Sample records for cask storage facility

  1. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.

    2007-07-01

    Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and ice-breaker nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuelmore » from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped to 'Mayak' for reprocessing. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. DOD Office of Cooperative Threat Reduction (CTR), and the DOE's ORNL, along with the Norwegian Defense Research Establishment, worked closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved integrated management system for interim storage of military SNF in Russia. The initial Project activities included: (1) development of a prototype dual-purpose, metal-concrete 40-ton cask for both the transport and interim storage of RF SNF, and (2) development of the first transshipment/interim storage facility for these casks in Murmansk. The U.S. has continued support to the project by assisting the RF with the development of the first mobile system that provides internal conditioning for the TUK-108/1 casks to allow them to be stored for longer than the current licensing period of two years. Development of the prototype TUK-108/1 cask was completed in December 2000 under the Arctic Military Environmental Cooperation (AMEC) Program. This was the first metal-concrete cask developed, licensed, and produced in the RF for both the transportation and storage of SNF from decommissioned submarines. These casks are currently being serially produced in NW Russia and 108 casks have been produced to date. Russia is using these casks for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East in conformance with the Strategic Arms Reduction Treaty (START II). The design, construction, and commissioning of the first transshipment/interim storage facility in the RF was completed and ready for full operation in September 2003. Because of the RF government reorganization and changing regulations for spent fuel storage facilities, the storage facility at Murmansk was not fully licensed for operation until December 2005. The RF has reported that the facility is now fully operational. The TUK-108/1 SNF transport and storage casks were designed to have a 50-year storage life. Current RF practice is not to condition the submarine SNF or cask during the cask loading. Current RF regulations allow up to 4 mm of residual water (up to 3.2 liters) to remain in the casks. It has been determined that allowing this amount of residual water to remain untreated for a period longer than two years can produce hydrogen gas through hydrolysis which will increase the risk of explosion and could cause some corrosion of internal components. A solution to this problem was to develop and utilize a cask conditioning system to remove the residual water and create an inert storage environment in the cask by back-filling the internal cask cavity with an inert gas, such as helium or argon. This system is compatible with the existing TUK-108/1 design and is mobile for use at multiple submarine dismantlement sites. The RF has required that this cask conditioning system be tested and commissioned at the 'Zvezda' Shipyard in the Far East near Vladivostok, one of the major RF submarine fuel off loading and storage facilities. Currently, the fuel cannot be transferred to 'Mayak' for reprocessing until the completion of the 20 km railroad connector between 'Zvezda' and the main rail line to 'Mayak'. The cask conditioning system will allow extension of the currently-stored casks for an additional three years, at which time the rail connector line should be completed. The current license to store these casks at 'Zvezda' was scheduled to expire on 31 Dec 2006. Without the cask-conditioning system, the license could not be extended, no more fuel could be off-loaded from the decommissioned submarines, and the START objectives could not be met at 'Zvezda'. Completion of this cask conditioning system has removed a significant bottleneck for the completion of the Russian submarine decommissioning program under the START II Agreement. (authors)« less

  2. Characterization of neutron sources from spent fuel casks. [Skyshine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, C.V.; Pace, J.V. III

    1987-01-01

    In the interim period prior to the acceptance of spent fuel for disposal by the USDOE, utilities are beginning to choose dry cask storage as an alternative to pool re-racking, transshipments, or new pool construction. In addition, the current MRS proposal calls for interim dry storage of consolidated spent fuel in concrete casks. As part of the licensing requirements for these cask storage facilities, calculations are typically necessary to determine the yearly radiation dose received at the site boundary. Unlike wet facilities, neutron skyshine can be an important contribution to the total boundary dose from a dry storage facility. Calculationmore » of the neutron skyshine is in turn heavily dependent on the source characteristics and source model selected for the analysis. This paper presents the basic source characteristics of the spent fuel stored in dry casks and discusses factors that must be considered in evaluating and modeling the radiation sources for the subsequent skyshine calculation. 4 refs., 1 tab.« less

  3. Viability of Existing INL Facilities for Dry Storage Cask Handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randy Bohachek; Charles Park; Bruce Wallace

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hotmore » Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.« less

  4. Viability of Existing INL Facilities for Dry Storage Cask Handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hotmore » Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.« less

  5. Characterization of the radiation environment for a large-area interim spent-nuclear-fuel storage facility

    NASA Astrophysics Data System (ADS)

    Fortkamp, Jonathan C.

    Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.

  6. Adapting Dry Cask Storage for Aging at a Geologic Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Sanders; D. Kimball

    2005-08-02

    A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities andmore » the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS technologies successfully at a geologic repository.« less

  7. Dry transfer system for spent fuel: Project report, A system designed to achieve the dry transfer of bare spent fuel between two casks. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, D.M.; Guerra, G.; Neider, T.

    1995-12-01

    This report describes the system developed by EPRI/DOE for the dry transfer of spent fuel assemblies outside the reactor spent fuel pool. The system is designed to allow spent fuel assemblies to be removed from a spent fuel pool in a small cask, transported to the transfer facility, and transferred to a larger cask, either for off-site transportation or on-site storage. With design modifications, this design is capable of transferring single spent fuel assemblies from dry storage casks to transportation casks or visa versa. One incentive for the development of this design is that utilities with limited lifting capacity ormore » other physical or regulatory constraints are limited in their ability to utilize the current, more efficient transportation and storage cask designs. In addition, DOE, in planning to develop and implement the multi-purpose canister (MPC) system for the Civilian Radioactive Waste Management System, included the concept of an on-site dry transfer system to support the implementation of the MPC system at reactors with limitations that preclude the handling of the MPC system transfer casks. This Dry Transfer System can also be used at reactors wi decommissioned spent fuel pools and fuel in dry storage in non-MPC systems to transfer fuel into transportation casks. It can also be used at off-reactor site interim storage facilities for the same purpose.« less

  8. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauch, Eric Benton

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Controlmore » Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.« less

  9. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel inmore » dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.« less

  10. Evaluation of Cask Drop Criticality Issues at K Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GOLDMANN, L.H.

    An analysis of ability of Multi-canister Overpack (MCO) to withstand drops at K Basin without exceeding the criticality design requirements. Report concludes the MCO will function acceptably. The spent fuel currently residing in the 105 KE and 105 KW storage basins will be placed in fuel storage baskets which will be loaded into the MCO cask assembly. During the basket loading operations the MCO cask assembly will be positioned near the bottom of the south load out pit (SLOP). The loaded MCO cask will be lifted from the SLOP transferred to the transport trailer and delivered to the Cold Vacuummore » Drying Facility (CVDF). In the wet condition there is a potential for criticality problems if significant changes in the designed fuel configurations occur. The purpose of this report is to address structural issues associated with criticality design features for MCO cask drop accidents in the 105 KE and 105 KW facilities.« less

  11. A review of ventilated storage cask (VSC) system projects and experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConaghy, W.

    1995-12-31

    First, the author discusses the ventilated storage cask (VSC) design and an operations summary is given. Next VSC project status at Palisades, Point Beach, Arkansas Nuclear One, Fast Flux Test Facility and Zaporozhye is discussed. Lastly, VSC operational experience and VSC transportation interfaces are reviewed.

  12. Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guskov, Vladimir; Korotkov, Gennady; Barnes, Ella

    2007-07-01

    Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distributionmore » of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108/1 drying facility; a pilot facility has been manufactured. This report describes key issues of cask drying technology, justification of terms of dry storage of naval SNF in no-108/1, design features of the mobile drying facility, results of tests of the pilot facility at the Far Eastern plant Zvezda. (authors)« less

  13. NEUTRON CHARACTERIZATION OF ENSA-DPT TYPE SPENT FUEL CASK AT TRILLO NUCLEAR POWER PLANT.

    PubMed

    Méndez-Villafañe, Roberto; Campo-Blanco, Xandra; Embid, Miguel; Yéboles, César A; Morales, Ramón; Novo, Manuel; Sanz, Javier

    2018-04-23

    The Neutron Standards Laboratory of CIEMAT has conducted the characterization of the independent spent fuel storage installation at the Trillo Nuclear Power Plant. At this facility, the spent fuel assemblies are stored in ENSA-DPT type dual purpose casks. Neutron characterization was performed by dosimetry measurements with a neutron survey meter (LB6411) inside the facility, around an individual cask and between stored casks, and outside the facility. Spectra measurements were also performed with a Bonner sphere system in order to determine the integral quantities and validate the use of the neutron monitor at the different positions. Inside the facility, measured neutron spectra and neutron ambient dose equivalent rate are consistent with the casks spatial distribution and neutron emission rates, and measurements with both instruments are consistent with each other. Outside the facility, measured neutron ambient dose equivalent rates are well below the 0.5 μSv/h limit established by the nuclear regulatory authority.

  14. Used fuel extended storage security and safeguards by design roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric Richard; Jones, Robert

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. Amore » set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.« less

  15. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  16. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Thomas, I.

    2013-07-01

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility,more » the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.« less

  17. Development of New Transportation/Storage Cask System for Use by DOE Russian Research Reactor Fuel Return Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Tyacke; Frantisek Svitak; Jiri Rychecky

    2010-04-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian supplied high-enriched uranium (HEU) fuel currently stored at Russian-designed research reactors throughout the world to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions for these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design,more » licensing, testing, and delivery of this new cask system are the results of a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: (1) Introduction/Background; (2) VPVR/M Cask Description; (3) Ancillary Equipment, (4) Cask Licensing; (5) Cask Demonstration and Operations; (6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, (7) Summary and Conclusions.« less

  18. Development of a New Transportation/Storage Cask System for Use by the DOE Russian Research Reactor Fuel Return Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael J. Tyacke; Frantisek Svitak; Jiri Rychecky

    2007-10-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions at these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design, licensing,more » testing, and delivery of this new cask system result from a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: 1) Introduction; 2) VPVR/M Cask Description; 3) Ancillary Equipment, 4) Cask Licensing; 5) Cask Demonstration and Operations; 6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, 7) Conclusions.« less

  19. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLLENBECK, R.G.

    The Spent Nuclear Fuel (SNF) Canister Storage Building (CSB) is the interim storage facility for the K-Basin SNF at the US. Department of Energy (DOE) Hanford Site. The SNF is packaged in multi-canister overpacks (MCOs). The MCOs are placed inside transport casks, then delivered to the service station inside the CSB. At the service station, the MCO handling machine (MHM) moves the MCO from the cask to a storage tube or one of two sample/weld stations. There are 220 standard storage tubes and six overpack storage tubes in a below grade reinforced concrete vault. Each storage tube can hold twomore » MCOs.« less

  20. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haori; Hayward, Jason; Chichester, David

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-sitemore » wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.« less

  1. Used Fuel Cask Identification through Neutron Profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauch, Eric Benton

    2015-11-20

    Currently, most spent fuel is stored near reactors. An interim consolidated fuel storage facility would receive fuel from multiple sites and store it in casks on site for decades. For successful operation of such a facility there is need for a way to restore continuity of knowledge if lost as well as a method that will indicate state of fuel inside the cask. Used nuclear fuel is identifiable by its radiation emission, both gamma and neutron. Neutron emission from fission products, multiplication from remaining fissile material, and the unique distribution of both in each cask produce a unique neutron signature.more » If two signatures taken at different times do not match, either changes within the fuel content or misidentification of a cask occurred. It was found that identification of cask loadings works well through the profile of emitted neutrons in simulated real casks. Even casks with similar overall neutron emission or average counts around the circumference can be distinguished from each other by analyzing the profile. In conclusion, (1) identification of unaltered casks through neutron signature profile is viable; (2) collecting the profile provides insight to the condition and intactness of the fuel stored inside the cask; and (3) the signature profile is stable over time.« less

  2. Modification and benchmarking of SKYSHINE-III for use with ISFSI cask arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertel, N.E.; Napolitano, D.G.

    1997-12-01

    Dry cask storage arrays are becoming more and more common at nuclear power plants in the United States. Title 10 of the Code of Federal Regulations, Part 72, limits doses at the controlled area boundary of these independent spent-fuel storage installations (ISFSI) to 0.25 mSv (25 mrem)/yr. The minimum controlled area boundaries of such a facility are determined by cask array dose calculations, which include direct radiation and radiation scattered by the atmosphere, also known as skyshine. NAC International (NAC) uses SKYSHINE-III to calculate the gamma-ray and neutron dose rates as a function of distance from ISFSI arrays. In thismore » paper, we present modifications to the SKYSHINE-III that more explicitly model cask arrays. In addition, we have benchmarked the radiation transport methods used in SKYSHINE-III against {sup 60}Co gamma-ray experiments and MCNP neutron calculations.« less

  3. Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal

    NASA Astrophysics Data System (ADS)

    Kollar, Lenka

    Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for the spent fuel pool, 0.42 for dry cask storage, 0.36 for the operating geological repository, and 0.28 for the closed geological repository. Therefore, the spent fuel pool is currently the most proliferation resistant method for storing spent fuel. The extrinsic attributes, mainly involving safeguards measures, affect the total PR value the most. As a result, several recommendations are made to improve the proliferation resistance of spent fuel. These recommendations include employing more advanced safeguards measures, such as verification techniques and remote monitoring, for dry cask storage and the geological repository. Dry cask storage facilities should also be located at the plant and in a secure building to minimize the proliferation risk. Finally, the cost-benefit analysis of increased safeguards needs to be considered. Taking these recommendations into account, the PR values of dry cask storage and the closed geological would be significantly increased, to 0.57 and 0.51, respectively. As a result, with increased safeguards to the safeguards level of the spent fuel pool, dry cask storage would be the most proliferation resistant method to store spent fuel. Therefore, the IAEA should continue to develop remote monitoring and cask storage verification techniques in order to improve the proliferation resistance of spent fuel.

  4. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Proposed... spent fuel storage cask regulations by revising the Holtec International HI-STORM 100 dry cask storage... Amendment No. 8 to CoC No. 1014 and does not include other aspects of the HI-STORM 100 dry storage cask...

  5. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  6. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, K.; Bellamy, S.; Daugherty, W.

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintainmore » integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.« less

  7. CASKS (Computer Analysis of Storage casKS): A microcomputer based analysis system for storage cask design review. User`s manual to Version 1b (including program reference)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.F.; Gerhard, M.A.; Trummer, D.J.

    CASKS (Computer Analysis of Storage casKS) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent-fuel storage casks. The bulk of the complete program and this user`s manual are based upon the SCANS (Shipping Cask ANalysis System) program previously developed at LLNL. A number of enhancements and improvements were added to the original SCANS program to meet requirements unique to storage casks. CASKS is an easy-to-use system that calculates global response of storage casks to impact loads, pressure loads and thermal conditions. This provides reviewers withmore » a tool for an independent check on analyses submitted by licensees. CASKS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.« less

  8. 78 FR 78165 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9 AGENCY: Nuclear Regulatory... storage regulations by revising the Holtec International HI-STORM 100 Cask System listing within the...

  9. 78 FR 73456 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... International HI-STORM 100 Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to... requirements for the HI-STORM 100U part of the HI-STORM 100 Cask System and updates the thermal model and...

  10. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks... cask designs. Discussion This rule will add the Holtec HI-STORM Flood/Wind (FW) cask system to the list...

  11. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  12. 75 FR 27463 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory... fuel storage casks to add revision 1 to the NUHOMS HD spent fuel storage cask system. This action is... Federal Register on May 7, 2010 (75 FR 25120), that proposes to amend the regulations that govern storage...

  13. Environmental data and analyses for the proposed management of spent nuclear fuel on the DOE Oak Ridge Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Socolof, M.L.; Curtis, A.H.; Blasing, T.J.

    1995-08-01

    DOE needs to continue the safe and efficient management of SNF on ORR, based on the requirement for future SNF storage capacity and implementation of the ROD for the PEIS. DOE is proposing to implement the ROD through proper management of SNF on ORR, including the possible construction and operation of a dry cask storage facility. This report describes the potentially affected environment and analyzes impacts on various resources due to the proposed action. The information provided in this report is intended to support the Environmental Assessment being prepared for the proposed activities. Construction of the dry cask storage facilitymore » would result in minimal or no impacts on groundwater, surface water, and ecological resources. Contaminated soils excavated during construction would result in negligible risk to human health and to biota. Except for noise from trucks and equipment, operation of the dry cask storage facility would not be expected to have any impact on vegetation, wildlife, or rare plants or animals. Noise impacts would be minimal. Operation exposures to the average SNF storage facility worker would not exceed approximately 0.40 mSv/year (40 mrem/year). The off-site population dose within an 80-km (50-mile) radius of ORR from SNF operations would be less than 0.052 person-Sv/year (5.2 person-rem/year). Impacts from incident-free transportation on ORR would be less than 1.36 X 10{sup -4} occupational fatal cancers and 4.28 X 10{sup -6} public fatal cancers. Credible accident scenarios that would result in the greatest probable risks would cause less than one in a million cancer fatalities to workers and the public.« less

  14. 76 FR 2277 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... amend its spent fuel storage cask regulations by revising the Transnuclear, Inc. (TN) NUHOMS[supreg] HD System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 1 to...

  15. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operationmore » of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts.« less

  16. Casks (computer analysis of storage casks): A microcomputer based analysis system for storage cask review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.F.; Mok, G.C.; Carlson, R.W.

    1995-08-01

    CASKS is a microcomputer based computer system developed by LLNL to assist the Nuclear Regulatory Commission in performing confirmatory analyses for licensing review of radioactive-material storage cask designs. The analysis programs of the CASKS computer system consist of four modules: the impact analysis module, the thermal analysis module, the thermally-induced stress analysis module, and the pressure-induced stress analysis module. CASKS uses a series of menus to coordinate input programs, cask analysis programs, output programs, data archive programs and databases, so the user is able to run the system in an interactive environment. This paper outlines the theoretical background on themore » impact analysis module and the yielding surface formulation. The close agreement between the CASKS analytical predictions and the results obtained form the two storage casks drop tests performed by SNL and by BNFL at Winfrith serves as the validation of the CASKS impact analysis module.« less

  17. 78 FR 78285 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...-2012-0052] RIN 3150-AJ12 List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment... document proposed to amend the NRC's spent fuel storage regulations by revising the Holtec International HI...

  18. Characterization of Hydrogen Embrittled Zircaloy-4 by Using a Van de Graaff Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Budd, John

    2013-04-01

    On-site, dry cask storage was originally by the intended to be a short-term solution for holding spent nuclear fuel. Due to the lack of a permanent storage facility, the nuclear power industry seeks to assess the effective lifetime of the casks. One issue which could compromise cask integrity is Hydrogen embrittlement. This phenomenon occurs in the Zircaloy-4 fuel-rod cladding and is caused by the formation of Zirconium hydrides. Over time, thermal stresses caused by the heat from reactions of the stored nuclear fuel could result in significant breaches of the cladding. Our group at Texas A&M University- Kingsville is conducting experiments to aid in determining when such breaches will occur. We will irradiate samples of the alloy with protons of energies up to 400 keV using a Van de Graaff particle accelerator. Once irradiated, their properties will be characterized using scanning electron microscopy and Vickers hardness tests.

  19. CASKS (Computer Analysis of Storage Casks): A microcomputer based analysis system for storage cask review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.F.; Mok, G.C.; Carlson, R.W.

    1996-12-01

    CASKS is a microcomputer based computer system developed by LLNL to assist the Nuclear Regulatory Commission in performing confirmatory analyses for licensing review of radioactive-material storage cask designs. The analysis programs of the CASKS computer system consist of four modules--the impact analysis module, the thermal analysis module, the thermally-induced stress analysis module, and the pressure-induced stress analysis module. CASKS uses a series of menus to coordinate input programs, cask analysis programs, output programs, data archive programs and databases, so the user is able to run the system in an interactive environment. This paper outlines the theoretical background on the impactmore » analysis module and the yielding surface formulation. The close agreement between the CASKS analytical predictions and the results obtained form the two storage asks drop tests performed by SNL and by BNFL at Winfrith serves as the validation of the CASKS impact analysis module.« less

  20. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Miles

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding ismore » likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.« less

  1. Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence: Supplement LLNL Subcontract #B568621 Lightning Protection at the Yucca Mountain Waste Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uman, M A

    2008-10-09

    The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.

  2. Safety analysis report for packaging (onsite) multicanister overpack cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, W.S.

    1997-07-14

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.

  3. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear Regulatory Commission. ACTION: Direct final... regulations to add the Holtec HI-STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage... Title 10 of the Code of Federal Regulations Section 72.214 to add the Holtec HI- STORM Flood/Wind cask...

  4. 78 FR 16619 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ...-0308] RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear... proposing to amend its spent fuel storage regulations by revising the NAC International, Inc., Modular Advanced Generation Nuclear All-purpose Storage (MAGNASTOR[supreg]) Cask System listing within the ``List...

  5. Concrete Shield Performance of the VSC-17 Spent Nuclear Fuel Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl L. Morton; Philip L. Winston; Toshiari Saegusa

    2006-04-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC-17) spent nuclear fuel storage cask as a candidate to study cask performance, because it had been used to store fuel as part of a dry cask storage demonstrationmore » project for more than 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. Preliminary cask evaluations performed in 2003 indicated that the cask has no visual degradation. However, a 4-5 mrem/hr step-change in the radiation levels about halfway up the cask and a localized hot spot beneath an upper air vent indicate that there may be variability in the density of the concrete or localized cracking. In 2005, INL and CRIEPI scientists performed additional surveys on the VSC-17 cask. This document summarizes the methods used on the VSC-17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution.« less

  6. 75 FR 27401 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Storage Casks: NUHOMS[reg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory Commission. ACTION... HD spent fuel storage cask system. This action is necessary to correctly specify the effective date... on May 6, 2010 (75 FR 24786), that amends the regulations that govern storage of spent nuclear fuel...

  7. Multiple-Angle Muon Radiography of a Dry Storage Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher

    A partially loaded dry storage cask was imaged using cosmic ray muons. Since the cask is large relative to the size of the muon tracking detectors, the instruments were placed at nine different positions around the cask to record data covering the entire fuel basket. We show that this technique can detect the removal of a single fuel assembly from the center of the cask.

  8. 78 FR 22411 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Amendment No. 8; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Fuel Storage Casks: HI-STORM 100, Amendment No. 8; Corrections AGENCY: Nuclear Regulatory Commission... revising the Holtec International, Inc. (Holtec) HI-STORM 100 Cask System listing within the ``List of... the Holtec HI-STORM 100 Cask System, Amendment No. 8. The purpose of this document is to provide...

  9. Management of the Cs/Sr Capsule Project at the Hanford Site. Technology Readiness Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Federal Project Director (FPD) for the U.S. Department of Energy (DOE), Richland Operations Office (RL) Waste Management and D&D Division (WMD) requested a Technology Readiness Assessment (TRA) for the Management of the Cesium/Strontium Capsule Storage Project (MCSCP) at the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site in Washington State. The MCSCP CD-1 TRA was performed by a team selected in collaboration between the Office of Environmental Management (EM) Chief Engineer (EM-3.3) and RL, WMD FPD. The TRA Team included subject matter and technical experts having experience in cask storage, process engineering, and system design who weremore » independent of the MCSCP, and the team was led by the Director of Operations and Processes from the EM Chief Engineer's Office (EM-3.32). Movement of the Cs/Sr capsules to dry storage, based on information from the conceptual design, involves (1) capsule packaging, (2) capsule transfer, and (3) capsule storage. The project has developed a conceptual process, described in 30059-R-02, "NAC Conceptual Design Report for the Management of the Cesium and Strontium Capsules Project", which identifies the five major activities in the process to complete the transfer from storage pool to pad-mounted cask storage. The process, shown schematically in Figure 1, is comprised of the following process steps: (1) loading capsules into the UCS; (2) UCS processing; (3) UCS insertion into the TSC Basket; (4) cask transport from WESF to CSA and (5) extended storage at the CSA.« less

  10. 77 FR 9515 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... regulations by revising the Holtec International HI-STORM 100 dry cask storage system listing within the... and safety will be adequately protected. This direct final rule revises the HI-STORM 100 listing in 10...

  11. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... has been determined by the NRC. The application must be accompanied by a safety analysis report (SAR). The new SAR may reference the SAR originally submitted for the approved spent fuel storage cask design. (c) The design of a spent fuel storage cask will be reapproved if the conditions in § 72.238 are met...

  12. Nondestructive Evaluation of the VSC-17 Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Al Carlson; Cecilia Hoffman

    2006-01-01

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC 17) spent nuclear fuel storage cask, originally located at the INL Test Area North, as a candidate to study cask performance because it had been used to storemore » fuel as part of a dry cask storage demonstration project for over 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. The INL team met with the CRIEPI representatives in December of 2004 to discuss the next steps. As a result of that meeting, CRIEPI requested that in the summer 2005 INL perform additional surveys on the VSC 17 cask with participation of CRIEPI scientists. This document summarizes the evaluation methods used on the VSC 17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution.« less

  13. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    NASA Astrophysics Data System (ADS)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are developed and calculated. Main criteria for estimating the maximum leakage rate for the lid metallic seal system are no loss of the pre-stress of the lid bolts, no appearance of the plastic region between the metal seal flanges, and no large relative deformation of the lid seals. Finally, in both cases, the low leakage rate for the metal cask lid closure system under the impulsive loads due to aircraft engine crash will be proved thoroughly.

  14. Physics Flash August 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    Physics Flash is the newsletter for the Physics Division at Los Alamos National Laboratory. This newsletter is for August 2016. The following topics are covered: "Accomplishments in the Trident Laser Facility", "David Meyerhofer elected as chair-elect APS Nominating Committee", "HAWC searches for gamma rays from dark matter", "Proton Radiography Facility commissions electromagnetic magnifier", and "Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks."

  15. 76 FR 17037 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...-0007] RIN 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY... or the Commission) is proposing to amend its spent fuel storage cask regulations to add the HI-STORM...: June 13, 2011. SAR Submitted by: Holtec International, Inc. SAR Title: Safety Analysis Report on the HI...

  16. Status update of the BWR cask simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Eric R.; Durbin, Samuel G.

    2015-09-01

    The performance of commercial nuclear spent fuel dry storage casks are typically evaluated through detailed numerical analysis of the system's thermal performance. These modeling efforts are performed by the vendor to demonstrate the performance and regulatory compliance and are independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Numerous studies have been previously conducted. Recent advances in dry storage cask designs have moved the storage location from above ground to below ground and significantly increased the maximummore » thermal load allowed in a cask in part by increasing the canister helium pressure. Previous cask performance validation testing did not capture these parameters. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern dry casks. These modern cask designs utilize elevated helium pressure in the sealed canister or are intended for subsurface storage. The BWR cask simulator (BCS) has been designed in detail for both the above ground and below ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on heat load and the effect of simulated wind on a simplified below ground vent configuration.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Bisset

    This calculation documents the design of the Spent Nuclear Fuel (SNF) and High-Level Waste (HLW) Cask storage slab for the Aging Area. The design is based on the weights of casks that may be stored on the slab, the weights of vehicles that may be used to move the casks, and the layout shown on the sketch for a 1000 Metric Ton of Heavy Metal (MTHM) storage pad on Attachment 2, Sht.1 of the calculation 170-C0C-C000-00100-000-00A (BSC 2004a). The analytical model used herein is based on the storage area for 8 vertical casks. To simplify the model, the storage areamore » of the horizontal concrete modules and their related shield walls is not included. The heavy weights of the vertical storage casks and the tensile forces due to pullout at the anchorages will produce design moments and shear forces that will envelope those that would occur in the storage area of the horizontal modules. The design loadings will also include snow and live loads. In addition, the design will also reflect pertinent geotechnical data. This calculation will document the preliminary thickness and general reinforcing steel requirements for the slab. This calculation also documents the initial design of the cask anchorage. Other slab details are not developed in this calculation. They will be developed during the final design process. The calculation also does not include the evaluation of the effects of cask drop loads. These will be evaluated in this or another calculation when the exact cask geometry is known.« less

  18. Cosmic Ray Muon Imaging of Spent Nuclear Fuel in Dry Storage Casks

    DOE PAGES

    Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher L.; ...

    2016-04-29

    In this paper, cosmic ray muon radiography has been used to identify the absence of spent nuclear fuel bundles inside a sealed dry storage cask. The large amounts of shielding that dry storage casks use to contain radiation from the highly radioactive contents impedes typical imaging methods, but the penetrating nature of cosmic ray muons allows them to be used as an effective radiographic probe. This technique was able to successfully identify missing fuel bundles inside a sealed Westinghouse MC-10 cask. This method of fuel cask verification may prove useful for international nuclear safeguards inspectors. Finally, muon radiography may findmore » other safety and security or safeguards applications, such as arms control verification.« less

  19. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    NASA Astrophysics Data System (ADS)

    Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.

    2018-04-01

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.

  20. Cosmic ray muons for spent nuclear fuel monitoring

    NASA Astrophysics Data System (ADS)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks from muon measurements. A combination of muon scattering and muon transmission imaging can improve resolution and thus a missing fuel assembly can be identified for vertical and horizontal dry casks. The apparent separation of the images reveals that the muon scattering and transmission can be used for discrimination between casks, satisfying the diversion criteria set by IAEA.

  1. Environmental Assessment for Enhanced Use Leasing West Side Development, Phase I South, Hill AFB, Utah

    DTIC Science & Technology

    2006-09-01

    training speeds into one or several of hundreds of nuclear fuel rod storage casks could release immensely toxic radioactive wastes that have a 10,000...distinctions between the risks related to open storage of spent nuclear fuel rods in Skull Valley and the risks to civilian facilities within the...operations, stores, markets, coffee shops and other strictly civilian commercial enterprises. No family or residential housing use is proposed

  2. Experiences with welding multi-assembly sealed baskets at Palisades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agace, S.; Worrell, S.; Stewart, L.

    1995-12-01

    Four utilities were using operational canister-based dry storage facilities at year-end, and seven more have contracts to establish similar facilities. Consumers Power`s Palisades Nuclear Power Plant has successfully completed loading its eighth dry storage canister with the Ventilated Storage Cask (VSC) system, under license to Sierra Nuclear Corporation. The VSC has a Multi-Assembly Sealed Basket (MSB) containing 24 specially-selected and aged spent fuel assemblies. MSB closure occurs when two independent lids are welded at the utility. The canister wall and lids are SA-516 Grade 70 carbon steel. This paper discusses the welding system design, closure operations and MSB closure operationsmore » at Palisades.« less

  3. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.

    2013-01-01

    With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 °C accuracy, tested at temperatures of up to 400 °C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.

  4. 10 CFR 72.48 - Changes, tests, and experiments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... facility or spent fuel storage cask design, of changes in procedures, and of tests and experiments made... 10 Energy 2 2011-01-01 2011-01-01 false Changes, tests, and experiments. 72.48 Section 72.48... Issuance and Conditions of License § 72.48 Changes, tests, and experiments. (a) Definitions for the...

  5. 10 CFR 72.48 - Changes, tests, and experiments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facility or spent fuel storage cask design, of changes in procedures, and of tests and experiments made... 10 Energy 2 2010-01-01 2010-01-01 false Changes, tests, and experiments. 72.48 Section 72.48... Issuance and Conditions of License § 72.48 Changes, tests, and experiments. (a) Definitions for the...

  6. 9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL VIEW OF BRIDGE CRANE ON WEST SIDE OF BUILDING. CAMERA FACING NORTHEAST. CONTAMINATED AIR FILTERS LOADED IN TRANSPORT CASKS WERE TRANSFERRED TO VEHICLES AND SENT TO RADIOACTIVE WASTE MANAGEMENT COMPLEX FOR STORAGE. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  7. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    DOE PAGES

    Durham, J. M.; Poulson, D.; Bacon, J.; ...

    2018-04-10

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less

  8. Verification of Spent Nuclear Fuel in Sealed Dry Storage Casks via Measurements of Cosmic-Ray Muon Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, J. M.; Poulson, D.; Bacon, J.

    Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less

  9. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of anymore » cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.« less

  10. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is amending its spent fuel storage regulations by revising the NAC International, Inc. (NAC) Modular Advanced Generation Nuclear All-purpose Storage...

  11. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct... final rule that would have revised its spent fuel storage regulations to include Amendment No. 3 to... All-purpose Storage (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel...

  12. 75 FR 49813 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1, Confirmation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Storage Casks: MAGNASTOR System, Revision 1, Confirmation of Effective Date AGENCY: Nuclear Regulatory... spent fuel storage regulations at 10 CFR 72.214 to revise the MAGNASTOR System listing to include...

  13. Compton Dry-Cask Imaging System

    ScienceCinema

    None

    2017-12-09

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  14. Risk Assessment of Structural Integrity of Transportation Casks after Extended Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Luis; Medina, Ricardo; Yang, Haori

    This study assessed the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. Although it is known that fuel rods discharged from NPPs have a small percentage of rod cladding defects, the behavior of fuel cladding and the structural elements of assemblies during transportation after long-term storage is not well understood. If the fuel degrades during extended storage, it could be susceptible to damage from vibration and impact loads during transport operations, releasing fission-product gases into the canister or the cask interior (NWTRB 2010). Degradation of cladding may occur due to mechanisms associated withmore » hydrogen embrittlement, delayed hydride cracking, low temperature creep, and stress corrosion cracking (SCC) that may affect fuel cladding and canister components after extended storage of hundreds of years. Over extended periods at low temperatures, these mechanisms affect the ductility, strength, and fracture toughness of the fuel cladding, which becomes brittle. For transportation purposes, the fuel may be transferred from storage to shipping casks, or dual-purpose casks may be used for storage and transportation. Currently, most of the transportation casks will be the former case. A risk assessment evaluation is conducted based on results from experimental tests and simulations with advanced numerical models. A novel contribution of this study is the evaluation of the combined effect of component aging and vibration/impact loads in transportation scenarios. The expected levels of deterioration will be obtained from previous and current studies on the effect of aging on fuel and cask components. The emphasis of the study is placed on the structural integrity of fuel cladding and canisters.« less

  15. Inspection and Gamma-Ray Dose Rate Measurements of the Annulus of the VSC-17 Concrete Spent Nuclear Fuel Storage Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. L. Winston

    2007-09-01

    The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.

  16. Testing and COBRA-SFS analysis of the VSC-17 ventilated concrete, spent fuel storage cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-04-01

    A performance test of a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask loaded with 17 canisters of consolidated PWR spent fuel generating approximately 15 kW was conducted. The performance test included measuring the cask surface, concrete, air channel surface, and fuel temperatures, as well as cask surface gamma and neutron dose rates. Testing was performed using vacuum, nitrogen, and helium backfill environments. Pretest predictions of cask thermal performance were made using the COBRA-SFS computer code. Analysis results were within 15{degrees}C of measured peak fuel temperature. Peak fuel temperature for normal operation was 321{degrees}C. In general, the surface dose ratesmore » were less than 30 mrem/h on the side of the cask and 40 mrem/h on the top of the cask.« less

  17. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    NASA Astrophysics Data System (ADS)

    Poulson, D.; Durham, J. M.; Guardincerri, E.; Morris, C. L.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D.; Hecht, A. A.

    2017-01-01

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ∼ 18 σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Potential detector technologies and geometries are discussed.

  18. Projected Standard on neutron skyshine. [Skyshine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, R.M.; Williams, D.S.

    1987-07-01

    Current interest in neutron skyshine arises from the application of dry fuel handling and storage techniques at reactor sites, at the proposed monitored retrievable storage facility and at other facilities being considered as part of the civilian radioactive waste management programs. The chairman of Standards Subcommittee ANS-6, Radiation Protection and Shielding, has requested that a work group be formed to characterize the neutron skyshine problem and, if necessary, prepare a draft Standard. The work group is comprised of representatives of storage cask vendors, architect engineering firms, nuclear utilities, the academic community and staff members of national laboratories and government agencies.more » The purpose of this presentation summary is to describe the activities of the work group and the scope and contents of the projected Standard, ANS-6.6.2, ''Calculation and Measurement of Direct and Scattered Neutron Radiation from Nuclear Power Operations.'' The specific source under consideration by the work group is an array of dry fuel casks located at a reactor site. However, it is recognized that the scope of the standard should be broad enough to encompass other neutron sources. The Standard will define appropriate methodology for properly characterizing the neutron dose due to skyshine. This dose characterization is necessary, for example, in demonstrating compliance with pertinent regulatory criteria.« less

  19. Estimation of Inherent Safety Margins in Loaded Commercial Spent Nuclear Fuel Casks

    DOE PAGES

    Banerjee, Kaushik; Robb, Kevin R.; Radulescu, Georgeta; ...

    2016-06-15

    We completed a novel assessment to determine the unquantified and uncredited safety margins (i.e., the difference between the licensing basis and as-loaded calculations) available in as-loaded spent nuclear fuel (SNF) casks. This assessment was performed as part of a broader effort to assess issues and uncertainties related to the continued safety of casks during extended storage and transportability following extended storage periods. Detailed analyses crediting the actual as-loaded cask inventory were performed for each of the casks at three decommissioned pressurized water reactor (PWR) sites to determine their characteristics relative to regulatory safety criteria for criticality, thermal, and shielding performance.more » These detailed analyses were performed in an automated fashion by employing a comprehensive and integrated data and analysis tool—Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). Calculated uncredited criticality margins from 0.07 to almost 0.30 Δk eff were observed; calculated decay heat margins ranged from 4 to almost 22 kW (as of 2014); and significant uncredited transportation dose rate margins were also observed. The results demonstrate that, at least for the casks analyzed here, significant uncredited safety margins are available that could potentially be used to compensate for SNF assembly and canister structural performance related uncertainties associated with long-term storage and subsequent transportation. The results also suggest that these inherent margins associated with how casks are loaded could support future changes in cask licensing to directly or indirectly credit the margins. Work continues to quantify the uncredited safety margins in the SNF casks loaded at other nuclear reactor sites.« less

  20. Thermal evaluation of alternative shipping cask for irradiated experiments

    DOE PAGES

    Guillen, Donna Post

    2015-06-01

    Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and post-irradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavitymore » of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. Furthermore, from a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.« less

  1. A&M. Radioactive parts security storage area, heat removal storage casks. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Radioactive parts security storage area, heat removal storage casks. Plan, section, and details. Ralph M. Parsons 1480-7 ANP/GE-3-720-S-1. Date: November 1958. Approved by INEEL Classification Office for public release. INEEL index no. 034-0720-60-693-107459 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. Research on Spent Fuel Storage and Transportation in CRIEPI (Part 2 Concrete Cask Storage)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koji Shirai; Jyunichi Tani; Taku Arai

    2008-10-01

    Concrete cask storage has been implemented in the world. At a later stage of storage period, the containment of the canister may deteriorate due to stress corrosion cracking phenomena in a salty air environment. High resistant stainless steels against SCC have been tested as compared with normal stainless steel. Taking account of the limited time-length of environment with certain level of humidity and temperature range, the high resistant stainless steels will survive from SCC damage. In addition, the adhesion of salt from salty environment on the canister surface will be further limited with respect to the canister temperature and anglemore » of the canister surface against the salty air flow in the concrete cask. Optional countermeasure against SCC with respect to salty air environment has been studied. Devices consisting of various water trays to trap salty particles from the salty air were designed to be attached at the air inlet for natural cooling of the cask storage building. Efficiency for trapping salty particles was evaluated. Inspection of canister surface was carried out using an optical camera inserted from the air outlet through the annulus of a concrete cask that has stored real spent fuel for more than 15 years. The camera image revealed no gross degradation on the surface of the canister. Seismic response of a full-scale concrete cask with simulated spent fuel assemblies has been demonstrated. The cask did not tip over, but laterally moved by the earthquake motion. Stress generated on the surface of the spent fuel assemblies during the earthquake motion were within the elastic region.« less

  3. Present experience of NRI REZ with preparation of spent nuclear fuel shipment to Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svitak, F.; Broz, V.; Hrehor, M.

    2008-07-15

    The Nuclear Research Institute Rez plc (NRI) jointed the Russian Research Reactor Fuel Return (RRRFR) programme under the US-Russian Global Threat Reduction Initiative (GTRI) initiative and started the preparation of the spent nuclear fuel (SNF) shipment from the LVR-15 research reactor back to the Russian Federation (RF). The transport of 16 SKODA VPVR/M casks with EK-10, IRT-2M 80 %, and IRT-2M 36% fuel types is planned for the autumn of 2007. The paper describes the experience gained so far during the preparatory works for the SNF shipment (facility equipment modification, cask licenses) and the actual preparation of the SNF formore » transport, in particular its checking, repacking in a hot cell, loading into the VPVR/M casks, drying, manipulation, completion of the transport documentation, etc., including its transport to the SNF storage facility at the NRI before it is shipped to the RF. The paper also briefly describes a regulatory framework for these activities with a focus on legislative and methodological aspects of the return of vitrified waste back to the Czech Republic. (author)« less

  4. 10 CFR 72.230 - Procedures for spent fuel storage cask submittals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Procedures for spent fuel storage cask submittals. 72.230 Section 72.230 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  5. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Conditions for spent fuel storage cask reapproval. 72.240 Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C...

  6. TN International and ITS operational feedback regarding the decommissioning of obsolete casks dedicated to the transport and/or storage of nuclear raw materials, fuel and used fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blachet, L.; Bimet, F.; Rennesson, N.

    2008-07-01

    Within the AREVA group, TN International is a major actor regarding the design of casks and transportation for the nuclear cycle. In the early 2005, TN International has started the project of decommissioning some of its own equipment and was hence the first company ever in the AREVA Group to implement this new approach. In order to do so, TN International has based this project by taking into account the AREVA Sustainable Development Charter, the French regulatory framework, the ANDRA (Agence Nationale pour la Gestion des Dechets Radioactifs - National Agency for the radioactive waste management) requirements and has deployedmore » a step by step methodology such as radiological characterization following a logical route. The aim was to define a standardized process with optimized solutions regarding the diversity of the cask's fleet. As a general matter, decommissioning of nuclear casks is a brand new field as the nuclear field is more familiar with the dismantling of nuclear facilities and/or nuclear power plant. Nevertheless existing workshops, maintenance facilities, measurements equipments and techniques have been exploited and adapted by TN International in order to turn an ambitious project into a permanent and cost-effective activity. The decommissioning of the nuclear casks implemented by TN International regarding its own needs and the French regulatory framework is formalized by several processes and is materialized for instance by the final disposal of casks as they are or in ISO container packed with cut-off casks and big bags filled with crushed internal cask equipments, etc. The first part of this paper aims to describe the history of the project that started with a specific environmental analysis which took into account the values of AREVA as regards the Sustainable Development principles that were at the time and are still a topic of current concern in the world. The second part will deal with the definition, the design and the implementation of the decommissioning processes and the applied techniques. The third part will present a two years operational feedback. The last part will introduce new processes which are currently under investigation and will put into light that decommissioning of nuclear casks is a continuous activity that is in perpetual mutation. (authors)« less

  7. PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.; Skidmore, E.; Daugherty, W.

    2014-05-30

    A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading tomore » a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.« less

  8. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    DOE PAGES

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena; ...

    2016-10-22

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  9. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulson, Daniel Cris; Durham, J. Matthew; Guardincerri, Elena

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This article describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casksmore » is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ~18σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Finally, we discuss potential detector technologies and geometries.« less

  10. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.

    2003-02-26

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. Themore » first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.« less

  11. Integrated System for Retrieval, Transportation and Consolidated Storage of Used Nuclear Fuel in the US - 13312

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracey, William; Bondre, Jayant; Shelton, Catherine

    2013-07-01

    The current inventory of used nuclear fuel assemblies (UNFAs) from commercial reactor operations in the United States totals approximately 65,000 metric tons or approximately 232,000 UNFAs primarily stored at the 104 operational reactors in the US and a small number of decommissioned reactors. This inventory is growing at a rate of roughly 2,000 to 2,400 metric tons each year, (Approx. 7,000 UNFAs) as a result of ongoing commercial reactor operations. Assuming an average of 10 metric tons per storage/transportation casks, this inventory of commercial UNFAs represents about 6,500 casks with an additional of about 220 casks every year. In Januarymore » 2010, the Blue Ribbon Commission (BRC) [1] was directed to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new plan. The BRC issued their final recommendations in January 2012. One of the main recommendations is for the United States to proceed promptly to develop one or more consolidated storage facilities (CSF) as part of an integrated, comprehensive plan for safely managing the back end of the nuclear fuel cycle. Based on its extensive experience in storage and transportation cask design, analysis, licensing, fabrication, and operations including transportation logistics, Transnuclear, Inc. (TN), an AREVA Subsidiary within the Logistics Business Unit, is engineering an integrated system that will address the complete process of commercial UNFA management. The system will deal with UNFAs in their current storage mode in various configurations, the preparation including handling and additional packaging where required and transportation of UNFAs to a CSF site, and subsequent storage, operation and maintenance at the CSF with eventual transportation to a future repository or recycling site. It is essential to proceed by steps to ensure that the system will be the most efficient and serve at best its purpose by defining: the problem to be resolved, the criteria to evaluate the solutions, and the alternative solutions. The complexity of the project is increasing with time (more fuel assemblies, new storage systems, deteriorating logistics infrastructure at some sites, etc.) but with the uncertainty on the final disposal path, flexibility and simplicity will be critical. (authors)« less

  12. 75 FR 36449 - Yankee Atomic Electric Co.; Yankee Atomic Independent Spent Fuel Storage Installation; Issuance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... Specification (TS) Surveillance Requirement 3.1.6.1 to verify the operability of the concrete cask heat removal....6.1 to verify the operability of the concrete cask heat removal system to maintain safe storage...

  13. Nuclear Energy Policy

    DTIC Science & Technology

    2008-01-28

    2007. Requires commercial nuclear power plants to transfer spent fuel from pools to dry storage casks and then convey title to the Secretary of Energy...far more economical options for reducing fossil fuel use .15 (For more on federal incentives and the economics of nuclear power, see CRS Report RL33442...uranium enrichment, spent fuel recycling (also called reprocessing), and other fuel cycle facilities that could be used to produce nuclear weapons

  14. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very largemore » dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)« less

  15. NRC approves spent-fuel cask for general use: Who needs Yucca Mountain?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, J.

    1993-07-01

    The Nuclear Regulatory Commission (NRC) on April 7, 1993, added Pacific Sierra Nuclear Associates`s (PSNA`s) VSC-24 spent-fuel container to its list of approved storage casks. Unlike previously approved designs, however, the cask was made available for use by utilities without site-specific approval. The VSC-24 (ventilated storage cask) is a 130-ton, 16-foot high vertical storage container composed of a ventilated concrete cask (VCC) housing a steel multi-assembly sealed basket (MSB). A third component, a transfer cask (MTC), shields, supports, and protects the MSB during fuel loading and VCC loading operations. The VCC is a cylindrical reinforced-concrete cask 29 inches thick, withmore » a 1.75-inch-thick A 36 steel liner. The cask contains eight vents-four on the top and four on the bottom-to provide for MSB (and fuel rod) cooling. Its concrete shell provides protection against shearing and penetration by tornado projectiles, protects the MSB in the event of a drop or tipover, and is designed to withstand internal temperatures of 350 degrees Farenheit. The VCC is closed with a bolted-down cover of 0.75-inch-thick A 36 steel. The MSB, which provides the primary boundary for 24 spent fuel rods, is a cylindrical steel shell with a thick shield plug and steel cover plates welded at each end. The shell and covers are constructed from SA 516 Grade 70 pressure vessel steel. Fuel is housed in a basket fabricated from SA 516 Grade 70 sheet steel. Penetrations in the MSB`s structural and shield lids allow for vacuum drying and backfilling with helium after fuel loading. Although its manufacturer claims a design life of 50 years, the NRC has licensed the VSC-24 cask for 20 years.« less

  16. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release frommore » the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs.« less

  17. Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.

    Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less

  18. Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems

    DOE PAGES

    DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.

    2017-07-08

    Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less

  19. 77 FR 26050 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... of pressurized water reactor spent nuclear fuel (SNF) in transportation packages and storage casks... for the licensing basis, (b) provide recommendations regarding advanced isotopic depletion and...

  20. High energy neutron transmission analysis of dry cask storage

    NASA Astrophysics Data System (ADS)

    Greulich, Christopher; Hughes, Christopher; Gao, Yuan; Enqvist, Andreas; Baciak, James

    2017-12-01

    Since the U.S. currently only approves of storing used nuclear fuel in pools or dry casks, the demand for dry cask storage is on the rise due to the continuous operation of currently existing nuclear plants which are reaching or have reached the capacity of their used fuel pools. With the rising demand comes additional pressure to ensure the integrity of dry cask systems. Visual inspection is costly and man-power intensive, so alternative nondestructive testing techniques are desired to insure the continued safe and effective storage of fuel. One such approach being investigated by the University of Florida is neutron based computed tomography. Simulations in MCNP are preformed where D-T energy neutrons are transmitted through the dry cask and measured on the opposite side. If the transmitted signal is clear enough, the interior of the cask can be reconstructed from the measurement of the alterations of neutron signal intensity using standard mathematical techniques developed for medical imaging. Preliminary efforts show a correlation between energy and number of scatters (which is an indication of retention of position information). Work is ongoing to quantify if the correlation is strong enough that an energy discriminator may be used as a filter in future image reconstruction. The calculated transmission probability suggests that an image could be reconstructed with a week of scanning.

  1. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2010-10-07

    Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 99...prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage facilities and personnel reliability... nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs of Staff Admiral Michael

  2. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOEpatents

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  3. Recent developments - US spent fuel disposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    One of a US utility's major risk factors in continuing to operate a nuclear plant is managing discharged spent fuel. The US Department of Energy (DOE) signed contracts with utilities guaranteeing government acceptance of spent fuel by 1988. However, on December 17, 1992, DOE Secretary Watkins wrote to Sen. J. Bennett Johnston (D-LA), Chairman of the Senate Energy Committee, indicating a reassessment of DOE's programs, the results of which will be presented to Congress in January 1993. He indicated the Department may not be able to meet the 1988 date, because of difficulty in finding a site for the Monitoredmore » Retrievable Storage facility. Watkins indicated that DOE has investigated an interim solution and decided to expedite a program to certify a multi-purpose standardized cask system for spent fuel receipt, storage, transport, and disposal. To meet the expectations of US utilities, DOE is considering a plan to use federal sites for interim storage of the casks. Secretary Watkins recommended the waste program be taken off-budget and put in a revolving fund established to ensure that money already collected from utilities will be available to meet the schedule for completion of the repository.« less

  4. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric R.

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.« less

  5. 77 FR 24585 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... revising the Holtec International HI-STORM 100 System listing within the ``List of Approved Spent Fuel...) 72.214, by revising the Holtec International HI-STORM 100 System listing within the ``List of...

  6. 77 FR 60479 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... 3, entitled, ``Burnup Credit in the Criticality Safety Analyses of PWR [Pressurized Water Reactor... water reactor spent nuclear fuel (SNF) in transportation packages and storage casks. SFST-ISG-8...

  7. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less

  8. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M.; Wagner, John C.

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. Themore » system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.« less

  9. Test Plan for Cask Identification Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauch, Eric Benton

    2016-09-29

    This document serves to outline the testing of a Used Fuel Cask Identification Detector (CID) currently being designed under the DOE-NE MPACT Campaign. A bench-scale prototype detector will be constructed and tested using surrogate neutron sources. The testing will serve to inform the design of the full detector that is to be used as a way of fingerprinting used fuel storage casks based on the neutron signature produced by the used fuel inside the cask.

  10. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric Richard

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing themore » internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured for a wide range of decay power and helium cask pressures. Of particular interest was the evaluation of the effect of increased helium pressure on peak cladding temperatures (PCTs) for identical thermal loads. All steady state peak temperatures and induced flow rates increased with increasing assembly power. Peak cladding temperatures decreased with increasing internal helium pressure for a given assembly power, indicating increased internal convection. In addition, the location of the PCT moved from near the top of the assembly to ~1/3 the height of the assembly for the highest (8 bar absolute) to the lowest (0 bar absolute) pressure studied, respectively. This shift in PCT location is consistent with the varying contribution of convective heat transfer proportional with of internal helium pressure.« less

  11. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2010-02-04

    Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008...measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage facilities and personnel...strategic nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs of Staff Admiral

  12. Performance testing and analyses of the VSC-17 ventilated concrete cask. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-05-01

    This document details performance test which was conducted on a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask configured for pressurized-water reactor (PWR) spent fuel. The performance test consisted of loading the VSC-17 cask with 17 canisters of consolidated PWR spent fuel from Virginia Power`s Surry and Florida Power & Light Turkey Point reactors. Cask surface, concrete, air channel surfaces, and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in a vertical cask orientation. Data on spent fuel integrity were also obtained.

  13. Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KESSLER, S.F.

    This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weldmore » station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.« less

  14. Ageing of a neutron shielding used in transport/storage casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nizeyiman, Fidele; Alami, Aatif; Issard, Herve

    2012-07-11

    In radioactive materials transport/storage casks, a mineral-filled vinylester composite is used for neutron shielding which relies on its hydrogen and boron atoms content. During cask service life, this composite is mainly subjected to three types of ageing: hydrothermal ageing, thermal oxidation and neutron irradiation. The aim of this study is to investigate the effect of hydrothermal ageing on the properties and chemical composition of this polymer composite. At high temperature (120 Degree-Sign C and 140 Degree-Sign C), the main consequence is the strong decrease of mechanical properties induced by the filler/matrix debonding.

  15. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel; Lindgren, Eric R.

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing themore » internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below-ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on allowable heat load and the effect of simulated wind on a simplified below ground vent configuration. While incorporating the best available information, this test plan is subject to changes due to improved understanding from modeling or from as-built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra, Luis; Sanders, David; Yang, Haori

    The main goal of this study is to evaluate the long-term seismic performance of freestanding and anchored Dry Storage Casks (DSCs) using experimental tests on a shaking table, as well as comprehensive numerical evaluations that include the cask-pad-soil system. The study focuses on the dynamic performance of vertical DSCs, which can be designed as free-standing structures resting on a reinforced concrete foundation pad, or casks anchored to a foundation pad. The spent nuclear fuel (SNF) at nuclear power plants (NPPs) is initially stored in fuel-storage pools to control the fuel temperature. After several years, the fuel assemblies are transferred tomore » DSCs at sites contiguous to the plant, known as Interim Spent Fuel Storage Installations (ISFSIs). The regulations for these storage systems (10 CFR 72) ensure adequate passive heat removal and radiation shielding during normal operations, off-normal events, and accident scenarios. The integrity of the DSCs is important, even if the overpack does not breach, because eventually the spent fuel-rods need to be shipped either to a reprocessing plant or a repository. DSCs have been considered as a temporary storage solution, and usually are licensed for 20 years, although they can be relicensed for operating periods of up to 60 years. In recent years, DSCs have been reevaluated as a potential mid-term solution, in which the operating period may be extended for up to 300 years. At the same time, recent seismic events have underlined the significant risks DSCs are exposed. The consideration of DCSs for storing spent fuel for hundreds of years has created new challenges. In the case of seismic hazard, longer-term operating periods not only lead to larger horizontal accelerations, but also increase the relative effect of vertical accelerations that usually are disregarded for smaller seismic events. These larger seismic demands could lead to casks sliding and tipping over, impacting the concrete pad or adjacent casks. The casks may also slide and collide with other casks or structural components. Also, the different DSC components may impact each other during these events. This study provides a comprehensive evaluation of DSCs subjected to these extreme demands, including the effect of vertical accelerations, and soilstructure interaction.« less

  17. Thermal-Hydraulic Results for the Boiling Water Reactor Dry Cask Simulator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel; Lindgren, Eric R.

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both aboveground and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of this investigation was to produce validation-quality data that can be used to test the validity of the modeling presently used to determine cladding temperatures in modern vertical dry casks. These cladding temperatures are critical to evaluate cladding integrity throughout the storage cycle. To produce these data sets under well-controlled boundary conditions, the dry cask simulator (DCS) was built to study the thermal-hydraulic response of fuel under a variety of heat loads, internal vessel pressures, and external configurations. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplified interpretation of results. Two different arrangements of ducting were used to mimic conditions for aboveground and belowground storage configurations for vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured throughout the test assembly. The induced air mass flow rate was measured for both the aboveground and belowground configurations. In addition, the impact of cross-wind conditions on the belowground configuration was quantified. Over 40 unique data sets were collected and analyzed for these efforts. Fourteen data sets for the aboveground configuration were recorded for powers and internal pressures ranging from 0.5 to 5.0 kW and 0.3 to 800 kPa absolute, respectively. Similarly, fourteen data sets were logged for the belowground configuration starting at ambient conditions and concluding with thermal-hydraulic steady state. Over thirteen tests were conducted using a custom-built wind machine. The results documented in this report highlight a small, but representative, subset of the available data from this test series. This addition to the dry cask experimental database signifies a substantial addition of first-of-a-kind, high-fidelity transient and steady-state thermal-hydraulic data sets suitable for CFD model validation.« less

  18. 75 FR 57841 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6, Confirmation of Effective...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Spent Fuel Storage Casks: NAC-MPC System, Revision 6, Confirmation of Effective Date AGENCY: Nuclear... include Amendment Number 6 to Certificate of Compliance (CoC) Number 1025. DATES: Effective Date: The... regulations at 10 CFR 72.214 to include Amendment No. 6 to CoC No. 1025. Amendment No. 6 changes the...

  19. 78 FR 67348 - Invitation for Public Comment on Draft Test Plan for the High Burnup Dry Storage Cask Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... will be executed will be added when Dominion Virginia Power, who is part of the Electric Power research... Electric Power Research Institute (EPRI) to document what is planned to be accomplished by the CDP. DOE is... Storage Cask Research and Development Project (CDP) AGENCY: Fuel Cycle Technologies, Office of Nuclear...

  20. Detection of Missing Assemblies and Estimation of the Scattering Densities in a VSC-24 Dry Storage Cask with Cosmic-Ray-Muon-Based Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhengzhi; Hayward, Jason; Liao, Can

    We report that highly energetic, cosmic-ray muons can penetrate a dry storage cask and yield information about the material inside it by making use of the physics of multiple Coulomb scattering. Work by others has shown this information may be used for verification of dry storage cask contents after continuity of knowledge has been lost. In our modeling and simulation approach, we use ideal planar radiation detectors to record the trajectories and momentum of both incident and exiting cosmic ray muons; this choice allows us to demonstrate the fundamental limit of the technology for a particular measurement and reconstruction method.more » In a method analogous to computed tomography with the attenuation coefficient replaced by scattering density, we apply a filtered back projection algorithm in order to reconstruct the geometry in modeled scenarios for a VSC-24 concrete-walled cask. We also report on our attempt to estimate material-specific information. A scenario where one of the middle four spent nuclear fuel assemblies is missing—undetectable with a simple PoCA-based approach—is expected to be detectable with a CT-based approach. Moreover, a trickier scenario where one or more assemblies is replaced by a dummy assembly is put forward. Lastly, in this case, we expect that this dry storage cask should be found to be not as declared based on our simulation and reconstruction results.« less

  1. Detection of Missing Assemblies and Estimation of the Scattering Densities in a VSC-24 Dry Storage Cask with Cosmic-Ray-Muon-Based Computed Tomography

    DOE PAGES

    Liu, Zhengzhi; Hayward, Jason; Liao, Can; ...

    2017-08-01

    We report that highly energetic, cosmic-ray muons can penetrate a dry storage cask and yield information about the material inside it by making use of the physics of multiple Coulomb scattering. Work by others has shown this information may be used for verification of dry storage cask contents after continuity of knowledge has been lost. In our modeling and simulation approach, we use ideal planar radiation detectors to record the trajectories and momentum of both incident and exiting cosmic ray muons; this choice allows us to demonstrate the fundamental limit of the technology for a particular measurement and reconstruction method.more » In a method analogous to computed tomography with the attenuation coefficient replaced by scattering density, we apply a filtered back projection algorithm in order to reconstruct the geometry in modeled scenarios for a VSC-24 concrete-walled cask. We also report on our attempt to estimate material-specific information. A scenario where one of the middle four spent nuclear fuel assemblies is missing—undetectable with a simple PoCA-based approach—is expected to be detectable with a CT-based approach. Moreover, a trickier scenario where one or more assemblies is replaced by a dummy assembly is put forward. Lastly, in this case, we expect that this dry storage cask should be found to be not as declared based on our simulation and reconstruction results.« less

  2. Concrete Shield Performance of the VSC-17 Spent Nuclear Fuel Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koji Shirai

    2006-04-01

    The VSC-17 Spent Nuclear Fuel Storage Cask was surveyed for degradation of the concrete shield by radiation measurement, temperature measurement, and ultrasonic testing. No general loss of shielding function was identified.

  3. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete ismore » widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems« less

  4. 78 FR 63375 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... include: adding a new transfer cask (TC), the OS197L, for use with the 32PT and 61BT dry shielded.... 1004. Specifically, Transnuclear, Inc. requested changes to: (1) add a new TC, the OS197L, for use with... with NUREG-1745 requirements. Deleting the TC dose rates for all currently licensed payloads (TSs 1.2...

  5. National Policy Implications of Storing Nuclear Waste in the Pacific Region,

    DTIC Science & Technology

    1981-01-01

    US Congress, Senate, Committee on Energy and Natural Resources, Pacific Spent Nuclear Fuel Storage , Hearing...selected. 17 One type of shipping cask which has been used to transport spent fuel assemblies to the Nevada Test Site is a leakproof steel cask that can...discussion the following conclusions on the nuclear waste storage issue appear valid. The Reagan decision to reprocess spent fuel has not changed US

  6. Advancing the Fork detector for quantitative spent nuclear fuel verification

    DOE PAGES

    Vaccaro, S.; Gauld, I. C.; Hu, J.; ...

    2018-01-31

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. Finally, the results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.« less

  7. Advancing the Fork detector for quantitative spent nuclear fuel verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, S.; Gauld, I. C.; Hu, J.

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. Finally, the results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.« less

  8. Advancing the Fork detector for quantitative spent nuclear fuel verification

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Gauld, I. C.; Hu, J.; De Baere, P.; Peterson, J.; Schwalbach, P.; Smejkal, A.; Tomanin, A.; Sjöland, A.; Tobin, S.; Wiarda, D.

    2018-04-01

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations. A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This paper describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms. The results are summarized, and sources and magnitudes of uncertainties are identified, and the impact of analysis uncertainties on the ability to confirm operator declarations is quantified.

  9. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    NASA Astrophysics Data System (ADS)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  10. 75 FR 42339 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ...; minor design modifications to the Vertical Concrete Cask (VCC) incorporating design features from the... (ALARA) principles; an increase in the concrete pad compression strength from 4000 psi to 6000 psi; added...

  11. Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, Dan; Rose, David; Dunsmuir, Mike

    2014-02-06

    The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24” diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. Aftermore » reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18” in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24” in diameter and ~11 feet long from a dry transfer cask to the basin. The 18” and 24” applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with different diameters and lengths would likely be on the same order of magnitude as the Basin Modifications project. The cost of a DTS capability is affected by the number of design variations of different vendor transport and dry transfer casks to be considered for design input. Some costs would be incurred for each vendor DTS to be handled. For example, separate analyses would be needed for each dry transfer cask type such as criticality, shielding, dropping a dry transfer cask and basket, handling and auxiliary equipment, procedures, operator training, readiness assessments, and operational readiness reviews. A DTS handling capability in L-Area could serve as a backup to the Shielded Transfer System (STS) for unloading long casks and could support potential future missions such as the Idaho National Laboratory (INL) Exchange or transferring UNF from wet to dry storage.« less

  12. 78 FR 78693 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... dangerous to living organisms, including insects, microbes, bacteria or virus that attach to dust that.... According to his comment, ``[T]he Deer Tick has carried a spirochete bacteria for millions of years, but...

  13. 75 FR 34181 - Connecticut Yankee Atomic Power Company, Haddam Neck Plant, Independent Spent Fuel Storage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Specification (TS) Surveillance Requirement 3.1.6.1 to verify the operability of the concrete cask heat removal... Specification (TS) Surveillance Requirement 3.1.6.1 to verify the operability of the concrete cask heat removal...

  14. Thermal modeling of a vertical dry storage cask for used nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Liu, Yung Y.

    2016-05-01

    Thermal modeling of temperature profiles of dry casks has been identified as a high-priority item in a U.S. Department of Energy gap analysis. In this work, a three-dimensional model of a vertical dry cask has been constructed for computer simulation by using the ANSYS/FLUENT code. The vertical storage cask contains a welded canister for 32 Pressurized Water Reactor (PWR) used-fuel assemblies with a total decay heat load of 34 kW. To simplify thermal calculations, an effective thermal conductivity model for a 17 x 17 PWR used (or spent)-fuel assembly was developed and used in the simulation of thermal performance. Themore » effects of canister fill gas (helium or nitrogen), internal pressure (1-6 atm), and basket material (stainless steel or aluminum alloy) were studied to determine the peak cladding temperature (PCT) and the canister surface temperatures (CSTs). The results showed that high thermal conductivity of the basket material greatly enhances heat transfer and reduces the PCT. The results also showed that natural convection affects both PCT and the CST profile, while the latter depends strongly on the type of fill gas and canister internal pressure. Of particular interest to condition and performance monitoring is the identification of canister locations where significant temperature change occurs after a canister is breached and the fill gas changes from high-pressure helium to ambient air. This study provided insight on the thermal performance of a vertical storage cask containing high-burnup fuel, and helped advance the concept of monitoring CSTs as a means to detect helium leakage from a welded canister. The effects of blockage of air inlet vents on the cask's thermal performance were studied. The simulation were validated by comparing the results against data obtained from the temperature measurements of a commercial cask.« less

  15. Neutron field characterization at the independent spent fuel storage installation of the Trillo nuclear power plant.

    PubMed

    Campo, Xandra; Méndez, Roberto; Embid, Miguel; Ortego, Alberto; Novo, Manuel; Sanz, Javier

    2018-05-01

    Neutron fields inside and outside the independent spent fuel storage installation of Trillo Nuclear Power Plant are characterized exhaustively in terms of neutron spectra and ambient dose equivalent, measured by Bonner sphere system and LB6411 monitor. Measurements are consistent with storage casks and building shield characteristics, and also with casks distribution inside the building. Outer values at least five times lower than dose limit for free access area are found. Measurements with LB6411 and spectrometer are consistent with each other. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Feasibility study for a transportation operations system cask maintenance facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the caskmore » systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.« less

  17. Survivability Tests on a Nuclear Waste Cask in Simulated Railroad Accident Fires.

    DTIC Science & Technology

    1983-06-01

    Axial Reference Point ( XRP ) .......... 19 4. A View of the Torch Facility with the Nozzle Directed Side-On to the HNPF Cask... XRP and the TIC for Various HNPF Cask Surfaces in Test Number 1 .................... 47 16. The Spatial Distribution of Sensors in a Cross-Sectional...Plane Through the HNPF Cask at 289.6 cm from the XRP as Viewed from the Top End with the TIC Located at 900 for Test Numbers 1 and 2

  18. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O.K.; Diercks, D.; Fabian, R.

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a periodmore » not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that could affect the safe storage of the used fuel. The information contained in the license and CoC renewal applications will require NRC review to verify that the aging effects on the SSCs in DCSSs/ ISFSIs are adequately managed for the period of extended operation. To date, all of the ISFSIs located across the United States with more than 1,500 dry casks loaded with used fuel have initial license terms of 20 years; three ISFSIs (Surry, H.B. Robinson and Oconee) have received their renewed licenses for 20 years, and two other ISFSIs (Calvert Cliffs and Prairie Island) have applied for license renewal for 40 years. This report examines issues related to managing aging effects on the SSCs in DCSSs/ISFSIs for extended long-term storage and transportation of used fuels, following an approach similar to that of the Generic Aging Lessons Learned (GALL) report, NUREG-1801, for the aging management and license renewal of nuclear power plants. The report contains five chapters and an appendix on quality assurance for aging management programs for used-fuel dry storage systems. Chapter I of the report provides an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG-1927. Chapter II contains definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms. Chapter III and Chapter IV contain generic TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs described in Chapter V. The summary descriptions and tabulations of evaluations of AMPs and TLAAs for the SSCs that are important to safety in Chapter V include DCSS designs (i.e., NUHOMS{reg_sign}, HI-STORM 100, Transnuclear (TN) metal cask, NAC International S/T storage cask, ventilated storage cask (VSC-24), and the Westinghouse MC-10 metal dry storage cask) that have been and continue to be used by utilities across the country for dry storage of used fuel to date. The goal of this report is to help establish the technical basis for extended long-term storage and transportation of used fuel.« less

  19. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... specified in their Certificates of Compliance. Certificate Number: 1000 SAR Submitted by: General Nuclear Systems, Inc. SAR Title: Topical Safety Analysis Report for the Castor V/21 Cask Independent Spent Fuel... Model Number: CASTOR V/21 Certificate Number: 1002 SAR Submitted by: Nuclear Assurance Corporation SAR...

  20. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... specified in their Certificates of Compliance. Certificate Number: 1000 SAR Submitted by: General Nuclear Systems, Inc. SAR Title: Topical Safety Analysis Report for the Castor V/21 Cask Independent Spent Fuel... Model Number: CASTOR V/21 Certificate Number: 1002 SAR Submitted by: Nuclear Assurance Corporation SAR...

  1. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... specified in their Certificates of Compliance. Certificate Number: 1000 SAR Submitted by: General Nuclear Systems, Inc. SAR Title: Topical Safety Analysis Report for the Castor V/21 Cask Independent Spent Fuel... Model Number: CASTOR V/21 Certificate Number: 1002 SAR Submitted by: Nuclear Assurance Corporation SAR...

  2. Measurement of chlorine concentration on steel surfaces via fiber-optic laser-induced breakdown spectroscopy in double-pulse configuration

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Le Berre, S.; Fobar, D. G.; Burger, M.; Skrodzki, P. J.; Hartig, K. C.; Motta, A. T.; Jovanovic, I.

    2018-03-01

    The corrosive environment provided by chlorine ions on the welds of stainless steel dry cask storage canisters for used nuclear fuel may contribute to the occurrence of stress corrosion cracking. We demonstrate the use of fiber-optic laser-induced breakdown spectroscopy (FOLIBS) in the double-pulse (DP) configuration for high-sensitivity, remote measurement of the surface concentrations of chlorine compatible in constrained space and challenging environment characteristic for dry cask storage systems. Chlorine surface concentrations as low as 5 mg/m2 have been detected and quantified by use of a laboratory-based and a fieldable DP FOLIBS setup with the calibration curve approach. The compact final optics assembly in the fieldable setup is interfaced via two 25-m long optical fibers for high-power laser pulse delivery and plasma emission collection and can be readily integrated into a multi-sensor robotic delivery system for in-situ inspection of dry cask storage systems.

  3. 10 CFR 72.240 - Conditions for spent fuel storage cask renewal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to exceed 40 years. In the event that the certificate holder does not apply for a cask design renewal...) The application must be accompanied by a safety analysis report (SAR). The SAR must include the following: (1) Design bases information as documented in the most recently updated final safety analysis...

  4. 10 CFR 72.240 - Conditions for spent fuel storage cask renewal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to exceed 40 years. In the event that the certificate holder does not apply for a cask design renewal...) The application must be accompanied by a safety analysis report (SAR). The SAR must include the following: (1) Design bases information as documented in the most recently updated final safety analysis...

  5. 10 CFR 72.240 - Conditions for spent fuel storage cask renewal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to exceed 40 years. In the event that the certificate holder does not apply for a cask design renewal...) The application must be accompanied by a safety analysis report (SAR). The SAR must include the following: (1) Design bases information as documented in the most recently updated final safety analysis...

  6. A&M. Radioactive parts security storage area. camera facing northwest. Outdoor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Radioactive parts security storage area. camera facing northwest. Outdoor storage of concrete storage casks. Photographer: M. Holmes. Date: November 21, 1959. INEEL negative no. 59-6081 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality.

    PubMed

    Rezaeian, M; Kamali, J

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B 4 C) were investigated, and the minimum required receptacle pitch of the basket was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...

  9. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.214 List of approved spent...

  10. 78 FR 63408 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...: Gregory R. Trussell, Office of Federal and State Materials and Environmental Management Programs, U.S... Access and Management System (ADAMS): You may access publicly-available documents online in the NRC... continues to be ensured. The direct final rule will become effective on January 7, 2014. However, if the NRC...

  11. 78 FR 73379 - List of Approved Spent Fuel Storage Casks: HI-STORM 100 Cask System; Amendment No. 9

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ..., and criticality control. If there is no loss of confinement, shielding, or criticality control, the... would prevent loss of confinement, shielding, and criticality control. If there is no loss of...;Federal Register / Vol. 78, No. 235 / Friday, December 6, 2013 / Rules and Regulations#0;#0; [[Page 73379...

  12. 75 FR 42292 - List of Approved Spent Fuel Storage Casks: NAC-MPC System, Revision 6

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... modifications to the Vertical Concrete Cask (VCC) incorporating design features from the MAGNASTOR system for...; an increase in the concrete pad compression strength from 4,000 psi to 6,000 psi; added justification... system while adhering to ALARA principles; (5) an increase in the concrete pad compression strength from...

  13. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Advanced Borobond™ Shields for Nuclear Materials Containment and Borobond™ Immobilization of Volatile Fission Products - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-05-19

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond. The major objective of this project was to produce a more versatile composition of this material and find new applications. Major target applications were use for nuclear radiation shields, such as in dry storage casks; use in immobilization of most difficult waste streams, such as Hanford K-Basin waste; use for soluble and volatile fission products, such asmore » Cs, Tc, Sr, and I; and use for corrosion and fire protection applications in nuclear facilities.« less

  15. CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.F. Loros

    2000-06-28

    The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installingmore » the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The Carrier Preparation Building Materials Handling System interfaces with the Cask/Carrier Transport System to move the carriers to and from the system. The Carrier Preparation Building System houses the equipment and provides the facility, utility, safety, communications, and auxiliary systems supporting operations and protecting personnel.« less

  16. Ultrasonic Fingerprinting of Structural Materials: Spent Nuclear Fuel Containers Case-Study

    NASA Astrophysics Data System (ADS)

    Sednev, D.; Lider, A.; Demyanuk, D.; Kroening, M.; Salchak, Y.

    Nowadays, NDT is mainly focused on safety purposes, but it seems possible to apply those methods to provide national and IAEA safeguards. The containment of spent fuel in storage casks could be dramatically improved in case of development of so-called "smart" spent fuel storage and transfer casks. Such casks would have tamper indicating and monitoring/tracking features integrated directly into the cask design. The microstructure of the containers material as well as of the dedicated weld seam is applied to the lid and the cask body and provides a unique fingerprint of the full container, which can be reproducibly scanned by using an appropriate technique. The echo-sounder technique, which is the most commonly used method for material inspection, was chosen for this project. The main measuring parameter is acoustic noise, reflected from material's artefacts. The purpose is to obtain structural fingerprinting. Reference measurement and additional measurement results were compared. Obtained results have verified the appliance of structural fingerprint and the chosen control method. The successful authentication demonstrates the levels of the feature points' compliance exceeding the given threshold which differs considerably from the percentage of the concurrent points during authentication from other points. Since reproduction or doubling of the proposed unique identification characteristics is impossible at the current state science and technology, application of this technique is considered to identify the interference into the nuclear materials displacement with high accuracy.

  17. 78 FR 3853 - Retrievability, Cladding Integrity and Safe Handling of Spent Fuel at an Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... requirement that loaded storage casks also meet transportation requirements. Integration of storage and... transported from the storage location. As part of its evaluation of integration and compatibility between... evaluating compatibility of storage and transportation regulations. As part of its evaluation of integration...

  18. Array Detector Modules for Spent Fuel Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, Aleksey

    Brookhaven National Laboratory (BNL) proposes to evaluate the arrays of position-sensitive virtual Frisch-grid (VFG) detectors for passive gamma-ray emission tomography (ET) to verify the spent fuel in storage casks before storing them in geo-repositories. Our primary objective is to conduct a preliminary analysis of the arrays capabilities and to perform field measurements to validate the effectiveness of the proposed array modules. The outcome of this proposal will consist of baseline designs for the future ET system which can ultimately be used together with neutrons detectors. This will demonstrate the usage of this technology in spent fuel storage casks.

  19. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less

  20. Piezoelectric wafer active sensors under gamma radiation exposure toward applications for structural health monitoring of nuclear dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Faisal Haider, Mohammad; Mei, Hanfei; Lin, Bin; Yu, Lingyu; Giurgiutiu, Victor; Lam, Poh-Sang; Verst, Christopher

    2018-03-01

    Structural health monitoring (SHM) is in urgent need and must be integrated into the nuclear-spent fuel storage systems to guarantee the safe operation. The dry cask storage system (DCSS) is such storage facility, which is licensed for temporary storage for nuclear-spent fuel at the independent spent fuel storage installations (ISFSIs) for certain predetermined period of time. Gamma radiation is one of the major radiation sources near DCSS. Therefore, a detailed experimental investigation was completed on the gamma radiation endurance of piezoelectric wafer active sensors (PWAS) transducers for SHM applications to the DCSS system. The irradiation test was done in a Co-60 gamma irradiator. Lead Zirconate Titanate (PZT) and Gallium Orthophosphate (GaPO4) PWAS transducers were exposed to 40.7 kGy gamma radiation. Total radiation dose was achieved in two different radiation dose rates: (a) slower radiation rate at 0.1 kGy/hr for 20 hours (b) accelerated radiation rate at 1.233 kGy/hr for 32 hours. The total cumulative radiation dose of 40.7 kGy is equivalent to 45 years of operation in DCSS system. Electro-mechanical impedance and admittance (EMIA) signatures and electrical capacitance were measured to evaluate the PWAS performance after each gamma radiation exposure. The change in resonance frequency of PZT-PWAS transducer for both in-plane and thickness mode was observed. The GaPO4-PWAS EMIA spectra do not show a significant shift in resonance frequency after gamma irradiation exposure. Radiation endurance of new high-temperature HPZ-HiT PWAS transducer was also evaluated. The HPZ-HiT transducers were exposed to gamma radiation at 1.233 kGy/hr for 160 hours with 80 hours interval. Therefore, the total accumulated gamma radiation dose is 184 kGy. No significant change in impedance spectra was observed due to gamma radiation exposure.

  1. 78 FR 8050 - Spent Fuel Cask Certificate of Compliance Format and Content

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... Rule for CoC Format and Content The petitioner states that amending 10 CFR part 72, subpart L, to... conforming changes be made to 10 CFR 72.13. The petitioner argues that ``[n]ew or amended NRC staff positions... 72, subpart L, be amended to remove the requirement that the empty weight be marked on storage casks...

  2. EPRI/DOE High-Burnup Fuel Sister Rod Test Plan Simplification and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzstein, Sylvia J.; Sorenson, Ken B.; Hanson, B. D.

    The EPRI/DOE High-Burnup Confirmatory Data Project (herein called the “Demo”) is a multi-year, multi-entity test with the purpose of providing quantitative and qualitative data to show if high-burnup fuel mechanical properties change in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of common cladding alloys from the North Anna Nuclear Power Plant, loading them in an NRC-licensed TN-32B cask, drying them according to standard plant procedures, and then storing them on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and themore » mechanical properties of the rods will be tested and analyzed.« less

  3. Quantity and management of spent fuel from prototype and research reactors in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, Sabine; Bollingerfehr, Wilhelm; Filbert, Wolfgang

    Within the scope of an R and D project (project identification number FKZ 02 S 8679) sponsored by BMBF (Federal Ministry of Education and Research), the current state of storage and management of fuel elements from prototype and research reactors was established, and an approach for their future storage/management was developed. The spent fuels from prototype and research reactors in Germany that require disposal were specified and were described in regard to their repository-relevant characteristics. As there are currently no casks licensed for disposal in Germany, descriptions of casks that were considered to be suitable were provided. Based on themore » information provided on the spent fuel from prototype and research reactors and the potential casks, a technical disposal concept was developed. In this context, concepts to integrate the spent fuel from prototype and research reactors into existing disposal concepts for spent fuel from German nuclear power plants and for waste from reprocessing were developed for salt and clay formations. (authors)« less

  4. A FRAMEWORK TO DEVELOP FLAW ACCEPTANCE CRITERIA FOR STRUCTURAL INTEGRITY ASSESSMENT OF MULTIPURPOSE CANISTERS FOR EXTENDED STORAGE OF USED NUCLEAR FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, P.; Sindelar, R.; Duncan, A.

    2014-04-07

    A multipurpose canister (MPC) made of austenitic stainless steel is loaded with used nuclear fuel assemblies and is part of the transfer cask system to move the fuel from the spent fuel pool to prepare for storage, and is part of the storage cask system for on-site dry storage. This weld-sealed canister is also expected to be part of the transportation package following storage. The canister may be subject to service-induced degradation especially if exposed to aggressive environments during possible very long-term storage period if the permanent repository is yet to be identified and readied. Stress corrosion cracking may bemore » initiated on the canister surface in the welds or in the heat affected zone because the construction of MPC does not require heat treatment for stress relief. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The external loading cases include thermal accident scenarios and cask drop conditions with the contribution from the welding residual stresses. The determination of acceptable flaw size is based on the procedure to evaluate flaw stability provided by American Petroleum Institute (API) 579 Fitness-for-Service (Second Edition). The material mechanical and fracture properties for base and weld metals and the stress analysis results are obtained from the open literature such as NUREG-1864. Subcritical crack growth from stress corrosion cracking (SCC), and its impact on inspection intervals and acceptance criteria, is not addressed.« less

  5. Performance of bolted closure joint elastomers under cask aging conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.; Sindelar, R.; Skidmore, E.

    The bolted closure joint of a bare spent fuel cask is susceptible to age-related degradation and potential loss of confinement function under long-term storage conditions. Elastomeric seals, a component of the joint typically used to facilitate leak testing of the primary seal that includes the metallic seal and bolting, is susceptible to degradation over time by several mechanisms, principally via thermo-oxidation, stress-relaxation, and radiolytic degradation under time and temperature condition. Irradiation and thermal exposure testing and evaluation of an ethylene-propylene diene monomer (EPDM) elastomeric seal material similar to that used in the CASTOR® V/21 cask for a matrix of temperaturemore » and radiation exposure conditions relevant to the cask extended storage conditions, and development of semiempirical predictive models for loss of sealing force is in progress. A special insert was developed to allow Compressive Stress Relaxation (CSR) measurements before and after the irradiation and/or thermal exposure without unloading the elastomer. A condition of the loss of sealing force for the onset of leakage was suggested. The experimentation and modeling being performed could enable acquisition of extensive coupled aging data as well as an estimation of the timeframe when loss of sealing function under aging (temperature/radiation) conditions may occur.« less

  6. Radiation Templates of Spent Fuel in Casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanier, Peter

    BNL and INL propose to perform a scoping study, using heavily collimated gamma and fast neutron detectors, to obtain passive radiation templates of dry storage casks containing spent fuel. The goal is to demonstrate sufficient spatial resolution and sensitivity to detect a missing fuel assembly. Such measurements, combined with detailed modeling and decay corrections should provide confidence that the cask contents have not been altered, despite loss of continuity of knowledge (CoK). The concept relies on the leakage of high energy gammas and neutrons through the shielding of the casks. Tests will emphasize organic scintillators with pulse shape discrimination, butmore » baseline comparisons will be made to high purity germanium (HPGe) and collimated moderated 3He detectors deployed in the same locations. Commercial off-the-shelf (COTS) detectors and data acquisition electronics will be used with custom-built collimators and shielding.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luna, R. E.

    This paper provides a simple model for estimating the release of respirable aerosols resulting from an attack on a spent fuel cask using a high energy density device (HEDD). Two primary experiments have provided data on potential releases from spent fuel casks under HEDD attack. Sandia National Laboratories (SNL) conducted the first in the early 1980's and the second was sponsored by Gessellshaft fur Anlagen- and Reaktorsicherheit (GRS) in Germany and conducted in France in 1994. Both used surrogate spent fuel assemblies in real casks. The SNL experiments used un-pressurized fuel pin assemblies in a single element cask while themore » GRS tests used pressurized fuel pin assemblies in a 9-element cask. Data from the two test programs is reasonably consistent, given the differences in the experiments, but the use of the test data for prediction of releases resulting from HEDD attack requires a method for accounting for the effects of pin pressurization release and the ratio of pin plenum gas release to cask free volume (VR). To account for the effects of VR and to link the two data sources, a simple model has been developed that uses both the SNL data and the GRS data as well as recent test data on aerosols produced in experiments with single pellets subjected to HEDD effects conducted under the aegis of the International Consortium's Working Group on Sabotage of Transport and Storage Casks (WGSTSC). (authors)« less

  8. Benchmarking Data for the Proposed Signature of Used Fuel Casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauch, Eric Benton

    2016-09-23

    A set of benchmarking measurements to test facets of the proposed extended storage signature was conducted on May 17, 2016. The measurements were designed to test the overall concept of how the proposed signature can be used to identify a used fuel cask based only on the distribution of neutron sources within the cask. To simulate the distribution, 4 Cf-252 sources were chosen and arranged on a 3x3 grid in 3 different patterns and raw neutron totals counts were taken at 6 locations around the grid. This is a very simplified test of the typical geometry studied previously in simulationmore » with simulated used nuclear fuel.« less

  9. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plantmore » and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.« less

  10. Fuel shipment experience, fuel movements from the BMI-1 transport cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Thomas L.; Krause, Michael G

    1986-07-01

    The University of Texas at Austin received two shipments of irradiated fuel elements from Northrup Aircraft Corporation on April 11 and 16, 1985. A total of 59 elements consisting of standard and instrumented TRIGA fuel were unloaded from the BMI-1 shipping cask. At the time of shipment, the Northrup core burnup was approximately 50 megawatt days with fuel element radiation levels, after a cooling time of three months, of approximately 1.75 rem/hr at 3 feet. In order to facilitate future planning of fuel shipment at the UT facility and other facilities, a summary of the recent transfer process including severalmore » factors which contributed to its success are presented. Numerous color slides were made of the process for future reference by UT and others involved in fuel transfer and handling of the BMI-1 cask.« less

  11. Conceptual Design Report Cask Loadout Sys and Cask Drop Redesign for the Immersion Pail Support Structure and Operator Interface Platform at 105 K West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANGEVIN, A.S.

    1999-07-12

    This conceptual design report documents the redesign of the IPSS and the OIP in the 105 KW Basin south loadout pit due to a postulated cask drop accident, as part of Project A.5/A.6, Canister Transfer Facility Modifications. Project A.5/A.6 involves facility modifications needed to transfer fuel from the basin into the cask-MCO. The function of the IPSS is to suspend, guide, and position the immersion pail. The immersion pail protects the cask-MCO from contamination by basin water and acts as a lifting device for the cask-MCO. The OIP provides operator access to the south loadout pit. Previous analyses studied themore » effects of a cask-MCO drop on the south loadout pit concrete structure and on the IPSS. The most recent analysis considered the resulting loads at the pit slab/wall joint (Kanjilal, 1999). This area had not been modeled previously, and the analysis results indicate that the demand capacity exceeds the allowable at the slab/wall joint. The energy induced on the south loadout pit must be limited such that the safety class function of the basin is maintained. The solution presented in this CDR redesigns the IPSS and the OIP to include impact-absorbing features that will reduce the induced energy. The impact absorbing features of the new design include: Impact-absorbing material at the IPSS base and at the upper portion of the IPSS legs. A sleeve which provides a hydraulic means of absorbing energy. Designing the OIP to act as an impact absorber. The existing IPSS structure in 105 KW will be removed. This conceptual design considers only loads resulting from drops directly over the IPSS and south loadout pit area. Drops in other areas of the basin are not considered, and will be covered as part of a future revision to this CDR.« less

  12. FFTF disposable solid waste cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less

  13. 10 CFR 72.242 - Recordkeeping and reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Recordkeeping and reports. 72.242 Section 72.242 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT... Spent Fuel Storage Casks § 72.242 Recordkeeping and reports. (a) Each certificate holder or applicant...

  14. Instrumentation: Nondestructive Examination for Verification of Canister and Cladding Integrity. FY2014 Status Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.; Suter, Jonathan D.; Jones, Anthony M.

    2014-09-12

    This report documents FY14 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) verify the integrity of dry storage cask internals.

  15. 75 FR 33853 - Maine Yankee Atomic Power Company; Independent Spent Fuel Storage Installation; Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ...) Surveillance Requirement 3.1.6.1 to verify the operability of the concrete cask heat removal system to maintain... Amendment No. 5 for one storage canister at the MY ISFSI. The affected storage canister had a heat load of 9..., and the LCO 3.1.4 time limit for a canister [[Page 33855

  16. 10 CFR 72.234 - Conditions of approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Conditions of approval. 72.234 Section 72.234 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT... Spent Fuel Storage Casks § 72.234 Conditions of approval. (a) The certificate holder and applicant for a...

  17. 10 CFR 72.232 - Inspection and tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Inspection and tests. 72.232 Section 72.232 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL... Storage Casks § 72.232 Inspection and tests. (a) The certificate holder and applicant for a CoC shall...

  18. 10 CFR 72.248 - Safety analysis report updating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safety analysis report updating. 72.248 Section 72.248 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF... Approval of Spent Fuel Storage Casks § 72.248 Safety analysis report updating. (a) Each certificate holder...

  19. Used fuel storage monitoring using novel 4He scintillation fast neutron detectors and neutron energy discrimination analysis

    NASA Astrophysics Data System (ADS)

    Kelley, Ryan P.

    With an increasing quantity of spent nuclear fuel being stored at power plants across the United States, the demand exists for a new method of cask monitoring. Certifying these casks for transportation and long-term storage is a unique dilemma: their sealed nature lends added security, but at the cost of requiring non-invasive measurement techniques to verify their contents. This research will design and develop a new method of passively scanning spent fuel casks using 4He scintillation detectors to make this process more accurate. 4He detectors are a relatively new technological development whose full capabilities have not yet been exploited. These detectors take advantage of the high 4He cross section for elastic scattering at fast neutron energies, particularly the resonance around 1 MeV. If one of these elastic scattering interactions occurs within the detector, the 4He nucleus takes energy from the incident neutron, then de-excites by scintillation. Photomultiplier Tubes (PMTs) at either end of the detector tube convert this emitted light into an electrical signal. The goal of this research is to use the neutron spectroscopy features of 4He scintillation detectors to maintain accountability of spent fuel in storage. This project will support spent fuel safeguards and the detection of fissile material, in order to minimize the risk of nuclear proliferation and terrorism.

  20. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents themore » analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.« less

  1. Status of a standard for neutron skyshine calculation and measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, R.M.; Wright, R.Q.; Greenborg, J.

    1990-01-01

    An effort has been under way for several years to prepare a draft standard, ANS-6.6.2, Calculation and Measurement of Direct and Scattered Neutron Radiation from Contained Sources Due to Nuclear Power Operations. At the outset, the work group adopted a three-phase study involving one-dimensional analyses, a measurements program, and multi-dimensional analyses. Of particular interest are the neutron radiation levels associated with dry-fuel storage at reactor sites. The need for dry storage has been investigated for various scenarios of repository and monitored retrievable storage (MRS) facilities availability with the waste stream analysis model. The concern is with long-term integrated, low-level dosesmore » at long distances from a multiplicity of sources. To evaluate the conservatism associated with one-dimensional analyses, the work group has specified a series of simple problems. Sources as a function of fuel exposure were determined for a Westinghouse 17 x 17 pressurized water reactor assembly with the ORIGEN-S module of the SCALE system. The energy degradation of the 35 GWd/ton U sources was determined for two generic designs of dry-fuel storage casks.« less

  2. Systems and methods for harvesting and storing materials produced in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Dayal, Yogeshwar; Brittingham, Martin W.

    2016-04-05

    Systems produce desired isotopes through irradiation in nuclear reactor instrumentation tubes and deposit the same in a robust facility for immediate shipping, handling, and/or consumption. Irradiation targets are inserted and removed through inaccessible areas without plant shutdown and placed in the harvesting facility, such as a plurality of sealable and shipping-safe casks and/or canisters. Systems may connect various structures in a sealed manner to avoid release of dangerous or unwanted matter throughout the nuclear plant, and/or systems may also automatically decontaminate materials to be released. Useable casks or canisters can include plural barriers for containment that are temporarily and selectively removable with specially-configured paths inserted therein. Penetrations in the facilities may limit waste or pneumatic gas escape and allow the same to be removed from the systems without over-pressurization or leakage. Methods include processing irradiation targets through such systems and securely delivering them in such harvesting facilities.

  3. Computational Fluid Dynamics Best Practice Guidelines in the Analysis of Storage Dry Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zigh, A.; Solis, J.

    2008-07-01

    Computational fluid dynamics (CFD) methods are used to evaluate the thermal performance of a dry cask under long term storage conditions in accordance with NUREG-1536 [NUREG-1536, 1997]. A three-dimensional CFD model was developed and validated using data for a ventilated storage cask (VSC-17) collected by Idaho National Laboratory (INL). The developed Fluent CFD model was validated to minimize the modeling and application uncertainties. To address modeling uncertainties, the paper focused on turbulence modeling of buoyancy driven air flow. Similarly, in the application uncertainties, the pressure boundary conditions used to model the air inlet and outlet vents were investigated and validated.more » Different turbulence models were used to reduce the modeling uncertainty in the CFD simulation of the air flow through the annular gap between the overpack and the multi-assembly sealed basket (MSB). Among the chosen turbulence models, the validation showed that the low Reynolds k-{epsilon} and the transitional k-{omega} turbulence models predicted the measured temperatures closely. To assess the impact of pressure boundary conditions used at the air inlet and outlet channels on the application uncertainties, a sensitivity analysis of operating density was undertaken. For convergence purposes, all available commercial CFD codes include the operating density in the pressure gradient term of the momentum equation. The validation showed that the correct operating density corresponds to the density evaluated at the air inlet condition of pressure and temperature. Next, the validated CFD method was used to predict the thermal performance of an existing dry cask storage system. The evaluation uses two distinct models: a three-dimensional and an axisymmetrical representation of the cask. In the 3-D model, porous media was used to model only the volume occupied by the rodded region that is surrounded by the BWR channel box. In the axisymmetric model, porous media was used to model the entire region that encompasses the fuel assemblies as well as the gaps in between. Consequently, a larger volume is represented by porous media in the second model; hence, a higher frictional flow resistance is introduced in the momentum equations. The conservatism and the safety margins of these models were compared to assess the applicability and the realism of these two models. The three-dimensional model included fewer geometry simplifications and is recommended as it predicted less conservative fuel cladding temperature values, while still assuring the existence of adequate safety margins. (authors)« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauch, Eric Benton

    This report serves as a comprehensive overview of the Extended Storage of Used Nuclear Fuel work performed for the Material Protection, Accounting and Control Technologies campaign under the Department of Energy Office of Nuclear Energy. This paper describes a signature based on the source and fissile material distribution found within a population of used fuel assemblies combined with the neutron absorbers found within cask design that is unique to a specific cask with its specific arrangement of fuel. The paper describes all the steps used in producing and analyzing this signature from the beginning to the project end.

  5. Antineutrino Monitoring of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Huber, Patrick; Kopp, Joachim

    2017-11-01

    Military and civilian applications of nuclear energy have left a significant amount of spent nuclear fuel over the past 70 years. Currently, in many countries worldwide, the use of nuclear energy is on the rise. Therefore, the management of highly radioactive nuclear waste is a pressing issue. In this paper, we explore antineutrino detectors as a tool for monitoring and safeguarding nuclear-waste material. We compute the flux and spectrum of antineutrinos emitted by spent nuclear fuel elements as a function of time, and we illustrate the usefulness of antineutrino detectors in several benchmark scenarios. In particular, we demonstrate how a measurement of the antineutrino flux can help to reverify the contents of a dry storage cask in case the monitoring chain by conventional means gets disrupted. We then comment on the usefulness of antineutrino detectors at long-term storage facilities such as Yucca mountain. Finally, we put forward antineutrino detection as a tool in locating underground "hot spots" in contaminated areas such as the Hanford site in Washington state.

  6. KSC-2011-6659

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the RTG storage facility at NASA's Kennedy Space Center in Florida, the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission is lowered to the floor of the high bay in preparation for lifting the cask from around the MMRTG. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  7. Development of Friction Stir Processing for Repair of Nuclear Dry Cask Storage System Canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Kenneth A.; Sutton, Ben; Grant, Glenn J.

    The Nuclear Regulatory Commission has identified chloride-induced stress corrosion cracking (CISCC) of austenitic stainless steel dry cask storage systems (DCSS) as an area of great concern. Friction Stir Processing (FSP) was used to repair laboratory-generated stress corrosion cracking (SCC) in representative stainless steel 304 coupons. Results of this study show FSP is a viable method for repair and mitigation CISCC. This paper highlights lessons learned and developed techniques relative to FSP development for crack repair in sensitized thick section stainless steel 304. These include: development of process parameters, welding at low spindle speed, use of weld power and temperature controlmore » and optimization of these controls. NDE and destructive analysis are also presented to demonstrate effectiveness of the developed methods for SCC crack repair.« less

  8. Draft report: Results of stainless steel canister corrosion studies and environmental sample investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David

    2014-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions.

  9. 75 FR 25120 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ...-235, clarify the requirements of reconstituted fuel assemblies, add requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding, delete use of nitrogen for draining...

  10. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... confinement of radioactive material under normal, off-normal, and credible accident conditions. (m) To the...

  11. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... confinement of radioactive material under normal, off-normal, and credible accident conditions. (m) To the...

  12. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... of radioactive material under normal, off-normal, and credible accident conditions. (m) To the extent...

  13. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... of radioactive material under normal, off-normal, and credible accident conditions. (m) To the extent...

  14. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintained in a subcritical condition under credible conditions. (d) Radiation shielding and confinement... confinement of radioactive material under normal, off-normal, and credible accident conditions. (m) To the...

  15. Rail Shock and Vibration Pre-Test Modeling of a Used Nuclear Fuel Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Steven B.; Klymyshyn, Nicholas A.; Jensen, Philip J.

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste (HLW). The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and HLW generated by existing and future nuclear fuel cycles. The Storage and Transportation staff within the UFDC is responsible for addressing issues regarding the long-term or extendedmore » storage (ES) of UNF and its subsequent transportation. Available information is not sufficient to determine the ability of ES UNF, including high-burnup fuel, to withstand shock and vibration forces that could occur when the UNF is shipped by rail from nuclear power plant sites to a storage or disposal facility. There are three major gaps in the available information – 1) the forces that UNF assemblies would be subjected to when transported by rail, 2) the mechanical characteristics of fuel rod cladding, which is an essential structure for controlling the geometry of the UNF, a safety related feature, and 3) modeling methodologies to evaluate multiple possible degradation or damage mechanisms over the UNF lifetime. In order to address the first gap, options for tests to determine the physical response of surrogate UNF assemblies subjected to shock and vibration forces that are expected to be experienced during normal conditions of transportation (NCT) by rail must be identified and evaluated. The objective of the rail shock and vibration tests is to obtain data that will help researchers understand the mechanical loads that ES UNF assemblies would be subjected to under normal conditions of transportation and to fortify the computer modeling that will be necessary to evaluate the impact those loads may have on the integrity of the UNF assembly. The shock and vibration testing along with computer modeling is a vital part of research to achieve closure of a gap in information related to the ability of ES UNF to maintain its safety function when subjected to NCT. In support of this effort, preliminary structural dynamics modeling is presented herein. The modeling investigates the rigidity of a hypothetical cask and cradle structure by comparing it to a monolithic concrete mass. The concrete mass represents a practical option for achieving the necessary cask and cradle mass on a flatbed railcar, but this comparative modeling study investigates whether or not the dynamic loads transmitted through a monolithic concrete configuration are adequately representative of a realistic cask and cradle system. This modeling highlights the need for rail testing by reporting the phenomenon of structural transmissibility. As shown herein, this structural transmissibility can cause an amplification of shock and vibration loads through the structure, which could potentially lead to accelerated mechanical degradation of UNF under NCT.« less

  16. Novel Nuclear Powered Photocatalytic Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.

    2005-08-29

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC)more » design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.« less

  17. Neutron flux measurements on a mock-up of a storage cask for high-level nuclear waste using 2.5 MeV neutrons.

    PubMed

    Suárez, H Saurí; Becker, F; Klix, A; Pang, B; Döring, T

    2018-06-07

    To store and dispose spent nuclear fuel, shielding casks are employed to reduce the emitted radiation. To evaluate the exposure of employees handling such casks, Monte Carlo radiation transport codes can be employed. Nevertheless, to assess the reliability of these codes and nuclear data, experimental checks are required. In this study, a neutron generator (NG) producing neutrons of 2.5 MeV was employed to simulate neutrons produced in spent nuclear fuel. Different configurations of shielding layers of steel and polyethylene were positioned between the target of the NG and a NE-213 detector. The results of the measurements of neutron and γ radiation and the corresponding simulations with the code MCNP6 are presented. Details of the experimental set-up as well as neutron and photon flux spectra are provided as reference points for such NG investigations with shielding structures.

  18. 76 FR 12825 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Confirmation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... definitions for Damaged Fuel Assembly and Transfer Operations; add definitions for Fuel Class and Reconstituted Fuel Assembly; add Combustion Engineering 16x16 class fuel assemblies as authorized contents...

  19. KSC-2011-6646

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- The multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory (MSL) mission, enclosed in a shipping cask in the MMRTG trailer, arrives at the RTG storage facility at NASA's Kennedy Space Center in Florida. During transport, coolant flows through hoses connected to the cask to dissipate any excess heat generated by the MMRTG. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  20. Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoukalas, Lefteri H.

    2016-03-01

    This is the final report of the NEUP project “Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage”, DE-NE0000695. The project started on December 1, 2013 and this report covers the period December 1, 2013 through November 30, 2015. The project was successfully completed and this report provides an overview of the main achievements, results and findings throughout the duration of the project. Additional details can be found in the main body of this report and on the individual Quarterly Reports and associated Deliverables of the project, uploaded in PICS-NE.

  1. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of themore » containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Rose; Scaglione, John M; Bevard, Bruce Balkcom

    The High Burnup Spent Fuel Data project pulled 25 sister rods (9 from the project assemblies and 16 from similar HBU assemblies) for characterization. The 25 sister rods are all high burnup and cover the range of modern domestic cladding alloys. The 25 sister rods were shipped to Oak Ridge National Laboratory (ORNL) in early 2016 for detailed non-destructive and destructive examination. Examinations are intended to provide baseline data on the initial physical state of the cladding and fuel prior to the loading, drying, and long-term dry storage process. Further examinations are focused on determining the effects of temperatures encounteredmore » during and following drying. Similar tests will be performed on rods taken from the project assemblies at the end of their long-term storage in a TN-32 dry storage cask (the cask rods ) to identify any significant changes in the fuel rods that may have occurred during the dry storage period. Additionally, some of the sister rods will be used for separate effects testing to expand the applicability of the project data to the fleet, and to address some of the data-related gaps associated with extended storage and subsequent transportation of high burnup fuel. A draft test plan is being developed that describes the experimental work to be conducted on the sister rods. This paper summarizes the draft test plan and necessary coordination activities for the multi-year experimental program to supply data relevant to the assessment of the safety of long-term storage followed by transportation of high burnup spent fuel.« less

  3. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  4. A methodology to quantify the release of spent nuclear fuel from dry casks during security-related scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Luna, Robert Earl

    Assessing the risk to the public and the environment from a release of radioactive material produced by accidental or purposeful forces/environments is an important aspect of the regulatory process in many facets of the nuclear industry. In particular, the transport and storage of radioactive materials is of particular concern to the public, especially with regard to potential sabotage acts that might be undertaken by terror groups to cause injuries, panic, and/or economic consequences to a nation. For many such postulated attacks, no breach in the robust cask or storage module containment is expected to occur. However, there exists evidence thatmore » some hypothetical attack modes can penetrate and cause a release of radioactive material. This report is intended as an unclassified overview of the methodology for release estimation as well as a guide to useful resource data from unclassified sources and relevant analysis methods for the estimation process.« less

  5. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billone, M. C.; Burtseva, T. A.

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  6. Neutron detection devices with 6LiF converter layers

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Meo, Sergio Lo; Nolte, Ralf; Radeck, Desiree

    2018-01-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of art of a promising lowcost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. Several configurations were studied with the GEANT4 simulation code, and then calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  7. Develop an piezoelectric sensing based on SHM system for nuclear dry storage system

    NASA Astrophysics Data System (ADS)

    Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu

    2016-04-01

    In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.

  8. 75 FR 33736 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone (301) 415- 6219..., 11555 Rockville Pike, Rockville, Maryland. NRC's Agencywide Documents Access and Management System... M. McCausland, Office of Federal and State Materials and Environmental Management Programs, U.S...

  9. 76 FR 9381 - Notice of Availability of Interim Staff Guidance Documents for Spent Fuel Storage Casks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    .... FOR FURTHER INFORMATION CONTACT: Matthew Gordon, Structural Mechanics and Materials Branch, Division... a fee. Comments and questions on ISG-23 should be directed to Matthew Gordon, Structural Mechanics..., 2011. For the U.S. Nuclear Regulatory Commission. Michele Sampson, Acting Chief, Structural Mechanics...

  10. 75 FR 41404 - List of Approved Spent Fuel Storage Casks: NUHOMS®

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    .... The NRC is taking this action because the applicant identified that a certain Technical Specification (TS) for Boral characterization was not written precisely. Specifically, the requirements for meeting... changes to the technical specifications. The NRC also published a direct final rule on May 6, 2010 (75 FR...

  11. 75 FR 41369 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD Revision 1; Withdrawal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ...) Number 1030. The NRC is taking this action because the applicant identified that a certain Technical Specification (TS) for Boral characterization was not written precisely and in a manner that could be readily... cavity water removal operations, and making [[Page 41370

  12. 76 FR 2243 - List of Approved Spent Fuel Storage Casks: NUHOMS ® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... the requirements of reconstituted fuel assemblies; add requirements to qualify metal matrix composite... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the... requirements to qualify metal matrix composite neutron absorbers with integral aluminum cladding; clarify the...

  13. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less

  14. 10 CFR 72.248 - Safety analysis report updating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... appropriate, the last update to the FSAR under this section. The update shall include the effects 1 of: 1... for a spent fuel storage cask design shall update periodically, as provided in paragraph (b) of this... the issued Certificate of Compliance (CoC). (b) Each update shall contain all the changes necessary to...

  15. 10 CFR 72.248 - Safety analysis report updating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... appropriate, the last update to the FSAR under this section. The update shall include the effects 1 of: 1... for a spent fuel storage cask design shall update periodically, as provided in paragraph (b) of this... the issued Certificate of Compliance (CoC). (b) Each update shall contain all the changes necessary to...

  16. 10 CFR 72.248 - Safety analysis report updating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... appropriate, the last update to the FSAR under this section. The update shall include the effects 1 of: 1... for a spent fuel storage cask design shall update periodically, as provided in paragraph (b) of this... the issued Certificate of Compliance (CoC). (b) Each update shall contain all the changes necessary to...

  17. 10 CFR 72.248 - Safety analysis report updating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... appropriate, the last update to the FSAR under this section. The update shall include the effects 1 of: 1... for a spent fuel storage cask design shall update periodically, as provided in paragraph (b) of this... the issued Certificate of Compliance (CoC). (b) Each update shall contain all the changes necessary to...

  18. 76 FR 70374 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System, Revision 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Trussell, Office of Federal and State Materials and Environmental Management Programs, U.S. Nuclear... Management System (ADAMS): Publicly available documents created or received at the NRC are available online... protection of public health and safety continues to be ensured. The direct final rule will become effective...

  19. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...

  20. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...

  1. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...

  2. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...

  3. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and that are not in areas of known seismic activity, a standardized design earthquake ground motion... motion, tectonic surface deformation, nontectonic deformation, earthquake recurrence rates, fault... of the Design Earthquake Ground Motion (DE). The DE for the site is characterized by both horizontal...

  4. CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.F. Loros

    2000-06-23

    The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS,more » as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building structures and space allocations. The Carrier/Cask Handling System interfaces with the Waste Handling Building Electrical System for electrical power.« less

  5. Developing a structural health monitoring system for nuclear dry cask storage canister

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu

    2015-03-01

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.

  6. Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Fluss

    2015-08-31

    This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistantmore » to oxidation and hydriding is outlined.« less

  7. TREAT neutron-radiography facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, L.J.

    1981-01-01

    The TREAT reactor was built as a transient irradiation test reactor. By taking advantage of built-in system features, it was possible to add a neutron-radiography facility. This facility has been used over the years to radiograph a wide variety and large number of preirradiated fuel pins in many different configurations. Eight different specimen handling casks weighing up to 54.4 t (60 T) can be accommodated. Thermal, epithermal, and track-etch radiographs have been taken. Neutron-radiography service can be provided for specimens from other reactor facilities, and the capacity for storing preirradiated specimens also exists.

  8. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  9. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE PAGES

    Ham, Y.; Kerr, P.; Sitaraman, S.; ...

    2016-05-05

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  10. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.S.; Kerr, P.; Sitaraman, S.

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported themore » successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)« less

  11. Partial defect verification of spent fuel assemblies by PDET: Principle and field testing in Interim Spent fuel Storage Facility (CLAB) in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Y.; Kerr, P.; Sitaraman, S.

    Here, the need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called "difficult-to-access" areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into "difficult-to-access" areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reportedmore » the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17×17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly bunrup levels.« less

  12. PATRAM '80. Proceedings. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huebner, H.W.

    1980-01-01

    Volume 2 contains papers from the following sessions: Safeguards-Related Problems; Neutronics and Criticality; Operations and Systems Experience II; Plutonium Systems; Intermediate Storage in Casks; Operations and Systems Planning; Institutional Issues; Structural and Thermal Evaluation I; Poster Session B; Extended Testing I; Structural and Thermal Evaluation II; Extended Testing II; and Emergency Preparedness and Response. Individual papers were processed. (LM)

  13. 75 FR 24786 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... of establishing one or more technologies that the [Nuclear Regulatory] Commission may, by rule... technology approved by the Commission under Section 218(a) for use at the site of any civilian nuclear power... NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 RIN 3150-AI75 [NRC-2009-0538] List of Approved Spent...

  14. 75 FR 33678 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... of establishing one or more technologies that the [Nuclear Regulatory] Commission may, by rule... technology approved by the Commission under Section 218(a) for use at the site of any civilian nuclear power... NUCLEAR REGULATORY COMMISSION 10 CFR Part 72 [NRC-2010-0140] RIN 3150-AI86 List of Approved Spent...

  15. 77 FR 4203 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System, Revision 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... #0; #0;Rules and Regulations #0; Federal Register #0; #0; #0;This section of the FEDERAL REGISTER contains regulatory documents #0;having general applicability and legal effect, most of which are keyed #0;to and codified in the Code of Federal Regulations, which is published #0;under 50 titles pursuant to...

  16. 78 FR 37927 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... ADAMS Search.'' For problems with ADAMS, please contact the NRC's Public Document Room (PDR) reference... not have a significant economic impact on a substantial number of small entities. This final rule...

  17. 76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor baskets... add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water Reactor....1.1 to add various boron-10 areal densities for use with Pressurized Water Reactor and Boiling Water...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaglione, John M; Montgomery, Rose; Bevard, Bruce Balkcom

    This test plan describes the experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) to characterize high burnup (HBU) spent nuclear fuel (SNF) in conjunction with the High Burnup Dry Storage Cask Research and Development Project and serves to coordinate and integrate the multi-year experimental program to collect and develop data regarding the continued storage and eventual transport of HBU (i.e., >45 GWd/MTU) SNF. The work scope involves the development, performance, technical integration, and oversight of measurements and collection of relevant data, guided by analyses and demonstration of need.

  19. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  20. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years untilmore » reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on storage of SF from commercial operation, the principles described are equally applicable to SF from research and production reactors as well as high-level radioactive waste.« less

  1. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks aremore » prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.« less

  2. 75 FR 23820 - Notice of Docketing of Amendment Request for Materials License No. SNM-2506; Northern States...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... INFORMATION CONTACT: Pamela Longmire, Ph.D., Project Manager, Licensing Branch, Division of Spent Fuel Storage... Generating Plant (PINGP), Unit Nos. 1 and 2, site in Goodhue County, Minnesota. The TN-40 cask is currently..., higher burnup spent fuel used in the PINGP reactor as well as associated changes to the ISFSI's technical...

  3. Electromagnetic Acoustic Transducers for Robotic Nondestructive Inspection in Harsh Environments.

    PubMed

    Choi, Sungho; Cho, Hwanjeong; Lindsey, Matthew S; Lissenden, Cliff J

    2018-01-11

    Elevated temperature, gamma radiation, and geometric constraints inside dry storage casks for spent nuclear fuel represent a harsh environment for nondestructive inspection of the cask and require that the inspection be conducted with a robotic system. Electromagnetic acoustic transducers (EMATs) using non-contact ultrasonic transduction based on the Lorentz force to excite/receive ultrasonic waves are suited for use in the robotic inspection. Periodic permanent magnet EMATs that actuate/receive shear horizontal guided waves are developed for application to robotic nondestructive inspection of stress corrosion cracks in the heat affected zone of welds in stainless steel dry storage canisters. The EMAT's components are carefully selected in consideration of the inspection environment, and tested under elevated temperature and gamma radiation doses up to 177 °C and 5920 krad, respectively, to evaluate the performance of the EMATs under realistic environmental conditions. The effect of gamma radiation is minimal, but the EMAT's performance is affected by temperatures above 121 °C due to the low Curie temperature of the magnets. Different magnets are needed to operate at 177 °C. The EMAT's capability to detect notches is also evaluated from B-scan measurements on 304 stainless steel welded plate containing surface-breaking notches.

  4. Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice.

    PubMed

    Huang, Tzyy-Nan; Hsueh, Yi-Ping

    2017-01-01

    Human genetic studies have indicated that mutations in calcium/calmodulin-dependent serine protein kinase ( CASK ) result in X-linked mental retardation and autism-spectrum disorders. We aimed to establish a mouse model to study how Cask regulates mental ability. Because Cask encodes a multidomain scaffold protein, a possible strategy to dissect how CASK regulates mental ability and cognition is to disrupt specific protein-protein interactions of CASK in vivo and then investigate the impact of individual specific protein interactions. Previous in vitro analyses indicated that a rat CASK T724A mutation reduces the interaction between CASK and T-brain-1 (TBR1) in transfected COS cells. Because TBR1 is critical for glutamate receptor, ionotropic, N -methyl-D-aspartate receptor subunit 2B ( Grin2b ) expression and is a causative gene for autism and intellectual disability, we then generated CASK T740A (corresponding to rat CASK T724A) mutant mice using a gene-targeting approach. Immunoblotting, coimmunoprecipitation, histological methods and behavioural assays (including home cage, open field, auditory and contextual fear conditioning and conditioned taste aversion) were applied to investigate expression of CASK and its related proteins, the protein-protein interactions of CASK, and anatomic and behavioural features of CASK T740A mice. The CASK T740A mutation attenuated the interaction between CASK and TBR1 in the brain. However, CASK T740A mice were generally healthy, without obvious defects in brain morphology. The most dramatic defect among the mutant mice was in extinction of associative memory, though acquisition was normal. The functions of other CASK protein interactions cannot be addressed using CASK T740A mice. Disruption of the CASK and TBR1 interaction impairs extinction, suggesting the involvement of CASK in cognitive flexibility.

  5. Draft Geologic Disposal Requirements Basis for STAD Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, Anastasia G.; Bryan, Charles R.; Hardin, Ernest

    2015-03-25

    This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussedmore » here.« less

  6. Technology, safety and costs of decommissioning reference independent spent fuel storage installations. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwick, J D; Moore, E B

    1984-01-01

    Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses tomore » the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).« less

  7. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, andmore » it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades are inserted in various locations and at varying degrees during BWR operation based on the reload design. The presence of control blades during depletion hardens the neutron spectrum locally due to both moderator displacement and introduction of a thermal neutron absorber. The reactivity impact of control blade presence is investigated herein, as well as the effect of multiple (continuous and intermittent) exposure periods. The coupled effects of control blade presence on power density, void profile, or burnup profile have not been considered to date but will be addressed in future work.« less

  8. Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherkas, Dmytro

    2011-10-01

    As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, andmore » lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.« less

  9. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE PAGES

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    2017-09-01

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  10. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  11. Validation Test Report For The CRWMS Analysis and Logistics Visually Interactive Model Calvin Version 3.0, 10074-Vtr-3.0-00

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Gillespie

    2000-07-27

    This report describes the tests performed to validate the CRWMS ''Analysis and Logistics Visually Interactive'' Model (CALVIN) Version 3.0 (V3.0) computer code (STN: 10074-3.0-00). To validate the code, a series of test cases was developed in the CALVIN V3.0 Validation Test Plan (CRWMS M&O 1999a) that exercises the principal calculation models and options of CALVIN V3.0. Twenty-five test cases were developed: 18 logistics test cases and 7 cost test cases. These cases test the features of CALVIN in a sequential manner, so that the validation of each test case is used to demonstrate the accuracy of the input to subsequentmore » calculations. Where necessary, the test cases utilize reduced-size data tables to make the hand calculations used to verify the results more tractable, while still adequately testing the code's capabilities. Acceptance criteria, were established for the logistics and cost test cases in the Validation Test Plan (CRWMS M&O 1999a). The Logistics test cases were developed to test the following CALVIN calculation models: Spent nuclear fuel (SNF) and reactivity calculations; Options for altering reactor life; Adjustment of commercial SNF (CSNF) acceptance rates for fiscal year calculations and mid-year acceptance start; Fuel selection, transportation cask loading, and shipping to the Monitored Geologic Repository (MGR); Transportation cask shipping to and storage at an Interim Storage Facility (ISF); Reactor pool allocation options; and Disposal options at the MGR. Two types of cost test cases were developed: cases to validate the detailed transportation costs, and cases to validate the costs associated with the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) and Regional Servicing Contractors (RSCs). For each test case, values calculated using Microsoft Excel 97 worksheets were compared to CALVIN V3.0 scenarios with the same input data and assumptions. All of the test case results compare with the CALVIN V3.0 results within the bounds of the acceptance criteria. Therefore, it is concluded that the CALVIN V3.0 calculation models and options tested in this report are validated.« less

  12. CASK regulates CaMKII autophosphorylation in neuronal growth, calcium signaling, and learning

    PubMed Central

    Gillespie, John M.; Hodge, James J. L.

    2013-01-01

    Calcium (Ca2+)/calmodulin (CaM)-dependent kinase II (CaMKII) activity plays a fundamental role in learning and memory. A key feature of CaMKII in memory formation is its ability to be regulated by autophosphorylation, which switches its activity on and off during synaptic plasticity. The synaptic scaffolding protein CASK (calcium (Ca2+)/calmodulin (CaM) associated serine kinase) is also important for learning and memory, as mutations in CASK result in intellectual disability and neurological defects in humans. We show that in Drosophila larvae, CASK interacts with CaMKII to control neuronal growth and calcium signaling. Furthermore, deletion of the CaMK-like and L27 domains of CASK (CASK β null) or expression of overactive CaMKII (T287D) produced similar effects on synaptic growth and Ca2+ signaling. CASK overexpression rescues the effects of CaMKII overactivity, consistent with the notion that CASK and CaMKII act in a common pathway that controls these neuronal processes. The reduction in Ca2+ signaling observed in the CASK β null mutant caused a decrease in vesicle trafficking at synapses. In addition, the decrease in Ca2+ signaling in CASK mutants was associated with an increase in Ether-à-go-go (EAG) potassium (K+) channel localization to synapses. Reducing EAG restored the decrease in Ca2+ signaling observed in CASK mutants to the level of wildtype, suggesting that CASK regulates Ca2+ signaling via EAG. CASK knockdown reduced both appetitive associative learning and odor evoked Ca2+ responses in Drosophila mushroom bodies, which are the learning centers of Drosophila. Expression of human CASK in Drosophila rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation. PMID:24062638

  13. Performance of a personal neutron dosemeter based on direct ion storage at workplace fields in the nuclear industry.

    PubMed

    Boschung, M; Fiechtner, A; Wernli, C

    2007-01-01

    In the framework of the EVIDOS project, funded by the EC, measurements were carried out using dosemeters, based on ionisation chambers with direct ion storage (DIS-N), at several workplace fields, namely, at a fuel processing plant, a boiling and a pressurised water reactor, and near transport and storage casks. The measurements and results obtained with the DIS-N in these workplaces, which are representative for the nuclear industry, are described in this study. Different dosemeter configurations of converter and shielding materials were considered. The results are compared with values for personal dose equivalent which were assessed within the EVIDOS project by other partners. The advantages and limitations of the DIS-N dosemeter are discussed.

  14. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE PAGES

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    2018-02-26

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  15. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  16. FRAPCON analysis of cladding performance during dry storage operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, David J.; Geelhood, Kenneth J.

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservativelymore » showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.« less

  17. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs formore » off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.« less

  18. The International Remote Monitoring Project: Results of the Swedish Nuclear Power Facility field trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.S.; af Ekenstam, G.; Sallstrom, M.

    1995-07-01

    The Swedish Nuclear Power Inspectorate (SKI) and the US Department of Energy (DOE) sponsored work on a Remote Monitoring System (RMS) that was installed in August 1994 at the Barseback Works north of Malmo, Sweden. The RMS was designed to test the front end detection concept that would be used for unattended remote monitoring activities. Front end detection reduces the number of video images recorded and provides additional sensor verification of facility operations. The function of any safeguards Containment and Surveillance (C/S) system is to collect information which primarily is images that verify the operations at a nuclear facility. Barsebackmore » is ideal to test the concept of front end detection since most activities of safeguards interest is movement of spent fuel which occurs once a year. The RMS at Barseback uses a network of nodes to collect data from microwave motion detectors placed to detect the entrance and exit of spent fuel casks through a hatch. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Stockholm, Sweden and Albuquerque, NM, USA. These remote monitoring stations operated by SKI and SNL respectively, can retrieve data and images from the RMS computer at the Barseback Facility. The data and images are encrypted before transmission. This paper presents details of the RMS and test results of this approach to front end detection of safeguard activities.« less

  19. Review and Implementation of Technology for Solid Radioactive Waste Volume Reduction

    DTIC Science & Technology

    1999-10-15

    were shifted to Project 1.1 for spent nuclear fuel cask development to accelerate that project. Those funds should be repaid to Project 1.3 in the... transported between the shipyards such as Nerpa, and other intermediate storage sites such as Gremikha and Andreeva Bay. At these sites the largest...waste source and allow pretreatment unit operations using commercially available technologies of contaminant assaying, cutting/shearing, sorting

  20. Pakistan’s Nuclear Weapons: Proliferation and Security Issues

    DTIC Science & Technology

    2009-10-15

    and technical measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage ...Talks On Nuclear Security,” The Boston Globe, May 5, 2009. 79 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or...a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 80 Martellini, 2008. 81 For more information

  1. Electromagnetic Acoustic Transducers for Robotic Nondestructive Inspection in Harsh Environments

    PubMed Central

    Choi, Sungho; Cho, Hwanjeong; Lindsey, Matthew S.; Lissenden, Cliff J.

    2018-01-01

    Elevated temperature, gamma radiation, and geometric constraints inside dry storage casks for spent nuclear fuel represent a harsh environment for nondestructive inspection of the cask and require that the inspection be conducted with a robotic system. Electromagnetic acoustic transducers (EMATs) using non-contact ultrasonic transduction based on the Lorentz force to excite/receive ultrasonic waves are suited for use in the robotic inspection. Periodic permanent magnet EMATs that actuate/receive shear horizontal guided waves are developed for application to robotic nondestructive inspection of stress corrosion cracks in the heat affected zone of welds in stainless steel dry storage canisters. The EMAT’s components are carefully selected in consideration of the inspection environment, and tested under elevated temperature and gamma radiation doses up to 177 °C and 5920 krad, respectively, to evaluate the performance of the EMATs under realistic environmental conditions. The effect of gamma radiation is minimal, but the EMAT’s performance is affected by temperatures above 121 °C due to the low Curie temperature of the magnets. Different magnets are needed to operate at 177 °C. The EMAT’s capability to detect notches is also evaluated from B-scan measurements on 304 stainless steel welded plate containing surface-breaking notches. PMID:29324721

  2. Initiation of depleted uranium oxide and spent fuel testing for the spent fuel sabotage aerosol ratio program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregson, Michael Warren; Mo, Tin; Sorenson, Ken Bryce

    The authors provide a detailed overview of an on-going, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high-energy-density device. The program participants in the United States plus Germany, France and the United Kingdom, part of the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) have strongly supported and coordinated this research program. Sandia National Laboratoriesmore » has the lead role for conducting this research program; test program support is provided by both the US Department of Energy and the US Nuclear Regulatory Commission. The authors provide a summary of the overall, multiphase test design and a description of all explosive containment and aerosol collection test components used. They focus on the recently initiated tests on 'surrogate' spent fuel, unirradiated depleted uranium oxide and forthcoming actual spent fuel tests, and briefly summarize similar results from completed surrogate tests that used non-radioactive, sintered cerium oxide ceramic pellets in test rods.« less

  3. Depleted uranium dioxide melting in cold crucible melter and production of granules from the melt for use in casks for spent nuclear fuel and radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotovchikov, V.T.; Seredenko, V.A.; Shatalov, V.V.

    2007-07-01

    This paper describes the results of a joint research program between the Russian Research Institute of Chemical Technology and Oak Ridge National Laboratory in the United States to develop new radiation shielding materials for use in the construction of casks for spent nuclear fuel (SNF) and radioactive wastes. Research and development is underway to develop SNF storage, transport, and disposal casks using shielding made with two new depleted uranium dioxide (DUO{sub 2}) materials: a DUO{sub 2}-steel cermet, and, DUCRETE with DUAGG (DUO{sub 2} aggregate). Melting the DUO{sub 2} and allowing it to freeze will produce a near 100% theoretical densitymore » product and assures that the product produces no volatile materials upon subsequent heating. Induction cold-crucible melters (ICCM) are being developed for this specific application. An ICCM is, potentially, a high throughput low-cost process. Schematics of a pilot facility were developed for the production of molten DUO{sub 2} from DU{sub 3}O{sub 8} to produce granules <1 mm in diameter in a continuous mode of operation. Thermodynamic analysis was conducted for uranium-oxygen system in the temperature range from 300 to 4000 K in various gas mediums. Temperature limits of stability for various uranium oxides were determined. Experiments on melting DUO{sub 2} were carried out in a high frequency ICCM in a cold crucible with a 120 mm in diameter. The microstructure of molten DUO{sub 2} was studied and lattice parameters were determined. It was experimentally proved, and validated by X-ray analysis, that an opportunity exists to produce molten DUO{sub 2} from mixed oxides (primarily DU{sub 3}O{sub 8}) by reduction melting in ICCM. This will allow using DU{sub 3}O{sub 8} directly to make DUO{sub 2}-a separate unit operation to produce UO{sub 2} feed material is not needed. Experiments were conducted concerning the addition of alloying components, gadolinium et al. oxides, into the DUO{sub 2} melt while in the crucible. These additives improve neutron and gamma radiation shielding and operation properties of the final solids. Cermet samples of 50 wt % DUO{sub 2} were produced. (authors)« less

  4. Rail-Cask Tests: Normal-Conditionsof- Transport Tests of Surrogate PWR Fuel Assemblies in an ENSA ENUN 32P Cask.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Paul E.; Ross, Steven; Grey, Carissa Ann

    This report describes tests conducted using a full-size rail cask, the ENSA ENUN 32P, involving handling of the cask and transport of the cask via truck, ships, and rail. The purpose of the tests was to measure strains and accelerations on surrogate pressurized water reactor fuel rods when the fuel assemblies were subjected to Normal Conditions of Transport within the rail cask. In addition, accelerations were measured on the transport platform, the cask cradle, the cask, and the basket within the cask holding the assemblies. These tests were an international collaboration that included Equipos Nucleares S.A., Sandia National Laboratories, Pacificmore » Northwest National Laboratory, Coordinadora Internacional de Cargas S.A., the Transportation Technology Center, Inc., the Korea Radioactive Waste Agency, and the Korea Atomic Energy Research Institute. All test results in this report are PRELIMINARY – complete analyses of test data will be completed and reported in FY18. However, preliminarily: The strains were exceedingly low on the surrogate fuel rods during the rail-cask tests for all the transport and handling modes. The test results provide a compelling technical basis for the safe transport of spent fuel.« less

  5. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Landers; Igor Bolshinsky; Ken Allen

    2010-07-01

    In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments weremore » transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.« less

  6. Evaluation of Aluminum-Boron Carbide Neutron Absorbing Materials for Interim Storage of Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lumin; Wierschke, Jonathan Brett

    2015-04-08

    The objective of this work was to understand the corrosion behavior of Boral® and Bortec® neutron absorbers over long-term deployment in a used nuclear fuel dry cask storage environment. Corrosion effects were accelerated by flowing humidified argon through an autoclave at temperatures up to 570°C. Test results show little corrosion of the aluminum matrix but that boron is leaching out of the samples. Initial tests performed at 400 and 570°C were hampered by reduced flow caused by the rapid build-up of solid deposits in the outlet lines. Analysis of the deposits by XRD shows that the deposits are comprised ofmore » boron trioxide and sassolite (H 3BO 3). The collection of boron- containing compounds in the outlet lines indicated that boron was being released from the samples. Observation of the exposed samples using SEM and optical microscopy show the growth of new phases in the samples. These phases were most prominent in Bortec® samples exposed at 570°C. Samples of Boral® exposed at 570°C showed minimal new phase formation but showed nearly the complete loss of boron carbide particles. Boron carbide loss was also significant in Boral samples at 400°C. However, at 400°C phases similar to those found in Bortec® were observed. The rapid loss of the boron carbide particles in the Boral® is suspected to inhibit the formation of the new secondary phases. However, Material samples in an actual dry cask environment would be exposed to temperatures closer to 300°C and less water than the lowest test. The results from this study conclude that at the temperature and humidity levels present in a dry cask environment, corrosion and boron leaching will have no effect on the performance of Boral® and Bortec® to maintain criticality control.« less

  7. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP K eff calculations for PWR burnup credit casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don E.; Marshall, William J.; Wagner, John C.

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the biasmore » due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.« less

  8. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David G.

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be presentmore » through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.« less

  9. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational datamore » available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.« less

  10. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    THIELGES, J.R.; CHASTAIN, S.A.

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized andmore » attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.« less

  11. An Investigation into the Transportation of Irradiated Uranium/Aluminum Targets from a Foreign Nuclear Reactor to the Chalk River Laboratories Site in Ontario, Canada - 12249

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clough, Malcolm; Jackson, Austin

    2012-07-01

    This investigation required the selection of a suitable cask and development of a device to hold and transport irradiated targets from a foreign nuclear reactor to the Chalk River Laboratories in Ontario, Canada. The main challenge was to design and validate a target holder to protect the irradiated HEU-Al target pencils during transit. Each of the targets was estimated to have an initial decay heat of 118 W prior to transit. As the targets have little thermal mass the potential for high temperature damage and possibly melting was high. Thus, the primary design objective was to conceive a target holdermore » to dissipate heat from the targets. Other design requirements included securing the targets during transportation and providing a simple means to load and unload the targets while submerged five metres under water. A unique target holder (patent pending) was designed and manufactured together with special purpose experimental apparatus including a representative cask. Aluminum dummy targets were fabricated to accept cartridge heaters, to simulate decay heat. Thermocouples were used to measure the temperature of the test targets and selected areas within the target holder and test cask. After obtaining test results, calculations were performed to compensate for differences between experimental and real life conditions. Taking compensation into consideration the maximum target temperature reached was 231 deg. C which was below the designated maximum of 250 deg. C. The design of the aluminum target holder also allowed generous clearance to insert and unload the targets. This clearance was designed to close up as the target holder is placed into the cavity of the transport cask. Springs served to retain and restrain the targets from movement during transportation as well as to facilitate conductive heat transfer. The target holder met the design requirements and as such provided data supporting the feasibility of transporting targets over a relatively long period of time. A suitable transport cask was selected and a device for housing irradiated targets for loading, unloading and transportation has been designed, built and validated. The device was successful in meeting all design requirements for this feasibility study. Experiments were conducted with a custom test facility to confirm that the design met the maximum temperature requirements during shipping. Results from tests showed that the peak temperature in the apparatus was 300 deg. C. By compensating for experimental considerations, such as reduced thermal conductivity of the test cask versus that of the actual cask the expected maximum target temperature reduces to 231 deg. C. This is below the designated peak value of 250 deg. C. It can therefore be concluded, based on the content of this paper and from a heat-removal standpoint, the feasibility of transporting targets from a foreign nuclear reactor to Canada is possible, although further testing with irradiated targets and a full size cask would be a recommended next step. (authors)« less

  12. Draft evaluation of the frequency for gas sampling for the high burnup confirmatory data project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockman, Christine T.; Alsaed, Halim A.; Bryan, Charles R.

    2015-03-26

    This report fulfills the M3 milestone M3FT-15SN0802041, “Draft Evaluation of the Frequency for Gas Sampling for the High Burn-up Storage Demonstration Project” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. This report provides a technically based gas sampling frequency strategy for the High Burnup (HBU) Confirmatory Data Project. The evaluation of: 1) the types and magnitudes of gases that could be present in the project cask and, 2) the degradation mechanisms that could change gas compositions culminates in an adaptive gas sampling frequency strategy. This adaptive strategy is compared against the sampling frequency that has been developed basedmore » on operational considerations. Gas sampling will provide information on the presence of residual water (and byproducts associated with its reactions and decomposition) and breach of cladding, which could inform the decision of when to open the project cask.« less

  13. SCAN+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing formore » automatic unattended cask scanning that may take several hours.« less

  14. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J.; Marshall, William B. J.; Ilas, Germina

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidancemore » in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.« less

  15. Thermal analyses of the IF-300 shipping cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, J.K.

    1978-07-01

    In order to supply temperature data for structural testing and analysis of shipping casks, a series of thermal analyses using the TRUMP thermal analyzer program were performed on the GE IF-300 spent fuel shipping cask. Major conclusions of the analyses are: (1) Under normal cooling conditions and a cask heat load of 262,000 BTU/h, the seal area of the cask will be roughly 100/sup 0/C (180/sup 0/F) above the ambient surroundings. (2) Under these same conditions the uranium shield at the midpoint of the cask will be between 69/sup 0/C (125/sup 0/F) and 92/sup 0/C (166/sup 0/F) above the ambientmore » surroundings. (3) Significant thermal gradients are not likely to develop between the head studs and the surrounding metal. (4) A representative time constant for the cask as a whole is on the order of one day.« less

  16. A preliminary evaluation of the ability of from-reactor casks to geometrically accommodate commercial LWR spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andress, D.; Joy, D.S.; McLeod, N.B.

    The Department of Energy has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design--the GA-4 and GA-9 truck casks and the BR-100 rail cask. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elementsmore » as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. This paper summarizes preliminary results of one part of that evaluation related to the ability of the From-Reactor Initiative I casks to accommodate the physical and radiological characteristics of the Spent Nuclear Fuel projected to be accepted into the Federal Waste Management System. 3 refs., 5 tabs.« less

  17. EPRI/DOE High Burnup Fuel Sister Pin Test Plan Simplification and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzstein, Sylvia J.; Sorenson, Ken B.; Hanson, Brady

    The EPRI/DOE High Burnup Confirmatory Data Project (herein called the "Demo") is a multi-year, multi-entity confirmation demonstration test with the purpose of providing quantitative and qualitative data to show how high-burnup fuel ages in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of four common cladding alloys from the North Anna Nuclear Power Plant, drying them according to standard plant procedures, and then storing them in an NRC-licensed TN-3 2B cask on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened andmore » the rods will be examined for signs of aging. Twenty-five rods from assemblies of similar claddings, in-reactor placement, and burnup histories (herein called "sister rods") have been shipped from the North Anna Nuclear Power Plant and are currently being nondestructively tested at Oak Ridge National Laboratory. After the non-destructive testing has been completed for each of the twenty-five rods, destructive analysis will be performed at ORNL, PNNL, and ANL to obtain mechanical data. Opinions gathered from the expert interviews, ORNL and PNNL Sister Rod Test Plans, and numerous meetings has resulted in the Simplified Test Plan described in this document. Some of the opinions and discussions leading to the simplified test plan are included here. Detailed descriptions and background are in the ORNL and PNNL plans in the appendices . After the testing described in this simplified test plan h as been completed , the community will review all the collected data and determine if additional testing is needed.« less

  18. Spent fuel behavior under abnormal thermal transients during dry storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, D.; Landow, M.P.; Burian, R.J.

    1986-01-01

    This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment wasmore » heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.« less

  19. Adsorbed radioactivity and radiographic imaging of surfaces of stainless steel and titanium

    NASA Astrophysics Data System (ADS)

    Jung, Haijo

    1997-11-01

    Type 304 stainless steel used for typical surface materials of spent fuel shipping casks and titanium were exposed in the spent fuel storage pool of a typical PWR power plant. Adsorption characteristics, effectiveness of decontamination by water cleaning and by electrocleaning, and swipe effectiveness on the metal surfaces were studied. A variety of environmental conditions had been manipulated to stimulate the potential 'weeping' phenomenon that often occurs with spent fuel shipping casks during transit. In a previous study, few heterogeneous effects of adsorbed contamination onto metal surfaces were observed. Radiographic images of cask surfaces were made in this study and showed clearly heterogeneous activity distributions. Acquired radiographic images were digitized and further analyzed with an image analysis computer package and compared to calibrated images by using standard sources. The measurements of activity distribution by using the radiographic image method were consistent with that using a HPGe detector. This radiographic image method was used to study the effects of electrocleaning for total and specified areas. The Modulation Transfer Function (MTF) of a film-screen system in contact with a radioactive metal surface was studied with neutron activated gold foils and showed more broad resolution properties than general diagnostic x-ray film-screen systems. Microstructure between normal areas and hot spots showed significant differences, and one hot spot appearing as a dot on the film image consisted of several small hot spots (about 10 μm in diameter). These hot spots were observed as structural defects of the metal surfaces.

  20. Early thermal testing of type B radioactive material packages in USA to environments beyond regulatory package thermal test standards

    DOE PAGES

    Yoshimura, H. R.; Pope, R. B.; Kubo, M.

    2007-06-01

    Three separate fire test programmes exposing casks beyond the regulatory thermal test requirements were performed by Sandia National Laboratories during the late 1970s and mid 1980s. The results of these test programmes can be used to assist in addressing the adequacy of the regulatory thermal test of fully engulfing exposure at 800°C for 30 min and how that test might relate to real accident thermal environments. The test programmes were undertaken on obsolete and new casks on behalf of the US Department of Energy (DOE), the US Department of Transportation (DOT) and the Japanese Power Reactor and Nuclear Fuel Developmentmore » Corporation (PNC), currently known as the Japan Atomic Energy Agency. Two of the tests involved exposure of casks in damaged transport vehicles to fully engulfing fires for 72–125 min, and the other test involved four exposures of a cask to torch environments for 30 min. Much of the original documentation regarding these tests and their results is no longer readily available. The documents relating to these tests have been surveyed; this paper presents summaries from this survey of the tests and their results. Specifically, for the pool fire exposures, the temperatures measured in the flames of both exceeded the flame temperature required by the Transport Regulations; yet an obsolete 67 t cask endured 90 min of exposure before evidence of failure was detected, and a new cask endured the 72 min exposure while retaining its containment integrity. For the exposure of a modified obsolete cask to four different torch environments, the integrity of the cask was retained and the relative temperature increases within the cask were well within acceptable limits and well below the values that could be expected if the cask was exposed to the regulatory thermal test. In this paper, a review of these three thermal test programmes, establishes that the two older cask designs and one new cask design have the ability to survive environments that were different from (the torch environments) or more severe than the environment specified by the existing thermal test requirement in the Transport Regulations. Finally, these results can be extrapolated to apply to modern casks that generally have more robust designs as well as better quality assurance applied during the manufacturing process.« less

  1. CASK and CaMKII function in Drosophila memory

    PubMed Central

    Malik, Bilal R.; Hodge, James J. L.

    2014-01-01

    Calcium (Ca2+) and Calmodulin (CaM)-dependent serine/threonine kinase II (CaMKII) plays a central role in synaptic plasticity and memory due to its ability to phosphorylate itself and regulate its own kinase activity. Autophosphorylation at threonine 287 (T287) switches CaMKII to a Ca2+ independent and constitutively active state replicated by overexpression of a phosphomimetic CaMKII-T287D transgene or blocked by expression of a T287A transgene. A second pair of sites, T306 T307 in the CaM binding region once autophosphorylated, prevents CaM binding and inactivates the kinase during synaptic plasticity and memory, and can be blocked by a TT306/7AA transgene. Recently the synaptic scaffolding molecule called CASK (Ca2+/CaM-associated serine kinase) has been shown to control both sets of CaMKII autophosphorylation events during neuronal growth, Ca2+ signaling and memory in Drosophila. Deletion of either full length CASK or just its CaMK-like and L27 domains removed middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α′/ß′ mushroom body neurons being required for memory. In a similar manner directly changing the levels of CaMKII autophosphorylation (T287D, T287A, or TT306/7AA) in the α′/ß′ neurons also removed MTM and LTM. In the CASK null mutant expression of either the Drosophila or human CASK transgene in the α′/ß′ neurons was found to completely rescue memory, confirming that CASK signaling in α′/β′ neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. Expression of human CASK in Drosophila also rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation. Mutations in human CASK have recently been shown to result in intellectual disability and neurological defects suggesting a role in plasticity and learning possibly via regulation of CaMKII autophosphorylation. PMID:25009461

  2. CASK and CaMKII function in the mushroom body α'/β' neurons during Drosophila memory formation.

    PubMed

    Malik, Bilal R; Gillespie, John Michael; Hodge, James J L

    2013-01-01

    Ca(2+)/CaM serine/threonine kinase II (CaMKII) is a central molecule in mechanisms of synaptic plasticity and memory. A vital feature of CaMKII in plasticity is its ability to switch to a calcium (Ca(2+)) independent constitutively active state after autophosphorylation at threonine 287 (T287). A second pair of sites, T306 T307 in the calmodulin (CaM) binding region once autophosphorylated, prevent subsequent CaM binding and inactivates the kinase during synaptic plasticity and memory. Recently a synaptic molecule called Ca(2+)/CaM-dependent serine protein kinase (CASK) has been shown to control both sets of CaMKII autophosphorylation events and hence is well poised to be a key regulator of memory. We show deletion of full length CASK or just its CaMK-like and L27 domains disrupts middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α'/β' subset of mushroom body neurons being required for memory. Likewise directly changing the levels of CaMKII autophosphorylation in these neurons removed MTM and LTM. The requirement of CASK and CaMKII autophosphorylation was not developmental as their manipulation just in the adult α'/β' neurons was sufficient to remove memory. Overexpression of CASK or CaMKII in the α'/β' neurons also occluded MTM and LTM. Overexpression of either Drosophila or human CASK in the α'/β' neurons of the CASK mutant completely rescued memory, confirming that CASK signaling in α'/β' neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. At the cellular level CaMKII overexpression in the α'/β' neurons increased activity dependent Ca(2+) responses while reduction of CaMKII decreased it. Likewise reducing CASK or directly expressing a phosphomimetic CaMKII T287D transgene in the α'/β' similarly decreased Ca(2+) signaling. Our results are consistent with CASK regulating CaMKII autophosphorylation in a pathway required for memory formation that involves activity dependent changes in Ca(2+) signaling in the α'/β' neurons.

  3. Addressing Fission Product Validation in MCNP Burnup Credit Criticality Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don; Bowen, Douglas G; Marshall, William BJ J

    2015-01-01

    The US Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation issued Interim Staff Guidance (ISG) 8, Revision 3 in September 2012. This ISG provides guidance for NRC staff members’ review of burnup credit (BUC) analyses supporting transport and dry storage of pressurized water reactor spent nuclear fuel (SNF) in casks. The ISG includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MAs). Based on previous work documented in NRC Regulatory Guide (NUREG) Contractor Report (CR)-7109, the ISG recommends that NRC staff members acceptmore » the use of either 1.5 or 3% of the FP&MA worth—in addition to bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF—to conservatively account for the bias and bias uncertainty associated with the specified unvalidated FP&MAs. The ISG recommends (1) use of 1.5% of the FP&MA worth if a modern version of SCALE and its nuclear data are used and (2) 3% of the FP&MA worth for well qualified, industry standard code systems other than SCALE with the Evaluated Nuclear Data Files, Part B (ENDF/B),-V, ENDF/B-VI, or ENDF/B-VII cross sections libraries. The work presented in this paper provides a basis for extending the use of the 1.5% of the FP&MA worth bias to BUC criticality calculations performed using the Monte Carlo N-Particle (MCNP) code. The extended use of the 1.5% FP&MA worth bias is shown to be acceptable by comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII–based nuclear data. The comparison supports use of the 1.5% FP&MA worth bias when the MCNP code is used for criticality calculations, provided that the cask design is similar to the hypothetical generic BUC-32 cask model and that the credited FP&MA worth is no more than 0.1 Δk eff (ISG-8, Rev. 3, Recommendation 4).« less

  4. Industrial research for transmutation scenarios

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  5. Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LECHELT, J.A.

    2000-10-17

    The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System,more » Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix.« less

  6. Genetics Home Reference: CASK-related intellectual disability

    MedlinePlus

    ... XL-ID with or without nystagmus (rapid, involuntary eye movements) is a milder form of CASK -related intellectual ... to promote development of the nerves that control eye movement (the oculomotor neural network). Mutations in the CASK ...

  7. Radionuclide production and dose rate estimation during the commissioning of the W-Ta spallation target

    NASA Astrophysics Data System (ADS)

    Yu, Q. Z.; Liang, T. J.

    2018-06-01

    China Spallation Neutron Source (CSNS) is intended to begin operation in 2018. CSNS is an accelerator-base multidisciplinary user facility. The pulsed neutrons are produced by a 1.6GeV short-pulsed proton beam impinging on a W-Ta spallation target, at a beam power of100 kW and a repetition rate of 25 Hz. 20 neutron beam lines are extracted for the neutron scattering and neutron irradiation research. During the commissioning and maintenance scenarios, the gamma rays induced from the W-Ta target can cause the dose threat to the personal and the environment. In this paper, the gamma dose rate distributions for the W-Ta spallation are calculated, based on the engineering model of the target-moderator-reflector system. The shipping cask is analyzed to satisfy the dose rate limit that less than 2 mSv/h at the surface of the shipping cask. All calculations are performed by the Monte carlo code MCNPX2.5 and the activation code CINDER’90.

  8. CASK and CaMKII function in the mushroom body α′/β′ neurons during Drosophila memory formation

    PubMed Central

    Malik, Bilal R.; Gillespie, John Michael; Hodge, James J. L.

    2013-01-01

    Ca2+/CaM serine/threonine kinase II (CaMKII) is a central molecule in mechanisms of synaptic plasticity and memory. A vital feature of CaMKII in plasticity is its ability to switch to a calcium (Ca2+) independent constitutively active state after autophosphorylation at threonine 287 (T287). A second pair of sites, T306 T307 in the calmodulin (CaM) binding region once autophosphorylated, prevent subsequent CaM binding and inactivates the kinase during synaptic plasticity and memory. Recently a synaptic molecule called Ca2+/CaM-dependent serine protein kinase (CASK) has been shown to control both sets of CaMKII autophosphorylation events and hence is well poised to be a key regulator of memory. We show deletion of full length CASK or just its CaMK-like and L27 domains disrupts middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α′/β′ subset of mushroom body neurons being required for memory. Likewise directly changing the levels of CaMKII autophosphorylation in these neurons removed MTM and LTM. The requirement of CASK and CaMKII autophosphorylation was not developmental as their manipulation just in the adult α′/β′ neurons was sufficient to remove memory. Overexpression of CASK or CaMKII in the α′/β′ neurons also occluded MTM and LTM. Overexpression of either Drosophila or human CASK in the α′/β′ neurons of the CASK mutant completely rescued memory, confirming that CASK signaling in α′/β′ neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. At the cellular level CaMKII overexpression in the α′/β′ neurons increased activity dependent Ca2+ responses while reduction of CaMKII decreased it. Likewise reducing CASK or directly expressing a phosphomimetic CaMKII T287D transgene in the α′/β′ similarly decreased Ca2+ signaling. Our results are consistent with CASK regulating CaMKII autophosphorylation in a pathway required for memory formation that involves activity dependent changes in Ca2+ signaling in the α′/β′ neurons. PMID:23543616

  9. Calcium/calmodulin-dependent serine protein kinase CASK modulates the L-type calcium current.

    PubMed

    Nafzger, Sabine; Rougier, Jean-Sebastien

    2017-01-01

    The L-type voltage-gated calcium channel Ca v 1.2 mediates the calcium influx into cells upon membrane depolarization. The list of cardiopathies associated to Ca v 1.2 dysfunctions highlights the importance of this channel in cardiac physiology. Calcium/calmodulin-dependent serine protein kinase (CASK), expressed in cardiac cells, has been identified as a regulator of Ca v 2.2 channels in neurons, but no experiments have been performed to investigate its role in Ca v 1.2 regulation. Full length or the distal C-terminal truncated of the pore-forming Ca v 1.2 channel (Ca v 1.2α1c), both present in cardiac cells, were expressed in TsA-201 cells. In addition, a shRNA silencer, or scramble as negative control, of CASK was co-transfected in order to silence CASK endogenously expressed. Three days post-transfection, the barium current was increased only for the truncated form without alteration of the steady state activation and inactivation biophysical properties. The calcium current, however, was increased after CASK silencing with both types of Ca v 1.2α1c subunits suggesting that, in absence of calcium, the distal C-terminal counteracts the CASK effect. Biochemistry experiments did not reveals neither an alteration of Ca v 1.2 channel protein expression after CASK silencing nor an interaction between Ca v 1.2α1c subunits and CASK. Nevertheless, after CASK silencing, single calcium channel recordings have shown an increase of the voltage-gated calcium channel Ca v 1.2 open probability explaining the increase of the whole-cell current. This study suggests CASK as a novel regulator of Ca v 1.2 via a modulation of the voltage-gated calcium channel Ca v 1.2 open probability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. CASK interacts with PMCA4b and JAM-A on the Mouse Sperm Flagellum to Regulate Ca2+ Homeostasis and Motility1

    PubMed Central

    Aravindan, Rolands G.; Fomin, Victor P.; Naik, Ulhas P.; Modelski, Mark J.; Naik, Meghna U.; Galileo, Deni S.; Duncan, Randall L.; Martin-DeLeon, Patricia A.

    2012-01-01

    Deletion of the highly conserved gene for the major Ca2+ efflux pump, Plasma membrane calcium/calmodulin-dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild-type (WT), Junctional adhesion molecule-A (Jam-A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P<0.001) ATP levels, significantly (P<0.001) greater cytosolic Ca2+ concentration ([Ca2+]c) and ~10-fold higher mitochondrial sequestration, indicating Ca2+ overload. Investigating the mechanism involved, we used coimmunoprecipitation studies to show that CASK (Ca2+/calmodulin-dependent serine kinase), identified for the first time on the sperm flagellum where it co-localizes with both PMCA4b and JAM-A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non-synergistically with each of these molecules via its single PDZ (PDS-95/Dlg/ZO-1) domain to either inhibit or promote efflux. In the absence of CASK-JAM-A interaction in Jam-A null sperm, CASK-PMCA4b interaction is increased, resulting in inhibition of PMCA4b’s enzymatic activity, consequent Ca2+ accumulation, and a ~6-fold over-expression of constitutively ATP-utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM-A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca2+ homeostasis in sperm is maintained by the relative ratios of CASK-PMCA4b and CASK-JAM-A interactions. PMID:22020416

  11. Evaluation of microwave cavity gas sensor for in-vessel monitoring of dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari, S.; Gonnot, T.; Elmer, T.; Chien, H.-T.; Engel, D.; Koehl, E.; Heifetz, A.

    2018-04-01

    Results are reported of research activities conducted at Argonne to assess the viability of microwave resonant cavities for extended in-vessel monitoring of dry cask storage system (DCSS) environment. One of the gases of concern to long-term storage in canisters is water vapor, which appears due to evaporation of residual moisture from incompletely dried fuel assembly. Excess moisture could contribute to corrosion and deterioration of components inside the canister, which would in turn compromise maintenance and safe transportation of such systems. Selection of the sensor type in this work was based on a number of factors, including good sensitivity, fast response time, small form factor and ruggedness of the probing element. A critical design constraint was the capability to mount and operate the sensor using the existing canister penetrations-use of existing ports for thermocouple lances. Microwave resonant cavities operating at select resonant frequency matched to the rotational absorption line of the molecule of interest offer the possibility of highly sensitive detection. In this study, two prototype K-band microwave cylindrical cavities operating at TE01n resonant modes around the 22 GHz water absorption line were developed and tested. The sensors employ a single port for excitation and detection and a novel dual-loop inductive coupling for optimized excitation of the resonant modes. Measurement of the loaded and unloaded cavity quality factor was obtained from the S11 parameter. The acquisition and real-time analysis of data was implemented using software based tools developed for this purpose. The results indicate that the microwave humidity sensors developed in this work could be adapted to in-vessel monitoring applications that require few parts-per-million level of sensitivity. The microwave sensing method for detection of water vapor can potentially be extended to detection of radioactive fission gases leaking into the interior of the canister through cracks in fuel cladding.

  12. FY17 Status Report: Research on Stress Corrosion Cracking of SNF Interim Storage Canisters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelholz, Eric John; Bryan, Charles R.; Alexander, Christopher L.

    This progress report describes work done in FY17 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY17 refined our understanding of the chemical and physical environment on canister surfaces, and evaluated the relationship between chemical and physical environment and the form and extent of corrosion that occurs. The SNL corrosionmore » work focused predominantly on pitting corrosion, a necessary precursor for SCC, and process of pit-to-crack transition; it has been carried out in collaboration with university partners. SNL is collaborating with several university partners to investigate SCC crack growth experimentally, providing guidance for design and interpretation of experiments.« less

  13. Canister Design for Deep Borehole Disposal of Nuclear Waste

    DTIC Science & Technology

    2006-05-01

    radioactive waste disposal (not yet released) Fortunately, transportation casks for spent fuel have already been approved, built, and used as...would allow use of the current designs for transportation casks ; or, place the fuel assemblies into the final disposal canisters 21 prior to transport ...16 Figure 1-5. Typical Spent Fuel Transportation Casks

  14. Numerical Estimation of the Spent Fuel Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Eric R.; Durbin, Samuel; Wilke, Jason

    Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO 2 ), have been conducted in the interim to more definitively determine the source term from these postulated events. However, the validity of these large- scale results remain in question due to the lack of a defensible spent fuel ratio (SFR), defined as the amount of respirable aerosol generated by an attack on amore » mass of spent fuel compared to that of an otherwise identical surrogate. Previous attempts to define the SFR in the 1980's have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Because of the large uncertainty surrounding the SFR, estimates of releases from security-related events may be unnecessarily conservative. Credible arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and storage of spent nuclear fuel in dry cask systems. In the present work, the shock physics codes CTH and ALE3D were used to simulate spent nuclear fuel (SNF) and DUO 2 targets impacted by a high-velocity jet at an ambient temperature condition. These preliminary results are used to illustrate an approach to estimate the respirable release fraction for each type of material and ultimately, an estimate of the SFR. This page intentionally blank« less

  15. Comparative analyses of spent nuclear fuel transport modal options: Transport options under existing site constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brentlinger, L.A.; Hofmann, P.L.; Peterson, R.W.

    1989-08-01

    The movement of nuclear waste can be accomplished by various transport modal options involving different types of vehicles, transport casks, transport routes, and intermediate intermodal transfer facilities. A series of systems studies are required to evaluate modal/intermodal spent fuel transportation options in a consistent fashion. This report provides total life-cycle cost and life-cycle dose estimates for a series of transport modal options under existing site constraints. 14 refs., 7 figs., 28 tabs.

  16. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  17. Apparatus for safeguarding a radiological source

    DOEpatents

    Bzorgi, Fariborz M

    2014-10-07

    A tamper detector is provided for safeguarding a radiological source that is moved into and out of a storage location through an access porthole for storage and use. The radiological source is presumed to have an associated shipping container approved by the U.S. Nuclear Regulatory Commission for transporting the radiological source. The tamper detector typically includes a network of sealed tubing that spans at least a portion of the access porthole. There is an opening in the network of sealed tubing that is large enough for passage therethrough of the radiological source and small enough to prevent passage therethrough of the associated shipping cask. Generally a gas source connector is provided for establishing a gas pressure in the network of sealed tubing, and a pressure drop sensor is provided for detecting a drop in the gas pressure below a preset value.

  18. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  19. Monte Carlo Shielding Comparative Analysis Applied to TRIGA HEU and LEU Spent Fuel Transport

    NASA Astrophysics Data System (ADS)

    Margeanu, C. A.; Margeanu, S.; Barbos, D.; Iorgulis, C.

    2010-12-01

    The paper is a comparative study of LEU and HEU fuel utilization effects for the shielding analysis during spent fuel transport. A comparison against the measured data for HEU spent fuel, available from the last stage of spent fuel repatriation fulfilled in the summer of 2008, is also presented. All geometrical and material data for the shipping cask were considered according to NAC-LWT Cask approved model. The shielding analysis estimates radiation doses to shipping cask wall surface, and in air at 1 m and 2 m, respectively, from the cask, by means of 3D Monte Carlo MORSE-SGC code. Before loading into the shipping cask, TRIGA spent fuel source terms and spent fuel parameters have been obtained by means of ORIGEN-S code. Both codes are included in ORNL's SCALE 5 programs package. The actinides contribution to total fuel radioactivity is very low in HEU spent fuel case, becoming 10 times greater in LEU spent fuel case. Dose rates for both HEU and LEU fuel contents are below regulatory limits, LEU spent fuel photon dose rates being greater than HEU ones. Comparison between HEU spent fuel theoretical and measured dose rates in selected measuring points shows a good agreement, calculated values being greater than the measured ones both to cask wall surface (about 34% relative difference) and in air at 1 m distance from cask surface (about 15% relative difference).

  20. Hybrid Skyshine Calculations for Complex Neutron and Gamma-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J. Kenneth

    2000-10-15

    A two-step hybrid method is described for computationally efficient estimation of neutron and gamma-ray skyshine doses far from a shielded source. First, the energy and angular dependence of radiation escaping into the atmosphere from a source containment is determined by a detailed transport model such as MCNP. Then, an effective point source with this energy and angular dependence is used in the integral line-beam method to transport the radiation through the atmosphere up to 2500 m from the source. An example spent-fuel storage cask is analyzed with this hybrid method and compared to detailed MCNP skyshine calculations.

  1. Tandem SAM Domain Structure of Human Caskin1: A Presynaptic, Self-Assembling Scaffold for CASK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford, Ryan L.; Hinde, Elizabeth; Knight, Mary Jane

    2012-02-07

    The synaptic scaffolding proteins CASK and Caskin1 are part of the fibrous mesh of proteins that organize the active zones of neural synapses. CASK binds to a region of Caskin1 called the CASK interaction domain (CID). Adjacent to the CID, Caskin1 contains two tandem sterile a motif (SAM) domains. Many SAM domains form polymers so they are good candidates for forming the fibrous structures seen in the active zone. We show here that the SAM domains of Caskin1 form a new type of SAM helical polymer. The Caskin1 polymer interface exhibits a remarkable segregation of charged residues, resulting in amore » high sensitivity to ionic strength in vitro. The Caskin1 polymers can be decorated with CASK proteins, illustrating how these proteins may work together to organize the cytomatrix in active zones.« less

  2. KSC-2011-6651

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- The multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission, enclosed in a shipping cask, rolls into the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  3. KSC-2011-6658

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, a crane lifts the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission from its transportation pallet. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  4. KSC-2011-6647

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- The multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission, enclosed in a shipping cask, is seen through the open door of the MMRTG trailer that delivered it to the RTG storage facility at NASA's Kennedy Space Center in Florida. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  5. KSC-2011-6650

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- Workers use a forklift to transport the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission to the door of the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  6. KSC-2011-6648

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- Workers use a forklift to offload the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission from the MMRTG trailer that delivered it to the RTG storage facility at NASA's Kennedy Space Center in Florida. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  7. KSC-2011-6653

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, measurements are taken to determine the level of radioactivity emitted from the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission, enclosed in a shipping cask in the background. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  8. KSC-2011-6662

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, Department of Energy contractor employees remove the external and internal protective layers of the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  9. KSC-2011-6663

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, the external and internal protective layers of the shipping cask are lifted from around the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  10. KSC-2011-6649

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- Workers use a forklift to offload the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission from the MMRTG trailer that delivered it to the RTG storage facility at NASA's Kennedy Space Center in Florida. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  11. KSC-2011-6660

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission is lifted from around the MMRTG using guide rods installed on the support base. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  12. AUTOCASK (AUTOmatic Generation of 3-D CASK models). A microcomputer based system for shipping cask design review analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard, M.A.; Sommer, S.C.

    1995-04-01

    AUTOCASK (AUTOmatic Generation of 3-D CASK models) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for the structural analysis of shipping casks for radioactive material. Model specification is performed on the microcomputer, and the analyses are performed on an engineering workstation or mainframe computer. AUTOCASK is based on 80386/80486 compatible microcomputers. The system is composed of a series of menus, input programs, display programs, a mesh generation program, and archive programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.

  13. Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice.

    PubMed

    Gnanasekaran, Aswini; Bele, Tanja; Hullugundi, Swathi; Simonetti, Manuela; Ferrari, Michael D; van den Maagdenberg, Arn M J M; Nistri, Andrea; Fabbretti, Elsa

    2013-12-02

    ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.

  14. In-Field Performance Testing of the Fork Detector for Quantitative Spent Fuel Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauld, Ian C.; Hu, Jianwei; De Baere, P.

    Expanding spent fuel dry storage activities worldwide are increasing demands on safeguards authorities that perform inspections. The European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) require measurements to verify declarations when spent fuel is transferred to difficult-to-access locations, such as dry storage casks and the repositories planned in Finland and Sweden. EURATOM makes routine use of the Fork detector to obtain gross gamma and total neutron measurements during spent fuel inspections. Data analysis is performed by modules in the integrated Review and Analysis Program (iRAP) software, developed jointly by EURATOM and the IAEA. Under the frameworkmore » of the US Department of Energy–EURATOM cooperation agreement, a module for automated Fork detector data analysis has been developed by Oak Ridge National Laboratory (ORNL) using the ORIGEN code from the SCALE code system and implemented in iRAP. EURATOM and ORNL recently performed measurements on 30 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel (Clab), operated by the Swedish Nuclear Fuel and Waste Management Company (SKB). The measured assemblies represent a broad range of fuel characteristics. Neutron count rates for 15 measured pressurized water reactor assemblies are predicted with an average relative standard deviation of 4.6%, and gamma signals are predicted on average within 2.6% of the measurement. The 15 measured boiling water reactor assemblies exhibit slightly larger deviations of 5.2% for the gamma signals and 5.7% for the neutron count rates, compared to measurements. These findings suggest that with improved analysis of the measurement data, existing instruments can provide increased verification of operator declarations of the spent fuel and thereby also provide greater ability to confirm integrity of an assembly. These results support the application of the Fork detector as a fully quantitative spent fuel verification technique.« less

  15. SCANS (Shipping Cask ANalysis System) a microcomputer-based analysis system for shipping cask design review: User`s manual to Version 3a. Volume 1, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mok, G.C.; Thomas, G.R.; Gerhard, M.A.

    SCANS (Shipping Cask ANalysis System) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent fuel shipping casks. SCANS is an easy-to-use system that calculates the global response to impact loads, pressure loads and thermal conditions, providing reviewers with an independent check on analyses submitted by licensees. SCANS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens thatmore » contain descriptive data requests. Analysis options are based on regulatory cases described in the Code of Federal Regulations 10 CFR 71 and Regulatory Guides published by the US Nuclear Regulatory Commission in 1977 and 1978.« less

  16. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. Performance of the electronic personal dosemeter for neutron 'Saphydose-N' at different workplaces of nuclear facilities.

    PubMed

    Lahaye, T; Chau, Q; Ménard, S; Lacoste, V; Muller, H; Luszik-Bhadra, M; Reginatto, M; Bruguier, P

    2006-01-01

    This paper mainly aims at presenting the measurements and the results obtained with the electronic personal neutron dosemeter Saphydose-N at different facilities. Three campaigns were led in the frame of the European contract EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'). The first one consisted in the measurements at the IRSN French research laboratory in reference neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources ((241)AmBe; (252)Cf; (252)Cf(D(2)O)\\Cd) and a realistic spectrum (CANEL/T400). The second one was performed at the Krümmel Nuclear Power Plant (Germany) close to the boiling water reactor and to a spent fuel transport cask. The third one was realised at Mol (Belgium), at the VENUS Research Reactor and at Belgonucléaire, a fuel processing factory.

  18. Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice

    PubMed Central

    2013-01-01

    Background ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. Results KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. Conclusions We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine. PMID:24294842

  19. 27 CFR 19.19 - Discontinuance of storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Discontinuance of storage... Provisions § 19.19 Discontinuance of storage facilities. If TTB determines that a proprietor's bonded storage... spirits stored in the facility to another storage facility. The transfer will take place at such time and...

  20. 27 CFR 19.19 - Discontinuance of storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Discontinuance of storage... Provisions § 19.19 Discontinuance of storage facilities. If TTB determines that a proprietor's bonded storage... spirits stored in the facility to another storage facility. The transfer will take place at such time and...

  1. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igor Bolshinsky; Ken Allen; Lucian Biro

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities formore » shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.« less

  2. Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young

    Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas whilemore » the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)« less

  3. IDAHO NATIONAL LABORATORY TRANSPORTATION TASK REPORT ON ACHIEVING MODERATOR EXCLUSION AND SUPPORTING STANDARDIZED TRANSPORTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.K. Morton

    2011-09-01

    Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for the foreseeable future. This report proposes supplementing the ongoing research and development work related to potential degradation of used fuel, baskets, poisons, and storage canisters during an extended period of storage with a parallel path. This parallel path can assure criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). Using updated risk assessment insights for additional technical justification and relying upon a component inside of themore » transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal conditions of transportation. A demonstrating testing program supporting a detailed analytical effort as well as updated risk assessment insights can provide the basis for moderator exclusion during hypothetical accident conditions. This report also discusses how this engineered concept can support the goal of standardized transportation.« less

  4. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Choi, C. K.; Tsoukalas, L. H.

    2016-08-01

    The potential non-proliferation monitoring of spent nuclear fuel sealed in dry casks interacting continuously with the naturally generated cosmic ray muons is investigated. Treatments on the muon RMS scattering angle by Moliere, Rossi-Greisen, Highland and, Lynch-Dahl were analyzed and compared with simplified Monte Carlo simulations. The Lynch-Dahl expression has the lowest error and appears to be appropriate when performing conceptual calculations for high-Z, thick targets such as dry casks. The GEANT4 Monte Carlo code was used to simulate dry casks with various fuel loadings and scattering variance estimates for each case were obtained. The scattering variance estimation was shown to be unbiased and using Chebyshev's inequality, it was found that 106 muons will provide estimates of the scattering variances that are within 1% of the true value at a 99% confidence level. These estimates were used as reference values to calculate scattering distributions and evaluate the asymptotic behavior for small variations on fuel loading. It is shown that the scattering distributions between a fully loaded dry cask and one with a fuel assembly missing initially overlap significantly but their distance eventually increases with increasing number of muons. One missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the distributions which is the case of 100,000 muons. This indicates that the removal of a standard fuel assembly can be identified using muons providing that enough muons are collected. A Bayesian algorithm was developed to classify dry casks and provide a decision rule that minimizes the risk of making an incorrect decision. The algorithm performance was evaluated and the lower detection limit was determined.

  5. Binding of Y-P30 to Syndecan 2/3 Regulates the Nuclear Localization of CASK

    PubMed Central

    Landgraf, Peter; Mikhaylova, Marina; Macharadze, Tamar; Borutzki, Corinna; Zenclussen, Ana-Claudia; Wahle, Petra; Kreutz, Michael R.

    2014-01-01

    The survival promoting peptide Y-P30 has documented neuroprotective effects as well as cell survival and neurite outgrowth promoting activity in vitro and in vivo. Previous work has shown that multimerization of the peptide with pleiotrophin (PTN) and subsequent binding to syndecan (SDC) -2 and -3 is involved in its neuritogenic effects. In this study we show that Y-P30 application regulates the nuclear localization of the SDC binding partner Calcium/calmodulin-dependent serine kinase (CASK) in neuronal primary cultures during development. In early development at day in vitro (DIV) 8 when mainly SDC-3 is expressed supplementation of the culture medium with Y-P30 reduces nuclear CASK levels whereas it has the opposite effect at DIV 18 when SDC-2 is the dominant isoform. In the nucleus CASK regulates gene expression via its association with the T-box transcription factor T-brain-1 (Tbr-1) and we indeed found that gene expression of downstream targets of this complex, like the GluN2B NMDA-receptor, exhibits a corresponding down- or up-regulation at the mRNA level. The differential effect of Y-P30 on the nuclear localization of CASK correlates with its ability to induce shedding of the ectodomain of SDC-2 but not -3. shRNA knockdown of SDC-2 at DIV 18 and SDC-3 at DIV 8 completely abolished the effect of Y-P30 supplementation on nuclear CASK levels. During early development a protein knockdown of SDC-3 also attenuated the effect of Y-P30 on axon outgrowth. Taken together these data suggest that Y-P30 can control the nuclear localization of CASK in a SDC-dependent manner. PMID:24498267

  6. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allender, Jeffrey S.; Bridges, Nicholas J.; Loftin, Bradley M.

    2015-07-14

    Savannah River National Laboratory (SRNL) and Oak Ridge National Laboratory (ORNL) are developing plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in Savannah River Site (SRS) reactors in the 1970s under extremely high neutron-flux conditions and produced, virtually, the world's supply of plutonium-244, an isotope of key importance to high-precision actinide measurement and other scientific and nonproliferation uses; and curium highly enriched in heavy isotopes (e.g., curium-246 and curium-248). In 2015 and 2016, SRNL is pursuing tasks that would reduce program risk and budget requirements, including furthermore » characterization of unprocessed targets; engineering studies for the use of the SRNL Shielded Cells Facility (SCF) for recovery; and development of onsite and offsite shipping methods including a replacement for the heavy (70 ton) cask previously used for onsite transfer of irradiated items at SRS. A status update is provided for the characterization, including modeling using the Monte Carlo N-Particle Transport Code (MCNP); direct non-destructive assay measurements; and cask design.« less

  7. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  8. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  9. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  10. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  11. 27 CFR 22.92 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Storage facilities. 22.92... Storage facilities. (a) Storerooms or compartments shall be so constructed and secured as to prevent unauthorized access and will be equipped for locking. These storage facilities shall be of sufficient capacity...

  12. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address themore » issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias and uncertainty results based on a quality-assurance-controlled prerelease version of the Scale 6.1 code package and the ENDF/B-VII nuclear cross section data.« less

  13. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  14. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  15. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  16. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fuel storage facilities. 108.237 Section 108.237... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  17. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  18. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  19. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  20. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Specimen and data storage facilities... PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space shall be provided for archives, limited to access by authorized personnel only, for the storage and...

  1. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not availablemore » or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.« less

  2. The scaffold protein calcium/calmodulin-dependent serine protein kinase controls ATP release in sensory ganglia upon P2X3 receptor activation and is part of an ATP keeper complex.

    PubMed

    Bele, Tanja; Fabbretti, Elsa

    2016-08-01

    P2X3 receptors, gated by extracellular ATP, are expressed by sensory neurons and are involved in peripheral nociception and pain sensitization. The ability of P2X3 receptors to transduce extracellular stimuli into neuronal signals critically depends on the dynamic molecular partnership with the calcium/calmodulin-dependent serine protein kinase (CASK). The present work used trigeminal sensory neurons to study the impact that activation of P2X3 receptors (evoked by the agonist α,β-meATP) has on the release of endogenous ATP and how CASK modulates this phenomenon. P2X3 receptor function was followed by ATP efflux via Pannexin1 (Panx1) hemichannels, a mechanism that was blocked by the P2X3 receptor antagonist A-317491, and by P2X3 silencing. ATP efflux was enhanced by nerve growth factor, a treatment known to potentiate P2X3 receptor function. Basal ATP efflux was not controlled by CASK, and carbenoxolone or Pannexin silencing reduced ATP release upon P2X3 receptor function. CASK-controlled ATP efflux followed P2X3 receptor activity, but not depolarization-evoked ATP release. Molecular biology experiments showed that CASK was essential for the transactivation of Panx1 upon P2X3 receptor activation. These data suggest that P2X3 receptor function controls a new type of feed-forward purinergic signaling on surrounding cells, with consequences at peripheral and spinal cord level. Thus, P2X3 receptor-mediated ATP efflux may be considered for the future development of pharmacological strategies aimed at containing neuronal sensitization. P2X3 receptors are involved in sensory transduction and associate to CASK. We have studied in primary sensory neurons the molecular mechanisms downstream P2X3 receptor activation, namely ATP release and partnership with CASK or Panx1. Our data suggest that CASK and P2X3 receptors are part of an ATP keeper complex, with important feed-forward consequences at peripheral and central level. © 2016 International Society for Neurochemistry.

  3. Depleted uranium hexafluoride: The source material for advanced shielding systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quapp, W.J.; Lessing, P.A.; Cooley, C.R.

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 andmore » $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.« less

  4. 7 CFR 301.89-16 - Compensation for grain storage facilities, flour millers, National Survey participants, and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Compensation for grain storage facilities, flour... DOMESTIC QUARANTINE NOTICES Karnal Bunt § 301.89-16 Compensation for grain storage facilities, flour... the 1999-2000 and subsequent crop seasons. Owners of grain storage facilities, flour millers, and...

  5. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  6. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  7. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  8. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  9. 30 CFR 56.6800 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 56.6800 Section 56.6800... § 56.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another facility, or moved at...

  10. KSC-2011-6652

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- Workers reconnect the coolant hoses to the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission upon its arrival in the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida. Coolant flows through the hoses to dissipate any excess heat generated by the MMRTG. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  11. KSC-2011-6665

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, the external and internal protective layers of the shipping cask are lifted away from the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission. The MMRTG no longer needs supplemental cooling since any excess heat generated can dissipate into the air in the high bay. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  12. KSC-2011-6654

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, Innovative Health Applications employee Mike McPherson measures the level of radioactivity emitted from the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission, enclosed in a shipping cask at right. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  13. KSC-2011-6661

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, Innovative Health Applications employee David Lake measures the level of radioactivity emitted from the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission as the external protective layer of the shipping cask is removed. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  14. KSC-2011-6656

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, Department of Energy contractor employees attach cables to the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission during preparations to lift it from its transportation pallet. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  15. KSC-2011-6655

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, preparations are under way to attach the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission to the cables that will lift it from its transportation pallet. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  16. KSC-2011-6657

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, a Department of Energy contractor employee attaches a crane to the shipping cask enclosing the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission during preparations to lift it from its transportation pallet. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  17. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  18. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  19. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  20. 30 CFR 56.4430 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage facilities. 56.4430 Section 56.4430... Control Flammable and Combustible Liquids and Gases § 56.4430 Storage facilities. (a) Storage tanks for... changes. Vents for storage of Class I, II, or IIIA liquids shall be isolated or separated from ignition...

  1. Radioactive materials shipping cask anticontamination enclosure

    DOEpatents

    Belmonte, Mark S.; Davis, James H.; Williams, David A.

    1982-01-01

    An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

  2. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R; Ade, Brian J

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay,more » and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.« less

  3. Evaluation of RAPID for a UNF cask benchmark problem

    NASA Astrophysics Data System (ADS)

    Mascolino, Valerio; Haghighat, Alireza; Roskoff, Nathan J.

    2017-09-01

    This paper examines the accuracy and performance of the RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system for the simulation of a used nuclear fuel (UNF) cask. RAPID is capable of determining eigenvalue, subcritical multiplication, and pin-wise, axially-dependent fission density throughout a UNF cask. We study the source convergence based on the analysis of the different parameters used in an eigenvalue calculation in the MCNP Monte Carlo code. For this study, we consider a single assembly surrounded by absorbing plates with reflective boundary conditions. Based on the best combination of eigenvalue parameters, a reference MCNP solution for the single assembly is obtained. RAPID results are in excellent agreement with the reference MCNP solutions, while requiring significantly less computation time (i.e., minutes vs. days). A similar set of eigenvalue parameters is used to obtain a reference MCNP solution for the whole UNF cask. Because of time limitation, the MCNP results near the cask boundaries have significant uncertainties. Except for these, the RAPID results are in excellent agreement with the MCNP predictions, and its computation time is significantly lower, 35 second on 1 core versus 9.5 days on 16 cores.

  4. Comparative changes in color features and pigment composition of red wines aged in oak and cherry wood casks.

    PubMed

    Chinnici, Fabio; Natali, Nadia; Sonni, Francesca; Bellachioma, Attilio; Riponi, Claudio

    2011-06-22

    The color features and the evolution of both the monomeric and the derived pigments of red wines aged in oak and cherry 225 L barriques have been investigated during a four months period. For cherry wood, the utilization of 1000 L casks was tested as well. The use of cherry casks resulted in a faster evolution of pigments with a rapid decline of monomeric anthocyanins and a quick augmentation formation of derived and polymeric compounds. At the end of the aging, wines stored in oak and cherry barriques lost, respectively, about 20% and 80% of the initial pigment amount, while in the 1000 L cherry casks, the same compounds diminished by about 60%. Ethyl-bridged adducts and vitisins were the main class of derivatives formed, representing up to 25% of the total pigment amount in the cherry aged samples. Color density augmented in both the oak and cherry wood aged samples, but the latter had the highest values of this parameter. Because of the highly oxidative behavior of the cherry barriques, the use of larger casks (e.g., 1000 L) is proposed in the case of prolonged aging times.

  5. Can Shale Safely Host U.S. Nuclear Waste?

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.

    2013-07-01

    Even as cleanup efforts after Japan's Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America's Nuclear Future, 2012].

  6. STORAGE/SEDIMENTATION FACILITIES FOR CONTROL OF STORM AND COMBINED SEWER OVERFLOW: DESIGN MANUAL

    EPA Science Inventory

    This manual describes applications of storage facilities in wet-weather flow management and presents step-by-step procedures for analysis and design of storage-treatment facilities. Retention, detention, and sedimentation storage information is classified and described. Internati...

  7. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  8. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  9. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  10. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  11. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  12. 36 CFR 1232.14 - What requirements must an agency meet before it transfers records to a records storage facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agency meet before it transfers records to a records storage facility? 1232.14 Section 1232.14 Parks... RECORDS TO RECORDS STORAGE FACILITIES § 1232.14 What requirements must an agency meet before it transfers records to a records storage facility? An agency must meet the following requirements before it transfers...

  13. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for themore » facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.« less

  14. Spent fuel cask handling at an operating nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices atmore » all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant.« less

  15. 77 FR 31841 - Notice of Applications for Authorization To Abandon Facilities and Services and To Acquire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... To Abandon Facilities and Services and To Acquire Facilities by Merger Steuben Gas Storage Company... Field Storage Facilities (Adrian Field) which Steuben operates pursuant to certificates of public... authorization to charge market based rates following its acquisition of the Adrian Field Storage Facility. The...

  16. Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Kaushik; Clarity, Justin B; Cumberland, Riley M

    This will be licensed via RSICC. A new, integrated data and analysis system has been designed to simplify and automate the performance of accurate and efficient evaluations for characterizing the input to the overall nuclear waste management system -UNF-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). A relational database within UNF-ST&DARDS provides a standard means by which UNF-ST&DARDS can succinctly store and retrieve modeling and simulation (M&S) parameters for specific spent nuclear fuel analysis. A library of various analysis model templates provides the ability to communicate the various set of M&S parameters to the most appropriate M&S application.more » Interactive visualization capabilities facilitate data analysis and results interpretation. UNF-ST&DARDS current analysis capabilities include (1) assembly-specific depletion and decay, (2) and spent nuclear fuel cask-specific criticality and shielding. Currently, UNF-ST&DARDS uses SCALE nuclear analysis code system for performing nuclear analysis.« less

  17. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  18. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  19. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  20. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  1. 18 CFR 157.213 - Underground storage field facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Underground storage... of the Natural Gas Act for Certain Transactions and Abandonment § 157.213 Underground storage field... operate facilities for the remediation and maintenance of an existing underground storage facility...

  2. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  3. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  4. 18 CFR 157.213 - Underground storage field facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Underground storage... of the Natural Gas Act for Certain Transactions and Abandonment § 157.213 Underground storage field... operate facilities for the remediation and maintenance of an existing underground storage facility...

  5. 27 CFR 20.165 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Storage facilities. 20.165... Users of Specially Denatured Spirits Premises and Equipment § 20.165 Storage facilities. (a) Storerooms... for locking. (b) Each stationary tank used for the storage of specially denatured spirits shall be...

  6. Fire resistant nuclear fuel cask

    DOEpatents

    Heckman, Richard C.; Moss, Marvin

    1979-01-01

    The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked.

  7. 46 CFR 108.237 - Fuel storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.237 Fuel storage facilities. (a) Helicopter fuel storage tanks must be installed as far as practicable from— (1) The landing area; and (2...

  8. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  9. 30 CFR 57.4430 - Surface storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...

  10. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  11. 27 CFR 19.79 - Discontinuance of storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Discontinuance of storage... Provisions Activities Not Subject to This Part § 19.79 Discontinuance of storage facilities. When the appropriate TTB officer finds that any facilities for the storage of spirits on bonded premises are unsafe or...

  12. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  13. 30 CFR 57.4430 - Surface storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...

  14. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  15. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  16. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  17. 30 CFR 57.6800 - Storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage facilities. 57.6800 Section 57.6800...-Surface and Underground § 57.6800 Storage facilities. When repair work which could produce a spark or flame is to be performed on a storage facility— (a) The explosive material shall be moved to another...

  18. 40 CFR 160.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Specimen and data storage facilities. 160.51 Section 160.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.51 Specimen and data storage facilities. Space...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J.H.; Chipley, K.K.; Nelms, H.A.

    An evaluation of the ORNL loop transport cask demonstrating its compliance with the regulations governing the transportation of radioactive and fissile materials is presented. A previous review of the cask is updated to demonstrate compliance with current regulations, to present current procedures, and to reflect the more recent technology.

  20. 40 CFR 60.5417 - What are the continuous control device monitoring requirements for my storage vessel or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) You must install and...

  1. 40 CFR 60.5417 - What are the continuous control device monitoring requirements for my storage vessel or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) For each control device...

  2. 78 FR 15712 - Arlington Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Storage Company, LLC; Notice of Application Take notice that on February 26, 2013, Arlington Storage... Commission's regulations, requesting authorization to expand its Seneca Lake natural gas storage facility... ``Gallery 2''), previously used for propane storage, and related facilities to natural gas storage. The...

  3. A public health initiative for reducing access to pesticides as a means to committing suicide: findings from a qualitative study.

    PubMed

    Mohanraj, Rani; Kumar, Shuba; Manikandan, Sarojini; Kannaiyan, Veerapandian; Vijayakumar, Lakshmi

    2014-08-01

    Widespread use of pesticides among farmers in rural India, provides an easy means for suicide. A public health initiative involving storage of pesticides in a central storage facility could be a possible strategy for reducing mortality and morbidity related to pesticide poisoning. This qualitative study explored community perceptions towards a central pesticide storage facility in villages in rural South India. Sixteen focus group discussions held with consenting adults from intervention and control villages were followed by eight more a year after initiation of the storage facility. Analysis revealed four themes, namely, reasons for committing suicide and methods used, exposure to pesticides and first-aid practices, storage and disposal of pesticides, and perceptions towards the storage facility. The facility was appreciated as a means of preventing suicides and for providing a safe haven for pesticide storage. The participatory process that guided its design, construction and location ensured its acceptability. Use of qualitative methods helped provide deep insights into the phenomenon of pesticide suicide and aided the understanding of community perceptions towards the storage facility. The study suggests that communal storage of pesticides could be an important step towards reducing pesticide suicides in rural areas.

  4. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  5. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  6. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  7. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  8. 40 CFR 122.3 - Exclusions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...

  9. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPSmore » eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.« less

  10. 36 CFR 1238.28 - What must agencies do when sending permanent microform records to a records storage facility?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sending permanent microform records to a records storage facility? 1238.28 Section 1238.28 Parks, Forests... MANAGEMENT Storage, Use, and Disposition of Microform Records § 1238.28 What must agencies do when sending permanent microform records to a records storage facility? Agencies must: (a) Follow the procedures in part...

  11. 36 CFR 1238.28 - What must agencies do when sending permanent microform records to a records storage facility?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sending permanent microform records to a records storage facility? 1238.28 Section 1238.28 Parks, Forests... MANAGEMENT Storage, Use, and Disposition of Microform Records § 1238.28 What must agencies do when sending permanent microform records to a records storage facility? Agencies must: (a) Follow the procedures in part...

  12. Analysis of Corrosion Residues Collected from the Aluminum Basket Rails of the High-Burnup Demonstration Cask.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.

    On September, 2015, an inspection was performed on the TN-32B cask that will be used for the high-burnup demonstration project. During the survey, wooden cribbing that had been placed within the cask eleven years earlier to prevent shifting of the basket during transport was removed, revealing two areas of residue on the aluminum basket rails, where they had contacted the cribbing. The residue appeared to be a corrosion product, and concerns were raised that similar attack could exist at more difficult-to-inspect locations in the canister. Accordingly, when the canister was reopened, samples of the residue were collected for analysis. Thismore » report presents the results of that assessment, which determined that the corrosion was due to the presence of the cribbing. The corrosion was associated with fungal material, and fungal activity likely contributed to an aggressive chemical environment. Once the cask has been cleaned, there will be no risk of further corrosion.« less

  13. Analysis of the factors that impact the reliability of high level waste canister materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, W.K.; Hall, A.M.

    1977-09-19

    The analysis encompassed identification and analysis of potential threats to canister integrity arising in the course of waste solidification, interim storage at the fuels reprocessing plant, wet and dry shipment, and geologic storage. Fabrication techniques and quality assurance requirements necessary to insure optimum canister reliability were considered taking into account such factors as welding procedure, surface preparation, stress relief, remote weld closure, and inspection methods. Alternative canister materials and canister systems were also considered in terms of optimum reliability in the face of threats to the canister's integrity, ease of fabrication, inspection, handling and cost. If interim storage in airmore » is admissible, the sequence suggested comprises producing a glass-type waste product in a continuous ceramic melter, pouring into a carbon steel or low-alloy steel canister of moderately heavy wall thickness, storing in air upright on a pad and surrounded by a concrete radiation shield, and thereafter placing in geologic storage without overpacking. Should the decision be to store in water during the interim period, then use of either a 304 L stainless steel canister overpacked with a solution-annealed and fast-cooled 304 L container, or a single high-alloy canister, is suggested. The high alloy may be Inconel 600, Incoloy Alloy 800, or Incoloy Alloy 825. In either case, it is suggested that the container be overpacked with a moderately heavy wall carbon steel or low-alloy steel cask for geologic storage to ensure ready retrievability. 19 figs., 5 tables.« less

  14. 36 CFR 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage facilities we...

  15. 36 CFR 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage facilities we...

  16. 36 CFR 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage facilities we...

  17. 36 CFR 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage facilities we...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winston, Philip Lon

    Prior to performing an internal visual inspection, samples of the headspace gas of the GNS Castor V/21 cask were taken on June 12, 2014. These samples were taken in support of the CREIPI/Japanese nuclear industry effort to validate fuel integrity without visual inspection by measuring the 85Kr content of the cask headspace

  19. Log transfer and storage facilities in Southeast Alaska: a review.

    Treesearch

    Tamra L. Faris; Kenneth D. Vaughan

    1985-01-01

    The volume of timber harvested in southeast Alaska between 1909 and 1983 was 14,689 million board feet; nearly all was transported on water to various destinations for processing. In 1971 there were 69 active log transfer and storage facilities and 38 raft collecting and storage facilities in southeast Alaska. In 1983 there were 90 log transfer sites, 49 log storage...

  20. 36 CFR § 1238.28 - What must agencies do when sending permanent microform records to a records storage facility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sending permanent microform records to a records storage facility? § 1238.28 Section § 1238.28 Parks... RECORDS MANAGEMENT Storage, Use, and Disposition of Microform Records § 1238.28 What must agencies do when sending permanent microform records to a records storage facility? Agencies must: (a) Follow the...

  1. How the University of Texas system responded to the need for interim storage of low-level radioactive waste materials.

    PubMed

    Emery, Robert J

    2012-11-01

    Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.

  2. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  3. 77 FR 64834 - Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0250] Computational Fluid Dynamics Best Practice... public comments on draft NUREG-2152, ``Computational Fluid Dynamics Best Practice Guidelines for Dry Cask... System (ADAMS): You may access publicly-available documents online in the NRC Library at http://www.nrc...

  4. KSC-2011-6664

    NASA Image and Video Library

    2011-06-30

    CAPE CANAVERAL, Fla. -- In the high bay of the RTG storage facility at NASA's Kennedy Space Center in Florida, a Department of Energy contractor employee guides the external and internal protective layers of the shipping cask as they are lifted from around the multi-mission radioisotope thermoelectric generator (MMRTG) for NASA's Mars Science Laboratory mission. The MMRTG no longer needs supplemental cooling since any excess heat generated can dissipate into the air in the high bay. The MMRTG will generate the power needed for the mission from the natural decay of plutonium-238, a non-weapons-grade form of the radioisotope. Heat given off by this natural decay will provide constant power through the day and night during all seasons. Waste heat from the MMRTG will be circulated throughout the rover system to keep instruments, computers, mechanical devices and communications systems within their operating temperature ranges. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

  5. Simulation of mass storage systems operating in a large data processing facility

    NASA Technical Reports Server (NTRS)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  6. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  7. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  8. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  9. 40 CFR 792.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false Specimen and data storage facilities..., for the storage and retrieval of all raw data and specimens from completed studies. ... SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.51 Specimen and data...

  10. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVore, J.R.; Hinton, R.R.

    1994-08-01

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievablemore » storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered.« less

  11. 18 CFR 157.213 - Underground storage field facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... storage reservoir and within the buffer area; (4) A detailed description of present storage operations and..., provided the storage facility's certificated physical parameters—including total inventory, reservoir pressure, reservoir and buffer boundaries, and certificated capacity remain unchanged—and provided...

  12. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  13. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  14. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  15. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  16. 21 CFR 58.51 - Specimen and data storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Specimen and data storage facilities. 58.51..., for the storage and retrieval of all raw data and specimens from completed studies. ... GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Facilities § 58.51 Specimen and data...

  17. Management self assessment plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debban, B.L.

    Duke Engineering and Services Hanford Inc., Spent Nuclear Fuel Project is responsible for the operation of fuel storage facilities. The SNF project mission includes the safe removal, processing and transportation of Spent Nuclear Fuel from 100 K Area fuel storage basins to a new Storage facility in the Hanford 200 East Area. Its mission is the modification of the 100 K area fuel storage facilities and the construction of two new facilities: the 100 K Area Cold Vacuum Drying Facility, and the 200 East Area Canister Storage Building. The management self assessment plan described in this document is scheduled tomore » begin in April of 1999 and be complete in May of 1999. The management self assessment plan describes line management preparations for declaring that line management is ready to commence operations.« less

  18. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...

  19. Translation and evaluation of the Cultural Awareness Scale for Korean nursing students.

    PubMed

    Oh, Hyunjin; Lee, Jung-ah; Schepp, Karen G

    2015-02-20

    To evaluate the effectiveness of a curriculum for achieving high levels of cultural competence, we need to be able to assess education intended to enhance cultural competency skills. We therefore translated the Cultural Awareness Scale (CAS) into Korean (CAS-K). The purpose of this study was to evaluate the cross-cultural applicability and psychometric properties of the CAS-K, specifically its reliability and validity. A cross-sectional descriptive design was used to conduct the evaluation. A convenience sample of 495 nursing students was recruited from four levels of nursing education within four universities in the city of Daejeon, South Korea. This study provided beginning evidence of the validity and reliability of the CAS-K and the cross-cultural applicability of the concepts underlying this instrument. Cronbach's alpha ranged between 0.59 and 0.86 (overall 0.89) in the tests of internal consistency. Cultural competency score prediction of the experience of travel abroad (r=0.084) and the perceived need for cultural education (r=0.223) suggested reasonable criterion validity. Five factors with eigenvalues >1.0 were extracted, accounting for 55.58% of the variance; two retained the same items previously identified for the CAS. The CAS-K demonstrated satisfactory validity and reliability in measuring cultural awareness in this sample of Korean nursing students. The revised CAS-K should be tested for its usability in curriculum evaluation and its applicability as a guide for teaching cultural awareness among groups of Korean nursing students.

  20. Smart Winery: A Real-Time Monitoring System for Structural Health and Ullage in Fino Style Wine Casks

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Rubio, Bartolomé

    2018-01-01

    The rapid development in low-cost sensor and wireless communication technology has made it possible for a large number of devices to coexist and exchange information autonomously. It has been predicted that a substantial number of devices will be able to exchange and provide information about an environment with the goal of improving our lives, under the well-known paradigm of the Internet of Things (IoT). One of the main applications of these kinds of devices is the monitoring of scenarios. In order to improve the current wine elaboration process, this paper presents a real-time monitoring system to supervise the status of wine casks. We have focused on a special kind of white wine, called Fino, principally produced in Andalusia (Southern Spain). The process by which this kind of wind is monitored is completely different from that of red wine, as the casks are not completely full and, due to the fact that they are not renewed very often, are more prone to breakage. A smart cork prototype monitors the structural health, the ullage, and the level of light inside the cask and the room temperature. The advantage of this smart cork is that it allows winemakers to monitor, in real time, the status of each wine cask so that, if an issue is detected (e.g., a crack appears in the cask), they can act immediately to resolve it. Moreover, abnormal parameters or incorrect environmental conditions can be detected in time before the wine loses its desired qualities. The system has been tested in “Bodegas San Acacio,” a winery based in Montemayor, a town in the north of Andalusia. Results show that the use of such a system can provide a solution that tracks the evolution and assesses the suitability of the delicate wine elaboration process in real time, which is especially important for the kind of wine considered in this paper. PMID:29518928

  1. Smart Winery: A Real-Time Monitoring System for Structural Health and Ullage in Fino Style Wine Casks.

    PubMed

    Cañete, Eduardo; Chen, Jaime; Martín, Cristian; Rubio, Bartolomé

    2018-03-07

    The rapid development in low-cost sensor and wireless communication technology has made it possible for a large number of devices to coexist and exchange information autonomously. It has been predicted that a substantial number of devices will be able to exchange and provide information about an environment with the goal of improving our lives, under the well-known paradigm of the Internet of Things (IoT). One of the main applications of these kinds of devices is the monitoring of scenarios. In order to improve the current wine elaboration process, this paper presents a real-time monitoring system to supervise the status of wine casks. We have focused on a special kind of white wine, called Fino, principally produced in Andalusia (Southern Spain). The process by which this kind of wind is monitored is completely different from that of red wine, as the casks are not completely full and, due to the fact that they are not renewed very often, are more prone to breakage. A smart cork prototype monitors the structural health, the ullage, and the level of light inside the cask and the room temperature. The advantage of this smart cork is that it allows winemakers to monitor, in real time, the status of each wine cask so that, if an issue is detected (e.g., a crack appears in the cask), they can act immediately to resolve it. Moreover, abnormal parameters or incorrect environmental conditions can be detected in time before the wine loses its desired qualities. The system has been tested in "Bodegas San Acacio," a winery based in Montemayor, a town in the north of Andalusia. Results show that the use of such a system can provide a solution that tracks the evolution and assesses the suitability of the delicate wine elaboration process in real time, which is especially important for the kind of wine considered in this paper.

  2. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  3. Grout Isolation and Stabilization of Structures and Materials within Nuclear Facilities at the U.S. Department of Energy, Hanford Site, Summary - 12309

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Phillips, M.; Etheridge, D.

    2012-07-01

    Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less

  4. Separator assembly for use in spent nuclear fuel shipping cask

    DOEpatents

    Bucholz, James A.

    1983-01-01

    A separator assembly for use in a spent nuclear fuel shipping cask has a honeycomb-type wall structure defining parallel cavities for holding nuclear fuel assemblies. Tubes formed of an effective neutron-absorbing material are embedded in the wall structure around each of the cavities and provide neutron flux traps when filled with water.

  5. ETF magnet design alternatives for the national MHD program

    NASA Astrophysics Data System (ADS)

    Marston, P. G.; Thome, R. J.; Dawson, A. M.; Bobrov, E. S.; Hatch, A. M.

    1981-01-01

    Five superconducting magnet designs are evaluated for a 200 MWe test facility requiring a magnet with an on-axis field of 6 T, an inlet bore area of 4 sq m, storing 6 x 10 to the 9th J. The designs include a straightforward rectangular saddle coil set, a 'Cask' configuration based on staves and corner blocks as the main support structure, and an internally cooled, cabled superconductor to minimize the substructure and eliminate the helium vessel. Also, a modular design using six coils with individual helium vessels and an integrated structure produces a simplest configuration which utilizes a natural rectangular interface for packaging the MHD channel and its connections, and results in a lower capital cost.

  6. Storage for greater-than-Class C low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beitel, G.A.

    1991-12-31

    EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealedmore » sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.« less

  7. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.W.

    1993-08-01

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  8. 36 CFR § 1254.28 - What items are not allowed in research rooms?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for papers. (b) You may store personal items at no cost in lockers or other storage facilities in the NARA facility. These lockers or other storage facilities are available on a first-come-first-served basis. (c) You must remove your personal belongings each night from the lockers or other storage...

  9. 36 CFR 1232.16 - What documentation must an agency create before it transfers records to a records storage facility?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... agency create before it transfers records to a records storage facility? 1232.16 Section 1232.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO RECORDS STORAGE FACILITIES § 1232.16 What documentation must an agency create before it...

  10. 36 CFR 1232.16 - What documentation must an agency create before it transfers records to a records storage facility?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... agency create before it transfers records to a records storage facility? 1232.16 Section 1232.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO RECORDS STORAGE FACILITIES § 1232.16 What documentation must an agency create before it...

  11. 36 CFR 1232.16 - What documentation must an agency create before it transfers records to a records storage facility?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... agency create before it transfers records to a records storage facility? 1232.16 Section 1232.16 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO RECORDS STORAGE FACILITIES § 1232.16 What documentation must an agency create before it...

  12. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)« less

  13. Alaska SAR Facility mass storage, current system

    NASA Technical Reports Server (NTRS)

    Cuddy, David; Chu, Eugene; Bicknell, Tom

    1993-01-01

    This paper examines the mass storage systems that are currently in place at the Alaska SAR Facility (SAF). The architecture of the facility will be presented including specifications of the mass storage media that are currently used and the performances that we have realized from the various media. The distribution formats and media are also discussed. Because the facility is expected to service future sensors, the new requirements and possible solutions to these requirements are also discussed.

  14. Space Station tethered refueling facility operations

    NASA Technical Reports Server (NTRS)

    Kiefel, E. R.; Rudolph, L. K.; Fester, D. A.

    1986-01-01

    The space-based orbital transfer vehicle will require a large cryogenic fuel storage facility at the Space Station. An alternative to fuel storage onboard the Space Station, is on a tethered orbital refueling facility (TORF) which is separated from the Space Station by a sufficient distance to induce a gravity gradient to settle the propellants. Facility operations are a major concern associated with a tethered LO2/LH2 storage depot. A study was carried out to analyze these operations so as to identify the preferred TORF deployment direction (up or down) and whether the TORF should be permanently or intermittently deployed. The analyses considered safety, contamination, rendezvous, servicing, transportation rate, communication, and viewing. An upwardly, intermittently deployed facility is the preferred configuration for a tethered cryogenic fuel storage.

  15. Financial Assurance Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The Resource Conservation and Recovery Act (RCRA) requires all treatment, storage and disposal facilities (TSDFs) to demonstrate that they will have the financial resources to properly close the facility

  16. 40 CFR 94.509 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  17. 40 CFR 94.509 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  18. 40 CFR 94.509 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  19. 40 CFR 94.509 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disk, or some other method of data storage, depending upon the manufacturer's record retention..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  20. 36 CFR 1232.16 - What documentation must an agency create before it transfers records to a records storage facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What documentation must an agency create before it transfers records to a records storage facility? 1232.16 Section 1232.16 Parks... RECORDS TO RECORDS STORAGE FACILITIES § 1232.16 What documentation must an agency create before it...

  1. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  2. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  3. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  4. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  5. 40 CFR 63.11087 - What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline storage tanks if my facility is a bulk gasoline terminal, pipeline breakout station, or pipeline... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline... § 63.11087 What requirements must I meet for gasoline storage tanks if my facility is a bulk gasoline...

  6. 36 CFR § 1232.14 - What requirements must an agency meet before it transfers records to a records storage facility?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agency meet before it transfers records to a records storage facility? § 1232.14 Section § 1232.14 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO RECORDS STORAGE FACILITIES § 1232.14 What requirements must an agency meet before it...

  7. 303-K Storage Facility closure plan. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-15

    Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Codemore » (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.« less

  8. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-31

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  9. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-08-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material withmore » the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.« less

  10. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  11. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  12. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  13. 30 CFR 57.4130 - Surface electric substations and liquid storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liquid storage tanks. (3) Any group of containers used for storage of more than 60 gallons of flammable... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface electric substations and liquid storage facilities. 57.4130 Section 57.4130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...

  14. 75 FR 52937 - Turtle Bayou Gas Storage Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ...] Turtle Bayou Gas Storage Company, LLC; Notice of Application August 20, 2010. Take notice that on August 6, 2010, Turtle Bayou Gas Storage Company, LLC (Turtle Bayou), One Office Park Circle, Suite 300..., operate, and maintain a new salt dome natural gas storage facility in two caverns and related facilities...

  15. 77 FR 37036 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... operation of natural gas facilities in Sheridan County and Campbell County, Wyoming and modification of underground storage facilities at its Baker Storage Reservoir in Fallon County, Montana. The details of... firm storage deliverability from its Baker Storage Reservoir that it will use to make up for declining...

  16. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. Thismore » paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)« less

  17. Safety evaluation for packaging (onsite) plutonium recycle test reactor graphite cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, T.

    This safety evaluation for packaging (SEP) provides the evaluation necessary to demonstrate that the Plutonium Recycle Test Reactor (PRTR) Graphite Cask meets the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B, fissile, non-highway route controlled quantities of radioactive material within the 300 Area of the Hanford Site. The scope of this SEP includes risk, shieldling, criticality, and.tiedown analyses to demonstrate that onsite transportation safety requirements are satisfied. This SEP also establishes operational and maintenance guidelines to ensure that transport of the PRTR Graphite Cask is performed safely in accordance with WHC-CM-2-14. This SEP is validmore » until October 1, 1999. After this date, an update or upgrade to this document is required.« less

  18. The Storage, Transportation, and Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Younker, J. L.

    2002-12-01

    The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form solubilities limit radionuclide releases, and the invert material below the package would further delay radionuclide movement. Fourth, rock units in the unsaturated and saturated zone at Yucca Mountain will delay and dilute any radionuclides that have migrated away from the emplacement tunnels. Fifth, disruptions due to volcanism, seismic events, or nuclear criticality have been evaluated and all are shown to have very low likelihood of causing unacceptable doses. Volcanism could result in a small, but calculable, dose during the regulatory period of 10,000 years.

  19. 40 CFR 90.704 - Maintenance of records; submission of information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  20. 40 CFR 90.704 - Maintenance of records; submission of information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  1. 40 CFR 90.704 - Maintenance of records; submission of information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  2. 40 CFR 90.704 - Maintenance of records; submission of information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the..., associated storage facility or port facility, and the date the engine was received at the testing facility...

  3. Underwater characterization of control rods for waste disposal using SMOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallozzi-Ulmann, A.; Couturier, P.; Amgarou, K.

    Storage of spent fuel assemblies in cooling ponds requires careful control of the geometry and proximity of adjacent assemblies. Measurement of the fuel burnup makes it possible to optimise the storage arrangement of assemblies taking into account the effect of the burnup on the criticality safety margins ('burnup credit'). Canberra has developed a measurement system for underwater measurement of spent fuel assemblies. This system, known as 'SMOPY', performs burnup measurements based on gamma spectroscopy (collimated CZT detector) and neutron counting (fission chamber). The SMOPY system offers a robust and waterproof detection system as well as the needed capability of performingmore » radiometric measurements in the harsh high dose - rate environments of the cooling ponds. The gamma spectroscopy functionality allows powerful characterization measurements to be performed, in addition to burnup measurement. Canberra has recently performed waste characterisation measurements at a Nuclear Power Plant. Waste activity assessment is important to control costs and risks of shipment and storage, to ensure that the activity level remains in the range allowed by the facility, and to declare activity data to authorities. This paper describes the methodology used for the SMOPY measurements and some preliminary results of a radiological characterisation of AIC control rods. After describing the features and normal operation of the SMOPY system, we describe the approach used for establishing an optimum control rod geometric scanning approach (optimum count time and speed) and the method of the gamma spectrometry measurements as well as neutron check measurements used to verify the absence of neutron sources in the waste. We discuss the results obtained including {sup 60}Co, {sup 110m}Ag and {sup 108m}Ag activity profiles (along the length of the control rods) and neutron results including Total Measurement Uncertainty evaluations. Full self-consistency checks were performed and these demonstrate the validity of the techniques. The results are described and analysed in the context of the measurement performance of the equipment. Different casks were fully characterized using a 60 mm{sup 3} CZT detector, to determine the total activities and spatial profiles. A total activity range measurement of 1x10{sup 8} - 1x10{sup 13} Bq/cm was found to be achievable. Finally, comments are made, based on our measurements, on the ability of this equipment for performing in-situ characterisation of wastes in the harsh environments typical of fuel assembly and waste storage ponds and silos. (authors)« less

  4. How we shipped our flip and standard too

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deigl, H.J.; Feltz, D.E.

    1984-07-01

    This paper highlights the planning and handling activities for the shipment of irradiated TRIGA fuel from Texas A and M University to the Argonne National Lab/West (ANL/West) reactor facility at Idaho Falls, Idaho. Attention is focused on the enormous time spent on the planning and preparations prior to the shipment. The actual handling time at the NSCR for three shipping packages containing a total 51 elements was only 4 days, but, the time spent in planning and preparation exceeded 16 months. The fuel was transferred for shipment without incident - and from a health physics standpoint the exercise went verymore » well. Whole body exposures and hand doses were minimal for such a large undertaking. ANL/West health physicists reported contamination of the lifting devices for the HFIR when they received the cask. These pieces were wipe tested and contamination was found to be less than 200 dpm. If they were contaminated we were extremely fortunate during handling not to contaminate our facility or personnel.« less

  5. Preparation for Testing, Safe Packing and Shipping of Spent Nuclear Fuel from IFIN-HH, Bucharest-Magurele to Russian Federation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragolici, C.A.; Zorliu, A.; Popa, V.

    2007-07-01

    The Russian Research Reactor Fuel Return (RRRFR) program is promoted by IAEA and DOE in order to repatriate of irradiated research reactor fuel originally supplied by Russia to facilities outside the country. Developed under the framework of the Global Threat Reduction Initiative (GTRI) the take-back program [1] common goal is to reduce both proliferation and security risks by eliminating or consolidating inventories of high-risk material. The main objective of this program is to support the return to Russian Federation of fresh or irradiated HEU and LEU fuel. Being part of this project, Romania is fulfilling its tasks by examining transportmore » and transfer cask options, assessment of transport routes, and providing cost estimates for required equipment and facility modifications. Spent Nuclear Fuel (SNF) testing, handling, packing and shipping are the most common interests on which the National Institute of Research and Development for Physics and Nuclear Engineering 'Horia Hulubei' (IFIN-HH) is focusing at the moment. (authors)« less

  6. 36 CFR 1234.14 - What are the requirements for environmental controls for records storage facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false What are the requirements for environmental controls for records storage facilities? 1234.14 Section 1234.14 Parks, Forests, and Public... storage space that is designed to preserve them for their full retention period. New records storage...

  7. Spent nuclear fuel dry transfer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, L.; Agace, S.

    The U.S. Department of Energy is currently engaged in a cooperative program with the Electric Power Research Institute (EPRI) to design a spent nuclear fuel dry transfer system (DTS). The system will enable the transfer of individual spent nuclear fuel assemblies between a conventional top loading cask and multi-purpose canister in a shielded overpack, or accommodate spent nuclear fuel transfers between two conventional casks.

  8. Safety evaluation for packaging for the transport of K Basin sludge samples in the PAS-1 cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMITH, R.J.

    1998-11-17

    This safety evaluation for packaging authorizes the shipment of up to two 4-L sludge samples to and from the 325 Lab or 222-S Lab for characterization. The safety of this shipment is based on the current U.S. Department of Energy Certification of Compliance (CoC) for the PAS-1 cask, USA/9184/B(U) (DOE).

  9. US NRC-Sponsored Research on Stress Corrosion Cracking Susceptibility of Dry Storage Canister Materials in Marine Environments - 13344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberson, Greg; Dunn, Darrell; Mintz, Todd

    2013-07-01

    At a number of locations in the U.S., spent nuclear fuel (SNF) is maintained at independent spent fuel storage installations (ISFSIs). These ISFSIs, which include operating and decommissioned reactor sites, Department of Energy facilities in Idaho, and others, are licensed by the U.S. Nuclear Regulatory Commission (NRC) under Title 10 of the Code of Federal Regulations, Part 72. The SNF is stored in dry cask storage systems, which most commonly consist of a welded austenitic stainless steel canister within a larger concrete vault or overpack vented to the external atmosphere to allow airflow for cooling. Some ISFSIs are located inmore » marine environments where there may be high concentrations of airborne chloride salts. If salts were to deposit on the canisters via the external vents, a chloride-rich brine could form by deliquescence. Austenitic stainless steels are susceptible to chloride-induced stress corrosion cracking (SCC), particularly in the presence of residual tensile stresses from welding or other fabrication processes. SCC could allow helium to leak out of a canister if the wall is breached or otherwise compromise its structural integrity. There is currently limited understanding of the conditions that will affect the SCC susceptibility of austenitic stainless steel exposed to marine salts. NRC previously conducted a scoping study of this phenomenon, reported in NUREG/CR-7030 in 2010. Given apparent conservatisms and limitations in this study, NRC has sponsored a follow-on research program to more systematically investigate various factors that may affect SCC including temperature, humidity, salt concentration, and stress level. The activities within this research program include: (1) measurement of relative humidity (RH) for deliquescence of sea salt, (2) SCC testing within the range of natural absolute humidity, (3) SCC testing at elevated temperatures, (4) SCC testing at high humidity conditions, and (5) SCC testing with various applied stresses. Results to date indicate that the deliquescence RH for sea salt is close to that of MgCl{sub 2} pure salt. SCC is observed between 35 and 80 deg. C when the ambient (RH) is close to or higher than this level, even for a low surface salt concentration. (authors)« less

  10. Progress on the decommissioning of Zion nuclear generating station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moloney, B. P.; Hess, J.

    2013-07-01

    The decommissioning of the twin 1040 MWe PWRs at Zion, near Chicago USA is a ground breaking programme. The original owner, Exelon Nuclear Corporation, transferred the full responsibility for reactor dismantling and site license termination to a subsidiary of EnergySolutions. The target end state of the Zion site for return to Exelon will be a green field with the exception of the dry fuel storage pad. In return, ZionSolutions has access to the full value of the decommissioning trust fund. There are two potential attractions of this model: lower overall cost and significant schedule acceleration. The Zion programme which commencedmore » in September 2010 is designed to return the cleared site with an Independent Spent Fuel Storage Installation (ISFSI) pad in 2020, 12 years earlier than planned by Exelon. The overall cost, at $500 M per full size power reactor is significantly below the long run trend of $750 M+ per PWR. Implementation of the accelerated programme has been underway for nearly three years and is making good progress. The programme is characterised by numerous projects proceeding in parallel. The critical path is defined by the inspection and removal of fuel from the pond and transfer into dry fuel storage casks on the ISFSI pad and completion of RPV segmentation. Fuel loading is expected to commence in mid- 2013 with completion in late 2014. In parallel, ZionSolutions is proceeding with the segmentation of the Reactor Vessel (RV) and internals in both Units. Removal of large components from Unit 1 is underway. Numerous other projects are underway or have been completed to date. They include access openings into both containments, installation of heavy lift crane capacity, rail upgrades to support waste removal from the site, radiological characterization of facilities and equipment and numerous related tasks. As at February 2013, the programme is just ahead of schedule and within the latest budget. The paper will provide a fuller update. The first two years of the Zion programme offer some interesting learning opportunities. The critical importance of leadership and project control systems will be emphasised in the paper. Strong supplier relationships and good community cooperation are essential. A learning and adaptable team, incentivised to meet schedule and budget, drives affordability of the whole programme. Our key lessons so far concern organisation and people as much as engineering and technology. (authors)« less

  11. Thermal Storage Process and Components Laboratory | Energy Systems

    Science.gov Websites

    Integration Facility | NREL Process and Components Laboratory Thermal Storage Process and Components Laboratory The Energy Systems Integration Facility's Thermal Systems Process and Components Laboratory supports research and development, testing, and evaluation of new thermal energy storage systems

  12. SSC OCIO, IT SUMMIT 2011

    NASA Technical Reports Server (NTRS)

    Cottrell, Dinna L.

    2011-01-01

    The Stennis Space Center (SSC) Records Retention Facility is a centralized location for all SSC records, Records Management staff, and the SSC History Office. The building is a storm resistant facility and provides a secure environment for records housing. The Records Retention Facility was constructed in accordance with The National Archives and Records Administration (NARA) requirements for records storage, making it the first NARA compliant facility in the agency. Stennis Space Center's Records Retention Facility became operational in May 2010. The SSC Records Retention Facility ensures that the required federal records are preserved, managed and accessible to all interested personnel. The facility provides 20,000 cubic feet of records storage capacity for the purpose of managing the centers consolidated records within a central, protected environment. Records housed in the facility are in the form of paper, optical, film and magnetic media. Located within the SSC Records Retention Facility, the Records Management Office provides comprehensive records management services in the form of: a) Storage and life-cycle management of inactive records of all media types; b) Digitizing/scanning of records and documents; c) Non-textual/digital electronic records media storage, migration and transfer; d) Records Remediation.

  13. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mo; Nakshatrala, Kalyana; William, Kasper

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels ofmore » protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.« less

  14. 78 FR 12050 - S. Martinez Livestock, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... traditional turbine-generator facility. The pumped storage facility would consist of: (1) A new upper... storage facility would be 86,430 megawatt hours. The turbine-generator facility would consist of: (1) an... turbine-generator unit. The estimated annual generation of the turbine generator unit would be 17,286...

  15. Work Plan: Phase II Investigation at the Former CCC/USDA Grain Storage Facility in Montgomery City, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, Lorraine M

    From September 1949 until September 1966, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) leased property at the southeastern end of Montgomery City, Missouri, for the operation of a grain storage facility. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities.

  16. Alternative Splicing of a Novel Inducible Exon Diversifies the CASK Guanylate Kinase Domain

    PubMed Central

    Dembowski, Jill A.; An, Ping; Scoulos-Hanson, Maritsa; Yeo, Gene; Han, Joonhee; Fu, Xiang-Dong; Grabowski, Paula J.

    2012-01-01

    Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5′ splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide. PMID:23008758

  17. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    PubMed

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  18. FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. K. Morton

    2012-08-01

    Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energy’s Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuelmore » cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.« less

  19. SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-15-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF IRRADIATED FUEL STORAGE FACILITY LOCATED IN FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-16-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

Top