August through September 2006 (a period representative of conditions leading to high ozone), and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas) at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals) to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between the 2, 4 and 12 km resolution runs, but the 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements motivated by Executive Order 12866 as it applies to the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer) resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2, 4 or 12 km resolution. On average, when modeling at 36 km resolution, an estimated 5 deaths per week during the May through September ozone season are avoided because of ozone reductions resulting from the proposed emissions reductions (95% confidence interval was 2-8). When modeling at 2, 4 or 12 km finer scale resolution, on average 4 deaths are avoided due to the same reductions (95% confidence interval was 1-7). Study results show that ozone modeling at a resolution finer than 12 km is unlikely to reduce uncertainty in benefits analysis for this specific region. We suggest that 12 km resolution may be appropriate for uncertainty analyses of health impacts due to ozone control scenarios, in areas with similar chemistry, meteorology and population density, but that resolution requirements should be assessed on a case-by-case basis and revised as confidence intervals for concentration-response functions are updated.

  14. GIARPS: the unique VIS-NIR high precision radial velocity facility in this world

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Benatti, S.; Carleo, I.; Ghedina, A.; Molinari, E.; Oliva, E.; Tozzi, A.; Baruffolo, A.; Cecconi, M.; Cosentino, R.; Fantinel, D.; Fini, L.; Ghinassi, F.; Gonzalez, M.; Gratton, R.; Guerra, J.; Harutyunyan, A.; Hernandez, N.; Iuzzolino, M.; Lodi, M.; Malavolta, L.; Maldonado, J.; Micela, G.; Sanna, N.; Sanjuan, J.; Scuderi, S.; Sozzetti, A.; Pérez Ventura, H.; Diaz Marcos, H.; Galli, A.; Gonzalez, C.; Riverol, L.; Riverol, C.

    2016-08-01

    GIARPS (GIAno and haRPS) is a project devoted to have on the same focal station of the Telescopio Nazionale Galileo (TNG) both the high resolution spectrographs HARPS-N (VIS) and GIANO (NIR) working simultaneously. This could be considered the first and unique worldwide instrument providing cross-dispersed echelle spectroscopy at a high resolution (R=115,000 in the visual and R=50,000 in the IR) and over in a wide spectral range (0.383 - 2.45 μm) in a single exposure. The science case is very broad, given the versatility of such an instrument and the large wavelength range. A number of outstanding science cases encompassing mainly extra-solar planet science starting from rocky planet search and hot Jupiters, atmosphere characterization can be considered. Furthermore both instrument can measure high precision radial velocity by means the simultaneous thorium technique (HARPS - N) and absorbing cell technique (GIANO) in a single exposure. Other science cases are also possible. Young stars and proto- planetary disks, cool stars and stellar populations, moving minor bodies in the solar system, bursting young stellar objects, cataclysmic variables and X-ray binary transients in our Galaxy, supernovae up to gamma-ray bursts in the very distant and young Universe, can take advantage of the unicity of this facility both in terms of contemporaneous wide wavelength range and high resolution spectroscopy.

  15. Separation of sulfated urinary glycosaminoglycans by high-resolution electrophoresis for isotyping of mucopolysaccharidoses in Malaysia.

    PubMed

    Nor, Azimah; Zabedah, Md Yunus; Norsiah, Md Desa; Ngu, Lock Hock; Suhaila, Abd Rahman

    2010-06-01

    Mucopolysaccharidoses (MPS) are a group of inherited disorders caused by the deficiency of specific lysosomal enzymes involved in glycosaminoglycans (GAGs) degradation. Currently, there are 11 enzyme deficiencies resulting in seven distinct MPS clinical syndromes and their subtypes. Different MPS syndromes cannot be clearly distinguished clinically due to overlapping signs and symptoms. Measurement of GAGs content in urine and separation of GAGs using high-resolution electrophoresis (HRE) are very useful initial screening tests for isotyping of MPS before specific enzyme diagnostics. In this study, we measured total urinary GAGs by a method using dimethylmethylene blue (DMB), and followed by isolation and separation of GAGs using high resolution electrophoresis (HRE) technique. Of 760 urine samples analyzed, 40 have abnormal GAGs HRE patterns. Thirty-five of these 40 cases have elevated urinary GAGs levels as well. These abnormal HRE patterns could be classified into 4 patterns: Pattern A (elevated DS and HS; suggestive of MPS I, II or VII; 16 cases), Pattern B (elevated HS and CS; suggestive of MPS III; 17 cases), and Pattern C (elevated KS and CS; suggestive of MPS IV, 5 cases), and Pattern D (elevated DS; suggestive of MPS VI; 2 cases). Based on the GAGs HRE pattern and a few discriminating clinical signs, we performed selective enzymatic investigation in 16 cases. In all except one case with MPS VII, the enzymatic diagnosis correlated well with the provisional MPS type as suggested by the abnormal HRE pattern. Our results showed that GAGs HRE is a useful, inexpensive and practical first-line screening test when MPS is suspected clinically, and it provides an important guide to further enzymatic studies on a selective basis.

  16. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  17. The NPP and J1 CrIS Operational High-Resolution Channel Selection for the NUCAPS algorithm: A demonstration of global applicability to meet users needs

    NASA Astrophysics Data System (ADS)

    Smith, J.; Gambacorta, A.; Barnet, C.; Smith, N.; Goldberg, M.; Pierce, B.; Wolf, W.; King, T.

    2016-12-01

    This work presents an overview of the NPP and J1 CrIS high resolution operational channel selection. Our methodology focuses on the spectral sensitivity characteristics of the available channels in order to maximize information content and spectral purity. These aspects are key to ensure accuracy in the retrieval products, particularly for trace gases. We will provide a demonstration of its global optimality by analyzing different test cases that are of particular interests to our JPSS Proving Ground and Risk Reduction user applications. A focus will be on high resolution trace gas retrieval capability in the context of the Alaska fire initiatives.

  18. The ICE spectrograph for PEPSI at the LBT: preliminary optical design

    NASA Astrophysics Data System (ADS)

    Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.

    2003-03-01

    We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.

  19. An Ultra-high Resolution Synthetic Precipitation Data for Ungauged Sites

    NASA Astrophysics Data System (ADS)

    Kim, Hong-Joong; Choi, Kyung-Min; Oh, Jai-Ho

    2018-05-01

    Despite the enormous damage caused by record heavy rainfall, the amount of precipitation in areas without observation points cannot be known precisely. One way to overcome these difficulties is to estimate meteorological data at ungauged sites. In this study, we have used observation data over Seoul city to calculate high-resolution (250-meter resolution) synthetic precipitation over a 10-year (2005-2014) period. Furthermore, three cases are analyzed by evaluating the rainfall intensity and performing statistical analysis over the 10-year period. In the case where the typhoon "Meari" passed to the west coast during 28-30 June 2011, the Pearson correlation coefficient was 0.93 for seven validation points, which implies that the temporal correlation between the observed precipitation and synthetic precipitation was very good. It can be confirmed that the time series of observation and synthetic precipitation in the period almost completely matches the observed rainfall. On June 28-29, 2011, the estimation of 10 to 30 mm h-1 of continuous strong precipitation was correct. In addition, it is shown that the synthetic precipitation closely follows the observed precipitation for all three cases. Statistical analysis of 10 years of data reveals a very high correlation coefficient between synthetic precipitation and observed rainfall (0.86). Thus, synthetic precipitation data show good agreement with the observations. Therefore, the 250-m resolution synthetic precipitation amount calculated in this study is useful as basic data in weather applications, such as urban flood detection.

  20. Operation Ivy. Project 8. 4. Report to the Scientific Director. High-resolution spectroscopy at Ivy compared with previous tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, C.A.

    1985-04-01

    The high-resolution ultraviolet and visible spectra of typical test nuclear detonations up to and including Operation Ivy were analyzed and compared. Topics studied include the types of atomc and molecular material observed (with calculations, in some cases, of the relative quantities involved), the ultraviolet cutoff, and rotational temperatures. Variation of these quantities with the radiochemical yield of the bomb is indicated.

  1. Unification of some advection schemes in two dimensions

    NASA Technical Reports Server (NTRS)

    Sidilkover, D.; Roe, P. L.

    1995-01-01

    The relationship between two approaches towards construction of genuinely two-dimensional upwind advection schemes is established. One of these approaches is of the control volume type applicable on structured cartesian meshes. It resulted in the compact high resolution schemes capable of maintaining second order accuracy in both homogeneous and inhomogeneous cases. Another one is the fluctuation splitting approach, which is well suited for triangular (and possibly) unstructured meshes. Understanding the relationship between these two approaches allows us to formulate here a new fluctuation splitting high resolution (i.e. possible use of artificial compression, while maintaining positivity property) scheme. This scheme is shown to be linearity preserving in inhomogeneous as well as homogeneous cases.

  2. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    NASA Astrophysics Data System (ADS)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  3. Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany

    NASA Astrophysics Data System (ADS)

    Bechtel, Benjamin; Zakšek, Klemen

    2013-04-01

    Land surface temperature (LST) is an important parameter for the urban radiation and heat balance and a boundary condition for the atmospheric urban heat island (UHI). The increase in urban surface temperatures compared to the surrounding area (surface urban heat island, SUHI) has been described and analysed with satellite-based measurements for several decades. Besides continuous progress in the development of new sensors, an operational monitoring is still severely limited by physical constraints regarding the spatial and temporal resolution of the satellite data. Essentially, two measurement concepts must be distinguished: Sensors on geostationary platforms have high temporal (several times per hour) and poor spatial resolution (~ 5 km) while those on low earth orbiters have high spatial (~ 100-1000 m) resolution and a long return period (one day to several weeks). To enable an observation with high temporal and spatial resolution, a downscaling scheme for LST from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard the geostationary meteorological Meteosat 9 to spatial resolutions between 100 and 1000 m was developed and tested for Hamburg in this case study. Therefore, various predictor sets (including parameters derived from multi-temporal thermal data, NDVI, and morphological parameters) were tested. The relationship between predictors and LST was empirically calibrated in the low resolution domain and then transferred to the high resolution domain. The downscaling was validated with LST data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for the same time. Aggregated parameters from multi-temporal thermal data (in particular annual cycle parameters and principal components) proved particularly suitable. The results for the highest resolution of 100 m showed a high explained variance (R² = 0.71) and relatively low root mean square errors (RMSE = 2.2 K). Larger predictor sets resulted in higher errors, because they tended to overfit. As expected the results were better for coarser spatial resolutions (R² = 0.80, RMSE = 1.8 K for 500 m). These results are similar or slightly better than in previous studies, although we are not aware of any study with a comparably large downscaling factor. A considerable percentage of the error is systematic due to the different viewing geometry of the sensors (the high resolution LST was overestimated about 1.3 K). The study shows that downscaling of SEVIRI LST is possible up to a resolution of 100 m for urban areas and that multi-temporal thermal data are particularly suitable as predictors.

  4. Treatment of Refractory Filamentary Keratitis With Autologous Serum Tears.

    PubMed

    Read, Sarah P; Rodriguez, Marianeli; Dubovy, Sander; Karp, Carol L; Galor, Anat

    2017-09-01

    To report a case of filamentary keratitis (FK) successfully treated with autologous serum tears and to review the pathogenesis and management of FK. Case report including high-resolution anterior segment optical coherence tomography and filament histopathology. A 61-year-old Hispanic man presented with pain and photophobia of the right eye. He was found to have a corneal epithelial defect and a small peripheral infiltrate 4 months after Laser Assisted in situ Keratomileusis. After resolution of the epithelial defect, he developed FK. Over a 4-month period, conservative management with aggressive lubrication, lid hygiene, topical corticosteroids, topical cyclosporine, bandage contact lenses, and oral doxycycline failed to resolve the corneal filaments. Notably, treatment with 20% autologous serum tears, four times daily, led to a sustained resolution of the FK within 1 week. This case demonstrates the complexity of FK management and introduces autologous serum tears as a viable management option when conservative approaches to this condition fail.

  5. High quality high spatial resolution functional classification in low dose dynamic CT perfusion using singular value decomposition (SVD) and k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2017-03-01

    Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps evaluation, or to guide a dataset smoothing before the modeling part.

  6. Vector magnetic field changes associated with X-class flares

    NASA Technical Reports Server (NTRS)

    Wang, Haimin; Ewell, M. W., Jr.; Zirin, H.; Ai, Guoxiang

    1994-01-01

    We present high-resolution transverse and longitudinal magnetic field measurements bracketing five X-class solar flares. We show that the magnetic shear, defined as the angular difference between the measured field and calculated potential field, actually increases after all of these flares. In each case, the shear is shown to increase along a substantial portion of the magnetic neutral line. For two of the cases, we have excellent time resolution, on the order of several minutes, and we demonstrate that the shear increase is impulsive. We briefly discuss the theoretical implications of our results.

  7. Distributed MIMO Radar for Imaging and High Resolution Target Localization

    DTIC Science & Technology

    2012-02-02

    Reduction in Distributed MIMO Radar with Multi-Carrier OFDM Signals Carl Georgeson 11/23/2010 Approved 17 • 10-019 Algorithms for Target Location and...28-2012 Final Report 04/15/2009 - 11/30/2011 Distributed MIMO Radar for Imaging and High Resolution Target Localization FA9550-09-1-0303 Alexander M...error for the general case of MIMO radar with multiple waveforms with non-coherent and coherent observations; (b) finds a closed-form solution for the

  8. Angioinvasive pulmonary aspergillosis after allogeneic bone marrow transplantation: clinical and high-resolution computed tomography findings in 12 cases.

    PubMed

    Gasparetto, Emerson L; Souza, Carolina A; Tazoniero, Priscilla; Davaus, Taisa; Escuissato, Dante L; Marchiori, Edson

    2007-02-01

    The aim of this study was to present the clinical and high-resolution CT scan findings of angioinvasive pulmonary aspergillosis (APA) in 12 patients who underwent allogeneic bone marrow transplantation (BMT). The CT scans were reviewed by three chest radiologists who assessed the pattern and distribution of findings by consent. There were 7 (58%) female and 5 (42%) male patients, with aging between 5 and 50 years (average of 26 years). All patients were submitted to BMT for the treatment of hematological conditions. The diagnosis of APA was defined between 5 and 373 days after BMT, with average of 111 days. Three cases (25%) were diagnosed in the neutropenic phase after the BMT, five (42%) in the early phase and four patients in the late phase post-BMT. Regarding high-resolution CT (HRCT) scan findings, nodules were found in 75% of the cases (9/12), most of the cases with more than 10 lesions (7/9) and of centrilobular localization (6/9). Consolidations were identified in seven patients (58%), being single in six, and commonly presenting ill defined borders (n=3) and subsegmental localization (n=5). Ground glass attenuation was found in six patients (50%). The halo sign was observed in nine cases (75%). Cavitations were seen in two air-space consolidations and one large nodule (2.5 cm). Patients submitted to BMT presenting respiratory symptoms and nodules or consolidations with halo sign at HRCT scan need to have the diagnosis of angioinvasive pulmonary aspergillosis included in all the post BMT phases.

  9. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    PubMed

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography

    NASA Astrophysics Data System (ADS)

    Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.

  11. Ultra high spatial and temporal resolution breast imaging at 7T.

    PubMed

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  12. High-resolution structure, interactions, and dynamics of self-assembled virus-like partilces

    NASA Astrophysics Data System (ADS)

    Raviv, Uri; Asor, R.; Ben-Shaul, O.; Oppenheim, A.; Schlicksup, L. C.; Seltzer, L.; Jarrold, M. F.; Zlotnick, A.

    Using SAXS, in combination with Monte Carlo simulations, and our unique solution x-ray scattering data analysis program, we resolved at high spatial resolution, the manner by which wtSV40 packages its 5.2kb circular DNA about 20 histone octamers in the virus capsid (Figure 1). This structure, known as a mini-chromosome, is highly dynamic and could not be resolved by microscopy methods. Using time-resolved solution SAXS, stopped-flow, and flow-through setups the assembly process of VP1, the major caspid protein of the SV40 virus, with RNA or DNA to form virus-like particles (VLPs) was studied in msec temporal resolution. By mixing the nucleotides and the capsid protein, virus-like particles formed within 35 msec, in the case of RNA that formed T =1 particles, and within 15 seconds in the case of DNA that formed T =7 particles, similar to wt SV40. The structural changes leading to the particle formation were followed in detail. More recently, we have extended this work to study the assembly of HBV virus-like particles.

  13. A multi-temporal analysis approach for land cover mapping in support of nuclear incident response

    NASA Astrophysics Data System (ADS)

    Sah, Shagan; van Aardt, Jan A. N.; McKeown, Donald M.; Messinger, David W.

    2012-06-01

    Remote sensing can be used to rapidly generate land use maps for assisting emergency response personnel with resource deployment decisions and impact assessments. In this study we focus on constructing accurate land cover maps to map the impacted area in the case of a nuclear material release. The proposed methodology involves integration of results from two different approaches to increase classification accuracy. The data used included RapidEye scenes over Nine Mile Point Nuclear Power Station (Oswego, NY). The first step was building a coarse-scale land cover map from freely available, high temporal resolution, MODIS data using a time-series approach. In the case of a nuclear accident, high spatial resolution commercial satellites such as RapidEye or IKONOS can acquire images of the affected area. Land use maps from the two image sources were integrated using a probability-based approach. Classification results were obtained for four land classes - forest, urban, water and vegetation - using Euclidean and Mahalanobis distances as metrics. Despite the coarse resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. The classifications were augmented using this fused approach, with few supplementary advantages such as correction for cloud cover and independence from time of year. We concluded that this method would generate highly accurate land maps, using coarse spatial resolution time series satellite imagery and a single date, high spatial resolution, multi-spectral image.

  14. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data set, enabling the appropriate use of those images in a number of applications.

  15. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2016-03-01

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  16. High-resolution NMR in magnetic fields with unknown spatiotemporal variations.

    PubMed

    Pelupessy, Philippe; Rennella, Enrico; Bodenhausen, Geoffrey

    2009-06-26

    Nuclear magnetic resonance (NMR) experiments are usually carried out in homogeneous magnetic fields. In many cases, however, high-resolution spectra are virtually impossible to obtain because of the inherent heterogeneity of the samples or living organisms under investigation, as well as the poor homogeneity of the magnets (particularly when bulky samples must be placed outside their bores). Unstable power supplies and vibrations arising from cooling can lead to field fluctuations in time as well as space. We show how high-resolution NMR spectra can be obtained in inhomogeneous fields with unknown spatiotemporal variations. Our method, based on coherence transfer between spins, can accommodate spatial inhomogeneities of at least 11 gauss per centimeter and temporal fluctuations slower than 2 hertz.

  17. High-resolution study of dynamical diffraction phenomena accompanying the Renninger (222/113) case of three-beam diffraction in silicon

    PubMed Central

    Kazimirov, A.; Kohn, V. G.

    2010-01-01

    X-ray optical schemes capable of producing a highly monochromatic beam with high angular collimation in both the vertical and horizontal planes have been evaluated and utilized to study high-resolution diffraction phenomena in the Renninger (222/113) case of three-beam diffraction in silicon. The effect of the total reflection of the incident beam into the nearly forbidden reflected beam was observed for the first time with the maximum 222 reflectivity at the 70% level. We have demonstrated that the width of the 222 reflection can be varied many times by tuning the azimuthal angle by only a few µrad in the vicinity of the three-beam diffraction region. This effect, predicted theoretically more than 20 years ago, is explained by the enhancement of the 222 scattering amplitude due to the virtual two-stage 000 113 222 process which depends on the azimuthal angle. PMID:20555185

  18. High-Resolution Three-Dimensional Computed Tomography for Assessing Complications Related to Intrathecal Drug Delivery.

    PubMed

    Morgalla, Matthias; Fortunato, Marcos; Azam, Ala; Tatagiba, Marcos; Lepski, Guillherme

    2016-07-01

    The assessment of the functionality of intrathecal drug delivery (IDD) systems remains difficult and time-consuming. Catheter-related problems are still very common, and sometimes difficult to diagnose. The aim of the present study is to investigate the accuracy of high-resolution three-dimensional computed tomography (CT) in order to detect catheter-related pump dysfunction. An observational, retrospective investigation. Academic medical center in Germany. We used high-resolution three dimensional (3D) computed tomography with volume rendering technique (VRT) or fluoroscopy and conventional axial-CT to assess IDD-related complications in 51 patients from our institution who had IDD systems implanted for the treatment of chronic pain or spasticity. Twelve patients (23.5%) presented a total of 22 complications. The main type of complication in our series was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling. Fluoroscopy and conventional CT were used in 12 cases. High-resolution 3D CT VRT scan was used in 35 instances with suspected yet unclear complications. Using 3D-CT (VRT) the sensitivity was 58.93% - 100% (CI 95%) and the specificity 87.54% - 100% (CI 95%).The positive predictive value was 58.93% - 100% (CI 95%) and the negative predictive value: 87.54% - 100% (CI 95%).Fluoroscopy and axial CT as a combined diagnostic tool had a sensitivity of 8.3% - 91.7% (CI 95%) and a specificity of 62.9% - 100% (CI 95%). The positive predictive value was 19.29% - 100% (CI 95%) and the negative predictive value: 44.43% - 96.89% (CI 95%). This study is limited by its observational design and the small number of cases. High-resolution 3D CT VRT is a non- invasive method that can identify IDD-related complications with more precision than axial CT and fluoroscopy.

  19. High-resolution computed tomography findings in eight patients with hantavirus pulmonary syndrome.

    PubMed

    Barbosa, Diego de Lacerda; Hochhegger, Bruno; Souza, Arthur Soares; Zanetti, Gláucia; Escuissato, Dante Luiz; Meirelles, Gustavo de Souza Portes; Funari, Marcelo Buarque de Gusmão; Marchiori, Edson

    2017-01-01

    The purpose of this study was to describe the high-resolution computed tomography (HRCT) findings in patients with hantavirus pulmonary syndrome (HPS). We retrospectively reviewed HRCT findings from eight cases of HPS. All patients were men, aged 19-70 (mean, 41.7) years. Diagnoses were established by serological test (enzyme-linked immunosorbent assay) in all patients. Two chest radiologists analyzed the images and reached decisions by consensus. The predominant HRCT findings were ground-glass opacities (GGOs) and smooth inter- and intralobular septal thickening, found in all eight cases; however, the crazy-paving pattern was found in only three cases. Pleural effusion and peribronchovascular thickening were observed in five patients. The abnormalities were bilateral in all patients. The predominant HRCT findings in patients with HPS were GGOs and smooth inter- and intralobular septal thickening, which probably correlate with the histopathologic findings of pulmonary edema.

  20. Case Resolution Manual

    EPA Pesticide Factsheets

    This Case Resolution Manual (CRM) is intended to provide procedural guidance to ECRCO case managers to ensure EPA’s prompt, effective, and efficient resolution of civil rights cases consistent with science and the civil rights laws.

  1. Image formation analysis and high resolution image reconstruction for plenoptic imaging systems.

    PubMed

    Shroff, Sapna A; Berkner, Kathrin

    2013-04-01

    Plenoptic imaging systems are often used for applications like refocusing, multimodal imaging, and multiview imaging. However, their resolution is limited to the number of lenslets. In this paper we investigate paraxial, incoherent, plenoptic image formation, and develop a method to recover some of the resolution for the case of a two-dimensional (2D) in-focus object. This enables the recovery of a conventional-resolution, 2D image from the data captured in a plenoptic system. We show simulation results for a plenoptic system with a known response and Gaussian sensor noise.

  2. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  3. Diagnostic Yield of Transbronchial Biopsy in Comparison to High Resolution Computerized Tomography in Sarcoidosis Cases

    PubMed

    Akten, H Serpil; Kilic, Hatice; Celik, Bulent; Erbas, Gonca; Isikdogan, Zeynep; Turktas, Haluk; Kokturk, Nurdan

    2018-04-25

    This study aimed to evaluate the diagnostic yield of fiberoptic bronchoscopic (FOB) transbronchial biopsy and its relation with quantitative findings of high resolution computerized tomography (HRCT). A total of 83 patients, 19 males and 64 females with a mean age of 45.1 years diagnosed with sarcoidosis with complete records of high resolution computerized tomography were retrospectively recruited during the time period from Feb 2005 to Jan 2015. High resolution computerized tomography scans were retrospectively assessed in random order by an experienced observer without knowledge of the bronchoscopic results or lung function tests. According to the radiological staging with HRCT, 2.4% of the patients (n=2) were stage 0, 19.3% (n=16) were stage 1, 72.3% (n=60) were stage 2 and 6.0% (n=5) were stage 3. This study showed that transbronchial lung biopsy showed positive results in 39.7% of the stage I or II sarcoidosis patients who were diagnosed by bronchoscopy. Different high resolution computerized tomography patterns and different scores of involvement did make a difference in the diagnostic accuracy of transbronchial biopsy (p=0.007). Creative Commons Attribution License

  4. High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer

    DTIC Science & Technology

    2012-07-01

    number of high resolution PET experiments including the dual-ring small field- of-view configuration shown at left in Figure 5 . The benchtop system...detectors having 26 x 40 arrays of 1mm x 1mm x 1mm detector elements is shown at right in Figure 5 . Detectors used for probe experiments shown in...Figure 13). In the series of experiments geared towards PET application, but with the results applicable to the present single gamma case, we have

  5. k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T.

    PubMed

    Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert

    2012-04-02

    There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Employing temporal self-similarity across the entire time domain in computed tomography reconstruction

    PubMed Central

    Kazantsev, D.; Van Eyndhoven, G.; Lionheart, W. R. B.; Withers, P. J.; Dobson, K. J.; McDonald, S. A.; Atwood, R.; Lee, P. D.

    2015-01-01

    There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques. PMID:25939621

  7. Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-01-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  8. Sensitivity of worst-case strom surge considering influence of climate change

    NASA Astrophysics Data System (ADS)

    Takayabu, Izuru; Hibino, Kenshi; Sasaki, Hidetaka; Shiogama, Hideo; Mori, Nobuhito; Shibutani, Yoko; Takemi, Tetsuya

    2016-04-01

    There are two standpoints when assessing risk caused by climate change. One is how to prevent disaster. For this purpose, we get probabilistic information of meteorological elements, from enough number of ensemble simulations. Another one is to consider disaster mitigation. For this purpose, we have to use very high resolution sophisticated model to represent a worst case event in detail. If we could use enough computer resources to drive many ensemble runs with very high resolution model, we can handle these all themes in one time. However resources are unfortunately limited in most cases, and we have to select the resolution or the number of simulations if we design the experiment. Applying PGWD (Pseudo Global Warming Downscaling) method is one solution to analyze a worst case event in detail. Here we introduce an example to find climate change influence on the worst case storm-surge, by applying PGWD to a super typhoon Haiyan (Takayabu et al, 2015). 1 km grid WRF model could represent both the intensity and structure of a super typhoon. By adopting PGWD method, we can only estimate the influence of climate change on the development process of the Typhoon. Instead, the changes in genesis could not be estimated. Finally, we drove SU-WAT model (which includes shallow water equation model) to get the signal of storm surge height. The result indicates that the height of the storm surge increased up to 20% owing to these 150 years climate change.

  9. Lunar Polar Illumination for Power Analysis

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    This paper presents illumination analyses using the latest Earth-based radar digital elevation model (DEM) of the lunar south pole and an independently developed analytical tool. These results enable the optimum sizing of solar/energy storage lunar surface power systems since they quantify the timing and durations of illuminated and shadowed periods. Filtering and manual editing of the DEM based on comparisons with independent imagery were performed and a reduced resolution version of the DEM was produced to reduce the analysis time. A comparison of the DEM with lunar limb imagery was performed in order to validate the absolute heights over the polar latitude range, the accuracy of which affects the impact of long range, shadow-casting terrain. Average illumination and energy storage duration maps of the south pole region are provided for the worst and best case lunar day using the reduced resolution DEM. Average illumination fractions and energy storage durations are presented for candidate low energy storage duration south pole sites. The best site identified using the reduced resolution DEM required a 62 hr energy storage duration using a fast recharge power system. Solar and horizon terrain elevations as well as illumination fraction profiles are presented for the best identified site and the data for both the reduced resolution and high resolution DEMs compared. High resolution maps for three low energy storage duration areas are presented showing energy storage duration for the worst case lunar day, surface height, and maximum absolute surface slope.

  10. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia.

    PubMed

    Dorji, Passang; Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.

  11. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia

    PubMed Central

    Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059

  12. Conservative management of extradural hematoma: A report of sixty-two cases.

    PubMed

    Zwayed, A Rahim H; Lucke-Wold, Brandon

    2018-06-01

    Extradural hematomas (EDH) are considered life threatening in that the risk for brain herniation is significant. The current accepted understanding within the literature is to treat EDH via surgical evacuation of the hematoma. In this case-series we report 62 cases of EDH managed conservatively without surgical intervention. Inclusion criteria were: Glasgow comma scale score 13-15, extradural hematoma confirmed by CT being less than 40 mm, less than 6 mm of midline shift, and no other surgical lesions present. Patients were initially observed in a surgical intensive care unit prior to discharge and had closely scheduled follow-up. Of the 62 cases none required emergent intervention and the majority had interval resolution of the epidural hematoma over time. Resolution was apparent by 21 days and definitive by 3 to 6 months. Patients with EDH who have a high Glasgow comma scale score 13-15, volume <40 mm, and less than 6 mm of midline shift should be considered for conservative management. Our study indicates that these patients will have interval resolution of hematoma over time without worsening of symptoms.

  13. Multifeature-based high-resolution palmprint recognition.

    PubMed

    Dai, Jifeng; Zhou, Jie

    2011-05-01

    Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.

  14. Optimized AVHRR land surface temperature downscaling method for local scale observations: case study for the coastal area of the Gulf of Gdańsk

    NASA Astrophysics Data System (ADS)

    Chybicki, Andrzej; Łubniewski, Zbigniew

    2017-09-01

    Satellite imaging systems have known limitations regarding their spatial and temporal resolution. The approaches based on subpixel mapping of the Earth's environment, which rely on combining the data retrieved from sensors of higher temporal and lower spatial resolution with the data characterized by lower temporal but higher spatial resolution, are of considerable interest. The paper presents the downscaling process of the land surface temperature (LST) derived from low resolution imagery acquired by the Advanced Very High Resolution Radiometer (AVHRR), using the inverse technique. The effective emissivity derived from another data source is used as a quantity describing thermal properties of the terrain in higher resolution, and allows the downsampling of low spatial resolution LST images. The authors propose an optimized downscaling method formulated as the inverse problem and show that the proposed approach yields better results than the use of other downsampling methods. The proposed method aims to find estimation of high spatial resolution LST data by minimizing the global error of the downscaling. In particular, for the investigated region of the Gulf of Gdansk, the RMSE between the AVHRR image downscaled by the proposed method and the Landsat 8 LST reference image was 2.255°C with correlation coefficient R equal to 0.828 and Bias = 0.557°C. For comparison, using the PBIM method, it was obtained RMSE = 2.832°C, R = 0.775 and Bias = 0.997°C for the same satellite scene. It also has been shown that the obtained results are also good in local scale and can be used for areas much smaller than the entire satellite imagery scene, depicting diverse biophysical conditions. Specifically, for the analyzed set of small sub-datasets of the whole scene, the obtained RSME between the downscaled and reference image was smaller, by approx. 0.53°C on average, in the case of applying the proposed method than in the case of using the PBIM method.

  15. Spatial Modeling and Uncertainty Assessment of Fine Scale Surface Processes Based on Coarse Terrain Elevation Data

    NASA Astrophysics Data System (ADS)

    Rasera, L. G.; Mariethoz, G.; Lane, S. N.

    2017-12-01

    Frequent acquisition of high-resolution digital elevation models (HR-DEMs) over large areas is expensive and difficult. Satellite-derived low-resolution digital elevation models (LR-DEMs) provide extensive coverage of Earth's surface but at coarser spatial and temporal resolutions. Although useful for large scale problems, LR-DEMs are not suitable for modeling hydrologic and geomorphic processes at scales smaller than their spatial resolution. In this work, we present a multiple-point geostatistical approach for downscaling a target LR-DEM based on available high-resolution training data and recurrent high-resolution remote sensing images. The method aims at generating several equiprobable HR-DEMs conditioned to a given target LR-DEM by borrowing small scale topographic patterns from an analogue containing data at both coarse and fine scales. An application of the methodology is demonstrated by using an ensemble of simulated HR-DEMs as input to a flow-routing algorithm. The proposed framework enables a probabilistic assessment of the spatial structures generated by natural phenomena operating at scales finer than the available terrain elevation measurements. A case study in the Swiss Alps is provided to illustrate the methodology.

  16. High resolution estimates of the corrosion risk for cultural heritage in Italy.

    PubMed

    De Marco, Alessandra; Screpanti, Augusto; Mircea, Mihaela; Piersanti, Antonio; Proietti, Chiara; Fornasier, M Francesca

    2017-07-01

    Air pollution plays a pivotal role in the deterioration of many materials used in buildings and cultural monuments causing an inestimable damage. This study aims to estimate the impacts of air pollution (SO 2 , HNO 3 , O 3 , PM 10 ) and meteorological conditions (temperature, precipitation, relative humidity) on limestone, copper and bronze based on high resolution air quality data-base produced with AMS-MINNI modelling system over the Italian territory over the time period 2003-2010. A comparison between high resolution data (AMS-MINNI grid, 4 × 4 km) and low resolution data (EMEP grid, 50 × 50 km) has been performed. Our results pointed out that the corrosion levels for limestone, copper and bronze are decreased in Italy from 2003 to 2010 in relation to decrease of pollutant concentrations. However, some problem related to air pollution persists especially in Northern and Southern Italy. In particular, PM 10 and HNO 3 are considered the main responsible for limestone corrosion. Moreover, the high resolution data (AMS-MINNI) allowed the identification of risk areas that are not visible with the low resolution data (EMEP modelling system) in all considered years and, especially, in the limestone case. Consequently, high resolution air quality simulations are suitable to provide concrete benefits in providing information for national effective policy against corrosion risk for cultural heritage, also in the context of climate changes that are affecting strongly Mediterranean basin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Comparing high-resolution microscopy techniques for potential intraoperative use in guiding low-grade glioma resections.

    PubMed

    Meza, Daphne; Wang, Danni; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C

    2015-04-01

    Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning. © 2015 Wiley Periodicals, Inc.

  18. Using high resolution satellite multi-temporal interferometry for landslide hazard detection in tropical environments: the case of Haiti

    NASA Astrophysics Data System (ADS)

    Wasowski, Janusz; Nutricato, Raffaele; Nitti, Davide Oscar; Bovenga, Fabio; Chiaradia, Maria Teresa; Piard, Boby Emmanuel; Mondesir, Philemon

    2015-04-01

    Synthetic aperture radar (SAR) multi-temporal interferometry (MTI) is one of the most promising satellite-based remote sensing techniques for fostering new opportunities in landslide hazard detection and assessment. MTI is attractive because it can provide very precise quantitative information on slow slope displacements of the ground surface over huge areas with limited vegetation cover. Although MTI is a mature technique, we are only beginning to realize the benefits of the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g., COSMO-SkyMed, TerraSAR-X). In this work we demonstrate the potential of high resolution X-band MTI for wide-area detection of slope instability hazards even in tropical environments that are typically very harsh (eg. coherence loss) for differential interferometry applications. This is done by presenting an example from the island of Haiti, a tropical region characterized by dense and rapidly growing vegetation, as well as by significant climatic variability (two rainy seasons) with intense precipitation events. Despite the unfavorable setting, MTI processing of nearly 100 COSMO-SkyMed (CSK) mages (2011-2013) resulted in the identification of numerous radar targets even in some rural (inhabited) areas thanks to the high resolution (3 m) of CSK radar imagery, the adoption of a patch wise processing SPINUA approach and the presence of many man-made structures dispersed in heavily vegetated terrain. In particular, the density of the targets resulted suitable for the detection of some deep-seated and shallower landslides, as well as localized, very slow slope deformations. The interpretation and widespread exploitation of high resolution MTI data was facilitated by Google EarthTM tools with the associated high resolution optical imagery. Furthermore, our reconnaissance in situ checks confirmed that MTI results provided useful information on landslides and marginally stable slopes that can represent a considerable hazard to the local population and infrastructure. The case of Haiti suggests that in the future MTI applications can become increasingly more important in cases where little or no conventional monitoring is feasible because of limited funds. Acknowledgements The Italian Spatial Agency (ASI) provided CSK imagery of Haiti in the framework of a scientific collaboration between the Centre National de l'Information Géo-Spatiale (CNIGS), Haiti and the Department of Physics of the Politecnico di Bari, Italy. We also thank Aldo Giovacchini (Consorzio ITA) and Luciano Guerriero for their help with the project.

  19. Earthquake Damage Assessment Using Very High Resolution Satelliteimagery

    NASA Astrophysics Data System (ADS)

    Chiroiu, L.; André, G.; Bahoken, F.; Guillande, R.

    Various studies using satellite imagery were applied in the last years in order to assess natural hazard damages, most of them analyzing the case of floods, hurricanes or landslides. For the case of earthquakes, the medium or small spatial resolution data available in the recent past did not allow a reliable identification of damages, due to the size of the elements (e.g. buildings or other structures), too small compared with the pixel size. The recent progresses of remote sensing in terms of spatial resolution and data processing makes possible a reliable damage detection to the elements at risk. Remote sensing techniques applied to IKONOS (1 meter resolution) and IRS (5 meters resolution) imagery were used in order to evaluate seismic vulnerability and post earthquake damages. A fast estimation of losses was performed using a multidisciplinary approach based on earthquake engineering and geospatial analysis. The results, integrated into a GIS database, could be transferred via satellite networks to the rescue teams deployed on the affected zone, in order to better coordinate the emergency operations. The methodology was applied to the city of Bhuj and Anjar after the 2001 Gujarat (India) Earthquake.

  20. High resolution wind turbine wake measurements with a scanning lidar

    NASA Astrophysics Data System (ADS)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.; Mikkelsen, T.; Sjöholm, M.

    2017-05-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One of the primary objectives is to collect experimental data to improve the predictive capability of wind plant computational models to represent the response of the turbine wake to varying inflow conditions and turbine operating states. The present work summarizes the experimental setup and illustrates several wake measurement example cases. The cases focus on demonstrating the impact of the atmospheric conditions on the wake shape and position, and exhibit a sample of the data that has been made public through the Department of Energy Atmosphere to Electrons Data Archive and Portal.

  1. The importance of calorimetry for highly-boosted jet substructure

    DOE PAGES

    Coleman, Evan; Freytsis, Marat; Hinzmann, Andreas; ...

    2018-01-09

    Here, jet substructure techniques are playing an essential role in exploring the TeV scale at the Large Hadron Collider (LHC), since they facilitate the efficient reconstruction and identification of highly-boosted objects. Both for the LHC and for future colliders, there is a growing interest in using jet substructure methods based only on charged-particle information. The reason is that silicon-based tracking detectors offer excellent granularity and precise vertexing, which can improve the angular resolution on highly-collimated jets and mitigate the impact of pileup. In this paper, we assess how much jet substructure performance degrades by using track-only information, and we demonstratemore » physics contexts in which calorimetry is most beneficial. Specifically, we consider five different hadronic final states - W bosons, Z bosons, top quarks, light quarks, gluons - and test the pairwise discrimination power with a multi-variate combination of substructure observables. In the idealized case of perfect reconstruction, we quantify the loss in discrimination performance when using just charged particles compared to using all detected particles. We also consider the intermediate case of using charged particles plus photons, which provides valuable information about neutral pions. In the more realistic case of a segmented calorimeter, we assess the potential performance gains from improving calorimeter granularity and resolution, comparing a CMS-like detector to more ambitious future detector concepts. Broadly speaking, we find large performance gains from neutral-particle information and from improved calorimetry in cases where jet mass resolution drives the discrimination power, whereas the gains are more modest if an absolute mass scale calibration is not required.« less

  2. The importance of calorimetry for highly-boosted jet substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Evan; Freytsis, Marat; Hinzmann, Andreas

    2017-09-25

    Jet substructure techniques are playing an essential role in exploring the TeV scale at the Large Hadron Collider (LHC), since they facilitate the efficient reconstruction and identification of highly-boosted objects. Both for the LHC and for future colliders, there is a growing interest in using jet substructure methods based only on charged-particle information. The reason is that silicon-based tracking detectors offer excellent granularity and precise vertexing, which can improve the angular resolution on highly-collimated jets and mitigate the impact of pileup. In this paper, we assess how much jet substructure performance degrades by using track-only information, and we demonstrate physicsmore » contexts in which calorimetry is most beneficial. Specifically, we consider five different hadronic final states - W bosons, Z bosons, top quarks, light quarks, gluons - and test the pairwise discrimination power with a multi-variate combination of substructure observables. In the idealized case of perfect reconstruction, we quantify the loss in discrimination performance when using just charged particles compared to using all detected particles. We also consider the intermediate case of using charged particles plus photons, which provides valuable information about neutral pions. In the more realistic case of a segmented calorimeter, we assess the potential performance gains from improving calorimeter granularity and resolution, comparing a CMS-like detector to more ambitious future detector concepts. Broadly speaking, we find large performance gains from neutral-particle information and from improved calorimetry in cases where jet mass resolution drives the discrimination power, whereas the gains are more modest if an absolute mass scale calibration is not required.« less

  3. The importance of calorimetry for highly-boosted jet substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Evan; Freytsis, Marat; Hinzmann, Andreas

    Here, jet substructure techniques are playing an essential role in exploring the TeV scale at the Large Hadron Collider (LHC), since they facilitate the efficient reconstruction and identification of highly-boosted objects. Both for the LHC and for future colliders, there is a growing interest in using jet substructure methods based only on charged-particle information. The reason is that silicon-based tracking detectors offer excellent granularity and precise vertexing, which can improve the angular resolution on highly-collimated jets and mitigate the impact of pileup. In this paper, we assess how much jet substructure performance degrades by using track-only information, and we demonstratemore » physics contexts in which calorimetry is most beneficial. Specifically, we consider five different hadronic final states - W bosons, Z bosons, top quarks, light quarks, gluons - and test the pairwise discrimination power with a multi-variate combination of substructure observables. In the idealized case of perfect reconstruction, we quantify the loss in discrimination performance when using just charged particles compared to using all detected particles. We also consider the intermediate case of using charged particles plus photons, which provides valuable information about neutral pions. In the more realistic case of a segmented calorimeter, we assess the potential performance gains from improving calorimeter granularity and resolution, comparing a CMS-like detector to more ambitious future detector concepts. Broadly speaking, we find large performance gains from neutral-particle information and from improved calorimetry in cases where jet mass resolution drives the discrimination power, whereas the gains are more modest if an absolute mass scale calibration is not required.« less

  4. [3D-TOF MR-angiography with high spatial resolution for surgical planning in insular lobe gliomas].

    PubMed

    Bykanov, A E; Pitskhelauri, D I; Pronin, I N; Tonoyan, A S; Kornienko, V N; Zakharova, N E; Turkin, A M; Sanikidze, A Z; Shkarubo, M A; Shkatova, A M; Shults, E I

    2015-01-01

    Despite the obvious progress in modern neurosurgery, surgery for glial tumors of the insular lobe is often associated with a high risk of postoperative neurological deficit, which is primarily caused by damage to perforating arteries of the M1 segment of the middle cerebral artery. The work is aimed at evaluating the effectiveness of high resolution time-of-flight (3D-TOF) MR angiography in imaging of medial and lateral lenticulostriate arteries and determining their relationship to tumor edge in patients with gliomas of the insula. 3D-TOF MR angiography data were analyzed in 20 patients with primarily diagnosed cerebral gliomas involving the insula. All patients underwent non-contrast enhanced 3D-TOF MR angiography. In 6 cases, 3D-TOF MRA was performed before and after contrast enhancement. 3D-TOF angiography before intravenous contrast injection was capable of visualizing the medial lenticulostriate arteries in 19 patients (95% of all cases) and lateral lenticulostriate arteries in 18 patients (90% of all cases). Contrast-enhanced 3D-TOF angiography allows for better visualization of both the proximal and distal segments of lenticulostriate arteries. Three variants of relationship between the tumor and lenticulostriate arteries were identified. Variant I: the tumor grew over the arteries without their displacement in 2 cases (10% of the total number of observations); variant II: the tumor caused medial displacement of arteries without growing over them in 11 cases (55% of the total number of observations); variant III: the tumor partially grew over and displaced arteries in 2 cases (10%). In 25% of cases (5 patients), tumor was poorly visualized on 3D-TOF MR angiograms because their signal characteristics did not differ from those of the medulla (tumor tissue was T1 isointense). As a result, it was impossible to determine the relationship between the tumor and lenticulostriate arteries. High spatial resolution time-of-flight MR angiography can be recommended for preoperative imaging of lenticulostriate arteries to plan the extent of neurosurgical resection in patients with glial tumors of the insular lobe.

  5. Old high resolution satellite images for landscape archaeology: case studies from Turkey and Iraq

    NASA Astrophysics Data System (ADS)

    Scardozzi, Giuseppe

    2008-10-01

    The paper concerns the contribution for Landscape Archaeology from satellite images of 1960s and 1970s, very useful when old aerial photographs are scarce. Particularly, the study concerns the panchromatic photos taken by USA reconnaissance satellites from 1963 to 1972, declassified for civil use in 1995 and 2002, that in the last years are very used in the archaeological research; in fact, a lot of these images have an high geometric resolution, about between 2.74 and 1.83 m (Corona KH-4A and KH-4B), and some have a ground resolution about between 1.20 and 0.60 m (Gambit KH-7). These satellite images allow to examine very in detail ancient urban areas and territories that later are changed or partially destroyed; so, it is possible to detect and examine ancient structures, palaeo-environmental elements and archaeological traces of buried features now not visible. The paper presents some exemplificative cases study in Turkey and Iraq, in which the analysis of these images has made a fundamental contribution to the archaeological researches: particularly, for the reconstruction of the urban layout of the ancient city of Hierapolis of Phrygia and for the surveys in its territory, and for the study of the ancient topography of some archaeological sites of Iraq. In this second case, the research is gained in the context of the Iraq Virtual Museum Project; the comparison with recent high resolution satellite images (Ikonos-2, QuickBird-2, WorldView-1) also provide a fundamental tool for monitoring archaeological areas and for an evaluation of the situation after the first and the second Gulf War.

  6. Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer

    NASA Astrophysics Data System (ADS)

    Satoh, Masaki; Tomita, Hirofumi; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Miyamoto, Yoshiaki; Yamaura, Tsuyoshi; Miyakawa, Tomoki; Nakano, Masuo; Kodama, Chihiro; Noda, Akira T.; Nasuno, Tomoe; Yamada, Yohei; Fukutomi, Yoshiki

    2017-12-01

    This article reviews the major outcomes of a 5-year (2011-2016) project using the K computer to perform global numerical atmospheric simulations based on the non-hydrostatic icosahedral atmospheric model (NICAM). The K computer was made available to the public in September 2012 and was used as a primary resource for Japan's Strategic Programs for Innovative Research (SPIRE), an initiative to investigate five strategic research areas; the NICAM project fell under the research area of climate and weather simulation sciences. Combining NICAM with high-performance computing has created new opportunities in three areas of research: (1) higher resolution global simulations that produce more realistic representations of convective systems, (2) multi-member ensemble simulations that are able to perform extended-range forecasts 10-30 days in advance, and (3) multi-decadal simulations for climatology and variability. Before the K computer era, NICAM was used to demonstrate realistic simulations of intra-seasonal oscillations including the Madden-Julian oscillation (MJO), merely as a case study approach. Thanks to the big leap in computational performance of the K computer, we could greatly increase the number of cases of MJO events for numerical simulations, in addition to integrating time and horizontal resolution. We conclude that the high-resolution global non-hydrostatic model, as used in this five-year project, improves the ability to forecast intra-seasonal oscillations and associated tropical cyclogenesis compared with that of the relatively coarser operational models currently in use. The impacts of the sub-kilometer resolution simulation and the multi-decadal simulations using NICAM are also reviewed.

  7. Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne

    2005-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.

  8. Averaging scheme for atomic resolution off-axis electron holograms.

    PubMed

    Niermann, T; Lehmann, M

    2014-08-01

    All micrographs are limited by shot-noise, which is intrinsic to the detection process of electrons. For beam insensitive specimen this limitation can in principle easily be circumvented by prolonged exposure times. However, in the high-resolution regime several instrumental instabilities limit the applicable exposure time. Particularly in the case of off-axis holography the holograms are highly sensitive to the position and voltage of the electron-optical biprism. We present a novel reconstruction algorithm to average series of off-axis holograms while compensating for specimen drift, biprism drift, drift of biprism voltage, and drift of defocus, which all might cause problematic changes from exposure to exposure. We show an application of the algorithm utilizing also the possibilities of double biprism holography, which results in a high quality exit-wave reconstruction with 75 pm resolution at a very high signal-to-noise ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Improving resolution of crosswell seismic section based on time-frequency analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, H.; Li, Y.

    1994-12-31

    According to signal theory, to improve resolution of seismic section is to extend high-frequency band of seismic signal. In cross-well section, sonic log can be regarded as a reliable source providing high-frequency information to the trace near the borehole. In such case, what to do is to introduce this high-frequency information into the whole section. However, neither traditional deconvolution algorithms nor some new inversion methods such as BCI (Broad Constraint Inversion) are satisfied because of high-frequency noise and nonuniqueness of inversion results respectively. To overcome their disadvantages, this paper presents a new algorithm based on Time-Frequency Analysis (TFA) technology whichmore » has been increasingly received much attention as an useful signal analysis too. Practical applications show that the new method is a stable scheme to improve resolution of cross-well seismic section greatly without decreasing Signal to Noise Ratio (SNR).« less

  10. High Resolution Melting (HRM) for High-Throughput Genotyping-Limitations and Caveats in Practical Case Studies.

    PubMed

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz; Strapagiel, Dominik

    2017-11-03

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.

  11. High Resolution Melting (HRM) for High-Throughput Genotyping—Limitations and Caveats in Practical Case Studies

    PubMed Central

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz

    2017-01-01

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup. PMID:29099791

  12. Examining the Impacts of High-Resolution Land Surface Initialization on Model Predictions of Convection in the Southeastern U.S.

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Santos, Pablo; Medlin, Jeffrey M.; Jedlovec, Gary J.

    2009-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within physics parameterizations, model resolution limitations, as well as uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture and temperature, ground fluxes, and vegetation are necessary to better simulate the interactions between the land surface and atmosphere, and ultimately improve predictions of local circulations and summertime pulse convection. The NASA Short-term Prediction Research and Transition (SPORT) Center has been conducting studies to examine the impacts of high-resolution land surface initialization data generated by offline simulations of the NASA Land Informatiot System (LIS) on subsequent numerical forecasts using the Weather Research and Forecasting (WRF) model (Case et al. 2008, to appear in the Journal of Hydrometeorology). Case et al. presents improvements to simulated sea breezes and surface verification statistics over Florida by initializing WRF with land surface variables from an offline LIS spin-up run, conducted on the exact WRF domain and resolution. The current project extends the previous work over Florida, focusing on selected case studies of typical pulse convection over the southeastern U.S., with an emphasis on improving local short-term WRF simulations over the Mobile, AL and Miami, FL NWS county warning areas. Future efforts may involve examining the impacts of assimilating remotely-sensed soil moisture data, and/or introducing weekly greenness vegetation fraction composites (as opposed to monthly climatologies) into ol'fline NASA LIS runs. Based on positive impacts, the offline LIS runs could be transitioned into an operational mode, providing land surface initialization data to NWS forecast offices in real time.

  13. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded by incomplete beam filling. Users of level three TRMM PR products should be aware of this scale dependency.

  14. High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms.

    PubMed

    Valen-Sendstad, Kristian; Mardal, Kent-André; Steinman, David A

    2013-01-18

    High-frequency flow fluctuations in intracranial aneurysms have previously been reported in vitro and in vivo. On the other hand, the vast majority of image-based computational fluid dynamics (CFD) studies of cerebral aneurysms report periodic, laminar flow. We have previously demonstrated that transitional flow, consistent with in vivo reports, can occur in a middle cerebral artery (MCA) bifurcation aneurysm when ultra-high-resolution direct numerical simulation methods are applied. The object of the present study was to investigate if such high-frequency flow fluctuations might be more widespread in adequately-resolved CFD models. A sample of N=12 anatomically realistic MCA aneurysms (five unruptured, seven ruptured), was digitally segmented from CT angiograms. Four were classified as sidewall aneurysms, the other eight as bifurcation aneurysms. Transient CFD simulations were carried out assuming a steady inflow velocity of 0.5m/s, corresponding to typical peak systolic conditions at the MCA. To allow for detection of clinically-reported high-frequency flow fluctuations and resulting flow structures, temporal and spatial resolutions of the CFD simulations were in the order of 0.1 ms and 0.1 mm, respectively. A transient flow response to the stationary inflow conditions was found in five of the 12 aneurysms, with energetic fluctuations up to 100 Hz, and in one case up to 900 Hz. Incidentally, all five were ruptured bifurcation aneurysms, whereas all four sidewall aneurysms, including one ruptured case, quickly reached a stable, steady state solution. Energetic, rapid fluctuations may be overlooked in CFD models of bifurcation aneurysms unless adequate temporal and spatial resolutions are used. Such fluctuations may be relevant to the mechanobiology of aneurysm rupture, and to a recently reported dichotomy between predictors of rupture likelihood for bifurcation vs. sidewall aneurysms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Selecting Resolving Agents with Respect to Their Eutectic Compositions.

    PubMed

    Szeleczky, Zsolt; Semsey, Sándor; Bagi, Péter; Pálovics, Emese; Faigl, Ferenc; Fogassy, Elemér

    2016-03-01

    In order to develop a resolution procedure for a given racemic compound, the first and the most important step is finding the most suitable resolving agent. We studied 18 individual resolutions that were carried out with resolving agents having high eutectic composition. We found that very high enantiomeric excess values were obtained in all cases. We assume that the eutectic composition of a given resolving agent is one of the most important properties that should always be considered during the search for the most efficient resolving agent. © 2016 Wiley Periodicals, Inc.

  16. An unusual landslide feature on Mars

    NASA Technical Reports Server (NTRS)

    Veverka, J.; Liang, T.

    1975-01-01

    A flow feature on a crater wall, characteristic of a landslide, has been identified in a Mariner 9 high resolution photograph. Although other evidence of mass wasting is common in Mariner 9 photography, the case presented appears unique. A tentative conclusion is that, at least in some cases, Martian soil exhibits significant internal friction in mass movements.

  17. Use of mobile high-resolution device for remote frozen section evaluation of whole slide images.

    PubMed

    Ramey, Joel; Fung, Kar Ming; Hassell, Lewis A

    2011-01-01

    With recent advances, it is now possible to view whole slide images (WSI) on mobile, high-resolution, viewing devices (MVD). This creates a new paradigm in which MVDs may be used for consultation and/or diagnosis. Validation of the results with devices is important for practitioners and regulators. We evaluated the use of MVDs in frozen section (FS) interpretation. A series of 72 consecutive FS cases were selected for potential inclusion in the study. A 67 case subset of these were successfully scanned at 20x magnification. Scan times were recorded. A sample of WSI FS cases, with gross and clinical information, was presented to six pathologists on an iPad MVD using the Interpath application. Times to diagnosis were recorded. Results were compared with the original reported and final diagnosis. Participants also completed a survey assessing image quality, interface, and diagnostic comfort level. Scan times averaged two minutes and 46 seconds per slide, (standard deviation [SD] 2 minutes 46 seconds). Evaluation times averaged 4 minutes and 59 seconds per case, range to 13 minutes and 50 seconds, SD 3 minutes 48 seconds. Concordance between initial FS diagnosis and rendered through the MVD was 89%. Minor discrepancies made up 8% and major disagreements 3%. The kappa statistic for this series is 0.85. Participants rated the experience at 5 on a 10-point scale, range 3 to 7. Two-thirds found the image quality to be adequate, half were satisfied with image resolution, and 33% would be willing to make a diagnosis on the iPad, plus one only for special cases. Five of six respondents (83%) found the navigation with the study software difficult. Image fidelity and resolution makes the iPad potentially suitable for WSI evaluation of FS. Acceptable accuracy is attainable for FS interpretation. But, although possible to obtain acceptable results, use of the iPad with Interpath to view WSI is not easy and meets user resistance. The obstacle of slide navigation at high magnification could introduce frustrations, delays, or errors.

  18. Effects of Cloud Horizontal Inhomogeneity and Drizzle on Remote Sensing of Cloud Droplet Effective Radius: Case Studies Based on Large-eddy Simulations

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Ackerman, Andrew S.; Feingold, Graham; Platnick, Steven; Pincus, Robert; Xue, Huiwen

    2012-01-01

    This study investigates effects of drizzle and cloud horizontal inhomogeneity on cloud effective radius (re) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS). In order to identify the relative importance of various factors, we developed a MODIS cloud property retrieval simulator based on the combination of large-eddy simulations (LES) and radiative transfer computations. The case studies based on synthetic LES cloud fields indicate that at high spatial resolution (100 m) 3-D radiative transfer effects, such as illumination and shadowing, can induce significant differences between retrievals ofre based on reflectance at 2.1 m (re,2.1) and 3.7 m (re,3.7). It is also found that 3-D effects tend to have stronger impact onre,2.1 than re,3.7, leading to positive difference between the two (re,3.72.1) from illumination and negative re,3.72.1from shadowing. The cancellation of opposing 3-D effects leads to overall reasonable agreement betweenre,2.1 and re,3.7 at high spatial resolution as far as domain averages are concerned. At resolutions similar to MODIS, however, re,2.1 is systematically larger than re,3.7when averaged over the LES domain, with the difference exhibiting a threshold-like dependence on bothre,2.1and an index of the sub-pixel variability in reflectance (H), consistent with MODIS observations. In the LES cases studied, drizzle does not strongly impact reretrievals at either wavelength. It is also found that opposing 3-D radiative transfer effects partly cancel each other when cloud reflectance is aggregated from high spatial resolution to MODIS resolution, resulting in a weaker net impact of 3-D radiative effects onre retrievals. The large difference at MODIS resolution between re,3.7 and re,2.1 for highly inhomogeneous pixels with H 0.4 can be largely attributed to what we refer to as the plane-parallelrebias, which is attributable to the impact of sub-pixel level horizontal variability of cloud optical thickness onre retrievals and is greater for re,2.1 than re,3.7. These results suggest that there are substantial uncertainties attributable to 3-D radiative effects and plane-parallelre bias in the MODIS re,2.1retrievals for pixels with strong sub-pixel scale variability, and theH index can be used to identify these uncertainties.

  19. Super-resolution biomolecular crystallography with low-resolution data.

    PubMed

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X-ray crystallography and cryo-electron microscopy: as optical imaging advances to subnanometre resolution, it can use similar tools.

  20. Endoscopic Injection of Dextranomer/Hyaluronic Acid as First-Line Treatment in 851 Consecutive Children with High Grade Vesicoureteral Reflux: Efficacy and Long-Term Results.

    PubMed

    Friedmacher, Florian; Colhoun, Eric; Puri, Prem

    2018-03-15

    Endoscopic injection of dextranomer/hyaluronic is widely acknowledged as first-line treatment of lower grade vesicoureteral reflux. We demonstrate its long-term efficacy and safety in eradicating high grade reflux. A total of 518 girls and 333 boys with a median age of 2.3 years (range 2 months to 13.7 years) underwent endoscopic correction of high grade vesicoureteral reflux using dextranomer/hyaluronic acid. Reflux was unilateral in 415 cases and bilateral in 436, comprising 1,287 refluxing units. Reflux was grade IV in 1,153 ureters (89.6%) and grade V in 134 (10.4%). 99m Technetium dimercaptosuccinic acid scintigraphy identified renal scarring in 317 patients (37.3%). Followup ultrasound and voiding cystourethrogram were performed 3 months after intervention and renal ultrasound yearly thereafter. Median followup was 8.5 years (range 6 months to 16 years). Overall resolution rate after the first endoscopic injection was 69.5% (895 of 1,287 cases), with resolution in 70.4% of grade IV and 61.9% of grade V cases. Reflux resolved after a second injection in 259 cases (20.1%) and after a third injection in 133 (10.4%). Persistent reflux after initial treatment was significantly more common in patients younger than age 1 year and in individuals with renal scarring. No significant postoperative complications were observed and no patient required ureteral reimplantation. Following reflux resolution febrile urinary tract infection developed in 43 children (5.1%), including 24 (55.8%) during the first year, 15 (34.9%) during the second year and 4 (9.3%) during year 3 or later. Of these patients 6 had reflux recurrence and 8 had neocontralateral grade III reflux, which was successfully treated with a single endoscopic injection of dextranomer/hyaluronic acid. Endoscopic injection of dextranomer/hyaluronic acid is an efficient and safe long-term treatment for grade IV and V vesicoureteral reflux, and can easily be repeated in patients with treatment failure, with a high subsequent resolution rate. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots.

    PubMed

    Wang, Junpeng; Liu, Xiaotong; Shen, Han-Wei; Lin, Guang

    2017-01-01

    Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.

  2. DEEP SPACE: High Resolution VR Platform for Multi-user Interactive Narratives

    NASA Astrophysics Data System (ADS)

    Kuka, Daniela; Elias, Oliver; Martins, Ronald; Lindinger, Christopher; Pramböck, Andreas; Jalsovec, Andreas; Maresch, Pascal; Hörtner, Horst; Brandl, Peter

    DEEP SPACE is a large-scale platform for interactive, stereoscopic and high resolution content. The spatial and the system design of DEEP SPACE are facing constraints of CAVETM-like systems in respect to multi-user interactive storytelling. To be used as research platform and as public exhibition space for many people, DEEP SPACE is capable to process interactive, stereoscopic applications on two projection walls with a size of 16 by 9 meters and a resolution of four times 1080p (4K) each. The processed applications are ranging from Virtual Reality (VR)-environments to 3D-movies to computationally intensive 2D-productions. In this paper, we are describing DEEP SPACE as an experimental VR platform for multi-user interactive storytelling. We are focusing on the system design relevant for the platform, including the integration of the Apple iPod Touch technology as VR control, and a special case study that is demonstrating the research efforts in the field of multi-user interactive storytelling. The described case study, entitled "Papyrate's Island", provides a prototypical scenario of how physical drawings may impact on digital narratives. In this special case, DEEP SPACE helps us to explore the hypothesis that drawing, a primordial human creative skill, gives us access to entirely new creative possibilities in the domain of interactive storytelling.

  3. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less

  4. Elevated-temperature luminescence measurements to improve spatial resolution

    NASA Astrophysics Data System (ADS)

    Pluska, Mariusz; Czerwinski, Andrzej

    2018-01-01

    Various branches of applied physics use luminescence based methods to investigate light-emitting specimens with high spatial resolution. A key problem is that luminescence signals lack all the advantages of high locality (i.e. of high spatial resolution) when structures with strong built-in electric field are measured. Such fields exist intentionally in most photonic structures, and occur unintentionally in many other materials. In this case, as a result of beam-induced current generation and its outflow, information that indicates irregularities, nonuniformities and inhomogeneities, such as defects, is lost. We show that to avoid nonlocality and enable truly local luminescence measurements, an elevated measurement temperature as high as 350 K (or even higher) is, perhaps surprisingly, advantageous. This is in contrast to a widely used approach, where cryogenic temperatures, or at least room temperature, are recommended. The elevated temperature of a specimen, together with the current outflow being limited by focused ion beam (FIB) milling, is shown to improve the spatial resolution of luminescence measurements greatly. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.

  5. Using radiative transfer models to study the atmospheric water vapor content and to eliminate telluric lines from high-resolution optical spectra

    NASA Astrophysics Data System (ADS)

    Gardini, A.; Maíz Apellániz, J.; Pérez, E.; Quesada, J. A.; Funke, B.

    2013-05-01

    The Radiative Transfer Model (RTM) and the retrieval algorithm, incorporated in the SCIATRAN 2.2 software package developed at the Institute of Remote Sensing/Institute of Enviromental Physics of Bremen University (Germany), allows to simulate, among other things, radiance/irradiance spectra in the 2400--24 000 Å range. In this work we present applications of RTM to two case studies. In the first case the RTM was used to simulate direct solar irradiance spectra, with different water vapor amounts, for the study of the water vapor content in the atmosphere above Sierra Nevada Observatory. Simulated spectra were compared with those measured with a spectrometer operating in the 8000--10 000 Å range. In the second case the RTM was used to generate telluric model spectra to subtract the atmospheric contribution and correct high-resolution stellar spectra from atmospheric water vapor and oxygen lines. The results of both studies are discussed.

  6. Esophageal epiphrenic diverticulum associated with diffuse esophageal spasm.

    PubMed

    Matsumoto, Hideo; Kubota, Hisako; Higashida, Masaharu; Manabe, Noriaki; Haruma, Ken; Hirai, Toshihiro

    2015-01-01

    Esophageal diverticulum, a relatively rare condition, has been considered to be associated with motor abnormalities such as conditions that cause a lack of coordination between the distal esophagus and lower esophageal sphincter. We herein report a case of esophageal epiphrenic diverticulum associated with diffuse esophageal spasm. A 73-year-old woman presented with dysphagia and regurgitation. Imaging examinations revealed a right-sided esophageal diverticulum located about 10cm above the esophagogastric junction. High-resolution manometry revealed normal esophageal motility. However, 24-h pH monitoring revealed continuous acidity due to pooling of residue in the diverticulum. An esophageal epiphrenic diverticulum was diagnosed and resected thoracoscopically. Her dysphagia recurred 2 years later. High-resolution manometry revealed diffuse esophageal spasm. The diverticulum in the present case was considered to have been associated with diffuse esophageal spasm. The motility disorder was likely not identified at the first evaluation. In this case, the patient's symptoms spontaneously resolved without any treatment; however, longer-term follow-up is needed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The Effect of Spatial and Temporal Resolution of Cine Phase Contrast MRI on Wall Shear Stress and Oscillatory Shear Index Assessment

    PubMed Central

    Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; vanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.

    2016-01-01

    Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these measurements. Our aim was to investigate the effect of spatiotemporal resolution using a carotid artery phantom. Methods A carotid artery phantom was connected to a flow set-up supplying pulsatile flow. MRI measurement planes were placed at the common carotid artery (CCA) and internal carotid artery (ICA). Two-dimensional PC-MRI measurements were performed with thirty different spatiotemporal resolution settings. The MRI flow measurement was validated with ultrasound probe measurements. Mean flow, peak flow, flow waveform, WSS and OSI were compared for these spatiotemporal resolutions using regression analysis. The slopes of the regression lines were reported in %/mm and %/100ms. The distribution of low and high WSS and OSI was compared between different spatiotemporal resolutions. Results The mean PC-MRI CCA flow (2.5±0.2mL/s) agreed with the ultrasound probe measurements (2.7±0.02mL/s). Mean flow (mL/s) depended only on spatial resolution (CCA:-13%/mm, ICA:-49%/mm). Peak flow (mL/s) depended on both spatial (CCA:-13%/mm, ICA:-17%/mm) and temporal resolution (CCA:-19%/100ms, ICA:-24%/100ms). Mean WSS (Pa) was in inverse relationship only with spatial resolution (CCA:-19%/mm, ICA:-33%/mm). OSI was dependent on spatial resolution for CCA (-26%/mm) and temporal resolution for ICA (-16%/100ms). The regions of low and high WSS and OSI matched for most of the spatiotemporal resolutions (CCA:30/30, ICA:28/30 cases for WSS; CCA:23/30, ICA:29/30 cases for OSI). Conclusion We show that both mean flow and mean WSS are independent of temporal resolution. Peak flow and OSI are dependent on both spatial and temporal resolution. However, the magnitude of mean and peak flow, WSS and OSI, and the spatial distribution of OSI and WSS did not exhibit a strong dependency on spatiotemporal resolution. PMID:27669568

  8. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Sheppard, Kyle

    2017-05-01

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar-planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope/WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  9. Ultrahigh-Resolution Optical Coherence Tomography in Glaucoma

    PubMed Central

    Wollstein, Gadi; Paunescu, Leila A.; Ko, Tony H.; Fujimoto, James G.; Kowalevicz, Andrew; Hartl, Ingmar; Beaton, Siobahn; Ishikawa, Hiroshi; Mattox, Cynthia; Singh, Omah; Duker, Jay; Drexler, Wolfgang; Schuman, Joel S.

    2007-01-01

    Objective Optical coherence tomography (OCT) has been shown to be a valuable tool in glaucoma assessment. We investigated a new ultrahigh-resolution OCT (UHR-OCT) imaging system in glaucoma patients and compared the findings with those obtained by conventional-resolution OCT. Design Retrospective comparative case series. Participants A normal subject and 4 glaucoma patients representing various stages of glaucomatous damage. Testing All participants were scanned with StratusOCT (axial resolution of ~10 μm) and UHR-OCT (axial resolution of ~3 μm) at the same visit. Main Outcome Measure Comparison of OCT findings detected with StratusOCT and UHR-OCT. Results Ultrahigh-resolution OCT provides a detailed cross-sectional view of the scanned retinal area that allows differentiation between retinal layers. These UHR images were markedly better than those obtained by the conventional-resolution OCT. Conclusions Ultrahigh-resolution OCT provides high-resolution images of the ocular posterior segment, which improves the ability to detect retinal abnormalities due to glaucoma. PMID:15691556

  10. On Ambiguities in SAR Design

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    2006-01-01

    Ambiguities are an aliasing effect caused by the periodic sampling of the scene backscatter inherent to pulsed radar systems such as Synthetic Aperture radar (SAR). In this paper we take a fresh look at the relationship between SAR range and azimuth ambiguity constraints on the allowable pulse repetition frequency (PRF) and the antenna length. We show that for high squint angles smaller antennas may be feasible in some cases. For some applications, the ability to form a synthetic aperture at high squint angles is desirable, but the size of the antenna causes problems in the design of systems capable of such operation. This is because the SAR system design is optimized for a side-looking geometry. In two examples design examples we take a suboptimum antenna size and examine the performance in terms of azimuth resolution and swath width as a function of squint angle. We show that for stripmap SARs, the swath width is usually worse for off-boresight squint angles, because it is severely limited by range walk, except in cases where we relax the spatial resolution. We consider the implications for the design of modest-resolution, narrow swath, scanning SAR scatterometers .

  11. Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection

    NASA Astrophysics Data System (ADS)

    Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.

    2018-03-01

    There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and underestimate the heavy rain days compared to the observation data.

  12. Mapping Fishing Effort through AIS Data

    PubMed Central

    Natale, Fabrizio; Gibin, Maurizio; Alessandrini, Alfredo; Vespe, Michele; Paulrud, Anton

    2015-01-01

    Several research initiatives have been undertaken to map fishing effort at high spatial resolution using the Vessel Monitoring System (VMS). An alternative to the VMS is represented by the Automatic Identification System (AIS), which in the EU became compulsory in May 2014 for all fishing vessels of length above 15 meters. The aim of this paper is to assess the uptake of the AIS in the EU fishing fleet and the feasibility of producing a map of fishing effort with high spatial and temporal resolution at European scale. After analysing a large AIS dataset for the period January-August 2014 and covering most of the EU waters, we show that AIS was adopted by around 75% of EU fishing vessels above 15 meters of length. Using the Swedish fleet as a case study, we developed a method to identify fishing activity based on the analysis of individual vessels’ speed profiles and produce a high resolution map of fishing effort based on AIS data. The method was validated using detailed logbook data and proved to be sufficiently accurate and computationally efficient to identify fishing grounds and effort in the case of trawlers, which represent the largest portion of the EU fishing fleet above 15 meters of length. Issues still to be addressed before extending the exercise to the entire EU fleet are the assessment of coverage levels of the AIS data for all EU waters and the identification of fishing activity in the case of vessels other than trawlers. PMID:26098430

  13. Mapping Fishing Effort through AIS Data.

    PubMed

    Natale, Fabrizio; Gibin, Maurizio; Alessandrini, Alfredo; Vespe, Michele; Paulrud, Anton

    2015-01-01

    Several research initiatives have been undertaken to map fishing effort at high spatial resolution using the Vessel Monitoring System (VMS). An alternative to the VMS is represented by the Automatic Identification System (AIS), which in the EU became compulsory in May 2014 for all fishing vessels of length above 15 meters. The aim of this paper is to assess the uptake of the AIS in the EU fishing fleet and the feasibility of producing a map of fishing effort with high spatial and temporal resolution at European scale. After analysing a large AIS dataset for the period January-August 2014 and covering most of the EU waters, we show that AIS was adopted by around 75% of EU fishing vessels above 15 meters of length. Using the Swedish fleet as a case study, we developed a method to identify fishing activity based on the analysis of individual vessels' speed profiles and produce a high resolution map of fishing effort based on AIS data. The method was validated using detailed logbook data and proved to be sufficiently accurate and computationally efficient to identify fishing grounds and effort in the case of trawlers, which represent the largest portion of the EU fishing fleet above 15 meters of length. Issues still to be addressed before extending the exercise to the entire EU fleet are the assessment of coverage levels of the AIS data for all EU waters and the identification of fishing activity in the case of vessels other than trawlers.

  14. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+.

    PubMed

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J; Song, David H

    2015-02-01

    Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons' point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon's perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera's automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video.

  15. The utility of ultrasound in the assessment of traumatic peripheral nerve lesions: report of 4 cases.

    PubMed

    Zeidenberg, Joshua; Burks, S Shelby; Jose, Jean; Subhawong, Ty K; Levi, Allan D

    2015-09-01

    Ultrasound technology continues to improve with better image resolution and availability. Its use in evaluating peripheral nerve lesions is increasing. The current review focuses on the utility of ultrasound in traumatic injuries. In this report, the authors present 4 illustrative cases in which high-resolution ultrasound dramatically enhanced the anatomical understanding and surgical planning of traumatic peripheral nerve lesions. Cases include a lacerating injury of the sciatic nerve at the popliteal fossa, a femoral nerve injury from a pseudoaneurysm, an ulnar nerve neuroma after attempted repair with a conduit, and, finally, a spinal accessory nerve injury after biopsy of a supraclavicular fossa lesion. Preoperative ultrasound images and intraoperative pictures are presented with a focus on how ultrasound aided with surgical decision making. These cases are set into context with a review of the literature on peripheral nerve ultrasound and a comparison between ultrasound and MRI modalities.

  16. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: A case study at 11.7T

    PubMed Central

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-01-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125–255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong grey-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of grey matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. PMID:23384518

  17. Metastatic pulmonary calcification: high-resolution computed tomography findings in 23 cases.

    PubMed

    Belém, Luciana Camara; Souza, Carolina A; Souza, Arthur Soares; Escuissato, Dante Luiz; Hochhegger, Bruno; Nobre, Luiz Felipe; Rodrigues, Rosana Souza; Gomes, Antônio Carlos Portugal; Silva, Claudio S; Guimarães, Marcos Duarte; Zanetti, Gláucia; Marchiori, Edson

    2017-01-01

    The aim of this study was to evaluate the high-resolution computed tomography (HRCT) findings in patients diagnosed with metastatic pulmonary calcification (MPC). We retrospectively reviewed the HRCT findings from 23 cases of MPC [14 men, 9 women; mean age, 54.3 (range, 26-89) years]. The patients were examined between 2000 and 2014 in nine tertiary hospitals in Brazil, Chile, and Canada. Diagnoses were established by histopathologic study in 18 patients and clinical-radiological correlation in 5 patients. Two chest radiologists analyzed the images and reached decisions by consensus. The predominant HRCT findings were centrilobular ground-glass nodules ( n = 14; 60.9%), consolidation with high attenuation ( n = 10; 43.5%), small dense nodules ( n = 9; 39.1%), peripheral reticular opacities associated with small calcified nodules ( n = 5; 21.7%), and ground-glass opacities without centrilobular ground-glass nodular opacity ( n = 5; 21.7%). Vascular calcification within the chest wall was found in four cases and pleural effusion was observed in five cases. The abnormalities were bilateral in 21 cases. MPC manifested with three main patterns on HRCT, most commonly centrilobular ground-glass nodules, often containing calcifications, followed by dense consolidation and small solid nodules, most of which were calcified. We also described another pattern of peripheral reticular opacities associated with small calcified nodules. These findings should suggest the diagnosis of MPC in the setting of hypercalcemia.

  18. Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction

    PubMed Central

    Stucht, Daniel; Danishad, K. Appu; Schulze, Peter; Godenschweger, Frank; Zaitsev, Maxim; Speck, Oliver

    2015-01-01

    High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired. PMID:26226146

  19. Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki

    2004-05-01

    We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.

  20. Evaluation and Validation of Case 2 Algorithms in Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Magnuson, Adrea

    2004-01-01

    The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements form Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (greater than 6,500 square kilometers) make retrievals from satellites with a spatial resolution of approximately 1 kilometer (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra. Finally, past and ongoing research efforts provided an expensive data set of optical observations that support the goal of this project.

  1. Joint denoising, demosaicing, and chromatic aberration correction for UHD video

    NASA Astrophysics Data System (ADS)

    Jovanov, Ljubomir; Philips, Wilfried; Damstra, Klaas Jan; Ellenbroek, Frank

    2017-09-01

    High-resolution video capture is crucial for numerous applications such as surveillance, security, industrial inspection, medical imaging and digital entertainment. In the last two decades, we are witnessing a dramatic increase of the spatial resolution and the maximal frame rate of video capturing devices. In order to achieve further resolution increase, numerous challenges will be facing us. Due to the reduced size of the pixel, the amount of light also reduces, leading to the increased noise level. Moreover, the reduced pixel size makes the lens imprecisions more pronounced, which especially applies to chromatic aberrations. Even in the case when high quality lenses are used some chromatic aberration artefacts will remain. Next, noise level additionally increases due to the higher frame rates. To reduce the complexity and the price of the camera, one sensor captures all three colors, by relying on Color Filter Arrays. In order to obtain full resolution color image, missing color components have to be interpolated, i.e. demosaicked, which is more challenging than in the case of lower resolution, due to the increased noise and aberrations. In this paper, we propose a new method, which jointly performs chromatic aberration correction, denoising and demosaicking. By jointly performing the reduction of all artefacts, we are reducing the overall complexity of the system and the introduction of new artefacts. In order to reduce possible flicker we also perform temporal video enhancement. We evaluate the proposed method on a number of publicly available UHD sequences and on sequences recorded in our studio.

  2. Investigation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput liquid chromatography/tandem mass spectrometry assays.

    PubMed

    Yang, Liyu; Amad, Ma'an; Winnik, Witold M; Schoen, Alan E; Schweingruber, Hans; Mylchreest, Iain; Rudewicz, Patrick J

    2002-01-01

    Triple quadrupole mass spectrometers, when operated in multiple reaction monitoring (MRM) mode, offer a unique combination of sensitivity, specificity, and dynamic range. Consequently, the triple quadrupole is the workhorse for high-throughput quantitation within the pharmaceutical industry. However, in the past, the unit mass resolution of quadrupole instruments has been a limitation when interference from matrix or metabolites cannot be eliminated. With recent advances in instrument design, triple quadrupole instruments now afford mass resolution of less than 0.1 Dalton (Da) full width at half maximum (FWHM). This paper describes the evaluation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput bioanalysis with emphasis on comparison of selectivity, sensitivity, dynamic range, precision, accuracy, and stability under both unit mass (1 Da FWHM) and enhanced (

  3. Structural molecular biology: Recent results from neutron diffraction

    NASA Astrophysics Data System (ADS)

    Timmins, Peter A.

    1995-02-01

    Neutron diffraction is of importance in structural biology at several different levels of resolution. In most cases the unique possibility arising from deuterium labelling or contrast variation is of fundamental importance in providing information complementary to that which can be obtained from X-ray diffraction. At high resolution, neutron crystallography of proteins allows the location of hydrogen atoms in the molecule or of the hydration water, both of which may be central to biological activity. A major difficulty in this field has been the poor signal-to-noise ratio of the data arising not only from relatively low beam intensities and small crystals but, most importantly from the incoherent background due to hydrogen atoms in the sample. Modern methods of molecular biology now offer ways of producing fully deuterated proteins by cloning in bacteria grown on fully deuterated media. At a slightly lower resolution, there are a number of systems which may be ordered in one or two dimensions. This is the case in the purple membrane where neutron diffraction with deuterium labelling has complemented high resolution electron diffraction. Finally there is a class of very large macromolecular systems which can be crystallised and have been studied by X-ray diffraction but in which part of the structure is locally disordered and usually has insufficient contrast to be seen with X-rays. In this case the use of H 2O/D 2O contrast variation allows these components to be located. Examples of this are the nucleic acid in virus structures and detergent bound to membrane proteins.

  4. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    NASA Astrophysics Data System (ADS)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  5. Flow-Signature Analysis of Water Consumption in Nonresidential Building Water Networks Using High-Resolution and Medium-Resolution Smart Meter Data: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Clifford, Eoghan; Mulligan, Sean; Comer, Joanne; Hannon, Louise

    2018-01-01

    Real-time monitoring of water consumption activities can be an effective mechanism to achieve efficient water network management. This approach, largely enabled by the advent of smart metering technologies, is gradually being practiced in domestic and industrial contexts. In particular, identifying water consumption habits from flow-signatures, i.e., the specific end-usage patterns, is being investigated as a means for conservation in both the residential and nonresidential context. However, the quality of meter data is bivariate (dependent on number of meters and data temporal resolution) and as a result, planning a smart metering scheme is relatively difficult with no generic design approach available. In this study, a comprehensive medium-resolution to high-resolution smart metering program was implemented at two nonresidential trial sites to evaluate the effect of spatial and temporal data aggregation. It was found that medium-resolution water meter data were capable of exposing regular, continuous, peak use, and diurnal patterns which reflect group wide end-usage characteristics. The high-resolution meter data permitted flow-signature at a personal end-use level. Through this unique opportunity to observe water usage characteristics via flow-signature patterns, newly defined hydraulic-based design coefficients determined from Poisson rectangular pulse were developed to intuitively aid in the process of pattern discovery with implications for automated activity recognition applications. A smart meter classification and siting index was introduced which categorizes meter resolution in terms of their suitable application.

  6. Generating High-Temporal and Spatial Resolution TIR Image Data

    NASA Astrophysics Data System (ADS)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  7. VizieR Online Data Catalog: Abundances in the local region. II. F, G, and K dwarfs (Luck+, 2017)

    NASA Astrophysics Data System (ADS)

    Luck, R. E.

    2017-06-01

    The McDonald Observatory 2.1m Telescope and Sandiford Cassegrain Echelle Spectrograph provided much of the observational data for this study. High-resolution spectra were obtained during numerous observing runs, from 1996 to 2010. The spectra cover a continuous wavelength range from about 484 to 700nm, with a resolving power of about 60000. The wavelength range used demands two separate observations--one centered at about 520nm, and the other at about 630nm. Typical S/N values per pixel for the spectra are more than 150. Spectra of 57 dwarfs were obtained using the Hobby-Eberly telescope and High-Resolution Spectrograph. The spectra have a resolution of 30000, spanning the wavelength range of 400 to 785nm. They also have very high signal-to-noise ratios, >300 per resolution element in numerous cases. The last set of spectra were obtained from the ELODIE Archive (Moultaka et al. 2004PASP..116..693M). These spectra are fully processed, including order co-addition, and have a continuous wavelength span of 400 to 680nm and a resolution of 42000. The ELODIE spectra utilized here all have S/N>75 per pixel. (6 data files).

  8. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-01-01

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified. PMID:29649173

  9. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    PubMed

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  10. The Relationship of Comorbidities and Patient Navigation to Time to Diagnostic Resolution after Abnormal Cancer Screening

    PubMed Central

    Whitley, Elizabeth M; Raich, Peter C; Dudley, Donald J; Freund, Karen M; Paskett, Electra D; Patierno, Steven R; Simon, Melissa; Warren-Mears, Victoria; Snyder, Frederick R

    2016-01-01

    Background Whether patient navigation improves outcomes in patients with comorbidities is unknown. Study aims were to determine the effect of comorbidities on time to diagnostic resolution following an abnormal cancer screening test, and to examine for patients with comorbidities, if patient navigation improves timeliness and likelihood of diagnostic resolution compared to patients without navigation. Methods A secondary analysis from the Patient Navigation Research Program sites that collected comorbidity data using the Charlson Comorbidity Index (CCI) was conducted. Participants were 6,349 patients with abnormal breast, cervical, colon or prostate cancer screening tests between 2007 and 2011. The intervention was patient navigation or usual care. CCI data were highly skewed across projects and cancer sites and were categorized as 0, no comorbidities identified, CCI score of 0 (76% of cases); 1, CCI score of 1 (16% of cases); or 2, CCI score of ≥2 (8% of cases). A separate adjusted hazards ratio for each site and cancer type was obtained, and then pooled using meta-analysis random effects methodology. Results Having a CCI score of ≥2 delayed the time to diagnostic resolution following an abnormal cancer screening test compared with those with fewer than one comorbidity. Patient Navigation reduced delays in diagnostic resolution with the greatest benefit seen in those with a CCI score of ≥2. Conclusions Persons with a CCI score of ≥2 experienced significant delays in timely diagnostic care compared to patients without comorbidities. Patient navigation was effective in reducing delays in diagnostic resolution among those with CCI scores > 1. PMID:27648520

  11. Problems and Processes in Medical Encounters: The CASES method of dialogue analysis

    PubMed Central

    Laws, M. Barton; Taubin, Tatiana; Bezreh, Tanya; Lee, Yoojin; Beach, Mary Catherine; Wilson, Ira B.

    2013-01-01

    Objective To develop methods to reliably capture structural and dynamic temporal features of clinical interactions. Methods Observational study of 50 audio-recorded routine outpatient visits to HIV specialty clinics, using innovative analytic methods. The Comprehensive Analysis of the Structure of Encounters System (CASES) uses transcripts coded for speech acts, then imposes larger-scale structural elements: threads – the problems or issues addressed; and processes within threads –basic tasks of clinical care labeled Presentation, Information, Resolution (decision making) and Engagement (interpersonal exchange). Threads are also coded for the nature of resolution. Results 61% of utterances are in presentation processes. Provider verbal dominance is greatest in information and resolution processes, which also contain a high proportion of provider directives. About half of threads result in no action or decision. Information flows predominantly from patient to provider in presentation processes, and from provider to patient in information processes. Engagement is rare. Conclusions In this data, resolution is provider centered; more time for patient participation in resolution, or interpersonal engagement, would have to come from presentation. Practice Implications Awareness of the use of time in clinical encounters, and the interaction processes associated with various tasks, may help make clinical communication more efficient and effective. PMID:23391684

  12. Problems and processes in medical encounters: the cases method of dialogue analysis.

    PubMed

    Laws, M Barton; Taubin, Tatiana; Bezreh, Tanya; Lee, Yoojin; Beach, Mary Catherine; Wilson, Ira B

    2013-05-01

    To develop methods to reliably capture structural and dynamic temporal features of clinical interactions. Observational study of 50 audio-recorded routine outpatient visits to HIV specialty clinics, using innovative analytic methods. The comprehensive analysis of the structure of encounters system (CASES) uses transcripts coded for speech acts, then imposes larger-scale structural elements: threads--the problems or issues addressed; and processes within threads--basic tasks of clinical care labeled presentation, information, resolution (decision making) and Engagement (interpersonal exchange). Threads are also coded for the nature of resolution. 61% of utterances are in presentation processes. Provider verbal dominance is greatest in information and resolution processes, which also contain a high proportion of provider directives. About half of threads result in no action or decision. Information flows predominantly from patient to provider in presentation processes, and from provider to patient in information processes. Engagement is rare. In this data, resolution is provider centered; more time for patient participation in resolution, or interpersonal engagement, would have to come from presentation. Awareness of the use of time in clinical encounters, and the interaction processes associated with various tasks, may help make clinical communication more efficient and effective. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging

    PubMed Central

    Dempsey, Graham T.; Vaughan, Joshua C.; Chen, Kok Hao; Bates, Mark; Zhuang, Xiaowei

    2011-01-01

    One approach to super-resolution fluorescence imaging uses sequential activation and localization of individual fluorophores to achieve high spatial resolution. Essential to this technique is the choice of fluorescent probes — the properties of the probes, including photons per switching event, on/off duty cycle, photostability, and number of switching cycles, largely dictate the quality of super-resolution images. While many probes have been reported, a systematic characterization of the properties of these probes and their impact on super-resolution image quality has been described in only a few cases. Here, we quantitatively characterized the switching properties of 26 organic dyes and directly related these properties to the quality of super-resolution images. This analysis provides a set of guidelines for characterization of super-resolution probes and a resource for selecting probes based on performance. Our evaluation identified several photoswitchable dyes with good to excellent performance in four independent spectral ranges, with which we demonstrated low crosstalk, four-color super-resolution imaging. PMID:22056676

  14. The CHARIS High-Contrast Integral-Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; hide

    2017-01-01

    One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has 'high' and 'low' resolution operating modes. The "high-resolution" mode is used to characterize targets in J, H, and K bands at R70. The "low-resolution" prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS is in the final stages of commissioning, with the instrument open for science observations beginning February 2017. Here we review the science case, design, on-sky performance, engineering observations of exoplanet and disk targets, and specific lessons learned for extremely high contrast imagers. Key design aspects that will be demonstrated are crosstalk optimization, wavefront correction using the IFS image, lenslet tolerancing, the required spectral resolution to fit exoplanet atmospheres, and the utility of the spectrum in achieving higher contrast detection limits.

  15. Reconstructing recent volcanic histories from high-resolution AUV sidescan sonar imagery

    NASA Astrophysics Data System (ADS)

    Yeo, I. A.

    2016-12-01

    Detecting high-resolution differences in age between young basaltic lava flows on the seafloor is notoriously difficult. However, using sediment thickness as a proxy for age it is possible to derive information on spatial extents, surface morphologies and lava flow age simultaneously using high-resolution sidescan sonar imagery. Ground truthing of this new method on cruise POS502 (July 2016) using photogrammetry from ROV cameras has provided constraints on the method allowing the detailed morphological changes and sediment cover thicknesses to be calibrated to produce reliable, quantitative ages for individual flow units. Sediment thickness is shown to be the primary controlling factor in backscatter intensity in most cases, although sediment redistribution by different flow morphologies can also affect the recorded reflection amplitudes. Seafloor lava flows were found to be very morphologically complicated on small scales, which may explain their relative unimportance when amplitude values are averaged over several tens of meters.

  16. Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells.

    PubMed

    Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert

    2008-12-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.

  17. Electron Microscopy Localization and Characterization of Functionalized Composite Organic-Inorganic SERS Nanoparticles on Leukemia Cells

    PubMed Central

    Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert

    2008-01-01

    We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet Scanning Electron Microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron detector (BSE) was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution Transmission Electron Microscope (TEM) images and Scanning Auger Electron Spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens. PMID:18995965

  18. Dynamical downscaling inter-comparison for high resolution climate reconstruction

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Rocha, A.; Castanheira, J. M.; Carvalho, A. C.

    2012-04-01

    In the scope of the project: "High-resolution Rainfall EroSivity analysis and fORecasTing - RESORT", an evaluation of various methods of dynamic downscaling is presented. The methods evaluated range from the classic method of nesting a regional model results in a global model, in this case the ECMWF reanalysis, to more recently proposed methods, which consist in using Newtonian relaxation methods in order to nudge the results of the regional model to the reanalysis. The method with better results involves using a system of variational data assimilation to incorporate observational data with results from the regional model. The climatology of a simulation of 5 years using this method is tested against observations on mainland Portugal and the ocean in the area of the Portuguese Continental Shelf, which shows that the method developed is suitable for the reconstruction of high resolution climate over continental Portugal.

  19. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    NASA Astrophysics Data System (ADS)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  20. Parenting Coordination: Applying Clinical Thinking to the Management and Resolution of Post-Divorce Conflict.

    PubMed

    Demby, Steven L

    2016-05-01

    There is a small but significant number of parents who remain stuck in a high level of conflict with each other after the legal conclusion of their divorce. Exposure to chronically high levels of parental conflict is a strong risk factor negatively affecting both children's short- and long-term adjustment. Parenting coordination is a nonadversarial, child-focused dispute-resolution process designed to help divorced parents contain their conflict to protect children from its negative effect. Parenting coordination is a hybrid role combining different skills and conflict-resolution approaches. In high-conflict divorce, each parent's internalization of relationship patterns constructed from past experiences contributes to the intractable nature of the interparent conflict. A case presentation illustrates how this clinical perspective enhances the parenting coordinator's ability to work with parents to manage and contain their parenting conflicts with each other. © 2016 Wiley Periodicals, Inc.

  1. Dust Science with SPICA/MCS

    NASA Astrophysics Data System (ADS)

    Sakon, I.; Onaka, T.; Kataza, H.; Wada, T.; Sarugaku, Y.; Matsuhara, H.; Nakagawa, T.; Kobayashi, N.; Kemper, C.; Ohyama, Y.; Matsumoto, T.; Seok, J. Y.

    Mid-Infrared Camera and Spectrometers (MCS) is one of the Focal-Plane Instruments proposed for the SPICA mission in the pre-project phase. SPICA MCS is equipped with two spectrometers with different spectral resolution powers (R=λ /δ λ ); medium-resolution spectrometer (MRS) which covers 12-38µ m with R≃1100-3000, and high-resolution spectrometer (HRS) which covers either 12-18µ m with R≃30000. MCS is also equipped with Wide Field Camera (WFC), which is capable of performing multi-objects grism spectroscopy in addition to the imaging observation. A small slit aperture for low-resolution slit spectroscopy is planned to be placed just next to the field of view (FOV) aperture for imaging and slit-less spectroscopic observation. MCS covers an important part of the core spectral range of SPICA and, complementary with SAFARI (SpicA FAR-infrared Instrument), can do crucial observations for a number of key science cases to revolutionize our understanding of the lifecycle of dust in the universe. In this article, the latest design specification and the expected performance of the SPICA/MCS are introduced. Key science cases that should be targetted by SPICA/MCS have been discussed by the MCS science working group. Among such science cases, some of those related to dust science are briefly introduced.

  2. Recovering the colour-dependent albedo of exoplanets with high-resolution spectroscopy: from ESPRESSO to the ELT.

    NASA Astrophysics Data System (ADS)

    Martins, J. H. C.; Figueira, P.; Santos, N. C.; Melo, C.; Garcia Muñoz, A.; Faria, J.; Pepe, F.; Lovis, C.

    2018-05-01

    The characterization of planetary atmospheres is a daunting task, pushing current observing facilities to their limits. The next generation of high-resolution spectrographs mounted on large telescopes - such as ESPRESSO@VLT and HIRES@ELT - will allow us to probe and characterize exoplanetary atmospheres in greater detail than possible to this point. We present a method that permits the recovery of the colour-dependent reflectivity of exoplanets from high-resolution spectroscopic observations. Determining the wavelength-dependent albedo will provide insight into the chemical properties and weather of the exoplanet atmospheres. For this work, we simulated ESPRESSO@VLT and HIRES@ELT high-resolution observations of known planetary systems with several albedo configurations. We demonstrate how the cross correlation technique applied to theses simulated observations can be used to successfully recover the geometric albedo of exoplanets over a range of wavelengths. In all cases, we were able to recover the wavelength dependent albedo of the simulated exoplanets and distinguish between several atmospheric models representing different atmospheric configurations. In brief, we demonstrate that the cross correlation technique allows for the recovery of exoplanetary albedo functions from optical observations with the next generation of high-resolution spectrographs that will be mounted on large telescopes with reasonable exposure times. Its recovery will permit the characterization of exoplanetary atmospheres in terms of composition and dynamics and consolidates the cross correlation technique as a powerful tool for exoplanet characterization.

  3. High-resolution anorectal manometry: An expensive hobby or worth every penny?

    PubMed

    Basilisco, G; Bharucha, A E

    2017-08-01

    Introduced approximately 10 years ago, high-resolution manometry catheters have fostered interest in anorectal manometry. This review, which accompanies two articles in this issue of Neurogastroenterology and Motility, reviews the methods, clinical indications, utility, and pitfalls of anorectal manometry and revisits the American Gastroenterological Association (AGA) Medical Position Statement on Anorectal Testing Techniques, which was last published in 1999. High-resolution manometry provides a refined assessment of the anorectal pressure profile, obviates the need for station pull-through maneuvers, and minimizes movement artifacts. In selected cases, this refined assessment may be useful for identifying structural abnormalities or anal weakness. However, many manometry patterns that were previously regarded as abnormal are also observed in a majority of healthy patients, which substantially limits the utility of manometry for identifying defecatory disorders. It is our impression that most conclusions of the AGA medical position statement from 1999 remain valid today. High-resolution techniques have not substantially affected the number of publications on or management of anorectal disorders. The ongoing efforts of an international working group to standardize techniques for anorectal manometry are welcome. Although high-resolution manometry is more than an expensive hobby, improvements in catheter design and further research to rigorously define and evaluate these techniques are necessary to determine if they are worth every penny. © 2017 John Wiley & Sons Ltd.

  4. Ultra-High Resolution Optical Coherence Tomography Imaging of Unilateral Drusen in a 31 Year Old Woman.

    PubMed

    de Carlo, Talisa E; Adhi, Mehreen; Lu, Chen D; Duker, Jay S; Fujimoto, James G; Waheed, Nadia K

    We report a case of widespread unilateral drusen in a healthy 31 year old Caucasian woman using multi-modal imaging including ultra-high resolution optical coherence tomography (UHR-OCT). Dilated fundus exam showed multiple drusen-like lesions in the posterior pole without heme or fluid. Fundus auto fluorescence demonstrated hyperautofluorescent at the deposits. Fluorescein angiography revealed mild hyperfluorescence and staining of the lesions. Spectral-domain optical coherence tomography (SD-OCT) OS showed accumulations in the temporal macula at Bruch's membrane. UHR-OCT provided improved axial resolution compared to the standard 5 μm on the commercial SD-OCT and confirmed the presence of deposits in Bruch's membrane, consistent with drusen. The retinal layers were draped over the excrescences but did not show any disruption.

  5. Millisecond resolution electron fluxes from the Cluster satellites: Calibrated EDI ambient electron data

    NASA Astrophysics Data System (ADS)

    Förster, Matthias; Rashev, Mikhail; Haaland, Stein

    2017-04-01

    The Electron Drift Instrument (EDI) onboard Cluster can measure 500 eV and 1 keV electron fluxes with high time resolution during passive operation phases in its Ambient Electron (AE) mode. Data from this mode is available in the Cluster Science Archive since October 2004 with a cadence of 16 Hz in the normal mode or 128 Hz for burst mode telemetry intervals. The fluxes are recorded at pitch angles of 0, 90, and 180 degrees. This paper describes the calibration and validation of these measurements. The high resolution AE data allow precise temporal and spatial diagnostics of magnetospheric boundaries and will be used for case studies and statistical studies of low energy electron fluxes in the near-Earth space. We show examples of applications.

  6. Structure of high-resolution K β1 ,3 x-ray emission spectra for the elements from Ca to Ge

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Tochio, T.; Yamashita, M.; Fukushima, S.; Vlaicu, A. M.; Syrocki, Ł.; Słabkowska, K.; Weder, E.; Polasik, M.; Sawicka, K.; Indelicato, P.; Marques, J. P.; Sampaio, J. M.; Guerra, M.; Santos, J. P.; Parente, F.

    2018-05-01

    The K β x-ray spectra of the elements from Ca to Ge have been systematically investigated using a high-resolution antiparallel double-crystal x-ray spectrometer. Each K β1 ,3 natural linewidth has been corrected using the instrumental function of this type of x-ray spectrometer, and the spin doublet energies have been obtained from the peak position values in K β1 ,3 x-ray spectra. For all studied elements the corrected K β1 x-ray lines FWHM increase linearly as a function of Z . However, for K β3 x-ray lines this dependence is generally not linear in the case of 3 d elements but increases from Sc to Co elements. It has been found that the contributions of satellite lines are considered to be [K M ] shake processes. Our theoretically predicted synthetic spectra of Ca, Mn, Cu, and Zn are in very good agreement with our high-resolution measurements, except in the case of Mn, due to the open-shell valence configuration effect (more than 7000 transitions for diagram lines and more than 100 000 transitions for satellite lines) and the influence of the complicated structure of the metallic Mn.

  7. The planetary hydraulics analysis based on a multi-resolution stereo DTMs and LISFLOOD-FP model: Case study in Mars

    NASA Astrophysics Data System (ADS)

    Kim, J.; Schumann, G.; Neal, J. C.; Lin, S.

    2013-12-01

    Earth is the only planet possessing an active hydrological system based on H2O circulation. However, after Mariner 9 discovered fluvial channels on Mars with similar features to Earth, it became clear that some solid planets and satellites once had water flows or pseudo hydrological systems of other liquids. After liquid water was identified as the agent of ancient martian fluvial activities, the valley and channels on the martian surface were investigated by a number of remote sensing and in-suit measurements. Among all available data sets, the stereo DTM and ortho from various successful orbital sensor, such as High Resolution Stereo Camera (HRSC), Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), are being most widely used to trace the origin and consequences of martian hydrological channels. However, geomorphological analysis, with stereo DTM and ortho images over fluvial areas, has some limitations, and so a quantitative modeling method utilizing various spatial resolution DTMs is required. Thus in this study we tested the application of hydraulics analysis with multi-resolution martian DTMs, constructed in line with Kim and Muller's (2009) approach. An advanced LISFLOOD-FP model (Bates et al., 2010), which simulates in-channel dynamic wave behavior by solving 2D shallow water equations without advection, was introduced to conduct a high accuracy simulation together with 150-1.2m DTMs over test sites including Athabasca and Bahram valles. For application to a martian surface, technically the acceleration of gravity in LISFLOOD-FP was reduced to the martian value of 3.71 m s-2 and the Manning's n value (friction), the only free parameter in the model, was adjusted for martian gravity by scaling it. The approach employing multi-resolution stereo DTMs and LISFLOOD-FP was superior compared with the other research cases using a single DTM source for hydraulics analysis. HRSC DTMs, covering 50-150m resolutions was used to trace rough routes of water flows for extensive target areas. After then, refinements through hydraulics simulations with CTX DTMs (~12-18m resolution) and HiRISE DTMs (~1- 4m resolution) were conducted by employing the output of HRSC simulations as the initial conditions. Thus even a few high and very high resolution stereo DTMs coverage enabled the performance of a high precision hydraulics analysis for reconstructing a whole fluvial event. In this manner, useful information to identify the characteristics of martian fluvial activities, such as water depth along the time line, flow direction, and travel time, were successfully retrieved with each target tributary. Together with all above useful outputs of hydraulics analysis, the local roughness and photogrammetric control of the stereo DTMs appeared to be crucial elements for accurate fluvial simulation. The potential of this study should be further explored for its application to the other extraterrestrial bodies where fluvial activity once existed, as well as the major martian channel and valleys.

  8. CUBES: cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Bawden Macanhan, V.; Bristow, P.; Castilho, B.; Dekker, H.; Delabre, B.; Diaz, M.; Gneiding, C.; Kerber, F.; Kuntschner, H.; La Mura, G.; Maciel, W.; Meléndez, J.; Pasquini, L.; Pereira, C. B.; Petitjean, P.; Reiss, R.; Siqueira-Mello, C.; Smiljanic, R.; Vernet, J.

    2014-11-01

    CUBES is a high-efficiency, medium-resolution ( R˜20,000) ground based UV (300-400 nm) spectrograph, to be installed in the cassegrain focus of one of ESO's VLT unit telescopes in 2017/18. The CUBES project is a joint venture between ESO and IAG/USP, and LNA/MCTI. CUBES will provide access to a wealth of new and relevant information for stellar as well as extragalactic sources. Main science cases include the study of beryllium and heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range, as well as the study of active galactic nuclei and the quasar absorption lines. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will give a significant gain in sensitivity over existing ground based medium-high resolution spectrographs, enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project including the status, science cases and a discussion of the design options.

  9. Bio-Optical and Remote Sensing Observations in Chesapeake Bay. Chapter 7

    NASA Technical Reports Server (NTRS)

    Harding, Lawrence W., Jr.; Magnuson, Andrea

    2003-01-01

    The high temporal and spatial resolution of satellite ocean color observations will prove invaluable for monitoring the health of coastal ecosystems where physical and biological variability demands sampling scales beyond that possible by ship. However, ocean color remote sensing of Case 2 waters is a challenging undertaking due to the optical complexity of the water. The focus of this SIMBIOS support has been to provide in situ optical measurements from Chesapeake Bay (CB) and adjacent mid-Atlantic bight (MAB) waters for use in algorithm development and validation efforts to improve the satellite retrieval of chlorophyll (chl a) in Case 2 waters. CB provides a valuable site for validation of data from ocean color sensors for a number of reasons. First, the physical dimensions of the Bay (> 6,500 km2) make retrievals from satellites with a spatial resolution of approx. 1 km (i.e., SeaWiFS) or less (i.e., MODIS) reasonable for most of the ecosystem. Second, CB is highly influenced by freshwater flow from major rivers, making it a classic Case 2 water body with significant concentrations of chlorophyll, particulates and chromophoric dissolved organic matter (CDOM) that highly impact the shape of reflectance spectra.

  10. Sensors and OBIA synergy for operational monitoring of surface water

    NASA Astrophysics Data System (ADS)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation, frequent drought period and now with foreseen climate change impacts. This third case will demonstrate the efficiency of SPOT 5 programming in synergy with OBIA methodology to assess the evolution of dam surface water within a complete water cycle (i.e. 2008-09). In all those three cases image segmentation and classification algorithms developed with e-Cognition 8 software allow an easy to use implementation of simple to highly sophisticate OBIA rulsets fully operational in batch processes. Finally this contribution foresees the new opportunity of integration of Worldview 2 multispectral imagery (i.e. 8 bands) including its "coastal" band that will also find an application in continental surface water bathymetry. Worldview 2 is a recently launch satellite (e.g. October 2009) that starts to collect earth observation data since January 2010. It is therefore a promising new remote sensing tool to develop operational hydrology in combination high resolution SAR imagery and OBIA methodology. This contribution will conclude on the strong potential for operationalisation in hydrology and water resources management that recent and future sensors and image analysis methodologies are offering to water management and decision makers.

  11. A Study in HRT Resolution: Seeking Maximum Sensitivity Among Variations in Sensing Element Material

    NASA Technical Reports Server (NTRS)

    Morales, Jeremy M.

    2005-01-01

    The EXACT (Experiments Along Coexistence near Tricriticality) project endeavors to perform the most rigorous test to date of Renormalization Group theory. In most cases, the theory gives only approximate solutions, but it offers exact predictions in the case of the He-3-He-4 tricritical point. Currently, the project is focused on maximizing the performance of the low-temperature system's HRT (high resolution thermometer) near the tricritical point. The HRT uses a PdMn sensing element, the qualities of which change based on its Mn concentration and whether or not it is annealed. All sensing element combinations will be catalogued, and through the data, the optimum configuration will be reported.

  12. The High Resolution Stereo Camera (HRSC): 10 Years of Imaging Mars

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Neukum, G.; Tirsch, D.; Hoffmann, H.

    2014-04-01

    The HRSC Experiment: Imagery is the major source for our current understanding of the geologic evolution of Mars in qualitative and quantitative terms.Imaging is required to enhance our knowledge of Mars with respect to geological processes occurring on local, regional and global scales and is an essential prerequisite for detailed surface exploration. The High Resolution Stereo Camera (HRSC) of ESA's Mars Express Mission (MEx) is designed to simultaneously map the morphology, topography, structure and geologic context of the surface of Mars as well as atmospheric phenomena [1]. The HRSC directly addresses two of the main scientific goals of the Mars Express mission: (1) High-resolution three-dimensional photogeologic surface exploration and (2) the investigation of surface-atmosphere interactions over time; and significantly supports: (3) the study of atmospheric phenomena by multi-angle coverage and limb sounding as well as (4) multispectral mapping by providing high-resolution threedimensional color context information. In addition, the stereoscopic imagery will especially characterize landing sites and their geologic context [1]. The HRSC surface resolution and the digital terrain models bridge the gap in scales between highest ground resolution images (e.g., HiRISE) and global coverage observations (e.g., Viking). This is also the case with respect to DTMs (e.g., MOLA and local high-resolution DTMs). HRSC is also used as cartographic basis to correlate between panchromatic and multispectral stereo data. The unique multi-angle imaging technique of the HRSC supports its stereo capability by providing not only a stereo triplet but also a stereo quintuplet, making the photogrammetric processing very robust [1, 3]. The capabilities for three dimensional orbital reconnaissance of the Martian surface are ideally met by HRSC making this camera unique in the international Mars exploration effort.

  13. Coupling high-resolution hydraulic and hydrologic models for flash flood forecasting and inundation mapping in urban areas - A case study for the City of Fort Worth

    NASA Astrophysics Data System (ADS)

    Nazari, B.; Seo, D.; Cannon, A.

    2013-12-01

    With many diverse features such as channels, pipes, culverts, buildings, etc., hydraulic modeling in urban areas for inundation mapping poses significant challenges. Identifying the practical extent of the details to be modeled in order to obtain sufficiently accurate results in a timely manner for effective emergency management is one of them. In this study we assess the tradeoffs between model complexity vs. information content for decision making in applying high-resolution hydrologic and hydraulic models for real-time flash flood forecasting and inundation mapping in urban areas. In a large urban area such as the Dallas-Fort Worth Metroplex (DFW), there exists very large spatial variability in imperviousness depending on the area of interest. As such, one may expect significant sensitivity of hydraulic model results to the resolution and accuracy of hydrologic models. In this work, we present the initial results from coupling of high-resolution hydrologic and hydraulic models for two 'hot spots' within the City of Fort Worth for real-time inundation mapping.

  14. Freedom to Hate: Weighing First Amendment Rights against School Violence--A Case Study

    ERIC Educational Resources Information Center

    Kaplan, H. Roy

    2007-01-01

    River Run High School, located in rural west central Florida, was the site for a case study of student conflict precipitated by the wearing and display of Confederate flags on campus. Following a series of tense student encounters over Confederate and other racist symbols, a conflict resolution team was invited to intervene. Team members created a…

  15. Wide-field optical coherence tomography based microangiography for retinal imaging

    PubMed Central

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N.; Wang, Ruikang K.

    2016-01-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice. PMID:26912261

  16. Wide-field optical coherence tomography based microangiography for retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  17. Wide-field optical coherence tomography based microangiography for retinal imaging.

    PubMed

    Zhang, Qinqin; Lee, Cecilia S; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N; Wang, Ruikang K

    2016-02-25

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  18. Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven

    2014-11-01

    In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.

  19. Fusion of multi-source remote sensing data for agriculture monitoring tasks

    NASA Astrophysics Data System (ADS)

    Skakun, S.; Franch, B.; Vermote, E.; Roger, J. C.; Becker Reshef, I.; Justice, C. O.; Masek, J. G.; Murphy, E.

    2016-12-01

    Remote sensing data is essential source of information for enabling monitoring and quantification of crop state at global and regional scales. Crop mapping, state assessment, area estimation and yield forecasting are the main tasks that are being addressed within GEO-GLAM. Efficiency of agriculture monitoring can be improved when heterogeneous multi-source remote sensing datasets are integrated. Here, we present several case studies of utilizing MODIS, Landsat-8 and Sentinel-2 data along with meteorological data (growing degree days - GDD) for winter wheat yield forecasting, mapping and area estimation. Archived coarse spatial resolution data, such as MODIS, VIIRS and AVHRR, can provide daily global observations that coupled with statistical data on crop yield can enable the development of empirical models for timely yield forecasting at national level. With the availability of high-temporal and high spatial resolution Landsat-8 and Sentinel-2A imagery, course resolution empirical yield models can be downscaled to provide yield estimates at regional and field scale. In particular, we present the case study of downscaling the MODIS CMG based generalized winter wheat yield forecasting model to high spatial resolution data sets, namely harmonized Landsat-8 - Sentinel-2A surface reflectance product (HLS). Since the yield model requires corresponding in season crop masks, we propose an automatic approach to extract winter crop maps from MODIS NDVI and MERRA2 derived GDD using Gaussian mixture model (GMM). Validation for the state of Kansas (US) and Ukraine showed that the approach can yield accuracies > 90% without using reference (ground truth) data sets. Another application of yearly derived winter crop maps is their use for stratification purposes within area frame sampling for crop area estimation. In particular, one can simulate the dependence of error (coefficient of variation) on the number of samples and strata size. This approach was used for estimating the area of winter crops in Ukraine for 2013-2016. The GMM-GDD approach is further extended for HLS data to provide automatic winter crop mapping at 30 m resolution for crop yield model and area estimation. In case of persistent cloudiness, addition of Sentinel-1A synthetic aperture radar (SAR) images is explored for automatic winter crop mapping.

  20. The challenges associated with applying global models in heterogeneous landscapes: A case study using MOD17 GPP estimates in Hawaii

    NASA Astrophysics Data System (ADS)

    Kimball, H.; Selmants, P. C.; Running, S. W.; Moreno, A.; Giardina, C. P.

    2016-12-01

    In this study we evaluate the influence of spatial data product accuracy and resolution on the application of global models for smaller scale heterogeneous landscapes. In particular, we assess the influence of locally specific land cover and high-resolution climate data products on estimates of Gross Primary Production (GPP) for the Hawaiian Islands using the MOD17 model. The MOD17 GPP algorithm uses a measure of the fraction of absorbed photosynthetically active radiation from the National Aeronautics and Space Administration's Earth Observation System. This direct measurement is combined with global land cover (500-m resolution) and climate models ( 1/2-degree resolution) to estimate GPP. We first compared the alignment between the global land cover model used in MOD17 with a Hawaii specific land cover data product. We found that there was a 51.6% overall agreement between the two land cover products. We then compared four MOD17 GPP models: A global model that used the global land cover and low-resolution global climate data products, a model produced using the Hawaii specific land cover and low-resolution global climate data products, a model with global land cover and high-resolution climate data products, and finally, a model using both Hawaii specific land cover and high-resolution climate data products. We found that including either the Hawaii specific land cover or the high-resolution Hawaii climate data products with MOD17 reduced overall estimates of GPP by 8%. When both were used, GPP estimates were reduced by 16%. The reduction associated with land cover is explained by a reduction of the total area designated as evergreen broad leaf forest and an increase in the area designated as barren or sparsely vegetated in the Hawaii land cover product as compared to the global product. The climate based reduction is explained primarily by the spatial resolution and distribution of solar radiation in the Hawaiian Islands. This study highlights the importance of accuracy and resolution when applying global models to highly variable landscapes and provides an estimate of the influence of land cover and climate data products on estimates of GPP using MOD17.

  1. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  2. Improvement of Advanced Storm-scale Analysis and Prediction System (ASAPS) on Seoul Metropolitan Area, Korea

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Gyun; Jee, Joon-Bum

    2017-04-01

    Dangerous weather such as severe rain, heavy snow, drought and heat wave caused by climate change make more damage in the urban area that dense populated and industry areas. Urban areas, unlike the rural area, have big population and transportation, dense the buildings and fuel consumption. Anthropogenic factors such as road energy balance, the flow of air in the urban is unique meteorological phenomena. However several researches are in process about prediction of urban meteorology. ASAPS (Advanced Storm-scale Analysis and Prediction System) predicts a severe weather with very short range (prediction with 6 hour) and high resolution (every hour with time and 1 km with space) on Seoul metropolitan area based on KLAPS (Korea Local Analysis and Prediction System) from KMA (Korea Meteorological Administration). This system configured three parts that make a background field (SUF5), analysis field (SU01) with observation and forecast field with high resolution (SUF1). In this study, we improve a high-resolution ASAPS model and perform a sensitivity test for the rainfall case. The improvement of ASAPS include model domain configuration, high resolution topographic data and data assimilation with WISE observation data.

  3. Seeing tobacco mosaic virus through direct electron detectors

    PubMed Central

    Fromm, Simon A.; Bharat, Tanmay A.M.; Jakobi, Arjen J.; Hagen, Wim J.H.; Sachse, Carsten

    2015-01-01

    With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35 Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2 Å in resolution using cryo-EM. PMID:25528571

  4. A cloud-based multimodality case file for mobile devices.

    PubMed

    Balkman, Jason D; Loehfelm, Thomas W

    2014-01-01

    Recent improvements in Web and mobile technology, along with the widespread use of handheld devices in radiology education, provide unique opportunities for creating scalable, universally accessible, portable image-rich radiology case files. A cloud database and a Web-based application for radiologic images were developed to create a mobile case file with reasonable usability, download performance, and image quality for teaching purposes. A total of 75 radiology cases related to breast, thoracic, gastrointestinal, musculoskeletal, and neuroimaging subspecialties were included in the database. Breast imaging cases are the focus of this article, as they best demonstrate handheld display capabilities across a wide variety of modalities. This case subset also illustrates methods for adapting radiologic content to cloud platforms and mobile devices. Readers will gain practical knowledge about storage and retrieval of cloud-based imaging data, an awareness of techniques used to adapt scrollable and high-resolution imaging content for the Web, and an appreciation for optimizing images for handheld devices. The evaluation of this software demonstrates the feasibility of adapting images from most imaging modalities to mobile devices, even in cases of full-field digital mammograms, where high resolution is required to represent subtle pathologic features. The cloud platform allows cases to be added and modified in real time by using only a standard Web browser with no application-specific software. Challenges remain in developing efficient ways to generate, modify, and upload radiologic and supplementary teaching content to this cloud-based platform. Online supplemental material is available for this article. ©RSNA, 2014.

  5. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine

    PubMed Central

    Wang, Minghui; Londo, Jason P.; Acharya, Charlotte B.; Mitchell, Sharon E.; Sun, Qi; Reisch, Bruce; Cadle-Davidson, Lance

    2015-01-01

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to adapt portions of the pipeline to other family types, genotyping technologies or applications. PMID:26244767

  6. The relationship between Class I and Class II methanol masers at high angular resolution

    NASA Astrophysics Data System (ADS)

    McCarthy, T. P.; Ellingsen, S. P.; Voronkov, M. A.; Cimò, G.

    2018-06-01

    We have used the Australia Telescope Compact Array (ATCA) to make the first high-resolution observations of a large sample of class I methanol masers in the 95-GHz (80-71A+) transition. The target sources consist of a statistically complete sample of 6.7-GHz class II methanol masers with an associated 95-GHz class I methanol maser, enabling a detailed study of the relationship between the two methanol maser classes at arcsecond angular resolution. These sources have been previously observed at high resolution in the 36- and 44-GHz transitions, allowing comparison between all three class I maser transitions. In total, 172 95-GHz maser components were detected across the 32 target sources. We find that at high resolution, when considering matched maser components, a 3:1 flux density ratio is observed between the 95- and 44-GHz components, consistent with a number of previous lower angular resolution studies. The 95-GHz maser components appear to be preferentially located closer to the driving sources and this may indicate that this transition is more strongly inverted nearby to background continuum sources. We do not observe an elevated association rate between 95-GHz maser emission and more evolved sources, as indicated by the presence of 12.2-GHz class II masers. We find that in the majority of cases where both class I and class II methanol emission is observed, some component of the class I emission is associated with a likely outflow candidate.

  7. Correlation between DNA ploidy, metaphase high-resolution comparative genomic hybridization results and clinical outcome of synovial sarcoma

    PubMed Central

    2011-01-01

    Background Although synovial sarcoma is the 3rd most commonly occurring mesenchymal tumor in young adults, usually with a highly aggressive clinical course; remarkable differences can be seen regarding the clinical outcome. According to comparative genomic hybridization (CGH) data published in the literature, the simple and complex karyotypes show a correlation between the prognosis and clinical outcome. In addition, the connection between DNA ploidy and clinical course is controversial. The aim of this study was using a fine-tuning interpretation of our DNA ploidy results and to compare these with metaphase high-resolution CGH (HR-CGH) results. Methods DNA ploidy was determined on Feulgen-stained smears in 56 synovial sarcoma cases by image cytometry; follow up was available in 46 cases (average: 78 months). In 9 cases HR-CGH analysis was also available. Results 10 cases were found DNA-aneuploid, 46 were DNA-diploid by image cytometry. With fine-tuning of the diploid cases according to the 5c exceeding events (single cell aneuploidy), 33 cases were so called "simple-diploid" (without 5c exceeding events) and 13 cases were "complex-diploid"; containing 5c exceeding events (any number). Aneuploid tumors contained large numbers of genetic alterations with the sum gain of at least 2 chromosomes (A-, B- or C-group) detected by HR-CGH. In the "simple-diploid" cases no or few genetic alterations could be detected, whereas the "complex-diploid" samples numerous aberrations (equal or more than 3) could be found. Conclusions Our results show a correlation between the DNA-ploidy, a fine-tuned DNA-ploidy and the HR-CGH results. Furthermore, we found significant correlation between the different ploidy groups and the clinical outcome (p < 0.05). PMID:22053830

  8. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  9. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  10. Mapping the Fresh-Salt Water Interaction in the Coastal Zone Using High Resolution Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Auken, E.; Pedersen, J. B. B.; Christiansen, A. V.; Foged, N.; Schaars, F.; Rolf, H.

    2016-12-01

    During the last decade airborne electromagnetics (AEM) and the accompanying data processing and inversion algorithms have undergone huge developments in terms of technology, costs, and reliability. This has expanded the scope of AEM from mainly mineral exploration to geotechnical applications and groundwater resource mapping. In this abstract we present a case with generally applicable results where AEM is used to map saltwater intrusion as well as outflow of fresh water to the sea. The survey took place on the Dutch coast in 2011 and is composed of a detailed inland coastal mapping as well as lines extending kilometres into the North Sea. It adds further complications that the area has a dense infrastructure and rapid varying dune topography causing the need for cautious data processing. We use the high resolution AEM system SkyTEM and data processing and inversion in the Aarhus Workbench. On the inland side, the results show a high resolution image of the fresh water interface and the interaction with clay layers acting as barriers. On the sea side they show a picture of freshwater plumes being pushed several hundred meters under the sea. The last mentioned information was actually the main purpose of the survey as this information could hardly be obtained by other methods and it is decisive for the total water balance of the system. The case shows an example of an AEM survey resulting in a high resolution image of the entire coastal zone. The technology is applicable in all coastal zones in the world and if applied it would lead to much improved management of the water resources in these landscapes.

  11. Sub-Millimeter Heterodyne Focal-Plane Arrays for High-Resolution Astronomical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.

    2017-09-01

    Spectral lines are vital tools for astronomy, particularly for studying the interstellar medium, which is widely distributed throughout the volume of our Milky Way and of other galaxies. Broadband emissions, including synchrotron, free-free, and thermal dust emissions give astronomers important information. However, they do not give information about the motions of, for example, interstellar clouds, the filamentary structures found within them, star-forming dense cores, and photon-dominated regions energized by massive young stars. For study of the interstellar medium, spectral lines at sub-millimeter wavelengths are particularly important, for two reasons. First, they offer the unique ability to observe a variety of important molecules, atoms, and ions, which are the most important gas coolants (fine-structure lines of ionized and neutral carbon, neutral oxygen), probes of physical conditions (high-J transitions of CO, HF, fine-structure lines of ionized nitrogen), and of obvious biogenic importance (H2O). In addition, high-resolution observations of spectral lines offer the unique ability to disentangle the complex motions within these regions and, in some cases, to determine their arrangement along the line of sight. To accomplish this, spectral resolution high enough to resolve the spectral lines of interest is required. We can measure the resolution of the spectrometer in terms of its resolution, R = f/δf, where f is the rest frequency of the line, and δJ is the frequency resolution of the spectrometer. More-active sources can be advantageously studied with R = 3 × 10^5, while more quiescent sources require R as high as 10^7.

  12. Super-resolved microsphere-assisted Mirau digital holography by oblique illumination

    NASA Astrophysics Data System (ADS)

    Abbasian, Vahid; Ganjkhani, Yasaman; Akhlaghi, Ehsan A.; Anand, Arun; Javidi, Bahram; Moradi, Ali-Reza

    2018-06-01

    In this paper, oblique illumination is used to improve the lateral resolution and edge sharpness in microsphere (MS)-assisted Mirau digital holographic microscopy (Mirau-DHM). Abbe showed that tilting the illumination light allows entrance of higher spatial frequencies into the imaging system thus increasing the resolution power. We extended the idea to common-path DHM, based on Mirau objective, toward super-resolved 3D imaging. High magnification Mirau objectives are very expensive and low-magnification ones suffer from low resolution, therefore, any attempt to increase the effective resolution of the system may be of a great interest. We have already demonstrated the effective resolution increasing of a Mirau-DHM system by incorporating a transparent MS within the working distance of the objective. Here, we show that by integrating a MS-assisted Mirau-DHM with the oblique illumination even higher resolutions can be achieved. We have applied the technique for various samples and have shown the increase in the lateral resolution for the both cases of Mirau-DHM with and without the MS.

  13. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+

    PubMed Central

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J.

    2015-01-01

    Background: Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons’ point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. Methods: The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon’s perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Results: Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera’s automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. Conclusions: The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video. PMID:25750851

  14. The Dynamical Core Model Intercomparison Project (DCMIP-2016): Results of the Supercell Test Case

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Reed, K. A.; Jablonowski, C.; Ullrich, P. A.; Kent, J.; Lauritzen, P. H.; Nair, R. D.

    2016-12-01

    The 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) assesses the modeling techniques for global climate and weather models and was recently held at the National Center for Atmospheric Research (NCAR) in conjunction with a two-week summer school. Over 12 different international modeling groups participated in DCMIP-2016 and focused on the evaluation of the newest non-hydrostatic dynamical core designs for future high-resolution weather and climate models. The paper highlights the results of the third DCMIP-2016 test case, which is an idealized supercell storm on a reduced-radius Earth. The supercell storm test permits the study of a non-hydrostatic moist flow field with strong vertical velocities and associated precipitation. This test assesses the behavior of global modeling systems at extremely high spatial resolution and is used in the development of next-generation numerical weather prediction capabilities. In this regime the effective grid spacing is very similar to the horizontal scale of convective plumes, emphasizing resolved non-hydrostatic dynamics. The supercell test case sheds light on the physics-dynamics interplay and highlights the impact of diffusion on model solutions.

  15. Usability of small impact craters on small surface areas in crater count dating: Analysing examples from the Harmakhis Vallis outflow channel, Mars

    NASA Astrophysics Data System (ADS)

    Kukkonen, S.; Kostama, V.-P.

    2018-05-01

    The availability of very high-resolution images has made it possible to extend crater size-frequency distribution studies to small, deca/hectometer-scale craters. This has enabled the dating of small and young surface units, as well as recent, short-time and small-scale geologic processes that have occurred on the units. Usually, however, the higher the spatial resolution of space images is, the smaller area is covered by the images. Thus the use of single, very high-resolution images in crater count age determination may be debatable if the images do not cover the studied region entirely. Here we compare the crater count results for the floor of the Harmakhis Vallis outflow channel obtained from the images of the ConTeXt camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). The CTX images enable crater counts for entire units on the Harmakhis Vallis main valley, whereas the coverage of the higher-resolution HiRISE images is limited and thus the images can only be used to date small parts of the units. Our case study shows that the crater count data based on small impact craters and small surface areas mainly correspond with the crater count data based on larger craters and more extensive counting areas on the same unit. If differences between the results were founded, they could usually be explained by the regional geology. Usually, these differences appeared when at least one cratering model age is missing from either of the crater datasets. On the other hand, we found only a few cases in which the cratering model ages were completely different. We conclude that the crater counts using small impact craters on small counting areas provide useful information about the geological processes which have modified the surface. However, it is important to remember that all the crater counts results obtained from a specific counting area always primarily represent the results from the counting area-not the whole unit. On the other hand, together with crater count results from extensive counting areas and lower-resolution images, crater counts on small counting areas but by using very high-resolution images is a very valuable tool for obtaining unique additional information about the local processes on the surface units.

  16. Particle swarm optimization method for small retinal vessels detection on multiresolution fundus images.

    PubMed

    Khomri, Bilal; Christodoulidis, Argyrios; Djerou, Leila; Babahenini, Mohamed Chaouki; Cheriet, Farida

    2018-05-01

    Retinal vessel segmentation plays an important role in the diagnosis of eye diseases and is considered as one of the most challenging tasks in computer-aided diagnosis (CAD) systems. The main goal of this study was to propose a method for blood-vessel segmentation that could deal with the problem of detecting vessels of varying diameters in high- and low-resolution fundus images. We proposed to use the particle swarm optimization (PSO) algorithm to improve the multiscale line detection (MSLD) method. The PSO algorithm was applied to find the best arrangement of scales in the MSLD method and to handle the problem of multiscale response recombination. The performance of the proposed method was evaluated on two low-resolution (DRIVE and STARE) and one high-resolution fundus (HRF) image datasets. The data include healthy (H) and diabetic retinopathy (DR) cases. The proposed approach improved the sensitivity rate against the MSLD by 4.7% for the DRIVE dataset and by 1.8% for the STARE dataset. For the high-resolution dataset, the proposed approach achieved 87.09% sensitivity rate, whereas the MSLD method achieves 82.58% sensitivity rate at the same specificity level. When only the smallest vessels were considered, the proposed approach improved the sensitivity rate by 11.02% and by 4.42% for the healthy and the diabetic cases, respectively. Integrating the proposed method in a comprehensive CAD system for DR screening would allow the reduction of false positives due to missed small vessels, misclassified as red lesions. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Zoomed MRI Guided by Combined EEG/MEG Source Analysis: A Multimodal Approach for Optimizing Presurgical Epilepsy Work-up and its Application in a Multi-focal Epilepsy Patient Case Study.

    PubMed

    Aydin, Ü; Rampp, S; Wollbrink, A; Kugel, H; Cho, J -H; Knösche, T R; Grova, C; Wellmer, J; Wolters, C H

    2017-07-01

    In recent years, the use of source analysis based on electroencephalography (EEG) and magnetoencephalography (MEG) has gained considerable attention in presurgical epilepsy diagnosis. However, in many cases the source analysis alone is not used to tailor surgery unless the findings are confirmed by lesions, such as, e.g., cortical malformations in MRI. For many patients, the histology of tissue resected from MRI negative epilepsy shows small lesions, which indicates the need for more sensitive MR sequences. In this paper, we describe a technique to maximize the synergy between combined EEG/MEG (EMEG) source analysis and high resolution MRI. The procedure has three main steps: (1) construction of a detailed and calibrated finite element head model that considers the variation of individual skull conductivities and white matter anisotropy, (2) EMEG source analysis performed on averaged interictal epileptic discharges (IED), (3) high resolution (0.5 mm) zoomed MR imaging, limited to small areas centered at the EMEG source locations. The proposed new diagnosis procedure was then applied in a particularly challenging case of an epilepsy patient: EMEG analysis at the peak of the IED coincided with a right frontal focal cortical dysplasia (FCD), which had been detected at standard 1 mm resolution MRI. Of higher interest, zoomed MR imaging (applying parallel transmission, 'ZOOMit') guided by EMEG at the spike onset revealed a second, fairly subtle, FCD in the left fronto-central region. The evaluation revealed that this second FCD, which had not been detectable with standard 1 mm resolution, was the trigger of the seizures.

  18. Relation of comorbidities and patient navigation with the time to diagnostic resolution after abnormal cancer screening.

    PubMed

    Whitley, Elizabeth M; Raich, Peter C; Dudley, Donald J; Freund, Karen M; Paskett, Electra D; Patierno, Steven R; Simon, Melissa; Warren-Mears, Victoria; Snyder, Frederick R

    2017-01-01

    Whether patient navigation improves outcomes for patients with comorbidities is unknown. The aims of this study were to determine the effect of comorbidities on the time to diagnostic resolution after an abnormal cancer screening test and to examine whether patient navigation improves the timeliness and likelihood of diagnostic resolution for patients with comorbidities in comparison with no navigation. A secondary analysis of comorbidity data collected by Patient Navigation Research Program sites using the Charlson Comorbidity Index (CCI) was conducted. The participants were 6,349 patients with abnormal breast, cervical, colon, or prostate cancer screening tests between 2007 and 2011. The intervention was patient navigation or usual care. The CCI data were highly skewed across projects and cancer sites, and the CCI scores were categorized as 0 (CCI score of 0 or no comorbidities identified; 76% of cases); 1 (CCI score of 1; 16% of cases), or 2 (CCI score ≥ 2; 8% of cases). Separate adjusted hazard ratios for each site and cancer type were obtained, and then they were pooled with a meta-analysis random effects methodology. Patients with a CCI score ≥ 2 had delayed diagnostic resolution after an abnormal cancer screening test in comparison with those with no comorbidities. Patient navigation reduced delays in diagnostic resolution, with the greatest benefits seen for those with a CCI score ≥ 2. Persons with a CCI score ≥ 2 experienced significant delays in timely diagnostic care in comparison with patients without comorbidities. Patient navigation was effective in reducing delays in diagnostic resolution among those with CCI scores > 1. Cancer 2017;123:312-318. © 2016 American Cancer Society. © 2016 American Cancer Society.

  19. High resolution subsurface imaging using resonance-enhanced detection in 2nd-harmonic KPFM.

    PubMed

    Cadena, Maria Jose; Reifenberger, Ronald G; Raman, Arvind

    2018-06-28

    Second harmonic Kelvin probe force microscopy is a robust mechanism for subsurface imaging at the nanoscale. Here we exploit resonance-enhanced detection as a way to boost the subsurface contrast with higher force sensitivity using lower bias voltages, in comparison to the traditional off-resonance case. In this mode, the second harmonic signal of the electrostatic force is acquired at one of the eigenmode frequencies of the microcantilever. As a result, high-resolution subsurface images are obtained in a variety of nanocomposites. To further understand the subsurface imaging detection upon electrostatic forces, we use a finite element model that approximates the geometry of the probe and sample. This allows the investigation of the contrast mechanism, the depth sensitivity and lateral resolution depending on tip-sample properties. © 2018 IOP Publishing Ltd.

  20. Semi-Lagrangian particle methods for high-dimensional Vlasov-Poisson systems

    NASA Astrophysics Data System (ADS)

    Cottet, Georges-Henri

    2018-07-01

    This paper deals with the implementation of high order semi-Lagrangian particle methods to handle high dimensional Vlasov-Poisson systems. It is based on recent developments in the numerical analysis of particle methods and the paper focuses on specific algorithmic features to handle large dimensions. The methods are tested with uniform particle distributions in particular against a recent multi-resolution wavelet based method on a 4D plasma instability case and a 6D gravitational case. Conservation properties, accuracy and computational costs are monitored. The excellent accuracy/cost trade-off shown by the method opens new perspective for accurate simulations of high dimensional kinetic equations by particle methods.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson III, David J

    The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1 C, ice sheet topography, reduced CO{sub 2}, and 21,000 BP orbital parameters. The high-resolution model capturesmore » modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1 C less than the control run, there are many lowland tropical land areas 4-6 C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age - consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.« less

  2. The Spatial Resolution in the Computer Modelling of Atmospheric Flow over a Double-Hill Forested Region

    NASA Astrophysics Data System (ADS)

    Palma, J. L.; Rodrigues, C. V.; Lopes, A. S.; Carneiro, A. M. C.; Coelho, R. P. C.; Gomes, V. C.

    2017-12-01

    With the ever increasing accuracy required from numerical weather forecasts, there is pressure to increase the resolution and fidelity employed in computational micro-scale flow models. However, numerical studies of complex terrain flows are fundamentally bound by the digital representation of the terrain and land cover. This work assess the impact of the surface description on micro-scale simulation results at a highly complex site in Perdigão, Portugal, characterized by a twin parallel ridge topography, densely forested areas and an operating wind turbine. Although Coriolis and stratification effects cannot be ignored, the study is done under neutrally stratified atmosphere and static inflow conditions. The understanding gained here will later carry over to WRF-coupled simulations, where those conditions do not apply and the flow physics is more accurately modelled. With access to very fine digital mappings (<1m horizontal resolution) of both topography and land cover (roughness and canopy cover, both obtained through aerial LIDAR scanning of the surface) the impact of each element of the surface description on simulation results can be individualized, in order to estimate the resolution required to satisfactorily resolve them. Starting from the bare topographic description, in its coursest form, these include: a) the surface roughness mapping, b) the operating wind turbine, c) the canopy cover, as either body forces or added surface roughness (akin to meso-scale modelling), d) high resolution topography and surface cover mapping. Each of these individually will have an impact near the surface, including the rotor swept area of modern wind turbines. Combined they will considerably change flow up to boundary layer heights. Sensitivity to these elements cannot be generalized and should be assessed case-by-case. This type of in-depth study, unfeasible using WRF-coupled simulations, should provide considerable insight when spatially allocating mesh resolution for accurate resolution of complex flows.

  3. Multispectral image enhancement processing for microsat-borne imager

    NASA Astrophysics Data System (ADS)

    Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin

    2017-10-01

    With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.

  4. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  5. Influence of air quality model resolution on uncertainty associated with health impacts

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2012-06-01

    We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx), we ran a modeling episode with meteorological inputs representing conditions as they occurred during August through September 2006, and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas) at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals) to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between 2, 4 and 12 km resolution runs, but 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements of the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer) resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2 and 4 km resolution. On average, when modeling at 36 km resolution, 7 deaths per ozone month were avoided because of ozone reductions resulting from the proposed emissions reductions (95% confidence interval was 2-9). When modeling at 2, 4 or 12 km finer scale resolution, on average 5 deaths were avoided due to the same reductions (95% confidence interval was 2-7). Initial results for this specific region show that modeling at a resolution finer than 12 km is unlikely to improve uncertainty in benefits analysis. We suggest that 12 km resolution may be appropriate for uncertainty analyses in areas with similar chemistry, but that resolution requirements should be assessed on a case-by-case basis and revised as confidence intervals for concentration-response functions are updated.

  6. High resolution electron microscopy of a small crack at the superficial layer of enamel.

    PubMed

    Hayashi, Y

    1994-12-01

    A small enamel crack was investigated using a high resolution electron microscope. The inside of the crack was filled with aggregates of irregularly oriented plate-like crystals. Amorphous mineral deposits were observed among these aggregates at a low magnification. Selected area electron diffractions indicated that the plate-like crystals consisted of hydroxyapatite (OH-AP), and that the amorphous mineral deposits were a mixture of OH-AP and whitlockite. These findings indicate that this crack may have been formed by occlusal and/or masticatory stress, and that a natural occlusion might occur through mineral deposition at the small crack such as in this case.

  7. Chicago Classification Criteria of Esophageal Motility Disorders Defined in High Resolution Esophageal Pressure Topography (EPT)†

    PubMed Central

    Bredenoord, Albert J; Fox, Mark; Kahrilas, Peter J; Pandolfino, John E; Schwizer, Werner; Smout, AJPM; Conklin, Jeffrey L; Cook, Ian J; Gyawali, Prakash; Hebbard, Geoffrey; Holloway, Richard H; Ke, Meiyun; Keller, Jutta; Mittal, Ravinder K; Peters, Jeff; Richter, Joel; Roman, Sabine; Rommel, Nathalie; Sifrim, Daniel; Tutuian, Radu; Valdovinos, Miguel; Vela, Marcelo F; Zerbib, Frank

    2011-01-01

    Background The Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high resolution esophageal pressure topography (EPT) studies, concurrent with the widespread adoption of this technology into clinical practice. The Chicago Classification has been, and will continue to be, an evolutionary process, molded first by published evidence pertinent to the clinical interpretation of high resolution manometry (HRM) studies and secondarily by group experience when suitable evidence is lacking. Methods This publication summarizes the state of our knowledge as of the most recent meeting of the International High Resolution Manometry Working Group in Ascona, Switzerland in April 2011. The prior iteration of the Chicago Classification was updated through a process of literature analysis and discussion. Key Results The major changes in this document from the prior iteration are largely attributable to research studies published since the prior iteration, in many cases research conducted in response to prior deliberations of the International High Resolution Manometry Working Group. The classification now includes criteria for subtyping achalasia, EGJ outflow obstruction, motility disorders not observed in normal subjects (Distal esophageal spasm, Hypercontractile esophagus, and Absent peristalsis), and statistically defined peristaltic abnormalities (Weak peristalsis, Frequent failed peristalsis, Rapid contractions with normal latency, and Hypertensive peristalsis). Conclusions & Inferences The Chicago Classification is an algorithmic scheme for diagnosis of esophageal motility disorders from clinical EPT studies. Moving forward, we anticipate continuing this process with increased emphasis placed on natural history studies and outcome data based on the classification. PMID:22248109

  8. Chicago classification criteria of esophageal motility disorders defined in high resolution esophageal pressure topography.

    PubMed

    Bredenoord, A J; Fox, M; Kahrilas, P J; Pandolfino, J E; Schwizer, W; Smout, A J P M

    2012-03-01

    The Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high resolution esophageal pressure topography (EPT) studies, concurrent with the widespread adoption of this technology into clinical practice. The Chicago Classification has been an evolutionary process, molded first by published evidence pertinent to the clinical interpretation of high resolution manometry (HRM) studies and secondarily by group experience when suitable evidence is lacking. This publication summarizes the state of our knowledge as of the most recent meeting of the International High Resolution Manometry Working Group in Ascona, Switzerland in April 2011. The prior iteration of the Chicago Classification was updated through a process of literature analysis and discussion. The major changes in this document from the prior iteration are largely attributable to research studies published since the prior iteration, in many cases research conducted in response to prior deliberations of the International High Resolution Manometry Working Group. The classification now includes criteria for subtyping achalasia, EGJ outflow obstruction, motility disorders not observed in normal subjects (Distal esophageal spasm, Hypercontractile esophagus, and Absent peristalsis), and statistically defined peristaltic abnormalities (Weak peristalsis, Frequent failed peristalsis, Rapid contractions with normal latency, and Hypertensive peristalsis). The Chicago Classification is an algorithmic scheme for diagnosis of esophageal motility disorders from clinical EPT studies. Moving forward, we anticipate continuing this process with increased emphasis placed on natural history studies and outcome data based on the classification. © 2012 Blackwell Publishing Ltd.

  9. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core

    NASA Astrophysics Data System (ADS)

    Tolstykh, Mikhail; Shashkin, Vladimir; Fadeev, Rostislav; Goyman, Gordey

    2017-05-01

    SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat-lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.

  10. Tactile Recognition and Localization Using Object Models: The Case of Polyhedra on a Plane.

    DTIC Science & Technology

    1983-03-01

    poor force resolution, but high spatial resolution. We feel that the viability of this recognition approach has important implications on the design of...of the touched object: 1. Surface point - On the basis of sensor readings, some points on the sensor can be identified as being in contact with...the sensor’s shape and location in space are known, one can determine the position of some point on the touched object, to within some uncertainty

  11. Genotyping of beta thalassemia trait by high-resolution DNA melting analysis.

    PubMed

    Saetung, Rattika; Ongchai, Siriwan; Charoenkwan, Pimlak; Sanguansermsri, Torpong

    2013-11-01

    Beta thalassemia is a common hereditary hemalogogical disease in Thailand, with a prevalence of 5-8%. In this study, we evaluated the high resolution DNA melting (HRM) assay to identify beta thalassemia mutation in samples from 143 carriers of the beta thalassemia traits in at risk couples. The DNA was isolated from venous blood samples and tested for mutation under a series of 5 PCR-HRM (A, B, C, D and E primers) protocols. The A primers were for detection of beta thalassemia mutations in the HBB promoter region, the B primers for mutations in exon I, the C primers for exon II, the D primers for exon III and the E primers for the 3.4 kb deletion mutation. The mutations were diagnosed by comparing the complete melting curve profiles of a wild type control with those for each mutant sample. With the PCR-HRM technique, fourteen types of beta thalassemia mutations were detected. Each mutation had a unique and specific melting profile. The mutations included 36.4% (52 cases) codon 41/42-CTTT, 26.6% (38 cases) codon 17 A-T, 11.2% (16 cases) IVS1-1 G-T, 8.4% (12 cases) codon 71/72 +A, 8.4% (12 cases) of the 3.4 kb deletion and 3.5% (5 cases) -28 A-G. The remainder included one instance each of -87 C-A, -31 A-C, codon 27/28 +C, codon 30 G-A, IVS1-5 G-C, codon 35 C-A, codon 41-C and IVSII -654 C-T. Of the total cases, 85.8% of the mutations could be detected by primers B and C. The PCR-HRM method provides a rapid, simple and highly feasible strategy for mutation screening of beta thalassemia traits.

  12. Recent Aqueous Environments in Impact Craters and the Astrobiological Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Wynn-Williams, D. D.; Crawford, D. A.; Grin, E. A.

    2001-01-01

    Three cases of recent aqueous environments are surveyed at Mars Orbiting Camera (MOC) high-resolution in the E-Gorgonum, Newton and Hale craters and their astrobiological implications assessed. Additional information is contained in the original extended abstract.

  13. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    NASA Astrophysics Data System (ADS)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  14. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    PubMed

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  15. Case Outcomes in a Communication-and-Resolution Program in New York Hospitals.

    PubMed

    Mello, Michelle M; Greenberg, Yelena; Senecal, Susan K; Cohn, Janet S

    2016-12-01

    To determine case outcomes in a communication-and-resolution program (CRP) implemented to respond to adverse events in general surgery. Five acute-care hospitals in New York City. Following CRP implementation, hospitals recorded information about each CRP event for 22 months. Risk managers prospectively collected data in collaboration with representatives from the hospital's insurer. External researchers administered an online satisfaction survey to clinicians involved in CRP events. Among 125 CRP cases, disclosure conversations were carried out in 92 percent, explanations were conveyed in 88 percent, and apologies were offered in 72.8 percent. Three quarters of events did not involve substandard care. Compensation offers beyond bill waivers were deemed appropriate in 9 of 30 of cases in which substandard care caused harm and communicated in six such cases. In 44 percent of cases, hospitals identified steps that could be taken to improve safety. Clinicians had low awareness of the workings of the CRP, but high satisfaction with their experiences. The bulk of CRPs' work is in investigating and communicating about events not caused by substandard care. These CRPs were quite successful in handling such events, but less consistent in offering compensation in cases involving substandard care. © Health Research and Educational Trust.

  16. Basic Research on Three-Dimensional (3D) Electromagnetic (EM) Methods for Imaging the Flow of Organic Fluids in the Subsurface.

    DTIC Science & Technology

    1997-04-30

    Currently there are no systems available which allow for economical and accurate subsurface imaging of remediation sites. In some cases, high...system to address this need. This project has been very successful in showing a promising new direction for high resolution subsurface imaging . Our

  17. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    PubMed

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time. Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.

  18. Repaglinide-induced factitious hypoglycemia.

    PubMed

    Hirshberg, B; Skarulis, M C; Pucino, F; Csako, G; Brennan, R; Gorden, P

    2001-02-01

    We report the first case of repaglinide-induced factitious hypoglycemia in a young male. This case posed a challenging diagnostic dilemma because commercial assays for repaglinide are not available. Furthermore, the patient had a series of positive diagnostic tests such as high proinsulin and localizing intra-arterial calcium stimulation suggestive of insulinoma. This case, again, demonstrates the importance of pure clinical judgment in the face of often-conflicting laboratory data in making a correct diagnosis and the requirement of definitive data for an appropriate therapeutic resolution.

  19. Sparsity of the normal matrix in the refinement of macromolecules at atomic and subatomic resolution.

    PubMed

    Jelsch, C

    2001-09-01

    The normal matrix in the least-squares refinement of macromolecules is very sparse when the resolution reaches atomic and subatomic levels. The elements of the normal matrix, related to coordinates, thermal motion and charge-density parameters, have a global tendency to decrease rapidly with the interatomic distance between the atoms concerned. For instance, in the case of the protein crambin at 0.54 A resolution, the elements are reduced by two orders of magnitude for distances above 1.5 A. The neglect a priori of most of the normal-matrix elements according to a distance criterion represents an approximation in the refinement of macromolecules, which is particularly valid at very high resolution. The analytical expressions of the normal-matrix elements, which have been derived for the coordinates and the thermal parameters, show that the degree of matrix sparsity increases with the diffraction resolution and the size of the asymmetric unit.

  20. LAVA Simulations for the 3rd AIAA CFD High Lift Prediction Workshop with Body Fitted Grids

    NASA Technical Reports Server (NTRS)

    Jensen, James C.; Stich, Gerrit-Daniel; Housman, Jeffrey A.; Denison, Marie; Kiris, Cetin C.

    2018-01-01

    In response to the 3rd AIAA CFD High Lift Prediction Workshop, the workshop cases were analyzed using Reynolds-averaged Navier-Stokes flow solvers within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework. For the workshop cases the advantages and limitations of both overset-structured an unstructured polyhedral meshes were assessed. The workshop included 3 cases: a 2D airfoil validation case, a mesh convergence study using the High Lift Common Research Model, and a nacelle/pylon integration study using the JAXA (Japan Aerospace Exploration Agency) Standard Model. The 2D airfoil case from the workshop is used to verify the implementation of the Spalart-Allmaras turbulence model along with some of its variants within the solver. The High Lift Common Research Model case is used to assess solver performance and accuracy at varying mesh resolutions, as well as identify the minimum mesh fidelity required for LAVA on this class of problem. The JAXA Standard Model case is used to assess the solver's sensitivity to the turbulence model and to compare the structured and unstructured mesh paradigms. These workshop cases have helped establish best practices for high lift flow configurations for the LAVA solver.

  1. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  2. Data compression techniques applied to high resolution high frame rate video technology

    NASA Technical Reports Server (NTRS)

    Hartz, William G.; Alexovich, Robert E.; Neustadter, Marc S.

    1989-01-01

    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended.

  3. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these worst-case resolution measurements, estimating the spatial resolution to be approximately 3.5 μm and 3.0 μm at 530 eV and 680 eV, well below the resolution limit of 5 μm required to improve the spectral resolution by a factor of 2.

  4. Evaluation of High Resolution Rapid Refresh-Smoke (HRRR-Smoke) model products for a case study using surface PM2.5 observations

    NASA Astrophysics Data System (ADS)

    Deanes, L. N.; Ahmadov, R.; McKeen, S. A.; Manross, K.; Grell, G. A.; James, E.

    2016-12-01

    Wildfires are increasing in number and size in the western United States as climate change contributes to warmer and drier conditions in this region. These fires lead to poor air quality and diminished visibility. The High Resolution Rapid Refresh-Smoke modeling system (HRRR-Smoke) is designed to simulate fire emissions and smoke transport with high resolution. The model is based on the Weather Research and Forecasting model, coupled with chemistry (WRF-Chem) and uses fire detection data from the Visible Infrared and Imaging Radiometer Suite (VIIRS) satellite instrument to simulate wildfire emissions and their plume rise. HRRR-Smoke is used in both real-time applications and case studies. In this study, we evaluate the HRRR-Smoke for August 2015, during one of the worst wildfire seasons on record in the United States, by focusing on wildfires that occurred in the northwestern US. We compare HRRR-Smoke simulations with hourly fine particulate matter (PM2.5) observations from the Air Quality System (https://www.epa.gov/aqs) from multiple air quality monitoring sites in Washington state. PM2.5 data includes measurements from urban, suburban and remote sites in the state. We discuss the model performance in capturing large PM2.5 enhancements detected at surface sites due to wildfires. We present various statistical parameters to demonstrate HRRR-Smoke's performance in simulating surface PM2.5 levels.

  5. The CHARIS IFS for high contrast imaging at Subaru

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.; Kasdin, N. Jeremy; Limbach, Mary Anne; Galvin, Michael; Carr, Michael A.; Knapp, Gillian; Brandt, Timothy; Loomis, Craig; Jarosik, Norman; Mede, Kyle; hide

    2015-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) being built for the Subaru telescope. CHARIS will take spectra of brown dwarfs and hot Jovian planets in the coronagraphic image provided by the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) and AO188 adaptive optics systems. The system is designed to detect objects five orders of magnitude dimmer than their parent star down to an 80 milliarcsecond inner working angle. For characterization, CHARIS has a high-resolution prism providing an average spectral resolution of R82, R69, and R82 in J, H, and K bands respectively. The so-called discovery mode uses a second low-resolution prism with an average spectral resolution of R19 spanning 1.15-2.37 microns (J+H+K bands). This is unique compared to other high contrast IFS designs. It augments low inner working angle performance by reducing the separation at which we can rely on spectral differential imaging. The principal challenge for a high-contrast IFS is quasi-static speckles, which cause undue levels of spectral crosstalk. CHARIS has addressed this through several key design aspects that should constrain crosstalk between adjacent spectral features to be below 1%. Sitting on the Nasmyth platform, the alignment between the lenslet array, prism, and detector will be highly stable, key for the performance of the data pipeline. Nearly every component has arrived and the project is entering its final build phase. Here we review the science case, the resulting design, status of final construction, and lessons learned that are directly applicable to future exoplanet instruments.

  6. Stochastic Downscaling of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.

  7. Challenges of Implementing a Communication-and-Resolution Program Where Multiple Organizations Must Cooperate.

    PubMed

    Mello, Michelle M; Armstrong, Sarah J; Greenberg, Yelena; McCotter, Patricia I; Gallagher, Thomas H

    2016-12-01

    To implement a communication-and-resolution program (CRP) in a setting in which liability insurers and health care facilities must collaborate to resolve incidents involving a facility and separately insured clinicians. Six hospitals and clinics and a liability insurer in Washington State. Sites designed and implemented CRPs and contributed information about cases and operational challenges over 20 months. Data were qualitatively analyzed. Data from interviews with personnel responsible for CRP implementation were triangulated with data on program cases collected by sites and notes recorded during meetings with sites and among project team members. Sites experienced small victories in resolving particular cases and streamlining some working relationships, but they were unable to successfully implement a collaborative CRP. Barriers included the insurer's distance from the point of care, passive rather than active support from top leaders, coordinating across departments and organizations, workload, nonparticipation by some physicians, and overcoming distrust. Operating CRPs where multiple organizations must collaborate can be highly challenging. Success likely requires several preconditions, including preexisting trust among organizations, active leadership engagement, physicians' commitment to participate, mechanisms for quickly transmitting information to insurers, tolerance for missteps, and clear protocols for joint investigations and resolutions. © Health Research and Educational Trust.

  8. A new spectroscopic imager for X-rays from 0.5 keV to 150 keV combining a pnCCD and a columnar CsI(Tl) scintillator

    NASA Astrophysics Data System (ADS)

    Schlosser, D. M.; Hartmann, R.; Kalok, D.; Bechteler, A.; Abboud, A.; Shokr, M.; Çonka, T.; Pietsch, U.; Strüder, L.

    2017-04-01

    By combining a low noise fully depleted pnCCD detector with a columnar CsI(Tl) scintillator an energy dispersive spatial resolving detector can be realized with a high quantum efficiency in the range from below 0.5 keV to above 150 keV. The used scintillator system increases the pulse height of gamma-rays converted in the CsI(Tl), due to focusing properties of the columnar scintillator structure by reducing the event size in indirect detection mode (conversion in the scintillator). In case of direct detection (conversion in the silicon of the pnCCD) the relative energy resolution is 0.7% at 122 keV (FWHM = 850 eV) and the spatial resolution is less than 75 μm. In case of indirect detection the relative energy resolution, integrated over all event sizes is about 9% at 122 keV with an expected spatial precision of below 75 μm.

  9. WebPresent: a World Wide Web-based telepresentation tool for physicians

    NASA Astrophysics Data System (ADS)

    Sampath-Kumar, Srihari; Banerjea, Anindo; Moshfeghi, Mehran

    1997-05-01

    In this paper, we present the design architecture and the implementation status of WebPresent - a world wide web based tele-presentation tool. This tool allows a physician to use a conference server workstation and make a presentation of patient cases to a geographically distributed audience. The audience consists of other physicians collaborating on patients' health care management and physicians participating in continuing medical education. These physicians are at several locations with networks of different bandwidth and capabilities connecting them. Audiences also receive the patient case information on different computers ranging form high-end display workstations to laptops with low-resolution displays. WebPresent is a scalable networked multimedia tool which supports the presentation of hypertext, images, audio, video, and a white-board to remote physicians with hospital Intranet access. WebPresent allows the audience to receive customized information. The data received can differ in resolution and bandwidth, depending on the availability of resources such as display resolution and network bandwidth.

  10. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture

    NASA Astrophysics Data System (ADS)

    Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong

    2018-03-01

    We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.

  11. High Resolution Near Surface 3D Seismic Experiments: A Carbonate Platform vs. a Siliciclastic Sequence

    NASA Astrophysics Data System (ADS)

    Filippidou, N.; Drijkoningen, G.; Braaksma, H.; Verwer, K.; Kenter, J.

    2005-05-01

    Interest in high-resolution 3D seismic experiments for imaging shallow targets has increased over the past years. Many case studies presented, show that producing clear seismic images with this non-evasive method, is still a challenge. We use two test-sites where nearby outcrops are present so that an accurate geological model can be built and the seismic result validated. The first so-called natural field laboratory is located in Boulonnais (N. France). It is an upper Jurassic siliciclastic sequence; age equivalent of the source rock of N. Sea. The second one is located in Cap Blanc,to the southwest of the Mallorca island(Spain); depicting an excellent example of Miocene prograding reef platform (Llucmajor Platform); it is a textbook analog for carbonate reservoirs. In both cases, the multidisciplinary experiment included the use of multicomponent and quasi- or 3D seismic recordings. The target depth does not exceed 120m. Vertical and shear portable vibrators were used as source. In the center of the setups, boreholes were drilled and Vertical Seismic Profiles were shot, along with core and borehole measurements both in situ and in the laboratory. These two geologically different sites, with different seismic stratigraphy have provided us with exceptionally high resolution seismic images. In general seismic data was processed more or less following standard procedures, a few innovative techniques on the Mallorca data, as rotation of horizontal components, 3D F-K filter and addition of parallel profiles, have improved the seismic image. In this paper we discuss the basic differences as seen on the seismic sections. The Boulonnais data present highly continuous reflection patterns of extremenly high resolution. This facilitated a high resolution stratigraphic description. Results from the VSP showed substantial wave energy attenuation. However, the high-fold (330 traces ) Mallorca seismic experiment returned a rather discontinuous pattern of possible reflectors, opposing to the predicted seismic stratigraphy/geology of the area. The Llumajor Platform has been buried only a few meters at most, therefore primary and secondary porocity remains intact, creating a fractal like environment of scatterers and diffractors. We have interpreted two possible reflections, the top of the reef and the water table; the former is nicely coupled with the VSP. The seismic wave attenuation observed is believed to be predominantly due to the scattering effects.

  12. Tiny twists in time; exploring angular resolution of in situ EBSD orientation microstructures in solar system zircon

    NASA Astrophysics Data System (ADS)

    Moser, D. E.

    2012-12-01

    Kikuchi discovered electron diffraction in samples of calcite in the 1920's, and orientation of lattice planes by Electron Backscatter Diffraction (EBSD) is now routinely measured by automated camera systems at a spatial resolution of tens of nanometers using Field Emission Gun SEM. The current methodology is proving particularly powerful when measuring lattice orientation microstructure in U-Pb geochronology minerals such as zircon and baddeleyite that have experienced high temperature deformation or shock metamorphism. These are among the oldest preserved mineral phases in inner solar system materials, and we have been applying EBSD to rare samples of the Early Earth and grains from extraterrestrial environments such as the Moon and Mars. In these cases the EBSD orientation data are useful for identifying high diffusivity pathways that may have afforded isotopic and trace element disturbance, microstructural proxies for shock metamorphic pressures, as well as resolving glide plane systems in ductile zircon and shear twin mechanisms. Blanket estimates of angular resolution for automated EBSD misorientation measurements are often in the range of 0.5 degrees. In some cases strain giving rise to only a few degrees of lattice misorientation has facilitated 100% Pb-loss. In some cases, however, there is a spatial correlation between trace element or cathodoluminescence zoning in zircon and what appears to be low magnitudes misorientation close to the limits of resolution. Given the proven value of performing EBSD analysis on geochronology minerals, a more thorough exploration of the precision and accuracy of EBSD lattice misorientation measurements is warranted. In this talk the relative weighting of the factors that limit EBSD angular resolution will be investigated, focusing on U-Pb dating minerals such as zircon. These factors include; sample surface preparation, phase symmetry, pseudo-symmetry effects, degree of crystallinity, Kikuchi band contrast and indexing, solid solution effects on unit cell, dimension camera calibration and camera-sample distance, beam conditions and focussing, and general microscope operating conditions (e.g. high vacuum vs. variable pressure). An assessment of potential zircon EBSD reference materials and sample preparation protocols will be presented, along with case studies of zircon orientation microstructures from meteorites and terrestrial craters representative of different strain and thermal environments in the inner solar system.BSD lattice misorientation maps of a) crystal-plastically deformed and partly recrystallized zircon, after Rayner et al. (in prep.), and b) shock-metamorphosed lunar zircon (Darling et al., in prep.).

  13. New functionalities of potassium tantalate niobate deflectors enabled by the coexistence of pre-injected space charge and composition gradient

    NASA Astrophysics Data System (ADS)

    Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Campbell, Adrian L.; Henry, Michael G.; Yin, Stuart Shizhuo; Hoffman, Robert C.

    2017-10-01

    In most beam steering applications such as 3D printing and in vivo imaging, one of the essential challenges has been high-resolution high-speed multi-dimensional optical beam scanning. Although the pre-injected space charge controlled potassium tantalate niobate (KTN) deflectors can achieve speeds in the nanosecond regime, they deflect in only one dimension. In order to develop a high-resolution high-speed multi-dimensional KTN deflector, we studied the deflection behavior of KTN deflectors in the case of coexisting pre-injected space charge and composition gradient. We find that such coexistence can enable new functionalities of KTN crystal based electro-optic deflectors. When the direction of the composition gradient is parallel to the direction of the external electric field, the zero-deflection position can be shifted, which can reduce the internal electric field induced beam distortion, and thus enhance the resolution. When the direction of the composition gradient is perpendicular to the direction of the external electric field, two-dimensional beam scanning can be achieved by harnessing only one single piece of KTN crystal, which can result in a compact, high-speed two-dimensional deflector. Both theoretical analyses and experiments are conducted, which are consistent with each other. These new functionalities can expedite the usage of KTN deflection in many applications such as high-speed 3D printing, high-speed, high-resolution imaging, and free space broadband optical communication.

  14. Orientational analysis of planar fibre systems observed as a Poisson shot-noise process.

    PubMed

    Kärkkäinen, Salme; Lantuéjoul, Christian

    2007-10-01

    We consider two-dimensional fibrous materials observed as a digital greyscale image. The problem addressed is to estimate the orientation distribution of unobservable thin fibres from a greyscale image modelled by a planar Poisson shot-noise process. The classical stereological approach is not straightforward, because the point intensities of thin fibres along sampling lines may not be observable. For such cases, Kärkkäinen et al. (2001) suggested the use of scaled variograms determined from grey values along sampling lines in several directions. Their method is based on the assumption that the proportion between the scaled variograms and point intensities in all directions of sampling lines is constant. This assumption is proved to be valid asymptotically for Boolean models and dead leaves models, under some regularity conditions. In this work, we derive the scaled variogram and its approximations for a planar Poisson shot-noise process using the modified Bessel function. In the case of reasonable high resolution of the observed image, the scaled variogram has an approximate functional relation to the point intensity, and in the case of high resolution the relation is proportional. As the obtained relations are approximative, they are tested on simulations. The existing orientation analysis method based on the proportional relation is further experimented on images with different resolutions. The new result, the asymptotic proportionality between the scaled variograms and the point intensities for a Poisson shot-noise process, completes the earlier results for the Boolean models and for the dead leaves models.

  15. Evaluation of a Mesoscale Convective System in Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Payne, A. E.; Jablonowski, C.

    2017-12-01

    Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.

  16. Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

    2004-11-01

    The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

  17. Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Lucas-Serrano, A.; Font, J. A.; Ibáñez, J. M.; Martí, J. M.

    2004-12-01

    We assess the suitability of a recent high-resolution central scheme developed by \\cite{kurganov} for the solution of the relativistic hydrodynamic equations. The novelty of this approach relies on the absence of Riemann solvers in the solution procedure. The computations we present are performed in one and two spatial dimensions in Minkowski spacetime. Standard numerical experiments such as shock tubes and the relativistic flat-faced step test are performed. As an astrophysical application the article includes two-dimensional simulations of the propagation of relativistic jets using both Cartesian and cylindrical coordinates. The simulations reported clearly show the capabilities of the numerical scheme of yielding satisfactory results, with an accuracy comparable to that obtained by the so-called high-resolution shock-capturing schemes based upon Riemann solvers (Godunov-type schemes), even well inside the ultrarelativistic regime. Such a central scheme can be straightforwardly applied to hyperbolic systems of conservation laws for which the characteristic structure is not explicitly known, or in cases where a numerical computation of the exact solution of the Riemann problem is prohibitively expensive. Finally, we present comparisons with results obtained using various Godunov-type schemes as well as with those obtained using other high-resolution central schemes which have recently been reported in the literature.

  18. Simultaneous screening for JAK2 and calreticulin gene mutations in myeloproliferative neoplasms with high resolution melting.

    PubMed

    Matsumoto, Nariyoshi; Mori, Sayaka; Hasegawa, Hiroo; Sasaki, Daisuke; Mori, Hayato; Tsuruda, Kazuto; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Kaku, Norihito; Kosai, Kousuke; Uno, Naoki; Miyazaki, Yasushi; Yanagihara, Katsunori

    2016-11-01

    Recently, novel calreticulin (CALR) mutations were discovered in Janus kinase 2 (JAK2) non-mutated myelofibrosis (PMF) and essential thrombocythemia (ET) cases, with a frequency of 60-80%. We examined clinical correlations and CALR mutation frequency in our myeloproliferative neoplasms (MPN) cases, and introduce an effective test method for use in clinical practice. We examined 177 samples previously investigated for the JAK2 mutation for differential diagnosis of MPN. JAK2 and CALR mutations were analyzed using melting curve analysis and microchip electrophoresis, respectively. Next, we constructed a test for simultaneous screening of the JAK2 and CALR mutations utilizing high resolution melting (HRM). Among 99 MPN cases, 60 possessed the JAK2 mutation alone. Of the 39 MPN cases without the JAK2 mutation, 14 were positive for the CALR mutation, all of which were ET. Using our novel screening test for the JAK2 and CALR mutations by HRM, the concordance rate of conventional analysis with HRM was 96% for the JAK2 mutation and 95% for the CALR mutation. Our novel simultaneous screening test for the JAK2 and CALR gene mutations with HRM is useful for diagnosis of MPN. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Response of Ocean Circulation to Different Wind Forcing in Puerto Rico and US Virgin Islands

    NASA Astrophysics Data System (ADS)

    Solano, Miguel; Garcia, Edgardo; Leonardi, Stafano; Canals, Miguel; Capella, Jorge

    2013-11-01

    The response of the ocean circulation to various wind forcing products has been studied using the Regional Ocean Modeling System. The computational domain includes the main islands of Puerto Rico, Saint John and Saint Thomas, located on the continental shelf dividing the Caribbean Sea and the Atlantic Ocean. Data for wind forcing is provided by an anemometer located in a moored buoy, the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) model and the National Digital Forecast Database (NDFD). Hindcast simulations have been validated using hydrographic data at different locations in the area of study. Three cases are compared to quantify the impact of high resolution wind forcing on the ocean circulation and the vertical structure of salinity, temperature and velocity. In the first case a constant wind velocity field is used to force the model as measured by an anemometer on top of a buoy. In the second case, a forcing field provided by the Navy's COAMPS model is used and in the third case, winds are taken from NDFD in collaboration with the National Centers for Environmental Prediction. Validated results of ocean currents against data from Acoustic Doppler Current Profilers at different locations show better agreement using high resolution wind data as expected. Thanks to CariCOOS and NOAA.

  20. Underestimated Halogen Bonds Forming with Protein Backbone in Protein Data Bank.

    PubMed

    Zhang, Qian; Xu, Zhijian; Shi, Jiye; Zhu, Weiliang

    2017-07-24

    Halogen bonds (XBs) are attracting increasing attention in biological systems. Protein Data Bank (PDB) archives experimentally determined XBs in biological macromolecules. However, no software for structure refinement in X-ray crystallography takes into account XBs, which might result in the weakening or even vanishing of experimentally determined XBs in PDB. In our previous study, we showed that side-chain XBs forming with protein side chains are underestimated in PDB on the basis of the phenomenon that the proportion of side-chain XBs to overall XBs decreases as structural resolution becomes lower and lower. However, whether the dominant backbone XBs forming with protein backbone are overlooked is still a mystery. Here, with the help of the ratio (R F ) of the observed XBs' frequency of occurrence to their frequency expected at random, we demonstrated that backbone XBs are largely overlooked in PDB, too. Furthermore, three cases were discovered possessing backbone XBs in high resolution structures while losing the XBs in low resolution structures. In the last two cases, even at 1.80 Å resolution, the backbone XBs were lost, manifesting the urgent need to consider XBs in the refinement process during X-ray crystallography study.

  1. Spontaneous resolution of Pneumocystis jirovecii pneumonia on high-resolution computed tomography in a patient with renal cell carcinoma.

    PubMed

    Tanaka, Yasutaka; Saraya, Takeshi; Kurai, Daisuke; Ishii, Haruyuki; Takizawa, Hajime; Goto, Hajime

    2014-11-14

    Spontaneous resolution of Pneumocystis jirovecii pneumonia has rarely been reported. A 59-year-old man presented to our hospital because of pyrexia (38°C) and shaking chills for 2 days. He had a history of right nephrectomy due to renal cell carcinoma and left upper lobectomy for lung metastasis in the last 1.5 years. Two months previously, he was treated with oral prednisolone (20 mg/day) plus the intravenous mTOR inhibitor, temsirolimus (25 mg/week), for brain metastasis. On radiological examination, thoracic computed tomography showed diffuse ground glass opacities spreading in bilateral middle to lower lung fields. Although transbronchial biopsy specimens and bronchoalveolar lavage fluid demonstrated the presence of accumulation of black-colored Pneumocystis jirovecii cysts in the lung, his chief complaints and radiological abnormalities disappeared completely with no treatment. This case demonstrates a unique clinical presentation of Pneumocystis jirovecii pneumonia, in that spontaneous resolution was noted on clinical and sequential radiological evaluations. Increasing numbers of cytotoxic drugs and biological therapies have emerged, and changes in the immune status due to underlying diseases or administration of immunosuppressive drugs might affect the inflammatory process of Pneumocystis jirovecii pneumonia, as in the present case.

  2. 3D Cryo-Imaging: A Very High-Resolution View of the Whole Mouse

    PubMed Central

    Roy, Debashish; Steyer, Grant J.; Gargesha, Madhusudhana; Stone, Meredith E.; Wilson, David L.

    2009-01-01

    We developed the Case Cryo-imaging system that provides information rich, very high-resolution, color brightfield, and molecular fluorescence images of a whole mouse using a section-and-image block-face imaging technology. The system consists of a mouse-sized, motorized cryo-microtome with special features for imaging, a modified, brightfield/ fluorescence microscope, and a robotic xyz imaging system positioner, all of which is fully automated by a control system. Using the robotic system, we acquired microscopic tiled images at a pixel size of 15.6 µm over the block face of a whole mouse sectioned at 40 µm, with a total data volume of 55 GB. Viewing 2D images at multiple resolutions, we identified small structures such as cardiac vessels, muscle layers, villi of the small intestine, the optic nerve, and layers of the eye. Cryo-imaging was also suitable for imaging embryo mutants in 3D. A mouse, in which enhanced green fluorescent protein was expressed under gamma actin promoter in smooth muscle cells, gave clear 3D views of smooth muscle in the urogenital and gastrointestinal tracts. With cryo-imaging, we could obtain 3D vasculature down to 10 µm, over very large regions of mouse brain. Software is fully automated with fully programmable imaging/sectioning protocols, email notifications, and automatic volume visualization. With a unique combination of field-of-view, depth of field, contrast, and resolution, the Case Cryo-imaging system fills the gap between whole animal in vivo imaging and histology. PMID:19248166

  3. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    NASA Astrophysics Data System (ADS)

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-12-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  4. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution.

    PubMed

    Joens, Matthew S; Huynh, Chuong; Kasuboski, James M; Ferranti, David; Sigal, Yury J; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J; Curran, Kevin P; Chalasani, Sreekanth H; Stern, Lewis A; Goetze, Bernhard; Fitzpatrick, James A J

    2013-12-17

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  5. Remote sensing of atmospheric water vapor from synthetic aperture radar interferometry: case studies in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping

    2016-10-01

    The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.

  6. Assessment of the ARW-WRF model over complex terrain: the case of the Stellenbosch Wine of Origin district of South Africa

    NASA Astrophysics Data System (ADS)

    Soltanzadeh, Iman; Bonnardot, Valérie; Sturman, Andrew; Quénol, Hervé; Zawar-Reza, Peyman

    2017-08-01

    Global warming has implications for thermal stress for grapevines during ripening, so that wine producers need to adapt their viticultural practices to ensure optimum physiological response to environmental conditions in order to maintain wine quality. The aim of this paper is to assess the ability of the Weather Research and Forecasting (WRF) model to accurately represent atmospheric processes at high resolution (500 m) during two events during the grapevine ripening period in the Stellenbosch Wine of Origin district of South Africa. Two case studies were selected to identify areas of potentially high daytime heat stress when grapevine photosynthesis and grape composition were expected to be affected. The results of high-resolution atmospheric model simulations were compared to observations obtained from an automatic weather station (AWS) network in the vineyard region. Statistical analysis was performed to assess the ability of the WRF model to reproduce spatial and temporal variations of meteorological parameters at 500-m resolution. The model represented the spatial and temporal variation of meteorological variables very well, with an average model air temperature bias of 0.1 °C, while that for relative humidity was -5.0 % and that for wind speed 0.6 m s-1. Variation in model performance varied between AWS and with time of day, as WRF was not always able to accurately represent effects of nocturnal cooling within the complex terrain. Variations in performance between the two case studies resulted from effects of atmospheric boundary layer processes in complex terrain under the influence of the different synoptic conditions prevailing during the two periods.

  7. High Resolution Microendoscopy for Quantitative Diagnosis of Esophageal Neoplasia

    NASA Astrophysics Data System (ADS)

    Shin, Dongsuk

    Esophageal cancer is the eighth most common cancer in the world. Cancers of the esophagus account for 3.8% of all cases of cancers, with approximately 482,300 new cases reported in 2008 worldwide. In the United States alone, it is estimated that approximately 18,000 new cases will be diagnosed in 2013, and 15,210 deaths are expected. Despite advances in surgery and chemoradiation therapy, these advances have not led to a significant increase in survival rates, primarily because diagnosis often at an advanced and incurable stage when treatment is more difficult and less successful. Accurate, objective methods for early detection of esophageal neoplasia are needed. Here, quantitative classification algorithms for high resolution miscroendoscopic images were developed to distinguish between esophageal neoplastic and non-neoplastic tissue. A clinical study in 177 patients with esophageal squamous cell carcinoma (ESCC) was performed to evaluate the diagnostic performance of the classification algorithm in collaboration with the Mount Sinai Medical Center in the United States, the First Hospital of Jilin University in China, and the Cancer Institute and Hospital, the Chinese Academy of Medical Science in China. The study reported a sensitivity and specificity of 93% and 92%, respectively, in the training set, 87% and 97%, respectively, in the test set, and 84% and 95%, respectively, in an independent validation set. Another clinical study in 31 patients with Barrett's esophagus resulted in a sensitivity of 84% and a specificity of 85%. Finally, a compact, portable version of the high resolution microendoscopy (HRME) device using a consumer-grade camera was developed and a series of biomedical experimental studies were carried out to assess the capability of the device.

  8. A nano ultra-performance liquid chromatography-high resolution mass spectrometry approach for global metabolomic profiling and case study on drug-resistant multiple myeloma.

    PubMed

    Jones, Drew R; Wu, Zhiping; Chauhan, Dharminder; Anderson, Kenneth C; Peng, Junmin

    2014-04-01

    Global metabolomics relies on highly reproducible and sensitive detection of a wide range of metabolites in biological samples. Here we report the optimization of metabolome analysis by nanoflow ultraperformance liquid chromatography coupled to high-resolution orbitrap mass spectrometry. Reliable peak features were extracted from the LC-MS runs based on mandatory detection in duplicates and additional noise filtering according to blank injections. The run-to-run variation in peak area showed a median of 14%, and the false discovery rate during a mock comparison was evaluated. To maximize the number of peak features identified, we systematically characterized the effect of sample loading amount, gradient length, and MS resolution. The number of features initially rose and later reached a plateau as a function of sample amount, fitting a hyperbolic curve. Longer gradients improved unique feature detection in part by time-resolving isobaric species. Increasing the MS resolution up to 120000 also aided in the differentiation of near isobaric metabolites, but higher MS resolution reduced the data acquisition rate and conferred no benefits, as predicted from a theoretical simulation of possible metabolites. Moreover, a biphasic LC gradient allowed even distribution of peak features across the elution, yielding markedly more peak features than the linear gradient. Using this robust nUPLC-HRMS platform, we were able to consistently analyze ~6500 metabolite features in a single 60 min gradient from 2 mg of yeast, equivalent to ~50 million cells. We applied this optimized method in a case study of drug (bortezomib) resistant and drug-sensitive multiple myeloma cells. Overall, 18% of metabolite features were matched to KEGG identifiers, enabling pathway enrichment analysis. Principal component analysis and heat map data correctly clustered isogenic phenotypes, highlighting the potential for hundreds of small molecule biomarkers of cancer drug resistance.

  9. Mapping turbidity in the Charles River, Boston using a high-resolution satellite.

    PubMed

    Hellweger, Ferdi L; Miller, Will; Oshodi, Kehinde Sarat

    2007-09-01

    The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).

  10. A distance-driven deconvolution method for CT image-resolution improvement

    NASA Astrophysics Data System (ADS)

    Han, Seokmin; Choi, Kihwan; Yoo, Sang Wook; Yi, Jonghyon

    2016-12-01

    The purpose of this research is to achieve high spatial resolution in CT (computed tomography) images without hardware modification. The main idea is to consider geometry optics model, which can provide the approximate blurring PSF (point spread function) kernel, which varies according to the distance from the X-ray tube to each point. The FOV (field of view) is divided into several band regions based on the distance from the X-ray source, and each region is deconvolved with a different deconvolution kernel. As the number of subbands increases, the overshoot of the MTF (modulation transfer function) curve increases first. After that, the overshoot begins to decrease while still showing a larger MTF than the normal FBP (filtered backprojection). The case of five subbands seems to show balanced performance between MTF boost and overshoot minimization. It can be seen that, as the number of subbands increases, the noise (STD) can be seen to show a tendency to decrease. The results shows that spatial resolution in CT images can be improved without using high-resolution detectors or focal spot wobbling. The proposed algorithm shows promising results in improving spatial resolution while avoiding excessive noise boost.

  11. In Vivo Corneal High-Speed, Ultra–High-Resolution Optical Coherence Tomography

    PubMed Central

    Christopoulos, Viki; Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G.; Duker, Jay S.; Dhaliwal, Deepinder K.; Schuman, Joel S.

    2007-01-01

    Objective: To introduce new corneal high-speed, ultra–high-resolution optical coherence tomography (hsUHR-OCT) technology that improves the evaluation of complicated and uncomplicated cataract, corneal, and refractive surgical procedures. Design: This case series included a control subject and 9 eyes of 8 patients who had undergone phacoemulsification, Descemet membrane stripping endokeratoplasty, corneal implantation for keratoconus, and complicated and uncomplicated laser in situ keratomileusis. These eyes underwent imaging using a prototype ophthalmic hsUHR-OCT system. All the scans were compared with conventional slitlamp biomicroscopy. Results: Cross-sectional hsUHR-OCT imaging allowed in vivo differentiation of corneal layers and existing pathologic abnormalities at ultrahigh axial image resolution. These images illustrate the various incisional and refractive interfaces created with corneal procedures. Conclusions: The magnified view of the cornea using hsUHR-OCT is helpful in conceptualizing and understanding basic and complicated clinical pathologic features; hsUHR-OCT has the potential to become a powerful, noninvasive clinical corneal imaging modality that can enhance surgical management. Trial Registration: clinicaltrials.gov Identifier: NCT00343473 PMID:17698748

  12. High-Resolution Microscopy-Coil MR Imaging of Skin Tumors: Techniques and Novel Clinical Applications.

    PubMed

    Budak, Matthew J; Weir-McCall, Jonathan R; Yeap, Phey M; White, Richard D; Waugh, Shelley A; Sudarshan, Thiru A P; Zealley, Ian A

    2015-01-01

    High-resolution magnetic resonance (MR) imaging performed with a microscopy coil is a robust radiologic tool for the evaluation of skin lesions. Microscopy-coil MR imaging uses a small surface coil and a 1.5-T or higher MR imaging system. Simple T1- and T2-weighted imaging protocols can be implemented to yield high-quality, high-spatial-resolution images that provide an excellent depiction of dermal anatomy. The primary application of microscopy-coil MR imaging is to delineate the deep margins of skin tumors, thereby providing a preoperative road map for dermatologic surgeons. This information is particularly useful for surgeons who perform Mohs micrographic surgery and in cases of nasofacial neoplasms, where the underlying anatomy is complex. Basal cell carcinoma is the most common nonmelanocytic skin tumor and has a predilection to manifest on the face, where it can be challenging to achieve complete surgical excision while preserving the cosmetic dignity of the patient. Microscopy-coil MR imaging provides dermatologic surgeons with valuable preoperative anatomic information that is not available at conventional clinical examination. ©RSNA, 2015.

  13. Successful management of chronic disseminated candidiasis in hematologic patients treated with high-dose liposomal amphotericin B: a retrospective study of the SEIFEM registry.

    PubMed

    Della Pepa, Roberta; Picardi, M; Sorà, F; Stamouli, M; Busca, A; Candoni, A; Delia, M; Fanci, R; Perriello, V; Zancanella, M; Nosari, A; Salutari, P; Marchesi, F; Pane, F; Pagano, L

    2016-09-01

    Chronic disseminated candidiasis (CDC) is a complication of Candida infection in immunocompromised patients, involving the liver and spleen, and rarely other organs. The aim of the study is to identify the best antifungal drug for hematologic immunocompromised patients with CDC. In this multicentric retrospective study, the charts of 20 patients with CDC following cytotoxic agent protocols for hematological malignancies, diagnosed from 2003 to 2013, were analyzed. The response to systemic antifungal therapy within 90 days from CDC diagnosis and the possible delay in chemotherapy plan, due to the infection, were evaluated. Six patients were treated with high-dose (HD; 5 mg/kg/daily) liposomal amphotericin B (L-AmB), whereas three received standard-dose (SD) L-AmB (3 mg/kg/daily). Azoles were given to six patients; the remaining five were treated with echinocandins. All patients treated with HD L-AmB (6/6-100 %) achieved complete resolution of CDC; one of them had to interrupt the chemotherapy program for the infection. In the SD L-AmB group, treatment failed in the 100 % of cases and one patient had to delay chemotherapy for the infection. Of the six patients who received azoles, two achieved complete resolution of the infection, four experienced treatment failure, and only three performed chemotherapy as planned. Echinocandins treatment resulted in complete resolution of the infection in 2/5 cases, partial response in 2/5 cases, and failure in one case. In this group, 3/5 patients completed chemotherapy as planned. This study shows that HD L-AmB was particularly effective against CDC in hematologic patients, allowing most patients to continue cytotoxic agent program.

  14. Retrograde Endopyelotomy with Cutting Balloon™ for Treatment of Ureteropelvic Junction Obstruction in Infants.

    PubMed

    Parente, Alberto; Perez-Egido, Laura; Romero, Rosa Maria; Ortiz, Ruben; Burgos, Laura; Angulo, Jose Maria

    2016-01-01

    The aim of this study is to analyze results of retrograde endopyelotomy with cutting balloon for treatment of ureteropelvic junction obstruction (UPJO) in infants. We routinely treat patients with UPJO under 18 months of age with retrograde high-pressure balloon dilatation of the pelviureteric junction (PUJ). During the procedure, in these cases where narrowing at the PUJ persists, endopyelotomy with cutting balloon is performed. Endopyelotomy is performed over guidewire with 5-mm Cutting Balloon™ under fluoroscopic control. Double-J stents is left in situ for 4 weeks. We retrospectively analyzed the postoperative, clinical, and radiological outcome infants treated with cutting balloon endopyelotomy between 2007 and 2015. Sixteen patients required cutting balloon endopyelotomy to achieve complete resolution of narrowing of the waist observed during high-pressure balloon dilatation of the PUJ. Mean operative time was 35 ± 21 min (mean ± SD) and hospital stay was <24 h in all patients. Complete resolution of the narrowing at the PUJ under fluoroscopy was achieved in all cases, with no perioperative complications. One patient presented with urinary tract infection, postoperatively (Clavien grade II). Preoperatively, all cases had grade IV SFU hydronephrosis with parenchymal thinning. During follow-up, resolution of the hydronephrosis was observed in 11 patients (grade I SFU). In four infants, there was an improvement of the hydronephrosis (grade II SFU) and the renogram curve. In one case, an open pyeloplasty was required due to persistent hydronephrosis and obstructive curve. We believe that endopyelotomy with cutting balloon could be a valid and safe option in minimally invasive management of UPJO in infants.

  15. High-cadence observations of spicular-type events and their wave-signatures

    NASA Astrophysics Data System (ADS)

    Shetye, Juie

    2016-05-01

    We present, a statistical study of spectral images, taken from the CRISP instrument at the Swedish 1-m Solar Telescope in H-alpha 656.28 nm of fast spicules with Doppler velocities in the range of -41km/s to +41 km/s. Remarkably, many of these spicules display apparent velocities above 500 km/s, very short lifetimes of up to 20 s combined with width or thickness of 100 km and apparent lengths of around 3500 km. Here we present, the other spectral properties of these events in the H-alpha line scan. Most features showed signature in multiple line position as we scan along the line scan. In around 89 % of the cases, there is temporal offset by 3.7 s to 5 s between the red-wing and blue-wing signatures. Another result is that 25% of cases are repetitive i.e. appear at the same location but they are not co-temporal or necessarily periodic in nature. Putting all the evidence together, we interpret the observations as mass motions (of flux tubes) that appear in the field-of-view of CRISP’s 0.0060 nm filters in the line of sight, along their projection as we scan. Further we observed transverse motion associated with these structures, which in some cases could be related to high-frequency kink-waves. We describe some cases showing this motion and the energies associated with them. The current work presented already tests the limits of current telescopes in terms of the temporal and spatial resolution. DKIST VTF instrument, having 3 times more spatial resolution than CRISP and much higher temporal resolution, we can being to understand the nature of such fine-scale transient phenomena in greater details.

  16. Anomaly Resolution in the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, William A.

    2000-01-01

    Topics include post flight 2A status, groundrules, anomaly resolution, Early Communications Subsystem anomaly and resolution, Logistics and Maintenance plan, case for obscuration, case for electrical short, and manual fault isolation, and post mission analysis. Photographs from flight 2A.1 are used to illustrate anomalies.

  17. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  18. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  19. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  20. Using kites for 3-D mapping of gullies at decimetre-resolution over several square kilometres: a case study on the Kamech catchment, Tunisia

    NASA Astrophysics Data System (ADS)

    Feurer, Denis; Planchon, Olivier; Amine El Maaoui, Mohamed; Ben Slimane, Abir; Rached Boussema, Mohamed; Pierrot-Deseilligny, Marc; Raclot, Damien

    2018-06-01

    Monitoring agricultural areas threatened by soil erosion often requires decimetre topographic information over areas of several square kilometres. Airborne lidar and remotely piloted aircraft system (RPAS) imagery have the ability to provide repeated decimetre-resolution and -accuracy digital elevation models (DEMs) covering these extents, which is unrealistic with ground surveys. However, various factors hamper the dissemination of these technologies in a wide range of situations, including local regulations for RPAS and the cost for airborne laser systems and medium-format RPAS imagery. The goal of this study is to investigate the ability of low-tech kite aerial photography to obtain DEMs with decimetre resolution and accuracy that permit 3-D descriptions of active gullying in cultivated areas of several square kilometres. To this end, we developed and assessed a two-step workflow. First, we used both heuristic experimental approaches in field and numerical simulations to determine the conditions that make a photogrammetric flight possible and effective over several square kilometres with a kite and a consumer-grade camera. Second, we mapped and characterised the entire gully system of a test catchment in 3-D. We showed numerically and experimentally that using a thin and light line for the kite is key for a complete 3-D coverage over several square kilometres. We thus obtained a decimetre-resolution DEM covering 3.18 km2 with a mean error and standard deviation of the error of +7 and 22 cm respectively, hence achieving decimetre accuracy. With this data set, we showed that high-resolution topographic data permit both the detection and characterisation of an entire gully system with a high level of detail and an overall accuracy of 74 % compared to an independent field survey. Kite aerial photography with simple but appropriate equipment is hence an alternative tool that has been proven to be valuable for surveying gullies with sub-metric details in a square-kilometre-scale catchment. This case study suggests that access to high-resolution topographic data on these scales can be given to the community, which may help facilitate a better understanding of gullying processes within a broader spectrum of conditions.

  1. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    PubMed

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Traumatic longitudinal splitting of the inferior rectus muscle

    PubMed Central

    Laursen, Jessica; Demer, Joseph L.

    2011-01-01

    Orbital floor fractures and associated injuries can cause strabismus. We present the case of a 34-year-old man with incomitant strabismus following orbital reconstruction after a high-impact baseball injury. Multipositional, high-resolution magnetic resonance imaging (MRI) revealed extensive longitudinal splitting of the inferior rectus muscle by an orbital floor implant that separated its orbital and global layers. PMID:21463958

  3. High temporal resolution aerosol retrieval using Geostationary Ocean Color Imager: application and initial validation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhuan; Li, Zhengqiang; Zhang, Ying; Hou, Weizhen; Xu, Hua; Chen, Cheng; Ma, Yan

    2014-01-01

    The Geostationary Ocean Color Imager (GOCI) provides multispectral imagery of the East Asia region hourly from 9:00 to 16:00 local time (GMT+9) and collects multispectral imagery at eight spectral channels (412, 443, 490, 555, 660, 680, 745, and 865 nm) with a spatial resolution of 500 m. Thus, this technology brings significant advantages to high temporal resolution environmental monitoring. We present the retrieval of aerosol optical depth (AOD) in northern China based on GOCI data. Cross-calibration was performed against Moderate Resolution Imaging Spectrometer (MODIS) data in order to correct the land calibration bias of the GOCI sensor. AOD retrievals were then accomplished using a look-up table (LUT) strategy with assumptions of a quickly varying aerosol and a slowly varying surface with time. The AOD retrieval algorithm calculates AOD by minimizing the surface reflectance variations of a series of observations in a short period of time, such as several days. The monitoring of hourly AOD variations was implemented, and the retrieved AOD agreed well with AErosol RObotic NETwork (AERONET) ground-based measurements with a good R2 of approximately 0.74 at validation sites at the cities of Beijing and Xianghe, although intercept bias may be high in specific cases. The comparisons with MODIS products also show a good agreement in AOD spatial distribution. This work suggests that GOCI imagery can provide high temporal resolution monitoring of atmospheric aerosols over land, which is of great interest in climate change studies and environmental monitoring.

  4. 12 CFR 340.8 - Does this part apply in the case of a workout, resolution, or settlement of obligations?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Does this part apply in the case of a workout, resolution, or settlement of obligations? 340.8 Section 340.8 Banks and Banking FEDERAL DEPOSIT INSURANCE... INSURANCE CORPORATION § 340.8 Does this part apply in the case of a workout, resolution, or settlement of...

  5. 12 CFR 340.8 - Does this part apply in the case of a workout, resolution, or settlement of obligations?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Does this part apply in the case of a workout, resolution, or settlement of obligations? 340.8 Section 340.8 Banks and Banking FEDERAL DEPOSIT INSURANCE... INSURANCE CORPORATION § 340.8 Does this part apply in the case of a workout, resolution, or settlement of...

  6. High-resolution copy number variation analysis of schizophrenia in Japan.

    PubMed

    Kushima, I; Aleksic, B; Nakatochi, M; Shimamura, T; Shiino, T; Yoshimi, A; Kimura, H; Takasaki, Y; Wang, C; Xing, J; Ishizuka, K; Oya-Ito, T; Nakamura, Y; Arioka, Y; Maeda, T; Yamamoto, M; Yoshida, M; Noma, H; Hamada, S; Morikawa, M; Uno, Y; Okada, T; Iidaka, T; Iritani, S; Yamamoto, T; Miyashita, M; Kobori, A; Arai, M; Itokawa, M; Cheng, M-C; Chuang, Y-A; Chen, C-H; Suzuki, M; Takahashi, T; Hashimoto, R; Yamamori, H; Yasuda, Y; Watanabe, Y; Nunokawa, A; Someya, T; Ikeda, M; Toyota, T; Yoshikawa, T; Numata, S; Ohmori, T; Kunimoto, S; Mori, D; Iwata, N; Ozaki, N

    2017-03-01

    Recent schizophrenia (SCZ) studies have reported an increased burden of de novo copy number variants (CNVs) and identified specific high-risk CNVs, although with variable phenotype expressivity. However, the pathogenesis of SCZ has not been fully elucidated. Using array comparative genomic hybridization, we performed a high-resolution genome-wide CNV analysis on a mainly (92%) Japanese population (1699 SCZ cases and 824 controls) and identified 7066 rare CNVs, 70.0% of which were small (<100 kb). Clinically significant CNVs were significantly more frequent in cases than in controls (odds ratio=3.04, P=9.3 × 10 -9 , 9.0% of cases). We confirmed a significant association of X-chromosome aneuploidies with SCZ and identified 11 de novo CNVs (e.g., MBD5 deletion) in cases. In patients with clinically significant CNVs, 41.7% had a history of congenital/developmental phenotypes, and the rate of treatment resistance was significantly higher (odds ratio=2.79, P=0.0036). We found more severe clinical manifestations in patients with two clinically significant CNVs. Gene set analysis replicated previous findings (e.g., synapse, calcium signaling) and identified novel biological pathways including oxidative stress response, genomic integrity, kinase and small GTPase signaling. Furthermore, involvement of multiple SCZ candidate genes and biological pathways in the pathogenesis of SCZ was suggested in established SCZ-associated CNV loci. Our study shows the high genetic heterogeneity of SCZ and its clinical features and raises the possibility that genomic instability is involved in its pathogenesis, which may be related to the increased burden of de novo CNVs and variable expressivity of CNVs.

  7. ISED: Constructing a high-resolution elevation road dataset from massive, low-quality in-situ observations derived from geosocial fitness tracking data.

    PubMed

    McKenzie, Grant; Janowicz, Krzysztof

    2017-01-01

    Gaining access to inexpensive, high-resolution, up-to-date, three-dimensional road network data is a top priority beyond research, as such data would fuel applications in industry, governments, and the broader public alike. Road network data are openly available via user-generated content such as OpenStreetMap (OSM) but lack the resolution required for many tasks, e.g., emergency management. More importantly, however, few publicly available data offer information on elevation and slope. For most parts of the world, up-to-date digital elevation products with a resolution of less than 10 meters are a distant dream and, if available, those datasets have to be matched to the road network through an error-prone process. In this paper we present a radically different approach by deriving road network elevation data from massive amounts of in-situ observations extracted from user-contributed data from an online social fitness tracking application. While each individual observation may be of low-quality in terms of resolution and accuracy, taken together they form an accurate, high-resolution, up-to-date, three-dimensional road network that excels where other technologies such as LiDAR fail, e.g., in case of overpasses, overhangs, and so forth. In fact, the 1m spatial resolution dataset created in this research based on 350 million individual 3D location fixes has an RMSE of approximately 3.11m compared to a LiDAR-based ground-truth and can be used to enhance existing road network datasets where individual elevation fixes differ by up to 60m. In contrast, using interpolated data from the National Elevation Dataset (NED) results in 4.75m RMSE compared to the base line. We utilize Linked Data technologies to integrate the proposed high-resolution dataset with OpenStreetMap road geometries without requiring any changes to the OSM data model.

  8. The Impact of an Online Crowdsourcing Diagnostic Tool on Health Care Utilization: A Case Study Using a Novel Approach to Retrospective Claims Analysis.

    PubMed

    Juusola, Jessie L; Quisel, Thomas R; Foschini, Luca; Ladapo, Joseph A

    2016-06-01

    Patients with difficult medical cases often remain undiagnosed despite visiting multiple physicians. A new online platform, CrowdMed, uses crowdsourcing to quickly and efficiently reach an accurate diagnosis for these patients. This study sought to evaluate whether CrowdMed decreased health care utilization for patients who have used the service. Novel, electronic methods of patient recruitment and data collection were utilized. Patients who completed cases on CrowdMed's platform between July 2014 and April 2015 were recruited for the study via email and screened via an online survey. After providing eConsent, participants provided identifying information used to access their medical claims data, which was retrieved through a third-party web application program interface (API). Utilization metrics including frequency of provider visits and medical charges were compared pre- and post-case resolution to assess the impact of resolving a case on CrowdMed. Of 45 CrowdMed users who completed the study survey, comprehensive claims data was available via API for 13 participants, who made up the final enrolled sample. There were a total of 221 health care provider visits collected for the study participants, with service dates ranging from September 2013 to July 2015. Frequency of provider visits was significantly lower after resolution of a case on CrowdMed (mean of 1.07 visits per month pre-resolution vs. 0.65 visits per month post-resolution, P=.01). Medical charges were also significantly lower after case resolution (mean of US $719.70 per month pre-resolution vs. US $516.79 per month post-resolution, P=.03). There was no significant relationship between study results and disease onset date, and there was no evidence of regression to the mean influencing results. This study employed technology-enabled methods to demonstrate that patients who used CrowdMed had lower health care utilization after case resolution. However, since the final sample size was limited, results should be interpreted as a case study. Despite this limitation, the statistically significant results suggest that online crowdsourcing shows promise as an efficient method of solving difficult medical cases.

  9. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    PubMed Central

    2012-01-01

    Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater. PMID:22257563

  10. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.

    PubMed

    Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario

    2011-04-01

    Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.

  11. Rapid Molecular Analysis of the STAT3 Gene in Job Syndrome of Hyper-IgE and Recurrent Infectious Diseases

    PubMed Central

    Kumánovics, Attila; Wittwer, Carl T.; Pryor, Robert J.; Augustine, Nancy H.; Leppert, Mark F.; Carey, John C.; Ochs, Hans D.; Wedgwood, Ralph J.; Faville, Ralph J.; Quie, Paul G.; Hill, Harry R.

    2010-01-01

    With the recent discovery of mutations in the STAT3 gene in the majority of patients with classic Hyper-IgE syndrome, it is now possible to make a molecular diagnosis in most of these cases. We have developed a PCR-based high-resolution DNA-melting assay to scan selected exons of the STAT3 gene for mutations responsible for Hyper-IgE syndrome, which is then followed by targeted sequencing. We scanned for mutations in 10 unrelated pedigrees, which include 16 patients with classic Hyper-IgE syndrome. These pedigrees include both sporadic and familial cases and their relatives, and we have found STAT3 mutations in all affected individuals. High-resolution melting analysis allows a single day turn-around time for mutation scanning and targeted sequencing of the STAT3 gene, which will greatly facilitate the rapid diagnosis of the Hyper-IgE syndrome, allowing prompt and appropriate therapy, prophylaxis, improved clinical outcome, and accurate genetic counseling. PMID:20093388

  12. UV photoabsorption cross sections of CO, N2, and SO2 for studies of the ISM and planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Rufus, J.; Yoshino, K.; Parkinson, W. H.; Stark, Glenn; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    We report high-resolution laboratory measurements of photoabsorption cross sections of CO, N2, and SO2 in the wavelength range 80 to 320 nm. The motivation is to provide the quantitative data that are needed to analyze observations of absorption by, and to model photochemical processes in, the interstellar medium and a number of planetary atmospheres. Because of the high resolution of the spectrometers used, we can minimize distortion of the spectrum that occurs when instrument widths are greater than the widths of spectral features being measured. In many cases, we can determine oscillator strengths of individual rotational lines - a unique feature of our work.

  13. High-Resolution Isotropic Three-Dimensional MR Imaging of the Extraforaminal Segments of the Cranial Nerves.

    PubMed

    Wen, Jessica; Desai, Naman S; Jeffery, Dean; Aygun, Nafi; Blitz, Ari

    2018-02-01

    High-resolution isotropic 3-dimensional (D) MR imaging with and without contrast is now routinely used for imaging evaluation of cranial nerve anatomy and pathologic conditions. The anatomic details of the extraforaminal segments are well-visualized on these techniques. A wide range of pathologic entities may cause enhancement or displacement of the nerve, which is now visible to an extent not available on standard 2D imaging. This article highlights the anatomy of extraforaminal segments of the cranial nerves and uses select cases to illustrate the utility and power of these sequences, with a focus on constructive interference in steady-state. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Transmitted cardiovascular pulsations on high resolution esophageal impedance manometry, and their significance in dysphagia.

    PubMed

    Chaudhry, Naueen A; Zahid, Kamran; Keihanian, Sara; Dai, Yunfeng; Zhang, Qing

    2017-11-28

    To investigate the behavior of pulsatile pressure zones (PPZ's) as noted on high resolution esophageal impedance manometry (HREIM), and determine their association with dysphagia. Retrospective, single center case control design screening HREIM studies for cases (dysphagia) and controls (no dysphagia). Thoracic radiology studies were reviewed further in cases for (thoracic cardiovascular) thoracic cardiovascular (TCV) structures in esophageal proximity to compare with HREIM findings. Manometric data was collected for number, location, axial length, PPZ pressure and esophageal clearance function (impedance). Among 317 screened patients, 56% cases and 64% controls had PPZ's. Fifty cases had an available thoracic radiology comparison. The distribution of PPZ's in these 50 cases and 59 controls was similar (average 1.4 PPZ/patient). Controls (mean 31.2 ± SD 12 years) were a significantly younger population than cases (mean 67.3 ± SD 14.9 years) with P < 0.0001. The upright posture PPZ pressure was higher in controls (15.7 ± 10.0 mmHg) than cases (10.8 ± 9.7 mmHg). Although statistically significant ( P = 0.005), it was a weak predictor using logistic regression and ROC model (AUC = 0.65). Three dysphagia patients had partial compression from external TCV on radiology (1 aberrant subclavian artery, 2 dilated left atrium). The posture (supine vs upright) with more prominent PPZ's impaired bolus clearance in 9 additional cases by > 20%. Transmitted TCV pulsations observed in HREIM bear no significant impact on swallowing. However, in older adults with dysphagia, evidence of impaired bolus clearance on impedance should be evaluated for external TCV compression. These associations have never been explored previously in literature, and are novel.

  15. Transmitted cardiovascular pulsations on high resolution esophageal impedance manometry, and their significance in dysphagia

    PubMed Central

    Chaudhry, Naueen A; Zahid, Kamran; Keihanian, Sara; Dai, Yunfeng; Zhang, Qing

    2017-01-01

    AIM To investigate the behavior of pulsatile pressure zones (PPZ’s) as noted on high resolution esophageal impedance manometry (HREIM), and determine their association with dysphagia. METHODS Retrospective, single center case control design screening HREIM studies for cases (dysphagia) and controls (no dysphagia). Thoracic radiology studies were reviewed further in cases for (thoracic cardiovascular) thoracic cardiovascular (TCV) structures in esophageal proximity to compare with HREIM findings. Manometric data was collected for number, location, axial length, PPZ pressure and esophageal clearance function (impedance). RESULTS Among 317 screened patients, 56% cases and 64% controls had PPZ’s. Fifty cases had an available thoracic radiology comparison. The distribution of PPZ’s in these 50 cases and 59 controls was similar (average 1.4 PPZ/patient). Controls (mean 31.2 ± SD 12 years) were a significantly younger population than cases (mean 67.3 ± SD 14.9 years) with P < 0.0001. The upright posture PPZ pressure was higher in controls (15.7 ± 10.0 mmHg) than cases (10.8 ± 9.7 mmHg). Although statistically significant (P = 0.005), it was a weak predictor using logistic regression and ROC model (AUC = 0.65). Three dysphagia patients had partial compression from external TCV on radiology (1 aberrant subclavian artery, 2 dilated left atrium). The posture (supine vs upright) with more prominent PPZ’s impaired bolus clearance in 9 additional cases by > 20%. CONCLUSION Transmitted TCV pulsations observed in HREIM bear no significant impact on swallowing. However, in older adults with dysphagia, evidence of impaired bolus clearance on impedance should be evaluated for external TCV compression. These associations have never been explored previously in literature, and are novel. PMID:29209125

  16. Numerical modeling of severe convective storms occurring in the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Horváth, Á.; Geresdi, I.; Németh, P.; Csirmaz, K.; Dombai, F.

    Squall lines often cause serious damages due to the strong surface outflow, hail, or heavy precipitation in Hungary every summer. Squall lines in the Carpathian Basin can be classified into two main categories: pre-frontal squall-lines and frontal convective lines. In this paper, these two types of severe mesoscale phenomena are investigated using the high resolution numerical weather prediction model, the MM5. The case study for the first type of convective systems occurred on 18th May 2005 when two main convective lines with their embedded severe storms formed daytime and caused high-velocity wind events and extensive damages in the eastern part of Hungary. The second case study is a frontal squall line that hit Budapest on 20th August 2006 and the associated high precipitation (HP) supercells reached the capital of Hungary at same time when the traditional Constitution Day firework began. The consequences were catastrophic: five people were killed and more than one thousand were injured due to the extreme weather. The non-hydrostatic high resolution MM5 model was able to simulate and catch the severe weather events occurred on the days under discussion. Moreover, the model was able to compute the detailed structure of the supercells embedded in thunderstorm lines. By studying the equivalent potential temperature (EPT) fields at lower levels, we state that in the prefrontal case, there is a competition between the supercell thunderstorms for the wet and warm air. A thunderstorm that can collect the wet and warm air from larger area will have longer lifetime and more intense updraft. In the second case, the frontal squall lines, the movement and the behavior of the supercell storms embedded in the line was highly determined by the synoptic-scale motions and less affected by the EPT field of the prefrontal masses.

  17. Can High-resolution WRF Simulations Be Used for Short-term Forecasting of Lightning?

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; McCaul, E. W., Jr.; LaCasse, K.; Petersen, W.

    2006-01-01

    A number of research teams have begun to make quasi-operational forecast simulations at high resolution with models such as the Weather Research and Forecast (WRF) model. These model runs have used horizontal meshes of 2-4 km grid spacing, and thus resolved convective storms explicitly. In the light of recent global satellite-based observational studies that reveal robust relationships between total lightning flash rates and integrated amounts of precipitation-size ice hydrometeors in storms, it is natural to inquire about the capabilities of these convection-resolving models in representing the ice hydrometeor fields faithfully. If they do, this might make operational short-term forecasts of lightning activity feasible. We examine high-resolution WRF simulations from several Southeastern cases for which either NLDN or LMA lightning data were available. All the WRF runs use a standard microphysics package that depicts only three ice species, cloud ice, snow and graupel. The realism of the WRF simulations is examined by comparisons with both lightning and radar observations and with additional even higher-resolution cloud-resolving model runs. Preliminary findings are encouraging in that they suggest that WRF often makes convective storms of the proper size in approximately the right location, but they also indicate that higher resolution and better hydrometeor microphysics would be helpful in improving the realism of the updraft strengths, reflectivity and ice hydrometeor fields.

  18. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients.

    PubMed

    Guo, Yi; Lebel, R Marc; Zhu, Yinghua; Lingala, Sajan Goud; Shiroishi, Mark S; Law, Meng; Nayak, Krishna

    2016-05-01

    To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.

  19. A full range detector for the HIRRBS high resolution RBS magnetic spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skala, Wayne G.; Haberl, Arthur W.; Bakhru, Hassaram

    2013-04-19

    The UAlbany HIRRBS (High Resolution RBS) system has been updated for better use in rapid analysis. The focal plane detector now covers the full range from U down to O using a linear stepper motor to translate the 1-cm detector across the 30-cm range. Input is implemented with zero-back-angle operation in all cases. The chamber has been modified to allow for quick swapping of sample holders, including a channeling goniometer. A fixed standard surface-barrier detector allows for normal RBS simultaneously with use of the magnetic spectrometer. The user can select a region on the standard spectrum or can select anmore » element edge or an energy point for collection of the expanded spectrum portion. The best resolution currently obtained is about 2-to-3 keV, probably representing the energy width of the incoming beam. Calibration is maintained automatically for any spectrum portion and any beam energy from 1.0 to 3.5 MeV. Element resolving power, sensitivity and depth resolution are shown using several examples. Examples also show the value of simultaneous conventional RBS.« less

  20. Structures observed on the spot radiance fields during the FIRE experiment

    NASA Technical Reports Server (NTRS)

    Seze, Genevieve; Smith, Leonard; Desbois, Michel

    1990-01-01

    Three Spot images taken during the FIRE experiment on stratocumulus are analyzed. From this high resolution data detailed observations of the true cloud radiance field may be made. The structure and inhomogeneity of these radiance fields hold important implications for the radiation budget, while the fine scale structure in radiance field provides information on cloud dynamics. Wieliki and Welsh, and Parker et al., have quantified the inhomogeneities of the cumulus clouds through a careful examination of the distribution of cloud (and hole) size as functions of an effective cloud diameter and radiance threshold. Cahalan (1988) has compared for different cloud types of (stratocumulus, fair weather cumulus, convective clouds in the ITCZ) the distributions of clouds (and holes) sizes, the relation between the size and the perimeter of these clouds (and holes), and examining the possibility of scale invariance. These results are extended from LANDSAT resolution (57 m and 30 m) to the Spot resolution (10 m) resolution in the case of boundary layer clouds. Particular emphasis is placed on the statistics of zones of high and low reflectivity as a function of a threshold reflectivity.

  1. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  2. Atlantic Tropical Cyclogenetic Processes during SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia

    2009-01-01

    This article investigates the role of the Saharan Air Layer (SAL) in tropical cyclogenetic processes associated with a non-developing and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because both interact heavily with Saharan air. A global data assimilation and forecast system, the NASA GEOS-5, is being run to produce a set of high-quality global analyses, inclusive of all observations used operationally but with denser satellite information. In particular, following previous works by the same Authors, the quality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 5-day high resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results show that very steep moisture gradients are associated with the SAL in forecasts and analyses even at great distance from the Sahara. In addition, a thermal dipole (warm above, cool below) is present in the non-developing case. Moderate Resolution Imaging Spectroradiometer (MODIS) show that aerosol optical thickness is higher in the non-developing case. Altogether, results suggest that radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 kilometers can capture the large-scale transport and the fine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression which has been hypothesized by previous authors from observational and regional modeling perspectives. These effects cannot be fully represented at lower resolutions. Global resolution of a quarter of a degree is a minimum critical threshold to investigate Atlantic tropical cyclogenesis from a global modeling perspective.

  3. Observer performance assessment of JPEG-compressed high-resolution chest images

    NASA Astrophysics Data System (ADS)

    Good, Walter F.; Maitz, Glenn S.; King, Jill L.; Gennari, Rose C.; Gur, David

    1999-05-01

    The JPEG compression algorithm was tested on a set of 529 chest radiographs that had been digitized at a spatial resolution of 100 micrometer and contrast sensitivity of 12 bits. Images were compressed using five fixed 'psychovisual' quantization tables which produced average compression ratios in the range 15:1 to 61:1, and were then printed onto film. Six experienced radiologists read all cases from the laser printed film, in each of the five compressed modes as well as in the non-compressed mode. For comparison purposes, observers also read the same cases with reduced pixel resolutions of 200 micrometer and 400 micrometer. The specific task involved detecting masses, pneumothoraces, interstitial disease, alveolar infiltrates and rib fractures. Over the range of compression ratios tested, for images digitized at 100 micrometer, we were unable to demonstrate any statistically significant decrease (p greater than 0.05) in observer performance as measured by ROC techniques. However, the observers' subjective assessments of image quality did decrease significantly as image resolution was reduced and suggested a decreasing, but nonsignificant, trend as the compression ratio was increased. The seeming discrepancy between our failure to detect a reduction in observer performance, and other published studies, is likely due to: (1) the higher resolution at which we digitized our images; (2) the higher signal-to-noise ratio of our digitized films versus typical CR images; and (3) our particular choice of an optimized quantization scheme.

  4. Application of laser scanning speckle-microscopy for high-resolution express diagnostics of chlamydial infection

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey; Larionova, Olga; Ulianova, Onega; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Filonova, Nadezhda; Subbotina, Irina; Kalduzova, Irina; Utz, Sergey; Moiseeva, Yulia; Feodorova, Valentina

    2018-04-01

    Method of speckle-microscopy has been adapted to the problem of detection of Chlamydia trachomatis microbial cells in clinical samples. Prototype of laser scanning speckle-microscope has been designed. Spatial resolution and output characteristics of this microscope have been analyzed for the case of scanning of C. trachomatis bacteria inclusions - Elementary Bodies (EBs) inside the human cells, fixed on the glass. It has been demonstrated, that presence of C. trachomatis microbial cells in the sample can be easily detected using speckle microscopy.

  5. High-Resolution Characterizations of Grain Boundary Damage and Stress Corrosion Cracks in Cold-Rolled Alloy 690

    NASA Astrophysics Data System (ADS)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Thomas, L. E.

    Unidirectional cold rolling has been shown to promote intergranular stress corrosion cracking (IGSCC) in alloy 690 tested in PWR primary water. High-resolution scanning (SEM) and transmission electron microscopy (TEM) have been employed to investigate the microstructural reasons for this enhanced susceptibility in two stages, first examining grain boundary damage produced by cold rolling and second by characterization of stress corrosion crack tips. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG precipitate distribution. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. For the same degree of cold rolling, alloys with few IG carbides exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal no interaction between the preexisting voids and cracked carbides with the propagation. In many cases, these features appeared to blunt propagation of IGSCC cracks. High-resolution characterizations are described for cold-rolled alloy 690 CRDM tubing and plate materials to gain insights into IGSCC mechanisms.

  6. Idiopathic Pulmonary Fibrosis and Myasthenia Gravis: An Unusual Association

    PubMed Central

    Chogtu, Bharti; Malik, Daliparty Vasudev

    2016-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is a chronic fibrosing lung condition with high morbidity and mortality, accounting for about 25% of the cases of interstitial lung diseases. It usually has a progressive course resulting in death due to respiratory failure. Myasthenia Gravis (MG) is an autoimmune neuromuscular disease, caused by antibody mediated activity against acetylcholine receptor at the neuromuscular junction. It is characterized by fluctuating muscle weakness and fatigue. Extensive literature search did not reveal any case report of an association between these two conditions. Here we present a case of a patient with IPF who also developed MG. The diagnosis of IPF was based on High Resolution Computed Tomography (HRCT) of the lung and that of MG was based on clinical criteria and electrophysiological testing. The case was successfully managed. PMID:27190866

  7. Prenatal sonographic patterns in six cases of Wolf-Hirschhorn (4p-) syndrome.

    PubMed

    Boog, Georges; Le Vaillant, Claudine; Collet, Michel; Dupré, Pierre François; Parent, Philippe; Bongain, André; Benoit, Bernard; Trastour, Claire

    2004-01-01

    This multicentric study presents 6 cases of Wolf-Hirschhorn syndrome (deletion of 4p) detected after a sonographic prenatal diagnosis of early intrauterine growth retardation with fetal abnormalities. Standard karyotyping on regular G-banding during pregnancy was normal in half of the cases. Fortunately, the associated sonographic signs of a typical face, cystic cerebral lesions, midline fusion defects and bilateral renal hypoplasia may help to refine specific indications for high-resolution banding and molecular analysis by in situ hybridization. Copyright 2004 S. Karger AG, Basel

  8. SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows

    NASA Astrophysics Data System (ADS)

    Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu

    2017-12-01

    A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.

  9. The classification of gunshot residue using laser electrospray mass spectrometry and offline multivariate statistical analysis

    USDA-ARS?s Scientific Manuscript database

    Nonresonant laser vaporization combined with high-resolution electrospray time-of-flight mass spectrometry enables analysis of a casing after discharge of a firearm revealing organic signature molecules including methyl centralite (MC), diphenylamine (DPA), N-nitrosodiphenylamine (N-NO-DPA), 4-nitro...

  10. Analysis of source data resolution on photogrammetric products quality of architectural object. (Polish Title: Analiza wpęywu rozdzielczości danych śródłowych na jakość produktów fotogrametrycznych obiektu architektury)

    NASA Astrophysics Data System (ADS)

    Markiewicz, J. S.; Kowalczyk, M.; Podlasiak, P.; Bakuła, K.; Zawieska, D.; Bujakiewicz, A.; Andrzejewska, E.

    2013-12-01

    Due to considerable development of the non - invasion measurement technologies, taking advantages from the distance measurement, the possibility of data acquisition increased and at the same time the measurement period has been reduced. This, by combination of close range laser scanning data and images, enabled the wider expansion of photogrammetric methods effectiveness in registration and analysis of cultural heritage objects. Mentioned integration allows acquisition of objects three - dimensional models and in addition digital image maps - true - ortho and vector products. The quality of photogrammetric products is defined by accuracy and the range of content, therefore by number and the minuteness of detail. That always depends on initial data geometrical resolution. The research results presented in the following paper concern the quality valuation of two products, image of true - ortho and vector data, created for selected parts of architectural object. Source data is represented by point collection i n cloud, acquired from close range laser scanning and photo images. Both data collections has been acquired with diversified resolutions. The exterior orientation of images and several versions of the true - ortho are based on numeric models of the object, acquired with specified resolutions. The comparison of these products gives the opportunity to rate the influence of initial data resolution on their quality (accuracy, information volume). Additional analysis will be performed on the base of vector product s comparison, acquired from monoplotting and true - ortho images. As a conclusion of experiment it was proved that geometric resolution has significant impact on the possibility of generation and on the accuracy of relative orientation TLS scans. If creation of high - resolution products is considered, scanning resolution of about 2 mm should be applied and in case of architecture details - 1 mm. It was also noted that scanning angle and object structure has significant influence on accuracy and completeness of the data. For creation of true - orthoimages for architecture purposes high - resolution ground - based images in geometry close to normal case are recommended to improve their quality. The use of grayscale true - orthoimages with values from scanner intensity is not advised. Presented research proved also that accuracy of manual and automated vectorisation results depend significantly on the resolution of the generated orthoimages (scans and images resolution) and mainly of blur effect and possible pixel size.

  11. Hyperspectral Imager-Tracker

    NASA Technical Reports Server (NTRS)

    Agurok, Llya

    2013-01-01

    The Hyperspectral Imager-Tracker (HIT) is a technique for visualization and tracking of low-contrast, fast-moving objects. The HIT architecture is based on an innovative and only recently developed concept in imaging optics. This innovative architecture will give the Light Prescriptions Innovators (LPI) HIT the possibility of simultaneously collecting the spectral band images (hyperspectral cube), IR images, and to operate with high-light-gathering power and high magnification for multiple fast- moving objects. Adaptive Spectral Filtering algorithms will efficiently increase the contrast of low-contrast scenes. The most hazardous parts of a space mission are the first stage of a launch and the last 10 kilometers of the landing trajectory. In general, a close watch on spacecraft operation is required at distances up to 70 km. Tracking at such distances is usually associated with the use of radar, but its milliradian angular resolution translates to 100- m spatial resolution at 70-km distance. With sufficient power, radar can track a spacecraft as a whole object, but will not provide detail in the case of an accident, particularly for small debris in the onemeter range, which can only be achieved optically. It will be important to track the debris, which could disintegrate further into more debris, all the way to the ground. Such fragmentation could cause ballistic predictions, based on observations using high-resolution but narrow-field optics for only the first few seconds of the event, to be inaccurate. No optical imager architecture exists to satisfy NASA requirements. The HIT was developed for space vehicle tracking, in-flight inspection, and in the case of an accident, a detailed recording of the event. The system is a combination of five subsystems: (1) a roving fovea telescope with a wide 30 field of regard; (2) narrow, high-resolution fovea field optics; (3) a Coude optics system for telescope output beam stabilization; (4) a hyperspectral-mutispectral imaging assembly; and (5) image analysis software with effective adaptive spectral filtering algorithm for real-time contrast enhancement.

  12. Fingerprinting stress: Stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding—The case of the Monte Nero anticline in the Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille

    2016-07-01

    In this study we show for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a fold-and-thrust belt. First, we present a new method that gives access to stress inversion using tectonic stylolites without access to the stylolite surface and compare results with calcite twin inversion. Second, we use our new approach to present a high-resolution deformation and stress history that affected Meso-Cenozoic limestone strata in the Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). In this area an extensive stylolite-joint/vein network developed during layer-parallel shortening (LPS), as well as during and after folding. Stress fingerprinting illustrates how stress in the sedimentary strata did build up prior to folding during LPS. The stress regime oscillated between strike slip and compressional during LPS before ultimately becoming strike slip again during late stage fold tightening. Our case study shows that high-resolution stress fingerprinting is possible and that this novel method can be used to unravel temporal relationships that relate to local variations of regional orogenic stresses. Beyond regional implications, this study validates our approach as a new powerful toolbox to high-resolution stress fingerprinting in basins and orogens combining joint and vein analysis with sedimentary and tectonic stylolite and calcite twin inversion techniques.

  13. Identification case of evidence in timber tracing of Pinus radiate, using high-resolution melting (HRM) analysis.

    PubMed

    Solano, Jaime; Anabalón, Leonardo; Encina, Francisco

    2016-03-01

    Fast, accurate detection of plant species and their hybrids using molecular tools will facilitate assessment and monitoring of timber tracing evidence. In this study the origin of unknown pine samples is determined for a case of timber theft in the region of Araucania southern Chile. We evaluate the utility of the trnL marker region for species identification applied to pine wood based on High Resolution Melting. This efficient tracing methods can be incorporated into forestry applications such as certification of origin. The object of this work was genotype identification using high-resolution melting (HRM) and trnL approaches for Pinus radiata (Don) in timber tracing evidence. Our results indicate that trnL is a very sensitive marker for delimiting species and HRM analysis was used successfully for genotyping Pinus samples for timber tracing purposes. Genotyping samples by HRM analysis with the trnL1 approach allowed us to differentiate two wood samples from the Pinaceae family: Pinus radiata (Don) and Pseudotsuga menziesii (Mirb.) Franco. The same approach with Pinus trnL wood was not able to discriminate between samples of Pinus radiata, indicating that the samples were genetically indistinguishable, possibly because they have the same genotype at this locus. Timber tracing with HRM analysis is expected to contribute to future forest certification schemes, control of illegal trading, and molecular traceability of Pinus spp. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy

    NASA Astrophysics Data System (ADS)

    Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan

    2018-02-01

    Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.

  15. Reverse lactate threshold: a novel single-session approach to reliable high-resolution estimation of the anaerobic threshold.

    PubMed

    Dotan, Raffy

    2012-06-01

    The multisession maximal lactate steady-state (MLSS) test is the gold standard for anaerobic threshold (AnT) estimation. However, it is highly impractical, requires high fitness level, and suffers additional shortcomings. Existing single-session AnT-estimating tests are of compromised validity, reliability, and resolution. The presented reverse lactate threshold test (RLT) is a single-session, AnT-estimating test, aimed at avoiding the pitfalls of existing tests. It is based on the novel concept of identifying blood lactate's maximal appearance-disappearance equilibrium by approaching the AnT from higher, rather than from lower exercise intensities. Rowing, cycling, and running case data (4 recreational and competitive athletes, male and female, aged 17-39 y) are presented. Subjects performed the RLT test and, on a separate session, a single 30-min MLSS-type verification test at the RLT-determined intensity. The RLT and its MLSS verification exhibited exceptional agreement at 0.5% discrepancy or better. The RLT's training sensitivity was demonstrated by a case of 2.5-mo training regimen following which the RLT's 15-W improvement was fully MLSS-verified. The RLT's test-retest reliability was examined in 10 trained and untrained subjects. Test 2 differed from test 1 by only 0.3% with an intraclass correlation of 0.997. The data suggest RLT to accurately and reliably estimate AnT (as represented by MLSS verification) with high resolution and in distinctly different sports and to be sensitive to training adaptations. Compared with MLSS, the single-session RLT is highly practical and its lower fitness requirements make it applicable to athletes and untrained individuals alike. Further research is needed to establish RLT's validity and accuracy in larger samples.

  16. Observations of specular reflective particles and layers in crystal clouds.

    PubMed

    Balin, Yurii S; Kaul, Bruno V; Kokhanenko, Grigorii P; Penner, Ioganes E

    2011-03-28

    In the present article, results of observations of high crystal clouds with high spatial and temporal resolution using the ground-based polarization LOSA-S lidar are described. Cases of occurrence of specularly reflective layers formed by particles oriented predominantly in the horizontal plane are demonstrated. Results of measuring echo-signal depolarization are compared for linear and circular polarization states of the initial laser beam.

  17. Influence of high resolution rainfall data on the hydrological response of urban flat catchments

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2016-04-01

    In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.

  18. Joint estimation of high resolution images and depth maps from light field cameras

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuki; Takahashi, Keita; Fujii, Toshiaki

    2014-03-01

    Light field cameras are attracting much attention as tools for acquiring 3D information of a scene through a single camera. The main drawback of typical lenselet-based light field cameras is the limited resolution. This limitation comes from the structure where a microlens array is inserted between the sensor and the main lens. The microlens array projects 4D light field on a single 2D image sensor at the sacrifice of the resolution; the angular resolution and the position resolution trade-off under the fixed resolution of the image sensor. This fundamental trade-off remains after the raw light field image is converted to a set of sub-aperture images. The purpose of our study is to estimate a higher resolution image from low resolution sub-aperture images using a framework of super-resolution reconstruction. In this reconstruction, these sub-aperture images should be registered as accurately as possible. This registration is equivalent to depth estimation. Therefore, we propose a method where super-resolution and depth refinement are performed alternatively. Most of the process of our method is implemented by image processing operations. We present several experimental results using a Lytro camera, where we increased the resolution of a sub-aperture image by three times horizontally and vertically. Our method can produce clearer images compared to the original sub-aperture images and the case without depth refinement.

  19. Systematic Screening for Subtelomeric Anomalies in a Clinical Sample of Autism

    ERIC Educational Resources Information Center

    Wassink, Thomas H.; Losh, Molly; Piven, Joseph; Sheffield, Val C.; Ashley, Elizabeth; Westin, Erik R.; Patil, Shivanand R.

    2007-01-01

    High-resolution karyotyping detects cytogenetic anomalies in 5-10% of cases of autism. Karyotyping, however, may fail to detect abnormalities of chromosome subtelomeres, which are gene rich regions prone to anomalies. We assessed whether panels of FISH probes targeted for subtelomeres could detect abnormalities beyond those identified by…

  20. Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling

    USDA-ARS?s Scientific Manuscript database

    We present an example of a simulation-based forecast for the 2012 U.S. maize growing season produced as part of a high-resolution, multi-scale, predictive mechanistic modeling study designed for decision support, risk management, and counterfactual analysis. The simulations undertaken for this analy...

  1. Additional studies of forest classification accuracy as influenced by multispectral scanner spatial resolution

    NASA Technical Reports Server (NTRS)

    Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.

  2. On the Role of Urban and Vegetative Land Cover in the Identification of Tornado Damage Using Dual-Resolution Multispectral Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Kingfield, D.; de Beurs, K.

    2014-12-01

    It has been demonstrated through various case studies that multispectral satellite imagery can be utilized in the identification of damage caused by a tornado through the change detection process. This process involves the difference in returned surface reflectance between two images and is often summarized through a variety of ratio-based vegetation indices (VIs). Land cover type plays a large contributing role in the change detection process as the reflectance properties of vegetation can vary based on several factors (e.g. species, greenness, density). Consequently, this provides the possibility for a variable magnitude of loss, making certain land cover regimes less reliable in the damage identification process. Furthermore, the tradeoff between sensor resolution and orbital return period may also play a role in the ability to detect catastrophic loss. Moderate resolution imagery (e.g. Moderate Resolution Imaging Spectroradiometer (MODIS)) provides relatively coarse surface detail with a higher update rate which could hinder the identification of small regions that underwent a dynamic change. Alternatively, imagery with higher spatial resolution (e.g. Landsat) have a longer temporal return period between successive images which could result in natural recovery underestimating the absolute magnitude of damage incurred. This study evaluates the role of land cover type and sensor resolution on four high-end (EF3+) tornado events occurring in four different land cover groups (agriculture, forest, grassland, urban) in the spring season. The closest successive clear images from both Landsat 5 and MODIS are quality controlled for each case. Transacts of surface reflectance across a homogenous land cover type both inside and outside the damage swath are extracted. These metrics are synthesized through the calculation of six different VIs to rank the calculated change metrics by land cover type, sensor resolution and VI.

  3. Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs

    NASA Astrophysics Data System (ADS)

    Umehara, Kensuke; Ota, Junko; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    Single image super-resolution (SR) method can generate a high-resolution (HR) image from a low-resolution (LR) image by enhancing image resolution. In medical imaging, HR images are expected to have a potential to provide a more accurate diagnosis with the practical application of HR displays. In recent years, the super-resolution convolutional neural network (SRCNN), which is one of the state-of-the-art deep learning based SR methods, has proposed in computer vision. In this study, we applied and evaluated the SRCNN scheme to improve the image quality of magnified images in chest radiographs. For evaluation, a total of 247 chest X-rays were sampled from the JSRT database. The 247 chest X-rays were divided into 93 training cases with non-nodules and 152 test cases with lung nodules. The SRCNN was trained using the training dataset. With the trained SRCNN, the HR image was reconstructed from the LR one. We compared the image quality of the SRCNN and conventional image interpolation methods, nearest neighbor, bilinear and bicubic interpolations. For quantitative evaluation, we measured two image quality metrics, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the SRCNN scheme, PSNR and SSIM were significantly higher than those of three interpolation methods (p<0.001). Visual assessment confirmed that the SRCNN produced much sharper edge than conventional interpolation methods without any obvious artifacts. These preliminary results indicate that the SRCNN scheme significantly outperforms conventional interpolation algorithms for enhancing image resolution and that the use of the SRCNN can yield substantial improvement of the image quality of magnified images in chest radiographs.

  4. Diagnostic dilemma in ovarian pregnancy: a case series.

    PubMed

    Begum, Jasmina; Pallavee, P; Samal, Sunita

    2015-04-01

    Ovarian pregnancy is a rare form of ectopic pregnancy but it is the most common type of nontubal ectopic pregnancy. Many times it is operated with a misdiagnosis of ruptured tubal ectopic pregnancy or hemorrhagic corpus luteum. The high resolution transvaginal ultrasonography is a valuable tool for diagnosis of ectopic pregnancy but ovarian pregnancy still remains a diagnostic problem and a continuous challenge to the gynecologist. The correct diagnosis is made at the time of surgery and confirmation is by histopathological report. Here we report three cases of primary ovarian ectopic pregnancies, consistent with the Spiegelberg's criteria. Out of this, two cases have corroboration of ovarian ectopic pregnancy with use of intrauterine contraceptive device and one case by chance without any preexisting risk factors, probably due to interference in the release of ovum from the follicle. In all the three cases, emergency laparotomy was done for ruptured tubal ectopic pregnancy and the diagnosis of ruptured primary ovarian pregnancy was made at the time of surgery, this was subsequently confirmed by histopathology report. In the era where wider usage of intrauterine devices, ovulatory drugs and assisted reproductive techniques are rife, there is a possibility of an increase in the incidence of this rare entity, so ovarian ectopic pregnancy should be kept in mind as a possibility. Thereby early diagnosis by high resolution transvaginal ultrasound and laparoscopy can decrease the risk of complications like rupture, secondary implantation, hemorrhagic shock and maternal mortality.

  5. Wave Dissipation over Nearshore Beach Morphology: Insights from High-Resolution LIDAR Observations and the SWASH Wave Model

    NASA Astrophysics Data System (ADS)

    Mulligan, R. P.; Gomes, E.; McNinch, J.; Brodie, K. L.

    2016-02-01

    Numerical modelling of the nearshore zone can be computationally intensive due to the complexity of wave breaking, and the need for high temporal and spatial resolution. In this study we apply the SWASH non-hydrostatic wave-flow model that phase-resolves the free surface and fluid motions in the water column at high resolution. The model is forced using observed directional energy spectra, and results are compared to wave observations during moderate storm events. Observations are collected outside the surf zone using acoustic wave and currents sensors, and inside the surf zone over a 100 m transect using high-resolution LIDAR measurements of the sea surface from a sensor mounted on a tower on the beach dune at the Field Research Facility in Duck, NC. The model is applied to four cases with different wave conditions and bathymetry, and used to predict the spatial variability in wave breaking, and correlation between energy dissipation and morphologic features. Model results compare well with observations of spectral evolution outside the surf zone, and with the remotely sensed observations of wave transformation inside the surf zone. The results indicate the importance of nearshore bars, rip-channels, and larger features (major scour depression under the pier following large waves from Hurricane Irene) on the location of wave breaking and alongshore variability in wave energy dissipation.

  6. Quality of terrestrial data derived from UAV photogrammetry: a case study of the Hetao irrigation district in northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Violette

    2017-04-01

    Most crops in northern China are irrigated, but the topography affects water use, soil erosion, runoff and yields,. Technologies for collecting high-resolution topographic data are essential for adequately assessing these effects. Ground surveys and techniques of light detection and ranging have good accuracy, but data acquisition can be time-consuming and expensive for large catchments. Recent rapid technological development has provided new, flexible, high-resolution methods for collecting topographic data, such as photogrammetry using unmanned aerial vehicles (UAVs). The accuracy of UAV photogrammetry for generating high-resolution digital elevation models (DEMs) and for determining the width of irrigation channels, however, has not been assessed. We used a fixed-wing UAV for collecting high-resolution (0.15 m) topographic data for the Hetao irrigation district, the third largest irrigation district in China. We surveyed 112 ground checkpoints (GCPs) using a real-time kinematic global positioning system to evaluate the accuracy of the DEMs and channel widths. A comparison of manually measured channel widths with the widths derived from the DEMs indicated that the DEM-derived widths had vertical and horizontal root mean square errors of 13.0 and 7.9 cm, respectively. UAV photogrammetric data can thus be used for land surveying, digital mapping, calculating channel capacity, monitoring crops, and predicting yields, with the advantages of economy, speed, and ease.

  7. Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe.

    PubMed

    Walke, Peter; Fujita, Yasuhiko; Peeters, Wannes; Toyouchi, Shuichi; Frederickx, Wout; De Feyter, Steven; Uji-I, Hiroshi

    2018-04-26

    Tip-enhanced Raman scattering (TERS) microscopy is a unique analytical tool to provide complementary chemical and topographic information of surfaces with nanometric resolution. However, difficulties in reliably producing the necessary metallized scanning probe tips has limited its widespread utilisation, particularly in the case of cantilever-based atomic force microscopy. Attempts to alleviate tip related issues using colloidal or bottom-up engineered tips have so far not reported consistent probes for both Raman and topographic imaging. Here we demonstrate the reproducible fabrication of cantilever-based high-performance TERS probes for both topographic and Raman measurements, based on an approach that utilises noble metal nanowires as the active TERS probe. The tips show 10 times higher TERS contrasts than the most typically used electrochemically-etched tips, and show a reproducibility for TERS greater than 90%, far greater than found with standard methods. We show that TERS can be performed in tapping as well as contact AFM mode, with optical resolutions around or below 15 nm, and with a maximum resolution achieved in tapping-mode of 6 nm. Our work illustrates that superior TERS probes can be produced in a fast and cost-effective manner using simple wet-chemistry methods, leading to reliable and reproducible high-resolution and high-sensitivity TERS, and thus renders the technique applicable for a broad community.

  8. Improved Visualization of Glaucomatous Retinal Damage Using High-speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Mumcuoglu, Tarkan; Wollstein, Gadi; Wojtkowski, Maciej; Kagemann, Larry; Ishikawa, Hiroshi; Gabriele, Michelle L.; Srinivasan, Vivek; Fujimoto, James G.; Duker, Jay S.; Schuman, Joel S.

    2009-01-01

    Purpose To test if improving optical coherence tomography (OCT) resolution and scanning speed improves the visualization of glaucomatous structural changes as compared with conventional OCT. Design Prospective observational case series. Participants Healthy and glaucomatous subjects in various stages of disease. Methods Subjects were scanned at a single visit with commercially available OCT (StratusOCT) and high-speed ultrahigh-resolution (hsUHR) OCT. The prototype hsUHR OCT had an axial resolution of 3.4 μm (3 times higher than StratusOCT), with an A-scan rate of 24 000 hertz (60 times faster than StratusOCT). The fast scanning rate allowed the acquisition of novel scanning patterns such as raster scanning, which provided dense coverage of the retina and optic nerve head. Main Outcome Measures Discrimination of retinal tissue layers and detailed visualization of retinal structures. Results High-speed UHR OCT provided a marked improvement in tissue visualization as compared with StratusOCT. This allowed the identification of numerous retinal layers, including the ganglion cell layer, which is specifically prone to glaucomatous damage. Fast scanning and the enhanced A-scan registration properties of hsUHR OCT provided maps of the macula and optic nerve head with unprecedented detail, including en face OCT fundus images and retinal nerve fiber layer thickness maps. Conclusion High-speed UHR OCT improves visualization of the tissues relevant to the detection and management of glaucoma. PMID:17884170

  9. Botulinum toxin injection for hypercontractile or spastic esophageal motility disorders: may high-resolution manometry help to select cases?

    PubMed

    Marjoux, S; Brochard, C; Roman, S; Gincul, R; Pagenault, M; Ponchon, T; Ropert, A; Mion, F

    2015-01-01

    Endoscopic injections of botulinum toxin in the cardia or distal esophagus have been advocated to treat achalasia and spastic esophageal motility disorders. We conducted a retrospective study to evaluate whether manometric diagnosis using the Chicago classification in high-resolution manometry (HRM) would be predictive of the clinical response. Charts of patients with spastic and hypertensive motility disorders diagnosed with HRM and treated with botulinum toxin were retrospectively reviewed at two centers. HRM recordings were systematically reanalyzed, and a patient's phone survey was conducted. Forty-five patients treated between 2008 and 2013 were included. Most patients had achalasia type 3 (22 cases). Other diagnoses were jackhammer esophagus (8 cases), distal esophageal spasm (7 cases), esophagogastric junction outflow obstruction (5 cases), nutcracker esophagus (1 case), and 2 unclassified cases. Botulinum toxin injections were performed into the cardia only in 9 cases, into the wall of the distal esophagus in 19 cases, and in both locations (cardia and distal esophagus) in 17 cases. No complication occurred in 31 cases. Chest pain was noticed for less than 7 days in 13 cases. One death related to mediastinitis occurred 3 weeks after botulinum toxin injection. Efficacy was assessed in 42 patients: 71% were significantly improved 2 months after botulinum toxin, and 57% remained satisfied for more than 6 months. No clear difference was observed in terms of response according to manometric diagnosis; however, type 3 achalasia previously dilated and with normal integrated relaxation pressure (4s-integrated relaxation pressure < 15 mmHg) had the worst outcome: none of these patients responded to the endoscopic injection of botulinum toxin. Endoscopic injections of botulinum toxin may be effective in some patients with spastic or hypercontractile esophageal motility disorders. The manometric Chicago classification diagnosis does not seem to predict the results. Prospective randomized trials are required to identify patients most likely to benefit from esophageal botulinum toxin treatment. © 2014 International Society for Diseases of the Esophagus.

  10. Apparent Solar Tornado-Like Prominences

    NASA Astrophysics Data System (ADS)

    Panasenco, Olga; Martin, Sara F.; Velli, Marco

    2014-02-01

    Recent high-resolution observations from the Solar Dynamics Observatory (SDO) have reawakened interest in the old and fascinating phenomenon of solar tornado-like prominences. This class of prominences was first introduced by Pettit ( Astrophys. J. 76, 9, 1932), who studied them over many years. Observations of tornado prominences similar to the ones seen by SDO had already been documented by Secchi ( Le Soleil, 1877). High-resolution and high-cadence multiwavelength data obtained by SDO reveal that the tornado-like appearance of these prominences is mainly an illusion due to projection effects. We discuss two different cases where prominences on the limb might appear to have a tornado-like behavior. One case of apparent vortical motions in prominence spines and barbs arises from the (mostly) 2D counterstreaming plasma motion along the prominence spine and barbs together with oscillations along individual threads. The other case of apparent rotational motion is observed in a prominence cavity and results from the 3D plasma motion along the writhed magnetic fields inside and along the prominence cavity as seen projected on the limb. Thus, the "tornado" impression results either from counterstreaming and oscillations or from the projection on the plane of the sky of plasma motion along magnetic-field lines, rather than from a true vortical motion around an (apparent) vertical or horizontal axis. We discuss the link between tornado-like prominences, filament barbs, and photospheric vortices at their base.

  11. Antenatal Workup of Early Megacystis and Selection of Candidates for Fetal Therapy.

    PubMed

    Fontanella, Federica; Duin, Leonie; Adama van Scheltema, Phebe N; Cohen-Overbeek, Titia E; Pajkrt, Eva; Bekker, Mireille; Willekes, Christine; Bax, Caroline J; Oepkes, Dick; Bilardo, Catia M

    2018-05-17

    To investigate the best criteria for discriminating fetuses with isolated posterior urethral valves from those theoretically not eligible for fetal treatment because of complex megacystis, high chance of spontaneous resolution, and urethral atresia. A retrospective national study was conducted in fetuses with megacystis detected before 17 weeks' gestation (early megacystis). In total, 142 cases with fetal megacystis were included in the study: 52 with lower urinary tract obstruction, 29 with normal micturition at birth, and 61 with miscellaneous syndromal associations, chromosomal and multiple structural abnormalities (complex megacystis). Only a nuchal translucency > 95th centile, and not a longitudinal bladder diameter ≤15 mm (p = 0.24), significantly increased the risk of complex megacystis (p < 0.01). Cases with a high chance of spontaneous resolution were identified by using the cut-off of 12 mm, as demonstrated in a previous study, and the finding of an associated umbilical cord cyst carried a high-risk of urethral atresia (odds ratio: 15; p = 0.026), an unfavorable condition for antenatal treatment. An algorithm encompassing these three criteria demonstrated good accuracy in selecting fetuses theoretically eligible for fetal treatment (specificity 73%; sensitivity 92%). Cases theoretically eligible for early fetal therapy are those with normal nuchal translucency, a longitudinal bladder diameter > 12 mm, and without ultrasound evidence of umbilical cord cysts. © 2018 The Author(s) Published by S. Karger AG, Basel.

  12. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    PubMed Central

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  13. Filter and Grid Resolution in DG-LES

    NASA Astrophysics Data System (ADS)

    Miao, Ling; Sammak, Shervin; Madnia, Cyrus K.; Givi, Peyman

    2017-11-01

    The discontinuous Galerkin (DG) methodology has proven very effective for large eddy simulation (LES) of turbulent flows. Two important parameters in DG-LES are the grid resolution (h) and the filter size (Δ). In most previous work, the filter size is usually set to be proportional to the grid spacing. In this work, the DG method is combined with a subgrid scale (SGS) closure which is equivalent to that of the filtered density function (FDF). The resulting hybrid scheme is particularly attractive because a larger portion of the resolved energy is captured as the order of spectral approximation increases. Different cases for LES of a three-dimensional temporally developing mixing layer are appraised and a systematic parametric study is conducted to investigate the effects of grid resolution, the filter width size, and the order of spectral discretization. Comparative assessments are also made via the use of high resolution direct numerical simulation (DNS) data.

  14. Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths.

    PubMed

    Ingaramo, Maria; York, Andrew G; Hoogendoorn, Eelco; Postma, Marten; Shroff, Hari; Patterson, George H

    2014-03-17

    We use Richardson-Lucy (RL) deconvolution to combine multiple images of a simulated object into a single image in the context of modern fluorescence microscopy techniques. RL deconvolution can merge images with very different point-spread functions, such as in multiview light-sheet microscopes,1, 2 while preserving the best resolution information present in each image. We show that RL deconvolution is also easily applied to merge high-resolution, high-noise images with low-resolution, low-noise images, relevant when complementing conventional microscopy with localization microscopy. We also use RL deconvolution to merge images produced by different simulated illumination patterns, relevant to structured illumination microscopy (SIM)3, 4 and image scanning microscopy (ISM). The quality of our ISM reconstructions is at least as good as reconstructions using standard inversion algorithms for ISM data, but our method follows a simpler recipe that requires no mathematical insight. Finally, we apply RL deconvolution to merge a series of ten images with varying signal and resolution levels. This combination is relevant to gated stimulated-emission depletion (STED) microscopy, and shows that merges of high-quality images are possible even in cases for which a non-iterative inversion algorithm is unknown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An Experimental High-Resolution Forecast System During the Vancouver 2010 Winter Olympic and Paralympic Games

    NASA Astrophysics Data System (ADS)

    Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.

    2014-01-01

    Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.

  16. Synergistic use of MODIS cloud products and AIRS radiance measurements for retrieval of cloud parameters

    NASA Astrophysics Data System (ADS)

    Li, J.; Menzel, W.; Sun, F.; Schmit, T.

    2003-12-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite will enable global monitoring of the distribution of clouds. MODIS is able to provide at high spatial resolution (1 ~ 5km) the cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud water path (CWP). AIRS is able to provide CTP, ECA, CPS, and CWP within the AIRS footprint with much better accuracy using its greatly enhanced hyperspectral remote sensing capability. The combined MODIS / AIRS system offers the opportunity for cloud products improved over those possible from either system alone. The algorithm developed was applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS cloud products, as well as with the Geostationary Operational Environmental Satellite (GOES) sounder cloud products, to demonstrate the advantage of synergistic use of high spatial resolution MODIS cloud products and high spectral resolution AIRS sounder radiance measurements for optimal cloud retrieval. Data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma were used for the validation; results show that AIRS improves the MODIS cloud products in certain cases such as low-level clouds.

  17. A Survey of Near-infrared Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Hamano, Satochi; Kobayashi, Naoto; Kawakita, Hideyo; Ikeda, Yuji; Kondo, Sohei; Sameshima, Hiroaki; Arai, Akira; Matsunaga, Noriyuki; Yasui, Chikako; Mizumoto, Misaki; Fukue, Kei; Izumi, Natsuko; Otsubo, Shogo; Takenada, Keiichi

    2018-04-01

    We propose a study of interstellar molecules with near-infrared (NIR) high-resolution spectroscopy as a science case for the 3.6-m Devasthal Optical Telescope (DOT). In particular, we present the results obtained on-going survey of diffuse interstellar bands (DIBs) in NIR with the newly developed NIR high-resolution spectrograph WINERED, which offers a high sensitivity in the wavelength range of 0.91-1.36 µm. Using the WINERED spectrograph attached to the 1.3-m Araki telescope in Japan, we obtained high-quality spectra of a number of early-type stars in various environments, such as diffuse interstellar clouds, dark clouds and star-forming regions, to investigate the properties of NIR DIBs and constrain their carriers. As a result, we successfully identified about 50 new NIR DIBs, where only five fairly strong DIBs had been identified previously. Also, some properties of DIBs in the NIR are discussed to constrain the carriers of DIBs.

  18. Modelling high-resolution ALMA observations of strongly lensed highly star-forming galaxies detected by Herschel

    NASA Astrophysics Data System (ADS)

    Dye, S.; Furlanetto, C.; Dunne, L.; Eales, S. A.; Negrello, M.; Nayyeri, H.; van der Werf, P. P.; Serjeant, S.; Farrah, D.; Michałowski, M. J.; Baes, M.; Marchetti, L.; Cooray, A.; Riechers, D. A.; Amvrosiadis, A.

    2018-06-01

    We have modelled ˜0.1 arcsec resolution Atacama Large Millimetre/submillimeter Array imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsic properties of the lensed submillimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high-redshift submillimetre galaxies and low-redshift ultra-luminous infrared galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences.

  19. First-Order Frameworks for Managing Models in Engineering Optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natlia M.; Lewis, Robert Michael

    2000-01-01

    Approximation/model management optimization (AMMO) is a rigorous methodology for attaining solutions of high-fidelity optimization problems with minimal expense in high- fidelity function and derivative evaluation. First-order AMMO frameworks allow for a wide variety of models and underlying optimization algorithms. Recent demonstrations with aerodynamic optimization achieved three-fold savings in terms of high- fidelity function and derivative evaluation in the case of variable-resolution models and five-fold savings in the case of variable-fidelity physics models. The savings are problem dependent but certain trends are beginning to emerge. We give an overview of the first-order frameworks, current computational results, and an idea of the scope of the first-order framework applicability.

  20. The Relative Performance of High Resolution Quantitative Precipitation Estimates in the Russian River Basin

    NASA Astrophysics Data System (ADS)

    Bytheway, J. L.; Biswas, S.; Cifelli, R.; Hughes, M.

    2017-12-01

    The Russian River carves a 110 mile path through Mendocino and Sonoma counties in western California, providing water for thousands of residents and acres of agriculture as well as a home for several species of endangered fish. The Russian River basin receives almost all of its precipitation during the October through March wet season, and the systems bringing this precipitation are often impacted by atmospheric river events as well as the complex topography of the region. This study will examine the performance of several high resolution (hourly, < 5km) estimates of precipitation from observational products and forecasts over the 2015-2016 and 2016-2017 wet seasons. Comparisons of event total rainfall as well as hourly rainfall will be performed using 1) rain gauges operated by the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Division (PSD), 2) products from the Multi-Radar/Multi-Sensor (MRMS) QPE dataset, and 3) quantitative precipitation forecasts from the High Resolution Rapid Refresh (HRRR) model at 1, 3, 6, and 12 hour lead times. Further attention will be given to cases or locations representing large disparities between the estimates.

  1. Guiding Biogeochemical Campaigns with High Resolution Altimetry: Waiting for the SWOT Mission

    NASA Astrophysics Data System (ADS)

    d'Ovidio, Francesco; Zhou, Meng; Park, Young Hyang; Nencioli, Francesco; Resplandy, Laure; Doglioli, Andrea; Petrenko, Anne; Blain, Stephane; Queguiner, Bernard

    2013-09-01

    Biogeochemical processes in the ocean are strongly affected by the horizontal mesoscale ( 10-100 km) and submesoscale (1-10 km) circulation. Eddies and filaments can create strong dishomogeneity, either amplifying small-scale diffusion processes (mixing) or creating tracer reservoirs. This variability has a direct effect on the biogeochemical budgets - controlling for instances tracer fluxes across climatological fronts, or part of the vertical exchanges. This variability also provides a challenge to in situ studies, because sites few tens of kms or few weeks apart may be representative of very different situations. Here we discuss how altimetry observation can be exploited in order to track in near- real-time transport barriers and mixing regions and guide a biogeochemical adaptative sampling strategy. As a case study, we focus on the recent KEOPS2 campaign (Kerguelen region, October-November 2012) which employed Lagrangian diagnostics of a specifically designed high resolution, regional altimetric product produced by CLS (with support from CNES) analyzed with several Lagrangian diagnostics. Such approach anticipates possible uses of incoming high resolution altimetry data for biogeochemical studies.

  2. Automatic Coregistration and orthorectification (ACRO) and subsequent mosaicing of NASA high-resolution imagery over the Mars MC11 quadrangle, using HRSC as a baseline

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter; Watson, Gillian; Michael, Gregory; Walter, Sebastian

    2018-02-01

    This work presents the coregistered, orthorectified and mosaiced high-resolution products of the MC11 quadrangle of Mars, which have been processed using novel, fully automatic, techniques. We discuss the development of a pipeline that achieves fully automatic and parameter independent geometric alignment of high-resolution planetary images, starting from raw input images in NASA PDS format and following all required steps to produce a coregistered geotiff image, a corresponding footprint and useful metadata. Additionally, we describe the development of a radiometric calibration technique that post-processes coregistered images to make them radiometrically consistent. Finally, we present a batch-mode application of the developed techniques over the MC11 quadrangle to validate their potential, as well as to generate end products, which are released to the planetary science community, thus assisting in the analysis of Mars static and dynamic features. This case study is a step towards the full automation of signal processing tasks that are essential to increase the usability of planetary data, but currently, require the extensive use of human resources.

  3. Novel Strategy to Evaluate Infectious Salmon Anemia Virus Variants by High Resolution Melting

    PubMed Central

    Sepúlveda, Dagoberto; Cárdenas, Constanza; Carmona, Marisela; Marshall, Sergio H.

    2012-01-01

    Genetic variability is a key problem in the prevention and therapy of RNA-based virus infections. Infectious Salmon Anemia virus (ISAv) is an RNA virus which aggressively attacks salmon producing farms worldwide and in particular in Chile. Just as with most of the Orthomyxovirus, ISAv displays high variability in its genome which is reflected by a wider infection potential, thus hampering management and prevention of the disease. Although a number of widely validated detection procedures exist, in this case there is a need of a more complex approach to the characterization of virus variability. We have adapted a procedure of High Resolution Melting (HRM) as a fine-tuning technique to fully differentiate viral variants detected in Chile and projected to other infective variants reported elsewhere. Out of the eight viral coding segments, the technique was adapted using natural Chilean variants for two of them, namely segments 5 and 6, recognized as virulence-associated factors. Our work demonstrates the versatility of the technique as well as its superior resolution capacity compared with standard techniques currently in use as key diagnostic tools. PMID:22719837

  4. Tomographic iterative reconstruction of a passive scalar in a 3D turbulent flow

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Kylling, Arve; Cassiani, Massimo; Solveig Dinger, Anne; Stebel, Kerstin; Schmidbauer, Norbert; Stohl, Andreas

    2017-04-01

    Turbulence in stable planetary boundary layers often encountered in high latitudes influences the exchange fluxes of heat, momentum, water vapor and greenhouse gases between the Earth's surface and the atmosphere. In climate and meteorological models, such effects of turbulence need to be parameterized, ultimately based on experimental data. A novel experimental approach is being developed within the COMTESSA project in order to study turbulence statistics at high resolution. Using controlled tracer releases, high-resolution camera images and estimates of the background radiation, different tomographic algorithms can be applied in order to obtain time series of 3D representations of the scalar dispersion. In this preliminary work, using synthetic data, we investigate different reconstruction algorithms with emphasis on algebraic methods. We study the dependence of the reconstruction quality on the discretization resolution and the geometry of the experimental device in both 2 and 3-D cases. We assess the computational aspects of the iterative algorithms focusing of the phenomenon of semi-convergence applying a variety of stopping rules. We discuss different strategies for error reduction and regularization of the ill-posed problem.

  5. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deming, Drake; Sheppard, Kyle

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at highmore » spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.« less

  6. First Optical Observations of Interhemispheric Electron Reflections Within Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Samara, M.; Michell, R. G.; Khazanov, G. V.

    2017-01-01

    A case study of a pulsating auroral event imaged optically at high time resolution presents direct observational evidence in agreement with the interhemispheric electron bouncing predicted by the Super Thermal Electron Transport model. Pulsation-on times are identified and subsequent equally spaced fainter pulsations are also noted and can be explained by a portion/percentage of the primary precipitating electrons reflecting upward from the ionosphere, traveling to the opposite hemisphere and reflecting upward again. The high time resolution of these data, combined with the short duration of the pulsation-on time (approx. 1 s) and the relatively long spacing between pulsations (approx. 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere.

  7. High-Definition Differential Ion Mobility Spectrometry with Resolving Power up to 500

    PubMed Central

    Shvartsburg, Alexandre A.; Seim, Tom A.; Danielson, William F.; Norheim, Randy; Moore, Ronald J.; Anderson, Gordon A.; Smith, Richard D.

    2013-01-01

    As the resolution of analytical methods improves, further progress tends to be increasingly limited by instrumental parameter instabilities that could be ignored before. This is now the case with differential ion mobility spectrometry (FAIMS), where fluctuations of the voltages and gas pressure have become critical. A new high-definition generator for FAIMS compensation voltage reported here provides a stable and accurate output than can be scanned with negligible steps. This reduces the spectral drift and peak width, thus improving the resolving power (R) and resolution. The gain for multiply-charged peptides that have narrowest peaks is up to ~40%, and R ~ 400 – 500 is achievable using He/N2 or H2/N2 gas mixtures. PMID:23345059

  8. High-Definition Differential Ion Mobility Spectrometry with Resolving Power up to 500

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvartsburg, Alexandre A.; Seim, Thomas A.; Danielson, William F.

    2013-01-20

    As the resolution of analytical methods improve, further progress tends to be increasingly limited by instrumental parameter instabilities that could be ignored before. This is now the case with differential ion mobility spectrometry (FAIMS), where fluctuations of the voltages and gas pressure have become critical. A new high-definition generator for FAIMS compensation voltage reported here provides a stable and accurate output than can be scanned with negligible steps. This reduces the spectral drift and peak width, thus improving the resolving power (R) and resolution. The gain for multiply-charged peptides that have narrowest peaks is up to ~40%, and R ~more » 400 - 500 is achievable using He/N2 or H2/N2 gas mixtures.« less

  9. Benefits of GMR sensors for high spatial resolution NDT applications

    NASA Astrophysics Data System (ADS)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  10. High-resolution geological mapping at 3D Environments: A case study from the fold-and-thrust belt in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.

    2016-12-01

    Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.

  11. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  12. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGES

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  13. 3D radar wavefield tomography of comet interiors

    NASA Astrophysics Data System (ADS)

    Sava, Paul; Asphaug, Erik

    2018-04-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their surface and interior structure in detail and at high resolution. The interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data from multiple viewpoints, as in medical tomography. Radar tomography can be performed using methodology adapted from terrestrial exploration seismology. Our feasibility study primarily focuses on full wavefield methods that facilitate high quality imaging of small body interiors. We consider the case of a monostatic system (co-located transmitters and receivers) operated in various frequency bands between 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Using realistic numerical experiments, we demonstrate that wavefield techniques can generate high resolution tomograms of comets nuclei with arbitrary shape and complex interior properties.

  14. Recognize PM2.5 sources and emission patterns via high-density sensor network: An application case in Beijing

    NASA Astrophysics Data System (ADS)

    Ba, Yu tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Zhang, Da wei; Yin, Wen jun

    2017-04-01

    Beijing suffered severe air pollution during wintertime, 2016, with the unprecedented high level pollutants monitored. As the most dominant pollutant, fine particulate matter (PM2.5) was measured via high-density sensor network (>1000 fixed monitors across 16000 km2 area). This campaign provided precise observations (spatial resolution ≈ 3 km, temporal resolution = 10 min, error of measure < 5 ug/m3) to track potential emission sources. In addition, these observations coupled with WRF-Chem model (Weather Research and Forecasting model coupled with Chemistry) were analyzed to elucidate the effects of atmospheric transportations across regions, both horizontal and vertical, on emission patterns during this haze period. The results quantified the main cause of regional transport and local emission, and highlighted the importance of cross-region cooperation in anti-pollution campaigns.

  15. Ultra-broadband ptychography with self-consistent coherence estimation from a high harmonic source

    NASA Astrophysics Data System (ADS)

    Odstrčil, M.; Baksh, P.; Kim, H.; Boden, S. A.; Brocklesby, W. S.; Frey, J. G.

    2015-09-01

    With the aim of improving imaging using table-top extreme ultraviolet sources, we demonstrate coherent diffraction imaging (CDI) with relative bandwidth of 20%. The coherence properties of the illumination probe are identified using the same imaging setup. The presented methods allows for the use of fewer monochromating optics, obtaining higher flux at the sample and thus reach higher resolution or shorter exposure time. This is important in the case of ptychography when a large number of diffraction patterns need to be collected. Our microscopy setup was tested on a reconstruction of an extended sample to show the quality of the reconstruction. We show that high harmonic generation based EUV tabletop microscope can provide reconstruction of samples with a large field of view and high resolution without additional prior knowledge about the sample or illumination.

  16. Tidal dwarf galaxies in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Ploeckinger, Sylvia; Sharma, Kuldeep; Schaye, Joop; Crain, Robert A.; Schaller, Matthieu; Barber, Christopher

    2018-02-01

    The formation and evolution of gravitationally bound, star forming substructures in tidal tails of interacting galaxies, called tidal dwarf galaxies (TDG), has been studied, until now, only in idealized simulations of individual pairs of interacting galaxies for pre-determined orbits, mass ratios and gas fractions. Here, we present the first identification of TDG candidates in fully cosmological simulations, specifically the high-resolution simulations of the EAGLE suite. The finite resolution of the simulation limits their ability to predict the exact formation rate and survival time-scale of TDGs, but we show that gravitationally bound baryonic structures in tidal arms already form in current state-of-the-art cosmological simulations. In this case, the orbital parameter, disc orientations as well as stellar and gas masses and the specific angular momentum of the TDG forming galaxies are a direct consequence of cosmic structure formation. We identify TDG candidates in a wide range of environments, such as multiple galaxy mergers, clumpy high-redshift (up to z = 2) galaxies, high-speed encounters and tidal interactions with gas-poor galaxies. We present selection methods, the properties of the identified TDG candidates and a road map for more quantitative analyses using future high-resolution simulations.

  17. 2015 Clean Air Act Vehicle and Engine Enforcement Case Resolutions

    EPA Pesticide Factsheets

    2015 Enforcement case resolutions such as expedited settlement agreements, administrative settlement agreements, administrative penalty orders, consent agreements and final orders, and consent decrees are listed by respondent name below.

  18. 2016 Clean Air Act Vehicle and Engine Enforcement Case Resolutions

    EPA Pesticide Factsheets

    2016 Enforcement case resolutions such as expedited settlement agreements, administrative settlement agreements, administrative penalty orders, consent agreements and final orders, and consent decrees are listed by respondent name below.

  19. 2018 Clean Air Act Vehicle and Engine Enforcement Case Resolutions

    EPA Pesticide Factsheets

    2018 Enforcement case resolutions such as expedited settlement agreements, administrative settlement agreements, administrative penalty orders, consent agreements and final orders, and consent decrees are listed by respondent name below.

  20. 2017 Clean Air Act Vehicle and Engine Enforcement Case Resolutions

    EPA Pesticide Factsheets

    2017 Enforcement case resolutions such as expedited settlement agreements, administrative settlement agreements, administrative penalty orders, consent agreements and final orders, and consent decrees are listed by respondent name below.

  1. Sensitivity of The High-resolution Wam Model With Respect To Time Step

    NASA Astrophysics Data System (ADS)

    Kasemets, K.; Soomere, T.

    The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave heights over the whole Baltic Sea was 2.4 m (1 minute) and 2.04 m (3 minutes), respectively. The most probable reason of such difference is that the WAM model with a relatively large time step poorly describes wave field evolution in the Aland area with extremely ragged bottom topography and coastal line. In earlier studies, it has been reported that the WAM model frequently underestimates wave heights in the northern Baltic Proper by 20-30% in the case of strong north storms (Tuomi et al, Report series of the Finnish Institute of Marine Re- search, 1999). The described results suggest that a part of this underestimation may be removed through a proper choice of the time step.

  2. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    DOE Data Explorer

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  3. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi, E-mail: yiguo@usc.edu; Zhu, Yinghua; Lingala, Sajan Goud

    Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm{sup 3}, FOV 22 × 22 × 4.2 cm{sup 3}, and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm{sup 3}, and broader coverage 22 × 22 × 19 cm{sup 3}. Temporal resolution was 5 smore » for both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists. Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoqi; Yao, Lei; Xi, Lei

    Purpose: To evaluate the feasibility of functional photoacoustic tomography (fPAT) for high resolution detection and characterization of breast cancer and to demonstrate for the first time quantitative hemoglobin concentration and oxygen saturation images of breasts that were formed with model-based reconstruction of tomographic photoacoustic data. Methods: The study was HIPAA compliant and was approved by the university institutional review board. Written informed consents were obtained from all the participants. Ten cases, including six cancer and four healthy (mean age = 50 yr; age range = 41–66 yr), were examined. Functional images of breast tissue including absolute total hemoglobin concentration (Hb{submore » T}) and oxygen saturation (StO{sub 2}%) were obtained by fPAT and cross validated with magnetic resonance imaging (MRI) readings and/or histopathology. Results: Hb{sub T} and StO{sub 2}% maps from all six pathology-confirmed cancer cases (60%) show clear detection of tumor, while MR images indicate clear detection of tumor for five of six cancer cases; one small tumor was read as near-complete-resolution by MRI. The average Hb{sub T} and StO{sub 2}% value of suspicious lesion area for the cancer cases was 61.6 ± 18.9 μM/l and 67.5% ± 5.2% compared to 25.6 ± 7.4 μM/l and 65.2% ± 3.8% for background normal tissue. Conclusions: fPAT has the potential to be a significant add-on in breast cancer detection and characterization as it provides submillimeter resolution functional images of breast lesions.« less

  5. Characterization of aluminum nitride based films with high resolution X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.

    2018-02-01

    X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.

  6. Standoff imaging of a masked human face using a 670 GHz high resolution radar

    NASA Astrophysics Data System (ADS)

    Kjellgren, Jan; Svedin, Jan; Cooper, Ken B.

    2011-11-01

    This paper presents an exploratory attempt to use high-resolution radar measurements for face identification in forensic applications. An imaging radar system developed by JPL was used to measure a human face at 670 GHz. Frontal views of the face were measured both with and without a ski mask at a range of 25 m. The realized spatial resolution was roughly 1 cm in all three dimensions. The surfaces of the ski mask and the face were detected by using the two dominating reflections from amplitude data. Various methods for visualization of these surfaces are presented. The possibility to use radar data to determine certain face distance measures between well-defined face landmarks, typically used for anthropometric statistics, was explored. The measures used here were face length, frontal breadth and interpupillary distance. In many cases the radar system seems to provide sufficient information to exclude an innocent subject from suspicion. For an accurate identification it is believed that a system must provide significantly more information.

  7. Earth mapping - aerial or satellite imagery comparative analysis

    NASA Astrophysics Data System (ADS)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  8. Phase-based, high spatial resolution and distributed, static and dynamic strain sensing using Brillouin dynamic gratings in optical fibers.

    PubMed

    Bergman, Arik; Langer, Tomi; Tur, Moshe

    2017-03-06

    A novel technique combining Brillouin phase-shift measurements with Brillouin dynamic gratings (BDGs) reflectometry in polarization-maintaining fibers is presented here for the first time. While a direct measurement of the optical phase in standard BDG setups is impractical due to non-local phase contributions, their detrimental effect is reduced by ~4 orders of magnitude through the coherent addition of Stokes and anti-Stokes reflections from two counter-propagating BDGs in the fiber. The technique advantageously combines the high-spatial-resolution of BDGs reflectometry with the increased tolerance to optical power fluctuations of phasorial measurements, to enhance the performance of fiber-optic strain sensors. We demonstrate a distributed measurement (20cm spatial-resolution) of both static and dynamic (5kHz of vibrations at a sampling rate of 1MHz) strain fields acting on the fiber, in good agreement with theory and (for the static case) with the results of commercial reflectometers.

  9. Optical Coherence Tomography Findings of Exophytic Retinal Capillary Hemangiomas of the Posterior Pole

    PubMed Central

    Chin, Eric K.; Trikha, Rupan; Morse, Lawrence S.; Zawadzki, Robert J.; Werner, John S.; Park, Susanna S.

    2013-01-01

    Exophytic retinal capillary hemangiomas (RCH) can be a diagnostic challenge in subjects without von Hippel-Lin-dau disease (VHL). This report of two cases describes the optical coherence tomographic (OCT) characteristics of RCH in two eyes of a subject with VHL and in one eye of an otherwise normal subject. Three different OCT instruments were used (Stratus, Cirrus and/or custom high resolution Fourier-domain OCT with 4.5 μm axial resolution) depending on availability. All instruments localized the tumor to the outer retina. A sharp border between the tumor and overlying inner retina was noted. The tumor bulged into the subretinal space and showed marked shadowing. Associated cystoid macular edema and sub-retinal fluid were noted. High-resolution Fourier-domain OCT showed a focal photoreceptor layer rip in the adjacent tumor-free macula in one eye with poor vision after treatment. OCT may be a useful tool in diagnosing RCH and studying associated morphologic changes. PMID:20337341

  10. Dynamic-Receive Focusing with High-Frequency Annular Arrays

    NASA Astrophysics Data System (ADS)

    Ketterling, J. A.; Mamou, J.; Silverman, R. H.

    High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.

  11. Structurally Resolved Abundances and Depletions in the Rho OPH Cloud

    NASA Astrophysics Data System (ADS)

    Seab, C.

    1995-07-01

    The mechanism that determines the pattern of depletion ofelements in the interstellar medium has been a problem for along time. It is clear that some of the most refractoryelements such as Si, Fe, and Mg, are heavily depleted onto theinterstellar grains. On the other hand, some elements such asS and Zn are normally either undepleted or very lightlydepleted. The difference between the two cases is notunderstood. We propose to address this question with adetailed study of the depletion patterns in the Rho Ophiuchicloud. This study is strongly based on a combination of thecapabilities of two modern instruments: the GHRS for high-resolution UV data, and the Ultra High Resolution Facility(UHRF) of the AAT. This instrument has been used to obtain NaI line profiles in the Rho Oph cloud with a resolution ofR=1,000,000. The combination of these two types of data willbe used to resolve the velocity structure of the elementdepletions in the cloud.

  12. PUCHEROS: a cost-effective solution for high-resolution spectroscopy with small telescopes

    NASA Astrophysics Data System (ADS)

    Vanzi, L.; Chacon, J.; Helminiak, K. G.; Baffico, M.; Rivinius, T.; Štefl, S.; Baade, D.; Avila, G.; Guirao, C.

    2012-08-01

    We present PUCHEROS, the high-resolution echelle spectrograph, developed at the Center of Astro-Engineering of Pontificia Universidad Catolica de Chile to provide an effective tool for research and teaching of astronomy. The instrument is fed by a single-channel optical fibre and it covers the visible range from 390 to 730 nm in one shot, reaching a spectral resolution of about 20 000. In the era of extremely large telescopes our instrument aims to exploit the capabilities offered by small telescopes in a cost-effective way, covering the observing needs of a community of astronomers, in Chile and elsewhere, which do not necessarily need large collecting areas for their research. In particular the instrument is well suited for long-term spectroscopic monitoring of bright variable and transient targets down to a V magnitude of about 10. We describe the instrument and present a number of text case examples of observations obtained during commissioning and early science.

  13. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    NASA Astrophysics Data System (ADS)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  14. GPR impedance inversion for imaging and characterization of buried archaeological remains: A case study at Mudu city cite in Suzhou, China

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Shi, Zhanjie; Wang, Bangbing; Yu, Tianxiang

    2018-01-01

    As a method with high resolution, GPR has been extensively used in archaeological surveys. However, conventional GPR profile can only provide limited geometry information, such as the shape or location of the interface, but can't give the distribution of physical properties which could help identify the historical remains more directly. A common way for GPR to map parameter distribution is the common-midpoint velocity analysis, but it provides limited resolution. Another research hotspot, the full-waveform inversion, is unstable and relatively dependent on the initial model. Coring method could give direct information in drilling site, while the accurate result is only limited in several boreholes. In this paper, we propose a new scheme to enhance imaging and characterization of archaeological targets by fusion of GPR and coring data. The scheme mainly involves the impedance inversion of conventional common-offset GPR data, which uses well log to compensate GPR data and finally obtains a high-resolution estimation of permittivity. The core analysis result also contributes to interpretation of the inversion result. To test this method, we did a case study at Mudu city site in Suzhou, China. The results provide clear images of the ancient city's moat and wall subsurface and improve the characterization of archaeological targets. It is shown that this method is effective and feasible for archaeological exploration.

  15. Multiplexed EFPI sensors with ultra-high resolution

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    An investigation of performance of multiplexed displacement sensors based on extrinsic Fabry-Perot interferometers has been carried out. We have considered serial and parallel configurations and analyzed the issues and advantages of the both. We have also extended the previously developed baseline demodulation algorithm for the case of a system of multiplexed sensors. Serial and parallel multiplexing schemes have been experimentally implemented with 3 and 4 sensing elements, respectively. For both configurations the achieved baseline standard deviations were between 30 and 200 pm, which is, to the best of our knowledge, more than an order less than any other multiplexed EFPI resolution ever reported.

  16. 'Agglutination and flocculation' of stem cells collected by apheresis due to cryofibrinogen.

    PubMed

    Siegenthaler, M A; Vu, D-H; Ebnöther, M; Ketterer, N; Luthi, F; Schmid, P; Bargetzi, M; Gasparini, D; Tissot, J-D

    2004-04-01

    Collection of peripheral stem cells by apheresis is a well-described process. Here, investigations concerning 'agglutination and flocculation' of stem cells collected from two patients are described. In both cases, cryoproteins were observed and cryofibrinogen was identified using high-resolution two-dimensional electrophoresis. In one case, peripheral stem cells were collected after a second course of mobilization, and the cells were immediately washed at 37 degrees C before being frozen, allowing their use, despite the presence of cryofibrinogen. In the other case, 'agglutination' was reversed by warming the bag, and plasma was removed before freezing.

  17. Chromosome r(10)(p15.3q26.12) in a newborn child: case report.

    PubMed

    Gunnarsson, Cecilia; Graffmann, Barbara; Jonasson, Jon

    2009-12-07

    Ring chromosome 10 is a rare cytogenetic finding. Of the less than 10 reported cases we have found in the literature, none was characterized using high-resolution microarray analysis. Ring chromosomes are frequently unstable due to sister chromatid exchanges and mitotic failures. When mosaicism is present, the interpretation of genotype-phenotype correlations becomes extremely difficult. We report on a newborn girl with growth retardation, microcephaly, congenital heart defects, dysmorphic features and psychomotor retardation. Karyotyping revealed a non-mosaic apparently stable ring chromosome 10 replacing one of the normal homologues in all analyzed metaphases. High-resolution oligonucleotide microarray analysis showed a de novo approximately 12.5 Mb terminal deletion 10q26.12 -> qter and a corresponding 285 kb terminal deletion of 10pter -> p15.3. This case demonstrates that an increased nuchal translucency thickness detected by early ultrasonography should preferably lead to not only QF-PCR for the diagnosis of Down syndrome but also karyotyping. In the future, microarray analysis, which needs further evaluation, might become the method of choice. The clinical phenotype of our patient was in agreement with that of patients with a terminal 10q deletion. For the purpose of genotype-phenotype analysis, there seems to be no need for a "ring syndrome" concept.

  18. Lymphoma presenting as gynaecomastia

    PubMed Central

    Mahmood, S; Sabih, Z; Sabih, D

    2011-01-01

    Breast lymphoma is an uncommon neoplasm affecting the breast and is extremely rare in males. While gynaecomastia is common and in most cases benign, it can sometimes result from significant pathology and the physician should keep in mind the possible diseases that can lead to gynaecomastia. This paper reports a case of lymphoma presenting as unilateral gynaecomastia. The paper discusses the differential diagnosis and emphasises the points that should raise the suspicion of pathology. Mammography, high resolution ultrasound and biopsy findings are discussed and literature survey is presented. PMID:22287984

  19. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    NASA Astrophysics Data System (ADS)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  20. High School Prayers at Graduation: Will the Supreme Court Pronounce the Benediction?

    ERIC Educational Resources Information Center

    Mawdsley, Ralph D.; Russo, Charles J.

    1991-01-01

    The Supreme Court has decided to address the facts in "Lee v. Weisman" involving the validity of graduation prayer. Reviews the opinions of the current justices regarding the role of the tripartite establishment clause "Lemon" test and concludes with a projection of the court's resolution of the "Lee" case. (73…

  1. Progress and Challenges in Short to Medium Range Coupled Prediction

    NASA Technical Reports Server (NTRS)

    Brassington, G. B.; Martin, M. J.; Tolman, H. L.; Akella, Santha; Balmeseda, M.; Chambers, C. R. S.; Cummings, J. A.; Drillet, Y.; Jansen, P. A. E. M.; Laloyaux, P.; hide

    2014-01-01

    The availability of GODAE Oceanview-type ocean forecast systems provides the opportunity to develop high-resolution, short- to medium-range coupled prediction systems. Several groups have undertaken the first experiments based on relatively unsophisticated approaches. Progress is being driven at the institutional level targeting a range of applications that represent their respective national interests with clear overlaps and opportunities for information exchange and collaboration. These include general circulation, hurricanes, extra-tropical storms, high-latitude weather and sea-ice forecasting as well as coastal air-sea interaction. In some cases, research has moved beyond case and sensitivity studies to controlled experiments to obtain statistically significant metrics.

  2. Treatment of Fungal Urinary Tract Infection.

    PubMed

    Thomas, Lewis; Tracy, Chad R

    2015-11-01

    Funguria, and particularly candiduria, is an increasingly common problem encountered by the practicing urologist and is associated with high-acuity care, indwelling catheters, diabetes mellitus, antibiotic and steroid use, and urinary tract disease. In most cases, candiduria is asymptomatic and follows a benign clinical course with antifungal therapy only required in symptomatic or high-risk cases, because spontaneous resolution is common in patients with asymptomatic colonization. Rarely, invasive infections can occur (such as fungus balls or renal abscesses) and may require percutaneous and endoscopic interventions. This article highlights the workup and treatment of funguria and its related urologic manifestations. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Bearing faults identification and resonant band demodulation based on wavelet de-noising methods and envelope analysis

    NASA Astrophysics Data System (ADS)

    Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali

    2017-07-01

    The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.

  4. Shared Mycobacterium avium Genotypes Observed among Unlinked Clinical and Environmental Isolates

    PubMed Central

    Weigel, Kris M.; Yakrus, Mitchell A.; Becker, Annie L.; Chen, Hui-Ling; Fridley, Gina; Sikora, Arthur; Speake, Cate; Hilborn, Elizabeth D.; Pfaller, Stacy

    2013-01-01

    Our understanding of the sources of Mycobacterium avium infection is partially based on genotypic matching of pathogen isolates from cases and environmental sources. These approaches assume that genotypic identity is rare in isolates from unlinked cases or sources. To test this assumption, a high-resolution PCR-based genotyping approach, large-sequence polymorphism (LSP)-mycobacterial interspersed repetitive unit–variable-number tandem repeat (MIRU-VNTR), was selected and used to analyze clinical and environmental isolates of M. avium from geographically diverse sources. Among 127 clinical isolates from seven locations in North America, South America, and Europe, 42 genotypes were observed. Among 12 of these genotypes, matches were seen in isolates from apparently unlinked patients in two or more geographic locations. Six of the 12 were also observed in environmental isolates. A subset of these isolates was further analyzed by alternative strain genotyping methods, pulsed-field gel electrophoresis and MIRU-VNTR, which confirmed the existence of geographically dispersed strain genotypes. These results suggest that caution should be exercised in interpreting high-resolution genotypic matches as evidence for an acquisition event. PMID:23851084

  5. The 27-28 October 1986 FIRE IFO cirrus case study - Cloud optical properties determined by High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Grund, C. J.; Eloranta, E. W.

    1990-01-01

    The High Spectral Resolution Lidar (HSRL) was operated from a roof-top site in Madison, Wisconsin. The transmitter configuration used to acquire the case study data produces about 50 mW of ouput power and achieved eye-safe, direct optical depth, and backscatter cross section measurements with 10 min averaging times. A new continuously pumped, injection seeded, frequency doubled Nd:YAG laser transmitter reduces time-averaging constraints by a factor of about 10, while improving the aerosol-molecular signal separation capabilities and wavelength stability of the instrument. The cirrus cloud backscatter-phase functions have been determined for the October 27-28, 1986 segment of the HSRL FIRE dataset. Features exhibiting backscatter cross sections ranging over four orders of magnitude have been observed within this 33 h period. During this period, cirrus clouds were observed with optical thickness ranging from 0.01 to 1.4. The altitude relationship between cloud top and bottom boundaries and the optical center of the cloud is influenced by the type of formation observed.

  6. Video-rate or high-precision: a flexible range imaging camera

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  7. The Subaru Coronagraphic Extreme AO project: an XAO4ELT precursor

    NASA Astrophysics Data System (ADS)

    Martinache, F.

    2011-09-01

    A diffraction-limited 30-meter telescope theoretically provides a 10 mas resolution limit in the near infrared. Modern coronagraphs like the Vortex, the 8OPM and the PIAA offer the means to take full advantage of this angular resolution allowing to explore at high contrast, the innermost parts of nearby planetary systems to within a fraction of an astronomical unit: an unprecedented capability that will revolutionize our understanding of planet formation across the habitable zone. A precursor of such a system is the Subaru Coronagraphic Extreme AO project. SCExAO combines a high performance PIAA-based coronagraph downstream Subaru's AO188 AO system and a 1024-actuator MEMS DM. SCExAO employs advanced wavefront control schemes that make high contrast detection possible at 1 λ/D, providing for a few cases, the possibility to detect the light reflected by exoplanets. Moderate-high contrast detection in the super-resolution regime (<λ/D) is also possible using well calibrated closure quantities like closure-phase for a non-redundant (masked) aperture and its extension for to arbitrary apertures (Kernel-phase). Lessons learned from SCExAO's incremental deployment plan during its first 2011 engineering campaign provides insights that will guide future development of high contrast instrumentation on an ELT.

  8. Laser range profiling for small target recognition

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Tulldahl, Michael

    2017-03-01

    Long range identification (ID) or ID at closer range of small targets has its limitations in imaging due to the demand for very high-transverse sensor resolution. This is, therefore, a motivation to look for one-dimensional laser techniques for target ID. These include laser vibrometry and laser range profiling. Laser vibrometry can give good results, but is not always robust as it is sensitive to certain vibrating parts on the target being in the field of view. Laser range profiling is attractive because the maximum range can be substantial, especially for a small laser beam width. A range profiler can also be used in a scanning mode to detect targets within a certain sector. The same laser can also be used for active imaging when the target comes closer and is angularly resolved. Our laser range profiler is based on a laser with a pulse width of 6 ns (full width half maximum). This paper will show both experimental and simulated results for laser range profiling of small boats out to a 6 to 7-km range and a unmanned arrial vehicle (UAV) mockup at close range (1.3 km). The naval experiments took place in the Baltic Sea using many other active and passive electro-optical sensors in addition to the profiling system. The UAV experiments showed the need for a high-range resolution, thus we used a photon counting system in addition to the more conventional profiler used in the naval experiments. This paper shows the influence of target pose and range resolution on the capability of classification. The typical resolution (in our case 0.7 m) obtainable with a conventional range finder type of sensor can be used for large target classification with a depth structure over 5 to 10 m or more, but for smaller targets such as a UAV a high resolution (in our case 7.5 mm) is needed to reveal depth structures and surface shapes. This paper also shows the need for 3-D target information to build libraries for comparison of measured and simulated range profiles. At closer ranges, full 3-D images should be preferable.

  9. Impacts of high resolution model downscaling in coastal regions

    NASA Astrophysics Data System (ADS)

    Bricheno, Lucy; Wolf, Judith

    2013-04-01

    With model development and cheaper computational resources ocean forecasts are becoming readily available, high resolution coastal forecasting is now a reality. This can only be achieved, however, by downscaling global or basin-scale products such as the MyOcean reanalyses and forecasts. These model products have resolution ranging from 1/16th - 1/4 degree, which are often insufficient for coastal scales, but can provide initialisation and boundary data. We present applications of downscaling the MyOcean products for use in shelf-seas and the nearshore. We will address the question 'Do coastal predictions improve with higher resolution modelling?' with a few focused examples, while also discussing what is meant by an improved result. Increasing resolution appears to be an obvious route for getting more accurate forecasts in operational coastal models. However, when models resolve finer scales, this may lead to the introduction of high-frequency variability which is not necessarily deterministic. Thus a flow may appear more realistic by generating eddies but the simple statistics like rms error and correlation may become less good because the model variability is not exactly in phase with the observations (Hoffman et al., 1995). By deciding on a specific process to simulate (rather than concentrating on reducing rms error) we can better assess the improvements gained by downscaling. In this work we will select two processes which are dominant in our case-study site: Liverpool Bay. Firstly we consider the magnitude and timing of a peak in tide-surge elevations, by separating out the event into timing (or displacement) and intensity (or amplitude) errors. The model can thus be evaluated on how well it predicts the timing and magnitude of the surge. The second important characteristic of Liverpool Bay is the position of the freshwater front. To evaluate model performance in this case, the location, sharpness, and temperature difference across the front will be considered. We will show that by using intelligent metrics designed with a physical process in mind, we can learn more about model performance than by considering 'bulk' statistics alone. R. M. Hoffman and Z. Liu and J-F. Louic and C. Grassotti (1995) 'Distortion Representation of Forecast Errors' Monthly Weather Review 123: 2758-2770

  10. Analysis of Ultra High Resolution Sea Surface Temperature Level 4 Datasets

    NASA Technical Reports Server (NTRS)

    Wagner, Grant

    2011-01-01

    Sea surface temperature (SST) studies are often focused on improving accuracy, or understanding and quantifying uncertainties in the measurement, as SST is a leading indicator of climate change and represents the longest time series of any ocean variable observed from space. Over the past several decades SST has been studied with the use of satellite data. This allows a larger area to be studied with much more frequent measurements being taken than direct measurements collected aboard ship or buoys. The Group for High Resolution Sea Surface Temperature (GHRSST) is an international project that distributes satellite derived sea surface temperatures (SST) data from multiple platforms and sensors. The goal of the project is to distribute these SSTs for operational uses such as ocean model assimilation and decision support applications, as well as support fundamental SST research and climate studies. Examples of near real time applications include hurricane and fisheries studies and numerical weather forecasting. The JPL group has produced a new 1 km daily global Level 4 SST product, the Multiscale Ultrahigh Resolution (MUR), that blends SST data from 3 distinct NASA radiometers: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR), and the Advanced Microwave Scanning Radiometer ? Earth Observing System(AMSRE). This new product requires further validation and accuracy assessment, especially in coastal regions.We examined the accuracy of the new MUR SST product by comparing the high resolution version and a lower resolution version that has been smoothed to 19 km (but still gridded to 1 km). Both versions were compared to the same data set of in situ buoy temperature measurements with a focus on study regions of the oceans surrounding North and Central America as well as two smaller regions around the Gulf Stream and California coast. Ocean fronts exhibit high temperature gradients (Roden, 1976), and thus satellite data of SST can be used in the detection of these fronts. In this case, accuracy is less of a concern because the primary focus is on the spatial derivative of SST. We calculated the gradients for both versions of the MUR data set and did statistical comparisons focusing on the same regions.

  11. Geographic information systems and logistic regression for high-resolution malaria risk mapping in a rural settlement of the southern Brazilian Amazon.

    PubMed

    de Oliveira, Elaine Cristina; dos Santos, Emerson Soares; Zeilhofer, Peter; Souza-Santos, Reinaldo; Atanaka-Santos, Marina

    2013-11-15

    In Brazil, 99% of the cases of malaria are concentrated in the Amazon region, with high level of transmission. The objectives of the study were to use geographic information systems (GIS) analysis and logistic regression as a tool to identify and analyse the relative likelihood and its socio-environmental determinants of malaria infection in the Vale do Amanhecer rural settlement, Brazil. A GIS database of georeferenced malaria cases, recorded in 2005, and multiple explanatory data layers was built, based on a multispectral Landsat 5 TM image, digital map of the settlement blocks and a SRTM digital elevation model. Satellite imagery was used to map the spatial patterns of land use and cover (LUC) and to derive spectral indices of vegetation density (NDVI) and soil/vegetation humidity (VSHI). An Euclidian distance operator was applied to measure proximity of domiciles to potential mosquito breeding habitats and gold mining areas. The malaria risk model was generated by multiple logistic regression, in which environmental factors were considered as independent variables and the number of cases, binarized by a threshold value was the dependent variable. Out of a total of 336 cases of malaria, 133 positive slides were from inhabitants at Road 08, which corresponds to 37.60% of the notifications. The southern region of the settlement presented 276 cases and a greater number of domiciles in which more than ten cases/home were notified. From these, 102 (30.36%) cases were caused by Plasmodium falciparum and 174 (51.79%) cases by Plasmodium vivax. Malaria risk is the highest in the south of the settlement, associated with proximity to gold mining sites, intense land use, high levels of soil/vegetation humidity and low vegetation density. Mid-resolution, remote sensing data and GIS-derived distance measures can be successfully combined with digital maps of the housing location of (non-) infected inhabitants to predict relative likelihood of disease infection through the analysis by logistic regression. Obtained findings on the relation between malaria cases and environmental factors should be applied in the future for land use planning in rural settlements in the Southern Amazon to minimize risks of disease transmission.

  12. On the use of kinetic energy preserving DG-schemes for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Flad, David; Gassner, Gregor

    2017-12-01

    Recently, element based high order methods such as Discontinuous Galerkin (DG) methods and the closely related flux reconstruction (FR) schemes have become popular for compressible large eddy simulation (LES). Element based high order methods with Riemann solver based interface numerical flux functions offer an interesting dispersion dissipation behavior for multi-scale problems: dispersion errors are very low for a broad range of scales, while dissipation errors are very low for well resolved scales and are very high for scales close to the Nyquist cutoff. In some sense, the inherent numerical dissipation caused by the interface Riemann solver acts as a filter of high frequency solution components. This observation motivates the trend that element based high order methods with Riemann solvers are used without an explicit LES model added. Only the high frequency type inherent dissipation caused by the Riemann solver at the element interfaces is used to account for the missing sub-grid scale dissipation. Due to under-resolution of vortical dominated structures typical for LES type setups, element based high order methods suffer from stability issues caused by aliasing errors of the non-linear flux terms. A very common strategy to fight these aliasing issues (and instabilities) is so-called polynomial de-aliasing, where interpolation is exchanged with projection based on an increased number of quadrature points. In this paper, we start with this common no-model or implicit LES (iLES) DG approach with polynomial de-aliasing and Riemann solver dissipation and review its capabilities and limitations. We find that the strategy gives excellent results, but only when the resolution is such, that about 40% of the dissipation is resolved. For more realistic, coarser resolutions used in classical LES e.g. of industrial applications, the iLES DG strategy becomes quite inaccurate. We show that there is no obvious fix to this strategy, as adding for instance a sub-grid-scale models on top doesn't change much or in worst case decreases the fidelity even more. Finally, the core of this work is a novel LES strategy based on split form DG methods that are kinetic energy preserving. The scheme offers excellent stability with full control over the amount and shape of the added artificial dissipation. This premise is the main idea of the work and we will assess the LES capabilities of the novel split form DG approach when applied to shock-free, moderate Mach number turbulence. We will demonstrate that the novel DG LES strategy offers similar accuracy as the iLES methodology for well resolved cases, but strongly increases fidelity in case of more realistic coarse resolutions.

  13. Rural cases of equine West Nile virus encephalomyelitis and the normalized difference vegetation index

    USGS Publications Warehouse

    Ward, M.P.; Ramsay, B.H.; Gallo, K.

    2005-01-01

    Data from an outbreak (August to October, 2002) of West Nile virus (WNV) encephalomyelitis in a population of horses located in northern Indiana was scanned for clusters in time and space. One significant (p = 0.04) cluster of case premises was detected, occurring between September 4 and 10 in the south-west part of the study area (85.70??N, 45.50??W). It included 10 case premises (3.67 case premises expected) within a radius of 2264 m. Image data were acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensor onboard a National Oceanic and Atmospheric Administration polar-orbiting satellite. The Normalized Difference Vegetation Index (NDVI) was calculated from visible and near-infrared data of daily observations, which were composited to produce a weekly-1km2 resolution raster image product. During the epidemic, a significant (p<0.01) decrease (0.025 per week) in estimated NDVI was observed at all case and control premise sites. The median estimated NDVI (0.659) for case premises within the cluster identified was significantly (p<0.01) greater than the median estimated NDVI for other case (0.571) and control (0.596) premises during the same period. The difference in median estimated NDVI for case premises within this cluster, compared to cases not included in this cluster, was greatest (5.3% and 5.1%, respectively) at 1 and 5 weeks preceding occurrence of the cluster. The NDVI may be useful for identifying foci of WNV transmission. ?? Mary Ann Liebert, Inc.

  14. Broadband External-Cavity Diode Laser

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.

    2005-01-01

    A broadband external-cavity diode laser (ECDL) has been invented for use in spectroscopic surveys preparatory to optical detection of gases. Heretofore, commercially available ECDLs have been designed, in conjunction with sophisticated tuning assemblies, for narrow- band (and, typically, single-frequency) operation, as needed for high sensitivity and high spectral resolution in some gas-detection applications. However, for preparatory spectroscopic surveys, high sensitivity and narrow-band operation are not needed; in such cases, the present broadband ECDL offers a simpler, less-expensive, more-compact alternative to a commercial narrowband ECDL.

  15. The Effect of Rainfall Measurement Technique and Its Spatiotemporal Resolution on Discharge Predictions in the Netherlands

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.

    2014-12-01

    Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.

  16. Simultaneous Identification of Four "Legal High" Plant Species in a Multiplex PCR High-Resolution Melt Assay.

    PubMed

    Elkins, Kelly M; Perez, Anjelica C U; Quinn, Alicia A

    2017-05-01

    The international prevalence of "legal high" drugs necessitates the development of a method for their detection and identification. Herein, we describe the development and validation of a tetraplex multiplex real-time polymerase chain reaction (PCR) assay used to simultaneously identify morning glory, jimson weed, Hawaiian woodrose, and marijuana detected by high-resolution melt using LCGreen Plus ® . The PCR assay was evaluated based on the following: (i) specificity and selectivity-primers were tested on DNA extracted from 30 species and simulated forensic samples, (ii) sensitivity-serial dilutions of the target DNA were prepared, and (iii) reproducibility and reliability-sample replicates were tested and remelted on different days. The assay is ideal for cases in which inexpensive assays are needed to quickly detect and identify trace biological material present on drug paraphernalia that is too compromised for botanical microscopic identification and for which analysts are unfamiliar with the morphology of the emerging "legal high" species. © 2016 American Academy of Forensic Sciences.

  17. Interactive local super-resolution reconstruction of whole-body MRI mouse data: a pilot study with applications to bone and kidney metastases.

    PubMed

    Dzyubachyk, Oleh; Khmelinskii, Artem; Plenge, Esben; Kok, Peter; Snoeks, Thomas J A; Poot, Dirk H J; Löwik, Clemens W G M; Botha, Charl P; Niessen, Wiro J; van der Weerd, Louise; Meijering, Erik; Lelieveldt, Boudewijn P F

    2014-01-01

    In small animal imaging studies, when the locations of the micro-structures of interest are unknown a priori, there is a simultaneous need for full-body coverage and high resolution. In MRI, additional requirements to image contrast and acquisition time will often make it impossible to acquire such images directly. Recently, a resolution enhancing post-processing technique called super-resolution reconstruction (SRR) has been demonstrated to improve visualization and localization of micro-structures in small animal MRI by combining multiple low-resolution acquisitions. However, when the field-of-view is large relative to the desired voxel size, solving the SRR problem becomes very expensive, in terms of both memory requirements and computation time. In this paper we introduce a novel local approach to SRR that aims to overcome the computational problems and allow researchers to efficiently explore both global and local characteristics in whole-body small animal MRI. The method integrates state-of-the-art image processing techniques from the areas of articulated atlas-based segmentation, planar reformation, and SRR. A proof-of-concept is provided with two case studies involving CT, BLI, and MRI data of bone and kidney tumors in a mouse model. We show that local SRR-MRI is a computationally efficient complementary imaging modality for the precise characterization of tumor metastases, and that the method provides a feasible high-resolution alternative to conventional MRI.

  18. Combining visual rehabilitative training and noninvasive brain stimulation to enhance visual function in patients with hemianopia: a comparative case study.

    PubMed

    Plow, Ela B; Obretenova, Souzana N; Halko, Mark A; Kenkel, Sigrid; Jackson, Mary Lou; Pascual-Leone, Alvaro; Merabet, Lotfi B

    2011-09-01

    To standardize a protocol for promoting visual rehabilitative outcomes in post-stroke hemianopia by combining occipital cortical transcranial direct current stimulation (tDCS) with Vision Restoration Therapy (VRT). A comparative case study assessing feasibility and safety. A controlled laboratory setting. Two patients, both with right hemianopia after occipital stroke damage. METHODS AND OUTCOME MEASUREMENTS: Both patients underwent an identical VRT protocol that lasted 3 months (30 minutes, twice a day, 3 days per week). In patient 1, anodal tDCS was delivered to the occipital cortex during VRT training, whereas in patient 2 sham tDCS with VRT was performed. The primary outcome, visual field border, was defined objectively by using high-resolution perimetry. Secondary outcomes included subjective characterization of visual deficit and functional surveys that assessed performance on activities of daily living. For patient 1, the neural correlates of visual recovery were also investigated, by using functional magnetic resonance imaging. Delivery of combined tDCS with VRT was feasible and safe. High-resolution perimetry revealed a greater shift in visual field border for patient 1 versus patient 2. Patient 1 also showed greater recovery of function in activities of daily living. Contrary to the expectation, patient 2 perceived greater subjective improvement in visual field despite objective high-resolution perimetry results that indicated otherwise. In patient 1, visual function recovery was associated with functional magnetic resonance imaging activity in surviving peri-lesional and bilateral higher-order visual areas. Results of preliminary case comparisons suggest that occipital cortical tDCS may enhance recovery of visual function associated with concurrent VRT through visual cortical reorganization. Future studies may benefit from incorporating protocol refinements such as those described here, which include global capture of function, control for potential confounds, and investigation of underlying neural substrates of recovery. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  19. Rapid resolution of acute subdural hematoma and effects on the size of existent subdural hygroma: a case report.

    PubMed

    Coşar, Murat; Eser, Olcay; Aslan, Adem; Ela, Yüksel

    2007-07-01

    The diagnosis and management of acute subdural hematoma is important in neurosurgery practice. Rapid spontaneous resolution of acute subdural hematoma within a few hours is seen rarely on the CT scan. We present a case that enlarged the existent subdural hygroma showing rapid resolution of acute subdural hematoma with resolution in 9 hours after the trauma. Additionally, the follow-up CT scans in the 1st month showed the decrease of enlargement of subdural hygroma. The resolution of acute subdural hematoma and effect of acute subdural hematoma on subdural hygroma must be considered during management. The relation of acute subdural hematoma and subdural hygroma is important for the resolution and management of acute subdural hematoma.

  20. Modeling dust growth in protoplanetary disks: The breakthrough case

    NASA Astrophysics Data System (ADS)

    Drążkowska, J.; Windmark, F.; Dullemond, C. P.

    2014-07-01

    Context. Dust coagulation in protoplanetary disks is one of the initial steps toward planet formation. Simple toy models are often not sufficient to cover the complexity of the coagulation process, and a number of numerical approaches are therefore used, among which integration of the Smoluchowski equation and various versions of the Monte Carlo algorithm are the most popular. Aims: Recent progress in understanding the processes involved in dust coagulation have caused a need for benchmarking and comparison of various physical aspects of the coagulation process. In this paper, we directly compare the Smoluchowski and Monte Carlo approaches to show their advantages and disadvantages. Methods: We focus on the mechanism of planetesimal formation via sweep-up growth, which is a new and important aspect of the current planet formation theory. We use realistic test cases that implement a distribution in dust collision velocities. This allows a single collision between two grains to have a wide range of possible outcomes but also requires a very high numerical accuracy. Results: For most coagulation problems, we find a general agreement between the two approaches. However, for the sweep-up growth driven by the "lucky" breakthrough mechanism, the methods exhibit very different resolution dependencies. With too few mass bins, the Smoluchowski algorithm tends to overestimate the growth rate and the probability of breakthrough. The Monte Carlo method is less dependent on the number of particles in the growth timescale aspect but tends to underestimate the breakthrough chance due to its limited dynamic mass range. Conclusions: We find that the Smoluchowski approach, which is generally better for the breakthrough studies, is sensitive to low mass resolutions in the high-mass, low-number tail that is important in this scenario. To study the low number density features, a new modulation function has to be introduced to the interaction probabilities. As the minimum resolution needed for breakthrough studies depends strongly on setup, verification has to be performed on a case by case basis.

  1. Application of the LEPS technique for Quantitative Precipitation Forecasting (QPF) in Southern Italy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Walko, R. L.

    2006-03-01

    This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS), based on RAMS (Regional Atmospheric Modelling System), for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF) ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting), LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due to local and mesoscale forcing, the high resolution forecast (Hi-Res) has better performance compared to the ensemble mean for rainfall thresholds larger than 10mm but it tends to overestimate precipitation for lower amounts. This yields larger false alarms that have a detrimental effect on objective scores for lower thresholds. To exploit the advantages of a probabilistic forecast compared to a deterministic one, the relation between the ECMWF-EPS 700 hPa geopotential height spread and LEPS performance is analyzed. Results are promising even if additional studies are required.

  2. Chromosomal Minimal Critical Regions in Therapy-Related Leukemia Appear Different from Those of De Novo Leukemia by High-Resolution aCGH

    PubMed Central

    Itzhar, Nathalie; Dessen, Philippe; Toujani, Saloua; Auger, Nathalie; Preudhomme, Claude; Richon, Catherine; Lazar, Vladimir; Saada, Véronique; Bennaceur, Anelyse; Bourhis, Jean Henri; de Botton, Stéphane; Bernheim, Alain

    2011-01-01

    Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously “normal” karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML. PMID:21339820

  3. Chromosomal minimal critical regions in therapy-related leukemia appear different from those of de novo leukemia by high-resolution aCGH.

    PubMed

    Itzhar, Nathalie; Dessen, Philippe; Toujani, Saloua; Auger, Nathalie; Preudhomme, Claude; Richon, Catherine; Lazar, Vladimir; Saada, Véronique; Bennaceur, Anelyse; Bourhis, Jean Henri; de Botton, Stéphane; Bernheim, Alain

    2011-02-14

    Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously "normal" karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40 kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1 Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML.

  4. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  5. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  6. Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit--a hybrid tool for assessment of choroidal melanoma.

    PubMed

    Walter, Uwe; Niendorf, Thoralf; Graessl, Andreas; Rieger, Jan; Krüger, Paul-Christian; Langner, Sönke; Guthoff, Rudolf F; Stachs, Oliver

    2014-05-01

    A combination of magnetic resonance images with real-time high-resolution ultrasound known as fusion imaging may improve ophthalmologic examination. This study was undertaken to evaluate the feasibility of orbital high-field magnetic resonance and real-time colour Doppler ultrasound image fusion and navigation. This case study, performed between April and June 2013, included one healthy man (age, 47 years) and two patients (one woman, 57 years; one man, 67 years) with choroidal melanomas. All cases underwent 7.0-T magnetic resonance imaging using a custom-made ocular imaging surface coil. The Digital Imaging and Communications in Medicine volume data set was then loaded into the ultrasound system for manual registration of the live ultrasound image and fusion imaging examination. Data registration, matching and then volume navigation were feasible in all cases. Fusion imaging provided real-time imaging capabilities and high tissue contrast of choroidal tumour and optic nerve. It also allowed adding a real-time colour Doppler signal on magnetic resonance images for assessment of vasculature of tumour and retrobulbar structures. The combination of orbital high-field magnetic resonance and colour Doppler ultrasound image fusion and navigation is feasible. Multimodal fusion imaging promises to foster assessment and monitoring of choroidal melanoma and optic nerve disorders. • Orbital magnetic resonance and colour Doppler ultrasound real-time fusion imaging is feasible • Fusion imaging combines the spatial and temporal resolution advantages of each modality • Magnetic resonance and ultrasound fusion imaging improves assessment of choroidal melanoma vascularisation.

  7. Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development.

    PubMed

    Lovestead, Tara M; Burger, Jessica L; Schneider, Nico; Bruno, Thomas J

    2016-12-15

    Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content "best case" JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content "worst case" JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight - mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, T k and T h , provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of diversified feedstocks, decreased pollution, and increased efficiency.

  8. Effects of Digitization and JPEG Compression on Land Cover Classification Using Astronaut-Acquired Orbital Photographs

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Webb, Edward L.; Evangelista, Arlene

    2000-01-01

    Studies that utilize astronaut-acquired orbital photographs for visual or digital classification require high-quality data to ensure accuracy. The majority of images available must be digitized from film and electronically transferred to scientific users. This study examined the effect of scanning spatial resolution (1200, 2400 pixels per inch [21.2 and 10.6 microns/pixel]), scanning density range option (Auto, Full) and compression ratio (non-lossy [TIFF], and lossy JPEG 10:1, 46:1, 83:1) on digital classification results of an orbital photograph from the NASA - Johnson Space Center archive. Qualitative results suggested that 1200 ppi was acceptable for visual interpretive uses for major land cover types. Moreover, Auto scanning density range was superior to Full density range. Quantitative assessment of the processing steps indicated that, while 2400 ppi scanning spatial resolution resulted in more classified polygons as well as a substantially greater proportion of polygons < 0.2 ha, overall agreement between 1200 ppi and 2400 ppi was quite high. JPEG compression up to approximately 46:1 also did not appear to have a major impact on quantitative classification characteristics. We conclude that both 1200 and 2400 ppi scanning resolutions are acceptable options for this level of land cover classification, as well as a compression ratio at or below approximately 46:1. Auto range density should always be used during scanning because it acquires more of the information from the film. The particular combination of scanning spatial resolution and compression level will require a case-by-case decision and will depend upon memory capabilities, analytical objectives and the spatial properties of the objects in the image.

  9. Comparing Lagrangian and Eulerian models for CO2 transport - a step towards Bayesian inverse modeling using WRF/STILT-VPRM

    NASA Astrophysics Data System (ADS)

    Pillai, D.; Gerbig, C.; Kretschmer, R.; Beck, V.; Karstens, U.; Neininger, B.; Heimann, M.

    2012-10-01

    We present simulations of atmospheric CO2 concentrations provided by two modeling systems, run at high spatial resolution: the Eulerian-based Weather Research Forecasting (WRF) model and the Lagrangian-based Stochastic Time-Inverted Lagrangian Transport (STILT) model, both of which are coupled to a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration Model (VPRM). The consistency of the simulations is assessed with special attention paid to the details of horizontal as well as vertical transport and mixing of CO2 concentrations in the atmosphere. The dependence of model mismatch (Eulerian vs. Lagrangian) on models' spatial resolution is further investigated. A case study using airborne measurements during which two models showed large deviations from each other is analyzed in detail as an extreme case. Using aircraft observations and pulse release simulations, we identified differences in the representation of details in the interaction between turbulent mixing and advection through wind shear as the main cause of discrepancies between WRF and STILT transport at a spatial resolution such as 2 and 6 km. Based on observations and inter-model comparisons of atmospheric CO2 concentrations, we show that a refinement of the parameterization of turbulent velocity variance and Lagrangian time-scale in STILT is needed to achieve a better match between the Eulerian and the Lagrangian transport at such a high spatial resolution (e.g. 2 and 6 km). Nevertheless, the inter-model differences in simulated CO2 time series for a tall tower observatory at Ochsenkopf in Germany are about a factor of two smaller than the model-data mismatch and about a factor of three smaller than the mismatch between the current global model simulations and the data.

  10. High Resolution Trajectory-Based Smoke Forecasts Using VIIRS Aerosol Optical Depth and NUCAPS Carbon Monoxide Retrievals

    NASA Astrophysics Data System (ADS)

    Pierce, R. B.; Smith, N.; Barnet, C.; Barnet, C. D.; Kondragunta, S.; Davies, J. E.; Strabala, K.

    2016-12-01

    We use Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals to initialize trajectory-based, high spatial resolution North American smoke dispersion forecasts during the May 2016 Fort McMurray wildfire in northern Alberta and the July 2016 Soberanes Fire in Northern California. These two case studies illustrate how long range transport of wild fire smoke can adversely impact surface air quality thousands of kilometers downwind and how local topographic flow can lead to complex transport patterns near the wildfire source region. The NUCAPS CO retrievals are shown to complement the high resolution VIIRS AOD retrievals by providing retrievals in partially cloudy scenes and also providing information on the vertical distribution of the wildfire smoke. This work addresses the need for low latency, web-based, high resolution forecasts of smoke dispersion for use by NWS Incident Meteorologists (IMET) to support on-site decision support services for fire incident management teams. The primary user community for the IDEA-I smoke forecasts is the Western regions of the NWS and US EPA due to the significant impacts of wildfires in these regions. Secondary users include Alaskan NWS offices and Western State and Local air quality management agencies such as the Western Regional Air Partnership (WRAP).

  11. Multi-GPU Accelerated Admittance Method for High-Resolution Human Exposure Evaluation.

    PubMed

    Xiong, Zubiao; Feng, Shi; Kautz, Richard; Chandra, Sandeep; Altunyurt, Nevin; Chen, Ji

    2015-12-01

    A multi-graphics processing unit (GPU) accelerated admittance method solver is presented for solving the induced electric field in high-resolution anatomical models of human body when exposed to external low-frequency magnetic fields. In the solver, the anatomical model is discretized as a three-dimensional network of admittances. The conjugate orthogonal conjugate gradient (COCG) iterative algorithm is employed to take advantage of the symmetric property of the complex-valued linear system of equations. Compared against the widely used biconjugate gradient stabilized method, the COCG algorithm can reduce the solving time by 3.5 times and reduce the storage requirement by about 40%. The iterative algorithm is then accelerated further by using multiple NVIDIA GPUs. The computations and data transfers between GPUs are overlapped in time by using asynchronous concurrent execution design. The communication overhead is well hidden so that the acceleration is nearly linear with the number of GPU cards. Numerical examples show that our GPU implementation running on four NVIDIA Tesla K20c cards can reach 90 times faster than the CPU implementation running on eight CPU cores (two Intel Xeon E5-2603 processors). The implemented solver is able to solve large dimensional problems efficiently. A whole adult body discretized in 1-mm resolution can be solved in just several minutes. The high efficiency achieved makes it practical to investigate human exposure involving a large number of cases with a high resolution that meets the requirements of international dosimetry guidelines.

  12. An operational approach to high resolution agro-ecological zoning in West-Africa.

    PubMed

    Le Page, Y; Vasconcelos, Maria; Palminha, A; Melo, I Q; Pereira, J M C

    2017-01-01

    The objective of this work is to develop a simple methodology for high resolution crop suitability analysis under current and future climate, easily applicable and useful in Least Developed Countries. The approach addresses both regional planning in the context of climate change projections and pre-emptive short-term rural extension interventions based on same-year agricultural season forecasts, while implemented with off-the-shelf resources. The developed tools are applied operationally in a case-study developed in three regions of Guinea-Bissau and the obtained results, as well as the advantages and limitations of methods applied, are discussed. In this paper we show how a simple approach can easily generate information on climate vulnerability and how it can be operationally used in rural extension services.

  13. Satellite-Derived Sea Surface Temperature: Workshop-2

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1984-01-01

    Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.

  14. Effectiveness of Physical Therapy as an Adjunctive Treatment for Trauma-induced Chronic Torticollis in Raptors.

    PubMed

    Nevitt, Benjamin N; Robinson, Narda; Kratz, Gail; Johnston, Matthew S

    2015-03-01

    Management of trauma-induced chronic torticollis in raptors has historically been challenging. Euthanasia is common in affected birds because of their inability to maintain normal cervical position, although they may be able to function normally. To assess effectiveness of physical therapy of the neck and head as an adjunct treatment for this condition, a case-control study was done in raptors admitted to the Rocky Mountain Raptor Program from 2003 to 2010. Eleven cases were identified with a diagnosis of chronic torticollis resulting from traumatic brain injury. Five cases were treated with physical therapy of the head and neck, and 6 control cases did not receive any physical therapy for the torticollis. Of the control cases, 0 of 6 had resolution of the torticollis, 0 of 6 were released, and 5 of 6 were euthanatized. Of the treated cases, 4 of 5 had complete resolution of the torticollis and 5 of 5 were released. Resolution of torticollis differed significantly between cases receiving physical therapy and controls. These results indicate that physical therapy should be used as an adjunctive therapy in cases of chronic torticollis induced by trauma in raptors because it results in better resolution of the torticollis and increased likelihood of release.

  15. Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-11-01

    In this paper, we extend the range of targeted ENO (TENO) schemes (Fu et al. (2016) [18]) by proposing an eighth-order TENO8 scheme. A general formulation to construct the high-order undivided difference τK within the weighting strategy is proposed. With the underlying scale-separation strategy, sixth-order accuracy for τK in the smooth solution regions is designed for good performance and robustness. Furthermore, a unified framework to optimize independently the dispersion and dissipation properties of high-order finite-difference schemes is proposed. The new framework enables tailoring of dispersion and dissipation as function of wavenumber. The optimal linear scheme has minimum dispersion error and a dissipation error that satisfies a dispersion-dissipation relation. Employing the optimal linear scheme, a sixth-order TENO8-opt scheme is constructed. A set of benchmark cases involving strong discontinuities and broadband fluctuations is computed to demonstrate the high-resolution properties of the new schemes.

  16. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    Many system identification and signal processing procedures can be done advantageously in the frequency domain. A required preliminary step for this approach is the transformation of sampled time domain data into the frequency domain. The analytical tool used for this transformation is the finite Fourier transform. Inaccuracy in the transformation can degrade system identification and signal processing results. This work presents a method for evaluating the finite Fourier transform using cubic interpolation of sampled time domain data for high accuracy, and the chirp Zeta-transform for arbitrary frequency resolution. The accuracy of the technique is demonstrated in example cases where the transformation can be evaluated analytically. Arbitrary frequency resolution is shown to be important for capturing details of the data in the frequency domain. The technique is demonstrated using flight test data from a longitudinal maneuver of the F-18 High Alpha Research Vehicle.

  17. High-resolution method for evolving complex interface networks

    NASA Astrophysics Data System (ADS)

    Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2018-04-01

    In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.

  18. Bone suppression in CT angiography data by region-based multiresolution segmentation

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Wiemker, Rafael; Lin, Zhong Min

    2003-05-01

    Multi slice CT (MSCT) scanners have the advantage of high and isotropic image resolution, which broadens the range of examinations for CT angiography (CTA). A very important method to present the large amount of high-resolution 3D data is the visualization by maximum intensity projections (MIP). A problem with MIP projections in angiography is that bones often hide the vessels of interest, especially the scull and vertebral column. Software tools for a manual selection of bone regions and their suppression in the MIP are available, but processing is time-consuming and tedious. A highly computer-assisted of even fully automated suppression of bones would considerably speed up the examination and probably increase the number of examined cases. In this paper we investigate the suppression (or removal) of bone regions in 3D CT data sets for vascular examinations of the head with a visualization of the carotids and the circle of Willis.

  19. GPUs benchmarking in subpixel image registration algorithm

    NASA Astrophysics Data System (ADS)

    Sanz-Sabater, Martin; Picazo-Bueno, Jose Angel; Micó, Vicente; Ferrerira, Carlos; Granero, Luis; Garcia, Javier

    2015-05-01

    Image registration techniques are used among different scientific fields, like medical imaging or optical metrology. The straightest way to calculate shifting between two images is using the cross correlation, taking the highest value of this correlation image. Shifting resolution is given in whole pixels which cannot be enough for certain applications. Better results can be achieved interpolating both images, as much as the desired resolution we want to get, and applying the same technique described before, but the memory needed by the system is significantly higher. To avoid memory consuming we are implementing a subpixel shifting method based on FFT. With the original images, subpixel shifting can be achieved multiplying its discrete Fourier transform by a linear phase with different slopes. This method is high time consuming method because checking a concrete shifting means new calculations. The algorithm, highly parallelizable, is very suitable for high performance computing systems. GPU (Graphics Processing Unit) accelerated computing became very popular more than ten years ago because they have hundreds of computational cores in a reasonable cheap card. In our case, we are going to register the shifting between two images, doing the first approach by FFT based correlation, and later doing the subpixel approach using the technique described before. We consider it as `brute force' method. So we will present a benchmark of the algorithm consisting on a first approach (pixel resolution) and then do subpixel resolution approaching, decreasing the shifting step in every loop achieving a high resolution in few steps. This program will be executed in three different computers. At the end, we will present the results of the computation, with different kind of CPUs and GPUs, checking the accuracy of the method, and the time consumed in each computer, discussing the advantages, disadvantages of the use of GPUs.

  20. Ultrafast Bilateral DCE-MRI of the Breast with Conventional Fourier Sampling: Preliminary Evaluation of Semi-quantitative Analysis.

    PubMed

    Pineda, Federico D; Medved, Milica; Wang, Shiyang; Fan, Xiaobing; Schacht, David V; Sennett, Charlene; Oto, Aytekin; Newstead, Gillian M; Abe, Hiroyuki; Karczmar, Gregory S

    2016-09-01

    The study aimed to evaluate the feasibility and advantages of a combined high temporal and high spatial resolution protocol for dynamic contrast-enhanced magnetic resonance imaging of the breast. Twenty-three patients with enhancing lesions were imaged at 3T. The acquisition protocol consisted of a series of bilateral, fat-suppressed "ultrafast" acquisitions, with 6.9- to 9.9-second temporal resolution for the first minute following contrast injection, followed by four high spatial resolution acquisitions with 60- to 79.5-second temporal resolution. All images were acquired with standard uniform Fourier sampling. A filtering method was developed to reduce noise and detect significant enhancement in the high temporal resolution images. Time of arrival (TOA) was defined as the time at which each voxel first satisfied all the filter conditions, relative to the time of initial arterial enhancement. Ultrafast images improved visualization of the vasculature feeding and draining lesions. A small percentage of the entire field of view (<6%) enhanced significantly in the 30 seconds following contrast injection. Lesion conspicuity was highest in early ultrafast images, especially in cases with marked parenchymal enhancement. Although the sample size was relatively small, the average TOA for malignant lesions was significantly shorter than the TOA for benign lesions. Significant differences were also measured in other parameters descriptive of early contrast media uptake kinetics (P < 0.05). Ultrafast imaging in the first minute of dynamic contrast-enhanced magnetic resonance imaging of the breast has the potential to add valuable information on early contrast dynamics. Ultrafast imaging could allow radiologists to confidently identify lesions in the presence of marked background parenchymal enhancement. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  1. Application of Radioxenon Stack Emission Data in High-Resolution Atmospheric Transport Modelling

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Schoeppner, M.; Kalinowski, M.; Bourgouin, P.; Kushida, N.; Barè, J.

    2017-12-01

    The Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) has developed the capability to run high-resolution atmospheric transport modelling by employing WRF and Flexpart-WRF. This new capability is applied to simulate the impact of stack emission data on simulated concentrations and how the availability of such data improves the overall accuracy of atmospheric transport modelling. The presented case study focuses on xenon-133 emissions from IRE, a medical isotope production facility in Belgium, and air concentrations detected at DEX33, a monitoring station close to Freiburg, Germany. The CTBTO is currently monitoring the atmospheric concentration of xenon-133 at 25 stations and will further expand the monitoring efforts to 40 stations worldwide. The incentive is the ability to detect xenon-133 that has been produced and released from a nuclear explosion. A successful detection can be used to prove the nuclear nature of an explosion and even support localization efforts. However, xenon-133 is also released from nuclear power plants and to a larger degree from medical isotope production facilities. The availability of stack emission data in combination with atmospheric transport modelling can greatly facilitate the understanding of xenon-133 concentrations detected at monitoring stations to distinguish between xenon-133 that has been emitted from a nuclear explosion and from civilian sources. Newly available stack emission data is used with a high-resolution version of the Flexpart atmospheric transport model, namely Flexpart-WRF, to assess the impact of the emissions on the detected concentrations and the advantage gained from the availability of such stack emission data. The results are analyzed with regard to spatial and time resolution of the high-resolution model and in comparison to conventional atmospheric transport models with and without stack emission data.

  2. Development and performance evaluation of an experimental fine pitch detector multislice CT scanner.

    PubMed

    Imai, Yasuhiro; Nukui, Masatake; Ishihara, Yotaro; Fujishige, Takashi; Ogata, Kentaro; Moritake, Masahiro; Kurochi, Haruo; Ogata, Tsuyoshi; Yahata, Mitsuru; Tang, Xiangyang

    2009-04-01

    The authors have developed an experimental fine pitch detector multislice CT scanner with an ultrasmall focal spot x-ray tube and a high-density matrix detector through current CT technology. The latitudinal size of the x-ray tube focal spot was 0.4 mm. The detector dimension was 1824 channels (azimuthal direction) x 32 rows (longitudinal direction) at row width of 0.3125 mm, in which a thinner reflected separator surrounds each detector cell coupled with a large active area photodiode. They were mounted on a commercial 64-slice CT scanner gantry while the scan field of view (50 cm) and gantry rotation speed (0.35 s) can be maintained. The experimental CT scanner demonstrated the spatial resolution of 0.21-0.22 mm (23.8-22.7 lp/cm) with the acrylic slit phantom and in-plane 50%-MTF 9.0 lp/cm and 10%-MTF 22.0 lp/cm. In the longitudinal direction, it demonstrated the spatial resolution of 0.24 mm with the high-resolution insert of the CATPHAN phantom and 0.34 mm as the full width at half maximum of the slice sensitivity profile. In low-contrast detectability, 3 mm at 0.3% was visualized at the CTDI(vol) of 47.2 mGy. Two types of 2.75 mm diameter vessel phantoms with in-stent stenosis at 25%, 50%, and 75% stair steps were scanned, and the reconstructed images can clearly resolve the stenosis at each case. The experimental CT scanner provides high-resolution imaging while maintaining low-contrast detectability, demonstrating the potentiality for clinical applications demanding high spatial resolution, such as imaging of inner ear, lung, and bone, or low-contrast detectability, such as imaging of coronary artery.

  3. Spontaneous resolution of symptoms associated with a facet synovial cyst in an adult female – a case report

    PubMed Central

    Ngo, Trung; Decina, Philip; Hsu, William

    2013-01-01

    Background: Facet cysts are implicated in neural compression in the lumbar spine. Surgery is the definitive treatment for symptomatic facet cysts since the failure rate for conservative treatment is quite high; however, the role of physical/manual medicine practitioners in the management of symptomatic facet cysts has not been well explored. This case report will add to the body of evidence of spontaneous resolution of symptoms associated with facet cysts in the chiropractic literature. Case: A 58 year old female presented with acute low back and right leg pain which she attributed to a series of exercise classes that involved frequent foot stomping. Physical examination did not elicit any objective evidence of radiculopathy but MRI and CT scans revealed a facet cyst impinging on the right L5 nerve root. Injections and surgery were recommended; however, the patient’s radicular symptoms completely resolved after three months without surgical intervention. Summary: There is currently a paucity of data in the literature regarding the chiropractor’s role in the management of symptomatic facet cysts. The case presented here has added to this literature and possible areas for future research have been explored. PMID:23483069

  4. Resolution in partially accomodative esotropia during occlusion treatment for amblyopia.

    PubMed

    Koc, F; Ozal, H; Yasar, H; Firat, E

    2006-03-01

    To evaluate alignment changes in partially accommodative esotropia during occlusion treatment for amblyopia. Changes at the deviation angles of 63 partially accommodative esotropia patients, who had occlusion treatment for amblyopia, were evaluated retrospectively. Mean deviation angle at the start of therapy without glasses was 45 PD (10-90 PD) and became 27 PD (5-70 PD) after at least 2 months with glasses. During 12 (2-36) months of occlusion period, mean manifest deviation angle with glasses decreased to 11 PD (0-50) (P < 0.001) and amblyopia resolved in 71.5% of the cases. After termination of amblyopia treatment 24 (38%) cases had surgery for the residual deviation but if we had planned surgery before amblyopia treatment, 81% of the patients would have had surgery. Should amblyopia be treated initially or should we operate first in patients with strabismus and amblyopia together? Our research suggests that we should not hurry to operate in high hypermetropic partially accommodative cases, which have amblyopia and a long-term history of strabismus. Initial amblyopia treatment in these cases allows time for resolution of the nonaccomodative component in strabismus and can significantly decrease the necessity for surgery.

  5. Aerosol Classification from High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Kahnert, M.; Vaughan, M. A.; Cook, A. L.; Harper, D. B.; Berkoff, T.; Seaman, S. T.; Collins, J. E., Jr.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    The NASA Langley airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, have acquired large datasets of vertically resolved aerosol extinction, backscatter, and depolarization during >30 airborne field missions since 2006. The lidar measurements of aerosol intensive parameters like lidar ratio and color ratio embed information about intrinsic aerosol properties, and are combined to qualitatively classify HSRL aerosol measurements into aerosol types. Knowledge of aerosol type is important for assessing aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead is a mixture, which affects the optical and radiative properties of the aerosol. We show that aerosol intensive parameters measured by lidar can be understood using mixing rules for cases of external mixing. Beyond coarse classification and mixing between classes, variations in the lidar aerosol intensive parameters provide additional insight into aerosol processes and composition. This is illustrated by depolarization measurements at three wavelengths, 355 nm, 532 nm, and 1064 nm, made by HSRL-2. Particle depolarization ratio is an indicator of non-spherical particles. Three cases each have a significantly different spectral dependence of the depolarization ratio, related to the size of the depolarizing particles. For two dust cases, large non-spherical particles account for the depolarization of the lidar light. The spectral dependence reflects the size distribution of these particles and reveals differences in the transport histories of the two plumes. For a smoke case, the depolarization is inferred to be due to the presence of small coated soot aggregates. Interestingly, the depolarization at 355 nm is similar for this smoke case compared to the dust cases, having potential implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm.

  6. Atlantic Tropical Cyclogenetic Processes During SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia

    2009-01-01

    This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African. Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A glottal data assimilation and forecast system, the NASA Goddard Earth Observing System. version 5 (GEOS-5), is being run to produce a set of high-9 uality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the duality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertiieat (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spoctroradiometer (MODIS) aboard NASA's Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 km can capture the large-scale transport and the tine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors from observational and regional modeling perspectives. Thcse effects cannot be fully represented at lower resolutions, therefore global resolution of a quarter of a degree is a minimum critical threshold necessary to investigate Atlantic tropical cyclogenesis from a global modeling perspective

  7. Airborne SAR systems for infrastructures monitoring

    NASA Astrophysics Data System (ADS)

    Perna, Stefano; Berardino, Paolo; Esposito, Carmen; Natale, Antonio

    2017-04-01

    The present contribution is aimed at showing the capabilities of Synthetic Aperture Radar (SAR) systems mounted onboard airborne platforms for the monitoring of infrastructures. As well known, airborne SAR systems guarantee narrower spatial coverage than satellite sensors [1]. On the other side, airborne SAR products are characterized by geometric resolution typically higher than that achievable in the satellite case, where larger antennas must be necessarily exploited. More important, airborne SAR platforms guarantee operational flexibility significantly higher than that achievable with satellite systems. Indeed, the revisit time between repeated SAR acquisitions in the satellite case cannot be freely decided, whereas in the airborne case it can be kept very short. This renders the airborne platforms of key interest for the monitoring of infrastructures, especially in case of emergencies. However, due to the platform deviations from a rectilinear, reference flight track, the generation of airborne SAR products is not a turn of the crank procedure as in the satellite case. Notwithstanding proper algorithms exist in order to circumvent this kind of limitations. In this work, we show how the exploitation of airborne SAR sensors, coupled to the use of such algorithms, allows obtaining high resolution monitoring of infrastructures in urban areas. [1] G. Franceschetti, and R.Lanari, Synthetic Aperture Radar Processing, CRC PRESS, New York, 1999.

  8. Improving the Energy Saving Process with High-Resolution Data: A Case Study in a University Building.

    PubMed

    Han, Jeongyun; Lee, Eunjung; Cho, Hyunghun; Yoon, Yoonjin; Lee, Hyoseop; Rhee, Wonjong

    2018-05-17

    In this paper, we provide findings from an energy saving experiment in a university building, where an IoT platform with 1 Hz sampling sensors was deployed to collect electric power consumption data. The experiment was a reward setup with daily feedback delivered by an energy delegate for one week, and energy saving of 25.4% was achieved during the experiment. Post-experiment sustainability, defined as 10% or more of energy saving, was also accomplished for 44 days without any further intervention efforts. The saving was possible mainly because of the data-driven intervention designs with high-resolution data in terms of sampling frequency and number of sensors, and the high-resolution data turned out to be pivotal for an effective waste behavior investigation. While the quantitative result was encouraging, we also noticed many uncontrollable factors, such as exams, papers due, office allocation shuffling, graduation, and new-comers, that affected the result in the campus environment. To confirm that the quantitative result was due to behavior changes, rather than uncontrollable factors, we developed several data-driven behavior detection measures. With these measures, it was possible to analyze behavioral changes, as opposed to simply analyzing quantitative fluctuations. Overall, we conclude that the space-time resolution of data can be crucial for energy saving, and potentially for many other data-driven energy applications.

  9. Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Msadek, Rym; Kwon, Young-Oh; Booth, James F.; Zarzycki, Colin

    2018-05-01

    It has been hypothesized that the ocean mesoscale (particularly ocean fronts) can affect the strength and location of the overlying extratropical atmospheric storm track. In this paper, we examine whether resolving ocean fronts in global climate models indeed leads to significant improvement in the simulated storm track, defined using low level meridional wind. Two main sets of experiments are used: (i) global climate model Community Earth System Model version 1 with non-eddy-resolving standard resolution or with ocean eddy-resolving resolution, and (ii) the same but with the GFDL Climate Model version 2. In case (i), it is found that higher ocean resolution leads to a reduction of a very warm sea surface temperature (SST) bias at the east coasts of the U.S. and Japan seen in standard resolution models. This in turn leads to a reduction of storm track strength near the coastlines, by up to 20%, and a better location of the storm track maxima, over the western boundary currents as observed. In case (ii), the change in absolute SST bias in these regions is less notable, and there are modest (10% or less) increases in surface storm track, and smaller changes in the free troposphere. In contrast, in the southern Indian Ocean, case (ii) shows most sensitivity to ocean resolution, and this coincides with a larger change in mean SST as ocean resolution is changed. Where the ocean resolution does make a difference, it consistently brings the storm track closer in appearance to that seen in ERA-Interim Reanalysis data. Overall, for the range of ocean model resolutions used here (1° versus 0.1°) we find that the differences in SST gradient have a small effect on the storm track strength whilst changes in absolute SST between experiments can have a larger effect. The latter affects the land-sea contrast, air-sea stability, surface latent heat flux, and the boundary layer baroclinicity in such a way as to reduce storm track activity adjacent to the western boundary in the N. Hemisphere storm tracks, but strengthens the storm track over the southern Indian Ocean. A note of caution is that the results are sensitive to the choice of storm track metric. The results are contrasted with those from a high resolution coupled simulation where the SST is smoothed for the purposes of computing air-sea fluxes, an alternative method of testing sensitivity to SST gradients.

  10. Contact microspherical nanoscopy: from fundamentals to biomedical applications

    NASA Astrophysics Data System (ADS)

    Astratov, V. N.; Maslov, A. V.; Brettin, A.; Blanchette, K. F.; Nesmelov, Y. E.; Limberopoulos, N. I.; Walker, D. E.; Urbas, A. M.

    2017-02-01

    The mechanisms of super-resolution imaging by contact microspherical or microcylindrical nanoscopy remain an enigmatic question since these lenses neither have an ability to amplify the near-fields like in the case of far-field superlens, nor they have a hyperbolic dispersion similar to hyperlenses. In this work, we present results along two lines. First, we performed numerical modeling of super-resolution properties of two-dimensional (2-D) circular lens in the limit of wavelength-scale diameters, λ <= D <= 2λ, and relatively high indices of refraction, n=2. Our preliminary results on imaging point dipoles indicate that the resolution is generally close to λ/4 however on resonance with whispering gallery modes it may be slightly higher. Second, experimentally, we used actin protein filaments for the resolution quantification in microspherical nanoscopy. The critical feature of our approach is based on using arrayed cladding layer with strong localized surface plasmon resonances. This layer is used for enhancing plasmonic near-field illumination of our objects. In combination with the magnification of virtual image, this technique resulted in the lateral resolution of actin protein filaments on the order of λ/7.

  11. Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics

    PubMed Central

    Fang, Qi; Curatolo, Andrea; Wijesinghe, Philip; Yeow, Yen Ling; Hamzah, Juliana; Noble, Peter B.; Karnowski, Karol; Sampson, David D.; Ganss, Ruth; Kim, Jun Ki; Lee, Woei M.; Kennedy, Brendan F.

    2017-01-01

    In this paper, we describe a technique capable of visualizing mechanical properties at the cellular scale deep in living tissue, by incorporating a gradient-index (GRIN)-lens micro-endoscope into an ultrahigh-resolution optical coherence elastography system. The optical system, after the endoscope, has a lateral resolution of 1.6 µm and an axial resolution of 2.2 µm. Bessel beam illumination and Gaussian mode detection are used to provide an extended depth-of-field of 80 µm, which is a 4-fold improvement over a fully Gaussian beam case with the same lateral resolution. Using this system, we demonstrate quantitative elasticity imaging of a soft silicone phantom containing a stiff inclusion and a freshly excised malignant murine pancreatic tumor. We also demonstrate qualitative strain imaging below the tissue surface on in situ murine muscle. The approach we introduce here can provide high-quality extended-focus images through a micro-endoscope with potential to measure cellular-scale mechanics deep in tissue. We believe this tool is promising for studying biological processes and disease progression in vivo. PMID:29188108

  12. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    NASA Astrophysics Data System (ADS)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can overcome this challenge and provides a displacement measurement resolution of 116 nm and a strain resolution of 0.04% over a gage length of 300 µm. Similarly, the ability to capture inhomogeneities is demonstrated by mapping strain around a thru-hole. The robustness of the technique is also evaluated, where no appreciable change in strain measurement is observed despite the significant variations imposed on the measurement mesh. The proposed approach introduces critical improvements for the determination of displacement and strain gradients in elastomers regarding the real-time nature of strain mapping with a microscale spatial resolution.

  13. Infrared atmospheric sounding interferometer correlation interferometry for the retrieval of atmospheric gases: the case of H2O and CO2.

    PubMed

    Grieco, Giuseppe; Masiello, Guido; Serio, Carmine; Jones, Roderic L; Mead, Mohammed I

    2011-08-01

    Correlation interferometry is a particular application of Fourier transform spectroscopy with partially scanned interferograms. Basically, it is a technique to obtain the difference between the spectra of atmospheric radiance at two diverse spectral resolutions. Although the technique could be exploited to design an appropriate correlation interferometer, in this paper we are concerned with the analytical aspects of the method and its application to high-spectral-resolution infrared observations in order to separate the emission of a given atmospheric gas from a spectral signal dominated by surface emission, such as in the case of satellite spectrometers operated in the nadir looking mode. The tool will be used to address some basic questions concerning the vertical spatial resolution of H2O and to develop an algorithm to retrieve the columnar amount of CO2. An application to complete interferograms from the Infrared Atmospheric Sounding Interferometer will be presented and discussed. For H2O, we have concluded that the vertical spatial resolution in the lower troposphere mostly depends on broad features associated with the spectrum, whereas for CO2, we have derived a technique capable of retrieving a CO2 columnar amount with accuracy of ≈±7 parts per million by volume at the level of each single field of view.

  14. The effect of bathymetric filtering on nearshore process model results

    USGS Publications Warehouse

    Plant, N.G.; Edwards, K.L.; Kaihatu, J.M.; Veeramony, J.; Hsu, L.; Holland, K.T.

    2009-01-01

    Nearshore wave and flow model results are shown to exhibit a strong sensitivity to the resolution of the input bathymetry. In this analysis, bathymetric resolution was varied by applying smoothing filters to high-resolution survey data to produce a number of bathymetric grid surfaces. We demonstrate that the sensitivity of model-predicted wave height and flow to variations in bathymetric resolution had different characteristics. Wave height predictions were most sensitive to resolution of cross-shore variability associated with the structure of nearshore sandbars. Flow predictions were most sensitive to the resolution of intermediate scale alongshore variability associated with the prominent sandbar rhythmicity. Flow sensitivity increased in cases where a sandbar was closer to shore and shallower. Perhaps the most surprising implication of these results is that the interpolation and smoothing of bathymetric data could be optimized differently for the wave and flow models. We show that errors between observed and modeled flow and wave heights are well predicted by comparing model simulation results using progressively filtered bathymetry to results from the highest resolution simulation. The damage done by over smoothing or inadequate sampling can therefore be estimated using model simulations. We conclude that the ability to quantify prediction errors will be useful for supporting future data assimilation efforts that require this information.

  15. Cloud properties inferred from 8-12 micron data

    NASA Technical Reports Server (NTRS)

    Strabala, Kathleen I.; Ackerman, Steven A.; Menzel, W. Paul

    1994-01-01

    A trispectral combination of observations at 8-, 11-, and 12-micron bands is suggested for detecting cloud and cloud properties in the infrared. Atmospheric ice and water vapor absorption peak in opposite halves of the window region so that positive 8-minus-11-micron brightness temperature differences indicate cloud, while near-zero or negative differences indicate clear regions. The absorption coefficient for water increases more between 11 and 12 microns than between 8 and 11 microns, while for ice, the reverse is true. Cloud phases is determined by a scatter diagram of 8-minus-11-micron versus 11-minus-12-micron brightness temperature differences; ice cloud shows a slope greater than 1 and water cloud less than 1. The trispectral brightness temperature method was tested upon high-resolution interferometer data resulting in clear-cloud and cloud-phase delineation. Simulations using differing 8-micron bandwidths revealed no significant degradation of cloud property detection. Thus, the 8-micron bandwidth for future satellites can be selected based on the requirements of other applications, such as surface characterization studies. Application of the technique to current polar-orbiting High-Resolution Infrared Sounder (HIRS)-Advanced Very High Resolution Radiometer (AVHRR) datasets is constrained by the nonuniformity of the cloud scenes sensed within the large HIRS field of view. Analysis of MAS (MODIS Airborne Simulator) high-spatial resolution (500 m) data with all three 8-, 11-, and 12-micron bands revealed sharp delineation of differing cloud and background scenes, from which a simple automated threshold technique was developed. Cloud phase, clear-sky, and qualitative differences in cloud emissivity and cloud height were identified on a case study segment from 24 November 1991, consistent with the scene. More rigorous techniques would allow further cloud parameter clarification. The opportunities for global cloud delineation with the Moderate-Resolution Imaging Spectrometer (MODIS) appear excellent. The spectral selection, the spatial resolution, and the global coverage are all well suited for significant advances.

  16. Impact of resolution on aerosol radiative feedbacks with in online-coupled chemistry/climate simulations (WRF-Chem) for EURO-CORDEX compliant domains

    NASA Astrophysics Data System (ADS)

    López-Romero, Jose Maria; Baró, Rocío; Palacios-Peña, Laura; Jerez, Sonia; Jiménez-Guerrero, Pedro; Montávez, Juan Pedro

    2016-04-01

    Several studies have shown that a high spatial resolution in atmospheric model runs improves the simulation of some meteorological variables, such as precipitation, particularly extreme events and in regions with complex orography [1]. However, increasing model spatial resolution makes the computational time rise exponentially. Hence, very high resolution experiments on large domains can hamper the execution of climatic runs. This problem shoots up when using online-coupled chemistry climate models, making a careful evaluation of improvements versus costs mandatory. Under this umbrella, the objective of this work is to investigate the sensitivity of aerosol radiative feedbacks from online-coupled chemistry regional model simulations to the spatial resolution. For that, the WRF-Chem [2] model is used for a case study to simulate the episode occurring between July 25th and August 15th of 2010. It is characterized by a high loading of atmospheric aerosol particles coming mainly from wildfires over large European regions (Russia, Iberian Peninsula). Three spatial resolutions are used defined for Euro-Cordex compliant domains [3]: 0.44°, 0.22° and 0.11°. Anthropogenic emissions come from TNO databases [4]. The analysis focuses on air quality variables (mainly PM10, PM2.5), meteorological variables (temperature, radiation) and other aerosol optical properties (aerosol optical depth). The CPU time ratio for the different domains is 1 (0.44°), 4(0.22°) and 28(0.11°) (normalized times). Comparison among simulations and observations are analyzed. Preliminary results show the difficulty to justify the much larger computational cost of high-resolution experiments when comparing with observations from a meteorological point of view, despite the finer spatio-temporal detail of the obtained pollutant fields. [1] Prein, A. F. (2014, December). Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits?. In AGU Fall Meeting Abstracts (Vol. 1, p. 3893). [2] Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B. (2005). Fully coupled "online" chemistry within the WRF model. Atmospheric Environment, 39(37), 6957-6975. [3] Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., ... & Georgopoulou, E. (2014). EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14(2), 563-578. [4] Pouliot, G., Denier van der Gon, H., Kuenen, J., Makar, P., Zhang, J., Moran, M., 2015. Analysis of the emission inventories and model-ready emission datasets of Europe and North America for phase 2 of the AQMEII project. Atmos. Environ. 115, 345-360.

  17. High Resolution Stratigraphic Mapping in Complex Terrain: A Comparison of Traditional Remote Sensing Techniques with Unmanned Aerial Vehicle - Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nesbit, P. R.; Hugenholtz, C.; Durkin, P.; Hubbard, S. M.; Kucharczyk, M.; Barchyn, T.

    2016-12-01

    Remote sensing and digital mapping have started to revolutionize geologic mapping in recent years as a result of their realized potential to provide high resolution 3D models of outcrops to assist with interpretation, visualization, and obtaining accurate measurements of inaccessible areas. However, in stratigraphic mapping applications in complex terrain, it is difficult to acquire information with sufficient detail at a wide spatial coverage with conventional techniques. We demonstrate the potential of a UAV and Structure from Motion (SfM) photogrammetric approach for improving 3D stratigraphic mapping applications within a complex badland topography. Our case study is performed in Dinosaur Provincial Park (Alberta, Canada), mapping late Cretaceous fluvial meander belt deposits of the Dinosaur Park formation amidst a succession of steeply sloping hills and abundant drainages - creating a challenge for stratigraphic mapping. The UAV-SfM dataset (2 cm spatial resolution) is compared directly with a combined satellite and aerial LiDAR dataset (30 cm spatial resolution) to reveal advantages and limitations of each dataset before presenting a unique workflow that utilizes the dense point cloud from the UAV-SfM dataset for analysis. The UAV-SfM dense point cloud minimizes distortion, preserves 3D structure, and records an RGB attribute - adding potential value in future studies. The proposed UAV-SfM workflow allows for high spatial resolution remote sensing of stratigraphy in complex topographic environments. This extended capability can add value to field observations and has the potential to be integrated with subsurface petroleum models.

  18. A parametric approach for simultaneous bias correction and high-resolution downscaling of climate model rainfall

    NASA Astrophysics Data System (ADS)

    Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto; Marrocu, Marino

    2017-03-01

    Distribution mapping has been identified as the most efficient approach to bias-correct climate model rainfall, while reproducing its statistics at spatial and temporal resolutions suitable to run hydrologic models. Yet its implementation based on empirical distributions derived from control samples (referred to as nonparametric distribution mapping) makes the method's performance sensitive to sample length variations, the presence of outliers, the spatial resolution of climate model results, and may lead to biases, especially in extreme rainfall estimation. To address these shortcomings, we propose a methodology for simultaneous bias correction and high-resolution downscaling of climate model rainfall products that uses: (a) a two-component theoretical distribution model (i.e., a generalized Pareto (GP) model for rainfall intensities above a specified threshold u*, and an exponential model for lower rainrates), and (b) proper interpolation of the corresponding distribution parameters on a user-defined high-resolution grid, using kriging for uncertain data. We assess the performance of the suggested parametric approach relative to the nonparametric one, using daily raingauge measurements from a dense network in the island of Sardinia (Italy), and rainfall data from four GCM/RCM model chains of the ENSEMBLES project. The obtained results shed light on the competitive advantages of the parametric approach, which is proved more accurate and considerably less sensitive to the characteristics of the calibration period, independent of the GCM/RCM combination used. This is especially the case for extreme rainfall estimation, where the GP assumption allows for more accurate and robust estimates, also beyond the range of the available data.

  19. Non-targeted workflow for identification of antimicrobial compounds in animal feed using bioassay-directed screening in combination with liquid chromatography-high resolution mass spectrometry.

    PubMed

    Wegh, Robin S; Berendsen, Bjorn J A; Driessen-Van Lankveld, Wilma D M; Pikkemaat, Mariël G; Zuidema, Tina; Van Ginkel, Leen A

    2017-11-01

    A non-targeted workflow is reported for the isolation and identification of antimicrobial active compounds using bioassay-directed screening and LC coupled to high-resolution MS. Suspect samples are extracted using a generic protocol and fractionated using two different LC conditions (A and B). The behaviour of the bioactive compound under these different conditions yields information about the physicochemical properties of the compound and introduces variations in co-eluting compounds in the fractions, which is essential for peak picking and identification. The fractions containing the active compound(s) obtained with conditions A and B are selected using a microbiological effect-based bioassay. The selected bioactive fractions from A and B are analysed using LC combined with high-resolution MS. Selection of relevant signals is automatically carried out by selecting all signals present in both bioactive fractions A and B, yielding tremendous data reduction. The method was assessed using two spiked feed samples and subsequently applied to two feed samples containing an unidentified compound showing microbial growth inhibition. In all cases, the identity of the compound causing microbiological inhibition was successfully confirmed.

  20. Derivation of planetary topography using multi-image shape-from-shading

    USGS Publications Warehouse

    Lohse, V.; Heipke, C.; Kirk, R.L.

    2006-01-01

    In many cases, the derivation of high-resolution digital terrain models (DTMs) from planetary surfaces using conventional digital image matching is a problem. The matching methods need at least one stereo pair of images with sufficient texture. However, many space missions provide only a few stereo images and planetary surfaces often possess insufficient texture. This paper describes a method for the generation of high-resolution DTMs from planetary surfaces, which has the potential to overcome the described problem. The suggested method, developed by our group, is based on shape-from-shading using an arbitrary number of digital optical images, and is termed "multi-image shape-from-shading" (MI-SFS). The paper contains an explanation of the theory of MI-SFS, followed by a presentation of current results, which were obtained using images from NASA's lunar mission Clementine, and constitute the first practical application with our method using extraterrestrial imagery. The lunar surface is reconstructed under the assumption of different kinds of reflectance models (e.g. Lommel-Seeliger and Lambert). The represented results show that the derivation of a high-resolution DTM of real digital planetary images by means of MI-SFS is feasible. ?? 2006 Elsevier Ltd. All rights reserved.

  1. A Rare Case of Cavitary Lesion of the Lung Caused by Mycoplasma pneumoniae in an Immunocompetent Patient

    PubMed Central

    Dudekula, Rizwan Ahmed

    2017-01-01

    Mycoplasma pneumoniae is an atypical bacterium that most commonly causes upper respiratory tract infections, but it can also cause pneumonia, referred to as “walking pneumonia.” Although cavitary lesions are present in a wide variety of infectious and noninfectious processes, those attributable to M. pneumoniae are extremely uncommon; thus, to date, epidemiological studies are lacking. Here, we present a rare case of a 20-year-old male, referred to us from a psychiatric facility for evaluation of a cough, who was found to have a cavitary lesion in the right upper lobe. An extensive workup for cavitary lesion was negative, but his mycoplasma IgM level was high. A computed tomography (CT) of the chest confirmed the presence of a cavitary lesion. After treatment with levofloxacin antibiotics, a follow-up CT showed complete resolution of the lesion. Our case is a rare presentation of mycoplasma pneumonia as a cavitary lesion in a patient without any known risk factors predisposing to mycoplasma infection. Early recognition and treatment with an appropriate antibiotic may lead to complete resolution of the cavitary lesion. PMID:28912822

  2. Observation of tropical cyclones by high resolution scatterometry

    NASA Astrophysics Data System (ADS)

    Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J.

    1998-04-01

    Unprecedented views of surface wind fields in tropical cyclones (hereafter TCs) are provided by the European Remote Sensing Satellite (ERS) C band scatterometer. Scatterometer measurements at C band are able to penetrate convective storms clouds, observing the surface wind fields with good accuracy. However the resolution of the measurements (50×50 km2) limits the interpretation of the scatterometer signals in such mesoscale events. The strong gradients of the surface wind existing at scales of a few kms are smoothed in the measured features such as the intensity and location of the wind maxima, and the position of the center. Beyond the ERS systems, the scatterometers on-board the ADEOS and METOP satellites, designed by the Jet Propulsion Laboratory and by the European Space Agency, respectively, will be able to produce measurements of the backscattering coefficient at about 25×25 km2 resolution. A few sets of ERS-1 orbits sampling TC events were produced with an experimental 25×25 km2 resolution. Enhancing the resolution by a factor of 2 allows location of the wind maxima and minima in a TC with a much better accuracy than at 50 km resolution. In addition, a better resolution reduces the geophysical noise (variability of wind speed within the cell and effect of rain) that dominates the radiometric noise and hence improves the definition of the backscattering measurements. A comprehensive analysis of the backscattering measurements in the case of high winds and high sea states obtained within TCs is proposed in order to refine the interpretation of the wind vector derived from a backscattering model that is currently only calibrated up to moderate winds (<20 m/s) in neutral conditions. Observations of the TOPEX-POSEIDON dual-frequency altimeter are also used for that purpose. Patterns of the surface winds in TCs are described and characteristic features concerning asymmetries in the maximum winds and in the divergence field are discussed.

  3. Accurately determining direction of arrival by seismic array based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, H.; Yu, H.

    2016-12-01

    Seismic array analysis method plays an important role in detecting weak signals and determining their locations and rupturing process. In these applications, reliably estimating direction of arrival (DOA) for the seismic wave is very important. DOA is generally determined by the conventional beamforming method (CBM) [Rost et al, 2000]. However, for a fixed seismic array generally the resolution of CBM is poor in the case of low-frequency seismic signals, and in the case of high frequency seismic signals the CBM may produce many local peaks, making it difficult to pick the one corresponding to true DOA. In this study, we develop a new seismic array method based on compressive sensing (CS) to determine the DOA with high resolution for both low- and high-frequency seismic signals. The new method takes advantage of the space sparsity of the incoming wavefronts. The CS method has been successfully used to determine spatial and temporal earthquake rupturing distributions with seismic array [Yao et al, 2011;Yao et al, 2013;Yin 2016]. In this method, we first form the problem of solving the DOA as a L1-norm minimization problem. The measurement matrix for CS is constructed by dividing the slowness-angle domain into many grid nodes, which needs to satisfy restricted isometry property (RIP) for optimized reconstruction of the image. The L1-norm minimization is solved by the interior point method. We first test the CS-based DOA array determination method on synthetic data constructed based on Shanghai seismic array. Compared to the CBM, synthetic test for data without noise shows that the new method can determine the true DOA with a super-high resolution. In the case of multiple sources, the new method can easily separate multiple DOAs. When data are contaminated by noise at various levels, the CS method is stable when the noise amplitude is lower than the signal amplitude. We also test the CS method for the Wenchuan earthquake. For different arrays with different apertures, we are able to obtain reliable DOAs with uncertainties lower than 10 degrees.

  4. A fast optimization approach for treatment planning of volumetric modulated arc therapy.

    PubMed

    Yan, Hui; Dai, Jian-Rong; Li, Ye-Xiong

    2018-05-30

    Volumetric modulated arc therapy (VMAT) is widely used in clinical practice. It not only significantly reduces treatment time, but also produces high-quality treatment plans. Current optimization approaches heavily rely on stochastic algorithms which are time-consuming and less repeatable. In this study, a novel approach is proposed to provide a high-efficient optimization algorithm for VMAT treatment planning. A progressive sampling strategy is employed for beam arrangement of VMAT planning. The initial beams with equal-space are added to the plan in a coarse sampling resolution. Fluence-map optimization and leaf-sequencing are performed for these beams. Then, the coefficients of fluence-maps optimization algorithm are adjusted according to the known fluence maps of these beams. In the next round the sampling resolution is doubled and more beams are added. This process continues until the total number of beams arrived. The performance of VMAT optimization algorithm was evaluated using three clinical cases and compared to those of a commercial planning system. The dosimetric quality of VMAT plans is equal to or better than the corresponding IMRT plans for three clinical cases. The maximum dose to critical organs is reduced considerably for VMAT plans comparing to those of IMRT plans, especially in the head and neck case. The total number of segments and monitor units are reduced for VMAT plans. For three clinical cases, VMAT optimization takes < 5 min accomplished using proposed approach and is 3-4 times less than that of the commercial system. The proposed VMAT optimization algorithm is able to produce high-quality VMAT plans efficiently and consistently. It presents a new way to accelerate current optimization process of VMAT planning.

  5. Safety and Efficacy of Stosstherapy in Nutritional Rickets.

    PubMed

    Chatterjee, Daipayan; Swamy, Mathad K S; Gupta, Vikas; Sharma, Vasu; Sharma, Akshat; Chatterjee, Krishti

    2017-03-01

    Stosstherapy has been used since early 19 th century for treating nutritional rickets. However, there are no clear cut guidelines for the biochemical monitoring of this treatment. Repeated blood tests at short intervals increase the cost of therapy and noncompliance. A prospective study was conducted on 191 cases of nutritional rickets below 10 years of age to evaluate the effectivity of stosstherapy. All cases were treated with a single intramuscular injection of vitamin D (600.000 IU) along with oral calcium (50 mg/kg) and vitamin D (400 IU per day) until radiological resolution. Dietary modifications and adequate sunlight exposure were also recommended. The mean age of presentation was 2 years 9 months. Mean sunlight exposure was 17 minutes/week with 90% having low sunlight exposure (<30 minutes/week). Prolonged breast feeding (>6 months) was found in 93.7% of the cases. With treatment, the clinical features started resolving by 1 month with complete resolution of most of the features over a period of 1 year. By 6 months, all the study subjects had complete radiological resolution. Serum levels of calcium and alkaline phosphatase (ALP) were restored by 6 months in most cases while phosphate and vitamin D levels normalized by 6 weeks. Stosstherapy is a safe, cheap and effective method of treating nutritional rickets. Biochemical tests at initial presentation followed by vitamin D assay at 6 weeks and calcium, phosphate and ALP assays at 6 months is recommended in the monitoring of these patients. For regular monitoring, only ALP assay is recommended, provided one abstains from repeat injection of vitamin D based on high ALP levels.

  6. Characterization of Water Vapor Fluxes by the Raman Lidar System Basil and the Univeristy of Cologne Wind Lidar in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.

    2016-06-01

    Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.

  7. Evolution of Pleistocene to Holocene eruptions in the Lesser Caucasus Mts:Insights from geology, petrology, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Savov, Ivan; Meliksetian, Khachatur; Connor, Charles; Karakhanian, Arkadi; Sugden, Patrick; Navasardyan, Gevorg; Halama, Ralf; Ishizuka, Osamu; Connor, Laura; Karapetian, Sergei

    2016-04-01

    Both effusive and highly explosive (VEI>5) and often voluminous caldera volcanism has developed atop the collision zone between the Arabian and the Eurasian plates. Currently what is exposed on the Anatolian-Armenian-Iranian active orogenic plateau is post-Mesozoic felsic to intermediate collision-related plutons, and mostly collision or post-collision related Quaternary volcanic structures. We have studied in detail the volcanism, tectonics and geophysics on the territory of E.Turkey and Armenia, where several large stratovolcanoes (Ararat, Lesser Ararat, Aragats, Tsghuk, Ishkhanasar) are surrounded by distinct monogenetic volcanic fields (distributed volcanism). These large in volume stratovolcanoes and the associated low volume monogenetic cones range from normal calk-alkaline to high-K shoshonitic in affinity, with their products ranging from basanites to high K trachytes and rhyolites. Several volcanic provinces, namely Kechut/Javakheti, Aragats, Gegham, Vardenis and Syunik are recognized in Armenia and each of them has > 100 mapped volcanoes. These have distinct geochemical (mineral chemistry, trace element and Sr-Nd-B isotope systematics) and petrological (melt eruption temperatures and volatile contents) fingerprints that may or may not vary over time. Age determinations and volcano-stratigraphy sections for each of the case studies we aim to present shows that the volcanism includes a continuous record from Pleistocene to Holocene, or even historical eruptions. The excellent volcano exposures and the now complete high resolution database (GIS), geological mapping, and new and improved K-Ar and Ar-Ar geochronology, uniquely allows us to evaluate the driving forces behind the volcanism in this continent-continent collision setting that is uniquely associated with long lasting eruption episodes. We shall compare the now well studied historical/Holocene eruptions with those pre-dating them, with the aim to identify possible geochemical or petrological precursors, on both local and regional scales. Our presentation will include several case studies, new ages, high resolution maps of many volcanoes and their association with young active faulting and often large earthquakes. We will present one particular high resolution case study (on Aragats volcanic complex) where we attempted to quantify the volcanic hazards. This is important as this region hosts the active Metsamor nuclear power plant and the capital city of Yerevan (population > 1.4 million), where people live in area with very low (10^6), yet existing risk for a renewed volcanic activity.

  8. Diffusion weighted imaging: a comprehensive evaluation of a fast spin echo DWI sequence with BLADE (PROPELLER) k-space sampling at 3 T, using a 32-channel head coil in acute brain ischemia.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Stemmer, Alto; Williams, Kenneth D; Naul, L Gill; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-10-01

    To evaluate the signal-to-noise ratio (SNR) and diagnostic quality of diffusion weighted imaging (DWI) using a fast spin echo (FSE) sequence with BLADE k-space trajectory at 3 T in combination with a 32-channel head coil. The scan was compared with a standard spin echo (SE) echo-planar imaging (EPI) DWI and a high resolution SE EPI DWI sequence. Fourteen patients with acute brain ischemia were included in this Institutional Review Board approved study. All patients were evaluated with 3 different image sequences, using a 3 T scanner and a 32-channel head coil: (a) a standard SE EPI DWI (matrix size 192 x 192), (b) a high resolution SE EPI DWI (matrix size of 256 x 256) and (c) a FSE DWI BLADE (matrix size 192 x 192). The SNR of the 3 scans was compared in 10 healthy volunteers by a paired student t test. Image quality was evaluated with 4 dedicated questions in a blinded read: (1) The scans were ranked in terms of bulk susceptibility artifact. (2) The scan preference for diagnosis of any diffusion abnormality that might occur and (3) the preference for visualization of the diffusion abnormality actually present was determined. (4) The influence of bulk susceptibility on image evaluation for the diffusion abnormality present was assessed. For visualization of the diffusion abnormality present, BLADE DWI was the scan sequence preferred most by both readers (reader 1: 41.7%, reader 2: 35.7%). For visualization of any diffusion abnormality present, BLADE DWI was the preferred scan in 13 of 14 cases for reader 1 (93%) and in 11 of 14 cases for reader 2 (78.6%). No high resolution SE EPI DWI scan was rated best by reader 1. Reader 2 rated the high resolution SE EPI DWI scan superior in only 1 of 56 judgments. The standard EPI DWI sequence (21.8 +/- 5.3) had in comparison to the high resolution EPI DWI (11.9 +/- 2.6) and the BLADE DWI scans (11.3 +/- 3.8) significantly higher SNR mean values. Our preliminary data demonstrates the feasibility of a FSE EPI DWI scan with radial-like k-space sampling, using a 32-channel coil at 3 T in acute brain ischemia. The BLADE DWI was the preferred scan for the detection of acute diffusion abnormalities because of the lack of bulk susceptibility artifacts.

  9. Scanning ion imaging - a potent tool in SIMS U -Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Whitehouse, M. J.; Fedo, C.; Kusiak, M.; Nemchin, A.

    2012-12-01

    The application of high spatial resolution (< 15-20 μm lateral) U-Pb data obtained by sec-ondary ion mass spectrometers (SIMS) coupled with textural information from scanning electron microscope (SEM) based cathodoluminescence (CL) and/or back-scattered elec-tron (BSE) characterisation, has revolutionised geochronology over the past 25 years, re-vealing complexities of crustal evolution from zoned zircons. In addition to ge-ochronology, such studies now commonly form the basis of broader investigations using O- and Hf- isotopes and trace elements obtained from the same growth zone as age, circumventing ambiguities commonly present in bulk-rock isotope studies. The choice of analytical beam diameter is often made to maximise the precision of data obtained from a given area of analysis within an identifiable growth zone. In cases where zircons yield poorly constrained internal structures in SEM, high spatial resolution spot analyses may yield uninterpretable and/or meaningless mixed ages by inadvertent sampling across regions with real age differences. Scanning ion imaging (SII) has the potential to generate accurate and precise geochrono-logical data with a spatial resolution down to ca. 2 μm, much higher than that of a normal spot analysis. SII acquisition utilises a rastered primary beam to image an area of the sample with a spatial resolution dependent on the selected primary beam diameter. On the Cameca ims1270/80 instruments, the primary beam scanning is coupled with the dynamic transfer optical system (DTOS) which deflects the secondary ions back on to the ion optical axis of the instrument regardless of where in the raster illuminated area the ions originated. This feature allows retention of a high field magnification (= high transmission) mode and the ability to operate the mass spectrometer at high mass resolution without any compromise in the quality of the peak shape. Secondary ions may be detected either in a sequential (peak hopping) mono-collection mode or simultaneous multicollection mode using low-noise pulse counting electron multipliers. Regardless of the detection mode, data are acquired over sufficient cycles to generate usable counting statistics from selected sub-areas of the image. In two case studies from southern west Greenland and Antarctica, Pb-isotope maps gen-erated using SII reveal considerable complexities of internal structure, age and isotope systematics that were not predictable from CL imaging of the grains (Fig. 1). Fig. 1. Scanning ion images of the 207Pb/206Pb ratio in zircons from (a) W. Greenland and (b) Antarctica (inset shows rastered area of grain corresponding to the image).

  10. Critical Phenomena of Rainfall in Ecuador

    NASA Astrophysics Data System (ADS)

    Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.

    2014-02-01

    Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).

  11. In situ data collection and structure refinement from microcapillary protein crystallization

    PubMed Central

    Yadav, Maneesh K.; Gerdts, Cory J.; Sanishvili, Ruslan; Smith, Ward W.; Roach, L. Spencer; Ismagilov, Rustem F.; Kuhn, Peter; Stevens, Raymond C.

    2007-01-01

    In situ X-ray data collection has the potential to eliminate the challenging task of mounting and cryocooling often fragile protein crystals, reducing a major bottleneck in the structure determination process. An apparatus used to grow protein crystals in capillaries and to compare the background X-ray scattering of the components, including thin-walled glass capillaries against Teflon, and various fluorocarbon oils against each other, is described. Using thaumatin as a test case at 1.8 Å resolution, this study demonstrates that high-resolution electron density maps and refined models can be obtained from in situ diffraction of crystals grown in microcapillaries. PMID:17468785

  12. Mapping the spatial and temporal dynamics of the velvet mesquite with MODIS and AVIRIS: Case study at the Santa Rita Experimental Range

    NASA Astrophysics Data System (ADS)

    Kaurivi, Jorry Zebby Ujama

    The general objective of this research is to develop a methodology that will allow mapping and quantifying shrub encroachment with remote sensing. The multitemporal properties of the Moderate Resolution Imaging Spectroradiometer (MODIS) -250m, 16-day vegetation index products were combined with the hyperspectral and high spatial resolution (3.6m) computation of the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to detect the dynamics of mesquite and grass/soil matrix at two sites of high (19.5%) and low (5.7%) mesquite cover in the Santa Rita Experimental Range (SRER). MODIS results showed separability between grassland and mesquite based on phenology. Mesquite landscapes had longer green peak starting in April through February, while the grassland only peaked during the monsoon season (July through October). AVIRIS revealed spectral separability, but high variation in the data implicated high heterogeneity in the landscape. Nonetheless, the methodology for larger data was developed in this study and combines ground, air and satellite data.

  13. Lymphogranuloma venereum rates increased and Chlamydia trachomatis genotypes changed among men who have sex with men in Sweden 2004-2016.

    PubMed

    Isaksson, Jenny; Carlsson, Ola; Airell, Åsa; Strömdahl, Susanne; Bratt, Göran; Herrmann, Björn

    2017-11-01

    This study aimed to determine the incidence of lymphogranuloma venereum (LGV) in Sweden since 2004 and to study in detail a consecutive number of Chlamydia trachomatis cases in men who have sex with men (MSM) during a 10 month period (September 2014 to July 2015). LGV increased from sporadic import cases in 2004 to comprise a spread within Sweden in 2016. Initially, only the L2b ompA genotype was detected, but in 2015 half of the genotyped LGV cases were L2 genotype. The changing genotype distribution in Sweden is linked to increased LGV spread in Europe. High-resolution multilocus sequence typing of 168 C. trachomatis cases from MSM in 2015 resulted in 29 sequence types, of which 3 accounted for 49 % of cases. The increased rates and different genotypes of LGV indicate that more concern for high-risk taking MSM is needed to avoid further spread of this invasive infection.

  14. Parametric Analysis of Airland Combat Model in High Resolution

    DTIC Science & Technology

    1988-09-01

    continue Fprint MOE, UTILITY matrix figure 10. Flow chart of the advanced model 22 WAVE2 = numeric value (1. 2. or 12) which is supposed to be given by the...model user" if WAVE2 = 1. it will bc a BATTLE I case. and all Red forccs on Av’enue-2 attack to nodc-2S ; if \\VAVE2= 2. it will also be a BATTLE I case...but all Red forces on Aenue-2 attack to node-27 ; if WAVE2 = 12. it will be a BATTLE2 case. These outputs will be analyzed in more detail in the next

  15. Introducing CUBES: the Cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Bristow, Paul; Barbuy, Beatriz; Macanhan, Vanessa B.; Castilho, Bruno; Dekker, Hans; Delabre, Bernard; Diaz, Marcos; Gneiding, Clemens; Kerber, Florian; Kuntschner, Harald; La Mura, Giovanni; Reiss, Roland; Vernet, J.

    2014-07-01

    CUBES is a high-efficiency, medium-resolution (R ≃ 20, 000) spectrograph dedicated to the "ground based UV" (approximately the wavelength range from 300 to 400nm) destined for the Cassegrain focus of one of ESO's VLT unit telescopes in 2018/19. The CUBES project is a joint venture between ESO and Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) at the Universidade de São Paulo and the Brazilian Laboratório Nacional de Astrofísica (LNA). CUBES will provide access to a wealth of new and relevant information for stellar as well as extra-galactic sources. Principle science cases include the study of heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range and the determination of the Beryllium abundance as well as the study of active galactic nuclei and the inter-galactic medium. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will enable a significant gain in sensitivity over existing ground based medium-high resolution spectrographs enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project, introducing the science cases that drive the design and discussing the design options and technological challenges.

  16. Characterizing the interaction between enantiomers of eight psychoactive drugs and highly sulfated-β-cyclodextrin by counter-current capillary electrophoresis.

    PubMed

    Asensi-Bernardi, Lucía; Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Sagrado, Salvador; Medina-Hernández, María José

    2014-01-01

    The estimation of apparent binding constants and limit mobilities of the complexes of the enantiomers that characterize the interaction of enantiomers with chiral selectors, in this case highly sulfated β-cyclodextrin, was approached using a simple and economic electrophoretic modality, the complete filling technique (CFT) in counter-current mode. The enantiomers of eight psychoactive drugs, four antihistamines (dimethindene, promethazine, orphenadrine and terfenadine) and four antidepressants (bupropion, fluoxetine, nomifensine and viloxazine) were separated for the first time for this cyclodextrin (CD). Estimations of thermodynamic and electrophoretic enantioselectivies were also performed. Results indicate that, in general, thermodynamic enantioselectivity is the main component explaining the high resolution found, but also one case suggests that electrophoretic enantioselectivity itself is enough to obtain a satisfactory resolution. CFT results advantageous compared with conventional capillary electrophoresis (CE) and partial filling technique (PFT) for the study of the interaction between drugs and chiral selectors. It combines the use of a simple fitting model (as in CE), when the enantiomers do not exit the chiral selector plug during the separation (i.e. mobility of electroosmotic flow larger than mobility of CD), and drastic reduction of the consumption (and cost; ~99.7%) of the CD reagent (as in PFT) compared with the conventional CE. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Optimization of an on-board imaging system for extremely rapid radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He

    2015-11-15

    Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors aremore » proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration deformation fields was computed. Results: By most global metrics (e.g., mean, median, and maximum pointwise distance), the high-resolution detector had the best performance but the medium-resolution detector was comparable. For all medium- and high-resolution detector registrations, mean error between the realistic and gold standard deformation fields was less than 4 mm. By pointwise metrics (e.g., tracking a small lesion), the high- and medium-resolution detectors performed similarly. For these detectors, the smallest error between the realistic and gold standard registrations was 0.6 mm and the largest error was 3.6 mm. Conclusions: The medium-resolution CT detector was selected as the best for an extremely rapid radiation therapy system. In essentially all test cases, data from this detector produced a significantly better registration than data from the low-resolution detector and a comparable registration to data from the high-resolution detector. The medium-resolution detector provides an appropriate compromise between registration accuracy and system cost.« less

  18. A Study of the Unstable Modes in High Mach Number Gaseous Jets and Shear Layers

    NASA Astrophysics Data System (ADS)

    Bassett, Gene Marcel

    1993-01-01

    Instabilities affecting the propagation of supersonic gaseous jets have been studied using high resolution computer simulations with the Piecewise-Parabolic-Method (PPM). These results are discussed in relation to jets from galactic nuclei. These studies involve a detailed treatment of a single section of a very long jet, approximating the dynamics by using periodic boundary conditions. Shear layer simulations have explored the effects of shear layers on the growth of nonlinear instabilities. Convergence of the numerical approximations has been tested by comparing jet simulations with different grid resolutions. The effects of initial conditions and geometry on the dominant disruptive instabilities have also been explored. Simulations of shear layers with a variety of thicknesses, Mach numbers and densities perturbed by incident sound waves imply that the time for the excited kink modes to grow large in amplitude and disrupt the shear layer is taug = (546 +/- 24) (M/4)^{1.7 } (Apert/0.02) ^{-0.4} delta/c, where M is the jet Mach number, delta is the half-width of the shear layer, and A_ {pert} is the perturbation amplitude. For simulations of periodic jets, the initial velocity perturbations set up zig-zag shock patterns inside the jet. In each case a single zig-zag shock pattern (an odd mode) or a double zig-zag shock pattern (an even mode) grows to dominate the flow. The dominant kink instability responsible for these shock patterns moves approximately at the linear resonance velocity, nu_ {mode} = cextnu_ {relative}/(cjet + c_ {ext}). For high resolution simulations (those with 150 or more computational zones across the jet width), the even mode dominates if the even penetration is higher in amplitude initially than the odd perturbation. For low resolution simulations, the odd mode dominates even for a stronger even mode perturbation. In high resolution simulations the jet boundary rolls up and large amounts of external gas are entrained into the jet. In low resolution simulations this entrainment process is impeded by numerical viscosity. The three-dimensional jet simulations behave similarly to two-dimensional jet runs with the same grid resolutions.

  19. Landsat multispectral sharpening using a sensor system model and panchromatic image

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2003-01-01

    The thematic mapper (TM) sensor aboard Landsats 4, 5 and enhanced TM plus (ETM+) on Landsat 7 collect imagery at 30-m sample distance in six spectral bands. New with ETM+ is a 15-m panchromatic (P) band. With image sharpening techniques, this higher resolution P data, or as an alternative, the 10-m (or 5-m) P data of the SPOT satellite, can increase the spatial resolution of the multispectral (MS) data. Sharpening requires that the lower resolution MS image be coregistered and resampled to the P data before high spatial frequency information is transferred to the MS data. For visual interpretation and machine classification tasks, it is important that the sharpened data preserve the spectral characteristics of the original low resolution data. A technique was developed for sharpening (in this case, 3:1 spatial resolution enhancement) visible spectral band data, based on a model of the sensor system point spread function (PSF) in order to maintain spectral fidelity. It combines high-pass (HP) filter sharpening methods with iterative image restoration to reduce degradations caused by sensor-system-induced blurring and resembling. Also there is a spectral fidelity requirement: sharpened MS when filtered by the modeled degradations should reproduce the low resolution source MS. Quantitative evaluation of sharpening performance was made by using simulated low resolution data generated from digital color-IR aerial photography. In comparison to the HP-filter-based sharpening method, results for the technique in this paper with simulated data show improved spectral fidelity. Preliminary results with TM 30-m visible band data sharpened with simulated 10-m panchromatic data are promising but require further study.

  20. Development of Global 30m Resolution Water Body Map with Permanent/Temporal Water Body Separation Using Satellite Acquired Images of Landsat GLS Datasets

    NASA Astrophysics Data System (ADS)

    Ikeshima, D.; Yamazaki, D.; Yoshikawa, S.; Kanae, S.

    2015-12-01

    The specification of worldwide water body distribution is important for discovering hydrological cycle. Global 3-second Water Body Map (G3WBM) is a global scale map, which indicates the distribution of water body in 90m resolutions (http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM/index.html). This dataset was mainly built to identify the width of river channels, which is one of major uncertainties of continental-scale river hydrodynamics models. To survey the true width of the river channel, this water body map distinguish Permanent Water Body from Temporary Water Body, which means separating river channel and flood plain. However, rivers with narrower width, which is a major case in usual river, could not be observed in this map. To overcome this problem, updating the algorithm of G3WBM and enhancing the resolutions to 30m is the goal of this research. Although this 30m-resolution water body map uses similar algorithm as G3WBM, there are many technical issues attributed to relatively high resolutions. Those are such as lack of same high-resolution digital elevation map, or contamination problem of sub-pixel scale object on satellite acquired image, or invisibility of well-vegetated water body such as swamp. To manage those issues, this research used more than 30,000 satellite images of Landsat Global Land Survey (GLS), and lately distributed topography data of Shuttle Rader Topography Mission (SRTM) 1 arc-second (30m) digital elevation map. Also the effect of aerosol, which would scatter the sun reflectance and disturb the acquired result image, was considered. Due to these revises, the global water body distribution was established in more precise resolution.

  1. Rapid kinematic finite source inversion for Tsunamic Early Warning using high rate GNSS data

    NASA Astrophysics Data System (ADS)

    Chen, K.; Liu, Z.; Song, Y. T.

    2017-12-01

    Recently, Global Navigation Satellite System (GNSS) has been used for rapid earthquake source inversion towards tsunami early warning. In practice, two approaches, i.e., static finite source inversion based on permanent co-seismic offsets and kinematic finite source inversion using high-rate (>= 1 Hz) co-seismic displacement waveforms, are often employed to fulfill the task. The static inversion is relatively easy to be implemented and does not require additional constraints on rupture velocity, duration, and temporal variation. However, since most GNSS receivers are deployed onshore locating on one side of the subduction fault, there is very limited resolution on near-trench fault slip using GNSS in static finite source inversion. On the other hand, the high-rate GNSS displacement waveforms, which contain the timing information of earthquake rupture explicitly and static offsets implicitly, have the potential to improve near-trench resolution by reconciling with the depth-dependent megathrust rupture behaviors. In this contribution, we assess the performance of rapid kinematic finite source inversion using high-rate GNSS by three selected historical tsunamigenic cases: the 2010 Mentawai, 2011 Tohoku and 2015 Illapel events. With respect to the 2010 Mentawai case, it is a typical tsunami earthquake with most slip concentrating near the trench. The static inversion has little resolution there and incorrectly puts slip at greater depth (>10km). In contrast, the recorded GNSS displacement waveforms are deficit in high-frequency energy, the kinematic source inversion recovers a shallow slip patch (depth less than 6 km) and tsunami runups are predicted quite reasonably. For the other two events, slip from kinematic and static inversion show similar characteristics and comparable tsunami scenarios, which may be related to dense GNSS network and behavior of the rupture. Acknowledging the complexity of kinematic source inversion in real-time, we adopt the back-projection approach to provide constraint on rupture velocity.

  2. Neutron imaging with lithium indium diselenide: Surface properties, spatial resolution, and computed tomography

    NASA Astrophysics Data System (ADS)

    Lukosi, Eric D.; Herrera, Elan H.; Hamm, Daniel S.; Burger, Arnold; Stowe, Ashley C.

    2017-11-01

    An array of lithium indium diselenide (LISe) scintillators were investigated for application in neutron imaging. The sensors, varying in thickness and surface roughness, were tested using both reflective and anti-reflective mounting to an aluminum window. The spatial resolution of each LISe scintillator was calculated using the knife-edge test and a modulation transfer function analysis. It was found that the anti-reflective backing case yielded higher spatial resolutions by up to a factor of two over the reflective backing case despite a reduction in measured light yield by an average of 1.97. In most cases, the use of an anti-reflective backing resulted in a higher spatial resolution than the 50 μm-thick ZnS(Cu):6 LiF comparison scintillation screen. The effect of surface roughness was not directly correlated to measured light yield or observed spatial resolution, but weighting the reflective backing case by the random surface roughness revealed that a linear relationship exists between the fractional change (RB/ARB) of the two. Finally, the LISe scintillator array was used in neutron computed tomography to investigate the features of halyomorpha halys with the reflective and anti-reflective backing.

  3. Tuberculosis and the pancreas: a diagnostic challenge solved by endoscopic ultrasound. A case series.

    PubMed

    Chatterjee, Suvadip; Schmid, Matthias L; Anderson, Kirsty; Oppong, Kofi W

    2012-03-01

    Pancreatic tuberculosis is a rare disease. It can be easily confused with malignancy or pancreatitis on imaging. This could result in unnecessary surgery. As this is a treatable disease it is imperative to diagnose this condition pre-operatively. We report three cases of pancreatic tuberculosis that were diagnosed by endoscopic ultrasound. In conclusion, endoscopic ultrasound is the diagnostic modality of choice for pancreatic tuberculosis facilitating high resolution imaging, as well as sampling of tissue for staining, cytology, culture and polymerase chain reaction assay.

  4. Correlation spectrometer for filtering of (quasi) elastic neutron scattering with variable resolution

    NASA Astrophysics Data System (ADS)

    Magazù, Salvatore; Mezei, Ferenc; Migliardo, Federica

    2018-05-01

    In a variety of applications of inelastic neutron scattering spectroscopy the goal is to single out the elastic scattering contribution from the total scattered spectrum as a function of momentum transfer and sample environment parameters. The elastic part of the spectrum is defined in such a case by the energy resolution of the spectrometer. Variable elastic energy resolution offers a way to distinguish between elastic and quasi-elastic intensities. Correlation spectroscopy lends itself as an efficient, high intensity approach for accomplishing this both at continuous and pulsed neutron sources. On the one hand, in beam modulation methods the Liouville theorem coupling between intensity and resolution is relaxed and time-of-flight velocity analysis of the neutron velocity distribution can be performed with 50 % duty factor exposure for all available resolutions. On the other hand, the (quasi)elastic part of the spectrum generally contains the major part of the integrated intensity at a given detector, and thus correlation spectroscopy can be applied with most favorable signal to statistical noise ratio. The novel spectrometer CORELLI at SNS is an example for this type of application of the correlation technique at a pulsed source. On a continuous neutron source a statistical chopper can be used for quasi-random time dependent beam modulation and the total time-of-flight of the neutron from the statistical chopper to detection is determined by the analysis of the correlation between the temporal fluctuation of the neutron detection rate and the statistical chopper beam modulation pattern. The correlation analysis can either be used for the determination of the incoming neutron velocity or for the scattered neutron velocity, depending of the position of the statistical chopper along the neutron trajectory. These two options are considered together with an evaluation of spectrometer performance compared to conventional spectroscopy, in particular for variable resolution elastic neutron scattering (RENS) studies of relaxation processes and the evolution of mean square displacements. A particular focus of our analysis is the unique feature of correlation spectroscopy of delivering high and resolution independent beam intensity, thus the same statistical chopper scan contains both high intensity and high resolution information at the same time, and can be evaluated both ways. This flexibility for variable resolution data handling represents an additional asset for correlation spectroscopy in variable resolution work. Changing the beam width for the same statistical chopper allows us to additionally trade resolution for intensity in two different experimental runs, similarly for conventional single slit chopper spectroscopy. The combination of these two approaches is a capability of particular value in neutron spectroscopy studies requiring variable energy resolution, such as the systematic study of quasi-elastic scattering and mean square displacement. Furthermore the statistical chopper approach is particularly advantageous for studying samples with low scattering intensity in the presence of a high, sample independent background.

  5. On the Fringe Field of Wide Angle LC Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Wang, Xighua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.

    2004-01-01

    For free space laser communication, light weighted large deployable optics is a critical component for the transmitter. However, such an optical element will introduce large aberrations due to the fact that the surface figure of the large optics is susceptable to deformation in the space environment. We propose to use a high-resolution liquid crystal spatial light modulator to correct for wavefront aberrations introduced by the primary optical element, and to achieve very fine beam steering and shaping at the same time. A 2-D optical phased array (OPA) antenna based on a Liquid Crystal on Silicon (LCOS) spatial light modulator is described. This device offers a combination of low cost, high resolution, high accuracy, high diffraction efficiency at video speed. To quantitatively understand the influence factor of the different design parameters, a computer simulation of the device is given by the 2-D director simulation and the Finite Difference Time domain (FDTD) simulation. For the 1-D OPA, we define the maximum steering angle to have a grating period of 8 pixel/reset scheme; as for larger steering angles than this criterion, the diffraction efficiency drops dramatically. In this case, the diffraction efficiency of 0.86 and the Strehl ratio of 0.9 are obtained in the simulation. The performance of the device in achieving high resolution wavefront correction and beam steering is also characterized experimentally.

  6. High-resolution raster scan optoacoustic mesoscopy of genetically modified drosophila pupae

    NASA Astrophysics Data System (ADS)

    Omar, Murad; Gateau, Jérôme; Ntziachristos, Vasilis

    2014-03-01

    Optoacoutic mesoscopy aims to bridge the gap between optoacoustic microscopy and optoacoustic tomography. We have developed a setup for optoacoustic mesoscopy where we use a high frequency, high numerical aperture spherically focused ultrasound transducer, with a wide bandwidth of 25-125 MHz. The excitation is performed using a diode laser capable of >500 μJ/pulse, 1.8ns pulse width, 1.4 kHz pulse repetition rate, at 515 nm. The system is capable to penetrate more than 5 mm with a resolution of 7 μm axially and 30 μm transversally. Using high-speed stages and scanning the transducer in a quasi-continuous mode, a field of view of 2×2 mm2 is scanned in less than 2 minutes. The system is suitable for imaging biological samples that have a diameter of 1-5 mm; zebrafish, drosophila melanogaster, and thin biological samples such as the mouse ear and mouse extremities. We have used our mesoscopic setup to generate 3- dimensional images of genetically modified drosophila fly, and drosophila pupae expressing GFP from the wings, high resolution images were generated in both cases, in the fly we can see the wings, the legs, the eyes, and the shape of the body. In the pupae the outline of the pupae, the spiracles at both ends and a strong signal corresponding to the location of the future wings are observed.

  7. Clinical Utility of High-Frequency Musculoskeletal Ultrasonography in Foot and Ankle Pathology: How Ultrasound Imaging Influences Diagnosis and Management.

    PubMed

    Delzell, Patricia B; Tritle, Benjamin A; Bullen, Jennifer A; Chiunda, Stella; Forney, Michael C

    The use of high-frequency (high-resolution) musculoskeletal ultrasonography is increasing and has shown promising utility in many areas of medicine. The utility of musculoskeletal ultrasonography for foot and ankle complaints has not been widely investigated, however. Although some conditions of the foot and ankle are easily diagnosed by physical examination, others can have nonspecific examination findings, making optimal treatment decisions difficult. We hypothesized that high-resolution musculoskeletal ultrasound scanning of the foot and ankle can affect the diagnosis and/or treatment for patients presenting with foot or ankle complaints. Retrospectively, the cases of 98 patients who had undergone musculoskeletal ultrasound scanning of the foot or ankle were reviewed. The pre-ultrasound clinical diagnosis and treatment were compared with the post-ultrasound diagnosis and treatment. In 64% of the patients, the diagnosis or treatment changed after the ultrasound examination. In 43% of patients, both the diagnosis and the treatment changed after ultrasound scanning. For those patients for whom the diagnosis and treatment were unchanged after the ultrasound examination, the ultrasound findings were concordant with the pre-ultrasound clinical diagnosis for 100% of the patients. These results suggest that in a large proportion of patients, high-resolution musculoskeletal ultrasonography of the foot or ankle can facilitate appropriate diagnosis and management. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Using Multiple Big Datasets and Machine Learning to Produce a New Global Particulate Dataset: A Technology Challenge Case Study

    NASA Astrophysics Data System (ADS)

    Lary, D. J.

    2013-12-01

    A BigData case study is described where multiple datasets from several satellites, high-resolution global meteorological data, social media and in-situ observations are combined using machine learning on a distributed cluster using an automated workflow. The global particulate dataset is relevant to global public health studies and would not be possible to produce without the use of the multiple big datasets, in-situ data and machine learning.To greatly reduce the development time and enhance the functionality a high level language capable of parallel processing has been used (Matlab). A key consideration for the system is high speed access due to the large data volume, persistence of the large data volumes and a precise process time scheduling capability.

  9. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  10. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.

    PubMed

    Morgan, David G; Ramasse, Quentin M; Browning, Nigel D

    2009-06-01

    Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.

  11. Assessment of Data Assimilation with the Prototype High Resolution Rapid Refresh for Alaska (HRRRAK)

    NASA Technical Reports Server (NTRS)

    Harrison, Kayla; Morton, Don; Zavodsky, Brad; Chou, Shih

    2012-01-01

    The Arctic Region Supercomputing Center has been running a quasi-operational prototype of a High Resolution Rapid Refresh for Alaska (HRRRAK) at 3km resolution, initialized by the 13km Rapid Refresh (RR). Although the RR assimilates a broad range of observations into its analyses, experiments with the HRRRAK suggest that there may be added value in assimilating observations into the 3km initial conditions, downscaled from the 13km RR analyses. The NASA Short-term Prediction Research and Transition (SPoRT) group has been using assimilated data from the Atmospheric Infrared Sounder (AIRS) in WRF and WRF-Var simulations since 2004 with promising results. The sounder is aboard NASA s Aqua satellite, and provides vertical profiles of temperature and humidity. The Gridpoint Statistical Interpolation (GSI) system is then used to assimilate these vertical profiles into WRF forecasts. In this work, we assess the use of AIRS data in combination with other global data assimilation products on non-assimilated HRRRAK case studies. Two separate weather events will be assessed to qualitatively and quantitatively assess the impacts of AIRS data on HRRRAK forecasts.

  12. Single Anisotropic 3-D MR Image Upsampling via Overcomplete Dictionary Trained From In-Plane High Resolution Slices.

    PubMed

    Jia, Yuanyuan; He, Zhongshi; Gholipour, Ali; Warfield, Simon K

    2016-11-01

    In magnetic resonance (MR), hardware limitation, scanning time, and patient comfort often result in the acquisition of anisotropic 3-D MR images. Enhancing image resolution is desired but has been very challenging in medical image processing. Super resolution reconstruction based on sparse representation and overcomplete dictionary has been lately employed to address this problem; however, these methods require extra training sets, which may not be always available. This paper proposes a novel single anisotropic 3-D MR image upsampling method via sparse representation and overcomplete dictionary that is trained from in-plane high resolution slices to upsample in the out-of-plane dimensions. The proposed method, therefore, does not require extra training sets. Abundant experiments, conducted on simulated and clinical brain MR images, show that the proposed method is more accurate than classical interpolation. When compared to a recent upsampling method based on the nonlocal means approach, the proposed method did not show improved results at low upsampling factors with simulated images, but generated comparable results with much better computational efficiency in clinical cases. Therefore, the proposed approach can be efficiently implemented and routinely used to upsample MR images in the out-of-planes views for radiologic assessment and postacquisition processing.

  13. Assessment of Developing Intensity Duration Frequency Curves using Satellite Observations (Case Study)

    NASA Astrophysics Data System (ADS)

    Ombadi, Mohammed; Nguyen, Phu; Sorooshian, Soroosh

    2017-12-01

    Intensity Duration Frequency (IDF) curves are essential for the resilient design of infrastructures. Since their earlier development, IDF relationships have been derived using precipitation records from rainfall gauge stations. However, with the recent advancement in satellite observation of precipitation which provides near global coverage and high spatiotemporal resolution, it is worthy of attention to investigate the validity of utilizing the relatively short record length of satellite rainfall to generate robust IDF relationships. These satellite-based IDF can address the paucity of such information in the developing countries. Few studies have used satellite precipitation data in IDF development but mainly focused on merging satellite and gauge precipitation. In this study, however, IDF have been derived solely from satellite observations using PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record). The unique PERSIANN-CDR attributes of high spatial resolution (0.25°×0.25°), daily temporal resolution and a record dating back to 1983 allow for the investigation at fine resolution. The results are compared over most of the contiguous United States against NOAA Atlas 14. The impact of using different methods of sampling, distribution estimators and regionalization in the resulting relationships is investigated. Main challenges to estimate robust and accurate IDF from satellite observations are also highlighted.

  14. Application of the phase extension method in virus crystallography.

    PubMed

    Reddy, Vijay S

    2016-01-01

    The procedure for phase extension (PX) involves gradually extending the initial phases from low resolution (e.g., ~8Å) to the high-resolution limit of a diffraction data set. Structural redundancy present in the viral capsids that display icosahedral symmetry results in a high degree of non-crystallographic symmetry (NCS), which in turn translates into higher phasing power and is critical for improving and extending phases to higher resolution. Greater completeness of the diffraction data and determination of a molecular replacement solution, which entails accurately identifying the virus particle orientation(s) and position(s), are important for the smooth progression of the PX procedure. In addition, proper definition of a molecular mask (envelope) around the NCS-asymmetric unit has been found to be important for the success of density modification procedures, such as density averaging and solvent flattening. Regardless of the degree of NCS, the PX method appears to work well in all space groups, provided an accurate molecular mask is used along with reasonable initial phases. However, in the cases with space group P1, in addition to requiring a molecular mask, starting the phase extension at a higher resolution (e.g., 6Å) overcame the previously reported problems due to Babinet phases and phase flipping errors.

  15. TH-EF-BRA-11: Feasibility of Super-Resolution Time-Resolved 4DMRI for Multi-Breath Volumetric Motion Simulation in Radiotherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G; Zakian, K; Deasy, J

    Purpose: To develop a novel super-resolution time-resolved 4DMRI technique to evaluate multi-breath, irregular and complex organ motion without respiratory surrogate for radiotherapy planning. Methods: The super-resolution time-resolved (TR) 4DMRI approach combines a series of low-resolution 3D cine MRI images acquired during free breathing (FB) with a high-resolution breath-hold (BH) 3DMRI via deformable image registration (DIR). Five volunteers participated in the study under an IRB-approved protocol. The 3D cine images with voxel size of 5×5×5 mm{sup 3} at two volumes per second (2Hz) were acquired coronally using a T1 fast field echo sequence, half-scan (0.8) acceleration, and SENSE (3) parallel imaging.more » Phase-encoding was set in the lateral direction to minimize motion artifacts. The BH image with voxel size of 2×2×2 mm{sup 3} was acquired using the same sequence within 10 seconds. A demons-based DIR program was employed to produce super-resolution 2Hz 4DMRI. Registration quality was visually assessed using difference images between TR 4DMRI and 3D cine and quantitatively assessed using average voxel correlation. The fidelity of the 3D cine images was assessed using a gel phantom and a 1D motion platform by comparing mobile and static images. Results: Owing to voxel intensity similarity using the same MRI scanning sequence, accurate DIR between FB and BH images is achieved. The voxel correlations between 3D cine and TR 4DMRI are greater than 0.92 in all cases and the difference images illustrate minimal residual error with little systematic patterns. The 3D cine images of the mobile gel phantom preserve object geometry with minimal scanning artifacts. Conclusion: The super-resolution time-resolved 4DMRI technique has been achieved via DIR, providing a potential solution for multi-breath motion assessment. Accurate DIR mapping has been achieved to map high-resolution BH images to low-resolution FB images, producing 2Hz volumetric high-resolution 4DMRI. Further validation and improvement are still required prior to clinical applications. This study is in part supported by the NIH (U54CA137788/U54CA132378).« less

  16. Mapping of invasive Acacia species in Brazilian Mussununga ecosystems using high- resolution IR remote sensing data acquired with an autonomous Unmanned Aerial System (UAS)

    NASA Astrophysics Data System (ADS)

    Lehmann, Jan Rudolf Karl; Zvara, Ondrej; Prinz, Torsten

    2015-04-01

    The biological invasion of Australian Acacia species in natural ecosystems outside Australia has often a negative impact on native and endemic plant species and the related biodiversity. In Brazil, the Atlantic rainforest of Bahia and Espirito Santo forms an associated type of ecosystem, the Mussununga. In our days this biologically diverse ecosystem is negatively affected by the invasion of Acacia mangium and Acacia auriculiformis, both introduced to Brazil by the agroforestry to increase the production of pulp and high grade woods. In order to detect the distribution of Acacia species and to monitor the expansion of this invasion the use of high-resolution imagery data acquired with an autonomous Unmanned Aerial System (UAS) proved to be a very promising approach. In this study, two types of datasets - CIR and RGB - were collected since both types provide different information. In case of CIR imagery attention was paid on spectral signatures related to plants, whereas in case of RGB imagery the focus was on surface characteristics. Orthophoto-mosaics and DSM/DTM for both dataset were extracted. RGB/IHS transformations of the imagery's colour space were utilized, as well as NDVIblue index in case of CIR imagery to discriminate plant associations. Next, two test areas were defined in order validate OBIA rule sets using eCognition software. In case of RGB dataset, a rule set based on elevation distinction between high vegetation (including Acacia) and low vegetation (including soils) was developed. High vegetation was classified using Nearest Neighbour algorithm while working with the CIR dataset. The IHS information was used to mask shadows, soils and low vegetation. Further Nearest Neighbour classification was used for distinction between Acacia and other high vegetation types. Finally an accuracy assessment was performed using a confusion matrix. One can state that the IHS information appeared to be helpful in Acacia detection while the surface elevation information in case of RGB dataset was helpful to distinguish between low and high vegetation types. The successful use of a fixed-wing UAS proved to be a reliable and flexible technique to acquire ecologically sensitive data over wide areas and by extended UAS flight missions.

  17. Automatic Blocked Roads Assessment after Earthquake Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Rastiveis, H.; Hosseini-Zirdoo, E.; Eslamizade, F.

    2015-12-01

    In 2010, an earthquake in the city of Port-au-Prince, Haiti, happened quite by chance an accident and killed over 300000 people. According to historical data such an earthquake has not occurred in the area. Unpredictability of earthquakes has necessitated the need for comprehensive mitigation efforts to minimize deaths and injuries. Blocked roads, caused by debris of destroyed buildings, may increase the difficulty of rescue activities. In this case, a damage map, which specifies blocked and unblocked roads, can be definitely helpful for a rescue team. In this paper, a novel method for providing destruction map based on pre-event vector map and high resolution world view II satellite images after earthquake, is presented. For this purpose, firstly in pre-processing step, image quality improvement and co-coordination of image and map are performed. Then, after extraction of texture descriptor from the image after quake and SVM classification, different terrains are detected in the image. Finally, considering the classification results, specifically objects belong to "debris" class, damage analysis are performed to estimate the damage percentage. In this case, in addition to the area objects in the "debris" class their shape should also be counted. The aforementioned process are performed on all the roads in the road layer.In this research, pre-event digital vector map and post-event high resolution satellite image, acquired by Worldview-2, of the city of Port-au-Prince, Haiti's capital, were used to evaluate the proposed method. The algorithm was executed on 1200×800 m2 of the data set, including 60 roads, and all the roads were labelled correctly. The visual examination have authenticated the abilities of this method for damage assessment of urban roads network after an earthquake.

  18. Water Management Applications of Advanced Precipitation Products

    NASA Astrophysics Data System (ADS)

    Johnson, L. E.; Braswell, G.; Delaney, C.

    2012-12-01

    Advanced precipitation sensors and numerical models track storms as they occur and forecast the likelihood of heavy rain for time frames ranging from 1 to 8 hours, 1 day, and extended outlooks out to 3 to 7 days. Forecast skill decreases at the extended time frames but the outlooks have been shown to provide "situational awareness" which aids in preparation for flood mitigation and water supply operations. In California the California-Nevada River Forecast Centers and local Weather Forecast Offices provide precipitation products that are widely used to support water management and flood response activities of various kinds. The Hydrometeorology Testbed (HMT) program is being conducted to help advance the science of precipitation tracking and forecasting in support of the NWS. HMT high-resolution products have found applications for other non-federal water management activities as well. This presentation will describe water management applications of HMT advanced precipitation products, and characterization of benefits expected to accrue. Two case examples will be highlighted, 1) reservoir operations for flood control and water supply, and 2) urban stormwater management. Application of advanced precipitation products in support of reservoir operations is a focus of the Sonoma County Water Agency. Examples include: a) interfacing the high-resolution QPE products with a distributed hydrologic model for the Russian-Napa watersheds, b) providing early warning of in-coming storms for flood preparedness and water supply storage operations. For the stormwater case, San Francisco wastewater engineers are developing a plan to deploy high resolution gap-filling radars looking off shore to obtain longer lead times on approaching storms. A 4 to 8 hour lead time would provide opportunity to optimize stormwater capture and treatment operations, and minimize combined sewer overflows into the Bay.ussian River distributed hydrologic model.

  19. Validating the WRF-Chem model for wind energy applications using High Resolution Doppler Lidar data from a Utah 2012 field campaign

    NASA Astrophysics Data System (ADS)

    Mitchell, M. J.; Pichugina, Y. L.; Banta, R. M.

    2015-12-01

    Models are important tools for assessing potential of wind energy sites, but the accuracy of these projections has not been properly validated. In this study, High Resolution Doppler Lidar (HRDL) data obtained with high temporal and spatial resolution at heights of modern turbine rotors were compared to output from the WRF-chem model in order to help improve the performance of the model in producing accurate wind forecasts for the industry. HRDL data were collected from January 23-March 1, 2012 during the Uintah Basin Winter Ozone Study (UBWOS) field campaign. A model validation method was based on the qualitative comparison of the wind field images, time-series analysis and statistical analysis of the observed and modeled wind speed and direction, both for case studies and for the whole experiment. To compare the WRF-chem model output to the HRDL observations, the model heights and forecast times were interpolated to match the observed times and heights. Then, time-height cross-sections of the HRDL and WRF-Chem wind speed and directions were plotted to select case studies. Cross-sections of the differences between the observed and forecasted wind speed and directions were also plotted to visually analyze the model performance in different wind flow conditions. A statistical analysis includes the calculation of vertical profiles and time series of bias, correlation coefficient, root mean squared error, and coefficient of determination between two datasets. The results from this analysis reveals where and when the model typically struggles in forecasting winds at heights of modern turbine rotors so that in the future the model can be improved for the industry.

  20. Simulating the Effect of Spectroscopic MRI as a Metric for Radiation Therapy Planning in Patients with Glioblastoma

    PubMed Central

    Cordova, J. Scott; Kandula, Shravan; Gurbani, Saumya; Zhong, Jim; Tejani, Mital; Kayode, Oluwatosin; Patel, Kirtesh; Prabhu, Roshan; Schreibmann, Eduard; Crocker, Ian; Holder, Chad A.; Shim, Hyunsuk; Shu, Hui-Kuo

    2017-01-01

    Due to glioblastoma’s infiltrative nature, an optimal radiation therapy (RT) plan requires targeting infiltration not identified by anatomical magnetic resonance imaging (MRI). Here, high-resolution, whole-brain spectroscopic MRI (sMRI) is used to describe tumor infiltration alongside anatomical MRI and simulate the degree to which it modifies RT target planning. In 11 patients with glioblastoma, data from preRT sMRI scans were processed to give high-resolution, whole-brain metabolite maps normalized by contralateral white matter. Maps depicting choline to N-Acetylaspartate (Cho/NAA) ratios were registered to contrast-enhanced T1-weighted RT planning MRI for each patient. Volumes depicting metabolic abnormalities (1.5−, 1.75−, and 2.0-fold increases in Cho/NAA ratios) were compared with conventional target volumes and contrast-enhancing tumor at recurrence. sMRI-modified RT plans were generated to evaluate target volume coverage and organ-at-risk dose constraints. Conventional clinical target volumes and Cho/NAA abnormalities identified significantly different regions of microscopic infiltration with substantial Cho/NAA abnormalities falling outside of the conventional 60 Gy isodose line (41.1, 22.2, and 12.7 cm3, respectively). Clinical target volumes using Cho/NAA thresholds exhibited significantly higher coverage of contrast enhancement at recurrence on average (92.4%, 90.5%, and 88.6%, respectively) than conventional plans (82.5%). sMRI-based plans targeting tumor infiltration met planning objectives in all cases with no significant change in target coverage. In 2 cases, the sMRI-modified plan exhibited better coverage of contrast-enhancing tumor at recurrence than the original plan. Integration of the high-resolution, whole-brain sMRI into RT planning is feasible, resulting in RT target volumes that can effectively target tumor infiltration while adhering to conventional constraints. PMID:28105468

  1. The High-Resolution Wave-Propagation Method Applied to Meso- and Micro-Scale Flows

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.

    2012-01-01

    The high-resolution wave-propagation method for computing the nonhydrostatic atmospheric flows on meso- and micro-scales is described. The design and implementation of the Riemann solver used for computing the Godunov fluxes is discussed in detail. The method uses a flux-based wave decomposition in which the flux differences are written directly as the linear combination of the right eigenvectors of the hyperbolic system. The two advantages of the technique are: 1) the need for an explicit definition of the Roe matrix is eliminated and, 2) the inclusion of source term due to gravity does not result in discretization errors. The resulting flow solver is conservative and able to resolve regions of large gradients without introducing dispersion errors. The methodology is validated against exact analytical solutions and benchmark cases for non-hydrostatic atmospheric flows.

  2. The roughness of grounded ice sheet beds: Case studies from high resolution radio echo sounding studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Young, Duncan; Blankeship, Donald; Beem, Lucas; Cavitte, Marie; Quartini, Enrica; Lindzey, Laura; Jackson, Charles; Roberts, Jason; Ritz, Catherine; Siegert, Martin; Greenbaum, Jamin; Frederick, Bruce

    2017-04-01

    The roughness of subglacial interfaces (as measured by airborne radar echo sounding) at length scales between profile line spacing and the footprint of the instrument is a key, but complex, signature of glacial and geomorphic processes, material lithology and integrated history at the bed of ice sheets. Subglacial roughness is also intertwined with assessments of ice thickness uncertainty using radar echo sounding, the utility of interpolation methodologies, and a key aspect of subglacial assess strategies. Here we present an assessment of subglacial roughness estimation in both West and East Antarctica, and compare this to exposed subglacial terrains. We will use recent high resolution aerogeophysical surveys to examine what variations in roughness are a fingerprint for, assess the limits of ice thickness uncertainty quantification and compare strategies for roughness assessment and utilization.

  3. Does infantile abduction deficit indicate duane retraction syndrome until disproven?

    PubMed

    Kim, Jae Hyoung; Hwang, Jeong-Min

    2014-11-01

    Duane retraction syndrome consists of abduction deficit and palpebral fissure narrowing, upshoots, or downshoots on adduction. Infants with abduction deficit should be considered to have Duane retraction syndrome until disproven, because congenital abducens nerve palsy is extremely rare. The abducens nerve on the affected side is absent in type 1 Duane retraction syndrome and in some type 3 patients. The authors present a 7-month-old girl who showed limitation of abduction simulating Duane retraction syndrome. High-resolution magnetic resonance imaging (MRI) revealed atrophic lateral rectus and present abducens nerve. This report is important because this case showed that congenital abducens nerve palsy exists, although it is extremely rare, and high-resolution MRI could be pivotal for the differentiation of Duane retraction syndrome and congenital abducens nerve palsy in infancy. © The Author(s) 2014.

  4. Two-dimensional mesh embedding for Galerkin B-spline methods

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Moser, Robert D.

    1995-01-01

    A number of advantages result from using B-splines as basis functions in a Galerkin method for solving partial differential equations. Among them are arbitrary order of accuracy and high resolution similar to that of compact schemes but without the aliasing error. This work develops another property, namely, the ability to treat semi-structured embedded or zonal meshes for two-dimensional geometries. This can drastically reduce the number of grid points in many applications. Both integer and non-integer refinement ratios are allowed. The report begins by developing an algorithm for choosing basis functions that yield the desired mesh resolution. These functions are suitable products of one-dimensional B-splines. Finally, test cases for linear scalar equations such as the Poisson and advection equation are presented. The scheme is conservative and has uniformly high order of accuracy throughout the domain.

  5. Explicit and implicit compact high-resolution shock-capturing methods for multidimensional Euler equations 1: Formulation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1995-01-01

    Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.

  6. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Huang, Ruikun; Wang, Jiandong; Yan, Han; Zheng, Yali; Hao, Jiming

    2016-08-01

    Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach) to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet - Macau, EMBEV-Macau), this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model) model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other vehicle-populated cities in eastern Asia.

  7. Applications of UAS-SfM for coastal vulnerability assessment: Geomorphic feature extraction and land cover classification from fine-scale elevation and imagery data

    NASA Astrophysics Data System (ADS)

    Sturdivant, E. J.; Lentz, E. E.; Thieler, E. R.; Remsen, D.; Miner, S.

    2016-12-01

    Characterizing the vulnerability of coastal systems to storm events, chronic change and sea-level rise can be improved with high-resolution data that capture timely snapshots of biogeomorphology. Imagery acquired with unmanned aerial systems (UAS) coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. Here we compare SfM-derived data to lidar and visual imagery for their utility in a) geomorphic feature extraction and b) land cover classification for coastal habitat assessment. At a beach and wetland site on Cape Cod, Massachusetts, we used UAS to capture photographs over a 15-hectare coastal area with a resulting pixel resolution of 2.5 cm. We used standard SfM processing in Agisoft PhotoScan to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM). The SfM-derived products have a horizontal uncertainty of +/- 2.8 cm. Using the point cloud in an extraction routine developed for lidar data, we determined the position of shorelines, dune crests, and dune toes. We used the output imagery and DEM to map land cover with a pixel-based supervised classification. The dense and highly precise SfM point cloud enabled extraction of geomorphic features with greater detail than with lidar. The feature positions are reported with near-continuous coverage and sub-meter accuracy. The orthomosaic image produced with SfM provides visual reflectance with higher resolution than those available from aerial flight surveys, which enables visual identification of small features and thus aids the training and validation of the automated classification. We find that the high-resolution and correspondingly high density of UAS data requires some simple modifications to existing measurement techniques and processing workflows, and that the types of data and the quality provided is equivalent to, and in some cases surpasses, that of data collected using other methods.

  8. Evaluation of a moderate resolution, satellite-based impervious surface map using an independent, high-resolution validation data set

    USGS Publications Warehouse

    Jones, J.W.; Jarnagin, T.

    2009-01-01

    Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data products high quality, independently derived validation data are needed. High-resolution data were collected across a gradient of development within the Mid-Atlantic region to assess the accuracy of National Land Cover Data (NLCD) Landsat-based ISA estimates. Absolute error (satellite predicted area - "reference area") and relative error [satellite (predicted area - "reference area")/ "reference area"] were calculated for each of 240 sample regions that are each more than 15 Landsat pixels on a side. The ability to compile and examine ancillary data in a geographic information system environment provided for evaluation of both validation and NLCD data and afforded efficient exploration of observed errors. In a minority of cases, errors could be explained by temporal discontinuities between the date of satellite image capture and validation source data in rapidly changing places. In others, errors were created by vegetation cover over impervious surfaces and by other factors that bias the satellite processing algorithms. On average in the Mid-Atlantic region, the NLCD product underestimates ISA by approximately 5%. While the error range varies between 2 and 8%, this underestimation occurs regardless of development intensity. Through such analyses the errors, strengths, and weaknesses of particular satellite products can be explored to suggest appropriate uses for regional, satellite-based data in rapidly developing areas of environmental significance. ?? 2009 ASCE.

  9. Empirical single sample quantification of bias and variance in Q-ball imaging.

    PubMed

    Hainline, Allison E; Nath, Vishwesh; Parvathaneni, Prasanna; Blaber, Justin A; Schilling, Kurt G; Anderson, Adam W; Kang, Hakmook; Landman, Bennett A

    2018-02-06

    The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q-ball imaging reconstruction of high angular resolution diffusion imaging data. The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics. © 2018 International Society for Magnetic Resonance in Medicine.

  10. The Crista Fenestra and Its Impact on the Surgical Approach to the Scala Tympani during Cochlear Implantation.

    PubMed

    Angeli, Roberto D; Lavinsky, Joel; Setogutti, Enio T; Lavinsky, Luiz

    2017-01-01

    The aim of this work was to describe the dimensions of the crista fenestra and determine its presence by means of high-resolution computed tomography (CT) for the purpose of cochlear implantation via the round window approach. A series of 10 adult human temporal bones underwent high-resolution CT scanning and were further dissected for microscopic study of the round window niche. In all of the specimens, the round window membrane was fully visualized after the complete removal of bony overhangs. The crista fenestra was identified as a sharp bony crest located in the anterior and inferior borders of the niche; its area ranged from 0.28 to 0.80 mm2 (mean 0.51 ± 0.18). The proportion of the area occupied by the crista fenestra in the whole circumference of the round window ranged from 23 to 50% (mean 36%). We found a moderate positive correlation between the area of the niche and the dimensions of the crista fenestra (Spearman rho: 0.491). In every case, high-resolution CT scanning was unable to determine the presence of the crista fenestra. The crista fenestra occupies a variable but expressive area within the bony round window niche. Narrower round window niches tended to house smaller crests. The presence of the crista fenestra is an important obstacle to adequate access to the scala tympani. Nevertheless, a high-resolution CT scan provides no additional preoperative information with regard to its presence for the purpose of surgical access to the scala tympani via the round window niche. © 2017 S. Karger AG, Basel.

  11. Does objective cluster analysis serve as a useful precursor to seasonal precipitation prediction at local scale? Application to western Ethiopia

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Moges, Semu; Block, Paul

    2018-01-01

    Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS) values of up to 0.5 and 33 %, respectively. The general skill (after bias correction) of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.

  12. GIARPS@TNG: GIANO-B and HARPS-N together for a wider wavelength range spectroscopy

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Benatti, S.; Carleo, I.; Ghedina, A.; Guerra, J.; Micela, G.; Molinari, E.; Oliva, E.; Rainer, M.; Tozzi, A.; Baffa, C.; Baruffolo, A.; Buchschacher, N.; Cecconi, M.; Cosentino, R.; Fantinel, D.; Fini, L.; Ghinassi, F.; Giani, E.; Gonzalez, E.; Gonzalez, M.; Gratton, R.; Harutyunyan, A.; Hernandez, N.; Lodi, M.; Malavolta, L.; Maldonado, J.; Origlia, L.; Sanna, N.; Sanjuan, J.; Scuderi, S.; Seemann, U.; Sozzetti, A.; Perez Ventura, H.; Hernandez Diaz, M.; Galli, A.; Gonzalez, C.; Riverol, L.; Riverol, C.

    2017-08-01

    Since 2012, thanks to the installation of the high-resolution echelle spectrograph in the optical range HARPS-N, the Italian telescope TNG (La Palma) became one of the key facilities for the study of the extrasolar planets. In 2014 TNG also offered GIANO to the scientific community, providing a near-infrared (NIR) cross-dispersed echelle spectroscopy covering 0.97-2.45μm at a resolution of 50000. GIANO, although designed for direct light-feed from the telescope at the Nasmyth-B focus, was provisionally mounted on the rotating building and connected via fibers to only available interface at the Nasmyth-A focal plane. The synergy between these two instruments is particularly appealing for a wide range of science cases, especially for the search of exoplanets around young and active stars and the characterisation of their atmosphere. Through the funding scheme "WOW" (a Way to Others Worlds), the Italian National Institute for Astrophysics (INAF) proposed to position GIANO at the focal station for which it was originally designed and the simultaneous use of these spectrographs with the aim to achieve high-resolution spectroscopy in a wide wavelength range (0.383-2.45μm) obtained in a single exposure, giving rise to the project called GIARPS (GIANO-B & HARPS-N). Because of its characteristics, GIARPS can be considered the first and unique worldwide instrument providing not only high resolution in a large wavelength band, but also a high-precision radial velocity measurement both in the visible and in the NIR arm, since in the next future GIANO-B will be equipped with gas absorption cells.

  13. Urban Boundary Extraction and Urban Sprawl Measurement Using High-Resolution Remote Sensing Images: a Case Study of China's Provincial

    NASA Astrophysics Data System (ADS)

    Wang, H.; Ning, X.; Zhang, H.; Liu, Y.; Yu, F.

    2018-04-01

    Urban boundary is an important indicator for urban sprawl analysis. However, methods of urban boundary extraction were inconsistent, and construction land or urban impervious surfaces was usually used to represent urban areas with coarse-resolution images, resulting in lower precision and incomparable urban boundary products. To solve above problems, a semi-automatic method of urban boundary extraction was proposed by using high-resolution image and geographic information data. Urban landscape and form characteristics, geographical knowledge were combined to generate a series of standardized rules for urban boundary extraction. Urban boundaries of China's 31 provincial capitals in year 2000, 2005, 2010 and 2015 were extracted with above-mentioned method. Compared with other two open urban boundary products, accuracy of urban boundary in this study was the highest. Urban boundary, together with other thematic data, were integrated to measure and analyse urban sprawl. Results showed that China's provincial capitals had undergone a rapid urbanization from year 2000 to 2015, with the area change from 6520 square kilometres to 12398 square kilometres. Urban area of provincial capital had a remarkable region difference and a high degree of concentration. Urban land became more intensive in general. Urban sprawl rate showed inharmonious with population growth rate. About sixty percent of the new urban areas came from cultivated land. The paper provided a consistent method of urban boundary extraction and urban sprawl measurement using high-resolution remote sensing images. The result of urban sprawl of China's provincial capital provided valuable urbanization information for government and public.

  14. Transcontinental telementoring with pediatric surgeons: proof of concept and technical considerations.

    PubMed

    Ponsky, Todd A; Bobanga, Iuliana D; Schwachter, Marc; Stathos, Theodore H; Rosen, Michael; Parry, Robert; Nalugo, Margaret; Rothenberg, Steven S

    2014-12-01

    To evaluate different technologies that can facilitate telementoring in a variety of pediatric surgical procedures. Two different telementoring technologies were used to provide two-way audio and visual communication between experienced pediatric surgeon mentors located in another city and less experienced trainees performing a surgical procedure. The first technology consisted of store-bought equipment that connected the operating room laparoscope to a Skype™ (Microsoft, Redmond, WA) connection (used in 1 case), whereas the second was a proprietary telementoring robot, Karl Storz Endoscopy-America, Inc. VisitOR1(®) (Karl Storz GmbH & Co. KG, Tuttlingen, Germany) (used in 5 cases). The procedures included a video-assisted thoracic surgery lower lobectomy, a temporary and two permanent gastric stimulator placements, and two laparoscopic inguinal hernia repairs and were performed by pediatric surgeons (3 cases), a pediatric gastroenterologist (1 case), and a general surgeon (2 cases) under the guidance of pediatric surgeon mentors. All procedures were completed successfully in a time-efficient manner, without loss of transmission and without complications. Although the Skype technology was less costly, it lacked telestrator capacity and was not adequately secure. The VisitOR1 telementoring robot enabled high-resolution video communication, had telestrator capacity, and allowed pointing during the procedure. The mentors assisted with trocar placement, modifying the surgical technique, identifying planes of dissection, and indicating locations of device and suture placement. Telementoring is a useful adjunct in the field of pediatric surgery that can aid in the transfer of surgical skills remotely and shorten the time to implementation of new surgical techniques into practice. Optimal telementoring technology should have a secure wireless connection, high video resolution, and minimal bandwidth latency.

  15. Temporal Accuracy and Modern High Performance Processors: A Case Study Using Pentium Pro

    DTIC Science & Technology

    1998-10-15

    conducted. We discuss the results of our experiments and how these results will be usedfor implementing the next release of Maruti hard real - time operating system in...Even though the resolution of the APIC timer is not as good as the TSCcounter, an interruptible timer may be used in several ways in a real - time operating system . Theobjective

  16. Low altitude remote sensing technologies for crop stress monitoring: a case study on spatial and temporal monitoring of irrigated pinto bean

    USDA-ARS?s Scientific Manuscript database

    Site-specific crop management is a promising approach to maximize crop yield with optimal use of rapidly depleting natural resources. Availability of high resolution crop data at critical growth stages is a key for real-time data-driven decisions during the production season. The goal of this study ...

  17. Modular detector for deep underwater registration of muons and muon groups

    NASA Technical Reports Server (NTRS)

    Demianov, A. I.; Sarycheva, L. I.; Sinyov, N. B.; Varadanyan, I. N.; Yershov, A. A.

    1985-01-01

    Registration and identification of muons and muon groups penetrating into the ocean depth, can be performed using a modular multilayer detector with high resolution bidimensional readout - deep underwater calorimeter (project NADIR). Laboratory testing of a prototype sensor cell with liquid scintillator in light-tight casing, testifies to the practicability of the full-scale experiment within reasonable expences.

  18. Allergic bronchopulmonary aspergillosis--a case report.

    PubMed

    Chokhani, Ramesh; Neupane, Saraswoti; Kandel, Ishwar Sharma

    2004-12-01

    A 24 years old male presented with recurrent symptoms of cough and breathlessness for 6 years but increased in past 6 months. Fleeting radiological opacities, peripheral eosinophilia and central type bronchiectasus in high resolution CT scan gave the suspicion of allergic bronchopolmonary aspergilosis. Confirmation of the diagnosis was done by skin prick and immunological tests. The patient showed an excellent response to oral prednisolone.

  19. Validation of the WRF-CMAQ Two-Way Model with Aircraft Data and High Resolution MODIS Data in the CA 2008 Wildfire Case

    EPA Science Inventory

    A new WRF-CMAQ two-way coupled model was developed to provide a pathway for chemical feedbacks from the air quality model to the meteorological model. The essence of this interaction is focused on the direct radiative effects of scattering and absorbing aerosols in the tropospher...

  20. High-Resolution CT and Angiographic Evaluation of NexStent Wall Adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemes, Balazs, E-mail: nembal@freemail.hu; Lukacs, Levente; Balazs, Gyoergy

    2009-05-15

    Carotid stenting is a minimally invasive treatment for extracranial carotid artery stenosis. Stent design may affect technical success and complications in a certain subgroup of patients. We examined the wall adaptability of a new closed-cell carotid stent (NexStent), which has a unique rolled sheet design. Forty-one patients had 42 carotid arteries treated with angioplasty and stenting for internal carotid artery stenosis. The mean patient age was 65 {+-} 10 years. All patients underwent high-resolution computed tomographic angiography after the stent implantation. Data analysis included pre- and postprocedural stenosis, procedure complications, plaque calcification, and stent apposition. We reviewed the angiographic andmore » computed tomographic images for plaque coverage and stent expansion. All procedures were technically successful. Mean stenosis was reduced from 84 {+-} 8% before the procedure to 15.7 {+-} 7% after stenting. Two patients experienced transient ischemic attack; one patient had bradycardia and hypotension. Stent induced kinking was observed in one case. Good plaque coverage and proper overlapping of the rolled sheet was achieved in all cases. There was weak correlation between the residual stenosis and the amount of calcification. The stent provides adequate expansion and adaptation to the tapering anatomy of the bifurcation.« less

  1. The effects of temporal variability of mixed layer depth on primary productivity around Bermuda

    NASA Technical Reports Server (NTRS)

    Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.

    1994-01-01

    Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.

  2. Application of an Upwind High Resolution Finite-Differencing Scheme and Multigrid Method in Steady-State Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.

    1996-01-01

    The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.

  3. Spontaneous rapid reduction of a large acute subdural hematoma.

    PubMed

    Lee, Chul-Hee; Kang, Dong Ho; Hwang, Soo Hyun; Park, In Sung; Jung, Jin-Myung; Han, Jong Woo

    2009-12-01

    The majority of acute post-traumatic subdural hematomas (ASDH) require urgent surgical evacuation. Spontaneous resolution of ASDH has been reported in some cases. We report here on a case of a patient with a large amount of ASDH that was rapidly reduced. A 61-yr-old man was found unconscious following a high speed motor vehicle accident. On initial examination, his Glasgow Coma Score scale was 4/15. His pupils were fully dilated and non-reactive to bright light. Brain computed tomography (CT) showed a massive right-sided ASDH. The decision was made to treat him conservatively because of his poor clinical condition. Another brain CT approximately 14 hr after the initial scan demonstrated a remarkable reduction of the previous ASDH and there was the new appearance of high density in the subdural space adjacent to the falx and the tentorium. Thirty days after his admission, brain CT revealed chronic SDH and the patient underwent surgery. The patient is currently able to obey simple commands. In conclusion, spontaneous rapid resolution/reduction of ASDH may occur in some patients. The mechanisms are most likely the result of dilution by cerebrospinal fluid and the redistribution of hematoma especially in patients with brain atrophy.

  4. Spontaneous Rapid Reduction of a Large Acute Subdural Hematoma

    PubMed Central

    Kang, Dong Ho; Hwang, Soo Hyun; Park, In Sung; Jung, Jin-Myung; Han, Jong Woo

    2009-01-01

    The majority of acute post-traumatic subdural hematomas (ASDH) require urgent surgical evacuation. Spontaneous resolution of ASDH has been reported in some cases. We report here on a case of a patient with a large amount of ASDH that was rapidly reduced. A 61-yr-old man was found unconscious following a high speed motor vehicle accident. On initial examination, his Glasgow Coma Score scale was 4/15. His pupils were fully dilated and non-reactive to bright light. Brain computed tomography (CT) showed a massive right-sided ASDH. The decision was made to treat him conservatively because of his poor clinical condition. Another brain CT approximately 14 hr after the initial scan demonstrated a remarkable reduction of the previous ASDH and there was the new appearance of high density in the subdural space adjacent to the falx and the tentorium. Thirty days after his admission, brain CT revealed chronic SDH and the patient underwent surgery. The patient is currently able to obey simple commands. In conclusion, spontaneous rapid resolution/reduction of ASDH may occur in some patients. The mechanisms are most likely the result of dilution by cerebrospinal fluid and the redistribution of hematoma especially in patients with brain atrophy. PMID:19949689

  5. Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling

    NASA Astrophysics Data System (ADS)

    Barison, Erika; Brancatelli, Giuseppe; Nicolich, Rinaldo; Accaino, Flavio; Giustiniani, Michela; Tinivella, Umberta

    2011-03-01

    One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.

  6. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    NASA Astrophysics Data System (ADS)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.

  7. Retrieval of total suspended matter concentrations from high resolution WorldView-2 imagery: a case study of inland rivers

    NASA Astrophysics Data System (ADS)

    Shi, Liangliang; Mao, Zhihua; Wang, Zheng

    2018-02-01

    Satellite imagery has played an important role in monitoring water quality of lakes or coastal waters presently, but scarcely been applied in inland rivers. This paper presents an attempt of feasibility to apply regression model to quantify and map the concentrations of total suspended matter (CTSM) in inland rivers which have a large scale of spatial and a high CTSM dynamic range by using high resolution satellite remote sensing data, WorldView-2. An empirical approach to quantify CTSM by integrated use of high resolution WorldView-2 multispectral data and 21 in situ CTSM measurements. Radiometric correction, geometric and atmospheric correction involved in image processing procedure is carried out for deriving the surface reflectance to correlate the CTSM and satellite data by using single-variable and multivariable regression technique. Results of regression model show that the single near-infrared (NIR) band 8 of WorldView-2 have a relative strong relationship (R2=0.93) with CTSM. Different prediction models were developed on various combinations of WorldView-2 bands, the Akaike Information Criteria approach was used to choose the best model. The model involving band 1, 3, 5, and 8 of WorldView-2 had a best performance, whose R2 reach to 0.92, with SEE of 53.30 g/m3. The spatial distribution maps were produced by using the best multiple regression model. The results of this paper indicated that it is feasible to apply the empirical model by using high resolution satellite imagery to retrieve CTSM of inland rivers in routine monitoring of water quality.

  8. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    PubMed

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  9. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  10. Integration of a synthetic vision system with airborne laser range scanner-based terrain referenced navigation for precision approach guidance

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank

    2005-05-01

    Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and laser scanner system is capable of providing near meter-level horizontal and vertical position estimates. Furthermore, the system under development capitalizes on 1) The position and integrity benefits provided by the Wide Area Augmentation System (WAAS) to reduce the initial search space size and; 2) The availability of high accuracy/resolution databases. This paper presents results from flight tests where the terrain reference navigator is used to provide guidance cues for a precision approach.

  11. Quantitative analysis of drugs in hair by UHPLC high resolution mass spectrometry.

    PubMed

    Kronstrand, Robert; Forsman, Malin; Roman, Markus

    2018-02-01

    Liquid chromatographic methods coupled to high resolution mass spectrometry are increasingly used to identify compounds in various matrices including hair but there are few recommendations regarding the parameters and their criteria to identify a compound. In this study we present a method for the identification and quantification of a range of drugs and discuss the parameters used to identify a compound with high resolution mass spectrometry. Drugs were extracted from hair by incubation in a buffer:solvent mixture at 37°C during 18h. Analysis was performed on a chromatographic system comprised of an Agilent 6550 QTOF coupled to a 1290 Infinity UHPLC system. High resolution accurate mass data were acquired in the All Ions mode and exported into Mass Hunter Quantitative software for quantitation and identification using qualifier fragment ions. Validation included selectivity, matrix effects, calibration range, within day and between day precision and accuracy. The analytes were 7-amino-flunitrazepam, 7-amino-clonazepam, 7-amino-nitrazepam, acetylmorphine, alimemazine, alprazolam, amphetamine, benzoylecgonine, buprenorphine, diazepam, ethylmorphine, fentanyl, hydroxyzine, ketobemidone, codeine, cocaine, MDMA, methadone, methamphetamine, morphine, oxycodone, promethazine, propiomazine, propoxyphene, tramadol, zaleplone, zolpidem, and zopiclone. As proof of concept, hair from 29 authentic post mortem cases were analysed. The calibration range was established between 0.05ng/mg to 5.0ng/mg for all analytes except fentanyl (0.02-2.0), buprenorphine (0.04-2.0), and ketobemidone (0.05-4.0) as well as for alimemazine, amphetamine, cocaine, methadone, and promethazine (0.10-5.0). For all analytes, the accuracy of the fortified pooled hair matrix was 84-108% at the low level and 89-106% at the high level. The within series precisions were between 1.4 and 6.7% and the between series precisions were between 1.4 and 10.1%. From the 29 autopsy cases, 121 positive findings were encountered from 23 of the analytes in concentrations similar to those previously published. We conclude that the developed method proved precise and accurate and that it had sufficient performance for the purpose of detecting regular use of drugs or treatment with prescription drugs. To identify a compound we recommend the use of ion ratios as a complement to instrument software "matching scores". Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Arteriovenous fistula complicating iliac artery pseudo aneurysm: diagnosis by CT angiography.

    PubMed

    Huawei, L; Bei, D; Huan, Z; Zilai, P; Aorong, T; Kemin, C

    2002-01-01

    Fistula formation to the inferior vena cava is a rare complication of aortic aneurysm which is often misdiagnosed clinically. In one hundred of reported arteriocaval fistulae, none was originating from the right common iliac artery. We report a case of ileo-caval fistula due to a iatrogenic pseudoaneurysm. High resolution 3D imaging using breath-hold CT angiography is highly specific in identifying the location, extent of the aortocaval fistula as well as the neighbouring anatomic structures.

  13. Riverine Imaging

    DTIC Science & Technology

    2011-12-16

    25 Gain Over Direct Path- ~"- Wii j ’:.!. • ’- I Worst Case Loss = 6 dB for this h=1m target ^ 10’ 10 Resolved Pulse Width at -1 OdB...fundamental rejection (i.e. good balance ) is needed in the multiplier stage. The good news is that the last three approaches, and in particular, the... balanced mixers, SiGe baseband amplifiers, and 16-bit ADCs. Very high resolution (dynamic range) and high speed ADC’s are available at low cost and

  14. The Unmanned Aerial System SUMO: an alternative measurement tool for polar boundary layer studies

    NASA Astrophysics Data System (ADS)

    Mayer, S.; Jonassen, M. O.; Reuder, J.

    2012-04-01

    Numerical weather prediction and climate models face special challenges in particular in the commonly stable conditions in the high-latitude environment. For process studies as well as for model validation purposes in-situ observations in the atmospheric boundary layer are highly required, but difficult to retrieve. We introduce a new measurement system for corresponding observations. The Small Unmanned Meteorological Observer SUMO consists of a small and light-weight auto-piloted model aircraft, equipped with a meteorological sensor package. SUMO has been operated in polar environments, among others during IPY on Spitsbergen in the year 2009 and has proven its capabilities for atmospheric measurements with high spatial and temporal resolution even at temperatures of -30 deg C. A comparison of the SUMO data with radiosondes and tethered balloons shows that SUMO can provide atmospheric profiles with comparable quality to those well-established systems. Its high data quality allowed its utilization for evaluation purposes of high-resolution model runs performed with the Weather Research and Forecasting model WRF and for the detailed investigation of an orographically modified flow during a case study.

  15. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit

    NASA Astrophysics Data System (ADS)

    Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.

    2017-11-01

    Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (<< 1 μrad) are required, which are the major challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).

  16. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments

    NASA Astrophysics Data System (ADS)

    Li, Manchun; Ma, Lei; Blaschke, Thomas; Cheng, Liang; Tiede, Dirk

    2016-07-01

    Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.

  17. Understanding the Lung Abscess Microbiome: Outcomes of Percutaneous Lung Parenchymal Abscess Drainage with Microbiologic Correlation.

    PubMed

    Duncan, Christopher; Nadolski, Gregory J; Gade, Terence; Hunt, Stephen

    2017-06-01

    Lung parenchymal abscesses represent an uncommon pathology with high mortality if untreated. Although most respond well to antibiotics, the optimal therapy for persistent abscesses is unknown. The purpose of this study was to review the outcomes of percutaneous lung parenchymal abscess catheter drainage after broad-spectrum antibiotic therapy failure and correlate with patient microbiologic samples. Retrospective review of patients who underwent percutaneous lung abscess drainage at a tertiary hospital system from 2005 to 2015 was performed. In total, 19 procedures were identified on 16 different patients; six females and ten males. Mean patient age was 55 years (range 22-81). Median follow-up time was 7 months (range <1-78). Technical success was 100%. There was one major complication, a pneumothorax. Follow-up was until tube removal or death in 100% of patients. Catheters were removed with resolution of the abscess cavity in 58% (11/19) or with non-draining abscess cavities in 21% (4/19) for a clinical success rate of 79%. Blood cultures demonstrated no growth in all cases, while 21% (4/19) of sputum or bronchoscopic cultures demonstrated growth. In comparison, the specimens from initial catheter placement isolated a causative organism in 95% (18/19) of case (p < 0.0001). In cases of persistent lung abscess after broad-spectrum antibiotics, percutaneous abscess drainage is highly sensitive for microbiologic sampling compared to sputum/bronchoscopic or blood cultures. Additionally, percutaneous drainage of lung parenchymal abscess cavities may promote resolution of the abscess with high rates of therapeutic success and low complications.

  18. Re-evaluation of low-resolution crystal structures via interactive molecular-dynamics flexible fitting (iMDFF): a case study in complement C4.

    PubMed

    Croll, Tristan Ian; Andersen, Gregers Rom

    2016-09-01

    While the rapid proliferation of high-resolution structures in the Protein Data Bank provides a rich set of templates for starting models, it remains the case that a great many structures both past and present are built at least in part by hand-threading through low-resolution and/or weak electron density. With current model-building tools this task can be challenging, and the de facto standard for acceptable error rates (in the form of atomic clashes and unfavourable backbone and side-chain conformations) in structures based on data with dmax not exceeding 3.5 Å reflects this. When combined with other factors such as model bias, these residual errors can conspire to make more serious errors in the protein fold difficult or impossible to detect. The three recently published 3.6-4.2 Å resolution structures of complement C4 (PDB entries 4fxg, 4fxk and 4xam) rank in the top quartile of structures of comparable resolution both in terms of Rfree and MolProbity score, yet, as shown here, contain register errors in six β-strands. By applying a molecular-dynamics force field that explicitly models interatomic forces and hence excludes most physically impossible conformations, the recently developed interactive molecular-dynamics flexible fitting (iMDFF) approach significantly reduces the complexity of the conformational space to be searched during manual rebuilding. This substantially improves the rate of detection and correction of register errors, and allows user-guided model building in maps with a resolution lower than 3.5 Å to converge to solutions with a stereochemical quality comparable to atomic resolution structures. Here, iMDFF has been used to individually correct and re-refine these three structures to MolProbity scores of <1.7, and strategies for working with such challenging data sets are suggested. Notably, the improved model allowed the resolution for complement C4b to be extended from 4.2 to 3.5 Å as demonstrated by paired refinement.

  19. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    NASA Astrophysics Data System (ADS)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to study and map the meter-scale detail of volcanic deposits. When such high-spatial-resolution satellite remote sensing data are combined with in situ field work, geomorphic analyses can be applied that allow us to more fully understand the dynamics and hazards of eruptions. In the case given here, IKONOS imagery allowed two qualitative hazard assessments for block-and-ash flow activity in drainages around Merapi. Firstly, the interpretation of IKONOS images provides insights in factors that control the propagation of secondary flows as the avulsion of the main flows is driven by longitudinal change in channel capacity due to increased sinuosity in the valley and decreased containment space. Secondly, the sinuosity and obstacles (including Sabo dams) may create over bank flows over adjacent low relief, allowing them to reach unexpectedly vulnerable areas distant from an active dome and away from the volcanically active valleys. Hazard assessment should therefore consider the geometry of secondary channels outside the principal valleys.

  20. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: optical design and variations

    NASA Astrophysics Data System (ADS)

    Barnes, Stuart I.; Gibson, Steve; Nield, Kathryn; Cochrane, Dave

    2012-09-01

    The KiwiSpec R4-100 is an advanced high resolution spectrograph developed by KiwiStar Optics, Industrial Research Ltd, New Zealand. The instrument is based around an R4 echelle grating and a 100mm collimated beam diameter. The optical design employs a highly asymmetric white pupil design, whereby the transfer collimator has a focal length only 1/3 that of the primary collimator. This allows the cross-dispersers (VPH gratings) and camera optics to be small and low cost while also ensuring a very compact instrument. The KiwiSpec instrument will be bre-fed and is designed to be contained in both thermal and/or vacuum enclosures. The instrument concept is highly exible in order to ensure that the same basic design can be used for a wide variety of science cases. Options include the possibility of splitting the wavelength coverage into 2 to 4 separate channels allowing each channel to be highly optimized for maximum eciency. CCDs ranging from smaller than 2K2K to larger than 4K4K can be accommodated. This allows good (3-4 pixel) sampling of resolving powers ranging from below 50,000 to greater than 100,000. Among the specic design options presented here will be a two-channel concept optimized for precision radial velocities, and a four-channel concept developed for the Gemini High- Resolution Optical Spectrograph (GHOST). The design and performance of a single-channel prototype will be presented elsewhere in these proceedings.

Top