Science.gov

Sample records for caspase dcp-1 reveals

  1. The role of the effector caspases drICE and dcp-1 for cell death and corpse clearance in the developing optic lobe in Drosophila.

    PubMed

    Akagawa, Hiromi; Hara, Yusuke; Togane, Yu; Iwabuchi, Kikuo; Hiraoka, Tsuyoshi; Tsujimura, Hidenobu

    2015-08-15

    In the developing Drosophila optic lobe, cell death occurs via apoptosis and in a distinctive spatio-temporal pattern of dying cell clusters. We analyzed the role of effector caspases drICE and dcp-1 in optic lobe cell death and subsequent corpse clearance using mutants. Neurons in many clusters required either drICE or dcp-1 and each one is sufficient. This suggests that drICE and dcp-1 function in cell death redundantly. However, dying neurons in a few clusters strictly required drICE but not dcp-1, but required drICE and dcp-1 when drICE activity was reduced via hypomorphic mutation. In addition, analysis of the mutants suggests an important role of effecter caspases in corpse clearance. In both null and hypomorphic drICE mutants, greater number of TUNEL-positive cells were observed than in wild type, and many TUNEL-positive cells remained until later stages. Lysotracker staining showed that there was a defect in corpse clearance in these mutants. All the results suggested that drICE plays an important role in activating corpse clearance in dying cells, and that an additional function of effector caspases is required for the activation of corpse clearance as well as that for carrying out cell death.

  2. Two-headed tetraphosphate cap analogs are inhibitors of the Dcp1/2 RNA decapping complex.

    PubMed

    Ziemniak, Marcin; Mugridge, Jeffrey S; Kowalska, Joanna; Rhoads, Robert E; Gross, John D; Jemielity, Jacek

    2016-04-01

    Dcp1/2 is the major eukaryotic RNA decapping complex, comprised of the enzyme Dcp2 and activator Dcp1, which removes the 5' m(7)G cap from mRNA, committing the transcript to degradation. Dcp1/2 activity is crucial for RNA quality control and turnover, and deregulation of these processes may lead to disease development. The molecular details of Dcp1/2 catalysis remain elusive, in part because both cap substrate (m(7)GpppN) and m(7)GDP product are bound by Dcp1/2 with weak (mM) affinity. In order to find inhibitors to use in elucidating the catalytic mechanism of Dcp2, we screened a small library of synthetic m(7)G nucleotides (cap analogs) bearing modifications in the oligophosphate chain. One of the most potent cap analogs, m(7)GpSpppSm(7)G, inhibited Dcp1/2 20 times more efficiently than m(7)GpppN or m(7)GDP. NMR experiments revealed that the compound interacts with specific surfaces of both regulatory and catalytic domains of Dcp2 with submillimolar affinities. Kinetics analysis revealed that m(7)GpSpppSm(7)G is a mixed inhibitor that competes for the Dcp2 active site with micromolar affinity. m(7)GpSpppSm(7)G-capped RNA undergoes rapid decapping, suggesting that the compound may act as a tightly bound cap mimic. Our identification of the first small molecule inhibitor of Dcp2 should be instrumental in future studies aimed at understanding the structural basis of RNA decapping and may provide insight toward the development of novel therapeutically relevant decapping inhibitors. © 2016 Ziemniak et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Hsp83 loss suppresses proteasomal activity resulting in an upregulation of caspase-dependent compensatory autophagy

    PubMed Central

    Choutka, Courtney; DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B.; Gorski, Sharon M.

    2017-01-01

    ABSTRACT The 2 main degradative pathways that contribute to proteostasis are the ubiquitin-proteasome system and autophagy but how they are molecularly coordinated is not well understood. Here, we demonstrate an essential role for an effector caspase in the activation of compensatory autophagy when proteasomal activity is compromised. Functional loss of Hsp83, the Drosophila ortholog of human HSP90 (heat shock protein 90), resulted in reduced proteasomal activity and elevated levels of the effector caspase Dcp-1. Surprisingly, genetic analyses showed that the caspase was not required for cell death in this context, but instead was essential for the ensuing compensatory autophagy, female fertility, and organism viability. The zymogen pro-Dcp-1 was found to interact with Hsp83 and undergo proteasomal regulation in an Hsp83-dependent manner. Our work not only reveals unappreciated roles for Hsp83 in proteasomal activity and regulation of Dcp-1, but identifies an effector caspase as a key regulatory factor for sustaining adaptation to cell stress in vivo. PMID:28806103

  4. Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire.

    PubMed

    Eckhart, Leopold; Ballaun, Claudia; Hermann, Marcela; VandeBerg, John L; Sipos, Wolfgang; Uthman, Aumaid; Fischer, Heinz; Tschachler, Erwin

    2008-05-01

    Proteases of the caspase family play central roles in apoptosis and inflammation. Recently, we have described a new gene encoding caspase-15 that has been inactivated independently in different mammalian lineages. To determine the dynamics of gene duplication and loss in the entire caspase gene family, we performed a comprehensive evolutionary analysis of mammalian caspases. By comparative genomics and reverse transcriptase-polymerase chain reaction analyses, we identified 3 novel mammalian caspase genes, which we tentatively named caspases-16 through -18. Caspase-16, which is most similar in sequence to caspase-14, has been conserved in marsupials and placental mammals, including humans. Caspase-17, which is most similar to caspase-3, has been conserved among fish, frog, chicken, lizard, and the platypus but is absent from marsupials and placental mammals. Caspase-18, which is most similar to caspase-8, has been conserved among chicken, platypus, and opossum but is absent from placental mammals. These gene distribution patterns suggest that, in the evolutionary lineage leading to humans, caspase-17 was lost after the split of protherian and therian mammals and caspase-18 was lost after the split of marsupials and placental mammals. In the canine genome, the number of caspases has been reduced by the fusion of the neighboring genes caspases-1 and -4, resulting in a single coding region. Further lineage-specific gene inactivations were found for caspase-10 in murine rodents and caspase-12 in humans, rabbit, and cow. Lineage-specific gene duplications were found for caspases-1, -3, and -12 in opossum and caspase-4 in primates. Other caspases were generally conserved in all mammalian species investigated. Using the positions of introns as stable characters during recent vertebrate evolution, we define 3 phylogenetic clades of caspase genes: caspases-1/-2/-4/-5/-9/-12/-14/-15/-16 (clade I), caspases-3/-6/-7/-17 (clade II), and caspases-8/-10/-18/CFLAR (clade III). We

  5. The P body protein Dcp1a is hyper-phosphorylated during mitosis.

    PubMed

    Aizer, Adva; Kafri, Pinhas; Kalo, Alon; Shav-Tal, Yaron

    2013-01-01

    Processing bodies (PBs) are non-membranous cytoplasmic structures found in all eukaryotes. Many of their components such as the Dcp1 and Dcp2 proteins are highly conserved. Using live-cell imaging we found that PB structures disassembled as cells prepared for cell division, and then began to reassemble during the late stages of cytokinesis. During the cell cycle and as cells passed through S phase, PB numbers increased. However, there was no memory of PB numbers between mother and daughter cells. Examination of hDcp1a and hDcp1b proteins by electrophoresis in mitotic cell extracts showed a pronounced slower migrating band, which was caused by hyper-phosphorylation of the protein. We found that hDcp1a is a phospho-protein during interphase that becomes hyper-phosphorylated in mitotic cells. Using truncations of hDcp1a we localized the region important for hyper-phosphorylation to the center of the protein. Mutational analysis demonstrated the importance of serine 315 in the hyper-phosphorylation process, while other serine residues tested had a minor affect. Live-cell imaging demonstrated that serine mutations in other regions of the protein affected the dynamics of hDcp1a association with the PB structure. Our work demonstrates the control of PB dynamics during the cell cycle via phosphorylation.

  6. Conformational similarity in the activation of caspase-3 and -7 revealed by the unliganded and inhibited structures of caspase-7

    SciTech Connect

    Agniswamy, Johnson; Fang, Bin; Weber, Irene T.

    2009-09-08

    Caspase-mediated apoptosis has important roles in normal cell differentiation and aging and in many diseases including cancer, neuromuscular disorders and neurodegenerative diseases. Therefore, modulation of caspase activity and conformational states is of therapeutic importance. We report crystal structures of a new unliganded conformation of caspase-7 and the inhibited caspase-7 with the tetrapeptide Ac-YVAD-Cho. Different conformational states and mechanisms for substrate recognition have been proposed based on unliganded structures of the redundant apoptotic executioner caspase-3 and -7. The current study shows that the executioner caspase-3 and -7 have similar conformations for the unliganded active site as well as the inhibitor-bound active site. The new unliganded caspase-7 structure exhibits the tyrosine flipping mechanism in which the Tyr230 has rotated to block entry to the S2 binding site similar to the active site conformation of unliganded caspase-3. The inhibited structure of caspase-7/YVAD shows that the P4 Tyr binds the S4 region specific to polar residues at the expense of a main chain hydrogen bond between the P4 amide and carbonyl oxygen of caspase-7 Gln 276, which is similar to the caspase-3 complex. This new knowledge of the structures and conformational states of unliganded and inhibited caspases will be important for the design of drugs to modulate caspase activity and apoptosis.

  7. Structural basis of mRNA cap recognition by Dcp1–Dcp2

    PubMed Central

    Mugridge, Jeffrey S; Ziemniak, Marcin; Jemielity, Jacek; Gross, John D

    2016-01-01

    Removal of the 5′ cap on mRNA by the decapping enzyme Dcp2 is a critical step in 5′-to-3′ mRNA decay. Understanding the structural basis of Dcp2 activity has been a significant challenge because Dcp2 is dynamic, with weak affinity for cap substrate. Here we present a 2.6-Å-resolution crystal structure of a heterotrimer of fission yeast Dcp2, its essential activator Dcp1, and the human NMD cofactor PNRC2, in complex with a tight-binding cap analog. Cap binding is accompanied by a conformational change of Dcp2 to form a composite nucleotide binding site using conserved residues on the catalytic and regulatory domains. Kinetic analysis of PNRC2 reveals a conserved short linear motif enhances both substrate affinity and the catalytic step of decapping. These findings explain why Dcp2 requires a conformational change for efficient catalysis and reveals that coactivators can promote RNA binding and the catalytic step of decapping, possibly through different conformational states. PMID:27694842

  8. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition.

    PubMed

    Borja, Mark S; Piotukh, Kirill; Freund, Christian; Gross, John D

    2011-02-01

    Cap hydrolysis is a critical step in several eukaryotic mRNA decay pathways and is carried out by the evolutionarily conserved decapping complex containing Dcp2 at the catalytic core. In yeast, Dcp1 is an essential activator of decapping and coactivators such as Edc1 and Edc2 are thought to enhance activity, though their mechanism remains elusive. Using kinetic analysis we show that a crucial function of Dcp1 is to couple the binding of coactivators of decapping to activation of Dcp2. Edc1 and Edc2 bind Dcp1 via its EVH1 proline recognition site and stimulate decapping by 1000-fold, affecting both the K(M) for mRNA and rate of the catalytic step. The C-terminus of Edc1 is necessary and sufficient to enhance the catalytic step, while the remainder of the protein likely increases mRNA binding to the decapping complex. Lesions in the Dcp1 EVH1 domain or the Edc1 proline-rich sequence are sufficient to block stimulation. These results identify a new role of Dcp1, which is to link the binding of coactivators to substrate recognition and activation of Dcp2.

  9. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.

    PubMed

    Asplund-Samuelsson, Johannes; Bergman, Birgitta; Larsson, John

    2012-01-01

    Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18%) were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota). Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes.

  10. Prokaryotic Caspase Homologs: Phylogenetic Patterns and Functional Characteristics Reveal Considerable Diversity

    PubMed Central

    Asplund-Samuelsson, Johannes; Bergman, Birgitta; Larsson, John

    2012-01-01

    Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18%) were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota). Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes. PMID:23185476

  11. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects

    PubMed Central

    Takemoto, Kiwamu; Nagai, Takeharu; Miyawaki, Atsushi; Miura, Masayuki

    2003-01-01

    Indicator molecules for caspase-3 activation have been reported that use fluorescence resonance energy transfer (FRET) between an enhanced cyan fluorescent protein (the donor) and enhanced yellow fluorescent protein (EYFP; the acceptor). Because EYFP is highly sensitive to proton (H+) and chloride ion (Cl−) levels, which can change during apoptosis, this indicator's ability to trace the precise dynamics of caspase activation is limited, especially in vivo. Here, we generated an H+- and Cl−-insensitive indicator for caspase activation, SCAT, in which EYFP was replaced with Venus, and monitored the spatio-temporal activation of caspases in living cells. Caspase-3 activation was initiated first in the cytosol and then in the nucleus, and rapidly reached maximum activation in 10 min or less. Furthermore, the nuclear activation of caspase-3 preceded the nuclear apoptotic morphological changes. In contrast, the completion of caspase-9 activation took much longer and its activation was attenuated in the nucleus. However, the time between the initiation of caspase-9 activation and the morphological changes was quite similar to that seen for caspase-3, indicating the activation of both caspases occurred essentially simultaneously during the initiation of apoptosis. PMID:12527749

  12. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles.

    PubMed

    Julien, Olivier; Zhuang, Min; Wiita, Arun P; O'Donoghue, Anthony J; Knudsen, Giselle M; Craik, Charles S; Wells, James A

    2016-04-05

    Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events.

  13. Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles

    PubMed Central

    Zhuang, Min; Wiita, Arun P.; O’Donoghue, Anthony J.; Knudsen, Giselle M.; Craik, Charles S.; Wells, James A.

    2016-01-01

    Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events. PMID:27006500

  14. Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling.

    SciTech Connect

    Fang, Bin; Fu, Guoxing; Agniswamy, Johnson; Harrison, Robert W.; Weber, Irene T.

    2009-03-31

    Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9-2.6 {angstrom}. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.

  15. Genetic Variants in the PIWI-piRNA Pathway Gene DCP1A Predict Melanoma Disease-specific Survival

    PubMed Central

    Zhang, Weikang; Liu, Hongliang; Yin, Jieyun; Wu, Wenting; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Li, Yi; Han, Jiali; Wei, Qingyi

    2017-01-01

    The Piwi-piRNA pathway is important for germ cell maintenance, genome integrity, DNA methylation and retrotransposon control and thus may be involved in cancer development. In the present study, we comprehensively analyzed prognostic roles of 3,116 common SNPs in PIWI-piRNA pathway genes in melanoma disease-specific survival. A published genome-wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used to identify associated SNPs, which were later validated by another GWAS from the Harvard Nurses’ Health Study and Health Professionals Follow-up Study. After multiple testing correction, we found that there were 27 common SNPs in two genes (PIWIL4 and DCP1A) with false discovery rate < 0.2 in the discovery dataset. Three tagSNPs (i.e., rs7933369 and rs508485 in PIWIL4; rs11551405 in DCP1A) were replicated. The rs11551405 A allele, located at the 3’ UTR microRNA binding site of DCP1A, was associated with an increased risk of melanoma disease-specific death in both discovery dataset [adjusted Hazards ratio (HR) = 1.66, 95% confidence interval (CI) = 1.21–2.27, P =1.50×10−3] and validation dataset (HR = 1.55, 95% CI = 1.03–2.34, P = 0.038), compared with the C allele, and their meta-analysis showed an HR of 1.62 (95% CI,1.26–2.08, P =1.55×10−4). Using RNA-seq data from the 1000 Genomes Project, we found that DCP1A mRNA expression levels increased significantly with the A allele number of rs11551405. Additional large, prospective studies are needed to validate these findings. PMID:27578485

  16. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins.

    PubMed

    Strasser, Bettina; Mlitz, Veronika; Fischer, Heinz; Tschachler, Erwin; Eckhart, Leopold

    2015-05-01

    The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent.

  17. Comparative genomics reveals conservation of filaggrin and loss of caspase-14 in dolphins

    PubMed Central

    Strasser, Bettina; Mlitz, Veronika; Fischer, Heinz; Tschachler, Erwin; Eckhart, Leopold

    2015-01-01

    The expression of filaggrin and its stepwise proteolytic degradation are critical events in the terminal differentiation of epidermal keratinocytes and in the formation of the skin barrier to the environment. Here, we investigated whether the evolutionary transition from a terrestrial to a fully aquatic lifestyle of cetaceans, that is dolphins and whales, has been associated with changes in genes encoding filaggrin and proteins involved in the processing of filaggrin. We used comparative genomics, PCRs and re-sequencing of gene segments to screen for the presence and integrity of genes coding for filaggrin and proteases implicated in the maturation of (pro)filaggrin. Filaggrin has been conserved in dolphins (bottlenose dolphin, orca and baiji) but has been lost in whales (sperm whale and minke whale). All other S100 fused-type genes have been lost in cetaceans. Among filaggrin-processing proteases, aspartic peptidase retroviral-like 1 (ASPRV1), also known as saspase, has been conserved, whereas caspase-14 has been lost in all cetaceans investigated. In conclusion, our results suggest that filaggrin is dispensable for the acquisition of fully aquatic lifestyles of whales, whereas it appears to confer an evolutionary advantage to dolphins. The discordant evolution of filaggrin, saspase and caspase-14 in cetaceans indicates that the biological roles of these proteins are not strictly interdependent. PMID:25739514

  18. Genome sequence comparison reveals independent inactivation of the caspase-15 gene in different evolutionary lineages of mammals.

    PubMed

    Eckhart, Leopold; Uthman, Aumaid; Sipos, Wolfgang; Tschachler, Erwin

    2006-11-01

    We have recently demonstrated that placental mammalian species such as pig and dog express a novel proapoptotic protease, caspase-15, whereas mouse and humans lack this enzyme. Here we investigated the evolutionary fate of the caspase-15 gene in different mammalian lineages by analyzing whole-genome shotgun sequences of 30 mammalian species for the presence of caspase-15 orthologs. Caspase-15 gene sequences were found in representatives of all major mammalian clades except for the superorders Afrotheria (tenrec, rock hyrax, and elephant) and Euarchontoglires (rodents, rabbit, tree shrew, and primates), which either lacked any caspase-15-like sequences or contained mutated remnants of the caspase-15 gene. Polymerase chain reaction screenings confirmed the results of the database searches and showed that the caspase-15 gene is expressed not only in various placental mammals but also in the marsupial, Monodelphis domestica. The observed species distribution implies that caspase-15 has originated in an early ancestor of modern mammals and has been conserved, over more than 180 Myr, in marsupials and many placental mammals, whereas it was independently lost in 2 phylogenetically distant clades of placental mammals, that is, Afrotheria and Euarchontoglires. Our data suggest that the inactivation of the caspase-15 gene was not counteracted by, and may even have been driven by, evolutionary constraints in these clades, and therefore, caution against the uncritical use of gene absence for the inference of phylogenetic relationships.

  19. Acinus integrates AKT1 and subapoptotic caspase activities to regulate basal autophagy.

    PubMed

    Nandi, Nilay; Tyra, Lauren K; Stenesen, Drew; Krämer, Helmut

    2014-10-27

    How cellular stresses up-regulate autophagy is not fully understood. One potential regulator is the Drosophila melanogaster protein Acinus (Acn), which is necessary for autophagy induction and triggers excess autophagy when overexpressed. We show that cell type-specific regulation of Acn depends on proteolysis by the caspase Dcp-1. Basal Dcp-1 activity in developing photoreceptors is sufficient for this cleavage without a need for apoptosis to elevate caspase activity. On the other hand, Acn was stabilized by loss of Dcp-1 function or by the presence of a mutation in Acn that eliminates its conserved caspase cleavage site. Acn stability also was regulated by AKT1-mediated phosphorylation. Flies that expressed stabilized forms of Acn, either the phosphomimetic Acn(S641,731D) or the caspase-resistant Acn(D527A), exhibited enhanced basal autophagy. Physiologically, these flies showed improvements in processes known to be autophagy dependent, including increased starvation resistance, reduced Huntingtin-induced neurodegeneration, and prolonged life span. These data indicate that AKT1 and caspase-dependent regulation of Acn stability adjusts basal autophagy levels.

  20. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo

    PubMed Central

    Ding, Austin Xun; Sun, Gongping; Argaw, Yewubdar G; Wong, Jessica O; Easwaran, Sreesankar; Montell, Denise J

    2016-01-01

    Caspase-3 carries out the executioner phase of apoptosis, however under special circumstances, cells can survive its activity. To document systematically where and when cells survive caspase-3 activation in vivo, we designed a system, CasExpress, which drives fluorescent protein expression, transiently or permanently, in cells that survive caspase-3 activation in Drosophila. We discovered widespread survival of caspase-3 activity. Distinct spatial and temporal patterns emerged in different tissues. Some cells activated caspase-3 during their normal development in every cell and in every animal without evidence of apoptosis. In other tissues, such as the brain, expression was sporadic both temporally and spatially and overlapped with periods of apoptosis. In adults, reporter expression was evident in a large fraction of cells in most tissues of every animal; however the precise patterns varied. Inhibition of caspase activity in wing discs reduced wing size demonstrating functional significance. The implications of these patterns are discussed. DOI: http://dx.doi.org/10.7554/eLife.10936.001 PMID:27058168

  1. Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response.

    PubMed

    Liu, Ting; Yamaguchi, Yoshifumi; Shirasaki, Yoshitaka; Shikada, Koichi; Yamagishi, Mai; Hoshino, Katsuaki; Kaisho, Tsuneyasu; Takemoto, Kiwamu; Suzuki, Toshihiko; Kuranaga, Erina; Ohara, Osamu; Miura, Masayuki

    2014-08-21

    Inflammasome-mediated caspase-1 activation is involved in cell death and the secretion of the proinflammatory cytokine interleukin-1β (IL-1β). Although the dynamics of caspase-1 activation, IL-1β secretion, and cell death have been examined with bulk assays in population-level studies, they remain poorly understood at the single-cell level. In this study, we conducted single-cell imaging using a genetic fluorescence resonance energy transfer sensor that detects caspase-1 activation. We determined that caspase-1 exhibits all-or-none (digital) activation at the single-cell level, with similar activation kinetics irrespective of the type of inflammasome or the intensity of the stimulus. Real-time concurrent detection of caspase-1 activation and IL-1β release demonstrated that dead macrophages containing activated caspase-1 release a local burst of IL-1β in a digital manner, which identified these macrophages as the main source of IL-1β within cell populations. Our results highlight the value of single-cell analysis in enhancing understanding of the inflammasome system and chronic inflammatory diseases.

  2. Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

    PubMed Central

    Shin, Ju-Hyun

    2016-01-01

    Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery. PMID:27847434

  3. Differential proteomic analysis of HL60 cells treated with secalonic acid F reveals caspase 3-induced cleavage of Rho GDP dissociation inhibitor 2.

    PubMed

    Li, Ning; Yi, Zhiwei; Wang, Yuqiao; Zhang, Qin; Zhong, Tianhua; Qiu, Yinkun; Wu, Zhen; Tang, Xixiang

    2012-12-01

    Secalonic acid F (SAF) has been previously identified, however, little is known about its cytotoxic activity and related cytotoxic mechanism. The aim of this study was to evaluate the cytotoxic activity of SAF isolated from a deep sea originated fungus Penicillium sp. F11 in HL60 cells and to analyze the differences in protein expression of HL60 cells treated with SAF. The CCK-8 assay and Annexin V-FLUOS/PI assay indicated that SAF displayed dose- and time-dependent inhibition of HL60 cell proliferation and induced apoptosis. Two-dimensional gel electrophoresis (2-DE) analysis of HL60 cells treated with SAF (4 µg/ml) revealed 10 differentially expressed protein spots (P<0.05), 5 upregulated and 5 downregulated. Three spots (1 downregulated and 2 upregulated) were identified as Rho GDP dissociation inhibitor 2 (RhoGDI 2) proteins by MALDI-TOF MS. Western blotting further demonstrated the decreased abundance of full-length RhoGDI 2 together with the increased abundance of caspase 3-cleaved product of RhoGDI 2. The caspase 3 inhibitor Ac-DEVD-CHO could suppress the cytotoxic effect of SAF and significantly block the cleavage of RhoGDI 2. RhoGDI 2 is a cytosolic regulator of Rho GTPase and the caspase 3-cleaved product of RhoGDI 2 can advance progression of the apoptotic process. Our data showed that SAF may modulate RhoGDI 2 levels in HL60 cells, thereby potentially disrupting cell signaling pathways important for HL60 cell function.

  4. The Assembly of EDC4 and Dcp1a into Processing Bodies Is Critical for the Translational Regulation of IL-6.

    PubMed

    Seto, Eri; Yoshida-Sugitani, Reiko; Kobayashi, Toshihiko; Toyama-Sorimachi, Noriko

    2015-01-01

    Macrophages play critical roles in the onset of various diseases and in maintaining homeostasis. There are several functional subsets, of which M1 and M2 macrophages are of particular interest because they are differentially involved in inflammation and its resolution. Here, we investigated the differences in regulatory mechanisms between M1- and M2-polarized macrophages by examining mRNA metabolic machineries such as stress granules (SGs) and processing bodies (P-bodies). Human monocytic leukemia THP-1 cells cultured under M1-polarizing conditions (M1-THPs) had less ability to assemble oxidative-stress-induced SGs than those cultured under M2-polarizing conditions (M2-THPs). In contrast, P-body assembly in response to oxidative stress or TLR4 stimulation was increased in M1-THPs as compared to M2-THPs. These results suggest that mRNA metabolism is controlled differently in M1-THPs and M2-THPs. Interestingly, knocking down EDC4 or Dcp1a, which are components of P-bodies, severely reduced the production of IL-6, but not TNF-α in M1-THPs without decreasing the amount of IL-6 mRNA. This is the first report to demonstrate that the assembly of EDC4 and Dcp1a into P-bodies is critical in the posttranscriptional regulation of IL-6. Thus, improving our understanding of the mechanisms governing mRNA metabolism by examining macrophage subtypes may lead to new therapeutic targets.

  5. The Assembly of EDC4 and Dcp1a into Processing Bodies Is Critical for the Translational Regulation of IL-6

    PubMed Central

    Kobayashi, Toshihiko; Toyama-Sorimachi, Noriko

    2015-01-01

    Macrophages play critical roles in the onset of various diseases and in maintaining homeostasis. There are several functional subsets, of which M1 and M2 macrophages are of particular interest because they are differentially involved in inflammation and its resolution. Here, we investigated the differences in regulatory mechanisms between M1- and M2-polarized macrophages by examining mRNA metabolic machineries such as stress granules (SGs) and processing bodies (P-bodies). Human monocytic leukemia THP-1 cells cultured under M1-polarizing conditions (M1-THPs) had less ability to assemble oxidative-stress-induced SGs than those cultured under M2-polarizing conditions (M2-THPs). In contrast, P-body assembly in response to oxidative stress or TLR4 stimulation was increased in M1-THPs as compared to M2-THPs. These results suggest that mRNA metabolism is controlled differently in M1-THPs and M2-THPs. Interestingly, knocking down EDC4 or Dcp1a, which are components of P-bodies, severely reduced the production of IL-6, but not TNF-α in M1-THPs without decreasing the amount of IL-6 mRNA. This is the first report to demonstrate that the assembly of EDC4 and Dcp1a into P-bodies is critical in the posttranscriptional regulation of IL-6. Thus, improving our understanding of the mechanisms governing mRNA metabolism by examining macrophage subtypes may lead to new therapeutic targets. PMID:25970328

  6. A novel cell lysis approach reveals that caspase-2 rapidly translocates from the nucleus to the cytoplasm in response to apoptotic stimuli.

    PubMed

    Tinnikov, Alexander A; Samuels, Herbert H

    2013-01-01

    Unlike other caspases, caspase-2 appears to be a nuclear protein although immunocytochemical studies have suggested that it may also be localized to the cytosol and golgi. Where and how caspase-2 is activated in response to apoptotic signals is not clear. Earlier immunocytochemistry studies suggest that caspase-2 is activated in the nucleus and through cleavage of BID leads to increased mitochondrial permeability. More recent studies using bimolecular fluorescence complementation found that caspase-2 oligomerization that leads to activation only occurs in the cytoplasm. Thus, apoptotic signals may lead to activation of caspase-2 which may already reside in the cytoplasm or lead to release of nuclear caspase-2 to the extra-nuclear cytoplasmic compartment. It has not been possible to study release of nuclear caspase-2 to the cytoplasm by cell fractionation studies since cell lysis is known to release nuclear caspase-2 to the extra-nuclear fraction. This is similar to what is known about unliganded nuclear estrogen receptor-α (ERα ) when cells are disrupted. In this study we found that pre-treatment of cells with N-ethylmaleimide (NEM), which alkylates cysteine thiol groups in proteins, completely prevents redistribution of caspase-2 and ERα from the nucleus to the extra-nuclear fraction when cells are lysed. Using this approach we provide evidence that apoptotic signals rapidly leads to a shift of caspase-2 from the nucleus to the extra-nuclear fraction, which precedes the detection of apoptosis. These findings are consistent with a model where apoptotic signals lead to a rapid shift of caspase-2 from the nucleus to the cytoplasm where activation occurs.

  7. Apoptotic and nonapoptotic function of caspase 7 in spermatogenesis.

    PubMed

    Lei, Bin; Zhou, Xuming; Lv, Daojun; Wan, Bo; Wu, Huayan; Zhong, Liren; Shu, Fangpeng; Mao, Xiangming

    2017-01-01

    Recent studies have reported that caspase 7 has an apoptotic and nonapoptotic function. However, the relationship between caspase 7 and spermatogenesis remains unknown. This study aimed to investigate the possible function of caspase 7 during normal and abnormal spermatogenesis. The cleaved form of caspase 7 was detected in testis tissues at different postpartum times (5-14 weeks) by qRT-PCR, Western blot and immunohistochemistry (IHC). Then, the mice models of spermatogenic dysfunction were obtained by busulfan (30 mg kg-1 to further evaluate the potential function and mechanism of caspase 7. qRT-PCR and Western blot results showed that caspase 7 expression was gradually elevated from 5 to 14 weeks, which was not connected with apoptosis. IHC results revealed that caspase 7 was mainly located in spermatogenic cells and Leydig cells. In addition, spermatogenic dysfunction induced by busulfan gradually enhanced the apoptosis and elevated the expression of caspase 3, caspase 6, and caspase 9, but decreased the expression of caspase 7 in spermatogenic cells. However, when spermatogenic cells were mostly disappeared at the fourth week after busulfan treatment, caspase 7 expression in Leydig cells was significantly increased and positively correlated with the expression of caspase 3, caspase 6, and caspase 9. Therefore, these results indicate that caspase 7 has a nonapoptic function that participates in normal spermatogenesis, but also displays apoptotic function in spermatogenic dysfunction.

  8. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell.

    PubMed

    Miyamoto, Akitoshi; Miyauchi, Hiroshi; Kogure, Takako; Miyawaki, Atsushi; Michikawa, Takayuki; Mikoshiba, Katsuhiko

    2015-04-24

    Stimulus-induced changes in the intracellular Ca(2+) concentration control cell fate decision, including apoptosis. However, the precise patterns of the cytosolic Ca(2+) signals that are associated with apoptotic induction remain unknown. We have developed a novel genetically encoded sensor of activated caspase-3 that can be applied in combination with a genetically encoded sensor of the Ca(2+) concentration and have established a dual imaging system that enables the imaging of both cytosolic Ca(2+) signals and caspase-3 activation, which is an indicator of apoptosis, in the same cell. Using this system, we identified differences in the cytosolic Ca(2+) signals of apoptotic and surviving DT40 B lymphocytes after B cell receptor (BCR) stimulation. In surviving cells, BCR stimulation evoked larger initial Ca(2+) spikes followed by a larger sustained elevation of the Ca(2+) concentration than those in apoptotic cells; BCR stimulation also resulted in repetitive transient Ca(2+) spikes, which were mediated by the influx of Ca(2+) from the extracellular space. Our results indicate that the observation of both Ca(2+) signals and cells fate in same cell is crucial to gain an accurate understanding of the function of intracellular Ca(2+) signals in apoptotic induction.

  9. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus.

    PubMed

    Qin, Lvgao; Xia, Hengchuan; Shi, Haifeng; Zhou, Yajing; Chen, Liang; Yao, Qin; Liu, Xiaoyong; Feng, Fan; Yuan, Yi; Chen, Keping

    2012-06-27

    The silkworm Bombyx mori is of great economic value. The B. mori nuclear polyhedrosis virus (BmNPV) is one of the most common and severe pathogens for silkworm. Although certain immune mechanisms exist in silkworms, most silkworms are still susceptible to BmNPV infection. Interestingly, BmNPV infection resistance in some silkworm strains is varied and naturally existing. We have previously established a silkworm strain NB by genetic cross, which is highly resistant to BmNPV invasion. To investigate the molecular mechanism of silkworm resistance to BmNPV infection, we employed proteomic approach and genetic cross to globally identify proteins differentially expressed in parental silkworms NB and 306, a BmNPV-susceptible strain, and their F(1) hybrids. In all, 53 different proteins were found in direct cross group (NB♀, 306♂, F(1) hybrid) and 21 in reciprocal cross group (306♀, NB♂, F(1) hybrid). Gene ontology and KEGG pathway analyses showed that most of these different proteins are located in cytoplasm and are involved in many important metabolisms. Caspase-1 and serine protease expressed only in BmNPV-resistant silkworms, but not in BmNPV-susceptible silkworms, which was further confirmed by Western blot. Taken together, our data suggests that both caspase-1 and serine protease play a critical role in silkworm resistance against BmNPV infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Functional and biochemical characterization of the baculovirus caspase inhibitor MaviP35

    PubMed Central

    Brand, I L; Green, M M; Civciristov, S; Pantaki-Eimany, D; George, C; Gort, T R; Huang, N; Clem, R J; Hawkins, C J

    2011-01-01

    Many viruses express proteins which prevent the host cell death that their infection would otherwise provoke. Some insect viruses suppress host apoptosis through the expression of caspase inhibitors belonging to the P35 superfamily. Although a number of P35 relatives have been identified, Autographa californica (Ac) P35 and Spodoptera littoralis (Spli) P49 have been the most extensively characterized. AcP35 was found to inhibit caspases via a suicide substrate mechanism: the caspase cleaves AcP35 within its ‘reactive site loop' then becomes trapped, irreversibly bound to the cleaved inhibitor. The Maruca vitrata multiple nucleopolyhedrovirus encodes a P35 family member (MaviP35) that exhibits 81% identity to AcP35. We found that this relative shared with AcP35 the ability to inhibit mammalian and insect cell death. Caspase-mediated cleavage within the MaviP35 reactive site loop occurred at a sequence distinct from that in AcP35, and the inhibitory profiles of the two P35 relatives differed. MaviP35 potently inhibited human caspases 2 and 3, DCP-1, DRICE and CED-3 in vitro, but (in contrast to AcP35) only weakly suppressed the proteolytic activity of the initiator human caspases 8, 9 and 10. Although MaviP35 inhibited the AcP35-resistant caspase DRONC in yeast, and was sensitive to cleavage by DRONC in vitro, MaviP35 failed to inhibit the proteolytic activity of bacterially produced DRONC in vitro. PMID:22170098

  11. Functional and biochemical characterization of the baculovirus caspase inhibitor MaviP35.

    PubMed

    Brand, I L; Green, M M; Civciristov, S; Pantaki-Eimany, D; George, C; Gort, T R; Huang, N; Clem, R J; Hawkins, C J

    2011-12-15

    Many viruses express proteins which prevent the host cell death that their infection would otherwise provoke. Some insect viruses suppress host apoptosis through the expression of caspase inhibitors belonging to the P35 superfamily. Although a number of P35 relatives have been identified, Autographa californica (Ac) P35 and Spodoptera littoralis (Spli) P49 have been the most extensively characterized. AcP35 was found to inhibit caspases via a suicide substrate mechanism: the caspase cleaves AcP35 within its 'reactive site loop' then becomes trapped, irreversibly bound to the cleaved inhibitor. The Maruca vitrata multiple nucleopolyhedrovirus encodes a P35 family member (MaviP35) that exhibits 81% identity to AcP35. We found that this relative shared with AcP35 the ability to inhibit mammalian and insect cell death. Caspase-mediated cleavage within the MaviP35 reactive site loop occurred at a sequence distinct from that in AcP35, and the inhibitory profiles of the two P35 relatives differed. MaviP35 potently inhibited human caspases 2 and 3, DCP-1, DRICE and CED-3 in vitro, but (in contrast to AcP35) only weakly suppressed the proteolytic activity of the initiator human caspases 8, 9 and 10. Although MaviP35 inhibited the AcP35-resistant caspase DRONC in yeast, and was sensitive to cleavage by DRONC in vitro, MaviP35 failed to inhibit the proteolytic activity of bacterially produced DRONC in vitro.

  12. PANDER-induced cell-death genetic networks in islets reveal central role for caspase-3 and cyclin-dependent kinase inhibitor 1A (p21).

    PubMed

    Burkhardt, Brant R; Greene, Scott R; White, Peter; Wong, Ryan K; Brestelli, John E; Yang, Jichun; Robert, Claudia E; Brusko, Todd M; Wasserfall, Clive H; Wu, Jianmei; Atkinson, Mark A; Gao, Zhiyong; Kaestner, Klaus H; Wolf, Bryan A

    2006-03-15

    PANcreatic DERived factor is an islet-specific cytokine that promotes apoptosis in primary islets and islet cell lines. To elucidate the genetic mechanisms of PANDER-induced cell death we performed expression profiling using the mouse PancChip version 5.0 in conjunction with Ingenuity Pathway Analysis. Murine islets were treated with PANDER and differentially expressed genes were identified at 48 and 72 h post-treatment. 64 genes were differentially expressed in response to PANDER treatment. 22 genes are associated with cell death. In addition, the genes with the highest fold change were linked with cell death or apoptosis. The most significantly affected gene at 48 h was the downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A or p21). Approximately half of the genes impacted at 72 h were linked to cell death. Cell death differentially expressed genes were confirmed by quantitative RT-PCR. Further analysis identified cell death genetic networks at both time points with 21 of the 22 cell death genes related in various biological pathways. Caspase-3 (CASP3) was biologically linked to CDKN1A in several genetic networks and these two genes were further examined. Elevated cleaved CASP3 levels in PANDER-treated beta-TC3 insulinoma cells were found to abrogate CDKN1A expression. Levels of CDKN1A were not affected in the absence of cleaved CASP3. PANDER-induced downregulation of CDKN1A expression coupled with induced CASP3-activation may serve a central role in islet cell death and offers further insight into the mechanisms of cytokine-induced beta-cell apoptosis.

  13. Proteases for Cell Suicide: Functions and Regulation of Caspases

    PubMed Central

    Chang, Howard Y.; Yang, Xiaolu

    2000-01-01

    Caspases are a large family of evolutionarily conserved proteases found from Caenorhabditis elegans to humans. Although the first caspase was identified as a processing enzyme for interleukin-1β, genetic and biochemical data have converged to reveal that many caspases are key mediators of apoptosis, the intrinsic cell suicide program essential for development and tissue homeostasis. Each caspase is a cysteine aspartase; it employs a nucleophilic cysteine in its active site to cleave aspartic acid peptide bonds within proteins. Caspases are synthesized as inactive precursors termed procaspases; proteolytic processing of procaspase generates the tetrameric active caspase enzyme, composed of two repeating heterotypic subunits. Based on kinetic data, substrate specificity, and procaspase structure, caspases have been conceptually divided into initiators and effectors. Initiator caspases activate effector caspases in response to specific cell death signals, and effector caspases cleave various cellular proteins to trigger apoptosis. Adapter protein-mediated oligomerization of procaspases is now recognized as a universal mechanism of initiator caspase activation and underlies the control of both cell surface death receptor and mitochondrial cytochrome c-Apaf-1 apoptosis pathways. Caspase substrates have bene identified that induce each of the classic features of apoptosis, including membrane blebbing, cell body shrinkage, and DNA fragmentation. Mice deficient for caspase genes have highlighted tissue- and signal-specific pathways for apoptosis and demonstrated an independent function for caspase-1 and -11 in cytokine processing. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. PMID:11104820

  14. Proteasomal regulation of caspase-8 in cancer cell apoptosis.

    PubMed

    Fiandalo, Michael V; Schwarze, Steven R; Kyprianou, Natasha

    2013-06-01

    Previous studies demonstrated that proteasome inhibition sensitizes TRAIL resistant prostate cancer cells to TRAIL-mediated apoptosis via stabilization of the active p18 subunit of caspase-8. The present study investigated the impact of proteasome inhibition on caspase-8 stability, ubiquitination, trafficking, and activation in cancer cells. Using caspase-8 deficient neuroblastoma (NB7) cells for reconstituting non-cleavable mutant forms of caspase-8, we demonstrated that the non-cleavable forms of caspase-8 are capable of inducing apoptosis comparably to wild-type caspase-8, in response to proteasome inhibitor and GST-TRAIL. Moreover in the LNCaP human prostate cancer cells, caspase-8 polyubiquitination occurs after TRAIL stimulation and caspase-8 processing. Subcellular fractionation analysis revealed caspase-8 activity in both cytosol and plasma membrane fractions in both NB7 reconstituted caspase-8 cell lines, as well the LNCaP prostate cancer cells. The present results suggest that caspase-8 stabilization through proteasome inhibition leads to reactivation of the extrinsic pathway of apoptosis and identify E3 ligase mediating caspase-8 polyubiquitination, as a novel molecular target. Inhibition of this E3 ligase in combination with TRAIL towards restoring apoptosis signaling activation may have potential therapeutic significance in resistant tumors.

  15. Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death

    PubMed Central

    Thurston, Teresa L. M.; Matthews, Sophie A.; Jennings, Elliott; Alix, Eric; Shao, Feng; Shenoy, Avinash R.; Birrell, Mark A.; Holden, David W.

    2016-01-01

    Sensing bacterial products in the cytosol of mammalian cells by NOD-like receptors leads to the activation of caspase-1 inflammasomes, and the production of the pro-inflammatory cytokines interleukin (IL)-18 and IL-1β. In addition, mouse caspase-11 (represented in humans by its orthologs, caspase-4 and caspase-5) detects cytosolic bacterial LPS directly. Activation of caspase-1 and caspase-11 initiates pyroptotic host cell death that releases potentially harmful bacteria from the nutrient-rich host cell cytosol into the extracellular environment. Here we use single cell analysis and time-lapse microscopy to identify a subpopulation of host cells, in which growth of cytosolic Salmonella Typhimurium is inhibited independently or prior to the onset of cell death. The enzymatic activities of caspase-1 and caspase-11 are required for growth inhibition in different cell types. Our results reveal that these proteases have important functions beyond the direct induction of pyroptosis and proinflammatory cytokine secretion in the control of growth and elimination of cytosolic bacteria. PMID:27808091

  16. Mechanistic and Structural Understanding of Uncompetitive Inhibitors of Caspase-6

    PubMed Central

    Heise, Christopher E.; Murray, Jeremy; Augustyn, Katherine E.; Bravo, Brandon; Chugha, Preeti; Cohen, Frederick; Giannetti, Anthony M.; Gibbons, Paul; Hannoush, Rami N.; Hearn, Brian R.; Jaishankar, Priyadarshini; Ly, Cuong Q.; Shah, Kinjalkumar; Stanger, Karen; Steffek, Micah; Tang, Yinyan; Zhao, Xianrui; Lewcock, Joseph W.; Renslo, Adam R.; Flygare, John; Arkin, Michelle R.

    2012-01-01

    Inhibition of caspase-6 is a potential therapeutic strategy for some neurodegenerative diseases, but it has been difficult to develop selective inhibitors against caspases. We report the discovery and characterization of a potent inhibitor of caspase-6 that acts by an uncompetitive binding mode that is an unprecedented mechanism of inhibition against this target class. Biochemical assays demonstrate that, while exquisitely selective for caspase-6 over caspase-3 and -7, the compound’s inhibitory activity is also dependent on the amino acid sequence and P1’ character of the peptide substrate. The crystal structure of the ternary complex of caspase-6, substrate-mimetic and an 11 nM inhibitor reveals the molecular basis of inhibition. The general strategy to develop uncompetitive inhibitors together with the unique mechanism described herein provides a rationale for engineering caspase selectivity. PMID:23227217

  17. Caspase 12 in calnexin-deficient cells.

    PubMed

    Groenendyk, Jody; Zuppini, Anna; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2006-11-07

    We investigated a role for calnexin, caspase 12, and Bap31 in endoplasmic reticulum stress-induced apoptosis in calnexin-deficient mouse embryonic fibroblasts and a calnexin-deficient human T cell line (NKR). We showed that calnexin-deficient mouse embryonic fibroblasts are relatively resistant to endoplasmic reticulum stress-induced apoptosis. Western blot analysis demonstrated that both wild-type and calnexin-deficient cells contained a caspase 12 protein. Caspase 12 expression was slightly inhibited in calnexin-deficient cells, and the protein carried out specific cleavage in the presence of thapsigargin. Immunoprecipitation experiments revealed that in the endoplasmic reticulum, caspase 12 forms complexes with Bap31 and calnexin. Treatment of wild-type cells with thapsigargin induced apoptosis and cleavage of Bap31. However, in the absence of calnexin, there was no significant cleavage of Bap31. There was also a negligible processing of caspase 8 in these cells. This work indicates that calnexin may play a role in modulating the sensitivity of a cell to apoptosis induced by endoplasmic reticulum stress, in conjunction with caspase 12 and Bap31.

  18. Revisiting caspases in sepsis

    PubMed Central

    Aziz, M; Jacob, A; Wang, P

    2014-01-01

    Sepsis is a life-threatening illness that occurs due to an abnormal host immune network which extends through the initial widespread and overwhelming inflammation, and culminates at the late stage of immunosupression. Recently, interest has been shifted toward therapies aimed at reversing the accompanying periods of immune suppression. Studies in experimental animals and critically ill patients have demonstrated that increased apoptosis of lymphoid organs and some parenchymal tissues contributes to this immune suppression, anergy and organ dysfunction. Immediate to the discoveries of the intracellular proteases, caspases for the induction of apoptosis and inflammation, and their striking roles in sepsis have been focused elaborately in a number of original and review articles. Here we revisited the different aspects of caspases in terms of apoptosis, pyroptosis, necroptosis and inflammation and focused their links in sepsis by reviewing several recent findings. In addition, we have documented striking perspectives which not only rewrite the pathophysiology, but also modernize our understanding for developing novel therapeutics against sepsis. PMID:25412304

  19. In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila

    PubMed Central

    Tang, Ho Lam; Tang, Ho Man; Fung, Ming Chiu; Hardwick, J. Marie

    2017-01-01

    Caspases are the key mediators of apoptotic cell death via their proteolytic activity. When caspases are activated in cells to levels detectable by available technologies, apoptosis is generally assumed to occur shortly thereafter. Caspases can cleave many functional and structural components to cause rapid and complete cell destruction within a few minutes. However, accumulating evidence indicates that in normal healthy cells the same caspases have other functions, presumably at lower enzymatic levels. Studies of non-apoptotic caspase activity have been hampered by difficulties with detecting low levels of caspase activity and with tracking ultimate cell fate in vivo. Here, we illustrate the use of an ultrasensitive caspase reporter, CaspaseTracker, which permanently labels cells that have experienced caspase activity in whole animals. This in vivo dual color CaspaseTracker biosensor for Drosophila melanogaster transiently expresses red fluorescent protein (RFP) to indicate recent or on-going caspase activity, and permanently expresses green fluorescent protein (GFP) in cells that have experienced caspase activity at any time in the past yet did not die. Importantly, this caspase-dependent in vivo biosensor readily reveals the presence of non-apoptotic caspase activity in the tissues of organ systems throughout the adult fly. This is demonstrated using whole mount dissections of individual flies to detect biosensor activity in healthy cells throughout the brain, gut, malpighian tubules, cardia, ovary ducts and other tissues. CaspaseTracker detects non-apoptotic caspase activity in long-lived cells, as biosensor activity is detected in adult neurons and in other tissues at least 10 days after caspase activation. This biosensor serves as an important tool to uncover the roles and molecular mechanisms of non-apoptotic caspase activity in live animals. PMID:27929458

  20. Targeting caspases in cancer therapeutics

    PubMed Central

    Hensley, Patrick; Mishra, Murli; Kyprianou, Natasha

    2013-01-01

    The identification of the fundamental role of apoptosis in the growth balance and normal homeostasis against cell proliferation led to the recognition of its loss contributing to tumorigenesis. The mechanistic significance of reinstating apoptosis signaling towards selective targeting of malignant cells heavily exploits the caspase family of death-inducing molecules as a powerful therapeutic platform for the development of potent anticancer strategies. Some apoptosis inhibitors induce caspase expression and activity in preclinical models and clinical trials by targeting both the intrinsic and extrinsic apoptotic pathways and restoring the apoptotic capacity in human tumors. Furthermore, up-regulation of caspases emerges as a sensitizing mechanism for tumors exhibiting therapeutic resistance to radiation and adjuvant chemotherapy. This review provides a comprehensive discussion of the functional involvement of caspases in apoptosis control and the current understanding of reactivating caspase-mediated apoptosis signaling towards effective therapeutic modalities in cancer treatment. PMID:23509217

  1. Caspase-2: vestigial remnant or master regulator?

    PubMed

    Troy, Carol M; Ribe, Elena M

    2008-09-23

    Caspase-2, the second mammalian caspase to be identified and the most evolutionarily conserved caspase, has eluded classification. The lack of a profound phenotype in the caspase-2-deficient mouse resulted in decreased interest in caspase-2 for many years. However, advances in the field, including the identification of a potential activation complex and the development of methods to detect active caspase-2, now illuminate our understanding of the function of this caspase. These studies suggest that caspase-2 induces death through two pathways. First, caspase-2 induces cell death independently of the mitochondrial pathway, in a manner similar to that of ced-3, a caspase in Caenorhabditis elegans. Second, caspase-2 also induces cell death upstream of the mitochondrial pathway. The choice of pathway may depend on the type of death stimulus. The placing of caspase-2 upstream and independent of mitochondrial dysfunction provides a potentially new therapeutic target for aberrant cell death.

  2. Targeting caspases in intracellular protozoan infections.

    PubMed

    Guillermo, Landi V C; Pereira, Wânia F; De Meis, Juliana; Ribeiro-Gomes, Flavia L; Silva, Elisabeth M; Kroll-Palhares, Karina; Takiya, Christina M; Lopes, Marcela F

    2009-06-01

    Caspases are cysteine aspartases acting either as initiators (caspases 8, 9, and 10) or executioners (caspases 3, 6, and 7) to induce programmed cell death by apoptosis. Parasite infections by certain intracellular protozoans increase host cell life span by targeting caspase activation. Conversely, caspase activation, followed by apoptosis of lymphocytes and other cells, prevents effective immune responses to chronic parasite infection. Here we discuss how pharmacological inhibition of caspases might affect the immunity to protozoan infections, by either blocking or delaying apoptosis.

  3. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease.

    PubMed

    Gray, Daniel C; Mahrus, Sami; Wells, James A

    2010-08-20

    Apoptosis is a conserved cellular pathway that results in the activation of cysteine-aspartyl proteases, or caspases. To dissect the nonredundant roles of the executioner caspase-3, -6, and -7 in orchestrating apoptosis, we have developed an orthogonal protease to selectively activate each isoform in human cells. Our approach uses a split-tobacco etch virus (TEV) protease under small-molecule control, which we call the SNIPer, with caspase alleles containing genetically encoded TEV cleavage sites. These studies reveal that all three caspases are transiently activated but only activation of caspase-3 or -7 is sufficient to induce apoptosis. Proteomic analysis shown here and from others reveals that 20 of the 33 subunits of the 26S proteasome can be cut by caspases, and we demonstrate synergy between proteasome inhibition and dose-dependent caspase activation. We propose a model of proteolytic reciprocal negative regulation with mechanistic implications for the combined clinical use of proteasome inhibitors and proapoptotic drugs.

  4. Immunoblotting for active caspase-1.

    PubMed

    Jakobs, Christopher; Bartok, Eva; Kubarenko, Andrej; Bauernfeind, Franz; Hornung, Veit

    2013-01-01

    Immunoblotting for caspase-1 is the gold-standard method of detecting inflammasome activation. In contrast to IL-1β-based readouts, it can be used in an experimental setup independent of de novo gene expression. Here, we present protocols for the preparation and precipitation of supernatant samples containing activated caspase-1 as well as protocols for polyacrylamide gel electrophoresis (PAGE) and protein immunoblotting.

  5. Vital functions for lethal caspases.

    PubMed

    Launay, Sophie; Hermine, Olivier; Fontenay, Michaëla; Kroemer, Guido; Solary, Eric; Garrido, Carmen

    2005-08-04

    Caspases are a family of cysteine proteases expressed as inactive zymogens in virtually all animal cells. These enzymes play a central role in most cell death pathways leading to apoptosis but growing evidences implicate caspases also in nonapoptotic functions. Several of these enzymes, activated in molecular platforms referred to as inflammasomes, play a role in innate immune response by processing some of the cytokines involved in inflammatory response. Caspases are requested for terminal differentiation of specific cell types, whether this differentiation process leads to enucleation or not. These enzymes play also a role in T and B lymphocyte proliferation and, in some circumstances, appear to be cytoprotective rather than cytotoxic. These pleiotropic functions implicate caspases in the control of life and death but the fine regulation of their dual effect remains poorly understood. The nonapoptotic functions of caspases implicate that cells can restrict the proteolytic activity of these enzymes to selected substrates. Deregulation of the pathways in which caspases exert these nonapoptotic functions is suspected to play a role in the pathophysiology of several human diseases.

  6. Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart

    PubMed Central

    Cardona, Maria; López, Juan Antonio; Serafín, Anna; Rongvaux, Anthony; Inserte, Javier; García-Dorado, David; Flavell, Richard; Llovera, Marta; Cañas, Xavier; Vázquez, Jesús; Sanchis, Daniel

    2015-01-01

    Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development. PMID:26121671

  7. The executioners sing a new song: killer caspases activate microglia

    PubMed Central

    Venero, J L; Burguillos, M A; Brundin, P; Joseph, B

    2011-01-01

    Activation of microglia and inflammation-mediated neurotoxicity are suggested to have key roles in the pathogenesis of several neurodegenerative disorders. We recently published an article in Nature revealing an unexpected role for executioner caspases in the microglia activation process. We showed that caspases 8 and 3/7, commonly known to have executioner roles for apoptosis, can promote microglia activation in the absence of death. We found these caspases to be activated in microglia of PD and AD subjects. Inhibition of this signaling pathway hindered microglia activation and importantly reduced neurotoxicity in cell and animal models of disease. Here we review evidence suggesting that microglia can have a key role in the pathology of neurodegenerative disorders. We discuss possible underlying mechanisms regulating their activation and neurotoxic effect. We focus on the provocative hypothesis that caspase inhibition can be neuroprotective by targeting the microglia rather than the neurons themselves. PMID:21836616

  8. Old, new and emerging functions of caspases

    PubMed Central

    Shalini, S; Dorstyn, L; Dawar, S; Kumar, S

    2015-01-01

    Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases. PMID:25526085

  9. A comprehensive panel of turn-on caspase biosensors for investigating caspase specificity and caspase activation pathways.

    PubMed

    Shekhawat, Sujan S; Campbell, Sean T; Ghosh, Indraneel

    2011-10-17

    Caspases play a central role in apoptosis, differentiation, and proliferation, and represent important therapeutic targets for treating cancer and inflammatory disorders. Toward the goal of developing new tools to probe caspase substrate cleavage specificity as well as to systematically interrogate caspase activation pathways, we have constructed and investigated a comprehensive panel of caspase biosensors with a split-luciferase enabled bioluminescent read out. We first interrogated the panel of caspase biosensors for substrate cleavage specificity of caspase 1-10 in widely utilized in vitro translation systems, namely, rabbit reticulocyte lysate (RRL) and wheat germ extract (WGE). Commercial RRL was found to be unsuitable for investigating caspase specificity, owing to surprising levels of endogenous caspase activity, while specificity profiles of the caspase sensors in WGE agree very well with traditional peptide probes. The full panel of biosensors was utilized for studying caspase activation and inhibition in several mammalian cytosolic extracts, clearly demonstrating that they can be utilized to directly monitor activation or inhibition of procaspase 3/7. Furthermore, the complete panel of caspase biosensors also provided new insights into caspase activation pathways wherein we surprisingly discovered the activation of procaspase 3/7 by caspase 4/5.

  10. Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization

    PubMed Central

    Okamoto, Hitoshi

    2013-01-01

    In addition to being critical for apoptosis, components of the apoptotic pathway, such as caspases, are involved in other physiological processes in many types of cells, including neurons. However, very little is known about their role in dynamic, nonphysically destructive processes, such as axonal arborization and synaptogenesis. We show that caspases were locally active in vivo at the branch points of young, dynamic retinal ganglion cell axonal arbors but not in the cell body or in stable mature arbors. Caspase activation, dependent on Caspase-3, Caspase-9, and p38 mitogen-activated protein kinase (MAPK), rapidly increased at branch points corresponding with branch tip addition. Time-lapse imaging revealed that knockdown of Caspase-3 and Caspase-9 led to more stable arbors and presynaptic sites. Genetic analysis showed that Caspase-3, Caspase-9, and p38 MAPK interacted with Slit1a-Robo2 signaling, suggesting that localized activation of caspases lie downstream of a ligand receptor system, acting as key promoters of axonal branch tip and synaptic dynamics to restrict arbor growth in vivo in the central nervous system. PMID:24385488

  11. Interactome disassembly during apoptosis occurs independent of caspase cleavage.

    PubMed

    Scott, Nichollas E; Rogers, Lindsay D; Prudova, Anna; Brown, Nat F; Fortelny, Nikolaus; Overall, Christopher M; Foster, Leonard J

    2017-01-12

    Protein-protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas-mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome-wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases.

  12. Caspase 3 promotes genetic instability and carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan

    2015-01-01

    Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249

  13. Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion-endoplasmic reticulum cross talk in etoposide-induced cell death.

    PubMed

    Chandra, Dhyan; Choy, Grace; Deng, Xiaodi; Bhatia, Bobby; Daniel, Peter; Tang, Dean G

    2004-08-01

    It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca(2+)-dependent mechanism.

  14. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17

    PubMed Central

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E.; Alberts, David; Bowden, G.Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2015-01-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. PMID:26271098

  15. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17.

    PubMed

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E; Alberts, David; Bowden, G Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M; Surh, Young-Joon; Cho, Yong-Yeon; Dong, Zigang

    2015-11-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Specific inhibition of caspase-3 by a competitive DARPin: molecular mimicry between native and designed inhibitors.

    PubMed

    Schroeder, Thilo; Barandun, Jonas; Flütsch, Andreas; Briand, Christophe; Mittl, Peer R E; Grütter, Markus G

    2013-02-05

    Dysregulation of apoptosis is associated with several human diseases. The main apoptotic mediators are caspases, which propagate death signals to downstream targets. Executioner caspase-3 is responsible for the majority of cleavage events and its therapeutic potential is of high interest with to date several available active site peptide inhibitors. These molecules inhibit caspase-3, but also homologous caspases. Here, we describe caspase-3 specific inhibitors D3.4 and D3.8, which have been selected from a library of designed ankyrin repeat proteins (DARPins). The crystal structures of D3.4 and mutants thereof show how high specificity and inhibition is achieved. They also show similarities in the binding mode with that of the natural caspase inhibitor XIAP (X-linked inhibitor of apoptosis). The kinetic data reveal a competitive inhibition mechanism. D3.4 is specific for caspase-3 and does not bind the highly homologous caspase-7. D3.4 therefore is an excellent tool to define the precise role of caspase-3 in the various apoptotic pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Loss of caspase-2 augments lymphomagenesis and enhances genomic instability in Atm-deficient mice.

    PubMed

    Puccini, Joseph; Shalini, Sonia; Voss, Anne K; Gatei, Magtouf; Wilson, Claire H; Hiwase, Devendra K; Lavin, Martin F; Dorstyn, Loretta; Kumar, Sharad

    2013-12-03

    Caspase-2, the most evolutionarily conserved member of the caspase family, has been shown to be involved in apoptosis induced by various stimuli. Our recent work indicates that caspase-2 has putative functions in tumor suppression and protection against cellular stress. As such, the loss of caspase-2 enhances lymphomagenesis in Eµ-Myc transgenic mice, and caspase-2 KO (Casp2(-/-)) mice show characteristics of premature aging. However, the extent and specificity of caspase-2 function in tumor suppression is currently unclear. To further investigate this, ataxia telangiectasia mutated KO (Atm(-/-)) mice, which develop spontaneous thymic lymphomas, were used to generate Atm(-/-)Casp2(-/-) mice. Initial characterization revealed that caspase-2 deficiency enhanced growth retardation and caused synthetic perinatal lethality in Atm(-/-) mice. A comparison of tumor susceptibility demonstrated that Atm(-/-)Casp2(-/-) mice developed tumors with a dramatically increased incidence compared with Atm(-/-) mice. Atm(-/-)Casp2(-/-) tumor cells displayed an increased proliferative capacity and extensive aneuploidy that coincided with elevated oxidative damage. Furthermore, splenic and thymic T cells derived from premalignant Atm(-/-)Casp2(-/-) mice also showed increased levels of aneuploidy. These observations suggest that the tumor suppressor activity of caspase-2 is linked to its function in the maintenance of genomic stability and suppression of oxidative damage. Given that ATM and caspase-2 are important components of the DNA damage and antioxidant defense systems, which are essential for the maintenance of genomic stability, these proteins may synergistically function in tumor suppression by regulating these processes.

  18. Multifunctional murrel caspase 1, 2, 3, 8 and 9: Conservation, uniqueness and their pathogen-induced expression pattern.

    PubMed

    Kumaresan, Venkatesh; Ravichandran, Gayathri; Nizam, Faizal; Dhayanithi, Nagarajan Balachandran; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Harikrishnan, Ramasamy; Arockiaraj, Jesu

    2016-02-01

    Caspases are evolutionarily conserved proteases which play fundamental role in apoptosis. Invasion of pathogen triggers the activation of caspases-mediated pro-inflammatory and pro-apoptotic pathways, where multifunctional caspases are involved. In striped murrel Channa striatus, epizootic ulcerative syndrome (EUS) causes endemics resulting in huge economic loss. Aphanomyces invadans, an oomycete is the primary causative agent of EUS which further induces secondary bacterial infections especially Aeromonas hydrophila. In order to get insights into the caspase gene family in C. striatus during EUS infection, we performed various physicochemical and structural analyses on the cDNA and protein sequences of five different murrel caspases namely CsCasp 1, 2, 3, 8 and 9. Sequence analysis of murrel caspase proteins showed that in spite of the conserved CASC domain, each caspase embraces some unique features which made them functionally different. Tissue distribution analysis showed that all the murrel caspases are highly expressed in one of the immune organs such as liver, kidney, spleen and blood cells. Further, to understand the role of caspase during EUS infection, modulation in expression of each caspase gene was analysed after inducing fungal and bacterial infection in C. striatus. Pathogen-induced gene expression pattern revealed an interesting fact that the expression of all the caspase genes reached a maximum level at 24 h post-infection (p.i) in case of bacteria, whereas it was 48 h in fungus. However, the initiation of elevated expression differed between each caspase based on their role such as pro-inflammatory, initiator and executioner caspase. Overall, the results suggested that the caspases in murrel are diverse in their structure and function. Here, we discuss the similarities and differences of five different murrel caspases.

  19. Caspases rule the intracellular trafficking cartel.

    PubMed

    Duclos, Catherine; Lavoie, Christine; Denault, Jean-Bernard

    2017-05-01

    During apoptosis, caspases feast on several hundreds of cellular proteins to orchestrate rapid cellular demise. Indeed, caspases are known to get a taste of every cellular process in one way or another, activating some, but most often shutting them down. Thus, it is not surprising that caspases proteolyze proteins involved in intracellular trafficking with particularly devastating consequences for this important process. This review article focuses on how caspases target the machinery responsible for smuggling goods within and outside the cell. © 2017 Federation of European Biochemical Societies.

  20. Suture compression induced midpalatal suture chondrocyte apoptosis with increased caspase-3, caspase-9, Bad, Bak, Bax and Bid expression.

    PubMed

    Lan, Tingting; Zhao, Hanchi; Xiang, Bilu; Wang, Jun; Liu, Yang

    2017-07-22

    Previous studies found bone resorption and chondrocytes loss in mouse models of mid-palatal suture when given continuous compressive force, although chondrocytes response remained unknown. Herein, we design this study to determine how continuous compression force induces chondrocytes apoptosis. Thirty C57BL/6 male mice (aged 6 weeks) were randomly assigned into controls (not ligated to a spring), blank controls (ligated with no compression) and the compression group (ligated with 20-g compression). After 4 d, palatal tissues were sampled and stained by TB and safranin-O. Tunel staining measured the percentage of apoptotic chondrocytes, and immunohistochemistry was performed to label apoptosis-associated proteins (e.g., Bcl-2, Bcl-xl, Bax, Bak, Bid, Bad, caspase-3, caspase-8 and caspase-9). Intergroup comparison was made by the rank sum test, and P < 0.05 was defined as statistical significance. After 7d of induction, TB and safranin-O staining revealed that the cartilage area in the compression group was significantly decreased, while the control group remained largely unaltered. Tunel staining showed that apoptotic cell numbers in the mid-palatal suture were significantly higher than the control group. Immunohistochemistry showed that mice in the compression group had significantly increased expression of caspase-3, caspase-9, Bad, Bak, Bax and Bid; However, caspase-8 remained unaltered. No expression of Bcl-2 and Bcl-xl was detected. Continuous compression force induces chondrocytes apoptosis in the mid-palatal suture. This process might be associated with the mitochondrial pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. TCR-induced, PKC-θ-mediated NF-κB Activation Is Regulated by a Caspase-8-Caspase-9-Caspase-3 Cascade

    PubMed Central

    Zhao, Yixia; Lei, Minxiang; Wang, Zhaoyuan; Qiao, Guilin; Yang, Tianlun; Zhang, Jian

    2014-01-01

    It has been documented that caspase-8, a central player in apoptosis, is also crucial for TCR-mediated NF-κB activation. However, whether other caspases are also involved this process is unknown. In this report, we showed that in addition to caspase-8, caspase-9 is required for TCR-mediated NF-κB activation. Caspase-9 induces activation of PKC-θ, phosphorylation of Bcl10 and NF-κB activation in a caspase-3-dependent manner, but it appears that Bcl10 phosphorylation is uncoupled from NF-κB activation. Furthermore, caspase-8 lies upstream of caspase-9 during T cell activation. Therefore, TCR ligation elicits a caspase cascade involving caspase-8, caspase-9 and caspase-3 which initiates PKC-θ-dependent pathway leading to NF-κB activation and PKC-θ-independent Bcl10 phosphorylation which limits NF-kB activity. PMID:24924627

  2. Caspase Exploitation by Legionella pneumophila

    PubMed Central

    Krause, Kathrin; Amer, Amal O.

    2016-01-01

    Legionella pneumophila remains a major health concern, especially for hospitalized patients. L. pneumophila in the environment can survive extracellular or as protozoan parasite within amoeba. After human infection it efficiently replicates in alveolar macrophages without activating inflammasome assembly and cleavage of caspase-1. In contrast murine macrophages actively recognize intracellular L. pneumophila via inflammasome components which initiate pro-inflammatory cytokine secretion, phagosomal maturation and pyroptotic cell death thereby leading to bacterial restriction. During this process flagellin-dependent and -independent signaling pathways trigger the canonical as well as the non-canonical inflammasome. This review describes the current knowledge about L. pneumophila-induced inflammasome pathways in permissive and restrictive host cells. PMID:27148204

  3. Flavone initiates a hierarchical activation of the caspase-cascade in colon cancer cells.

    PubMed

    Erhart, L M; Lankat-Buttgereit, B; Schmidt, H; Wenzel, U; Daniel, H; Göke, R

    2005-05-01

    There is emerging evidence that dietary factors can prevent cancer by affecting the process of carcinogenesis. Flavonoids present in vegetarian food possess antioxidant activities, have scavenging effects on activated carcinogens and mutagens, affect cell cycle progression and alter gene and protein expression. We report here that flavone, the core structure of the flavone subgroup, potently inhibits proliferation and induces apoptosis in HCT-116 colon cancer cells. Flavone induces the activation of caspases 2, 3, 8, 9 and 10 and a decrease of mitochondrial anti-apoptotic Bcl(2) protein expression. Further analysis revealed that caspase 10 activation is mediated via caspase 1. Additionally, treatment with flavone results in release of the mitochondrial apoptosis-inducing factor (AIF), the key trigger of caspase-independent apoptosis, into the cytosol. In summary, our data show that flavone induces apoptosis in a caspase-dependent and -independent manner.

  4. Hypoxic induction of caspase-11/caspase-1/interleukin-1beta in brain microglia.

    PubMed

    Kim, Nam-Gon; Lee, Heasuk; Son, Eunyung; Kwon, Oh-Young; Park, Jae-Yong; Park, Jae-Hoon; Cho, Gyeong Jae; Choi, Wan Sung; Suk, Kyoungho

    2003-06-10

    Caspase-11 is an inducible protease that plays an important role in both inflammation and apoptosis. Inflammatory stimuli induce and activate caspase-11, which is required for the activation of caspase-1 or interleukin-1beta (IL-1beta) converting enzyme (ICE). Caspase-1 in turn mediates the maturation of proinflammatory cytokines such as IL-1beta, which is one of the crucial mediators of neurodegeneration in the central nervous system. Here, we report that hypoxic exposure of cultured brain microglia (BV-2 mouse microglia cells and rat primary microglial cultures) induces expression and activation of caspase-11, which is accompanied by activation of caspase-1 and secretion of mature IL-1beta and IL-18. Hypoxic induction of caspase-11 was observed in both mRNA and protein levels, and was mediated through p38 mitogen-activated protein kinase pathway. Transient global ischemia in rats also induced caspase-11 expression and IL-1beta production in hippocampus supporting our in vitro findings. Caspase-11-expressing cells in hippocampus were morphologically identified as microglia. Taken together, our results indicate that hypoxia induces a sequential event-caspase-11 induction, caspase-1 activation, and IL-1beta release-in brain microglia, and point out the importance of initial caspase-11 induction in hypoxia-induced inflammatory activation of microglia.

  5. Prion Pathogenesis is Independent of Caspase-12

    PubMed Central

    Steele, Andrew D; Hetz, Claudio; Yi, Caroline H; Jackson, Walker S; Borkowski, Andrew W; Yuan, Junying; Wollmann, Robert H

    2007-01-01

    The pathogenic mechanism(s) underlying neurodegenerative diseases associated with protein misfolding is unclear. Several studies have implicated ER stress pathways in neurodegenerative conditions, including prion disease, amyotrophic lateral sclerosis, Alzheimer's disease and many others. The ER stress response and upregulation of ER stress-responsive chaperones is observed in the brains of patients affected with Creutzfeldt-Jacob disease and in mouse models of prion diseases. In particular, the processing of caspase-12, an ER-localized caspase, correlates with neuronal cell death in prion disease. However, the contribution of caspase-12 to neurodegeneration has not been directly addressed in vivo. We confirm that ER stress is induced and that caspase-12 is proteolytically processed in a murine model of infectious prion disease. To address the causality of caspase-12 in mediating infectious prion pathogenesis, we inoculated mice deficient in caspase-12 with prions. The survival, behavior, pathology and accumulation of proteinase K-resistant PrP are indistinguishable between caspase-12 knockout and control mice, suggesting that caspase-12 is not necessary for mediating the neurotoxic effects of prion protein misfolding. PMID:19164919

  6. Caspase activity during cell stasis: avoidance of apoptosis in an invertebrate extremophile, Artemia franciscana.

    PubMed

    Menze, Michael A; Hand, Steven C

    2007-05-01

    Evaluation of apoptotic processes downstream of the mitochondrion reveals caspase-9- and low levels of caspase-3-like activities in partly purified extracts of Artemia franciscana embryos. However, in contrast to experiments with extracts of human hepatoma cells, cytochrome c fails to activate caspase-3 or -9 in extracts from A. franciscana. Furthermore, caspase-9 activity is sensitive to exogenous calcium. The addition of 5 mM calcium leads to a 4.86 +/- 0.19 fold (SD) (n = 3) increase in activity, which is fully prevented with 150 mM KCl. As with mammalian systems, high ATP (>1.25 mM) suppresses caspase activity in A. franciscana extracts. A strong inhibition of caspase-9 activity was also found by GTP. Comparison of GTP-induced inhibition of caspase-9 at 0 and 2.5 mM MgCl(2) indicates that free (nonchelated) GTP is likely to be the inhibitory form. The strongest inhibition among all nucleotides tested was with ADP. Inhibition by ADP in the presence of Mg(2+) is 60-fold greater in diapause embryos than in postdiapause embryos. Because ADP does not change appreciably in concentration between the two physiological states, it is likely that this differential sensitivity to Mg(2+)-ADP is important in avoiding caspase activation during diapause. Finally, mixtures of nucleotides that mimic physiological concentrations in postdiapause and diapause states underscore the depressive action of these regulators on caspase-9 during diapause. Our biochemical characterization of caspase-like activity in A. franciscana extracts reveals that multiple mechanisms are in place to reduce the probability of apoptosis under conditions of energy limitation in this embryo.

  7. c-Maf increases apoptosis in peripheral CD8 cells by transactivating Caspase 6

    PubMed Central

    Peng, Siying; Wu, Hailong; Mo, Yin-Yuan; Watabe, Kounosuke; Pauza, Mary E

    2009-01-01

    In addition to transactivation of interleukin-4 (IL-4), cellular muscular aponeurotic fibrosarcoma (c-Maf) enhances CD4 cell apoptosis by limiting Bcl-2 expression. The CD8 cells also express c-Maf and peripheral CD8 cell numbers are reduced in c-Maf transgenic mice, suggesting that c-Maf may influence CD8 cell survival in a manner similar to CD4 cells. Here we confirm that, similar to CD4 cells, c-Maf enhances CD8 cell susceptibility to apoptosis induced by multiple stimuli, independent of IL-4. However, unlike CD4 cells, c-Maf enhancement of apoptosis is independent of Bcl-2, suggesting that c-Maf uses other mechanisms to regulate CD8 cell apoptosis. Real-time reverse transcription–polymerase chain reaction reveals that the pro-apoptotic gene Caspase 6 is upregulated in c-Maf transgenic CD8 cells, suggesting that Caspase 6 is a novel c-Maf target gene. Luciferase reporter assays and site-directed mutagenesis reveal a functional c-Maf recognition element (MARE) within the first intron of Caspase 6. Binding of c-Maf to the MARE site is detectable by chromatin immunoprecipitation using non-transgenic T-cell lysates, so c-Maf can interact with the Caspase 6 MARE site in normal T cells. Furthermore, caspase 6 activity is increased among CD8 cells from c-Maf transgenic mice following T-cell receptor engagement. As expected, activity of the downstream caspases 3 and 7 is also increased. Consistent with the ability of caspase 6 to participate in positive feedback loops, cytochrome c release and caspase 8 activation are also increased. Together these results indicated that c-Maf increases CD8 cell sensitivity to apoptotic stimuli, at least in part, by direct transactivation of Caspase 6, providing increased substrate for Caspase 6-dependent apoptosis pathways. PMID:19476513

  8. Molecular basis of caspase-1 polymerization and its inhibition by a novel capping mechanism

    PubMed Central

    Lu, Alvin; Li, Yang; Schmidt, Florian I.; Yin, Qian; Chen, Shuobing; Fu, Tian-Min; Tong, Alexander B.; Ploegh, Hidde L.; Mao, Youdong; Wu, Hao

    2016-01-01

    Inflammasomes are cytosolic caspase-1 activation complexes that sense intrinsic and extrinsic danger signals to trigger inflammatory responses and pyroptotic cell death. Homotypic interactions by Pyrin domains (PYD) and caspase recruitment domains (CARD) in inflammasome component proteins mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only the interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of human caspase-1CARD filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins, human inhibitor of CARD (INCA or CARD17) and ICEBERG (or CARD18). Our results reveal the surprising finding that INCA caps caspase-1 filament, thereby exerting potent inhibition with low nanomolar Ki on caspase-1CARD polymerization in vitro and inflammasome activation in cells. While caspase-1CARD uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces to terminate caspase-1 filament. PMID:27043298

  9. In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity

    PubMed Central

    Tang, Ho Lam; Tang, Ho Man; Fung, Ming Chiu; Hardwick, J. Marie

    2015-01-01

    The discovery that mammalian cells can survive late-stage apoptosis challenges the general assumption that active caspases are markers of impending death. However, tools have not been available to track healthy cells that have experienced caspase activity at any time in the past. Therefore, to determine if cells in whole animals can undergo reversal of apoptosis, known as anastasis, we developed a dual color CaspaseTracker system for Drosophila to identify cells with ongoing or past caspase activity. Transient exposure of healthy females to environmental stresses such as cold shock or starvation activated the CaspaseTracker coincident with caspase activity and apoptotic morphologies in multiple cell types of developing egg chambers. Importantly, when stressed flies were returned to normal conditions, morphologically healthy egg chambers and new progeny flies were labeled by the biosensor, suggesting functional recovery from apoptotic caspase activation. In striking contrast to developing egg chambers, which lack basal caspase biosensor activation under normal conditions, many adult tissues of normal healthy flies exhibit robust caspase biosensor activity in a portion of cells, including neurons. The widespread persistence of CaspaseTracker-positivity implies that healthy cells utilize active caspases for non-apoptotic physiological functions during and after normal development. PMID:25757939

  10. Differential roles of caspase-1 and caspase-11 in infection and inflammation

    PubMed Central

    Ming Man, Si; Karki, Rajendra; Briard, Benoit; Burton, Amanda; Gingras, Sebastien; Pelletier, Stephane; Kanneganti, Thirumala-Devi

    2017-01-01

    Caspase-1, also known as interleukin-1β (IL-1β)-converting enzyme (ICE), regulates antimicrobial host defense, tissue repair, tumorigenesis, metabolism and membrane biogenesis. On activation within an inflammasome complex, caspase-1 induces pyroptosis and converts pro-IL-1β and pro-IL-18 into their biologically active forms. “ICE−/−” or “Casp1−/−” mice generated using 129 embryonic stem cells carry a 129-associated inactivating passenger mutation on the caspase-11 locus, essentially making them deficient in both caspase-1 and caspase-11. The overlapping and unique functions of caspase-1 and caspase-11 are difficult to unravel without additional genetic tools. Here, we generated caspase-1–deficient mouse (Casp1Null) on the C57BL/6 J background that expressed caspase-11. Casp1Null cells did not release IL-1β and IL-18 in response to NLRC4 activators Salmonella Typhimurium and flagellin, canonical or non-canonical NLRP3 activators LPS and ATP, Escherichia coli, Citrobacter rodentium and transfection of LPS, AIM2 activators Francisella novicida, mouse cytomegalovirus and DNA, and the infectious agents Listeria monocytogenes and Aspergillus fumigatus. We further demonstrated that caspase-1 and caspase-11 differentially contributed to the host defense against A. fumigatus infection and to endotoxemia. PMID:28345580

  11. Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation.

    PubMed

    Loison, Fabien; Zhu, Haiyan; Karatepe, Kutay; Kasorn, Anongnard; Liu, Peng; Ye, Keqiang; Zhou, Jiaxi; Cao, Shannan; Gong, Haiyan; Jenne, Dieter E; Remold-O'Donnell, Eileen; Xu, Yuanfu; Luo, Hongbo R

    2014-10-01

    Caspase-3-mediated spontaneous death in neutrophils is a prototype of programmed cell death and is critical for modulating physiopathological inflammatory responses; however, the underlying regulatory pathways remain ill defined. Here we determined that in aging neutrophils, the cleavage and activation of caspase-3 is independent of the canonical caspase-8- or caspase-9-mediated pathway. Instead, caspase-3 activation was mediated by serine protease proteinase 3 (PR3), which is present in the cytosol of aging neutrophils. Specifically, PR3 cleaved procaspase-3 at a site upstream of the canonical caspase-9 cleavage site. In mature neutrophils, PR3 was sequestered in granules and released during aging via lysosomal membrane permeabilization (LMP), leading to procaspase-3 cleavage and apoptosis. Pharmacological inhibition or knockdown of PR3 delayed neutrophil death in vitro and consistently delayed neutrophil death and augmented neutrophil accumulation at sites of inflammation in a murine model of peritonitis. Adoptive transfer of both WT and PR3-deficient neutrophils revealed that the delayed death of neutrophils lacking PR3 is due to an altered intrinsic apoptosis/survival pathway, rather than the inflammatory microenvironment. The presence of the suicide protease inhibitor SERPINB1 counterbalanced the protease activity of PR3 in aging neutrophils, and deletion of Serpinb1 accelerated neutrophil death. Taken together, our results reveal that PR3-mediated caspase-3 activation controls neutrophil spontaneous death.

  12. Proteinase 3–dependent caspase-3 cleavage modulates neutrophil death and inflammation

    PubMed Central

    Loison, Fabien; Zhu, Haiyan; Karatepe, Kutay; Kasorn, Anongnard; Liu, Peng; Ye, Keqiang; Zhou, Jiaxi; Cao, Shannan; Gong, Haiyan; Jenne, Dieter E.; Remold-O’Donnell, Eileen; Xu, Yuanfu; Luo, Hongbo R.

    2014-01-01

    Caspase-3–mediated spontaneous death in neutrophils is a prototype of programmed cell death and is critical for modulating physiopathological inflammatory responses; however, the underlying regulatory pathways remain ill defined. Here we determined that in aging neutrophils, the cleavage and activation of caspase-3 is independent of the canonical caspase-8– or caspase-9–mediated pathway. Instead, caspase-3 activation was mediated by serine protease proteinase 3 (PR3), which is present in the cytosol of aging neutrophils. Specifically, PR3 cleaved procaspase-3 at a site upstream of the canonical caspase-9 cleavage site. In mature neutrophils, PR3 was sequestered in granules and released during aging via lysosomal membrane permeabilization (LMP), leading to procaspase-3 cleavage and apoptosis. Pharmacological inhibition or knockdown of PR3 delayed neutrophil death in vitro and consistently delayed neutrophil death and augmented neutrophil accumulation at sites of inflammation in a murine model of peritonitis. Adoptive transfer of both WT and PR3-deficient neutrophils revealed that the delayed death of neutrophils lacking PR3 is due to an altered intrinsic apoptosis/survival pathway, rather than the inflammatory microenvironment. The presence of the suicide protease inhibitor SERPINB1 counterbalanced the protease activity of PR3 in aging neutrophils, and deletion of Serpinb1 accelerated neutrophil death. Taken together, our results reveal that PR3-mediated caspase-3 activation controls neutrophil spontaneous death. PMID:25180606

  13. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis.

    PubMed

    Lee, Hyo-Jung; Lee, Hyo-Jeong; Lee, Eun-Ok; Ko, Seong-Gyu; Bae, Hyun-Soo; Kim, Cheol-Ho; Ahn, Kyoo-Seok; Lu, Junxuan; Kim, Sung-Hoon

    2008-11-08

    Isorhamnetin is a flavanoid present in plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. Since the plasma level of isorhamnetin is maintained longer than quercetin, isorhamnetin may be a key metabolite to mediate the anti-tumor effect of quercetin. In the present study, we investigated the apoptotic mechanism of isorhamnetin in Lewis lung cancer (LLC) cells in vitro and established its in vivo anti-cancer efficacy. In cell culture, isorhamnetin significantly increased DNA fragmentation, and TUNEL positive apoptotic bodies and sub-G(1) apoptotic population in time- and dose-dependent manners. Western blot analyses revealed increased cleavage of caspase-3, and caspase-9 and PARP and increased cytosolic cytochrome C in isorhamnetin-treated cells. These events were accompanied by a reduced mitochondrial potential. Apoptosis was blocked by a general caspase inhibitor or the specific inhibitor of caspase-3 or -9. These in vitro results support mitochondria-dependent caspase activation to mediate isorhamnetin-induced apoptosis. Furthermore, an animal study revealed for the first time that isorhamnetin given by i.p. injection at a dose that is at least one order of magnitude lower than quercetin significantly suppressed the weights of tumors excised from LLC bearing mice. The in vivo anti-tumor efficacy was accompanied by increased TUNEL-positive and cleaved-caspase-3-positive tumor cells. Our data therefore support isorhamnetin as an active anti-cancer metabolite of quercetin in part through caspase-mediated apoptosis.

  14. A designed redox-controlled caspase

    SciTech Connect

    Witkowski, Witold A.; Hardy, Jeanne A.

    2011-09-15

    Caspases are a powerful class of cysteine proteases. Introduction of activated caspases in healthy or cancerous cells results in induction of apoptotic cell death. In this study, we have designed and characterized a version of caspase-7 that can be inactivated under oxidizing extracellular conditions and then reactivated under reducing intracellular conditions. This version of caspase-7 is allosterically inactivated when two of the substrate-binding loops are locked together via an engineered disulfide. When this disulfide is reduced, the protein regains its full function. The inactive loop-locked version of caspase-7 can be readily observed by immunoblotting and mass spectrometry. The reduced and reactivated form of the enzyme observed crystallographically is the first caspase-7 structure in which the substrate-binding groove is properly ordered even in the absence of an active-site ligand. In the reactivated structure, the catalytic-dyad cysteine-histidine are positioned 3.5 {angstrom} apart in an orientation that is capable of supporting catalysis. This redox-controlled version of caspase-7 is particularly well suited for targeted cell death in concert with redox-triggered delivery vehicles.

  15. Caspases and their role in gastric cancer.

    PubMed

    Frejlich, Ewelina; Rudno-Rudzińska, Julia; Janiszewski, Kacper; Salomon, Lukasz; Kotulski, Krzysztof; Pelzer, Oskar; Grzebieniak, Zygmunt; Tarnawa, Robert; Kielan, Wojciech

    2013-01-01

    Caspases (Cysteine Aspartate Specific Proteases) are a group of cysteine-containing proteolytic enzymes produced by the cells of living organisms. They participate in immunological functions, proliferation, cell migration and organization. Caspases also influence the secretion of various regulative factors. Moreover, they are responsible for cellular maturation and reconstruction, and for regulating the number and quality of cells initiating the apoptosis of old cells or those that cannot play their normal role due to abnormalities. Multiple pathological processes are associated with disorders in the activity of caspases. Changes in expression of individual caspases have been observed in gastric cancer. The expression of some caspases is also correlated with particular histological traits and the frequency of metastases, which suggests their possible use as a prognostic factor. It has also been discovered that some somatic mutations in caspase coding genes might lead to inhibition of apoptosis and the progression of the disease. Gene polymorphism may be a gastric cancer risk factor, but may also play a protective function. Considering the less than satisfactory effects of conventional therapeutic methods, the search for alternative ways to activate apoptosis - through gene therapy or selective activation of individual elements of the apoptotic pathways - constitutes a promising direction for studies of new therapeutic strategies. Caspases, enzymes playing a central role in the process of programmed cellular death, may possibly be a key to the development of a more effective anti-cancer therapy.

  16. Caspase-3 controls AML1-ETO-driven leukemogenesis via autophagy modulation in a ULK1 dependent manner.

    PubMed

    Man, Na; Tan, Yurong; Sun, Xiao-Jian; Liu, Fan; Cheng, Guoyan; Greenblatt, Sarah; Martinez, Camilo; Karl, Daniel L; Ando, Koji; Sun, Ming; Hou, Dan; Chen, Bingyi; Xu, Mingjiang; Yang, Feng-Chun; Chen, Zhu; Chen, Saijuan; Nimer, Stephen D; Wang, Lan

    2017-04-05

    AML1-ETO (AE), a fusion oncoprotein, generated by the t(8;21), can trigger acute myeloid leukemia (AML) in collaboration with mutations including c-Kit, ASXL1/2, FLT3, N-RAS, and K-RAS. Caspase-3, a key executor among its family, plays multiple roles in cellular processes, including hematopoietic development and leukemia progression. Caspase-3 was revealed to directly cleave AE in vitro, suggesting that AE may accumulate in a Caspase-3 compromised background and thereby accelerate leukemogenesis. Therefore, we developed a Caspase-3 knockout genetic mouse model of AML and found that loss of Caspase-3 actually delayed AML1-ETO9a (AE9a)-driven leukemogenesis, indicating that Caspase-3 may play distinct roles in the initiation and/or progression of AML. We report here that loss of Caspase-3 triggers a conserved, adaptive mechanism, namely autophagy (or macroautophagy), that acts to limit AE9a-driven leukemia. Furthermore, we identify ULK1 as a novel substrate of Caspase-3 and show that upregulation of ULK1 drives autophagy initiation in leukemia cells and that inhibition of ULK1 can rescue the phenotype induced by Caspase-3 deletion in vitro and in vivo Collectively, these data highlight Caspase-3 as an important regulator of autophagy in AML and demonstrate that the balance and selectivity between its substrates can dictate the pace of disease.

  17. Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria

    PubMed Central

    Brand, Ingo L.; Civciristov, Srgjan; Taylor, Nicole L.; Talbo, Gert H.; Pantaki-Eimany, Delara; Levina, Vita; Clem, Rollie J.; Perugini, Matthew A.; Kvansakul, Marc; Hawkins, Christine J.

    2012-01-01

    Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a “reactive site loop” within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins) may underestimate their activity. PMID:22720082

  18. Caspase-14: A novel caspase in the retina with a potential role in diabetic retinopathy

    PubMed Central

    Ahmad, Saif; Megyerdi, Sylvia; Othman, Amira; Baban, Babak; Palenski, Tammy L.; Shin, Eui Seok; Gurel, Zafer; Hsu, Stephen; Sheibani, Nader

    2012-01-01

    Purpose The purpose of this study was to evaluate caspase-14 expression in the retina under normal and diabetic conditions, and to determine whether caspase-14 contributes to retinal microvascular cell death under high glucose conditions. Methods Quantitative real-time polymerase chain reaction and western blot analysis were used to evaluate caspase-14 expression in retinal cells, including pericytes (PCs), endothelial cells (ECs), astrocytes (ACs), choroidal ECs, and retinal pigment epithelium (RPE) cells. We also determined caspase-14 expression in the retinas of human subjects with or without diabetic retinopathy (DR) and in experimental diabetic mice. Retinal ECs and PCs were infected with adenoviruses expressing human caspase-14 or green fluorescent protein. Caspase-14 expression was also assessed in retinal vascular cells cultured under high glucose conditions. The number of apoptotic cells was determined with terminal deoxynucleotidyl transferase dUTP nick end labeling staining and confirmed by determining the levels of cleaved poly (ADP-ribose) polymerase-1 and caspase-3. Results Our experiments demonstrated that retinal ECs, PCs, ACs, choroidal ECs, and RPE cells expressed caspase-14, and DR was associated with upregulation and/or activation of caspase-14 particularly in retinal vasculature. High glucose induced marked elevation of the caspase-14 level in retinal vascular cells. There was a significant increase in the apoptosis rate and the levels of cleaved poly (ADP-ribose) polymerase-1 and caspase-3 in retinal ECs and PCs overexpressing caspase-14. Conclusions Our findings indicate that caspase-14 might play a significant role in the pathogenesis of DR by accelerating retinal PC and EC death. Further investigations are required to elaborate the underlying mechanisms. PMID:22876114

  19. Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila

    PubMed Central

    Pang, Yuxuan; Bai, Xiao-chen; Yan, Chuangye; Hao, Qi; Chen, Zheqin; Wang, Jia-Wei

    2015-01-01

    Apoptosis is executed by a cascade of caspase activation. The autocatalytic activation of an initiator caspase, exemplified by caspase-9 in mammals or its ortholog, Dronc, in fruit flies, is facilitated by a multimeric adaptor complex known as the apoptosome. The underlying mechanism by which caspase-9 or Dronc is activated by the apoptosome remains unknown. Here we report the electron cryomicroscopic (cryo-EM) structure of the intact apoptosome from Drosophila melanogaster at 4.0 Å resolution. Analysis of the Drosophila apoptosome, which comprises 16 molecules of the Dark protein (Apaf-1 ortholog), reveals molecular determinants that support the assembly of the 2.5-MDa complex. In the absence of dATP or ATP, Dronc zymogen potently induces formation of the Dark apoptosome, within which Dronc is efficiently activated. At 4.1 Å resolution, the cryo-EM structure of the Dark apoptosome bound to the caspase recruitment domain (CARD) of Dronc (Dronc-CARD) reveals two stacked rings of Dronc-CARD that are sandwiched between two octameric rings of the Dark protein. The specific interactions between Dronc-CARD and both the CARD and the WD40 repeats of a nearby Dark protomer are indispensable for Dronc activation. These findings reveal important mechanistic insights into the activation of initiator caspase by the apoptosome. PMID:25644603

  20. A Ubiquitin Ligase Complex Regulates Caspase Activation During Sperm Differentiation in Drosophila

    PubMed Central

    Arama, Eli; Bader, Maya; Rieckhof, Gabrielle E; Steller, Hermann

    2007-01-01

    In both insects and mammals, spermatids eliminate their bulk cytoplasm as they undergo terminal differentiation. In Drosophila, this process of dramatic cellular remodeling requires apoptotic proteins, including caspases. To gain further insight into the regulation of caspases, we screened a large collection of sterile male flies for mutants that block effector caspase activation at the onset of spermatid individualization. Here, we describe the identification and characterization of a testis-specific, Cullin-3–dependent ubiquitin ligase complex that is required for caspase activation in spermatids. Mutations in either a testis-specific isoform of Cullin-3 (Cul3Testis), the small RING protein Roc1b, or a Drosophila orthologue of the mammalian BTB-Kelch protein Klhl10 all reduce or eliminate effector caspase activation in spermatids. Importantly, all three genes encode proteins that can physically interact to form a ubiquitin ligase complex. Roc1b binds to the catalytic core of Cullin-3, and Klhl10 binds specifically to a unique testis-specific N-terminal Cullin-3 (TeNC) domain of Cul3Testis that is required for activation of effector caspase in spermatids. Finally, the BIR domain region of the giant inhibitor of apoptosis–like protein dBruce is sufficient to bind to Klhl10, which is consistent with the idea that dBruce is a substrate for the Cullin-3-based E3-ligase complex. These findings reveal a novel role of Cullin-based ubiquitin ligases in caspase regulation. PMID:17880263

  1. Axonal Cleaved Caspase-3 Regulates Axon Targeting and Morphogenesis in the Developing Auditory Brainstem

    PubMed Central

    Rotschafer, Sarah E.; Allen-Sharpley, Michelle R.; Cramer, Karina S.

    2016-01-01

    Caspase-3 is a cysteine protease that is most commonly associated with cell death. Recent studies have shown additional roles in mediating cell differentiation, cell proliferation and development of cell morphology. We investigated the role of caspase-3 in the development of chick auditory brainstem nuclei during embryogenesis. Immunofluorescence from embryonic days E6–13 revealed that the temporal expression of cleaved caspase-3 follows the ascending anatomical pathway. The expression is first seen in the auditory portion of VIIIth nerve including central axonal regions projecting to nucleus magnocellularis (NM), then later in NM axons projecting to nucleus laminaris (NL), and subsequently in NL dendrites. To examine the function of cleaved caspase-3 in chick auditory brainstem development, we blocked caspase-3 cleavage in developing chick embryos with the caspase-3 inhibitor Z-DEVD-FMK from E6 to E9, then examined NM and NL morphology and NM axonal targeting on E10. NL lamination in treated embryos was disorganized and the neuropil around NL contained a significant number of glial cells normally excluded from this region. Additionally, NM axons projected into inappropriate portions of NL in Z-DEVD-FMK treated embyros. We found that the presence of misrouted axons was associated with more severe NL disorganization. The effects of axonal caspase-3 inhibition on both NL morphogenesis and NM axon targeting suggest that these developmental processes are coordinated, likely through communication between axons and their targets. PMID:27822180

  2. Function of caspase-14 in trophoblast differentiation

    PubMed Central

    White, Lloyd J; Declercq, Wim; Arfuso, Frank; Charles, Adrian K; Dharmarajan, Arun M

    2009-01-01

    Background Within the human placenta, the cytotrophoblast consists of a proliferative pool of progenitor cells which differentiate to replenish the overlying continuous, multi-nucleated syncytiotrophoblast, which forms the barrier between the maternal and fetal tissues. Disruption to trophoblast differentiation and function may result in impaired fetal development and preeclampsia. Caspase-14 expression is limited to barrier forming tissues. It promotes keratinocyte differentiation by cleaving profilaggrin to stabilise keratin intermediate filaments, and indirectly providing hydration and UV protection. However its role in the trophoblast remains unexplored. Methods Using RNA Interference the reaction of control and differentiating trophoblastic BeWo cells to suppressed caspase-14 was examined for genes pertaining to hormonal, cell cycle and cytoskeletal pathways. Results Transcription of hCG, KLF4 and cytokeratin-18 were increased following caspase-14 suppression suggesting a role for caspase-14 in inhibiting their pathways. Furthermore, hCG, KLF4 and cytokeratin-18 protein levels were disrupted. Conclusion Since expression of these molecules is normally increased with trophoblast differentiation, our results imply that caspase-14 inhibits trophoblast differentiation. This is the first functional study of this unusual member of the caspase family in the trophoblast, where it has a different function than in the epidermis. This knowledge of the molecular underpinnings of trophoblast differentiation may instruct future therapies of trophoblast disease. PMID:19747408

  3. Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to the Canonical Pathway for Apoptosis in Caenorhabditis elegans

    PubMed Central

    Denning, Daniel P.; Hatch, Victoria; Horvitz, H. Robert

    2013-01-01

    Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to

  4. Caspase-11 and caspase-1 differentially modulate actin polymerization via RhoA and Slingshot proteins to promote bacterial clearance

    PubMed Central

    Caution, Kyle; Gavrilin, Mikhail A.; Tazi, Mia; Kanneganti, Apurva; Layman, Daniel; Hoque, Sheshadri; Krause, Kathrin; Amer, Amal O.

    2015-01-01

    Inflammasomes are multiprotein complexes that include members of the NOD-like receptor family and caspase-1. Caspase-1 is required for the fusion of the Legionella vacuole with lysosomes. Caspase-11, independently of the inflammasome, also promotes phagolysosomal fusion. However, it is unclear how these proteases alter intracellular trafficking. Here, we show that caspase-11 and caspase-1 function in opposing manners to phosphorylate and dephosphorylate cofilin, respectively upon infection with Legionella. Caspase-11 targets cofilin via the RhoA GTPase, whereas caspase-1 engages the Slingshot phosphatase. The absence of either caspase-11 or caspase-1 maintains actin in the polymerized or depolymerized form, respectively and averts the fusion of pathogen-containing vacuoles with lysosomes. Therefore, caspase-11 and caspase-1 converge on the actin machinery with opposing effects to promote vesicular trafficking. PMID:26686473

  5. The proteasome is responsible for caspase-3-like activity during xylem development.

    PubMed

    Han, Jia-Jia; Lin, Wei; Oda, Yoshihisa; Cui, Ke-Ming; Fukuda, Hiroo; He, Xin-Qiang

    2012-10-01

    Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.

  6. Loss of caspase-2 augments lymphomagenesis and enhances genomic instability in Atm-deficient mice

    PubMed Central

    Puccini, Joseph; Shalini, Sonia; Voss, Anne K.; Gatei, Magtouf; Wilson, Claire H.; Hiwase, Devendra K.; Lavin, Martin F.; Dorstyn, Loretta; Kumar, Sharad

    2013-01-01

    Caspase-2, the most evolutionarily conserved member of the caspase family, has been shown to be involved in apoptosis induced by various stimuli. Our recent work indicates that caspase-2 has putative functions in tumor suppression and protection against cellular stress. As such, the loss of caspase-2 enhances lymphomagenesis in Eµ-Myc transgenic mice, and caspase-2 KO (Casp2−/−) mice show characteristics of premature aging. However, the extent and specificity of caspase-2 function in tumor suppression is currently unclear. To further investigate this, ataxia telangiectasia mutated KO (Atm−/−) mice, which develop spontaneous thymic lymphomas, were used to generate Atm−/−Casp2−/− mice. Initial characterization revealed that caspase-2 deficiency enhanced growth retardation and caused synthetic perinatal lethality in Atm−/− mice. A comparison of tumor susceptibility demonstrated that Atm−/−Casp2−/− mice developed tumors with a dramatically increased incidence compared with Atm−/− mice. Atm−/−Casp2−/− tumor cells displayed an increased proliferative capacity and extensive aneuploidy that coincided with elevated oxidative damage. Furthermore, splenic and thymic T cells derived from premalignant Atm−/−Casp2−/− mice also showed increased levels of aneuploidy. These observations suggest that the tumor suppressor activity of caspase-2 is linked to its function in the maintenance of genomic stability and suppression of oxidative damage. Given that ATM and caspase-2 are important components of the DNA damage and antioxidant defense systems, which are essential for the maintenance of genomic stability, these proteins may synergistically function in tumor suppression by regulating these processes. PMID:24248351

  7. Zinc down regulates Apaf-1-dependent Bax/Bcl-2 mediated caspases activation during aluminium induced neurotoxicity.

    PubMed

    Singla, Neha; Dhawan, D K

    2015-02-01

    Aluminium (Al), a ubiquitous element in nature is associated with the onset of Alzheimer's disease. On the other hand, zinc (Zn) is an essential trace element that regulates large number of physiological processes in the human body. The present study was conducted to explore the role of zinc, if any, in regulating apoptotic machinery during Al induced neurodegeneration in rat. Male sprague dawley rats weighing 140-160 g were divided into four different groups viz: Normal control, Al treated (100 mg/kg b.wt./day), Zn treated (227 mg/l) and combined Al and Zn treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment resulted in a significant increase in the protein expressions of cytochrome c, Bax, Apaf-1, caspase 9, caspase 3 (p17), caspase 8, caspase 6, caspase 7 but decreased the Bcl-2 in both the cerebrum and cerebellum. However, Zn supplementation to Al treated rats resulted in a reduction in the protein expressions of cytochrome c, Bax, Apaf-1, caspase 9, caspase 3 (p17), caspase 8, caspase 6 and caspase 7 whereas it elevated the Bcl-2 in both the regions. Further, gene expressions of caspase 3 and caspase 9 were also found to be elevated after Al treatment, which however were reduced following Zn co-treatment. The electron-microscopic analysis of brain revealed that Al intoxication resulted in a number of degenerative signs at ultrastructural level, which were appreciably improved upon Zn supplementation. The present study suggests that Zn provides protection against Al induced neurotoxicity by triggering anti-apoptotic machinery.

  8. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation.

    PubMed

    St-Louis, Marie-Claude; Archambault, Denis

    2007-10-10

    We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.

  9. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages.

    PubMed

    Bast, Antje; Krause, Kathrin; Schmidt, Imke H E; Pudla, Matsayapan; Brakopp, Stefanie; Hopf, Verena; Breitbach, Katrin; Steinmetz, Ivo

    2014-03-01

    The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1-dependent and -independent

  10. Group B Streptococcus Induces a Caspase-Dependent Apoptosis in Fetal rat Lung Interstitium

    PubMed Central

    Kling, David E.; Tsvang, Inna; Murphy, Miriam P.; Newburg, David S.

    2013-01-01

    Group B Streptococcus (GBS) is an important pathogen and is associated with sepsis and meningitis in neonates and infants. An ex vivo model that facilitates observations of GBS interactions with multiple host cell types over time was used to study its pathogenicity. GBS infections were associated with profound reductions in fetal lung; explant size, and airway branching. Elevated levels of apoptosis subsequent to GBS infections were observed by whole-mount confocal immunofluorescence using activated-caspase-3-antibodies and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assays. The caspase inhibitor Z-VAD-FMK abolished the increase in TUNEL-positive cells associated with GBS infections, indicating that the GBS-induced apoptosis was caspase-dependent. Digital image analyses revealed that both GBS and the active form of caspase-3 were distributed primarily within the lung interstitium, suggesting that these tissues are important targets for GBS. Antibodies to the active form of caspase-3 colocalized with both macrophage- and erythroblast-markers, suggesting that these hematopoietic cells are vulnerable to GBS-mediated pathogenesis. These studies suggest that GBS infections profoundly alter lung morphology and caspase-dependent hematopoietic cell apoptosis within the lung interstitium play roles in GBS pathophysiology in this model. PMID:23624260

  11. Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8.

    PubMed

    Gong, Ming; Chen, Yanqiu; Senturia, Rachel; Ulgherait, Matthew; Faller, Michael; Guo, Feng

    2012-06-01

    DGCR8 (DiGeorge Critical Region 8) is an essential microRNA (miRNA) processing protein that recognizes primary transcripts of miRNAs (pri-miRNAs) and triggers their cleavage by the Drosha nuclease. We previously found that Fe(III) heme binds and activates DGCR8. Here we report that in HeLa cells, DGCR8 undergoes two proteolytic events that produce two C-terminal fragments called DGCR8(C1) and DGCR8(C2) , respectively. DGCR8(C2) accumulates during apoptosis and is generated through cleavage by a caspase. The caspase cleavage site is located in the central loop of the heme-binding domain. Cleavage of DGCR8 by caspase-3 in vitro results in loss of the otherwise tightly bound Fe(III) heme cofactor, dissociation of the N- and C-terminal proteolytic fragments, and inhibition of the pri-miRNA processing activity. These results reveal an intrinsic mechanism in the DGCR8 protein that seems to have evolved for regulating miRNA processing via association with Fe(III) heme and proteolytic cleavage by caspases. Decreased expression of miRNAs has been observed in apoptotic cells, and this change was attributed to caspase-mediated cleavage of a down-stream miRNA processing nuclease Dicer. We suggest that both the Drosha and Dicer cleavage steps of the miRNA maturation pathway may be inhibited in apoptosis and other biological processes where caspases are activated.

  12. Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis

    PubMed Central

    Zhang, Zhengxiang; Yu, Yang; Cheng, Jin; Gong, Yanping; Li, Chuan-Yuan; Huang, Qian

    2015-01-01

    Cytotoxic radiotherapy unfavorably induces tumor cells to generate various proangiogenic substances, promoting post-irradiation angiogenesis (PIA), which is one of major causes of radiotherapy failure. Though several studies have reported some mechanisms behind PIA, they have not yet described the beginning proangiogenic motivator buried in the irradiated microenvironment. In this work, we revealed that dying tumor cells induced by irradiation prompted PIA via a caspase 3 dependent mechanism. Proteolytic inactivation of caspase 3 in dying tumor cells by transducing a dominant-negative version weakened proangiogenic effects in vitro and in vivo. In addition, inhibition of caspase 3 activity suppressed tumor angiogenesis and tumorigenesis in xenograft mouse model. Importantly, we identified vascular endothelial growth factor (VEGF)-A as a downstream proangiogenic factor regulated by caspase 3 possibly through Akt signaling. Collectively, these findings indicated that besides acting as a key executioner in apoptosis, caspase 3 in dying tumor cells may play a central role in driving proangiogenic response after irradiation. Thus, radiotherapy in combination with caspase 3 inhibitors may be a novel promising therapeutic strategy to reduce tumor recurrence due to restrained PIA. PMID:26431328

  13. Appoptosin-Mediated Caspase Cleavage of Tau Contributes to Progressive Supranuclear Palsy Pathogenesis.

    PubMed

    Zhao, Yingjun; Tseng, I-Chu; Heyser, Charles J; Rockenstein, Edward; Mante, Michael; Adame, Anthony; Zheng, Qiuyang; Huang, Timothy; Wang, Xin; Arslan, Pharhad E; Chakrabarty, Paramita; Wu, Chengbiao; Bu, Guojun; Mobley, William C; Zhang, Yun-Wu; St George-Hyslop, Peter; Masliah, Eliezer; Fraser, Paul; Xu, Huaxi

    2015-09-02

    Progressive supranuclear palsy (PSP) is a movement disorder characterized by tau neuropathology where the underlying mechanism is unknown. An SNP (rs1768208 C/T) has been identified as a strong risk factor for PSP. Here, we identified a much higher T-allele occurrence and increased levels of the pro-apoptotic protein appoptosin in PSP patients. Elevations in appoptosin correlate with activated caspase-3 and caspase-cleaved tau levels. Appoptosin overexpression increased caspase-mediated tau cleavage, tau aggregation, and synaptic dysfunction, whereas appoptosin deficiency reduced tau cleavage and aggregation. Appoptosin transduction impaired multiple motor functions and exacerbated neuropathology in tau-transgenic mice in a manner dependent on caspase-3 and tau. Increased appoptosin and caspase-3-cleaved tau were also observed in brain samples of patients with Alzheimer's disease and frontotemporal dementia with tau inclusions. Our findings reveal a novel role for appoptosin in neurological disorders with tau neuropathology, linking caspase-3-mediated tau cleavage to synaptic dysfunction and behavioral/motor defects.

  14. Defective Molecular Timer in the Absence of Nucleotides Leads to Inefficient Caspase Activation

    PubMed Central

    Zhang, Honghao; Gogada, Raghu; Yadav, Neelu; Lella, Ravi K.; Badeaux, Mark; Ayres, Mary; Gandhi, Varsha; Tang, Dean G.; Chandra, Dhyan

    2011-01-01

    In the intrinsic death pathway, cytochrome C (CC) released from mitochondria to the cytosol triggers Apaf-1 apoptosome formation and subsequent caspase activation. This process can be recapitulated using recombinant Apaf-1 and CC in the presence of nucleotides ATP or dATP [(d)ATP] or using fresh cytosol and CC without the need of exogenous nucleotides. Surprisingly, we found that stored cytosols failed to support CC-initiated caspase activation. Storage of cytosols at different temperatures led to the loss of all (deoxy)nucleotides including (d)ATP. Addition of (d)ATP to such stored cytosols partially restored CC-initiated caspase activation. Nevertheless, CC could not induce complete caspase-9/3 activation in stored cytosols, even with the addition of (d)ATP, despite robust Apaf-1 oligomerization. The Apaf-1 apoptosome, which functions as a proteolytic-based molecular timer appeared to be defective as auto-processing of recruited procaspase-9 was inhibited. Far Western analysis revealed that procaspase-9 directly interacted with Apaf-1 and this interaction was reduced in the presence of physiological levels of ATP. Co-incubation of recombinant Apaf-1 and procaspase-9 prior to CC and ATP addition inhibited CC-induced caspase activity. These findings suggest that in the absence of nucleotide such as ATP, direct association of procaspase-9 with Apaf-1 leads to defective molecular timer, and thus, inhibits apoptosome-mediated caspase activation. Altogether, our results provide novel insight on nucleotide regulation of apoptosome. PMID:21297999

  15. Defective molecular timer in the absence of nucleotides leads to inefficient caspase activation.

    PubMed

    Zhang, Honghao; Gogada, Raghu; Yadav, Neelu; Lella, Ravi K; Badeaux, Mark; Ayres, Mary; Gandhi, Varsha; Tang, Dean G; Chandra, Dhyan

    2011-01-27

    In the intrinsic death pathway, cytochrome C (CC) released from mitochondria to the cytosol triggers Apaf-1 apoptosome formation and subsequent caspase activation. This process can be recapitulated using recombinant Apaf-1 and CC in the presence of nucleotides ATP or dATP [(d)ATP] or using fresh cytosol and CC without the need of exogenous nucleotides. Surprisingly, we found that stored cytosols failed to support CC-initiated caspase activation. Storage of cytosols at different temperatures led to the loss of all (deoxy)nucleotides including (d)ATP. Addition of (d)ATP to such stored cytosols partially restored CC-initiated caspase activation. Nevertheless, CC could not induce complete caspase-9/3 activation in stored cytosols, even with the addition of (d)ATP, despite robust Apaf-1 oligomerization. The Apaf-1 apoptosome, which functions as a proteolytic-based molecular timer appeared to be defective as auto-processing of recruited procaspase-9 was inhibited. Far Western analysis revealed that procaspase-9 directly interacted with Apaf-1 and this interaction was reduced in the presence of physiological levels of ATP. Co-incubation of recombinant Apaf-1 and procaspase-9 prior to CC and ATP addition inhibited CC-induced caspase activity. These findings suggest that in the absence of nucleotide such as ATP, direct association of procaspase-9 with Apaf-1 leads to defective molecular timer, and thus, inhibits apoptosome-mediated caspase activation. Altogether, our results provide novel insight on nucleotide regulation of apoptosome.

  16. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release.

    PubMed

    Pillon, Nicolas J; Chan, Kenny L; Zhang, Shitian; Mejdani, Marios; Jacobson, Maya R; Ducos, Alexandre; Bilan, Philip J; Niu, Wenyan; Klip, Amira

    2016-11-01

    Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1β contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1β/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1β and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1β and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation. Copyright © 2016 the American Physiological Society.

  17. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    SciTech Connect

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng; Julien, Olivier; Wells, James A.; Hardy, Jeanne A.

    2016-03-31

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.

  18. Reprogramming caspase-7 specificity by regio-specific mutations and selection provides alternate solutions for substrate recognition

    DOE PAGES

    Hill, Maureen E.; MacPherson, Derek J.; Wu, Peng; ...

    2016-03-31

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. In this paper, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7more » was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. Finally, this approach to specificity reprogramming should also be generalizable across a wide range of proteases.« less

  19. New Insights into the Apoptotic Process in Mollusks: Characterization of Caspase Genes in Mytilus galloprovincialis

    PubMed Central

    Romero, Alejandro; Estévez-Calvar, Noelia; Dios, Sonia; Figueras, Antonio; Novoa, Beatriz

    2011-01-01

    Apoptosis is an essential biological process in the development and maintenance of immune system homeostasis. Caspase proteins constitute the core of the apoptotic machinery and can be categorized as either initiators or effectors of apoptosis. Although the genes encoding caspase proteins have been described in vertebrates and in almost all invertebrate phyla, there are few reports describing the initiator and executioner caspases or the modulation of their expression by different stimuli in different apoptotic pathways in bivalves. In the present work, we characterized two initiator and four executioner caspases in the mussel Mytilus galloprovincialis. Both initiators and executioners showed structural features that make them different from other caspase proteins already described. Evaluation of the genes’ tissue expression patterns revealed extremely high expression levels within the gland and gills, where the apoptotic process is highly active due to the clearance of damaged cells. Hemocytes also showed high expression values, probably due to of the role of apoptosis in the defense against pathogens. To understand the mechanisms of caspase gene regulation, hemocytes were treated with UV-light, environmental pollutants and pathogen-associated molecular patterns (PAMPs) and apoptosis was evaluated by microscopy, flow cytometry and qPCR techniques. Our results suggest that the apoptotic process could be tightly regulated in bivalve mollusks by overexpression/suppression of caspase genes; additionally, there is evidence of caspase-specific responses to pathogens and pollutants. The apoptotic process in mollusks has a similar complexity to that of vertebrates, but presents unique features that may be related to recurrent exposure to environmental changes, pollutants and pathogens imposed by their sedentary nature. PMID:21347300

  20. Internalized Cryptococcus neoformans Activates the Canonical Caspase-1 and the Noncanonical Caspase-8 Inflammasomes.

    PubMed

    Chen, Mingkuan; Xing, Yue; Lu, Ailing; Fang, Wei; Sun, Bing; Chen, Changbin; Liao, Wanqing; Meng, Guangxun

    2015-11-15

    Cryptococcus neoformans is an opportunistic fungal pathogen that causes cryptococcosis in immunocompromised patients as well as immunocompetent individuals. Host cell surface receptors that recognize C. neoformans have been widely studied. However, intracellular sensing of this pathogen is still poorly understood. Our previous studies have demonstrated that both biofilm and acapsular mutant of C. neoformans are able to activate the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome. In the current study, it was found that opsonization-mediated internalization of encapsulated C. neoformans also activated the canonical NLRP3-apoptosis-associated speck-like protein containing a CARD (ASC)-caspase-1 inflammasome. In addition, the internalized C. neoformans activated the noncanonical NLRP3-ASC-caspase-8 inflammasome as well, which resulted in robust IL-1β secretion and cell death from caspase-1-deficient primary dendritic cells. Interestingly, we found that caspase-1 was inhibitory for the activation of caspase-8 in dendritic cells upon C. neorformans challenge. Further mechanistic studies showed that both phagolysosome membrane permeabilization and potassium efflux were responsible for C. neoformans-induced activation of either the canonical NLRP3-ASC-caspase-1 inflammasome or the noncanonical NLRP3-ASC-caspase-8 inflammasome. Moreover, challenge with zymosan also led to the activation of the noncanonical NLRP3-ASC-caspase-8 inflammasome in cells absent for caspase-1. Collectively, these findings uncover a number of novel signaling pathways for the innate immune response of host cells to C. neoformans infection and suggest that manipulating NLRP3 signaling may help to control fungal challenge.

  1. Kinetic and structural characterization of caspase-3 and caspase-8 inhibition by a novel class of irreversible inhibitors

    SciTech Connect

    Wang, Zhigang; Watt, William; Brooks, Nathan A.; Harris, Melissa S.; Urban, Jan; Boatman, Douglas; McMillan, Michael; Kahn, Michael; Heinrikson, Robert L.; Finzel, Barry C.; Wittwer, Arthur J.; Blinn, James; Kamtekar, Satwik; Tomasselli, Alfredo G.

    2010-09-17

    Because of their central role in programmed cell death, the caspases are attractive targets for developing new therapeutics against cancer and autoimmunity, myocardial infarction and ischemic damage, and neurodegenerative diseases. We chose to target caspase-3, an executioner caspase, and caspase-8, an initiator caspase, based on the vast amount of information linking their functions to diseases. Through a structure-based drug design approach, a number of novel {beta}-strand peptidomimetic compounds were synthesized. Kinetic studies of caspase-3 and caspase-8 inhibition were carried out with these urazole ring-containing irreversible peptidomimetics and a known irreversible caspase inhibitor, Z-VAD-fmk. Using a stopped-flow fluorescence assay, we were able to determine individual kinetic parameters of caspase-3 and caspase-8 inhibition by these inhibitors. Z-VAD-fmk and the peptidomimetic inhibitors inhibit caspase-3 and caspase-8 via a three-step kinetic mechanism. Inhibition of both caspase-3 and caspase-8 by Z-VAD-fmk and of caspase-3 by the peptidomimetic inhibitors proceeds via two rapid equilibrium steps followed by a relatively fast inactivation step. However, caspase-8 inhibition by the peptidomimetics goes through a rapid equilibrium step, a slow-binding reversible step, and an extremely slow inactivation step. The crystal structures of inhibitor complexes of caspases-3 and -8 validate the design of the inhibitors by illustrating in detail how they mimic peptide substrates. One of the caspase-8 structures also shows binding at a secondary, allosteric site, providing a possible route to the development of noncovalent small molecule modulators of caspase activity.

  2. Krebs Cycle Moonlights in Caspase Regulation.

    PubMed

    Minis, Adi; Steller, Hermann

    2016-04-04

    In this issue of Developmental Cell, Aram et al. (2016) identify a mechanism that uses a Krebs cycle protein to control local activation of a ubiquitin ligase complex at the mitochondrial outer membrane for temporally and spatially restricted caspase activation during Drosophila sperm differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Caspase-8: not so silently deadly

    PubMed Central

    Feltham, Rebecca; Vince, James E; Lawlor, Kate E

    2017-01-01

    Apoptosis is a caspase-dependent programmed form of cell death, which is commonly believed to be an immunologically silent process, required for mammalian development and maintenance of cellular homoeostasis. In contrast, lytic forms of cell death, such as RIPK3- and MLKL-driven necroptosis, and caspase-1/11-dependent pyroptosis, are postulated to be inflammatory via the release of damage associated molecular patterns (DAMPs). Recently, the function of apoptotic caspase-8 has been extended to the negative regulation of necroptosis, the cleavage of inflammatory interleukin-1β (IL-1β) to its mature bioactive form, either directly or via the NLRP3 inflammasome, and the regulation of cytokine transcriptional responses. In view of these recent advances, human autoinflammatory diseases that are caused by mutations in cell death regulatory machinery are now associated with inappropriate inflammasome activation. In this review, we discuss the emerging crosstalk between cell death and innate immune cell inflammatory signalling, particularly focusing on novel non-apoptotic functions of caspase-8. We also highlight the growing number of autoinflammatory diseases that are associated with enhanced inflammasome function. PMID:28197335

  4. Caspases inhibition decreases neurological sequelae in meningitis.

    PubMed

    Irazuzta, Jose; Pretzlaff, Robert K; Zingarelli, Basilia

    2008-05-01

    To evaluate the effects of sustained caspase inhibition during the acute phase of meningitis-induced brain injury. Changes in neurobehavioral performance were the primary outcome variables. Randomized prospective animal study. University research laboratory. Male Wistar rats. Animals underwent a basilar cistern inoculation of group B Streptococci to induce meningitis. Sixteen hours later animals were randomized to receive Bocaspartyl (OMe)-fluoromethyketone (BAF) for 4 days or placebo in addition to antibiotic therapy. The assessment of neurobehavioral performance was started 7 days after initiation of treatment and continued for the following 3 wks. A subgroup underwent early kill, at 5 days, to evaluate caspase 3 activity in brain tissue. There was a group of Sham instrumented animals. BAF decreased caspase 3 activation in meningitic animals. There were no significant motor deficit differences between the infected groups. Cognitive performance was significantly improved in the BAF group. These findings demonstrate that sustained systemic administration of BAF inhibits caspase 3 activation and decreases neurologic sequelae in a rat model of bacterial meningitis.

  5. Thalidomide inhibits activation of caspase-1.

    PubMed

    Keller, Martin; Sollberger, Gabriel; Beer, Hans-Dietmar

    2009-11-01

    Thalidomide is an efficient anti-inflammatory and anti-angiogenic drug, but its therapeutic use is problematic due to a strong teratogenic activity. Nevertheless, thalidomide was approved for the treatment of inflammatory skin diseases and certain types of cancer, and it is extensively tested for several other indications. Recently, we demonstrated that active caspase-1, whose activation is dependent on inflammasome complexes, is required for unconventional protein secretion of proinflammatory cytokines such as IL-1 and of the proangiogenic fibroblast growth factor 2. In this study, we show that pharmacological doses of thalidomide strongly reduced the secretion of both proteins. Thalidomide-treated cells also released less of other leaderless proteins, which require caspase-1 activity for their secretion. In line with these findings, the drug inhibited activation and activity of caspase-1 in cultured cells but not in vitro. The latter finding suggests that the pharmacological activity is exerted by a metabolite of the drug. The anti-inflammatory activity of thalidomide was also mediated via caspase-1 in mice. These findings represent a novel mechanism by which thalidomide exerts its pharmacological activity and suggest that inhibition of the activity of IL-1 might represent a novel strategy to substitute thalidomide.

  6. Caspase multiplexing: simultaneous homogeneous time-resolved quenching assay (TruPoint) for caspases 1, 3, and 6.

    PubMed

    Karvinen, Jarkko; Elomaa, Annika; Mäkinen, Maija Liisa; Hakala, Harri; Mukkala, Veli Matti; Peuralahti, Jari; Hurskainen, Pertti; Hovinen, Jari; Hemmilä, Ilkka

    2004-02-15

    Caspases are a group of cysteine proteases involved in apoptosis and inflammation. A multiparametric homogeneous assay capable of measuring activity of three different caspases in a single well of a microtiter plate is described. Different fluorescent europium, samarium, terbium, and dysprosium chelates were coupled to a caspase substrate peptide, their luminescence properties, were analyzed, and their function in a time-resolved fluorescence quenching-based caspase 3 assay was studied. Substrates for caspases 1, 2, 3, 6, and 8 and granzyme B were also synthesized and their specificities for different caspases were determined. By selecting suitable lanthanide chelates and substrates we developed a multiparametric homogeneous time-resolved fluorescence quenching-based assay for caspases 1, 3, and 6. The assay was capable of measuring the activity of both single caspases and a mixture of three caspases mixed in the same well.

  7. CASPASE CONTROL: PROTAGONISTS OF CANCER CELL APOPTOSIS

    PubMed Central

    Fiandalo, M.V.; Kyprianou, N.

    2013-01-01

    Emergence of castration-resistant metastatic prostate cancer is due to activation of survival pathways, including apoptosis suppression and anoikis resistance, and increased neovascularization. Thus targeting of apoptotic players is of critical significance in prostate cancer therapy since loss of apoptosis and resistance to anoikis are critical in aberrant malignant growth, metastasis and conferring therapeutic failure. The majority of therapeutic agents act through intrinsic mitochondrial, extrinsic death receptor pathways or endoplasmic reticulum stress pathways to induce apoptosis. Current therapeutic strategies target restoring regulatory molecules that govern the pro-survival pathways such as PTEN which regulates AKT activity. Other strategies focus on reactivating the apoptotic pathways either by down-regulating anti-apoptotic players such as BCL-2 or by up-regulating pro-apoptotic protein families, most notably, the caspases. Caspases are a family of cystine proteases which serve critical roles in apoptotic and inflammatory signaling pathways. During tumorigenesis, significant loss or inactivation of lead members in the caspase family leads to impairing apoptosis induction, causing a dramatic imbalance in the growth dynamics, ultimately resulting in aberrant growth of human cancers. Recent exploitation of apoptosis pathways towards re-instating apoptosis induction via caspase re-activation has provided new molecular platforms for the development of therapeutic strategies effective against advanced prostate cancer as well as other solid tumors. This review will discuss the current cellular landscape featuring the caspase family in tumor cells and their activation via pharmacologic intervention towards optimized anti-cancer therapeutic modalities. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”. PMID:23070001

  8. Serial killers: ordering caspase activation events in apoptosis.

    PubMed

    Slee, E A; Adrain, C; Martin, S J

    1999-11-01

    Caspases participate in the molecular control of apoptosis in several guises; as triggers of the death machinery, as regulatory elements within it, and ultimately as a subset of the effector elements of the machinery itself. The mammalian caspase family is steadily growing and currently contains 14 members. At present, it is unclear whether all of these proteases participate in apoptosis. Thus, current research in this area is focused upon establishing the repertoire and order of caspase activation events that occur during the signalling and demolition phases of cell death. Evidence is accumulating to suggest that proximal caspase activation events are typically initiated by molecules that promote caspase aggregation. As expected, distal caspase activation events are likely to be controlled by caspases activated earlier in the cascade. However, recent data has cast doubt upon the functional demarcation of caspases into signalling (upstream) and effector (downstream) roles based upon their prodomain lengths. In particular, caspase-3 may perform an important role in propagating the caspase cascade, in addition to its role as an effector caspase within the death programme. Here, we discuss the apoptosis-associated caspase cascade and the hierarchy of caspase activation events within it.

  9. Detection of caspase-activation in intact lymphoid cells using standard caspase substrates and inhibitors.

    PubMed

    Mack, A; Fürmann, C; Häcker, G

    2000-07-31

    Members of the caspase family of proteases are important in the implementation of apoptotic cell death. These caspases are intracellularly activated upon a death stimulus, and exhibit a distinctive proteolytic activity which transmits a death signal and readily detected by measuring the cleavage of synthetic substrates in cell extracts. In this report, we show that apoptosis-associated caspase activation can be recorded not only in cell lysates but also in intact lymphoid cells with commercially available peptides which are either biotinylated or carry an amino-methylcoumarin (AMC) group. Incubation of intact cells induced to undergo apoptosis with Ac-Asp-Glu-Val-Asp-AMC (DEVD-AMC) leads to the release of AMC in amounts very similar to the amounts released when cell extracts are prepared and incubated with DEVD-AMC. This release can be detected by a fluorescence read-out and is blocked by caspase-inhibitors such as Ac-DEVD-cho or Z-VAD-fmk. Similarly, labelling of intact cells with the biotinylated peptides Tyr-Val-Ala-Asp-cmk (YVAD-cmk) or YVAD-faom permits the detection of active caspases by affinity blotting and the detection of apoptotic cells by FACS analysis. These methods enable the investigator to detect at the single-cell level those cells which have activated their caspases and to evaluate such activation without the need for lysis of the cells.

  10. Expression and prognostic significance of APAF-1, caspase-8 and caspase-9 in stage II/III colon carcinoma: caspase-8 and caspase-9 is associated with poor prognosis.

    PubMed

    Sträter, Jörn; Herter, Ines; Merkel, Gaby; Hinz, Ulf; Weitz, Jürgen; Möller, Peter

    2010-08-15

    Apoptosis protease activating factor-1 (APAF-1), caspase-8 and caspase-9 are important factors in the execution of death signals. To study their prognostic influence in colon carcinoma, expression of APAF-1, caspase-8 and caspase-9 was determined by immunohistochemistry in normal colon mucosa (n = 8) and R0-resected stage II/III colon carcinomas (n >or= 124) using a semiquantitative score. Staining results were correlated with disease-free survival by Kaplan-Meier estimates, and multivariate Cox analyses were performed. In normal colon, APAF-1 and caspase-8 are most strongly expressed in the luminal surface epithelium, whereas caspase-9 is expressed all along the crypt axis. In colon carcinomas, there is considerable variability in the expression of these proapoptotic factors, although complete loss of caspase-8 and caspase-9 is rare. APAF-1 expression did not correlate with disease-free survival. Instead, both expression of caspase-9 and high-level expression of caspase-8 in a majority of tumor cells were significantly associated with adverse prognosis (p = 0.004 and p = 0.029, respectively). The influence of caspase-8 expression was mainly seen in patients with stage III colon carcinoma (p = 0.011), whereas the prognostic influence of caspase-9 expression was significant in stage II cases (p = 0.037) and just failed to be significant in stage III tumors (p = 0.0581). After adjusting for confounding factors in a multivariate Cox analysis, the effect of caspase-9 in predicting disease-free survival was confirmed (p = 0.003). Our data suggest that, in colon carcinomas, expression of caspase-8 and caspase-9 is significantly associated with poor survival. Caspase-9 may be an independent prognosticator in colon carcinoma.

  11. Cladribine induces apoptosis in human leukaemia cells by caspase-dependent and -independent pathways acting on mitochondria.

    PubMed Central

    Marzo, I; Pérez-Galán, P; Giraldo, P; Rubio-Félix, D; Anel, A; Naval, J

    2001-01-01

    We have studied the role of caspases and mitochondria in apoptosis induced by 2-chloro-2'-deoxyadenosine (cladribine) in several human leukaemic cell lines. Cladribine treatment induced mitochondrial transmembrane potential (DeltaPsi(m)) loss, phosphatidylserine exposure, caspase activation and development of typical apoptotic morphology in JM1 (pre-B), Jurkat (T) and U937 (promonocytic) cells. Western-blot analysis of cell extracts revealed the activation of at least caspases 3, 6, 8 and 9. Co-treatment with Z-VAD-fmk (benzyloxy-carbonyl-Val-Ala-Asp-fluoromethylketone), a general caspase inhibitor, significantly prevented cladribine-induced death in JM1 and Jurkat cells for the first approximately 40 h, but not for longer times. Z-VAD-fmk also partly prevented some morphological and biochemical features of apoptosis in U937 cells, but not cell death. Co-incubation with selective caspase inhibitors Ac-DEVD-CHO (N-acetyl-Asp-Glu-Val-Asp-aldehyde), Ac-LEHD-CHO (N-acetyl-Leu-Glu-His-Asp-aldehyde) or Z-IETD-fmk (benzyloxycarbonyl-Ile-Glu-Thr-Asp-fluoromethylketone), inhibition of protein synthesis with cycloheximide or cell-cycle arrest with aphidicolin did not prevent cell death. Overexpression of Bcl-2, but not CrmA, efficiently prevented death in Jurkat cells. In all cell lines, death was always preceded by Delta Psi(m) loss and accompanied by the translocation of the protein apoptosis-inducing factor (AIF) from mitochondria to the nucleus. These results suggest that caspases are differentially involved in induction and execution of apoptosis depending on the leukaemic cell lineage. In any case, Delta Psi(m) loss marked the point of no return in apoptosis and may be caused by two different pathways, one caspase-dependent and the other caspase-independent. Execution of apoptosis was always performed after Delta Psi(m) loss by a caspase-9-triggered caspase cascade and the action of AIF. PMID:11672427

  12. Caspase-12 and the inflammatory response to Yersinia pestis.

    PubMed

    Ferwerda, Bart; McCall, Matthew B B; de Vries, Maaike C; Hopman, Joost; Maiga, Boubacar; Dolo, Amagana; Doumbo, Ogobara; Daou, Modibo; de Jong, Dirk; Joosten, Leo A B; Tissingh, Rudi A; Reubsaet, Frans A G; Sauerwein, Robert; van der Meer, Jos W M; van der Ven, André J A M; Netea, Mihai G

    2009-09-01

    Caspase-12 functions as an antiinflammatory enzyme inhibiting caspase-1 and the NOD2/RIP2 pathways. Due to increased susceptibility to sepsis in individuals with functional caspase-12, an early-stop mutation leading to the loss of caspase-12 has replaced the ancient genotype in Eurasia and a significant proportion of individuals from African populations. In African-Americans, it has been shown that caspase-12 inhibits the pro-inflammatory cytokine production. We assessed whether similar mechanisms are present in African individuals, and whether evolutionary pressures due to plague may have led to the present caspase-12 genotype population frequencies. No difference in cytokine induction through the caspase-1 and/or NOD2/RIP2 pathways was observed in two independent African populations, among individuals with either an intact or absent caspase-12. In addition, stimulations with Yersinia pestis and two other species of Yersinia were preformed to investigate whether caspase-12 modulates the inflammatory reaction induced by Yersinia. We found that caspase-12 did not modulate cytokine production induced by Yersinia spp. Our experiments demonstrate for the first time the involvement of the NOD2/RIP2 pathway for recognition of Yersinia. However, caspase-12 does not modulate innate host defense against Y. pestis and alternative explanations for the geographical distribution of caspase-12 should be sought.

  13. Conditional deletion of caspase-8 in macrophages alters macrophage activation in a RIPK-dependent manner.

    PubMed

    Cuda, Carla M; Misharin, Alexander V; Khare, Sonal; Saber, Rana; Tsai, FuNien; Archer, Amy M; Homan, Philip J; Haines, G Kenneth; Hutcheson, Jack; Dorfleutner, Andrea; Budinger, G R Scott; Stehlik, Christian; Perlman, Harris

    2015-10-16

    Although caspase-8 is a well-established initiator of apoptosis and suppressor of necroptosis, recent evidence suggests that this enzyme maintains functions beyond its role in cell death. As cells of the innate immune system, and in particular macrophages, are now at the forefront of autoimmune disease pathogenesis, we examined the potential involvement of caspase-8 within this population. Cre (LysM) Casp8 (fl/fl) mice were bred via a cross between Casp8 (fl/fl) mice and Cre (LysM) mice, and RIPK3 (-/-) Cre (LysM) Casp8 (fl/fl) mice were generated to assess the contribution of receptor-interacting serine-threonine kinase (RIPK)3. Immunohistochemical and immunofluorescence analyses were used to examine renal damage. Flow cytometric analysis was employed to characterize splenocyte distribution and activation. Cre (LysM) Casp8 (fl/fl) mice were treated with either Toll-like receptor (TLR) agonists or oral antibiotics to assess their response to TLR activation or TLR agonist removal. Luminex-based assays and enzyme-linked immunosorbent assays were used to measure cytokine/chemokine and immunoglobulin levels in serum and cytokine levels in cell culture studies. In vitro cell culture was used to assess macrophage response to cell death stimuli, TLR activation, and M1/M2 polarization. Data were compared using the Mann-Whitney U test. Loss of caspase-8 expression in macrophages promotes onset of a mild systemic inflammatory disease, which is preventable by the deletion of RIPK3. In vitro cell culture studies reveal that caspase-8-deficient macrophages are prone to a caspase-independent death in response to death receptor ligation; yet, caspase-8-deficient macrophages are not predisposed to unchecked survival, as analysis of mixed bone marrow chimeric mice demonstrates that caspase-8 deficiency does not confer preferential expansion of myeloid populations. Loss of caspase-8 in macrophages dictates the response to TLR activation, as injection of TLR ligands upregulates

  14. Limited caspase cleavage of human BAP31.

    PubMed

    Määttä, J; Hallikas, O; Welti, S; Hildén, P; Schröder, J; Kuismanen, E

    2000-11-10

    Human BAP31 was cleaved at both of its two identical caspase cleavage sites in two previously reported models of apoptosis. We show here that only the most carboxy-terminal site is cleaved during apoptosis induced in HeLa cells by tunicamycin, tumor necrosis factor and cycloheximide, or staurosporine. Similar results were obtained in HL-60 cells using Fas/APO-1 antibodies, or cycloheximide. This limited cleavage, which is inhibited by several caspase inhibitors, removes eight amino acids from human BAP31 including the KKXX coat protein I binding motif. Ectopic expression of the resulting cleavage product induces redistribution of mannosidase II from the Golgi and prevents endoplasmic reticulum to Golgi transport of virus glycoproteins.

  15. Proliferative versus Apoptotic Functions of Caspase-8 Hetero or Homo: The Caspase-8 Dimer Controls Cell Fate

    PubMed Central

    van Raam, Bram J.; Salvesen, Guy S.

    2014-01-01

    Caspase-8, the initiator of extrinsically-triggered apoptosis, also has important functions in cellular activation and differentiation downstream of a variety of cell surface receptors. It has become increasingly clear that the heterodimer of caspase-8 with the long isoform of cellular FLIP (FLIPL) fulfills these pro-survival functions of caspase-8. FLIPL, a catalytically defective caspase-8 paralog, can interact with caspase-8 to activate its catalytic function. The caspase-8/FLIPL heterodimer has a restricted substrate repertoire and does not induce apoptosis. In essence, caspase-8 heterodimerized with FLIPL prevents the receptor interacting kinases RIPK1 and -3 from executing the form of cell death known as necroptosis. This review discusses the latest insights in caspase-8 homo- vs. heterodimerization and the implication this has for cellular death or survival. PMID:21704196

  16. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism

    PubMed Central

    Dubey, Megha; Nagarkoti, Sheela; Awasthi, Deepika; Singh, Abhishek K; Chandra, Tulika; Kumaravelu, J; Barthwal, Manoj K; Dikshit, Madhu

    2016-01-01

    Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway. PMID:27584786

  17. Dexamethasone decreases neurological sequelae and caspase activity.

    PubMed

    Irazuzta, Jose; Pretzlaff, Robert K; DeCourten-Myers, Gabrielle; Zemlan, Frank; Zingarelli, Basilia

    2005-01-01

    To evaluate the use of dexamethasone in a model of meningitis-induced brain injury. Changes in neurobehavioral performance were the primary outcome variables. Changes in caspase activation and markers of neuronal injury were the secondary outcome variables. Randomized, prospective animal study. University research laboratory. Male Wistar rats. Animals underwent a basilar cistern injection of either placebo or a suspension of Group B Streptococcus. Sixteen hours after inoculation, animals were randomized and received either dexamethasone or placebo in addition to antibiotics. Neurobehavioral performance and biological markers of brain injury were assessed at 3 days and 9 days after randomization. In a second experiment, caspase 1 and 3 were evaluated at 6 h, 24 h, and 72 h after dexamethasone administration. Neurobehavioral performance at 3 days and 9 days was significantly improved in the dexamethasone group. Serum C-tau and cerebral edema were decreased after 3 days of dexamethasone treatment. Dexamethasone decreased Caspase 3 activation in meningitic animals. These findings demonstrate that dexamethasone decreases acute brain injury in a rat model of bacterial meningitis as measured by preservation of neurobehavioral performance.

  18. Doxorubicin Changes Bax /Bcl-xL Ratio, Caspase-8 and 9 in Breast Cancer Cells.

    PubMed

    Sharifi, Simin; Barar, Jaleh; Hejazi, Mohammad Saeid; Samadi, Nasser

    2015-09-01

    Doxorubicin is administrated as a single agent in first-line therapy of breast cancer to induce apoptosis in tumor cells. Bax, Bcl-xL, Caspase-8 and 9 proteins are involved in induction of apoptosis. The present study describes Bax, Bcl-xL gene expression and Caspase-8 and 9 protein levels in MCF-7 cells incubated with doxorubicin at different doses an incubation times. The cytotoxic effects of doxorubicin were studied using MTT assay. MCF-7 cells were treated with three concentrations of doxorubicin (0.1, 0.5, 1 μM) and incubated for 24, 48 and 72 hours then expression levels of Bax and Bcl-xL genes were elucidated by Real-time RT-PCR technique and protein levels of caspase-8 and caspase-9 proteins were measured using ELISA method. Morphological modifications of the cells were also monitored via light microscopic images. Doxorubicin decreased the anti-apoptotic Bcl-xL and increased pro-apoptotic Bax mRNA levels. Doxorubicin induced a significant increase in Bax /Bcl-xL ratio in all doses and incubation times (p<0.05). Highest (more than 10 fold) increase in Bax /Bcl-xL ratio was revealed after 48 h incubation of the cells with in all doses of doxorubicin. Doxorubicin also increased caspase-9 level in a time and dose-dependent manner, while caspase-8 level didn't follow time and dose dependency pattern. Our results confirm that doxorubicin induces mitochondrial-dependent apoptosis by down-regulation of Bcl-xL and up- regulation of Bax and caspase-9 expressions.

  19. Molecular cloning of sea bass (Dicentrarchus labrax L.) caspase-8 gene and its involvement in Photobacterium damselae ssp. piscicida triggered apoptosis.

    PubMed

    Reis, Marta I R; Costa-Ramos, Carolina; do Vale, Ana; dos Santos, Nuno M S

    2010-07-01

    Caspase-8 is an initiator caspase that plays a crucial role in some cases of apoptosis by extrinsic and intrinsic pathways. Caspase-8 structure and function have been extensively studied in mammals, but in fish the characterization of that initiator caspase is still scarce. In this work, the sea bass counterpart of mammalian caspase-8 was sequenced and characterized, and its involvement in the apoptogenic activity of a toxin from a fish pathogen was assessed. A 2472 bp cDNA of sea bass caspase-8 was obtained, consisting of 1455 bp open reading frame coding for 484 amino acids and with a predicted molecular weight of 55.2 kDa. The sea bass caspase-8 gene has 6639 bp and is organized in 11 introns and 12 exons. Several distinctive features of sea bass caspase-8 were identified, which include two death effector domains, the caspase family domains p20 and p10, the caspase-8 active-site pentapeptide and potential aspartic acid cleavage sites. The sea bass caspase-8 sequence revealed a significant degree of similarity to corresponding sequences from several vertebrate taxonomic groups. A low expression of sea bass caspase-8 was detected in various tissues of non-stimulated sea bass. Furthermore, it is shown that stimulation of sea bass with mid-exponential phase culture supernatants from Photobacterium damselae ssp. piscicida (Phdp), known to induce selective apoptosis of macrophages and neutrophils, resulted in an increased expression of caspase-8 in the spleen, one of the main affected organs by Phdp infection.

  20. BDNF pro-peptide regulates dendritic spines via caspase-3

    PubMed Central

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-01-01

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of ‘elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function. PMID:27310873

  1. BDNF pro-peptide regulates dendritic spines via caspase-3.

    PubMed

    Guo, J; Ji, Y; Ding, Y; Jiang, W; Sun, Y; Lu, B; Nagappan, G

    2016-06-16

    The precursor of brain-derived neurotrophic factor (BDNF) (proBDNF) is enzymatically cleaved, by either intracellular (furin/PC1) or extracellular proteases (tPA/plasmin/MMP), to generate mature BDNF (mBDNF) and its pro-peptide (BDNF pro-peptide). Little is known about the function of BDNF pro-peptide. We have developed an antibody that specifically detects cleaved BDNF pro-peptide, but not proBDNF or mBDNF. Neuronal depolarization elicited a marked increase in extracellular BDNF pro-peptide, suggesting activity-dependent regulation of its extracellular levels. Exposure of BDNF pro-peptide to mature hippocampal neurons in culture dramatically reduced dendritic spine density. This effect was mediated by caspase-3, as revealed by studies with pharmacological inhibitors and genetic knockdown. BDNF pro-peptide also increased the number of 'elongated' mitochondria and cytosolic cytochrome c, suggesting the involvement of mitochondrial-caspase-3 pathway. These results, along with BDNF pro-peptide effects recently reported on growth cones and long-term depression (LTD), suggest that BDNF pro-peptide is a negative regulator of neuronal structure and function.

  2. The Enigmatic Roles of Caspases in Tumor Development

    PubMed Central

    Jäger, Richard; Zwacka, Ralf M.

    2010-01-01

    One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may

  3. Clinicopathological significance of caspase-3 and Ki-67 expression in canine mammary gland tumours.

    PubMed

    Rodrigues, Helena; Carvalho, Maria Isabel; Pires, Isabel; Prada, Justina; Queiroga, Felisbina L

    2016-03-01

    Fifty canine mammary gland tumours (CMGT) (18 benign and 32 malignant) were studied by immunohistochemical detection of active caspase-3 and Ki-67 antigens in order to determine their association with several clinicopathological parameters. The percentage of caspase-3 positive cells was significantly higher in benign tumours as compared to their malignant counterparts (P ≤ 0.001). In the group of malignant tumours there was no significant association between active caspase-3 and the clinicopathological variables considered. The percentage of Ki- 67 positive cells was significantly higher in malignant tumours compared to the benign ones (P ≤ 0.001). In the group of malignant tumours, Ki-67 expression showed a statistically significant association with tumour size (P = 0.025), histological type (P = 0.010), mitotic grade (P ≤ 0.001), nuclear grade (P = 0.025), differentiation grade (P = 0.004), histological grade of malignancy (P = 0.002), and presence of metastases in regional lymph nodes (P = 0.025). Furthermore, this study revealed a negative correlation between the percentages of active caspase-3 and Ki-67 (r = -0.39; P = 0.04). Thus, our results suggest a loss of balance between cell death and cell division in CMGT. Apoptosis, caspase-3, Ki.

  4. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation

    PubMed Central

    Vanaja, Sivapriya Kailasan; Russo, Ashley J.; Behl, Bharat; Banerjee, Ishita; Yankova, Maya; Deshmukh, Sachin D.; Rathinam, Vijay A.K.

    2016-01-01

    SUMMARY Sensing of lipopolysaccharide (LPS) in the cytosol triggers caspase-11 activation and is central to host defense against Gram-negative bacterial infections and to the pathogenesis of sepsis. Most Gram-negative bacteria that activate caspase-11 however are not cytosolic and the mechanism by which LPS from these bacteria gains access to caspase-11 in the cytosol remains elusive. Here we identify outer membrane vesicles (OMV) produced by Gram-negative bacteria as a vehicle that delivers LPS into the cytosol triggering caspase-11-dependent effector responses in vitro and in vivo. OMV are internalized via endocytosis, and LPS is released into the cytosol from early endosomes. The use of hypovesiculating bacterial mutants, compromised in their ability to generate OMV, reveal the importance of OMV in mediating the cytosolic localization of LPS. Collectively, these findings demonstrate a critical role for OMV in enabling the cytosolic entry of LPS and consequently caspase-11 activation during Gram-negative bacterial infections. PMID:27156449

  5. BDNF protects neurons following injury by modulation of caspase activity.

    PubMed

    Kim, Dong H; Zhao, Xiurong

    2005-01-01

    Neurotrophins can protect against apoptotic death following neuronal injury. In a previous article, we showed that activation of the trk receptor is required, but the subsequent mechanisms of action remain unclear. Because the caspase family of cysteine proteases plays a central role in the apoptotic process, we examined the effect of the neurotrophins on caspase activation. Primary neuronal cultures from the embryonic rat cortex were injured with radiation, oxygen deprivation, or oxygen-glucose deprivation. Neurons were treated with brain-derived growth factor (BDNF) or caspase inhibitors. The level of injury was assayed by measuring lactate dehydrogenase release. Western blots were used to note the presence and activation of the caspases 1, 2, 3, 8, and 9--with and without treatment with BDNF. Proenzymes for caspases 1, 2, and 3--but not for caspases 8 or 9 were expressed. With radiation or oxygen deprivation, but not oxygen-glucose deprivation, caspase 3 was activated. Treatment with BDNF was protective against radiation and oxygen deprivation only. Treatment with BDNF also blocked the activation of caspase 3. A similar effect was achieved by directly blocking caspase 1 or 3 activation using an inhibitor. In this study, we showed that BDNF treatment inhibits caspase 3 activation following neuronal injury. This is a central event: when injury did not lead to caspase 3 activation, BDNF treatment was not protective. These results suggest one mechanism by which the neurotrophins protect neurons following injury.

  6. The role of caspase-2 in stress-induced apoptosis

    PubMed Central

    Bouchier-Hayes, Lisa

    2010-01-01

    Abstract Caspase-2 is the most evolutionarily conserved of all the caspases, yet it has a poorly defined role in apoptotic pathways. This is mainly due to a dearth of techniques to determine the activation status of caspase-2 and the lack of an abnormal phenotype in caspase-2 deficient mice. Nevertheless, emerging evidence suggests that caspase-2 may have important functions in a number of stress-induced cell death pathways, in cell cycle maintenance and regulation of tumour progression. This review discusses recent advances that have been made to help elucidate the true role of this elusive caspase and the potential contribution of caspase-2 to the pathology of human diseases including cancer. PMID:20158568

  7. The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles

    PubMed Central

    Orme, Mariam H.; Liccardi, Gianmaria; Moderau, Nina; Feltham, Rebecca; Wicky-John, Sidonie; Tenev, Tencho; Aram, Lior; Wilson, Rebecca; Bianchi, Katiuscia; Morris, Otto; Monteiro Domingues, Celia; Robertson, David; Tare, Meghana; Wepf, Alexander; Williams, David; Bergmann, Andreas; Gstaiger, Matthias; Arama, Eli; Ribeiro, Paulo S.; Meier, Pascal

    2016-01-01

    Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events. PMID:26960254

  8. The C-terminal domain of the long form of cellular FLICE-inhibitory protein (c-FLIPL) inhibits the interaction of the caspase 8 prodomain with the receptor-interacting protein 1 (RIP1) death domain and regulates caspase 8-dependent nuclear factor κB (NF-κB) activation.

    PubMed

    Matsuda, Iyo; Matsuo, Kentaro; Matsushita, Yuka; Haruna, Yasushi; Niwa, Masamitsu; Kataoka, Takao

    2014-02-14

    Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation.

  9. The C-terminal Domain of the Long Form of Cellular FLICE-inhibitory Protein (c-FLIPL) Inhibits the Interaction of the Caspase 8 Prodomain with the Receptor-interacting Protein 1 (RIP1) Death Domain and Regulates Caspase 8-dependent Nuclear Factor κB (NF-κB) Activation*

    PubMed Central

    Matsuda, Iyo; Matsuo, Kentaro; Matsushita, Yuka; Haruna, Yasushi; Niwa, Masamitsu; Kataoka, Takao

    2014-01-01

    Caspase 8 plays an essential role in the regulation of apoptotic and non-apoptotic signaling pathways. The long form of cellular FLICE-inhibitory protein (c-FLIPL) has been shown previously to regulate caspase 8-dependent nuclear factor κB (NF-κB) activation by receptor-interacting protein 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). In this study, the molecular mechanism by which c-FLIPL regulates caspase 8-dependent NF-κB activation was further explored in the human embryonic kidney cell line HEK 293 and variant cells barely expressing caspase 8. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone greatly diminished caspase 8-dependent NF-κB activation induced by Fas ligand (FasL) when c-FLIPL, but not its N-terminal fragment c-FLIP(p43), was expressed. The prodomain of caspase 8 was found to interact with the RIP1 death domain and to be sufficient to mediate NF-κB activation induced by FasL or c-FLIP(p43). The interaction of the RIP1 death domain with caspase 8 was inhibited by c-FLIPL but not c-FLIP(p43). Thus, these results reveal that the C-terminal domain of c-FLIPL specifically inhibits the interaction of the caspase 8 prodomain with the RIP1 death domain and, thereby, regulates caspase 8-dependent NF-κB activation. PMID:24398693

  10. Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells.

    PubMed

    Bergadà, Laura; Sorolla, Annabel; Yeramian, Andree; Eritja, Nuria; Mirantes, Cristina; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-08-01

    Histone deacetylase inhibitors such as Vorinostat display anti-neoplastic activity against a variety of solid tumors. Here, we have investigated the anti-tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat-induced the activation of caspase-8 and -9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we investigated the role of the extrinsic pathway in apoptosis triggered by Vorinostat. We found that Vorinostat caused a dramatic decrease of FLIP mRNA and protein levels. However, overexpression of the long from of FLIP did not block Vorinostat-induced apoptosis. To further investigate the role of extrinsic apoptotic pathway in Vorinostat-induced apoptosis, we performed an shRNA-mediated knock-down of caspase-8. Surprisingly, downregulation of caspase-8 alone caused a marked decrease in clonogenic ability and reduced the growth of endometrial cancer xenografts in vivo, revealing that targeting caspase-8 may be an attractive target for anticancer therapy on endometrial tumors. Furthermore, combination of caspase-8 inhibition and Vorinostat treatment caused an enhancement of apoptotic cell death and a further decrease of clonogenic growth of endometrial cancer cells. More importantly, combination of Vorinostat and caspase-8 inhibition caused a nearly complete inhibition of tumor xenograft growth. Finally, we demonstrate that cell death triggered by Vorinostat alone or in combination with caspase-8 shRNAs was inhibited by the anti-apoptotic protein Bcl-XL. Our results suggest that combinatory therapies using Vorinostat treatment and caspase-8 inhibition can be an effective treatment for endometrial carcinomas. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Caspase-14 protects against epidermal UVB photodamage and water loss.

    PubMed

    Denecker, Geertrui; Hoste, Esther; Gilbert, Barbara; Hochepied, Tino; Ovaere, Petra; Lippens, Saskia; Van den Broecke, Caroline; Van Damme, Petra; D'Herde, Katharina; Hachem, Jean-Pierre; Borgonie, Gaetan; Presland, Richard B; Schoonjans, Luc; Libert, Claude; Vandekerckhove, Joël; Gevaert, Kris; Vandenabeele, Peter; Declercq, Wim

    2007-06-01

    Caspase-14 belongs to a conserved family of aspartate-specific proteinases. Its expression is restricted almost exclusively to the suprabasal layers of the epidermis and the hair follicles. Moreover, the proteolytic activation of caspase-14 is associated with stratum corneum formation, implicating caspase-14 in terminal keratinocyte differentiation and cornification. Here, we show that the skin of caspase-14-deficient mice was shiny and lichenified, indicating an altered stratum-corneum composition. Caspase-14-deficient epidermis contained significantly more alveolar keratohyalin F-granules, the profilaggrin stores. Accordingly, caspase-14-deficient epidermis is characterized by an altered profilaggrin processing pattern and we show that recombinant caspase-14 can directly cleave profilaggrin in vitro. Caspase-14-deficient epidermis is characterized by reduced skin-hydration levels and increased water loss. In view of the important role of filaggrin in the structure and moisturization of the skin, the knockout phenotype could be explained by an aberrant processing of filaggrin. Importantly, the skin of caspase-14-deficient mice was highly sensitive to the formation of cyclobutane pyrimidine dimers after UVB irradiation, leading to increased levels of UVB-induced apoptosis. Removal of the stratum corneum indicate that caspase-14 controls the UVB scavenging capacity of the stratum corneum.

  12. hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing

    PubMed Central

    Goehe, Rachel Wilson; Shultz, Jacqueline C.; Murudkar, Charuta; Usanovic, Sanja; Lamour, Nadia F.; Massey, Davis H.; Zhang, Lian; Camidge, D. Ross; Shay, Jerry W.; Minna, John D.; Chalfant, Charles E.

    2010-01-01

    Caspase-9 is involved in the intrinsic apoptotic pathway and suggested to play a role as a tumor suppressor. Little is known about the mechanisms governing caspase-9 expression, but post-transcriptional pre-mRNA processing generates 2 splice variants from the caspase-9 gene, pro-apoptotic caspase-9a and anti-apoptotic caspase-9b. Here we demonstrate that the ratio of caspase-9 splice variants is dysregulated in non–small cell lung cancer (NSCLC) tumors. Mechanistic analysis revealed that an exonic splicing silencer (ESS) regulated caspase-9 pre-mRNA processing in NSCLC cells. Heterogeneous nuclear ribonucleoprotein L (hnRNP L) interacted with this ESS, and downregulation of hnRNP L expression induced an increase in the caspase-9a/9b ratio. Although expression of hnRNP L lowered the caspase-9a/9b ratio in NSCLC cells, expression of hnRNP L produced the opposite effect in non-transformed cells, suggesting a post-translational modification specific for NSCLC cells. Indeed, Ser52 was identified as a critical modification regulating the caspase-9a/9b ratio. Importantly, in a mouse xenograft model, downregulation of hnRNP L in NSCLC cells induced a complete loss of tumorigenic capacity that was due to the changes in caspase-9 pre-mRNA processing. This study therefore identifies a cancer-specific mechanism of hnRNP L phosphorylation and subsequent lowering of the caspase-9a/9b ratio, which is required for the tumorigenic capacity of NSCLC cells. PMID:20972334

  13. PARP-1 regulates the expression of caspase-11

    SciTech Connect

    Yoo, Lang; Hong, Seokheon; Shin, Ki Soon; Kang, Shin Jung

    2011-05-13

    Highlights: {yields} Knockdown of PARP-1 suppresses the LPS-induced expression of caspase-11. {yields} Knockdown of PARP-1 suppresses the caspase-11 promoter activity following LPS stimulation. {yields} PARP-1 is recruited to the caspase-11 promoter region containing NF-{kappa}B-binding sites following LPS stimulation. {yields} PARP-1 inhibitors cannot suppress the caspase-11 induction. {yields} PARP-1 does not suppress IFN-{gamma}-induced expression of caspase-11. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) is a multifunctional enzyme that regulates DNA repair, cell death and transcription of inflammatory proteins. In the present study, we present evidence that PARP-1 regulates the expression of caspase-11 following lipopolysaccharide (LPS) stimulation. Knockdown of PARP-1 suppressed the LPS-induced expression of caspase-11 at both mRNA and protein levels as well as caspase-11 promoter activity. Importantly, PARP-1 was recruited to the caspase-11 promoter region containing predicted nuclear factor (NF)-{kappa}B-binding sites when examined by chromatin immunoprecipitation assay. However, knockdown of PARP-1 did not suppress the expression of caspase-11 induced by interferon-{gamma} that activates signal transducer and activator of transcription 1 but not NF-{kappa}B. PARP-1 enzymatic activity was not required for the caspase-11 upregulation since pharmacological inhibitors of PARP-1 did not suppress the induction of caspase-11. Our results suggest that PARP-1, as a transcriptional cofactor for NF-{kappa}B, regulates the induction of caspase-11 at a transcriptional level.

  14. Apoptosis and age-related disorders: role of caspase-dependent and caspase-independent pathways.

    PubMed

    Nicotera, Pierluigi

    2002-02-28

    The execution of the apoptotic program involves a relatively limited number of pathways that converge on the activation of the caspase family of proteases. However, there is increasing evidence that other protease families may contribute to produce apoptotic-like features. This has posed the question as to whether caspase inhibitors may then be used to treat diseases characterised by an excess apoptosis. In several neurodegenerative diseases including acute neuronal loss as in stroke or slowly developing diseases at least two major events contribute to neurodegeneration: the loss of neuronal connectivity and cell loss. In many of these conditions, mitochondrial dysfunction and the resulting ATP depletion may preclude caspase activation, and consequently switch execution of cell death towards necrosis. A block or partial inhibition of the typical apoptotic demise may have profound implications in vivo, as persistence within the nervous system of damaged, but 'undead' cells, followed by delayed lysis may favour neuroinflammatory reactions. Furthermore, caspases may be involved in loss of neurons, but not in the loss of connectivity that seems to initiate degenerative processes in the nervous system. Some recent findings, which suggest that degenerating neurons may use multiple execution pathways will be discussed.

  15. Caspase-activated DNase is necessary and sufficient for oligonucleosomal DNA breakdown, but not for chromatin disassembly during caspase-dependent apoptosis of LN-18 glioblastoma cells.

    PubMed

    Sánchez-Osuna, María; Garcia-Belinchón, Mercè; Iglesias-Guimarais, Victoria; Gil-Guiñón, Estel; Casanelles, Elisenda; Yuste, Victor J

    2014-07-04

    Caspase-dependent apoptosis is a controlled type of cell death characterized by oligonucleosomal DNA breakdown and major nuclear morphological alterations. Other kinds of cell death do not share these highly distinctive traits because caspase-activated DNase (DFF40/CAD) remains inactive. Here, we report that human glioblastoma multiforme-derived LN-18 cells do not hydrolyze DNA into oligonucleosomal fragments after apoptotic insult. Furthermore, their chromatin remains packaged into a single mass, with no signs of nuclear fragmentation. However, ultrastructural analysis reveals that nuclear disassembly occurs, although compacted chromatin does not localize into apoptotic nuclear bodies. Caspases become properly activated, and ICAD, the inhibitor of DFF40/CAD, is correctly processed. Using cell-free in vitro assays, we show that chromatin from isolated nuclei of LN-18 cells is suitable for hydrolysis into oligonuclesomal fragments by staurosporine-pretreated SH-SY5Y cytoplasms. However, staurosporine-pretreated LN-18 cytoplasms do not induce DNA laddering in isolated nuclei from either LN-18 or SH-SY5Y cells because LN-18 cells express lower amounts of DFF40/CAD. DFF40/CAD overexpression makes LN-18 cells fully competent to degrade their DNA into oligonucleosome-sized fragments, and yet they remain unable to arrange their chromatin into nuclear clumps after apoptotic insult. Indeed, isolated nuclei from LN-18 cells were resistant to undergoing apoptotic nuclear morphology in vitro. The use of LN-18 cells has uncovered a previously unsuspected cellular model, whereby a caspase-dependent chromatin package is DFF40/CAD-independent, and DFF40/CAD-mediated double-strand DNA fragmentation does not warrant the distribution of the chromatin into apoptotic nuclear bodies. The studies highlight a not-yet reported DFF40/CAD-independent mechanism driving conformational nuclear changes during caspase-dependent cell death.

  16. Caspase-activated DNase Is Necessary and Sufficient for Oligonucleosomal DNA Breakdown, but Not for Chromatin Disassembly during Caspase-dependent Apoptosis of LN-18 Glioblastoma Cells*

    PubMed Central

    Sánchez-Osuna, María; Garcia-Belinchón, Mercè; Iglesias-Guimarais, Victoria; Gil-Guiñón, Estel; Casanelles, Elisenda; Yuste, Victor J.

    2014-01-01

    Caspase-dependent apoptosis is a controlled type of cell death characterized by oligonucleosomal DNA breakdown and major nuclear morphological alterations. Other kinds of cell death do not share these highly distinctive traits because caspase-activated DNase (DFF40/CAD) remains inactive. Here, we report that human glioblastoma multiforme-derived LN-18 cells do not hydrolyze DNA into oligonucleosomal fragments after apoptotic insult. Furthermore, their chromatin remains packaged into a single mass, with no signs of nuclear fragmentation. However, ultrastructural analysis reveals that nuclear disassembly occurs, although compacted chromatin does not localize into apoptotic nuclear bodies. Caspases become properly activated, and ICAD, the inhibitor of DFF40/CAD, is correctly processed. Using cell-free in vitro assays, we show that chromatin from isolated nuclei of LN-18 cells is suitable for hydrolysis into oligonuclesomal fragments by staurosporine-pretreated SH-SY5Y cytoplasms. However, staurosporine-pretreated LN-18 cytoplasms do not induce DNA laddering in isolated nuclei from either LN-18 or SH-SY5Y cells because LN-18 cells express lower amounts of DFF40/CAD. DFF40/CAD overexpression makes LN-18 cells fully competent to degrade their DNA into oligonucleosome-sized fragments, and yet they remain unable to arrange their chromatin into nuclear clumps after apoptotic insult. Indeed, isolated nuclei from LN-18 cells were resistant to undergoing apoptotic nuclear morphology in vitro. The use of LN-18 cells has uncovered a previously unsuspected cellular model, whereby a caspase-dependent chromatin package is DFF40/CAD-independent, and DFF40/CAD-mediated double-strand DNA fragmentation does not warrant the distribution of the chromatin into apoptotic nuclear bodies. The studies highlight a not-yet reported DFF40/CAD-independent mechanism driving conformational nuclear changes during caspase-dependent cell death. PMID:24838313

  17. Caspase activation inhibits proteasome function during apoptosis.

    PubMed

    Sun, Xiao-Ming; Butterworth, Michael; MacFarlane, Marion; Dubiel, Wolfgang; Ciechanover, Aaron; Cohen, Gerald M

    2004-04-09

    The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.

  18. Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: A role for the IAPs

    SciTech Connect

    Cheung, Herman H.; Lynn Kelly, N.; Liston, Peter; Korneluk, Robert G. . E-mail: bob@mgcheo.med.uottawa.ca

    2006-07-15

    Dysregulation of apoptosis is involved in a wide spectrum of disease ranging from proliferative to degenerative disorders. An emerging area of study in apoptosis is the critical contribution of the endoplasmic reticulum (ER) in both mitochondrial and ER specific apoptosis pathways. Here we show that brefeldin A and tunicamycin-mediated ER stress lead to caspase-dependent apoptosis involving caspase-2. Confocal microscopy and subcellular fractionation indicate that caspase-2 is localized to the ER, and following ER stress, the processing of caspase-2 and -9 is an early event preceding the activation of caspase-3 and -7 and the cleavage of the caspase substrate poly(ADP-ribose) polymerase (PARP). Inhibition and silencing of either caspase-2 or caspase-9 suppress ER stress-induced apoptosis, as demonstrated by annexin V binding. Similarly, transduction with an adenovirus encoding either Inhibitors of Apoptosis (IAP) protein HIAP1/c-IAP2 or HIAP2/c-IAP1 also suppresses ER stress-induced apoptosis. However, among HIAP1, HIAP2 and XIAP, only HIAP2 binds and inhibits caspase-2. Our results thus indicate a novel mechanism by which HIAP2 can regulate ER-initiated apoptosis by modulating the activity of caspase-2.

  19. Caspase Deficiency: Involvement in Breast Carcinogenesis and Resistance

    DTIC Science & Technology

    2000-07-01

    sterol-regulatory element-binding protein (SREBPs)(19), gelsolin (20), the Ul-associated 70 kDa protein (21), D4-GDI (22), DNA fragmentation factor...3C), the observed proteolysis was a consequence of caspase 3 reconstitution. Caspase 3 was required for doxorubicin induced DNA fragmentation DNA ... fragmentation is a key feature associated with apoptosis (6). Caspase 3 is required for DNA fragmentation in tumor necrosis factor-a (TNF-cc) induced

  20. Nonapoptotic Function of Caspase-6 in Promoting Mammary Carcinogenesis

    DTIC Science & Technology

    2012-01-01

    Figure 4), normal human mammary tissues show little caspase-6 staining and about 60% of cancer tissues showed strong caspase-6 staining (Figure 4...Center) were stained for caspse-6. The included one of the three normal mammary tissues (upper panels) contains little caspase-6 staining . The cancer...lower panel) is highly positive of caspse-6 staining . A 100X magnification (left panels) and a 400X magnification are shown. About 60% of

  1. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    PubMed

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  2. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases.

    PubMed

    Lüthi, Alexander U; Cullen, Sean P; McNeela, Edel A; Duriez, Patrick J; Afonina, Inna S; Sheridan, Clare; Brumatti, Gabriela; Taylor, Rebecca C; Kersse, Kristof; Vandenabeele, Peter; Lavelle, Ed C; Martin, Seamus J

    2009-07-17

    Interleukin-33 (IL-33) is a member of the IL-1 family and is involved in polarization of T cells toward a T helper 2 (Th2) cell phenotype. IL-33 is thought to be activated via caspase-1-dependent proteolysis, similar to the proinflammatory cytokines IL-1 beta and IL-18, but this remains unproven. Here we showed that IL-33 was processed by caspases activated during apoptosis (caspase-3 and -7) but was not a physiological substrate for caspases associated with inflammation (caspase-1, -4, and -5). Furthermore, caspase-dependent processing of IL-33 was not required for ST2 receptor binding or ST2-dependent activation of the NF-kappaB transcription factor. Indeed, caspase-dependent proteolysis of IL-33 dramatically attenuated IL-33 bioactivity in vitro and in vivo. These data suggest that IL-33 does not require proteolysis for activation, but rather, that IL-33 bioactivity is diminished through caspase-dependent proteolysis within apoptotic cells. Thus, caspase-mediated proteolysis acts as a switch to dampen the proinflammatory properties of IL-33.

  3. Inactivating mutations of CASPASE-7 gene in human cancers.

    PubMed

    Soung, Young Hwa; Lee, Jong Woo; Kim, Hong Sug; Park, Won Sang; Kim, Su Young; Lee, Jong Heun; Park, Jik Young; Cho, Yong Gu; Kim, Chang Jae; Park, Yong Gyu; Nam, Suk Woo; Jeong, Seong Whan; Kim, Sang Ho; Lee, Jung Young; Yoo, Nam Jin; Lee, Sug Hyung

    2003-09-11

    Caspase-7 is a caspase involved in the execution phase of apoptosis. To explore the possibility that the genetic alterations of CASPASE-7 might be involved in the development of human cancers, we analysed the entire coding region and all splice sites of human CASPASE-7 gene for the detection of somatic mutations in a series of human solid cancers, including carcinomas from stomach, colon, head/neck, esophagus, urinary bladder and lung. Overall, we detected CASPASE-7 mutations in two of 98 colon carcinomas (2.0%), one of 50 esophageal carcinomas (2.0%) and one of 33 head/neck carcinomas (3.0%). We expressed the tumor-derived caspase-7 mutants in 293 T cells and found that the apoptosis was reduced compared to the wild-type caspase-7. This is the first report on the CASPASE-7 gene mutations in human malignancies, and our data suggest that the inactivating mutations of the CASPASE-7 gene might lead to the loss of its apoptotic function and contribute to the pathogenesis of some human solid cancers.

  4. Ceramides stimulate caspase-14 expression in human keratinocytes

    PubMed Central

    Jiang, Yan J.; Kim, Peggy; Uchida, Yoshikazu; Elias, Peter M.; Bikle, Daniel D.; Grunfeld, Carl; Feingold, Kenneth R.

    2014-01-01

    Caspase-14 is an enzyme that is expressed predominantly in cornifying epithelia and catalyses the degradation of profilaggrin. Additionally, caspase-14 plays an important role in the terminal differentiation of keratinocytes. However, how caspase-14 expression is regulated remains largely unknown. Here we demonstrate that ceramides (C2-Cer and C6-Cer), but not other sphingolipids (C8-glucosylceramides, sphinganine, sphingosine-1-phosphate or ceramide-1-phosphate), increase caspase-14 expression (mRNA and protein) in cultured human keratinocytes in a dose- and time-dependent manner. Inhibitors of glucosylceramide synthase and ceramidase increase endogenous ceramide levels and also increase caspase-14 expression, indicating an important regulatory role for ceramides and suggesting that the conversion of ceramides to other metabolites is not required. The increase in caspase-14 expression induced by ceramides is first seen at 16 h and requires new protein synthesis, suggesting that the ceramide-induced increase is likely an indirect effect. Furthermore, ceramides increase caspase-14 gene expression primarily by increasing transcription. Blocking de novo synthesis of ceramides does not affect caspase-14 expression, suggesting that basal expression is not dependent on ceramide levels. These studies show that ceramides, an important structural lipid, stimulate caspase-14 expression providing a mechanism for coordinately regulating the formation of lipid lamellar membranes with the formation of corneocytes. PMID:23362869

  5. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid*

    PubMed Central

    Yue, Jicheng; Ben Messaoud, Nabil; López, José M.

    2015-01-01

    Hyperosmotic shock induces early calpain activation, Smac/DIABLO release from the mitochondria, and p38/JNK activation in Xenopus oocytes. These pathways regulate late cytochrome c release and caspase-3 activation. Here, we show that JNK1-1 and JNK1-2 are activated early by osmostress, and sustained activation of both isoforms accelerates the apoptotic program. When caspase-3 is activated, JNK1-2 is proteolyzed at Asp-385 increasing the release of cytochrome c and caspase-3 activity, thereby creating a positive feedback loop. Expression of Bcl-xL markedly reduces hyperosmotic shock-induced apoptosis. In contrast, expression of Bid induces rapid caspase-3 activation, even in the absence of osmostress, which is blocked by Bcl-xL co-expression. In these conditions a significant amount of Bid in the cytosol is mono- and bi-ubiquitinated. Caspase-3 activation by hyperosmotic shock induces proteolysis of Bid and mono-ubiquitinated Bid at Asp-52 increasing the release of cytochrome c and caspase-3 activation, and thus creating a second positive feedback loop. Revealing the JNK isoforms and the loops activated by osmostress could help to design better treatments for human diseases caused by perturbations in fluid osmolarity. PMID:26511318

  6. Protective effect of novel substituted nicotine hydrazide analogues against hypoxic brain injury in neonatal rats via inhibition of caspase.

    PubMed

    Deng, Chang-Bo; Li, Juan; Li, Lu-Yi; Sun, Feng-Jie

    2016-07-01

    In hypoxic-ischemic injury of the brain of neonates, the level of caspase-3 was found to be aberrantly activated. Its overexpression leads to the alteration of cytoskeleton protein fodrin and loss of DNA repair enzyme which ultimately results in neurological impairment and disability. Concerning this, the present study was intended to develop novel nicotine hydrazide analogues as caspase inhibitors via efficient synthetic route. These compounds were subsequently tested for inhibitory activity against caspase-3 and -7 where they exhibit highly potent activity against caspase-3 revealing compound 5k as most potent inhibitor (IC50=19.4±2.5μM). In Western blot analysis, 5k considerably inhibits the overexpression of caspase-3. The aryl nicotinate of compound 5k, as indicated by molecular docking was found to engage His121 and critical enzyme thiols, i.e., Cys163 of caspase-3 for its potent activity. Moreover, histopathological examination of brain tissues and hippocampus neurons showed that compound 5k considerably improves the brain injury and exert neuroprotective effects in hypoxic-ischemic (HI). In brain homogenate, 5k significantly improves the activity of MDA, SOD, GSH-Px, CAT and T-AOC to exert its beneficial effect against oxidative stress induced by HI injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid.

    PubMed

    Yue, Jicheng; Ben Messaoud, Nabil; López, José M

    2015-12-18

    Hyperosmotic shock induces early calpain activation, Smac/DIABLO release from the mitochondria, and p38/JNK activation in Xenopus oocytes. These pathways regulate late cytochrome c release and caspase-3 activation. Here, we show that JNK1-1 and JNK1-2 are activated early by osmostress, and sustained activation of both isoforms accelerates the apoptotic program. When caspase-3 is activated, JNK1-2 is proteolyzed at Asp-385 increasing the release of cytochrome c and caspase-3 activity, thereby creating a positive feedback loop. Expression of Bcl-xL markedly reduces hyperosmotic shock-induced apoptosis. In contrast, expression of Bid induces rapid caspase-3 activation, even in the absence of osmostress, which is blocked by Bcl-xL co-expression. In these conditions a significant amount of Bid in the cytosol is mono- and bi-ubiquitinated. Caspase-3 activation by hyperosmotic shock induces proteolysis of Bid and mono-ubiquitinated Bid at Asp-52 increasing the release of cytochrome c and caspase-3 activation, and thus creating a second positive feedback loop. Revealing the JNK isoforms and the loops activated by osmostress could help to design better treatments for human diseases caused by perturbations in fluid osmolarity.

  8. Pharmacological inhibition of caspase-8 limits lung tumour outgrowth

    PubMed Central

    Terlizzi, Michela; Di Crescenzo, Vincenzo Giuseppe; Perillo, Giuseppe; Galderisi, Antonio; Pinto, Aldo; Sorrentino, Rosalinda

    2015-01-01

    Background and Purpose Lung cancer is one of the leading causes of cancer death worldwide. Despite advances in therapy, conventional therapy is still the main treatment and has a high risk of chemotherapy resistance. Caspase-8 is involved in cell death and is a recognized marker for poor patient prognosis. Experimental Approach To elucidate the role of caspase-8 in lung carcinoma, we used human samples of non-small cell lung cancer (NSCLC) and a mouse model of carcinogen-induced lung cancer. Key Results Healthy and cancerous NSCLC samples had similar levels of the active form of caspase-8. Similarly, lung tumour-bearing mice had high levels of the active form of caspase-8. Pharmacological inhibition of caspase-8 by z-IETD-FMK robustly reduced tumour outgrowth and this was closely associated with a reduction in the release of pro-inflammatory cytokines, IL-6, TNF-α, IL-18, IL-1α, IL-33, but not IL-1β. Furthermore, inhibition of caspase-8 reduced the recruitment of innate suppressive cells, such as myeloid-derived suppressor cells, but not of regulatory T cells to lungs of tumour-bearing mice. However, despite the well-known role of caspase-8 in cell death, the apoptotic cascade (caspase-3, caspase-9 and Bcl-2 dependent) was not active in lungs of z-IETD-treated tumour-bearing mice, but instead higher levels of the short segment of c-FLIP (c-FLIPs) were detected. Similarly, human healthy lung samples had higher levels of c-FLIPs than cancerous samples. Conclusions and Implications Our data suggest that caspase-8 is an important orchestrator of cancer-associated inflammation and the presence of short segment of c-FLIP determines whether caspase-8 induces tumour proliferation or tumour arrest/regression in the lung. PMID:25917370

  9. Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria.

    PubMed

    Nguyen, M; Breckenridge, D G; Ducret, A; Shore, G C

    2000-09-01

    BAP31 is a 28-kDa integral membrane protein of the endoplasmic reticulum whose cytosolic domain contains two identical caspase recognition sites (AAVD.G) that are preferentially cleaved by initiator caspases, including caspase 8. Cleavage of BAP31 during apoptosis generates a p20 fragment that remains integrated in the membrane and, when expressed ectopically, is a potent inducer of cell death. To examine the consequences of maintaining the structural integrity of BAP31 during apoptosis, the caspase recognition aspartate residues were mutated to alanine residues, and Fas-mediated activation of caspase 8 and cell death were examined in human KB epithelial cells stably expressing the caspase-resistant mutant crBAP31. crBAP31 only modestly slowed the time course for activation of caspases, as assayed by the processing of procaspases 8 and 3 and the measurement of total DEVDase activity. As a result, cleavage of the caspase targets poly(ADP-ribosyl) polymerase and endogenous BAP31, as well as the redistribution of phosphatidylserine and fragmentation of DNA, was observed. In contrast, cytoplasmic membrane blebbing and fragmentation and apoptotic redistribution of actin were strongly inhibited, cell morphology was retained near normal, and the irreversible loss of cell growth potential following removal of the Fas stimulus was delayed. Of note, crBAP31-expressing cells also resisted Fas-mediated release of cytochrome c from mitochondria, and the mitochondrial electrochemical potential was only partly reduced. These results argue that BAP31 cleavage is important for manifesting cytoplasmic apoptotic events associated with membrane fragmentation and reveal an unexpected cross talk between mitochondria and the endoplasmic reticulum during Fas-mediated apoptosis in vivo.

  10. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells.

    PubMed

    Cerón, José María; Contreras-Moreno, Judit; Puertollano, Elena; de Cienfuegos, Gerardo Álvarez; Puertollano, María A; de Pablo, Manuel A

    2010-08-01

    Most antimicrobial peptides have been shown to have antitumoral activity. Cecropin A, a linear 37-residue antimicrobial polypeptide produced by the cecropia moth, has exhibited cytotoxicity in various human cancer cell lines and inhibitory effects on tumor growth. In this study, we investigated the apoptosis induced by cecropin A in the promyelocytic cell line HL-60. Treatment of cells with cecropin A was characterized by loss of viability in a dose-dependent manner, lactate dehydrogenase (LDH) leakage, and modest attenuation of lysosomal integrity measured by neutral red assay. An increase of reactive oxygen species (ROS) generation, DNA fragmentation, and phosphatidylserine externalization were quantified following cecropin A exposure at a concentration of 30 microM, whereas cecropin A-induced apoptosis was independent of caspase family members, because the activity of caspase-8 and -9 were irrelevant. Nevertheless, caspase-3 activity showed a significant increase at concentrations of 20-40 microM, but a considerable reduction at 50 microM. Flow cytometry analysis revealed a dissipation of the mitochondrial transmembrane potential (Deltapsi(m)), and the accumulation of cells at sub-G1 phase measured by FACS analysis of propidium iodide (PI) stained nuclei suggested induction of apoptosis. Morphological changes measured by Hoechst 33342 or acridine orange/ethidium bromide staining showed nuclear condensation, corroborating the apoptotic action of cecropin A. Overall, these data indicate that cecropin A is able to induce apoptosis in HL-60 cells through a signaling mechanism mediated by ROS, but independently of caspase activation.

  11. SUMO-Modified FADD Recruits Cytosolic Drp1 and Caspase-10 to Mitochondria for Regulated Necrosis.

    PubMed

    Choi, Seon-Guk; Kim, Hyunjoo; Jeong, Eun Il; Lee, Ho-June; Park, Sungwoo; Lee, Song-Yi; Lee, Hyeon-Jeong; Lee, Seong Won; Chung, Chin Ha; Jung, Yong-Keun

    2017-01-15

    Fas-associated protein with death domain (FADD) plays a key role in extrinsic apoptosis. Here, we show that FADD is SUMOylated as an essential step during intrinsic necrosis. FADD was modified at multiple lysine residues (K120/125/149) by small ubiquitin-related modifier 2 (SUMO2) during necrosis caused by calcium ionophore A23187 and by ischemic damage. SUMOylated FADD bound to dynamin-related protein 1 (Drp1) in cells both in vitro and in ischemic tissue damage cores, thus promoting Drp1 recruitment by mitochondrial fission factor (Mff) to accomplish mitochondrial fragmentation. Mitochondrial-fragmentation-associated necrosis was blocked by FADD or Drp1 deficiency and SUMO-defective FADD expression. Interestingly, caspase-10, but not caspase-8, formed a ternary protein complex with SUMO-FADD/Drp1 on the mitochondria upon exposure to A23187 and potentiated Drp1 oligomerization for necrosis. Moreover, the caspase-10 L285F and A414V mutants, found in autoimmune lymphoproliferative syndrome and non-Hodgkin lymphoma, respectively, regulated this necrosis. Our study reveals an essential role of SUMOylated FADD in Drp1- and caspase-10-dependent necrosis, providing insights into the mechanism of regulated necrosis by calcium overload and ischemic injury.

  12. Canine distemper virus induces apoptosis through caspase-3 and -8 activation in vero cells.

    PubMed

    Kajita, M; Katayama, H; Murata, T; Kai, C; Hori, M; Ozaki, H

    2006-08-01

    We investigated the signal-transduction pathway of canine distemper virus-Onderstepoort (CDV-Ond) vaccine strain-mediated apoptosis in Vero cells. Canine distemper virus-Onderstepoort at a multiplicity of infection (MOI) of 0.1 induced DNA fragmentation 48 h after infection. Immunofluorescence staining revealed that 57% +/- 4% of the CDV-N-protein-positive cells were terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive, and all TUNEL-positive cells were CDV-N-protein-positive, indicating that CDV-Ond induced apoptosis only in the infected cells. We also found that CDV-Ond infection induced activation of caspase-3 and caspase-8. In the semi-quantitative reverse transcription-polymerase chain reaction assay for apoptosis-related genes, the expression of mRNA of the death receptor, Fas, was also increased in CDV-Ond-infected cells. In contrast, the expressions of Bcl-2 and Bax, regulators for intrinsic apoptotic signaling through the mitochondria, did not change. These results suggest that CDV-Ond induced apoptosis by activating caspase-3, possibly through caspase-8 signaling rather than through p53/Bax-mediated, mitochondrial signaling in the infected cells.

  13. CDP-choline reduces pro-caspase and cleaved caspase-3 expression, nuclear DNA fragmentation, and specific PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat.

    PubMed

    Krupinski, J; Ferrer, I; Barrachina, M; Secades, J J; Mercadal, J; Lozano, R

    2002-05-01

    Citicoline has been demonstrated to be beneficial in several models of cerebral ischaemia. We tested the hypothesis that citicoline may provide apoptotic pathways following focal cerebral ischaemia. Focal cerebral ischaemia was produced by distal, permanent middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats. The animals were randomised into four groups: (B+A) Citicoline 500 mg/kg IP 24 and 1 h before MCAO, and 23 h after MCAO; (A) citicoline 500 mg/kg IP, within 30 min after MCAO, and 23 h after MCAO; (C) vehicle IP; and (D) sham-operated. The animals were sacrificed at 12 h (n=8 per group) and 24 h (n=8 per group) after MCAO. Immunohistochemistry was performed on free-floating tissue sections with goat polyclonal antibodies to procaspase-1, -2, -3, -6 and -8, and in paraffin-embedded sections processed for cleaved caspase-3 (17 kDa) immunohistochemistry. Finally, some sections were stained with the method of in situ end-labelling of nuclear DNA fragmentation. For gel electrophoresis and Western blotting, antibodies to poly (ADP-ribose) polymerase (PARP) products of 89 kDa were used to reveal specific cleavage substrates of caspases. MCAO induced the expression of all procaspases and the expression of PARP products of 89 kDa, as well as cells with nuclear DNA fragmentation, at 12 and 24 h, in the infarcted core and penumbra. Citicoline reduced the expression of all procaspases at 12 and 24 h after MCAO, as well as the expression of cleaved caspase-3 in cells in the penumbra area. This was accompanied by a reduction in the number of cells bearing nuclear DNA fragments. The expression of caspase-cleaved products of PARP (PARP 89 kDa) was reduced in citicoline-treated ischaemic rats. These results show that citicoline inhibits the expression of proteins involved in apoptosis following MCAO.

  14. Turning on caspases with genetics and small molecules.

    PubMed

    Morgan, Charles W; Julien, Olivier; Unger, Elizabeth K; Shah, Nirao M; Wells, James A

    2014-01-01

    Caspases, aspartate-specific cysteine proteases, have fate-determining roles in many cellular processes including apoptosis, differentiation, neuronal remodeling, and inflammation (for review, see Yuan & Kroemer, 2010). There are a dozen caspases in humans alone, yet their individual contributions toward these phenotypes are not well understood. Thus, there has been considerable interest in activating individual caspases or using their activity to drive these processes in cells and animals. We envision that such experimental control of caspase activity can not only afford novel insights into fundamental biological problems but may also enable new models for disease and suggest possible routes to therapeutic intervention. In particular, localized, genetic, and small-molecule-controlled caspase activation has the potential to target the desired cell type in a tissue. Suppression of caspase activation is one of the hallmarks of cancer and thus there has been significant enthusiasm for generating selective small-molecule activators that could bypass upstream mutational events that prevent apoptosis. Here, we provide a practical guide that investigators have devised, using genetics or small molecules, to activate specific caspases in cells or animals. Additionally, we show genetically controlled activation of an executioner caspase to target the function of a defined group of neurons in the adult mammalian brain.

  15. Pyroptosis: Caspase-11 Unlocks the Gates of Death.

    PubMed

    de Gassart, Aude; Martinon, Fabio

    2015-11-17

    How inflammatory caspases trigger pyroptotic cell death is mostly unexplained. In this issue of Immunity, Núñez and colleagues report that caspase-11 cleaves the transmembrane channel pannexin-1, causing an efflux of cellular ATP that promotes a P2X7 receptor-dependent pyroptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. TAF15 and the leukemia-associated fusion protein TAF15-CIZ/NMP4 are cleaved by caspases-3 and -7

    SciTech Connect

    Alves, Juliano; Wurdak, Heiko; Garay-Malpartida, Humberto M.; Harris, Jennifer L.; Occhiucci, Joao M.; Belizario, Jose E.; Li, Jun

    2009-07-10

    Caspases are central players in proteolytic pathways that regulate cellular processes such as apoptosis and differentiation. To accelerate the discovery of novel caspase substrates we developed a method combining in silico screening and in vitro validation. With this approach, we identified TAF15 as a novel caspase substrate in a trial study. We find that TAF15 was specifically cleaved by caspases-3 and -7. Site-directed mutagenesis revealed the consensus sequence {sup 106}DQPD/Y{sup 110} as the only site recognized by these caspases. Surprisingly, TAF15 was cleaved at more than one site in staurosporine-treated Jurkat cells. In addition, we generated two oncogenic TAF15-CIZ/NMP4-fused proteins which have been found in acute myeloid leukemia and demonstrate that caspases-3 and -7 cleave the fusion proteins at one single site. Broad application of this combination approach should expedite identification of novel caspase-interacting proteins and provide new insights into the regulation of caspase pathways leading to cell death in normal and cancer cells.

  17. Differential expression of Livin, caspase-3, and second mitochondria-derived activator of caspases in chronic rhinosinusitis with nasal polyps.

    PubMed

    Lin, Hai; Lin, Dong; Xiong, Xisheng

    2014-12-01

    The pathogenesis of human chronic rhinosinusitis with nasal polyps (CRSwNP) remains undetermined. Livin is a member of the inhibitor of the apoptosis protein family proteins. Caspase-3 and second mitochondria-derived activator of caspases (Smac) are critical in the induction of apoptosis. However, little is known about their roles in CRSwNP. We aimed to investigate the expression and role of Livin, caspase-3, and Smac in CRSwNP. Basic research and descriptive study. Fuzhou General Hospital, Fuzhou, Fujian, China. The immunohistochemistry method was employed for detecting Livin, caspase-3, and Smac protein expression, and real-time polymerase chain reaction was used for assaying mRNA expression of Livin, caspase-3, and Smac in CRSwNP and controls. Moreover, the effects of various stimulators on Livin were evaluated on human nasal epithelial cells (HNECs) culture. Then, the effects of Livin on caspase-3 and Smac were observed on the culture of HNECs. Stronger protein and mRNA expression of Livin was observed in CRSwNP, especially eosinophilic CRSwNP, weaker protein and mRNA expression of caspase-3 and Smac was observed in CRSwNP, and Livin expression was negatively related to caspase-3 or Smac expression, respectively. Livin mRNA was augmented by interleukin (IL)-4, IL-17A, and IL-1β but suppressed by interferon-γ. Caspase-3 and Smac mRNA expression were inhibited by Livin. Upregulation of Livin and downregulation of caspase-3 and Smac were observed in CRSwNP, especially in eosinophilic CRSwNP. Livin may exert its anti-apoptosis effect by suppressing caspase-3 and Smac in CRSwNP. IL-4, IL-17A, and IL-1β may be critical for Livin expression. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  18. A caspase-related protease regulates apoptosis in yeast.

    PubMed

    Madeo, Frank; Herker, Eva; Maldener, Corinna; Wissing, Silke; Lächelt, Stephan; Herlan, Mark; Fehr, Markus; Lauber, Kirsten; Sigrist, Stephan J; Wesselborg, Sebastian; Fröhlich, Kai Uwe

    2002-04-01

    Yeast can undergo cell death accompanied by cellular markers of apoptosis. However, orthologs of classical mammalian apoptosis regulators appeared to be missing from the yeast genome, challenging a common mechanism of yeast and mammalian apoptosis. Here we investigate Yor197w, a yeast protein with structural homology to mammalian caspases, and demonstrate caspase-like processing of the protein. Hydrogen peroxide treatment induces apoptosis together with a caspase-like enzymatic activity in yeast. This response is completely abrogated after disruption and strongly stimulated after overexpression of Yor197w. Yor197w also mediates the death process within chronologically aged cultures, pointing to a physiological role in elimination of overaged cells. We conclude that Yor197w indeed functions as a bona fide caspase in yeast and propose the name Yeast Caspase-1 (YCA1, gene YCA1).

  19. Suppression of caspase-11 expression by histone deacetylase inhibitors

    SciTech Connect

    Heo, Hyejung; Yoo, Lang; Shin, Ki Soon; Kang, Shin Jung

    2009-01-02

    It has been well documented that histone deacetylase inhibitors suppress inflammatory gene expression. Therefore, we investigated whether histone deacetylase inhibitors modulate the expression of caspase-11 that is known as an inducible caspase regulating both inflammation and apoptosis. In the present study, we show that sodium butyrate and trichostatin A, two structurally unrelated inhibitors of histone deacetylase (HDAC), effectively suppressed the induction of caspase-11 in mouse embryonic fibroblasts stimulated with lipopolysaccharides. Sodium butyrate inhibited the activation of upstream signaling events for the caspase-11 induction such as activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, degradation of inhibitor of {kappa}B, and activation of nuclear factor-{kappa}B. These results suggest that the HDAC inhibitor suppressed cytosolic signaling events for the induction of caspase-11 by inhibiting the deacetylation of non-histone proteins.

  20. Bryostatin 5 induces apoptosis in acute monocytic leukemia cells by activating PUMA and caspases.

    PubMed

    Wang, Yiwei; Zhang, Jinbao; Wang, Qixia; Zhang, Tao; Yang, Yang; Yi, Yanghua; Gao, Guangxun; Dong, Hongjuan; Zhu, Huafeng; Li, Yue; Lin, Houwen; Tang, Haifeng; Chen, Xiequn

    2013-10-15

    Acute leukemia is a malignant clonal hematopoietic stem cell disease. In the current study, we examined the effects of bryostatin 5 on acute monocytic leukemia cells in vitro and in vivo. We also explored the mechanisms and pathways underlying the increase in apoptosis induced by bryostatin 5. Bryostatin 5 inhibited the growth of primary acute monocytic leukemia cells and U937 cells in a dose- and time-dependent manners. Bryostatin 5 also induced an increase in apoptosis and a decrease in the mitochondrial membrane potential (MMP) in U937 cells. Transmission electron microscopy (TEM) revealed that bryostatin 5-treated cells displayed typical apoptotic characteristics (chromatin condensation, karyopyknosis and formation of crescents and apoptotic bodies). In addition, bryostatin 5 increased the expression of P53 upregulated modulator of apoptosis (PUMA) and slightly increased P53 expression. Bryostatin 5 also significantly decreased Bcl-XL expression and significantly increased the expression levels of Bak, Bax, cleaved caspase 9 and cleaved caspase 3. The pro-apoptotic activity of bryostatin 5 in U937 cells was inhibited by PUMA siRNA and z-LEHD-fmk (a specific caspase 9 inhibitor). In addition, the PUMA siRNA significantly affected the expression of cleaved caspase 9, whereas z-LEHD-fmk had little effect on the expression of PUMA. The results suggest that PUMA is located upstream of caspase 9 in this apoptotic signaling pathway. These novel findings provide mechanistic insight into the induction of apoptosis by bryostatin 5 and might facilitate the development of clinical strategies to enhance the therapeutic efficacy of treatments for acute monocytic leukemia. © 2013 Elsevier B.V. All rights reserved.

  1. Molecular Dynamics Studies of Caspase-3

    PubMed Central

    Sulpizi, M.; Rothlisberger, U.; Carloni, P.

    2003-01-01

    Caspase-3 is a fundamental target for pharmaceutical interventions against a variety of diseases involving disregulated apoptosis. The enzyme is active as a dimer with two symmetry-related active sites, each featuring a Cys-His catalytic dyad and a selectivity loop, which recognizes the characteristic DEVD pattern of the substrate. Here, a molecular dynamics study of the enzyme in complex with two pentapeptide substrates DEVDG is presented, which provides a characterization of the dynamic properties of the active form in aqueous solution. The mobility of the substrate and that of the catalytic residues are rather low indicating a distinct preorganization effect of the Michaelis complex. An essential mode analysis permits us to identify coupled motions between the two monomers. In particular, it is found that the motions of the two active site loops are correlated and tend to steer the substrate toward the reactive center, suggesting that dimerization has a distinct effect on the dynamic properties of the active site regions. The selectivity loop of one monomer turns out to be correlated with the N-terminal region of the p12 subunit of the other monomer, an interaction that is also found to play a fundamental role in the electrostatic stabilization of the quaternary structure. To further characterize the specific influence of dimerization on the enzyme essential motions, a molecular dynamics analysis is also performed on the isolated monomer. PMID:12668429

  2. Two new anti-apoptotic proteins of white spot syndrome virus that bind to an effector caspase (PmCasp) of the giant tiger shrimp Penaeus (Penaeus) monodon.

    PubMed

    Lertwimol, Tareerat; Sangsuriya, Pakkakul; Phiwsaiya, Kornsunee; Senapin, Saengchan; Phongdara, Amornrat; Boonchird, Chuenchit; Flegel, Timothy W

    2014-05-01

    White spot syndrome virus proteins WSSV134 and WSSV322 have been shown to bind with the p20 domain (residues 55-214) of Penaeus monodon caspase (PmCasp) protein through yeast two-hybrid screening. Binding was confirmed for the p20 domain and the full-length caspase by co-immunoprecipitation. WSSV134 is also known as the WSSV structural protein VP36A, but no function or conserved domains have been ascribed to WSSV322. Discovery of the caspase binding activity of these two proteins led to an investigation of their possible anti-apoptotic roles. Full-length PmCasp was confirmed to be an effector caspase by inducing apoptosis in transfected Sf-9 cells as assessed by DAPI staining. Using the same cell model, comparison of cells co-transfected with PmCasp and either WSSV134 or WSSV322 revealed that both of the binding proteins had anti-apoptotic activity. However, using the same Sf-9 protocol with anti-apoptosis protein-1 (AAP-1; also called WSSV449) previously shown to bind and inactivate a different effector caspase from P. monodon (Pm caspase) did not block apoptosis induced by PmCasp. The results revealed diversity in effector caspases and their viral protein inhibitors in P. monodon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Zinc-mediated Allosteric Inhibition of Caspase-6*

    PubMed Central

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  4. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy

    PubMed Central

    Putinski, Charis; Abdul-Ghani, Mohammad; Stiles, Rebecca; Brunette, Steve; Dick, Sarah A.; Fernando, Pasan; Megeney, Lynn A.

    2013-01-01

    Cardiomyocyte hypertrophy is the cellular response that mediates pathologic enlargement of the heart. This maladaptation is also characterized by cell behaviors that are typically associated with apoptosis, including cytoskeletal reorganization and disassembly, altered nuclear morphology, and enhanced protein synthesis/translation. Here, we investigated the requirement of apoptotic caspase pathways in mediating cardiomyocyte hypertrophy. Cardiomyocytes treated with hypertrophy agonists displayed rapid and transient activation of the intrinsic-mediated cell death pathway, characterized by elevated levels of caspase 9, followed by caspase 3 protease activity. Disruption of the intrinsic cell death pathway at multiple junctures led to a significant inhibition of cardiomyocyte hypertrophy during agonist stimulation, with a corresponding reduction in the expression of known hypertrophic markers (atrial natriuretic peptide) and transcription factor activity [myocyte enhancer factor-2, nuclear factor kappa B (NF-κB)]. Similarly, in vivo attenuation of caspase activity via adenoviral expression of the biologic effector caspase inhibitor p35 blunted cardiomyocyte hypertrophy in response to agonist stimulation. Treatment of cardiomyocytes with procaspase 3 activating compound 1, a small-molecule activator of caspase 3, resulted in a robust induction of the hypertrophy response in the absence of any agonist stimulation. These results suggest that caspase-dependent signaling is necessary and sufficient to promote cardiomyocyte hypertrophy. These results also confirm that cell death signal pathways behave as active remodeling agents in cardiomyocytes, independent of inducing an apoptosis response. PMID:24101493

  5. An Early and Robust Activation of Caspases Heads Cells for a Regulated Form of Necrotic-like Cell Death*

    PubMed Central

    Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Martínez-Escardó, Laura; Granados-Colomina, Carla; Pascual-Guiral, Sònia; Iglesias-Guimarais, Victoria; Casanelles, Elisenda; Ribas, Judit; Yuste, Victor J.

    2015-01-01

    Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as “apoptosis-necrosis continuum.” To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death. PMID:26124276

  6. An Early and Robust Activation of Caspases Heads Cells for a Regulated Form of Necrotic-like Cell Death.

    PubMed

    Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Martínez-Escardó, Laura; Granados-Colomina, Carla; Pascual-Guiral, Sònia; Iglesias-Guimarais, Victoria; Casanelles, Elisenda; Ribas, Judit; Yuste, Victor J

    2015-08-21

    Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as "apoptosis-necrosis continuum." To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death.

  7. Silencing of Pokemon Enhances Caspase-Dependent Apoptosis via Fas- and Mitochondria-Mediated Pathways in Hepatocellular Carcinoma Cells

    PubMed Central

    Lin, Bi-Yun; Shi, Ying; Liu, Yun-Peng; Liu, Jing-Jing; Guleng, Bayasi; Ren, Jian-Lin

    2013-01-01

    The role of Pokemon (POK erythroid myeloid ontogenic actor), a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC) and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma) as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy. PMID:23874836

  8. Caspase-Cleaved Tau Co-Localizes with Early Tangle Markers in the Human Vascular Dementia Brain

    PubMed Central

    Day, Ryan J.; Mason, Maria J.; Thomas, Chloe; Poon, Wayne W.; Rohn, Troy T.

    2015-01-01

    Vascular dementia (VaD) is the second most common form of dementia in the United States and is characterized as a cerebral vessel vascular disease that leads to ischemic episodes. Whereas the relationship between caspase-cleaved tau and neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD) has been previously described, whether caspase activation and cleavage of tau occurs in VaD is presently unknown. To investigate a potential role for caspase-cleaved tau in VaD, we analyzed seven confirmed cases of VaD by immunohistochemistry utilizing a well-characterized antibody that specifically detects caspase-cleaved tau truncated at Asp421. Application of this antibody (TauC3) revealed consistent labeling within NFTs, dystrophic neurites within plaque-rich regions and corpora amylacea (CA) in the human VaD brain. Labeling of CA by the TauC3 antibody was widespread throughout the hippocampus proper, was significantly higher compared to age matched controls, and co-localized with ubiquitin. Staining of the TauC3 antibody co-localized with MC-1, AT8, and PHF-1 within NFTs. Quantitative analysis indicated that roughly 90% of PHF-1-labeled NFTs contained caspase-cleaved tau. In addition, we documented the presence of active caspase-3 within plaques, blood vessels and pretangle neurons that co-localized with TauC3. Collectively, these data support a role for the activation of caspase-3 and proteolytic cleavage of TauC3 in VaD providing further support for the involvement of this family of proteases in NFT pathology. PMID:26161867

  9. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender.

    PubMed

    Renolleau, Sylvain; Fau, Sébastien; Goyenvalle, Catherine; Joly, Luc-Marie; Chauvier, David; Jacotot, Etienne; Mariani, Jean; Charriaut-Marlangue, Christiane

    2007-02-01

    Hypoxia-ischaemia in the developing brain results in brain injury with prominent features of apoptosis. In the present study, a third generation dipeptidyl broad-spectrum caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh), was tested in a model of unilateral focal ischaemia with reperfusion in 7-day-old rats. Q-VD-OPh (1 mg/kg, i.p.) reduced cell death, resulting in significant neuroprotection at 48 h of recovery (infarct volume of 12.6 +/- 2.8 vs. 24.3 +/- 2.2%, p = 0.006). The neuroprotective effects observed at 48 h post-ischaemia hold up at 21 days of survival time and attenuate neurological dysfunction. Analysis by gender revealed that females were strongly protected (6.7 +/- 3.3%, p = 0.006), in contrast to males in which there was no significant effect, when Q-VD-OPh was given after clip removal on the left common carotid artery. Immunoblot analysis demonstrated that Q-VD-OPh inhibits caspase 3 cleavage into its p17 active form and caspase 1 up-regulation and cleavage in vivo. Following ischaemia in P7 rats, males and females displayed different time course and pattern of cytochrome c release and active p17 caspase 3 during the first 24 h of recovery. In contrast, no significant difference was observed for caspase 1 expression between genders. These results indicate that ischaemia activates caspases shortly after reperfusion and that the sex of the animal may strongly influences apoptotic pathways in the pathogenesis of neonatal brain injury. The specificity, effectiveness, and reduced toxicity of Q-VD-OPh may determine the potential use of peptide-derived irreversible caspase inhibitors as promising therapeutics.

  10. TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3.

    PubMed

    Espín, Raquel; Roca, Francisco J; Candel, Sergio; Sepulcre, María P; González-Rosa, Juan M; Alcaraz-Pérez, Francisca; Meseguer, José; Cayuela, María L; Mercader, Nadia; Mulero, Victoriano

    2013-03-01

    Although it is known that tumor necrosis factor receptor (TNFR) signaling plays a crucial role in vascular integrity and homeostasis, the contribution of each receptor to these processes and the signaling pathway involved are still largely unknown. Here, we show that targeted gene knockdown of TNFRSF1B in zebrafish embryos results in the induction of a caspase-8, caspase-2 and P53-dependent apoptotic program in endothelial cells that bypasses caspase-3. Furthermore, the simultaneous depletion of TNFRSF1A or the activation of NF-κB rescue endothelial cell apoptosis, indicating that a signaling balance between both TNFRs is required for endothelial cell integrity. In endothelial cells, TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-κB. Similarly, TNFα promotes the apoptosis of human endothelial cells through TNFRSF1A and triggers caspase-2 and P53 activation. We have identified an evolutionarily conserved apoptotic pathway involved in vascular homeostasis that provides new therapeutic targets for the control of inflammation- and tumor-driven angiogenesis.

  11. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    PubMed

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Isoflavone Attenuates the Caspase-1 and Caspase-3 Level in Cell Model of Parkinsonism

    PubMed Central

    Xu, Jian-xin; Song, Hai-ping; Bu, Qing-Xia; Feng, De-Peng; Xu, Xiao-Fan; Sun, Qian-Ru; Li, Xue-Li

    2015-01-01

    The study has investigated the effect of isoflavone attenuates the caspase-1 and caspase-3 level in cell model of Parkinsonism. The subjects were PC12 cells. They were randomly divided into six groups: control, MPP+ (250 μmol/L), isoflavone (10 μM), isoflavone (10 μM) + MPP+ (250 μmol/L), Z-YVAD-CHO (10 nM) + MPP+ group, and Z-DEVD-CHO (10 nM) + MPP+ group. Cell viability was measured by MTT methods; the content of tyrosine hydroxylase was measured by immunocytochemistry method of avidinbiotin peroxidase complex; apoptosis ratio was measured by flow cytometry. The results showed that cell viability in the MPP+ group was lower than in all other five groups. There was no difference in cell viability between isoflavone + MPP+ and control group. Optical density of TH positive cells in isoflavone group was higher than in control, isoflavone + MPP+, and MPP+ only groups. The apoptosis ratio in the isoflavone + MPP+ group and control group and the Z-YVAD-CHO + MPP+ and Z-DEVD-CHO + MPP+ group was similar, which was lower than in the MPP+ group. The lowest apoptosis ratio was found in the isoflavone only group. PMID:26161002

  13. Non-steroidal Anti-inflammatory Drugs Are Caspase Inhibitors.

    PubMed

    Smith, Christina E; Soti, Subada; Jones, Torey A; Nakagawa, Akihisa; Xue, Ding; Yin, Hang

    2017-02-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world. While the role of NSAIDs as cyclooxygenase (COX) inhibitors is well established, other targets may contribute to anti-inflammation. Here we report caspases as a new pharmacological target for NSAID family drugs such as ibuprofen, naproxen, and ketorolac at physiologic concentrations both in vitro and in vivo. We characterize caspase activity in both in vitro and in cell culture, and combine computational modeling and biophysical analysis to determine the mechanism of action. We observe that inhibition of caspase catalysis reduces cell death and the generation of pro-inflammatory cytokines. Further, NSAID inhibition of caspases is COX independent, representing a new anti-inflammatory mechanism. This finding expands upon existing NSAID anti-inflammatory behaviors, with implications for patient safety and next-generation drug design.

  14. ROFA INCREASES CASPASE-3 ACTIVITY IN HUMAN ALVEOLAR MACRAPHAGE

    EPA Science Inventory

    Exposure to air pollution particles produces pulmonary inflammation and injury, but the mechanisms of this injury are unclear. Apoptosis, involving activation of caspases, may be one potential mechanism. In this study, we hypothesized that ROFA, a constituent of air pollution...

  15. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells.

    PubMed

    Ledvina, Vojtěch; Janečková, Eva; Matalová, Eva; Klepárník, Karel

    2017-01-01

    Analysing the chemical content of individual cells has already been proven to reveal unique information on various biological processes. Single-cell analysis provides more accurate and reliable results for biology and medicine than analyses of extracts from cell populations, where a natural heterogeneity is averaged. To meet the requirements in the research of important biologically active molecules, such as caspases, we have developed a miniaturized device for simultaneous analyses of individual cells. A stainless steel body with a carousel holder enables high-sensitivity parallel detections in eight microvials. The holder is mounted in front of a photomultiplier tube with cooled photocathode working in photon counting mode. The detection of active caspase-3/7, central effector caspases in apoptosis, in single cells is based on the bioluminescence chemistry commercially available as Caspase-Glo(®) 3/7 reagent developed by Promega. Individual cells were captured from a culture medium under microscope and transferred by micromanipulator into detection microvial filled with the reagent. As a result of testing, the limits of detection and quantification were determined to be 0.27/0.86 of active caspase-3/7 content in an average apoptotic cell and 0.46/2.92 for non-apoptotic cells. Application potential of this technology in laboratory diagnostics and related medical research is discussed. Graphical abstract Miniaturized device for simultaneous analyses of individual cells.

  16. Caspase Deficiency: Involvement in Breast Carcinogenesis and Resistance

    DTIC Science & Technology

    2001-07-01

    caspase 3 cleave a number of cellular death substrates, such as poly ADP-ribose polymerase (PARP), DNA fragmentation factor (DFF), protein kinase c and...1996. 16 16. Janicke, R. U., Sprengart, M. L., Wati, M. R., and Porter, A. G. Caspase-3 is required for DNA fragmentation and morphological changes...because they cleave cellular substrates, including poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, DNA fragmentation factor, lamin 11

  17. Caspase Deficiency: Involvement in Breast Carcinogenesis and Resistance

    DTIC Science & Technology

    2003-07-01

    triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors . Cancer Res. 1997 Nov 1;57(21):4956-64. 4...process involved in homeostasis and the biochemical responses to different anti- tumor therapies. Aberrant expression of other apoptotic regulators...response to several anti-cancer agents, including chemotherapy, radiation- and tumor necrosis factor alpha (TNF-a). Caspase 3 was expressed in MCF-7 cells by

  18. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats.

    PubMed

    Fırat, Uğur; Kaya, Savaş; Cim, Abdullah; Büyükbayram, Hüseyin; Gökalp, Osman; Dal, Mehmet Sinan; Tamer, Mehmet Numan

    2012-01-01

    Eryptosis is a term to define apoptosis of erythrocytes. Oxidative stress and hyperglycemia, both of which exist in the diabetic intravascular environment, can trigger eryptosis of erythrocytes. In this experimental study, it is presented that the majority of erythrocytes shows caspase-3 immunoreactivity in streptozocin- (STZ)-induced diabetic rats. Besides that, caspase-3 positive erythrocytes are aggregated and attached to vascular endothelium. In conclusion, these results may start a debate that eryptosis could have a role in the diabetic complications.

  19. Caspase-1 Dependent IL-1β Secretion Is Critical for Host Defense in a Mouse Model of Chlamydia pneumoniae Lung Infection

    PubMed Central

    Shimada, Kenichi; Crother, Timothy R.; Karlin, Justin; Chen, Shuang; Chiba, Norika; Ramanujan, V. Krishnan; Vergnes, Laurent; Ojcius, David M.; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is an important human pathogen that causes atypical pneumonia and is associated with various chronic inflammatory disorders. Caspase-1 is a key component of the ‘inflammasome’, and is required to cleave pro-IL-1β to bioactive IL-1β. Here we demonstrate for the first time a critical requirement for IL-1β in response to CP infection. Caspase-1−/− mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-1−/− mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice, and administration of recombinant IL-1β rescues CP infected Caspase-1−/− mice from mortality, indicating that IL-1β secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1β secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation. PMID:21731762

  20. Caspase-1 dependent IL-1β secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection.

    PubMed

    Shimada, Kenichi; Crother, Timothy R; Karlin, Justin; Chen, Shuang; Chiba, Norika; Ramanujan, V Krishnan; Vergnes, Laurent; Ojcius, David M; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is an important human pathogen that causes atypical pneumonia and is associated with various chronic inflammatory disorders. Caspase-1 is a key component of the 'inflammasome', and is required to cleave pro-IL-1β to bioactive IL-1β. Here we demonstrate for the first time a critical requirement for IL-1β in response to CP infection. Caspase-1⁻/⁻ mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-1⁻/⁻ mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice, and administration of recombinant IL-1β rescues CP infected Caspase-1⁻/⁻ mice from mortality, indicating that IL-1β secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1β secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation.

  1. Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome" Complex upon TRAIL Stimulation.

    PubMed

    Henry, Conor M; Martin, Seamus J

    2017-02-16

    TRAIL is a potent inducer of apoptosis and has been studied almost exclusively in this context. However, TRAIL can also induce NFκB-dependent expression of multiple pro-inflammatory cytokines and chemokines. Surprisingly, whereas inhibition of caspase activity blocked TRAIL-induced apoptosis, but not cytokine production, knock down or deletion of caspase-8 suppressed both outcomes, suggesting that caspase-8 participates in TRAIL-induced inflammatory signaling in a scaffold role. Consistent with this, introduction of a catalytically inactive caspase-8 mutant into CASP-8 null cells restored TRAIL-induced cytokine production, but not cell death. Furthermore, affinity precipitation of the native TRAIL receptor complex revealed that pro-caspase-8 was required for recruitment of RIPK1, via FADD, to promote NFκB activation and pro-inflammatory cytokine production downstream. Thus, caspase-8 can serve in two distinct roles in response to TRAIL receptor engagement, as a scaffold for assembly of a Caspase-8-FADD-RIPK1 "FADDosome" complex, leading to NFκB-dependent inflammation, or as a protease that promotes apoptosis.

  2. A fluorescent reporter of caspase activity for live imaging

    PubMed Central

    Bardet, Pierre-Luc; Kolahgar, Golnar; Mynett, Anita; Miguel-Aliaga, Irene; Briscoe, James; Meier, Pascal; Vincent, Jean-Paul

    2008-01-01

    There is a growing interest in the mechanisms that control the apoptosis cascade during development and adult life. To investigate the regulatory events that trigger apoptosis in whole tissues, we have devised a genetically encoded caspase sensor that can be detected in live and fixed tissue by standard confocal microscopy. The sensor comprises two fluorophores, mRFP, monomeric red fluorescent protein (mRFP) and enhanced green fluorescent protein (eGFP), that are linked by an efficient and specific caspase-sensitive site. Upon caspase activation, the sensor is cleaved and eGFP translocates to the nucleus, leaving mRFP at membranes. This is detected before other markers of apoptosis, including anti–cleaved caspase 3 immunoreactivity. Moreover, the sensor does not perturb normal developmental apoptosis and is specific, as cleavage does not occur in Drosophila embryos that are unable to activate the apoptotic cascade. Importantly, dying cells can be recognized in live embryos, thus opening the way for in vivo imaging. As expected from the high conservation of caspases, it is also cleaved in dying cells of chick embryos. It is therefore likely to be generally useful to track the spatiotemporal pattern of caspase activity in a variety of species. PMID:18779587

  3. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine

    PubMed Central

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C.

    2015-01-01

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases. PMID:26400108

  4. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    PubMed

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  5. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens

    PubMed Central

    Zhang, YueMei; Bhavnani, Bhagu R

    2006-01-01

    Background Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF) and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22. Results Glutamate-induced apoptotic cell death in neuronal cells was associated with characteristic DNA fragmentation, morphological changes, activation of calpain and caspase-3 as well as the upregulation and/or translocation of AIF from mitochondria into cytosol and nuclei. Our results reveal that primary cortical cells and HT22 cells display different patterns of regulation of these genes/proteins. In primary cortical cells, glutamate induces activation of calpain, caspase-3 and translocation of AIF from mitochondria to cytosol and nuclei. In contrast, in HT22 cells, only the activation of calpain and upregulation and translocation of AIF occurred. In both cell types, these processes were inhibited/reversed by 17β-estradiol and Δ8,17β-estradiol with the latter being more potent. Conclusion Depending upon the neuronal cell type, at least two mechanisms are involved in glutamate-induced apoptosis: a caspase-3-dependent pathway and a caspase-independent pathway involving calpain and AIF. Since HT22 cells lack caspase-3, glutamate-induced apoptosis is mediated via the caspase-independent pathway in this cell line. Kinetics of this apoptotic pathway further indicate that calpain rather than caspase-3, plays a critical role in the glutamate-induced apoptosis. Our studies further indicate that glutamate- induced changes

  6. Molecular and acute temperature stress response characterizations of caspase-8 gene in two mussels, Mytilus coruscus and Mytilus galloprovincialis.

    PubMed

    Zhang, Duo; Wang, Hong-Wei; Yao, Cui-Luan

    2014-01-01

    The caspase family represents aspartate-specific cysteine proteases that play key roles in initiation of apoptosis in various cells response to environmental stress. In this study, two caspase-8 cDNA sequences were cloned from two Mytilus mussels, Mytilus coruscus (Mccaspase-8) and Mytilus galloprovincialis (Mgcaspase-8), respectively. The full-length cDNA of Mccaspase-8 was 1884bp, including a 5'-terminal untranslated region (UTR) of 140bp, a 3'-terminal UTR of 238bp and an open reading frame (ORF) of 1506bp encoding a polypeptide of 501 amino acids. The 1775bp full-length Mg caspase-8 cDNA sequence contained an ORF of 1488bp encoding a polypeptide of 495 amino acid residues, a 5'-UTR of 51bp and a 3'-UTR of 236bp. Both the Mccaspase-8 and Mgcaspase-8 amino acid sequences contained two highly conservative death effector domains (DEDs) at N-terminal, the caspase family domains P20 and P10 and the caspase family cysteine active site 'KPKLFFIQACQG'. Phylogenetic analysis revealed that Mccaspase-8 and Mgcaspase-8 were clustered with the caspase-8 from other organisms, with the close relationship with caspase-8 from mollusk. Quantitative real-time reverse transcription PCR (qRT-PCR) analysis indicated that the predominant transcripts of Mccaspase-8 were in mantle and gonad tissue of M. coruscus and the high expression levels of Mgcaspase-8 were in digestive gland and gill tissue of M. galloprovincialis, respectively. The impacts of temperature stress on Mccaspase-8 and Mgcaspase-8 expressions were tested in gill tissue and hemocytes of both species. Our results showed that both Mccaspase-8 and Mgcaspase-8 transcripts and caspase-8 activity in gill tissue and hemocytes could be induced significantly after cold and heat stress (p<0.05) and that these responses different between tissues and species. These results suggested that caspase-8 might play an important role in response to temperature stress and in determining cellular thermal tolerance limits in M. coruscus and M

  7. IQGAP1 is important for activation of caspase-1 in macrophages and is targeted by Yersinia pestis type III effector YopM.

    PubMed

    Chung, Lawton K; Philip, Naomi H; Schmidt, Valentina A; Koller, Antonius; Strowig, Till; Flavell, Richard A; Brodsky, Igor E; Bliska, James B

    2014-07-01

    YopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails. A 15-LRR isoform in Y. pseudotuberculosis YPIII was recently shown to bind and inhibit caspase-1 via a YLTD motif in LRR 10, and attenuation of YopM(-) YPIII was reversed in mice lacking caspase-1, indicating that caspase-1 inhibition is a major virulence function of YopM(YPIII). To determine if other YopM proteins inhibit caspase-1, we utilized Y. pseudotuberculosis strains natively expressing a 21-LRR isoform lacking the YLTD motif (YopM(32777)) or ectopically expressing a Y. pestis 15-LRR version with a functional (YopM(KIM)) or inactivated (YopM(KIM) D271A) YLTD motif. Results of mouse and macrophage infections with these strains showed that YopM(32777), YopM(KIM), and YopM(KIM) D271A inhibit caspase-1 activation, indicating that the YLTD motif is dispensable for this activity. Analysis of YopM(KIM) deletion variants revealed that LRRs 6 to 15 and the C-terminal tail are required to inhibit caspase-1 activation. YopM(32777), YopM(KIM), and YopM(KIM) deletion variants were purified, and binding partners in macrophage lysates were identified. Caspase-1 bound to YopM(KIM) but not YopM(32777). Additionally, YopM(KIM) bound IQGAP1 and the use of Iqgap1(-/-) macrophages revealed that this scaffolding protein is important for caspase-1 activation upon infection with YopM(-) Y. pseudotuberculosis. Thus, while multiple YopM isoforms inhibit caspase-1 activation, their variable LRR domains bind different host proteins to perform this function and the LRRs of YopM(KIM) target IQGAP1, a novel regulator of caspase-1, in macrophages. Importance: Activation of caspase-1, mediated by macromolecular complexes termed inflammasomes, is important for innate immune defense against pathogens. Pathogens can, in turn, subvert

  8. Sann-Joong-Kuey-Jian-Tang inhibits hepatocellular carcinoma Hep-G2 cell proliferation by increasing TNF-α, Caspase-8, Caspase- 3 and Bax but by decreasing TCTP and Mcl-1 expression in vitro.

    PubMed

    Chen, Yao-Li; Yan, Meng-Yi; Chien, Su-Yu; Kuo, Shou-Jen; Chen, Dar-Ren; Cheng, Chun-Yuan; Su, Chin-Cheng

    2013-05-01

    Hepatic cancer remains a challenging disease and there is a need to identify new treatments. Sann-Joong-Kuey-Jian-Tang (SJKJT), a traditional medicinal prescription, has been used to treat lymphadenopathy and exhibits cytotoxic activity in many types of human cancer cells. Our previous studies revealed that SJKJT is capable of inhibiting colon cancer colo 205 cells by inducing autophagy and apoptosis. However, the effects and molecular mechanisms of SJKJT in human hepatocellular carcinoma have not been clearly elucidated. In the present study we evaluated the effects of SJKJT in human hepatic cellular carcinoma Hep-G2 cells. The cytotoxicity of SJKJT in Hep-G2 cells was measured by MTT assay. The cell cycles were analyzed by fluorescence‑activated cell sorting (FACS). The protein expression of translationally controlled tumor protein (TCTP), Mcl-1, Fas, TNF-α, Caspase-8, Caspase-3 and Bax in Hep-G2 cells treated with SJKJT was evaluated by western blotting. The protein expression of Caspase-3 was also detected by immunofluorescence staining. The results showed that SJKJT inhibits Hep-G2 cells in a time- and dose‑dependent manner. During SJKJT treatment for 48 and 72 h, the half-maximum inhibitory concentration (IC50) was 1.48 and 0.94 mg/ml, respectively. The FACS results revealed that increased doses of SJKJT were capable of increasing the percentage of cells in the sub-G1 phase. Immunofluorescence staining showed that Hep-G2 treated with SJKJT had increased expression of Caspase-3. The western blot results showed that the protein expression of Fas, TNF-α, Caspase-8, Caspase- 3 and Bax was upregulated, but that of TCTP and Mcl-1 was downregulated in Hep-G2 cells treated with SJKJT. In conclusion, these findings indicated that SJKJT inhibits Hep-G2 cells. One of the molecular mechanisms responsible for this may be the increased Fas, TNF-α, Caspase-8, Caspase- 3 and Bax expression; another mechanism may be via decreasing TCTP and Mcl-1 expression in order

  9. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor.

    PubMed

    Lee, Ho Won; Singh, Thoudam Debraj; Lee, Sang-Woo; Ha, Jeoung-Hee; Rehemtulla, Alnawaz; Ahn, Byeong-Cheol; Jeon, Young Hyun; Lee, Jaetae

    2014-07-01

    Natural killer (NK) cell-based immunotherapy is a promising strategy for cancer treatment, and caspase-3 is an important effector molecule in NK cell-mediated apoptosis in cancers. Here, we evaluated the antitumor effects of NK cell-based immunotherapy by serial noninvasive imaging of apoptosis using a caspase-3 sensor in mice with human glioma xenografts. Human glioma cells expressing both a caspase-3 sensor as a surrogate marker for caspase-3 activation and Renilla luciferase (Rluc) as a surrogate marker for cell viability were established and referred to as D54-CR cells. Human NK92 cells were used as effector cells. Treatment with NK92 cells resulted in a time- and effector number-dependent increase in bioluminescence imaging (BLI) activity of the caspase-3 sensor in D54-CR cells in vitro. Caspase-3 activation by NK92 treatment was blocked by Z-VAD treatment in D54-CR cells. Transfusion of NK92 cells induced an increase of the BLI signal by caspase-3 activation in a dose- and time-dependent manner in D54-CR tumor-bearing mice but not in PBS-treated mice. Accordingly, sequential BLI with the Rluc reporter gene revealed marked retardation of tumor growth in the NK92-treatment group but not in the PBS-treatment group. These data suggest that noninvasive imaging of apoptosis with a caspase-3 sensor can be used as an effective tool for evaluation of therapeutic efficacy as well as for optimization of NK cell-based immunotherapy.-Lee, H. W., Singh, T. D., Lee, S.-W., Ha, J.-H., Rehemtulla, A., Ahn, B.-C., Jeon, Y.-H., Lee, J. Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor.

  10. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons.

    PubMed

    Ahmadi, Ferogh A; Linseman, Daniel A; Grammatopoulos, Tom N; Jones, Susan M; Bouchard, Ron J; Freed, Curt R; Heidenreich, Kim A; Zawada, W Michael

    2003-11-01

    In vivo, the pesticide rotenone induces degeneration of dopamine neurons and parkinsonian-like pathology in adult rats. In the current study, we utilized primary ventral mesencephalic (VM) cultures from E15 rats as an in vitro model to examine the mechanism underlying rotenone-induced death of dopamine neurons. After 11 h of exposure to 30 nm rotenone, the number of dopamine neurons identified by tyrosine hydroxylase (TH) immunostaining declined rapidly with only 23% of the neurons surviving. By contrast, 73% of total cells survived rotenone treatment, indicating that TH+ neurons are more sensitive to rotenone. Examination of the role of apoptosis in TH+ neuron death, revealed that 10 and 30 nm rotenone significantly increased the number of apoptotic TH+ neurons from 7% under control conditions to 38 and 55%, respectively. The increase in apoptotic TH+ neurons correlated with an increase in immunoreactivity for active caspase-3 in TH+ neurons. The caspase-3 inhibitor, DEVD, rescued a significant number of TH+ neurons from rotenone-induced death. Furthermore, this protective effect lasted for at least 32 h post-rotenone and DEVD exposure, indicating lasting neuroprotection achieved with an intervention prior to the death commitment point. Our results show for the first time in primary dopamine neurons that, at low nanomolar concentrations, rotenone induces caspase-3-mediated apoptosis. Understanding the mechanism of rotenone-induced apoptosis in dopamine neurons may contribute to the development of new neuroprotective strategies against Parkinson's disease.

  11. The protein structures that shape caspase activity, specificity, activation and inhibition

    PubMed Central

    Fuentes-Prior, Pablo; Salvesen, Guy S.

    2004-01-01

    The death morphology commonly known as apoptosis results from a post-translational pathway driven largely by specific limited proteolysis. In the last decade the structural basis for apoptosis regulation has moved from nothing to ‘quite good’, and we now know the fundamental structures of examples from the initiator phase, the pre-mitochondrial regulator phase, the executioner phase, inhibitors and their antagonists, and even the structures of some substrates. The field is as well advanced as the best known of proteolytic pathways, the coagulation cascade. Fundamentally new mechanisms in protease regulation have been disclosed. Structural evidence suggests that caspases have an unusual catalytic mechanism, and that they are activated by apparently unrelated events, depending on which position in the apoptotic pathway they occupy. Some naturally occurring caspase inhibitors have adopted classic inhibition strategies, but other have revealed completely novel mechanisms. All of the structural and mechanistic information can, and is, being applied to drive therapeutic strategies to combat overactivation of apoptosis in degenerative disease, and underactivation in neoplasia. We present a comprehensive review of the caspases, their regulators and inhibitors from a structural and mechanistic point of view, and with an aim to consolidate the many threads that define the rapid growth of this field. PMID:15450003

  12. Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells.

    PubMed

    Shimizu, Takamitsu; Kawai, Junya; Ouchi, Kenji; Kikuchi, Haruhisa; Osima, Yoshiteru; Hidemi, Rikiishi

    2016-04-01

    Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it 'Agarol'. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent.

  13. Hypothesis for thermal activation of the caspase cascade in apoptotic cell death at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Pearce, John A.

    2013-02-01

    Apoptosis is an especially important process affecting disease states from HIV-AIDS to auto-immune disease to cancer. A cascade of initiator and executioner capsase functional proteins is the hallmark of apoptosis. When activated the various caspases activate other caspases or cleave structural proteins of the cytoskeleton, resulting in "blebbing" of the plasma membrane forming apoptotic bodies that completely enclose the disassembled cellular components. Containment of the cytosolic components within the apoptotic bodies differentiates apoptosis from necroptosis and necrosis, both of which release fragmented cytosol and other cellular constituents into the intracellular space. Biochemical models of caspase activation reveal the extensive feedback loops characteristic of apoptosis. They clearly explain the failure of Arrhenius models to give accurate predictions of cell survival curves in hyperthermic heating protocols. Nevertheless, each of the individual reaction velocities can reasonably be assumed to follow Arrhenius kinetics. If so, the thermal sensitivity of the reaction velocity to temperature elevation is: ∂k/∂T = Ea [k/RT2]. Particular reaction steps described by higher activation energies, Ea, are likely more thermally-sensitive than lower energy reactions and may initiate apoptosis in the absence of other stress signals. Additionally, while the classical irreversible Arrhenius formulation fails to accurately represent many cell survival and/or dye uptake curves - those that display an early stage shoulder region - an expanded reversible model of the law of mass action equation seems to prove effective and is directly based on a firm theoretical thermodynamic foundation.

  14. Caspase-12 ablation preserves muscle function in the mdx mouse

    PubMed Central

    Moorwood, Catherine; Barton, Elisabeth R.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin. Several downstream consequences of dystrophin deficiency are triggers of endoplasmic reticulum (ER) stress, including loss of calcium homeostasis, hypoxia and oxidative stress. During ER stress, misfolded proteins accumulate in the ER lumen and the unfolded protein response (UPR) is triggered, leading to adaptation or apoptosis. We hypothesized that ER stress is heightened in dystrophic muscles and contributes to the pathology of DMD. We observed increases in the ER stress markers BiP and cleaved caspase-4 in DMD patient biopsies, compared with controls, and an increase in multiple UPR pathways in muscles of the dystrophin-deficient mdx mouse. We then crossed mdx mice with mice null for caspase-12, the murine equivalent of human caspase-4, which are resistant to ER stress. We found that deleting caspase-12 preserved mdx muscle function, resulting in a 75% recovery of both specific force generation and resistance to eccentric contractions. The compensatory hypertrophy normally found in mdx muscles was normalized in the absence of caspase-12; this was found to be due to decreased fibre sizes, and not to a fibre type shift or a decrease in fibrosis. Fibre central nucleation was not significantly altered in the absence of caspase-12, but muscle fibre degeneration found in the mdx mouse was reduced almost to wild-type levels. In conclusion, we have identified heightened ER stress and abnormal UPR signalling as novel contributors to the dystrophic phenotype. Caspase-4 is therefore a potential therapeutic target for DMD. PMID:24879640

  15. Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition.

    PubMed

    Sathasivam, S; Grierson, A J; Shaw, P J

    2005-10-01

    There is increasing evidence that apoptosis or a similar programmed cell death pathway is the mechanism of cell death responsible for motor neurone degeneration in amyotrophic lateral sclerosis. Knowledge of the relative importance of different caspases in the cell death process is at present incomplete. In addition, there is little information on the critical point of the death pathway when the process of dying becomes irreversible. In this study, using the well-established NSC34 motor neurone-like cell line stably transfected with empty vector, normal or mutant human Cu-Zn superoxide dismutase (SOD1), we have characterized the activation of the caspase cascade in detail, revealing that the activation of caspases-9, -3 and -8 are important in motor neurone death and that the presence of mutant SOD1 causes increased activation of components of the apoptotic cascade under both basal culture conditions and following oxidative stress induced by serum withdrawal. Activation of the caspases identified in the cellular model has been confirmed in the G93A SOD1 transgenic mice. Furthermore, investigation of the effects of anti-apoptotic neuroprotective agents including specific caspase inhibitors, minocycline and nifedipine, have supported the importance of the mitochondrion-dependent apoptotic pathway in the death process and revealed that the upstream caspase cascade needs to be inhibited if useful neuro-protection is to be achieved.

  16. Transgenic Mouse Model Expressing the Caspase 6 Fragment of Mutant Huntingtin

    PubMed Central

    Roby, Elaine Waldron; Ratovitski, Tamara; Wang, XiaoFang; Jiang, Mali; Watkin, Erin; Arbez, Nikolas; Graham, Rona K.; Hayden, Michael R.; Hou, Zhipeng; Mori, Susumu; Swing, Deborah; Pletnikov, Mikhail; Duan, Wenzhen; Tessarollo, Lino; Ross, Christopher A.

    2012-01-01

    Huntington’s disease (HD) is caused by a polyglutamine expansion in the Huntingtin (Htt) protein. Proteolytic cleavage of Htt into toxic N-terminal fragments is believed to be a key aspect of pathogenesis. The best characterized putative cleavage event is at amino acid 586, hypothesized to be mediated by caspase 6. A corollary of the caspase 6 cleavage hypothesis is that the caspase 6 fragment should be a toxic fragment. To test this hypothesis, and further characterize the role of this fragment, we have generated transgenic mice expressing the N-terminal 586 aa of Htt with a polyglutamine repeat length of 82 (N586-82Q), under the control of the prion promoter. N586-82Q mice show a clear progressive rotarod deficit by four months of age, and are hyperactive starting at 5 months, later changing to hypoactivity prior to early mortality. MRI studies reveal widespread brain atrophy, and histologic studies demonstrate an abundance of Htt aggregates, mostly cytoplasmic, which are predominantly composed of the N586-82Q polypeptide. Smaller soluble N-terminal fragments appear to accumulate over time, peaking at four months, and are predominantly found in the nuclear fraction. This model appears to have a phenotype more severe than current full-length Htt models, but less severe than HD mouse models expressing shorter Htt fragments. These studies suggest that the caspase 6 fragment may be a transient intermediate, that fragment size is a factor contributing to the rate of disease progression, and that short soluble nuclear fragments may be most relevant to pathogenesis. PMID:22219281

  17. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication.

    PubMed

    Kitazawa, Masato; Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun'ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-Ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy.

  18. Blockade of processing/activation of caspase-3 by hypoxia

    SciTech Connect

    Han, Sang Hee; Kim, Moonil; Park, Kyoungsook; Kim, Tae-Hyoung; Seol, Dai-Wu

    2008-10-31

    Tumor hypoxia, which is caused by the rapid proliferation of tumor cells and aberrant vasculature in tumors, results in inadequate supplies of oxygen and nutrients to tumor cells. Paradoxically, these unfavorable growth conditions benefit tumor cell survival, although the mechanism is poorly understood. We have demonstrated for the first time that hypoxia inhibits TRAIL-induced apoptosis by blocking translocation of Bax from cytosol to the mitochondria in tumor cells. However, it is largely unknown how hypoxia-inhibited Bax translocation attenuates TRAIL-induced apoptosis. Here, we demonstrate that despite its inhibitory activity in TRAIL-induced apoptosis, hypoxia does not affect TRAIL-triggered proximal apoptotic signaling events, including caspase-8 activation and Bid cleavage. Instead, hypoxia inhibited processing of caspase-3, leading to incomplete activation of the caspase. Importantly, hypoxia-blocked translocation of Bax to the mitochondria significantly inhibited releasing the mitochondrial factors, such as cytochrome c and Smac/DIABLO, to the cytosol in response to TRAIL. It is well-known that complete processing/activation of caspase-3 requires Smac/DIABLO released from mitochondria. Therefore, our data indicate that an engagement of the apoptotic mitochondrial events leading to caspase-3 activation is blocked by hypoxia. Our data shed new light on understanding of the apoptotic signal transduction and targets regulated by tumor hypoxia.

  19. Ceramide mediates caspase-independent programmed cell death.

    PubMed

    Thon, Lutz; Möhlig, Heike; Mathieu, Sabine; Lange, Arne; Bulanova, Elena; Winoto-Morbach, Supandi; Schütze, Stefan; Bulfone-Paus, Silvia; Adam, Dieter

    2005-12-01

    Although numerous studies have implicated the sphingolipid ceramide in the induction of cell death, a causative function of ceramide in caspase-dependent apoptosis remains a highly debated issue. Here, we show that ceramide is a key mediator of a distinct route to programmed cell death (PCD), i.e., caspase-independent PCD. Under conditions where apoptosis is either not initiated or actively inhibited, TNF induces caspase-independent PCD in L929 fibrosarcoma cells, NIH3T3 fibroblasts, human leukemic Jurkat T cells, and lung fibroblasts by increasing intracellular ceramide levels prior to the onset of cell death. Survival is significantly enhanced when ceramide accumulation is prevented, as demonstrated in fibroblasts genetically deficient for acid sphingomyelinase, in L929 cells overexpressing acid ceramidase, by pharmacological intervention, or by RNA interference. Jurkat cells deficient for receptor-interacting protein 1 (RIP1) do not accumulate ceramide and therefore are fully resistant to caspase-independent PCD whereas Jurkat cells overexpressing the mitochondrial protein Bcl-2 are partially protected, implicating RIP1 and mitochondria as components of the ceramide death pathway. Our data point to a role of caspases (but not cathepsins) in suppressing the ceramide death pathway under physiological conditions. Moreover, clonogenic survival of tumor cells is clearly reduced by induction of the ceramide death pathway, promising additional options for the development of novel tumor therapies.

  20. Energy requirement for caspase activation and neuronal cell death.

    PubMed

    Nicotera, P; Leist, M; Fava, E; Berliocchi, L; Volbracht, C

    2000-04-01

    Recent work has shown that execution of the apoptotic program involves a relatively limited number of pathways. According to a general view, these would converge to activate the caspase family of proteases. However, there is increasing evidence that apoptotic-like features can be found also when cells are treated with inhibitors of caspases as the cell permeable tripeptide, Z-Val-Ala-Asp-fluoro-methyl-ketone (Z-VAD-fmk), or analogous compounds. This has posed the question as to whether apoptosis may occur in a caspase independent way, and whether caspase inhibitors may then be used to treat diseases characterised by an excess apoptosis. It is also becoming clear, that ATP depletion during the early phases of apoptosis can preclude caspase activation, and consequently switch execution of cell death towards necrosis. In vivo, a block or partial inhibition of the typical apoptotic demise may have profound implications, as persistence of damaged but "undead" cells within the nervous system, followed by delayed lysis may favour neuroinflammatory reactions. In this review, we discuss some recent findings, which suggest that cells may use diverging execution pathways, with different implications in neuropathology and therapy.

  1. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation

    PubMed Central

    Kaushal, V; Dye, R; Pakavathkumar, P; Foveau, B; Flores, J; Hyman, B; Ghetti, B; Koller, B H; LeBlanc, A C

    2015-01-01

    Neuronal active Caspase-6 (Casp6) is associated with Alzheimer disease (AD), cognitive impairment, and axonal degeneration. Caspase-1 (Casp1) can activate Casp6 but the expression and functionality of Casp1-activating inflammasomes has not been well-defined in human neurons. Here, we show that primary cultures of human CNS neurons expressed functional Nod-like receptor protein 1 (NLRP1), absent in melanoma 2, and ICE protease activating factor, but not the NLRP3, inflammasome receptor components. NLRP1 neutralizing antibodies in a cell-free system, and NLRP1 siRNAs in neurons hampered stress-induced Casp1 activation. NLRP1 and Casp1 siRNAs also abolished stress-induced Casp6 activation in neurons. The functionality of the NLRP1 inflammasome in serum-deprived neurons was also demonstrated by NLRP1 siRNA-mediated inhibition of speck formation of the apoptosis-associated speck-like protein containing a caspase recruitment domain conjugated to green fluorescent protein. These results indicated a novel stress-induced intraneuronal NLRP1/Casp1/Casp6 pathway. Lipopolysaccharide induced Casp1 and Casp6 activation in wild-type mice brain cortex, but not in that of Nlrp1−/− and Casp1−/− mice. NLRP1 immunopositive neurons were increased 25- to 30-fold in AD brains compared with non-AD brains. NLRP1 immunoreactivity in these neurons co-localized with Casp6 activity. Furthermore, the NLRP1/Casp1/Casp6 pathway increased amyloid beta peptide 42 ratio in serum-deprived neurons. Therefore, CNS human neurons express functional NLRP1 inflammasomes, which activate Casp1 and subsequently Casp6, thus revealing a fundamental mechanism linking intraneuronal inflammasome activation to Casp1-generated interleukin-1-β-mediated neuroinflammation and Casp6-mediated axonal degeneration. PMID:25744023

  2. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro

    PubMed Central

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    2016-01-01

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis. PMID:27689798

  3. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans) cell cultures

    PubMed Central

    2010-01-01

    Background The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. Results Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. Conclusions To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts. PMID:20691058

  4. Satratoxin G–Induced Apoptosis in PC-12 Neuronal Cells is Mediated by PKR and Caspase Independent

    PubMed Central

    Islam, Zahidul; Hegg, Colleen C.; Bae, Hee Kyong; Pestka, James J.

    2008-01-01

    Satratoxin G (SG) is a macrocyclic trichothecene mycotoxin produced by Stachybotrys chartarum, a mold suggested to play an etiologic role in damp building-related illnesses. Acute intranasal exposure of mice to SG specifically induces apoptosis in olfactory sensory neurons of the nose. The PC-12 rat pheochromocytoma cell model was used to elucidate potential mechanisms of SG-induced neuronal cell death. Agarose gel electrophoresis revealed that exposure to SG at 10 ng/ml or higher for 48-h induced DNA fragmentation characteristic of apoptosis in PC-12 cells. SG-induced apoptosis was confirmed by microscopic morphology, hypodiploid fluorescence and annexin V-fluorescein isothiocyanate (FITC) uptake. Messenger RNA expression of the proapoptotic genes p53, double-stranded RNA–activated protein kinase (PKR), BAX, and caspase-activated DNAse was significantly elevated from 6 to 48 h after SG treatment. SG also induced apoptosis and proapoptotic gene expression in neural growth factor-differentiated PC-12 cells. Although SG-induced caspase-3 activation, caspase inhibition did not impair apoptosis. Moreover, SG induced nuclear translocation of apoptosis-inducing factor (AIF), a known contributor to caspase-independent neuronal cell death. SG-induced apoptosis was not affected by inhibitors of oxidative stress or mitogen-activated protein kinases but was suppressed by the PKR inhibitor C16 and by PKR siRNA transfection. PKR inhibition also blocked SG-induced apoptotic gene expression and AIF translocation but not caspase-3 activation. Taken together, SG-induced apoptosis in PC-12 neuronal cells is mediated by PKR via a caspase-independent pathway possibly involving AIF translocation. PMID:18535002

  5. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans) cell cultures.

    PubMed

    Twumasi, Peter; Iakimova, Elena T; Qian, Tian; van Ieperen, Wim; Schel, Jan H N; Emons, Anne Mie C; van Kooten, Olaf; Woltering, Ernst J

    2010-08-06

    The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.

  6. 1800MHz Microwave Induces p53 and p53-Mediated Caspase-3 Activation Leading to Cell Apoptosis In Vitro.

    PubMed

    Xing, Fuqiang; Zhan, Qiuqiang; He, Yiduo; Cui, Jiesheng; He, Sailing; Wang, Guanyu

    Recent studies have reported that exposure of mammalian cells to microwave radiation may have adverse effects such as induction of cell apoptosis. However, the molecular mechanisms underlying microwave induced mammalian cell apoptosis are not fully understood. Here, we report a novel mechanism: exposure to 1800MHz microwave radiation induces p53-dependent cell apoptosis through cytochrome c-mediated caspase-3 activation pathway. We first measured intensity of microwave radiation from several electronic devices with an irradiation detector. Mouse NIH/3T3 and human U-87 MG cells were then used as receivers of 1800MHz electromagnetic radiation (EMR) at a power density of 1209 mW/m2. Following EMR exposure, cells were analyzed for viability, intracellular reactive oxygen species (ROS) generation, DNA damage, p53 expression, and caspase-3 activity. Our analysis revealed that EMR exposure significantly decreased viability of NIH/3T3 and U-87 MG cells, and increased caspase-3 activity. ROS burst was observed at 6 h and 48 h in NIH/3T3 cells, while at 3 h in U-87 MG cells. Hoechst 33258 staining and in situ TUNEL assay detected that EMR exposure increased DNA damage, which was significantly restrained in the presence of N-acetyl-L-cysteine (NAC, an antioxidant). Moreover, EMR exposure increased the levels of p53 protein and p53 target gene expression, promoted cytochrome c release from mitochondrion, and increased caspase-3 activity. These events were inhibited by pretreatment with NAC, pifithrin-α (a p53 inhibitor) and caspase inhibitor. Collectively, our findings demonstrate, for the first time, that 1800MHz EMR induces apoptosis-related events such as ROS burst and more oxidative DNA damage, which in turn promote p53-dependent caspase-3 activation through release of cytochrome c from mitochondrion. These findings thus provide new insights into physiological mechanisms underlying microwave-induced cell apoptosis.

  7. Nimesulide, a selective COX-2 inhibitor, acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3.

    PubMed

    Kim, Byeong Mo; Won, Juyoon; Maeng, Kyung Ah; Han, Young Soo; Yun, Yeon-Sook; Hong, Sung Hee

    2009-05-01

    Several lines of evidence suggest that non-steroidal anti-inflammatory drugs (NSAIDs) have a radiosensitizing effect on cancer cells in vitro and in vivo, but little is known about the underlying cellular mechanism. In this study, we found that the treatment with the NSAID nimesulide significantly increased the sensitivity of A549 human non-small cell lung cancer cells to radiotherapy. The combined nimesulide-radiation treatment increased apoptosis, induced the cleavage of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP), activated caspase-8, and induced cleavage of Bid. A pan-caspase inhibitor, z-VAD-fmk, suppressed this increase in apoptosis and also suppressed the cleavage of caspase-8, caspase-3, and PARP, suggesting a caspase-dependent mechanism. In addition, z-IETD-fmk, a selective caspase-8 inhibitor, suppressed the nimesulide- and radiation-induced cleavage activation of caspase-9, caspase-3, caspase-8, and Bid, and suppressed the concomitant apoptosis, indicating that the nimesulide-induced increase in radiosensitivity was initiated by caspase-8. However, the caspase-3 inhibitor z-DEVD-fmk failed to suppress activation of the caspase-8/Bid pathway, indicating that caspase-3 activation occurred downstream of caspase-8 activation in our experiments. Marked antitumor effects, which were evaluated by measuring protracted tumor regression, were observed when nude mice were treated with a combination of nimesulide at a clinically achievable dose (0.5 mg/kg) and radiation therapy. Our results, demonstrating the radiosensitivity-increasing and tumor growth-inhibiting effects of nimesulide, suggest that nimesulide may be suitable as an adjuvant to enhance the efficacy and selectivity of radiotherapy.

  8. Caspase-8 and Caspase-9 Functioned Differently at Different Stages of the Cyclic Stretch-Induced Apoptosis in Human Periodontal Ligament Cells

    PubMed Central

    Zhuang, Jiabao; Zhang, Fuqiang; Xu, Chun

    2016-01-01

    Background Human periodontal ligament (PDL) cells underwent apoptosis after mechanical stretch loading. However, the exact signalling pathway remains unknown. This study aimed to elucidate how the apoptotic caspases functioned in the cyclic stretch-induced apoptosis in human PDL cells. Materials and Methods In the present study, 20% cyclic stretch was selected to load the cells for 6 or 24 h. The following parameters were analyzed: apoptotic rates, the protein levels of caspase-3, -7, -8 and -9 and the activities of caspase-8 and -9. Subsequently, the influences of caspase-8 and caspase-9 inhibitors on the apoptotic rate and the protein level of the activated caspase-3 were assessed as well. Results The apoptotic rates increased in response to cyclic stretch, but the cells entered different apoptotic stages after 6 and 24 h stretches. Caspase-3, -7, -8 and -9 were all activated after stretch loading. The stretch-induced apoptosis and the protein level of the activated caspase-3 were inhibited after inhibiting both caspase-8 and caspase-9 in both 6 and 24 h stretched cells and after inhibiting caspase-9 in 24 h stretched cells. Conclusion Caspase-8 and -9 functioned differently at different apoptotic stages in human PDL cells after cyclic stretch. PMID:27942018

  9. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1.

    PubMed

    Zuo, Yong; Xiang, Binggang; Yang, Jie; Sun, Xuxu; Wang, Yumei; Cang, Hui; Yi, Jing

    2009-04-01

    Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whether ROS regulate caspase-9 via direct oxidative modification. The present study aims to elucidate the molecular mechanisms by which ROS mediate caspase-9 activation. Our results show that the cellular oxidative state facilitates caspase-9 activation. Hydrogen peroxide treatment causes the activation of caspase-9 and apoptosis, and promotes an interaction between caspase-9 and apoptotic protease-activating factor 1 (Apaf-1) via disulfide formation. In addition, in an in vitro mitochondria-free system, the thiol-oxidant diamide promotes auto-cleavage of caspase-9 and the caspase-9/Apaf-1 interaction by facilitating the formation of disulfide-linked complexes. Finally, a point mutation at C403 of caspase-9 impairs both H(2)O(2)-promoted caspase-9 activation and interaction with Apaf-1 through the abolition of disulfide formation. The association between cytochrome c and the C403S mutant is significantly weaker than that between cytochrome c and wild-type caspase-9, indicating that oxidative modification of caspase-9 contributes to apoptosome formation under oxidative stress. Taken together, oxidative modification of caspase-9 by ROS can mediate its interaction with Apaf-1, and can thus promote its auto-cleavage and activation. This mechanism may facilitate apoptosome formation and caspase-9 activation under oxidative stress.

  10. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties

    SciTech Connect

    Lawrence, C.P.; Chow, S.C.

    2012-11-15

    The caspase inhibitors, benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) and benzyloxycarbonyl (Cbz)-Ile-Glu (OMe)-Thr-Asp (OMe)-FMK (z-IETD-FMK) at non-toxic doses were found to be immunosuppressive and inhibit human T cell proliferation induced by mitogens and IL-2 in vitro. Both caspase inhibitors were shown to block NF-κB in activated primary T cells, but have little inhibitory effect on the secretion of IL-2 and IFN-γ during T cell activation. However, the expression of IL-2 receptor α-chain (CD25) in activated T cells was inhibited by both z-VAD-FMK and z-IETD-FMK, whereas the expression of the early activated T cell marker, CD69 was unaffected. During primary T cell activation via the antigen receptor, both caspase-8 and caspase-3 were activated and processed to their respective subunits, but neither caspase inhibitors had any effect on the processing of these two caspases. In sharp contrast both caspase inhibitors readily blocked apoptosis and the activation of caspases during FasL-induced apoptosis in activated primary T cells and Jurkat T cells. Collectively, the results demonstrate that both z-VAD-FMK and z-IETD-FMK are immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3. -- Highlights: ► Caspase-8 and caspase-3 were activated during T cell activation and proliferation. ► T cell proliferation was blocked by caspase inhibitors. ► Caspase activation during T cell proliferation was not block by caspase inhibitors.

  11. Inflammatory arthritis in caspase-1 gene deficient mice: Contribution of proteinase 3 for caspase-1-independent production of bioactive IL-1β

    PubMed Central

    Joosten, Leo A.B.; Netea, Mihai G.; Fantuzzi, Giamila; Koenders, Marije I.; Helsen, Monique M.A.; Sparrer, Helmut; Pham, Christine T.; van der Meer, Jos W.M.; Dinarello, Charles A.; van den Berg, Wim B.

    2010-01-01

    Objective Caspase-1 is a known cysteine proteases and is a critical component of the inflammasome. Caspase-1 and neutrophil serine proteases, such as proteinase 3 (PR3) can process pro-IL-1β a crucial cytokine linked to the pathogenesis of rheumatoid arthritis, but their relative importance is unknown. Methods To this end we induced acute and chronic arthritis in caspase-1−/− mice and investigated the lack of caspase-1 on joint swelling, cartilage metabolism and joint pathology. In addition, caspase-1 activity was inhibited in mice lacking active cysteine proteases and evaluated the effect of dual blockade of caspase-1 and serine proteinase on arthritis severity and joint pathology. Results Surprisingly, caspase-1−/− mice developed joint swelling similar to wild-type mice in models of neutrophil-dominated arthritis. Joint fluid concentrations of bioactive IL-1β were comparable in caspase-1−/− mice and controls. In contrast, induction of chronic arthritis with minimal numbers of neutrophils in caspase-1−/− mice lead to reduced joint inflammation and cartilage damage, implying caspase-1 dependence. In mice lacking neutrophil serine PR3, inhibition caspase-1 activity results in decreased bioactive IL-1β concentrations in synovial tissue and less suppression of chondrocyte anabolic function. In addition, dual blockade of both PR-3 and caspase-1 lead to protection against cartilage and bone destruction. Conclusions We conclude that caspase-1 deficiency does not affect neutrophil-dominated joint inflammation, whereas in chronic arthritis the lack of caspase-1 results in reduced joint pathology. This study implies that caspase-1 inhibitors are not able to interfere with the whole spectrum of IL-1β production and hence may be of therapeutic value only in inflammatory conditions where limited numbers of neutrophils are present. PMID:19950280

  12. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    PubMed

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  13. Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock.

    PubMed

    Yang, Dahai; He, Yuan; Muñoz-Planillo, Raul; Liu, Qin; Núñez, Gabriel

    2015-11-17

    The noncanonical inflammasome induced by intracellular lipopolysaccharide (LPS) leads to caspase-11-dependent pyroptosis, which is critical for induction of endotoxic shock in mice. However, the signaling pathway downstream of caspase-11 is unknown. We found that cytosolic LPS stimulation induced caspase-11-dependent cleavage of the pannexin-1 channel followed up by ATP release, which in turn activated the purinergic P2X7 receptor to mediate cytotoxicity. In the absence of P2X7 or pannexin-1, pyroptosis induced by cytosolic LPS was abrogated. Cleavage of pannexin-1 required the catalytic activity of caspase-11 and was essential for ATP release and P2X7-mediated pyroptosis. Priming the caspase-11 pathway in vivo with LPS or Toll-like receptor-3 (TLR3) agonist resulted in high mortality in wild-type mice after secondary LPS challenge, but not in Casp11(-/-), Panx1(-/-), or P2x7(-/-) mice. These results reveal a critical role for pannexin-1 and P2X7 downstream of caspase-11 for pyroptosis and susceptibility to sepsis induced by the noncanonical inflammasome. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cystein cathepsin and Hsp90 activities determine the balance between apoptotic and necrotic cell death pathways in caspase-compromised U937 cells.

    PubMed

    Imre, Gergely; Dunai, Zsuzsanna; Petak, Istvan; Mihalik, Rudolf

    2007-10-01

    Caspase-inhibited cells induced to die may exhibit the traits of either apoptosis or necrosis or both, simultaneously. However, mechanisms regulating the commitment to these distinct forms of cell death are barely identified. We found that staurosporine induced both apoptotic and necrotic traits in U937 cells exposed to the caspase inhibitor benzyloxycarbonyl-Val-Ala-DL-Asp(OMe)-fluoromethylketone. Morphology and flow cytometry revealed that individual cells exhibited either apoptotic or necrotic traits, but not the mixed phenotype. Inhibition of cathepsin activity by benzyloxycarbonyl-Phe-Ala-fluoromethylketone rendered caspase-compromised cells resistant to staurosporine-induced apoptosis, but switched the cell death form to necrosis. Inhibition of heat shock protein 90 kDa (Hsp90) chaperon activity by geldanamycin conferred resistance to necrosis in caspase-compromised cells but switched the cell death form to apoptosis. Combination of benzyloxycarbonyl-Phe-Ala-fluoromethylketone and geldanamycin halted the onset of both forms of cell death by saving mitochondrial trans-membrane potential and preventing acidic volume (lysosomes) loss. These effects of benzyloxycarbonyl-Phe-Ala-fluoromethylketone and/or geldanamycin on cell death were restricted to caspase-inhibited cells exposed to staurosporine but influenced neither only the staurosporine-provoked apoptosis nor hydrogen peroxide (H2O2)-generated necrosis. Our results demonstrate that the staurosporine-induced death pathway bifurcates in caspase-compromised cells and commitment to apoptotic or necrotic phenotypes depends on cathepsin protease or Hsp90 chaperon activities.

  15. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock

    PubMed Central

    Yang, Dahai; He, Yuan; Muñoz-Planillo, Raul; Liu, Qin; Núñez, Gabriel

    2016-01-01

    SUMMARY The noncanonical inflammasome induced by intracellular lipopolysaccharide (LPS) leads to caspase-11-dependent pyroptosis which is critical for induction of endotoxic shock in mice. However, the signaling pathway downstream of caspase-11 is unknown. We found that cytosolic LPS stimulation induced caspase-11-dependent cleavage of the pannexin-1 channel and ATP release, which in turn activated the purinergic P2X7 receptor to mediate cytotoxicity. In the absence of P2X7 or pannexin-1, pyroptosis induced by LPS transfection or treatment with cholera toxin B and LPS was abrogated. Cleavage of pannexin-1 required the catalytic activity of caspase-11 and was essential for ATP release and P2X7-mediated pyroptosis. Priming the caspase-11 pathway in vivo with LPS or toll-like receptor-3 (TLR3) agonist resulted in high mortality in wild-type mice after secondary LPS challenge, but not in Casp11−/−, Panx1−/− or P2x7−/− mice. These results reveal a critical role for pannexin-1 and P2X7 downstream of caspase-11 for pyroptosis and susceptibility to sepsis induced by the noncanonical inflammasome. PMID:26572062

  16. Discovery of a highly selective caspase-3 substrate for imaging live cells.

    PubMed

    Vickers, Chris J; González-Páez, Gonzalo E; Wolan, Dennis W

    2014-10-17

    Caspases are a family of cysteine proteases that are well-known for their roles in apoptosis and inflammation. Recent studies provide evidence that caspases are also integral to many additional cellular processes, such as differentiation and proliferation. Likewise, aberrant caspase activity has been implicated in the progression of several diseases, including neurodegenerative disorders, cancer, cardiovascular disease, and sepsis. These observations establish the importance of caspases to a diverse array of physiological functions and future endeavors will undoubtedly continue to elucidate additional processes that require caspase activity. Unfortunately, the existence of 11 functional human caspases, with overlapping substrate specificities, confounds the ability to confidently assign one or more isoforms to biological phenomena. Herein, we characterize a first-in-class FRET substrate that is selectively recognized by active caspase-3 over other initiator and executioner caspases. We further apply this substrate to specifically image caspase-3 activity in live cells undergoing apoptosis.

  17. δ-Cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest.

    PubMed

    Hui, Li-Mei; Zhao, Guo-Dong; Zhao, Jian-Jun

    2015-01-01

    Ovarian cancer is one of the most common causes of mortality among all cancers in females and is the primary cause of mortality from gynecological malignancies. The objective of the current research work was to evaluate a naturally occurring sesquiterpene-δ-Cadinene for its antiproliferative and apoptotic effects on human ovary cancer (OVCAR-3) cells. We also demonstrated the effect of δ-Cadinene on cell cycle phase distribution, intracellular damage and caspase activation. Sulforhodamine B (SRB) assay was used to evaluate the antiproliferative effect of δ-cadinene on OVCAR-3 cells. Cellular morphology after δ-cadinene treatment was demonstrated by inverted phase contrast microscopy, fluorescence microscopy and transmission electron microscopy. Flow cytometry was used to analyze the effect of δ-cadinene on cell cycle phase distribution and apoptosis using propidium iodide and Annexin V-fluorescein isothiocyanate (FITC)/PI kit. The results revealed that δ-cadinene induced dose-dependent as well as time-dependent growth inhibitory effects on OVACR-3 cell line. δ-cadinene also induced cell shrinkage, chromatin condensation and nuclear membrane rupture which are characteristic of apoptosis. Treatment with different doses of δ-cadinene also led to cell cycle arrest in sub-G1 phase which showed dose-dependence. Western blotting assay revealed that δ-cadinene led to activation of caspases in OVCAR-3 cancer cells. PARP cleavage was noticed at 50 µM dose of δ-cadinene with the advent of the cleaved 85-kDa fragment after exposure to δ-cadinene. At 100 µM, only the cleaved form of PARP was detectable. Pro-caspase-8 expression remained unaltered until 10 µM dose of δ-cadinene. However, at 50 and 100 µM dose, pro-caspase-8 expression was no longer detectable. There was a significant increase in the caspase-9 expression levels after 50 and 100 µM δ-cadinene treatments.

  18. Substrate-Induced Conformational Changes Occur in All Cleaved Forms of Caspase-6

    SciTech Connect

    S Vaidya; E Velazquez-Delgado; G Abbruzzese; J Hardy

    2011-12-31

    Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.

  19. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila.

    PubMed

    Case, Christopher L; Kohler, Lara J; Lima, Jonilson B; Strowig, Till; de Zoete, Marcel R; Flavell, Richard A; Zamboni, Dario S; Roy, Craig R

    2013-01-29

    A flagellin-independent caspase-1 activation pathway that does not require NAIP5 or NRLC4 is induced by the intracellular pathogen Legionella pneumophila. Here we demonstrate that this pathway requires caspase-11. Treatment of macrophages with LPS up-regulated the host components required for this caspase-11 activation pathway. Activation by Legionella differed from caspase-11 activation using previously described agonists in that Legionella caspase-11 activation was rapid and required bacteria with a functional type IV secretion system called Dot/Icm. Legionella activation of caspase-11 induced pyroptosis by a mechanism independent of the NAIP/NLRC4 and caspase-1 axis. Legionella activation of caspase-11 stimulated activation of caspase-1 through NLRP3 and ASC. Induction of caspase-11-dependent responses occurred in macrophages deficient in the adapter proteins TRIF or MyD88 but not in macrophages deficient in both signaling factors. Although caspase-11 was produced in macrophages deficient in the type-I IFN receptor, there was a severe defect in caspase-11-dependent pyroptosis in these cells. These data indicate that macrophages respond to microbial signatures to produce proteins that mediate a capsase-11 response and that the caspase-11 system provides an alternative pathway for rapid detection of an intracellular pathogen capable of evading the canonical caspase-1 activation system that responds to bacterial flagellin.

  20. Caspase-Dependent and Caspase-Independent Pathways Are Involved in Cadmium-Induced Apoptosis in Primary Rat Proximal Tubular Cell Culture

    PubMed Central

    Long, Mengfei; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Yuan, Yan; Song, Ruilong; Wang, Yi; Zhu, Jiaqiao; Liu, Zongping

    2016-01-01

    We designed this study to investigate whether cadmium induces caspase-independent apoptosis and to investigate the relationship between the caspase-dependent and caspase-independent apoptotic pathways. Cadmium (1.25–2.5 μM) induced oxidative stress in rat proximal tubular (rPT) cells, as seen in the reactive oxygen species levels; N-acetylcysteine prevented this. Cyclosporin A (CsA) prevented mitochondrial permeability transition pore opening and apoptosis; there was mitochondrial ultrastructural disruption, mitochondrial cytochrome c (cyt c) translocation to the cytoplasm, and subsequent caspase-9 and caspase-3 activation. Z-VAD-FMK prevented caspase-3 activation and apoptosis and decreased BNIP-3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3) expression levels and apoptosis-inducing factor/endonuclease G (AIF/Endo G) translocation. Simultaneously, cadmium induced prominent BNIP-3 expression in the mitochondria and cytoplasmic AIF/Endo G translocation to the nucleus. BNIP-3 silencing significantly prevented AIF and Endo G translocation and decreased the apoptosis rate, cyt c release, and caspase-9 and caspase-3 activation. These results suggest that BNIP-3 is involved in the caspase-independent apoptotic pathway and is located upstream of AIF/Endo G; both the caspase-dependent and caspase-independent pathways are involved in cadmium-induced rPT cell apoptosis and act synergistically. PMID:27861627

  1. Comparison of activated caspase detection methods in the gentamicin-treated chick cochlea.

    PubMed

    Kaiser, Christina L; Chapman, Brittany J; Guidi, Jessica L; Terry, Caitlin E; Mangiardi, Dominic A; Cotanche, Douglas A

    2008-06-01

    Aminoglycoside antibiotics induce caspase-dependent apoptotic death in cochlear hair cells. Apoptosis, a regulated form of cell death, can be induced by many stressors, which activate signaling pathways that result in the controlled dismantling of the affected cell. The caspase family of proteases is activated in the apoptotic signaling pathway and is responsible for cellular destruction. The initiator caspase-9 and the effector caspase-3 are both activated in chick cochlear hair cells following aminoglycoside exposure. We have analyzed caspase activation in the avian cochlea during gentamicin-induced hair cell death to compare two different methods of caspase detection: caspase antibodies and CaspaTag kits. Caspase antibodies bind to the cleaved activated form of caspase-9 or caspase-3 in specific locations in fixed tissue. CaspaTag is a fluorescent inhibitor that binds to a reactive cysteine residue on the large subunit of the caspase heterodimer in unfixed tissue. To induce cochlear hair cell loss, 1-2 week-old chickens received a single injection of gentamicin (300 mg/kg). Chicks were sacrificed 24, 30, 42, 48, 72, or 96 h after injection. Cochleae were dissected and labeled for activated caspase-9 or caspase-3 using either caspase-directed antibodies or CaspaTag kits. Ears were co-labeled with either phalloidin or myosin VI to visualize hair cells and to determine the progression of cochlear damage. The timing of caspase activation was similar for both assays; however, caspase-9 and caspase-3 antibodies labeled only those cells currently undergoing apoptotic cell death. Conversely, CaspaTag-labeled all the cells that have undergone apoptotic cell death and ejection from the sensory epithelium, in addition to those that are currently in the cell death process. This makes CaspaTag ideal for showing an overall pattern or level of cell death over a period of time, while caspase antibodies provide a snapshot of cell death at a specific time point.

  2. Mutational analysis of caspase 1, 4, and 5 genes in common human cancers.

    PubMed

    Soung, Young Hwa; Jeong, Eun Goo; Ahn, Chang Hyeok; Kim, Sung Soo; Song, Sang Yong; Yoo, Nam Jin; Lee, Sug Hyung

    2008-06-01

    Mounting evidence indicates that deregulation of apoptosis is involved in the mechanisms of cancer development. Mutations of genes encoding caspases, the executioners of apoptosis, have been detected in human cancers, indicating inactivation of apoptosis by the mutations of caspase is an important mechanism in cancer development. The aim of this study was to see whether genes encoding human caspases 1, 4, and 5 are mutated in human cancers. We analyzed the entire coding region and all splice sites of human caspase 1, 4, and 5 genes for the detection of somatic mutations in 337 human cancers, including 103 colorectal, 54 gastric, 60 breast, 60 hepatocellular, and 60 lung carcinomas by a single-strand conformation polymorphism assay. We detected 2 (0.6%) caspase-1, 2 (0.6%) caspase-4, and 15 (4.4%) caspase-5 mutations in the 343 cancers. The mutations were detected in 11 gastric carcinomas (2 caspase-1 and 9 caspase-5 mutations), 6 colorectal carcinomas (2 caspase-4 and 4 caspase-5 mutations), 1 breast carcinoma (1 caspase-5 mutation), and 1 lung carcinoma (1 caspase-5 mutation). The mutations consisted of 11 mutations in exons and 8 mutations in noncoding sequences. The 11 mutations in the exons consisted of 3 missense, 1 silent, and 7 frameshift mutation(s). Of note, most (6/9) of the caspase-5 mutations in the coding sequences were detected in microsatellite instability (MSI)-positive cancers. These data indicate that somatic mutations of caspase-1 and caspase-4 genes are rare in common solid cancers. In addition, the data indicate that caspase-5 gene is commonly mutated in the MSI-positive cancers, and suggest that inactivation of caspase-5 may play a role in the tumorigenesis of MSI-positive cancers.

  3. Molecular cloning and characterization of four caspases members in Apostichopus japonicus.

    PubMed

    Shao, Yina; Li, Chenghua; Zhang, Weiwei; Duan, Xuemei; Li, Ye; Jin, Chunhua; Xiong, Jinbo; Qiu, Qiongfen

    2016-08-01

    The caspase family representing aspartate-specific cysteine proteases have been demonstrated to possess key roles in apoptosis and immune response. We previously demonstrated that LPS challenged Apostichopus japonicus coelomocyte could significantly induced apoptosis in vitro. However, apoptosis related molecules were scarcely investigated in this economic species. In the present work, we cloned and characterized four members caspase family from A. japonicus (designated as Ajcaspase-2, Ajcaspase-3, Ajcaspase-6, and Ajcaspase-8, respectively) by RACE. Multiple sequence alignment and structural analysis revealed that all Ajcaspases contained the conservative CASC domain at C terminal, in which some unique features for each Ajcaspase made them different from each other. These specific domains together with phylogenetic analysis supported that all these four identified proteins belonged to novel members of apoptotic signaling pathway in sea cucumber. Tissue distribution analysis revealed that four Ajcaspase genes were constitutively expressed in all examined tissues. The expression of Ajcaspase-2 was tightly correlated with that of Ajcaspase-8 in each detected tissues. Ajcaspase-3 and Ajcaspase-6 transcripts were both highly expressed in immune tissue of coelomocytes. Furthermore, the Vibrio splendidus challenged sea cucumber coelomocytes could significantly up-regulate the mRNA expressions of four genes. The expression levels of Ajcaspase-2 and Ajcaspase-8 were relative earlier than those of Ajcaspase-6 and Ajcaspase-3, respectively, which could be inferred that Ajcapase-2 might directly modulate Ajcaspase-6, and Ajcaspase-8 initiate the expression of Ajcaspase-3. The induce expressions differed among each Ajcaspase depending upon their roles such as initiator or effector caspase. All our results demonstrated that four Ajcaspases present diversified functions in apoptotic cascade signaling pathway of sea cucumber under immune response.

  4. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense.

    PubMed

    Zheng, Ying; Lilo, Sarit; Mena, Patricio; Bliska, James B

    2012-01-01

    Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJ(KIM)) strains have high cytotoxic activity. In addition, YopJ(KIM)-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJ(KIM)-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJ(KIM)-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJ(KIM). Wild-type and

  5. YopJ-Induced Caspase-1 Activation in Yersinia-Infected Macrophages: Independent of Apoptosis, Linked to Necrosis, Dispensable for Innate Host Defense

    PubMed Central

    Zheng, Ying; Lilo, Sarit; Mena, Patricio; Bliska, James B.

    2012-01-01

    Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJKIM) strains have high cytotoxic activity. In addition, YopJKIM-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJKIM-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJKIM-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJKIM. Wild-type and congenic

  6. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  7. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  8. Caspase-mediated specific cleavage of human histone deacetylase 4.

    PubMed

    Liu, Fang; Dowling, Melissa; Yang, Xiang-Jiao; Kao, Gary D

    2004-08-13

    Histone deacetylase 4 (HDAC4) is a class II HDAC implicated in controlling gene expression important for diverse cellular functions, but little is known about how its expression and stability are regulated. We report here that this deacetylase is unusually unstable, with a half-life of less than 8 h. Consistent with the instability of HDAC4 protein, its mRNA was also highly unstable (with a half-life of less than 4 h). The degradation of HDAC4 could be accelerated by exposure of cells to ultraviolet irradiation. HDAC4 degradation was not dependent on proteasome or CRM1-mediated export activity but instead was caspase-dependent and was detectable in diverse human cancer lines. Of two potential caspase consensus motifs in HDAC4, both lying within a region containing proline-, glutamic acid-, serine-, and threonine-rich (PEST) sequences, we identified, by site-directed mutagenesis, Asp-289 as the prime cleavage site. Notably, this residue is not conserved among other class IIa members, HDAC5, -7, and -9. Finally, the induced expression of caspase-cleavable HDAC4 led to markedly increased apoptosis. These results therefore unexpectedly link the regulation of HDAC4 protein stability to caspases, enzymes that are important for controlling cell death and differentiation.

  9. The Drosophila caspase DRONC is regulated by DIAP1

    PubMed Central

    Meier, Pascal; Silke, John; Leevers, Sally J.; Evan, Gerard I.

    2000-01-01

    We have isolated the recently identified Drosophila caspase DRONC through its interaction with the effector caspase drICE. Ectopic expression of DRONC induces cell death in Schizosaccharomyces pombe, mammalian fibroblasts and the developing Drosophila eye. The caspase inhibitor p35 fails to rescue DRONC-induced cell death in vivo and is not cleaved by DRONC in vitro, making DRONC the first identified p35-resistant caspase. The DRONC pro-domain interacts with Drosphila inhibitor of apoptosis protein 1 (DIAP1), and co-expression of DIAP1 in the developing Drosophila eye completely reverts the eye ablation phenotype induced by pro-DRONC expression. In contrast, DIAP1 fails to rescue eye ablation induced by DRONC lacking the pro-domain, indicating that interaction of DIAP1 with the pro-domain of DRONC is required for suppression of DRONC-mediated cell death. Heterozygosity at the diap1 locus enhances the pro-DRONC eye phenotype, consistent with a role for endogenous DIAP1 in suppression of DRONC activation. Both heterozygosity at the dronc locus and expression of dominant-negative DRONC mutants suppress the eye phenotype caused by reaper (RPR) and head involution defective (HID), consistent with the idea that DRONC functions in the RPR and HID pathway. PMID:10675329

  10. Ocular neuroprotection by siRNA targeting caspase-2

    PubMed Central

    Ahmed, Z; Kalinski, H; Berry, M; Almasieh, M; Ashush, H; Slager, N; Brafman, A; Spivak, I; Prasad, N; Mett, I; Shalom, E; Alpert, E; Di Polo, A; Feinstein, E; Logan, A

    2011-01-01

    Retinal ganglion cell (RGC) loss after optic nerve damage is a hallmark of certain human ophthalmic diseases including ischemic optic neuropathy (ION) and glaucoma. In a rat model of optic nerve transection, in which 80% of RGCs are eliminated within 14 days, caspase-2 was found to be expressed and cleaved (activated) predominantly in RGC. Inhibition of caspase-2 expression by a chemically modified synthetic short interfering ribonucleic acid (siRNA) delivered by intravitreal administration significantly enhanced RGC survival over a period of at least 30 days. This exogenously delivered siRNA could be found in RGC and other types of retinal cells, persisted inside the retina for at least 1 month and mediated sequence-specific RNA interference without inducing an interferon response. Our results indicate that RGC apoptosis induced by optic nerve injury involves activation of caspase-2, and that synthetic siRNAs designed to inhibit expression of caspase-2 represent potential neuroprotective agents for intervention in human diseases involving RGC loss. PMID:21677688

  11. Inhibition of caspases prevents ototoxic and ongoing hair cell death.

    PubMed

    Matsui, Jonathan I; Ogilvie, Judith M; Warchol, Mark E

    2002-02-15

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  12. ACTIVATION OF CASPASE-3 IN THE SKELETAL MUSCLE DURING HEMODIALYSIS

    PubMed Central

    Boivin, Michel A; Battah, Shadi I; Dominic, Elizabeth A; Kalantar-Zadeh, Kamyar; Ferrando, Arny; Tzamaloukas, Antonios H; Dwivedi, Rama; Ma, Thomas A; Moseley, Pope; Raj, Dominic SC

    2010-01-01

    Background Muscle atrophy in end-stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. Objective We hypothesized that activation of caspase-3 in the skeletal muscle mediates apoptosis and proteolysis during hemodialysis (HD). Materials and Methods Eight ESRD patients were studied before (pre-HD) and during HD and the finding were compared with those from six healthy volunteers. Protein kinetics was determined by primed constant infusion of L-(ring 13C6) Phenylalanine. Results Caspase-3 activity in the skeletal muscle was higher in ESRD patients pre-HD than in controls (24966.0±4023.9 vs. 15293.3±2120.0 units, p<0.01) and increased further during HD (end-HD) (37666.6±4208.3 units) (p<0.001). 14 kDa actin fragments generated by caspase-3 mediated cleavage of actinomyosin was higher in the skeletal muscle pre-HD (68%) and during HD (164%) compared to controls. The abundance of ubiquitinized carboxy-terminal actin fragment was also significantly increased during HD. Skeletal muscle biopsies obtained at the end of HD exhibited augmented apoptosis, which was higher than that observed in pre-HD and control samples (p<0.001). IL-6 content in the soluble fraction of the muscle skeletal muscle was increased significantly during HD. Protein kinetic studies showed that catabolism was higher in ESRD patients during HD compared to pre-HD and control subjects. Muscle protein catabolism was positively associated with caspase-3 activity and skeletal muscle IL-6 content. Conclusion Muscle atrophy in ESRD may be due to IL-6 induced activation of caspase-3 resulting in apoptosis as well as muscle proteolysis during HD. PMID:20636378

  13. Hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death.

    PubMed

    Eisner, Verónica; Quiroga, Clara; Criollo, Alfredo; Eltit, José Miguel; Chiong, Mario; Parra, Valentina; Hidalgo, Karla; Toro, Barbra; Díaz-Araya, Guillermo; Lavandero, Sergio

    2006-06-12

    NFkappaB is a participant in the process whereby cells adapt to stress. We have evaluated the activation of NFkappaB pathway by hyperosmotic stress in cultured cardiomyocytes and its role in the activation of caspase and cell death. Exposure of cultured rat cardiomyocytes to hyperosmotic conditions induced phosphorylation of IKKalpha/beta as well as degradation of IkappaBalpha. All five members of the NFkappaB family were identified in cardiomyocytes. Analysis of the subcellular distribution of NFkappaB isoforms in response to hyperosmotic stress showed parallel migration of p65 and RelB from the cytosol to the nucleus. Measurement of the binding of NFkappaB to the consensus DNA kappaB-site binding by EMSA revealed an oscillatory profile with maximum binding 1, 2 and 6h after initiation of the hyperosmotic stress. Supershift analysis revealed that p65 and RelB (but not p50, p52 or cRel) were involved in the binding of NFkappaB to DNA. Hyperosmotic stress also resulted in activation of the NFkappaB-lux reporter gene, transient activation of caspases 9 and 3 and phosphatidylserine externalization. The effect on cell viability was not prevented by ZVAD (a general caspase inhibitor). Blockade of NFkappaB with AdIkappaBalpha, an IkappaBalpha dominant negative overexpressing adenovirus, prevented activation of caspase 9 (more than that caspase 3) but did not affect cell death in hyperosmotically stressed cardiomyocytes. We conclude that hyperosmotic stress activates p65 and RelB NFkappaB isoforms and NFkappaB mediates caspase 9 activation in cardiomyocytes. However cell death triggered by hyperosmotic stress was caspase- and NFkappaB-independent.

  14. Cloning and characterization of a caspase gene from black tiger shrimp (Penaeus monodon)-infected with white spot syndrome virus (WSSV).

    PubMed

    Wongprasert, Kanokpan; Sangsuriya, Pakkakul; Phongdara, Amornrat; Senapin, Saengchan

    2007-08-01

    A black tiger shrimp (Penaeus monodon) caspase cDNA homologue (PmCasp) has been identified from a hemocyte library using a previously identified caspase homologue from the banana shrimp (Penaeus merguiensis) as a probe. The full-length PmCasp was 1202bp with a 954bp open reading frame, encoding 317 amino acids. The deduced protein contained a potential active site (QACRG pentapeptide) conserved in most caspases. It had 83% identity with caspase of P. merguiensis and 30% identity with drICE protein of Drosophila melanogaster, and it exhibited caspase-3 activity in vitro. PmCasp was cloned and expressed in Escherichia coli and a rabbit polyclonal antiserum was produced. In Western blots, the antiserum reacted with purified recombinant PmCasp and with lysates of E. coli containing the expressed plasmid. In crude protein extracts from normal shrimp, the antiserum reacted with 36 and 26kDa bands likely to correspond to inactive pro-caspase and its proteolytic intermediate form, respectively. PmCasp expression was measured in normal shrimp and in white spot syndrome virus (WSSV)-infected shrimp at 24 and 48h post-injection (p.i.) by semi-quantitative RT-PCR, Western blot analysis, and immunohistochemistry. Semi-quantitative RT-PCR analysis revealed up-regulation of PmCasp at 48h p.i. and expression remained high up to the moribund state. These results were supported by Western blot analysis showing increased PmCasp protein levels at 24 and 48h p.i. when compared to normal control shrimp. Immunohistochemical analysis of gills from the WSSV-infected shrimp revealed immunoreactivity localized in the cytoplasm of both normal and apparently apoptotic cells. In summary, a caspase-3 like gene is conserved in P. monodon and is up-regulated after WSSV infection.

  15. [11'-Deoxyverticillin A induces caspase-dependent cell apoptosis in PC3M cells].

    PubMed

    Shi, Yingdi; Zhang, Yingqiu; Ni, Yangxiao; Shi, Guoli; Yang, Huaiyi

    2012-01-01

    Recent years, the incidence and mortality of prostate cancer have increased dramatically in China. At earlier stages, most diagnosed prostate cancers are responsive to androgen depletion treatment, yet, nearly all patients will eventually progress to metastatic androgen-independent prostate cancer (AIPC), which still has no effective therapeutic method or drug to deal with. 11'-Deoxyverticillin A (C42) belongs to the family of epipolythiodioxopiperazines (ETPs), an interesting class of fungal toxins that inhibit farnesyl transferase. Compounds holding such a property have been explored as putative anticancer agents. In this study, using PC3M cells, an AIPC cell line, we investigated the effect of the compound on apoptosis and explored the underlying mechanism. It revealed that C42 markedly enhanced the activity of caspase-3/7 and increased the accumulation of the cleaved PARP, all of which are the markers of apoptosis. It also revealed that C42 either decreased cell viability or inhibited the growth of PC3M cells. Moreover, we observed that the loss of cell viability and cell growth inhibition induced by C42 were both time- and dosage dependent. Taken together, we indicated that C42 can induce caspase-dependent apoptosis in AIPC cells, and the results presented here will broaden our knowledge about the molecular mechanisms by which C42 exerts its anticancer activity, and future work in this direction may provide valuable information in the development of these compounds into effective cancer therapeutic strategies against androgen-independent prostate cancer.

  16. Intestinal genetic inactivation of caspase-8 diminishes migration of enterocytes

    PubMed Central

    Kaemmerer, Elke; Kuhn, Paula; Schneider, Ursula; Jeon, Min Kyung; Klaus, Christina; Schiffer, Miriam; Weisner, Danika; Liedtke, Christian; Jäkel, Jörg; Kennes, Lieven Nils; Hilgers, Ralf-Dieter; Wagner, Norbert; Gassler, Nikolaus

    2015-01-01

    AIM: To verify the hypothesis that caspase-8 (Casp8), which regulates cellular apoptosis and necroptosis, is critically involved in enterocyte migration. METHODS: Casp8-silenced Caco2 cells were used in migration assays. In addition, enterocyte-specific Casp8 heterozygous (Casp8+/∆int) or homozygous knockout mice (Casp8∆int) were generated by crossing genetically modified mice carrying loxP recombination sites in intron 2 and 4 of the murine Casp8 gene with transgenic animals expressing a cre-transgene under control of the villin promoter in a pure C57/BL6 genetic background. The nucleoside analog BrdU was injected i.p. in male Casp8+/∆int and Casp8∆int animals 4 h, 20 h, or 40 h before performing morphometric studies. Locations of anti-BrdU-immunostained cells (cellmax) in at least 50 hemi-crypts of 6 histoanatomically distinct intestinal mucosal regions were numbered and extracted for statistical procedures. For the mice cohort (n = 28), the walking distance of enterocytes was evaluated from cellmax within crypt (n = 57), plateau (n = 19), and villus (n = 172) positions, resulting in a total of 6838 observations. Data analysis was performed by fitting a three-level mixed effects model to the data. RESULTS: In cell culture experiments with Caco2 cells, Casp8 knockdown efficiency mediated by RNA interference on Casp8 transcripts was 80% controlled as determined by Western blotting. In the scratch assay, migration of Casp8-deleted Caco2 cells was significantly diminished when compared with controls (Casp8∆scramble and Caco2). In BrdU-labeled Casp8∆int mice, cellmax locations were found along the hemi-crypts in a lower position than it was for Casp8+/∆int or control (cre-negative) animals. Statistical data analysis with a three-level mixed effects model revealed that in the six different intestinal locations (distinct segments of the small and large intestine), cell movement between the three mice groups differed widely. Especially in duodenal hemi

  17. Influenza Virus-Induced Caspase-Dependent Enlargement of Nuclear Pores Promotes Nuclear Export of Viral Ribonucleoprotein Complexes

    PubMed Central

    Mühlbauer, Dirk; Dzieciolowski, Julia; Hardt, Martin; Hocke, Andreas; Schierhorn, Kristina L.; Mostafa, Ahmed; Müller, Christin; Wisskirchen, Christian; Herold, Susanne; Wolff, Thorsten; Ziebuhr, John

    2015-01-01

    ABSTRACT Influenza A viruses (IAV) replicate their segmented RNA genome in the nucleus of infected cells and utilize caspase-dependent nucleocytoplasmic export mechanisms to transport newly formed ribonucleoprotein complexes (RNPs) to the site of infectious virion release at the plasma membrane. In this study, we obtained evidence that apoptotic caspase activation in IAV-infected cells is associated with the degradation of the nucleoporin Nup153, an integral subunit of the nuclear pore complex. Transmission electron microscopy studies revealed a distinct enlargement of nuclear pores in IAV-infected cells. Transient expression and subcellular accumulation studies of multimeric marker proteins in virus-infected cells provided additional evidence for increased nuclear pore diameters facilitating the translocation of large protein complexes across the nuclear membrane. Furthermore, caspase 3/7 inhibition data obtained in this study suggest that active, Crm1-dependent IAV RNP export mechanisms are increasingly complemented by passive, caspase-induced export mechanisms at later stages of infection. IMPORTANCE In contrast to the process seen with most other RNA viruses, influenza virus genome replication occurs in the nucleus (rather than the cytoplasm) of infected cells. Therefore, completion of the viral replication cycle critically depends on intracellular transport mechanisms that ensure the translocation of viral ribonucleoprotein (RNP) complexes across the nuclear membrane. Here, we demonstrate that virus-induced cellular caspase activities cause a widening of nuclear pores, thereby facilitating nucleocytoplasmic translocation processes and, possibly, promoting nuclear export of newly synthesized RNPs. These passive transport mechanisms are suggested to complement Crm1-dependent RNP export mechanisms known to occur at early stages of the replication cycle and may contribute to highly efficient production of infectious virus progeny at late stages of the viral

  18. The human papillomavirus (HPV) E6 oncoproteins promotes nuclear localization of active caspase 8

    SciTech Connect

    Manzo-Merino, Joaquin; Lizano, Marcela

    2014-02-15

    The HPV-16 E6 and E6{sup ⁎} proteins have been shown previously to be capable of regulating caspase 8 activity. We now show that the capacity of E6 to interact with caspase 8 is common to diverse HPV types, being also seen with HPV-11 E6, HPV-18 E6 and HPV-18 E6{sup ⁎}. Unlike most E6-interacting partners, caspase 8 does not appear to be a major proteasomal target of E6, but instead E6 appears able to stimulate caspase 8 activation, without affecting the overall apoptotic activity. This would appear to be mediated in part by the ability of the HPV E6 oncoproteins to recruit active caspase 8 to the nucleus. - Highlights: • Multiple HPV E6 oncoproteins interact with the caspase 8 DED domain. • HPV E6 stimulates activation of caspase 8. • HPV E6 promotes nuclear accumulation of caspase 8.

  19. Caspase-2 is involved in cell death induction by taxanes in breast cancer cells

    PubMed Central

    2013-01-01

    Background We studied the role of caspase-2 in apoptosis induction by taxanes (paclitaxel, novel taxane SB-T-1216) in breast cancer cells using SK-BR-3 (nonfunctional p53, functional caspase-3) and MCF-7 (functional p53, nonfunctional caspase-3) cell lines. Results Both taxanes induced apoptosis in SK-BR-3 as well as MCF-7 cells. Caspase-2 activity in SK-BR-3 cells increased approximately 15-fold within 48 h after the application of both taxanes at the death-inducing concentration (100 nM). In MCF-7 cells, caspase-2 activity increased approximately 11-fold within 60 h after the application of taxanes (300 nM). Caspase-2 activation was confirmed by decreasing levels of procaspase-2, increasing levels of cleaved caspase-2 and the cleavage of caspase-2 substrate golgin-160. The inhibition of caspase-2 expression using siRNA increased the number of surviving cells more than 2-fold in MCF-7 cells, and at least 4-fold in SK-BR-3 cells, 96 h after the application of death-inducing concentration of taxanes. The inhibition of caspase-2 expression also resulted in decreased cleavage of initiator caspases (caspase-8, caspase-9) as well as executioner caspases (caspase-3, caspase-7) in both cell lines after the application of taxanes. In control cells, caspase-2 seemed to be mainly localized in the nucleus. After the application of taxanes, it was released from the nucleus to the cytosol, due to the long-term disintegration of the nuclear envelope, in both cell lines. Taxane application led to some formation of PIDDosome complex in both cell lines within 24 h after the application. After taxane application, p21WAF1/CIP1 expression was only induced in MCF-7 cells with functional p53. However, taxane application did not result in a significant increase of PIDD expression in either SK-BR-3 or MCF-7 cells. The inhibition of RAIDD expression using siRNA did not affect the number of surviving SK-BR-3 and MCF-7 cells after taxane application at all. Conclusion Caspase-2 is

  20. Hypoxia Affects Neprilysin Expression Through Caspase Activation and an APP Intracellular Domain-dependent Mechanism.

    PubMed

    Kerridge, Caroline; Kozlova, Daria I; Nalivaeva, Natalia N; Turner, Anthony J

    2015-01-01

    While gene mutations in the amyloid precursor protein (APP) and the presenilins lead to an accumulation of the amyloid β-peptide (Aβ) in the brain causing neurodegeneration and familial Alzheimer's disease (AD), over 95% of all AD cases are sporadic. Despite the pathologies being indistinguishable, relatively little is known about the mechanisms affecting generation of Aβ in the sporadic cases. Vascular disorders such as ischaemia and stroke are well established risk factors for the development of neurodegenerative diseases and systemic hypoxic episodes have been shown to increase Aβ production and accumulation. We have previously shown that hypoxia causes a significant decrease in the expression of the major Aβ-degrading enzyme neprilysin (NEP) which might deregulate Aβ clearance. Aβ itself is derived from the transmembrane APP along with several other biologically active metabolites including the C-terminal fragment (CTF) termed the APP intracellular domain (AICD), which regulates the expression of NEP and some other genes in neuronal cells. Here we show that in hypoxia there is a significantly increased expression of caspase-3, 8, and 9 in human neuroblastoma NB7 cells, which can degrade AICD. Using chromatin immunoprecipitation we have revealed that there was also a reduction of AICD bound to the NEP promoter region which underlies the decreased expression and activity of the enzyme under hypoxic conditions. Incubation of the cells with a caspase-3 inhibitor Z-DEVD-FMK could rescue the effect of hypoxia on NEP activity protecting the levels of AICD capable of binding the NEP promoter. These data suggest that activation of caspases might play an important role in regulation of NEP levels in the brain under pathological conditions such as hypoxia and ischaemia leading to a deficit of Aβ clearance and increasing the risk of development of AD.

  1. Hypoxia Affects Neprilysin Expression Through Caspase Activation and an APP Intracellular Domain-dependent Mechanism

    PubMed Central

    Kerridge, Caroline; Kozlova, Daria I.; Nalivaeva, Natalia N.; Turner, Anthony J.

    2015-01-01

    While gene mutations in the amyloid precursor protein (APP) and the presenilins lead to an accumulation of the amyloid β-peptide (Aβ) in the brain causing neurodegeneration and familial Alzheimer's disease (AD), over 95% of all AD cases are sporadic. Despite the pathologies being indistinguishable, relatively little is known about the mechanisms affecting generation of Aβ in the sporadic cases. Vascular disorders such as ischaemia and stroke are well established risk factors for the development of neurodegenerative diseases and systemic hypoxic episodes have been shown to increase Aβ production and accumulation. We have previously shown that hypoxia causes a significant decrease in the expression of the major Aβ-degrading enzyme neprilysin (NEP) which might deregulate Aβ clearance. Aβ itself is derived from the transmembrane APP along with several other biologically active metabolites including the C-terminal fragment (CTF) termed the APP intracellular domain (AICD), which regulates the expression of NEP and some other genes in neuronal cells. Here we show that in hypoxia there is a significantly increased expression of caspase-3, 8, and 9 in human neuroblastoma NB7 cells, which can degrade AICD. Using chromatin immunoprecipitation we have revealed that there was also a reduction of AICD bound to the NEP promoter region which underlies the decreased expression and activity of the enzyme under hypoxic conditions. Incubation of the cells with a caspase-3 inhibitor Z-DEVD-FMK could rescue the effect of hypoxia on NEP activity protecting the levels of AICD capable of binding the NEP promoter. These data suggest that activation of caspases might play an important role in regulation of NEP levels in the brain under pathological conditions such as hypoxia and ischaemia leading to a deficit of Aβ clearance and increasing the risk of development of AD. PMID:26617481

  2. Mitochondria mediates caspase-dependent and independent retinal cell death in Staphylococcus aureus endophthalmitis

    PubMed Central

    Singh, P K; Kumar, A

    2016-01-01

    Bacterial endophthalmitis, a vision-threatening complication of ocular surgery or trauma, is characterized by increased intraocular inflammation and retinal tissue damage. Although significant vision loss in endophthalmitis has been linked to retinal cell death, the underlying mechanisms of cell death remain elusive. In this study, using a mouse model of Staphylococcus aureus endophthalmitis and cultured human retinal Müller glia (MIO-M1 cell line), we demonstrate that S. aureus caused significant apoptotic cell death in the mouse retina and Müller glia, as evidenced by increased number of terminal dUTP nick end labeling and Annexin V and propidium iodide-positive cells. Immunohistochemistry and western blot studies revealed the reduction in mitochondrial membrane potential (JC-1 staining), release of cytochrome c into the cytosol, translocation of Bax to the mitochondria and the activation of caspase-9 and -3 in S. aureus-infected retina/retinal cells. In addition, the activation of PARP-1 and the release of apoptosis inducing factor from mitochondria was also observed in S. aureus-infected retinal cells. Inhibition studies using pan-caspase (Q-VD-OPH) and PARP-1 (DPQ) inhibitors showed significant reduction in S. aureus-induced retinal cell death both in vivo and in vitro. Together, our findings demonstrate that in bacterial endophthalmitis, retinal cells undergo apoptosis in the both caspase-dependent and independent manners, and mitochondria have a central role in this process. Hence, targeting the identified signaling pathways may provide the rationale to design therapeutic interventions to prevent bystander retinal tissue damage in bacterial endophthalmitis. PMID:27551524

  3. Sine Oculis Homeobox Homolog 1 Regulates Mitochondrial Apoptosis Pathway Via Caspase-7 In Gastric Cancer Cells

    PubMed Central

    Du, Peizhun; Zhao, Jing; Wang, Jing; Liu, Yongchao; Ren, Hong; Patel, Rajan; Hu, Cheng'en; Zhang, Wenhong; Huang, Guangjian

    2017-01-01

    Sine oculis homeobox homolog 1 (Six1) is crucial in normal organ development. Recently, Six1 is reported to display aberrant expression in various cancers and plays important roles in cancer development. However, the regulatory mechanism of Six1 in gastric cancer is largely unknown. In the current study, we found that Six1 was increased in gastric cancer tissues, and its upregulation significantly associated with lymph node metastasis (p=0.042) and poor differentiation (p=0.039). Next, we took advantage of public available microarray data to assess Six1 prognostic value with online K-M Plotter software in gastric cancer, which demonstrated that patients with higher Six1 expression had shorter survival time (p=0.02). To explore the underlying mechanism of Six1, we silenced its upregulation in gastric cells to detect cellular functions. Our results indicated that knock-down Six1 could decrease colony formation number and rendered cells sensitive to 5- Fluorouracil drug treatment. The flow cytometry analyses showed that Six1 silence could promote apoptosis but had little effect on cell cycle transition. Along this clue, we tested mitochondrial membrane potential with JC-1 assay, which suggested that Six1 inhibition could trigger mitochondrial apoptosis. Our subsequent results revealed that Six1 knock-down could reduce the level of anti-apoptotic protein Bcl-2, and caspase-7 but not caspase-3 was involved to execute the mitochondrial apoptosis pathway. Taken together, we find Six1 has oncogenic role in gastric cancer development, and silenced Six1 expression can promote mitochondrial apoptosis by repressing Bcl-2 and activating executor caspase-7. These findings suggest that Six1 may become a valuable prognostic and therapeutic target in gastric cancer. PMID:28367243

  4. Implication of caspases and subcellular compartments in tert-butylhydroperoxide induced apoptosis.

    PubMed

    Haidara, Khadidja; Marion, Michel; Gascon-Barré, Marielle; Denizeau, Francine; Averill-Bates, Diana A

    2008-05-15

    Oxidative stress has been implicated in many physiopathologies including neurodegenerative diseases, cancer, cardiovascular and respiratory diseases, and in mechanisms of action of environmental toxicants. tert-butylhydroperoxide (t-BHP) is an organic lipid hydroperoxide analogue, which is commonly used as a pro-oxidant for evaluating mechanisms involving oxidative stress in cells and tissues. This study investigates mechanisms of apoptosis induced by oxidative stress in hepatocytes, in particular, the involvement of caspases and subcellular compartments. Freshly isolated hepatocytes were exposed to 0.4 mM t-BHP during 1 h. A general caspase inhibitor, Boc-D-FMK, reduced t-BHP-induced apoptosis (chromatin condensation), confirming the involvement of caspases in apoptosis. A caspase-9 inhibitor, Z-LEHD-FMK, also reduced t-BHP-induced apoptosis, suggesting that caspase-9 plays a critical role in this process. Procaspase-9 underwent cleavage in mitochondria and translocation to the nucleus, where increased caspase-9 activity was detected. The caspase-9 substrates, caspase-3 and caspase-7, were not activated. Caspase-7 was translocated from the cytosol to the endoplasmic reticulum (ER), where it underwent processing; however, enzymatic activity of caspase-7 was inhibited by t-BHP. t-BHP caused cleavage of procaspase-12 at the ER and its subsequent translocation to the nucleus, where increased caspase-12 activity was found. t-BHP caused translocation of calpain from the cytosol to the ER. Calpain inhibition reduced chromatin condensation and caspase-12 activity in the nucleus, suggesting that calpain is involved in caspase-12 activation and apoptosis. This study demonstrates that caspase-9 and caspase-12 are activated in t-BHP-induced apoptosis in hepatocytes. We highlight the importance of subcellular compartments such as mitochondria, ER and nuclei in the apoptotic process.

  5. Implication of caspases and subcellular compartments in tert-butylhydroperoxide induced apoptosis

    SciTech Connect

    Haidara, Khadidja; Marion, Michel; Gascon-Barre, Marielle; Denizeau, Francine; Averill-Bates, Diana A.

    2008-05-15

    Oxidative stress has been implicated in many physiopathologies including neurodegenerative diseases, cancer, cardiovascular and respiratory diseases, and in mechanisms of action of environmental toxicants. tert-butylhydroperoxide (t-BHP) is an organic lipid hydroperoxide analogue, which is commonly used as a pro-oxidant for evaluating mechanisms involving oxidative stress in cells and tissues. This study investigates mechanisms of apoptosis induced by oxidative stress in hepatocytes, in particular, the involvement of caspases and subcellular compartments. Freshly isolated hepatocytes were exposed to 0.4 mM t-BHP during 1 h. A general caspase inhibitor, Boc-D-FMK, reduced t-BHP-induced apoptosis (chromatin condensation), confirming the involvement of caspases in apoptosis. A caspase-9 inhibitor, Z-LEHD-FMK, also reduced t-BHP-induced apoptosis, suggesting that caspase-9 plays a critical role in this process. Procaspase-9 underwent cleavage in mitochondria and translocation to the nucleus, where increased caspase-9 activity was detected. The caspase-9 substrates, caspase-3 and caspase-7, were not activated. Caspase-7 was translocated from the cytosol to the endoplasmic reticulum (ER), where it underwent processing; however, enzymatic activity of caspase-7 was inhibited by t-BHP. t-BHP caused cleavage of procaspase-12 at the ER and its subsequent translocation to the nucleus, where increased caspase-12 activity was found. t-BHP caused translocation of calpain from the cytosol to the ER. Calpain inhibition reduced chromatin condensation and caspase-12 activity in the nucleus, suggesting that calpain is involved in caspase-12 activation and apoptosis. This study demonstrates that caspase-9 and caspase-12 are activated in t-BHP-induced apoptosis in hepatocytes. We highlight the importance of subcellular compartments such as mitochondria, ER and nuclei in the apoptotic process.

  6. SRSF1 (SRp30a) regulates the alternative splicing of caspase 9 via a novel intronic splicing enhancer affecting the chemotherapeutic sensitivity of non-small cell lung cancer cells

    PubMed Central

    Shultz, Jacqueline C.; Goehe, Rachel W.; Murudkar, Charuta S.; Wijesinghe, Dayanjan S.; Mayton, Eric K.; Massiello, Autumn; Hawkins, Amy J.; Mukerjee, Prabhat; Pinkerman, Ryan L.; Park, Margaret A.; Chalfant, Charles E.

    2011-01-01

    Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology with the alternative pre-mRNA processing of caspase 9 as one example. In this study, we delve into the underlying molecular mechanisms that regulate the alternative splicing of caspase 9. Specifically, the pre-mRNA sequence of caspase 9 was analyzed for RNA cis-elements known to interact with SRSF1, a required enhancer for caspase 9 RNA splicing. This analysis revealed thirteen possible RNA cis-elements for interaction with SRSF1 with mutagenesis of these RNA cis-elements identifying a strong intronic splicing enhancer located in intron 6 (C9-I6/ISE). SRSF1 specifically interacted with this sequence, which was required for SRSF1 to act as a splicing enhancer of the inclusion of the four exon cassette. To further determine the biological importance of this mechanism, we employed RNA oligonucleotides to redirect caspase 9 pre-mRNA splicing in favor of caspase 9b expression, which resulted in an increase in the IC50 of non-small cell lung cancer (NSCLC) cells to daunorubicin, cisplatinum, and paclitaxel. In contrast, downregulation of caspase 9b induced a decrease in the the IC50 of these chemotherapeutic drugs. Lastly, these studies demonstrated that caspase 9 RNA splicing was a major mechanism for the synergistic effects of combination therapy with daunorubicin and erlotinib. Overall, we have identified a novel intronic splicing enhancer that regulates caspase 9 RNA splicing and specifically interacts with SRSF1. Furthermore, we demonstrate that the alternative splicing of caspase 9 is an important molecular mechanism with therapeutic relevance to NSCLCs. PMID:21622622

  7. The interaction between the light source dose and caspase-dependent and -independent apoptosis in human SK-MEL-3 skin cancer cells following photodynamic therapy with zinc phthalocyanine: A comparative study.

    PubMed

    Doustvandi, Mohammad Amin; Mohammadnejad, Fateme; Mansoori, Behzad; Mohammadi, Ali; Navaeipour, Farzaneh; Baradaran, Behzad; Tajalli, Habib

    2017-09-22

    The aim of this study is to determine the behavior of relative expression of Bcl-2, caspase-8, caspase-9, and caspase-3 genes of/in SK-MEL-3 cancer cells and explore molecular mechanisms responsible for the apoptosis response during an in vitro photodynamic therapy (PDT) with Zinc Phthalocyanine (ZnPc) using different doses of the light source. In this study, firstly the cytotoxic effects of ZnPc-PDT on SK-MEL-3 cells were evaluated. By irradiating the laser, ZnPc induced a significant amount of apoptosis on SK-MEL-3 cells in three IC50s including 0.064±0.01, 0.043±0.01, and 0.036±0.01μg/mL at the doses of 8, 16, and 24J/cm(2), respectively. Moreover, flow cytometry and QRT-PCR experiments were done. The high percentage of apoptotic cells was seen in the early apoptosis stage. The expression of Bcl-2 and caspase-8 genes at all doses of laser experienced an obvious reduction in comparison to the control group. On the other hand, although the expression of caspase-9 and caspase-3 genes remains almost constant at 8J/cm(2), but they faced an increment at 16 and 24J/cm(2) doses. These data reveal caspase-dependent apoptosis in high and caspase-independent apoptosis in low doses of laser. Based on the results of present work, it can be suggested that the dose of the light source is a key factor in induction of caspase-dependent and caspase-independent apoptosis pathways following PDT. Copyright © 2017. Published by Elsevier B.V.

  8. Activation of caspase-3 in HL-60 cells treated with pyrithione and zinc.

    PubMed

    Kondoh, Masuo; Tasaki, Emi; Takiguchi, Masufumi; Higashimoto, Minoru; Watanabe, Yoshiteru; Sato, Masao

    2005-04-01

    The transition metal zinc (Zn) is an endogenous regulator of apoptosis. The ability of Zn to modulate apoptosis is believed to be mediated by the regulation of caspase activity. Previously, we reported that an acute influx of labile Zn induced apoptosis via activation of caspase in human leukemia HL-60 cells treated with a Zn ionophore (Py, pyrithione) and Zn at 1 and 25 microM, respectively. In the present study, we investigated the involvement of caspase-3 in Py (1 microM)/Zn (25 microM)-induced apoptosis in HL-60 cells. Pro-caspase-3 is an inactive form of caspase-3. The processing of pro-caspase-3, a sign of caspase-3 activation, occurred 6 h after treatment with Py/Zn. Proteolysis of poly (ADP-ribose) polymerase (PARP), a substrate of caspase-3, was also observed 6 h after treatment with Py/Zn. We also confirmed the elevation of caspase-3 activity as an index of the cleavage of amino acid sequences recognized by activated caspase-3. An inhibitor of caspase-3 attenuated the appearance of the DNA ladder. Taken together, these results indicate that the activation of caspase-3 is partly responsible for the induction of apoptosis in Py/Zn-treated HL-60 cells.

  9. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization.

    PubMed

    Akhter, Anwari; Caution, Kyle; Abu Khweek, Arwa; Tazi, Mia; Abdulrahman, Basant A; Abdelaziz, Dalia H A; Voss, Oliver H; Doseff, Andrea I; Hassan, Hoda; Azad, Abul K; Schlesinger, Larry S; Wewers, Mark D; Gavrilin, Mikhail A; Amer, Amal O

    2012-07-27

    Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo.

  10. Caspase-1 but Not Caspase-11 Is Required for NLRC4-Mediated Pyroptosis and Restriction of Infection by Flagellated Legionella Species in Mouse Macrophages and In Vivo.

    PubMed

    Cerqueira, Daiane M; Pereira, Marcelo S F; Silva, Alexandre L N; Cunha, Larissa D; Zamboni, Dario S

    2015-09-01

    Gram-negative bacteria from the Legionella genus are intracellular pathogens that cause a severe form of pneumonia called Legionnaires' disease. The bacteria replicate intracellularly in macrophages, and the restriction of bacterial replication by these cells is critical for host resistance. The activation of the NAIP5/NLRC4 inflammasome, which is readily triggered in response to bacterial flagellin, is essential for the restriction of bacterial replication in murine macrophages. Once activated, this inflammasome induces pore formation and pyroptosis and facilitates the restriction of bacterial replication in macrophages. Because investigations related to the NLRC4-mediated restriction of Legionella replication were performed using mice double deficient for caspase-1 and caspase-11, we assessed the participation of caspase-1 and caspase-11 in the functions of the NLRC4 inflammasome and the restriction of Legionella replication in macrophages and in vivo. By using several species of Legionella and mice singly deficient for caspase-1 or caspase-11, we demonstrated that caspase-1 but not caspase-11 was required for pore formation, pyroptosis, and restriction of Legionella replication in macrophages and in vivo. By generating F1 mice in a mixed 129 × C57BL/6 background deficient (129 × Casp-11(-/-) ) or sufficient (129 × C57BL/6) for caspase-11 expression, we found that caspase-11 was dispensable for the restriction of Legionella pneumophila replication in macrophages and in vivo. Thus, although caspase-11 participates in flagellin-independent noncanonical activation of the NLRP3 inflammasome, it is dispensable for the activities of the NLRC4 inflammasome. In contrast, functional caspase-1 is necessary and sufficient to trigger flagellin/NLRC4-mediated restriction of Legionella spp. infection in macrophages and in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  11. Kanamycin activates caspase-1 in NC/Nga mice.

    PubMed

    Han, Na-Ra; Kim, Hyung-Min; Jeong, Hyun-Ja

    2011-08-01

    Abuse of antibiotics to treat children has been associated with an increased risk of the development of inflammatory diseases. The underlying mechanism behind this association still remains to be clarified. Here, we examined the mechanisms behind kanamycin-induced skin inflammation in NC/Nga mice. NC/Nga mice were orally administered kanamycin for 7 days consecutively. Blood, spleen and dorsal skin were taken 18 weeks after kanamycin treatment was stopped. Kanamycin significantly increased the allergic reaction. We also observed significant increases in caspase-1 mRNA and protein expression in the dorsal skin of the kanamycin-administered mice compared to the control mice. The increased enzymatic activity of caspase-1 in the dorsal skin of the kanamycin-administered mice increased the mRNA expressions of IL-1β and IL-18. The productions of IL-1β and IL-18 were also increased in the splenocytes obtained from kanamycin-administered mice. Kanamycin upregulated the TNF-α mRNA expression in the dorsal skin and the TNF-α production in stimulated splenocytes. The activation of nuclear factor-κB and degradation of IκBα were increased by kanamycin administration. Our findings suggest that the use of kanamycin during infancy may increase the potential for skin inflammatory reactions through the upregulation of caspase-1.

  12. Caspase-2 cleavage of tau reversibly impairs memory.

    PubMed

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  13. Intracellular water motion decreases in apoptotic macrophages after caspase activation.

    PubMed

    Hortelano, S; García-Martín, M L; Cerdán, S; Castrillo, A; Alvarez, A M; Boscá, L

    2001-10-01

    Triggering of the macrophage cell line RAW 264.7 with lipopolysaccharide and interferon-gamma promoted apoptosis that was prevented by inhibitors of type 2 nitric oxide synthase or caspase. Using (1)H NMR analysis, we have investigated the changes of the intracellular transverse relaxation time (T(2)) and apparent diffusion coefficient (ADC) as parameters reflecting the rotational and translational motions of water in apoptotic macrophages. T(2) values decreased significantly from 287 to 182 ms in cells treated for 18 h with NO-donors. These changes of T(2) were prevented by caspase inhibitors and were not due to mitochondrial depolarization or microtubule depolymerization. The decrease of the intracellular values of T(2) and ADC in apoptotic macrophages was observed after caspase activation, but preceded phosphatidylserine exposure and nucleosomal DNA cleavage. The changes of water motion were accompanied by an enhancement of the hydrophobic properties of the intracellular milieu, as detected by fluorescent probes. These results indicate the occurrence of an alteration in the physicochemical properties of intracellular water during the course of apoptosis.

  14. Structural analysis of caspase-1 inhibitors derived from Tethering1

    PubMed Central

    O’Brien, Tom; Fahr, Bruce T.; Sopko, Michelle M.; Lam, Joni W.; Waal, Nathan D.; Raimundo, Brian C.; Purkey, Hans E.; Pham, Phuongly; Romanowski, Michael J.

    2005-01-01

    Caspase-1 is a key endopeptidase responsible for the post-translational processing of the IL-1β and IL-18 cytokines and small-molecule inhibitors that modulate the activity of this enzyme are predicted to be important therapeutic treatments for many inflammatory diseases. A fragment-assembly approach, accompanied by structural analysis, was employed to generate caspase-1 inhibitors. With the aid of Tethering® with extenders (small molecules that bind to the active-site cysteine and contain a free thiol), two novel fragments that bound to the active site and made a disulfide bond with the extender were identified by mass spectrometry. Direct linking of each fragment to the extender generated submicromolar reversible inhibitors that significantly reduced secretion of IL-1β but not IL-6 from human peripheral blood mononuclear cells. Thus, Tethering with extenders facilitated rapid identification and synthesis of caspase-1 inhibitors with cell-based activity and subsequent structural analyses provided insights into the enzyme’s ability to accommodate different inhibitor-binding modes in the active site. PMID:16511067

  15. Cleavage of the Bloom’s syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIα

    PubMed Central

    Freire, Raimundo; d’Adda di Fagagna, Fabrizio; Wu, Leonard; Pedrazzi, Graziella; Stagljar, Igor; Hickson, Ian D.; Jackson, Stephen P.

    2001-01-01

    In higher eukaryotes, the integration of signals triggered in response to certain types of stress can result in programmed cell death. Central to these events is the sequential activation of a cascade of proteinases known as caspases. The final activated effector caspases of this cascade digest a number of cellular proteins, in some cases increasing their enzymatic activity, in others destroying their function. Of the proteins shown to be targets for caspase-mediated proteolysis, a surprisingly large proportion are proteins involved in the signalling or repair of DNA damage. Here we investigate whether BLM, the product of the gene mutated in Bloom’s syndrome, a human autosomal disease characterised by cancer predisposition and sunlight sensitivity, is cleaved during apoptosis. BLM interacts with topoisomerase IIIα and has been proposed to play an important role in maintaining genomic integrity through its roles in DNA repair and replication. We show that BLM is cleaved during apoptosis by caspase-3 and reveal that the main cleavage site is located at the junction between the N-terminal and central helicase domains of BLM. Proteolytic cleavage by caspase-3 produces a 120 kDa fragment, which contains the intact helicase domain and three smaller fragments, the relative amounts of which depend on time of incubation with caspase-3. The 120 kDa fragment retains the helicase activity of the intact BLM protein. However, its interaction with topoisomerase IIIα is severely impaired. Since the BLM–topoisomerase interaction is believed to be necessary for many of the replication and recombination functions of BLM, we suggest that caspase-3 cleavage of BLM could alter the localisation and/or function of BLM and that these changes may be important in the process of apoptosis. PMID:11470874

  16. ASC Induces Apoptosis via Activation of Caspase-9 by Enhancing Gap Junction-Mediated Intercellular Communication

    PubMed Central

    Hida, Shigeaki; Fujii, Chifumi; Taniguchi, Shun’ichiro; Ito, Kensuke; Matsumura, Tomio; Okada, Nagisa; Sakaizawa, Takashi; Kobayashi, Akira; Takeoka, Michiko; Miyagawa, Shin-ichi

    2017-01-01

    ASC (apoptosis-associated speck-like protein containing a CARD) is a key adaptor molecule of inflammasomes that mediates inflammatory and apoptotic signals. Aberrant methylation-induced silencing of ASC has been observed in a variety of cancer cells, thus implicating ASC in tumor suppression, although this role remains incompletely defined especially in the context of closely neighboring cell proliferation. As ASC has been confirmed to be silenced by abnormal methylation in HT1080 fibrosarcoma cells as well, this cell line was investigated to characterize the precise role and mechanism of ASC in tumor progression. The effects of ASC were examined using in vitro cell cultures based on comparisons between low and high cell density conditions as well as in a xenograft murine model. ASC overexpression was established by insertion of the ASC gene into pcDNA3 and pMX-IRES-GFP vectors, the latter being packed into a retrovirus and subjected to reproducible competitive assays using parental cells as an internal control, for evaluation of cell viability. p21 and p53 were silenced using shRNA. Cell viability was suppressed in ASC-expressing transfectants as compared with control cells at high cell density conditions in in vitro culture and colony formation assays and in in vivo ectopic tumor formation trials. This suppression was not detected in low cell density conditions. Furthermore, remarkable progression of apoptosis was observed in ASC-introduced cells at a high cell density, but not at a low one. ASC-dependent apoptosis was mediated not by p21, p53, or caspase-1, but rather by cleavage of caspase-9 as well as by suppression of the NF-κB-related X-linked inhibitor-of-apoptosis protein. Caspase-9 cleavage was observed to be dependent on gap junction formation. The remarkable effect of ASC on the induction of apoptosis through caspase-9 and gap junctions revealed in this study may lead to promising new approaches in anticancer therapy. PMID:28056049

  17. Possible involvement of caspase-6 and -7 but not caspase-3 in the regulation of hypoxia-induced apoptosis in tube-forming endothelial cells.

    PubMed

    Eguchi, Ryoji; Toné, Shigenobu; Suzuki, Akio; Fujimori, Yoshihiro; Nakano, Takashi; Kaji, Kazuhiko; Ohta, Toshiro

    2009-01-15

    We recently reported that a broad-spectrum caspase inhibitor zVAD-fmk failed, while p38 inhibitor SB203580 succeeded, to prevent chromatin condensation and nuclear fragmentation induced by hypoxia in tube-forming HUVECs. In this study, we investigated the reasons for zVAD-fmk's inability to inhibit these morphological changes at the molecular level. The inhibitor effectively inhibited DNA ladder formation and activation of caspase-3 and -6, but it surprisingly failed to inhibit caspase-7 activation. On the other hand, SB203580 successfully inhibited all of these molecular events. When zLEHD-fmk, which specifically inhibits initiator caspase-9 upstream of caspase-3, was used, it inhibited caspase-3 activation but failed to inhibit caspase-6 and -7 activation. It also failed to inhibit hypoxia-induced chromatin condensation, nuclear fragmentation and DNA ladder formation. Taken together, our results indicate that, during hypoxia, caspase-7 is responsible for chromatin condensation and nuclear fragmentation while caspase-6 is responsible for DNA ladder formation.

  18. Possible involvement of caspase-6 and -7 but not caspase-3 in the regulation of hypoxia-induced apoptosis in tube-forming endothelial cells

    SciTech Connect

    Eguchi, Ryoji; Tone, Shigenobu; Suzuki, Akio; Fujimori, Yoshihiro; Nakano, Takashi; Kaji, Kazuhiko; Ohta, Toshiro

    2009-01-15

    We recently reported that a broad-spectrum caspase inhibitor zVAD-fmk failed, while p38 inhibitor SB203580 succeeded, to prevent chromatin condensation and nuclear fragmentation induced by hypoxia in tube-forming HUVECs. In this study, we investigated the reasons for zVAD-fmk's inability to inhibit these morphological changes at the molecular level. The inhibitor effectively inhibited DNA ladder formation and activation of caspase-3 and -6, but it surprisingly failed to inhibit caspase-7 activation. On the other hand, SB203580 successfully inhibited all of these molecular events. When zLEHD-fmk, which specifically inhibits initiator caspase-9 upstream of caspase-3, was used, it inhibited caspase-3 activation but failed to inhibit caspase-6 and -7 activation. It also failed to inhibit hypoxia-induced chromatin condensation, nuclear fragmentation and DNA ladder formation. Taken together, our results indicate that, during hypoxia, caspase-7 is responsible for chromatin condensation and nuclear fragmentation while caspase-6 is responsible for DNA ladder formation.

  19. SfDronc, an initiator caspase involved in apoptosis in the fall armyworm Spodoptera frugiperda.

    PubMed

    Huang, Ning; Civciristov, Srgjan; Hawkins, Christine J; Clem, Rollie J

    2013-05-01

    Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Regulation of CED-3 caspase localization and activation by C. elegans nuclear membrane protein NPP-14

    PubMed Central

    Chen, Xudong; Wang, Yue; Chen, Yu-Zen; Harry, Brian L.; Nakagawa, Akihisa; Lee, Eui-Seung; Guo, Hongyan; Xue, Ding

    2017-01-01

    Caspases are cysteine proteases with critical roles in apoptosis. The Caenorhabditis elegans caspase CED-3 is activated by autocatalytic cleavage, a process enhanced by CED-4. Here we report that CED-3 zymogen localizes to the perinuclear region in C. elegans germ cells and that CED-3 autocatalytic cleavage is held in check by C. elegans nuclei and activated by CED-4. The nuclear pore protein NPP-14 interacts with the prodomain of CED-3 zymogen, colocalizes with CED-3 in vivo, and inhibits CED-3 autoactivation in vitro. Several missense mutations in the CED-3 prodomain result in stronger association with NPP-14 and reduced CED-3 activation by CED-4 in the presence of nuclei or NPP-14, leading to cell death defects. Those same mutations enhance autocatalytic cleavage of CED-3 in vitro and increase apoptosis in vivo in the absence of npp-14. Our results reveal a critical role for nuclei and nuclear membrane proteins in regulating activation and localization of CED-3. PMID:27723735

  1. O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway

    SciTech Connect

    Jiang, Kuan; Bai, Bingyang; Ta, Yajie; Zhang, Tingling; Xiao, Zikang; Wang, Peng George Zhang, Lianwen

    2016-03-18

    O-GlcNAc modification of cytosolic and nuclear proteins regulates essential cellular processes such as stress responses, transcription, translation, and protein degradation. Emerging evidence indicates O-GlcNAcylation has a dynamic interplay with ubiquitination in cellular regulation. Here, we report that O-GlcNAc indirectly targets a vital E3 ubiquitin ligase enzyme of NEDD4-1. The protein level of NEDD4-1 is accordingly decreased following an increase of overall O-GlcNAc level upon PUGNAc or glucosamine stimulation. O-GlcNAc transferase (OGT) knockdown, overexpression and mutation results confirm that the stability of NEDD4-1 is negatively regulated by cellular O-GlcNAc. Moreover, the NEDD4-1 degradation induced by PUGNAc or GlcN is significantly inhibited by the caspase inhibitor. Our study reveals a regulation mechanism of NEDD4-1 stability by O-GlcNAcylation. - Highlights: • Reduced NEDD4-1 correlates with increased overall O-GlcNAc level. • OGT negatively regulates NEDD4-1 stability. • O-GlcNAc regulates NEDD4-1 through caspase-mediated pathway.

  2. Interleukin 4 induces the apoptosis of mouse microglial cells by a caspase-dependent mechanism.

    PubMed

    Soria, Javier A; Arroyo, Daniela S; Gaviglio, Emilia A; Rodriguez-Galan, Maria C; Wang, Ji Ming; Iribarren, Pablo

    2011-09-01

    Microglial cells are resident macrophages in the central nervous system (CNS) and become activated in many pathological conditions. Activation of microglial cells results in reactive microgliosis, manifested by an increase in cell number in the affected CNS regions. The control of microgliosis may be important to prevent pathological damage to the brain. The type 2 cytokine IL-4 has been reported to be protective in brain inflammation. However, its effect on microglial cell survival was not well understood. In this study, we report a dual effect of IL-4 on the survival of mouse microglial cells. In a 6h short term culture, IL-4 reduced the death of microglial cells induced by staurosporine. In contrast, in long term treatment (more than 48h), IL-4 increased the apoptotic death of both primary mouse microglial cells and a microglial cell line N9. Mechanistic studies revealed that, in microglial cells, IL-4 increased the levels of cleaved caspase 3 and PARP, which is down-stream of activated caspase 3. In addition, IL-4 down regulated the autophagy and the antiapoptotic protein Bcl-xL in microglial cells. On the other hand, the pre-incubation of microglial cells with IL-4 for 24h, attenuated the cell death induced by the neurotoxic peptide amyloid beta 1-42 (Aβ42). Our observations demonstrate a novel function of IL-4 in regulating the survival of microglial cells, which may have important significance in reduction of undesired inflammatory responses in the CNS.

  3. Effects of vitamin C on pathology and caspase-3 activity of kidneys with subacute endosulfan toxicity.

    PubMed

    Ozmen, O; Mor, F

    2015-01-01

    Endosulfan is an insecticide that is composed of two stereoisomers: α- and β- endosulfan in an approximate ratio of 70:30. Owing to its widespread use, poisoning of both humans and animals is possible. We examined the toxic effects of endosulfan on New Zealand white rabbit kidneys. Rabbit kidneys were examined histopathologically and caspase-3 activity was detected using immunohistochemistry. Animals were divided into four groups: Group 1 was given a sublethal dose of endosulfan in corn oil by oral gavage daily for 6 weeks, Group 2 was given endosulfan + vitamin C during the same period, Group 3 was given corn oil daily and vitamin C on alternate days, Group 4 was given only corn oil daily throughout the experiment. By the end of experimental period, the concentration of α-endosulfan was greater than the β-endosulfan concentration in the kidneys of both of endosulfan treated groups (Groups 1 and 2). Decreased accumulation of α- and β-endosulfan was observed in Group 2, possibly because of the antioxidant effect of the vitamin C. Histopathological examination revealed hemorrhages, tubule cell necrosis, glomerular infiltration, glomerulosclerosis and proteinaceous material in the tubules, and Bowman spaces in the kidneys of Group 1. Caspase-3 reaction was stronger in Group 1 than in the other groups. Apoptotic activity was most frequent in proximal tubule cells. Endosulfan is toxic to rabbit kidneys. Vitamin C treatment reduced the accumulation of endosulfan in kidneys and reduced its toxicity.

  4. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    PubMed

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  5. Neodymium Oxide Induces Cytotoxicity and Activates NF-κB and Caspase-3 in NR8383 Cells.

    PubMed

    Huang, Li Hua; Yang, Hua; Su, Xin; Gao, Yan Rong; Xue, Hai Nan; Wang, Su Hua

    2017-01-01

    We investigated whether Nd2O3 treatment results in cytotoxicity and other underlying effects in rat NR8383 alveolar macrophages. Cell viability assessed by the MTT assay revealed that Nd2O3 was toxic in a dose-dependent manner, but not in a time-dependent manner. An ELISA analysis indicated that exposure to Nd2O3 caused cell damage and enhanced synthesis and release of inflammatory chemokines. A Western blot analysis showed that protein expression levels of caspase-3, nuclear factor-κB (NF-κB) and its inhibitor IκB increased significantly in response to Nd2O3 treatment. Both NF-κB and caspase-3 signaling were activated, suggesting that both pathways are involved in Nd2O3 cytotoxicity. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. Human, insect and nematode caspases kill Saccharomyces cerevisiae independently of YCA1 and Aif1p.

    PubMed

    Puryer, M A; Hawkins, C J

    2006-04-01

    This study characterised the impact of active metazoan apoptotic proteases (caspases) on Saccharomyces cerevisiae viability. Expression of active caspase-3 or caspase-8 in yeast ruptured plasma and nuclear membranes and dramatically impaired clonogenic survival, but did not damage DNA. Deletion of the proposed yeast apoptosis regulators YCA1 or Aif1p did not affect the ability of human, insect or nematode caspases to kill yeast. These data indicate that expression of active metazoan caspases causes irreversible damage to yeast membranes and organelles, in a manner independent of YCA1 and Aif1p.

  7. Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion

    PubMed Central

    Rudrapatna, Vivek A; Bangi, Erdem; Cagan, Ross L

    2013-01-01

    Tumours evolve several mechanisms to evade apoptosis, yet many resected carcinomas show significantly elevated caspase activity. Moreover, caspase activity is positively correlated with tumour aggression and adverse patient outcome. These observations indicate that caspases might have a functional role in promoting tumour invasion and metastasis. Using a Drosophila model of invasion, we show that precise effector caspase activity drives cell invasion without initiating apoptosis. Affected cells express the matrix metalloprotinase Mmp1 and invade by activating Jnk. Our results link Jnk and effector caspase signalling during the invasive process and suggest that tumours under apoptotic stresses from treatment, immune surveillance or intrinsic signals might be induced further along the metastatic cascade. PMID:23306653

  8. Caspase-10 Is the Key Initiator Caspase Involved in Tributyltin-Mediated Apoptosis in Human Immune Cells

    PubMed Central

    Krug, Harald F.

    2012-01-01

    Tributyltin (TBT) is one of the most toxic compounds produced by man and distributed in the environment. A multitude of toxic activities have been described, for example, immunotoxic, neurotoxic, and endocrine disruptive effects. Moreover, it has been shown for many cell types that they undergo apoptosis after treatment with TBT and the cell death of immune cells could be the molecular background of its immunotoxic effect. As low as 200 nM up to 1 μM of TBT induces all signs of apoptosis in Jurkat T cells within 1 to 24 hrs of treatment. When compared to Fas-ligand control stimulation, the same sequence of events occurs: membrane blebbing, phosphatidylserine externalisation, the activation of the “death-inducing signalling complex,” and the following sequence of cleavage processes. In genetically modified caspase-8-deficient Jurkat cells, the apoptotic effects are only slightly reduced, whereas, in FADD-negative Jurkat cells, the TBT effect is significantly diminished. We could show that caspase-10 is recruited by the TRAIL-R2 receptor and apoptosis is totally prevented when caspase-10 is specifically inhibited in all three cell lines. PMID:22287961

  9. Flavonoids induce apoptosis in human leukemia U937 cells through caspase- and caspase-calpain-dependent pathways.

    PubMed

    Monasterio, Alberto; Urdaci, María C; Pinchuk, Irina V; López-Moratalla, Natalia; Martínez-Irujo, Juan J

    2004-01-01

    Flavonoids are polyphenolic phytochemicals that are ubiquitous in plants and present in the common human diet. They may exert diverse beneficial effects, including antioxidant and anticarcinogenic activities. In this study we tested the apoptotic activity of 22 flavonoids and related compounds in leukemic U937 cells. Several flavones but none of the isoflavones or flavanones tested induced apoptotic cell death under these conditions, as determined by reduction in cell viability, flow cytometry, and oligonucleosomal DNA fragmentation. Structure-activity relationship showed that at least two hydroxylations in positions 3, 5, and 7 of the A ring were needed to induce apoptosis, whereas hydroxylation in 3' and/or 4' of the B ring enhanced proapoptotic activity. At lower concentrations, these compounds were also able to sensitize these cells to apoptosis induced by tumor necrosis factor-alpha. Regarding the mechanisms, galangin, luteolin, chrysin, and quercetin induced apoptosis in a way that required the activation of caspases 3 and 8, but not caspase 9. In contrast, an active role of calpains in addition to caspases was demonstrated in apoptosis induced by fisetin, apigenin, and 3,7-dihydroxyflavone. Our data show evidence of the proapoptotic properties of some flavonoids that could support their rational use as chemopreventive and therapeutic agents against carcinogenic disease.

  10. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway.

    PubMed

    Marques, Celio A; Keil, Uta; Bonert, Astrid; Steiner, Barbara; Haass, Christian; Muller, Walter E; Eckert, Anne

    2003-07-25

    Autosomal dominant forms of familial Alzheimer's disease (FAD) are caused by mutations of the amyloid precursor protein (APP) gene and by mutations of the genes encoding for presenilin 1 or presenilin 2. Simultaneously, evidence is provided that increased oxidative stress might play a crucial role in the rapid progression of the Swedish FAD. Here we investigated the effect of the Swedish double mutation (K670M/N671L) in the beta-amyloid precursor protein on oxidative stress-induced cell death mechanisms in PC12 cells. Western blot analysis and cleavage studies of caspase substrates revealed an elevated activity of the executor caspase 3 after treatment with hydrogen peroxide in cells containing the Swedish APP mutation. This elevated activity is the result of the enhanced activation of both intrinsic and extrinsic apoptosis pathways, including activation of caspase 2 and caspase 8. Furthermore, we observed an enhanced activation of JNK pathway and an attenuation of apoptosis by SP600125, a JNK inhibitor, through protection of mitochondrial dysfunction and reduction of caspase 9 activity. Our findings provide evidence that the massive neurodegeneration in early age of FAD patients could be a result of an increased vulnerability of neurons through activation of different apoptotic pathways as a consequence of elevated levels of oxidative stress.

  11. Structural basis for executioner caspase recognition of P5 position in substrates

    SciTech Connect

    Fu, G.; Chumanevich, A.A.; Agniswamy, J.; Fang, B.; Harrison, R.W.; Weber, I.T.

    2008-11-03

    Caspase-3, -6 and -7 cleave many proteins at specific sites to induce apoptosis. Their recognition of the P5 position in substrates has been investigated by kinetics, modeling and crystallography. Caspase-3 and -6 recognize P5 in pentapeptides as shown by enzyme activity data and interactions observed in the crystal structure of caspase-3/LDESD and in a model for caspase-6. In caspase-3 the P5 main-chain was anchored by interactions with Ser209 in loop-3 and the P5 Leu side-chain interacted with Phe250 and Phe252 in loop-4 consistent with 50% increased hydrolysis of LDEVD relative to DEVD. Caspase-6 formed similar interactions and showed a preference for polar P5 in QDEVD likely due to interactions with polar Lys265 and hydrophobic Phe263 in loop-4. Caspase-7 exhibited no preference for P5 residue in agreement with the absence of P5 interactions in the caspase-7/LDESD crystal structure. Initiator caspase-8, with Pro in the P5-anchoring position and no loop-4, had only 20% activity on tested pentapeptides relative to DEVD. Therefore, caspases-3 and -6 bind P5 using critical loop-3 anchoring Ser/Thr and loop-4 side-chain interactions, while caspase-7 and -8 lack P5-binding residues.

  12. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens

    PubMed Central

    Casson, Cierra N.; Yu, Janet; Reyes, Valeria M.; Taschuk, Frances O.; Yadav, Anjana; Copenhaver, Alan M.; Nguyen, Hieu T.; Collman, Ronald G.; Shin, Sunny

    2015-01-01

    Inflammasomes are critical for host defense against bacterial pathogens. In murine macrophages infected by gram-negative bacteria, the canonical inflammasome activates caspase-1 to mediate pyroptotic cell death and release of IL-1 family cytokines. Additionally, a noncanonical inflammasome controlled by caspase-11 induces cell death and IL-1 release. However, humans do not encode caspase-11. Instead, humans encode two putative orthologs: caspase-4 and caspase-5. Whether either ortholog functions similar to caspase-11 is poorly defined. Therefore, we sought to define the inflammatory caspases in primary human macrophages that regulate inflammasome responses to gram-negative bacteria. We find that human macrophages activate inflammasomes specifically in response to diverse gram-negative bacterial pathogens that introduce bacterial products into the host cytosol using specialized secretion systems. In primary human macrophages, IL-1β secretion requires the caspase-1 inflammasome, whereas IL-1α release and cell death are caspase-1–independent. Instead, caspase-4 mediates IL-1α release and cell death. Our findings implicate human caspase-4 as a critical regulator of noncanonical inflammasome activation that initiates defense against bacterial pathogens in primary human macrophages. PMID:25964352

  13. Dangerous Liaisons: Caspase-11 and Reactive Oxygen Species Crosstalk in Pathogen Elimination

    PubMed Central

    Roberts, JoAnn Simone; Yilmaz, Ӧzlem

    2015-01-01

    Recently, the focus of murine caspase-11 and human orthologs caspase-4, -5 research has been on their novel function to induce noncanonical inflammasome activation in direct response to Gram-negative bacterial infection. On the other hand, a new role in anti-bacterial autophagy has been attributed to caspase-11, -4 and -5, which currently stands largely unexplored. In this review, we connect lately emerged evidence that suggests these caspases have a key role in anti-bacterial autophagy and discuss the growing implications of a danger molecule—extracellular ATP—and NADPH oxidase-mediated ROS generation as novel inducers of human caspase-4, -5 signaling during infection. We also highlight the adeptness of persistent pathogens like Porphyromonas gingivalis, a Gram-negative anaerobe and successful colonizer of oral mucosa, to potentially interfere with the activated caspase-4 pathway and autophagy. While, the ability of caspase-4, -5 to promote autophagolysosomal fusion is not well understood, the abundance of caspase-4 in skin and other mucosal epithelial cells implies an important role for caspase-4 in mucosal defense, supporting the view that caspase-4, -5 may play a non-redundant part in innate immunity. Thus, this review will join the currently disconnected cutting-edge research thereby proposing a working model for regulation of caspase-4, -5 in pathogen elimination via cellular-trafficking. PMID:26426007

  14. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis

    PubMed Central

    Ge, Y; Cai, Y-M; Bonneau, L; Rotari, V; Danon, A; McKenzie, E A; McLellan, H; Mach, L; Gallois, P

    2016-01-01

    Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation. PMID:27058316

  15. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization

    PubMed Central

    Akhter, Anwari; Caution, Kyle; Khweek, Arwa Abu; Tazi, Mia; Abdulrahman, Basant A.; Abdelaziz, Dalia H.A.; Voss, Oliver H.; Doseff, Andrea I.; Hassan, Hoda; Azad, Abul K.; Schlesinger, Larry S.; Wewers, Mark D.; Gavrilin, Mikhail A.; Amer, Amal O.

    2012-01-01

    Summary Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins. Yet, its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and 5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila- vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing non-pathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo. PMID:22658523

  16. A Novel Method for Imaging Apoptosis Using a Caspase-1 Near-Infrared Fluorescent Probe1

    PubMed Central

    Messerli, Shanta M; Prabhakar, Shilpa; Tang, Yi; Shah, Khalid; Cortes, Maria L; Murthy, Vidya; Weissleder, Ralph; Breakefield, Xandra O; Tung, Ching-Hsuan

    2004-01-01

    Abstract Here we describe a novel method for imaging apoptosis in cells using a near-infrared fluorescent (NIRF) probe selective for caspase-1 (interleukin 1β-converting enzyme, ICE). This biocompatible, optically quenched ICE-NIRF probe incorporates a peptide substrate, which can be selectively cleaved by caspase-1, resulting in the release of fluorescence signal. The specificity of this probe for caspase-1 is supported by various lines of evidence: 1) activation by purified caspase-1, but not another caspase in vitro; 2) activation of the probe by infection of cells with a herpes simplex virus amplicon vector (HGC-ICE-lacZ) expressing a catalytically active caspase-1-lacZ fusion protein; 3) inhibition of HGC-ICE-lacZ vector-induced activation of the probe by coincubation with the caspase-1 inhibitor YVAD-cmk, but not with a caspase-3 inhibitor; and 4) activation of the probe following standard methods of inducing apoptosis with staurosporine, ganciclovir, or ionizing radiation in culture. These results indicate that this novel ICE-NIRF probe can be used in monitoring endogenous and vector-expressed caspase-1 activity in cells. Furthermore, tumor implant experiments indicate that this ICE-NIRF probe can be used to detect caspase-1 activity in living animals. This novel ICE-NIRF probe should prove useful in monitoring endogenous and vector-expressed caspase-1 activity, and potentially apoptosis in cell culture and in vivo. PMID:15140398

  17. Activation of caspase-3 in permanent and transient brain ischaemia in man.

    PubMed

    Love, S; Barber, R; Srinivasan, A; Wilcock, G K

    2000-08-03

    Animal studies have shown brain ischaemia to cause oxidative damage to DNA and activation of caspase-3, leading to apoptosis. These changes may be exacerbated by reperfusion. To assess caspase-3 activation after transient and permanent brain ischaemia in man, we examined brain tissue from patients who had experienced a cardiac arrest with resuscitation or an atherothrombotic brain infarct, and died 12 h to 9 days later. Sections were immunostained for activated caspase-3 or the 89 kDa caspase-3-mediated cleavage product of poly(ADP-ribose) polymerase. Brain ischaemia caused activation of caspase-3 in macrophages/microglia. Some neurons showed delayed activation of caspase-3 after cardiac arrest, but very few in atherothrombotic infarcts. In man, activation of caspase-3 plays little part in neuronal death in atherothrombotic infarcts but may contribute to delayed death of neurons after cardiac arrest.

  18. ATM kinase promotes both caspase-8 and caspase-9 activation during TNF-α-induced apoptosis of HeLa cells.

    PubMed

    Liu, Linhua; Yim, Hyungshin; Choi, Jae Hyuk; Kim, Seung-Tak; Jin, Yinghua; Lee, Seung Ki

    2014-03-18

    In this study, we show that atraxia telangiectasia mutated kinase (ATM) activity is generally upregulated by different apoptotic stimuli, i.e. TNF-α, TRAIL, paclitaxel, or UV. Apoptotic progression is markedly attenuated by siATM-RNA through down regulation of caspase-8 and caspase-9 in parallel with decreases in FLIP-S (short form of cellular FLICE inhibitory protein) protein levels and Bid cleavage. In addition, ATM activity is upregulated through t-Cdc6 while caspase-8 and caspase-9 activities increase. Taken together, we suggest that ATM regulates caspase-8 activation by influencing levels of FLIP-S, ATM kinase activity is upregulated by t-Cdc6, and increased ATM activity plays an essential role in the amplification of apoptosis in TNF-α-stimulated HeLa cells.

  19. Caspase-independent autophagic cytotoxicity in etoposide-treated CaSki cervical carcinoma cells.

    PubMed

    Lee, Seung-Baek; Tong, Seo-Yun; Kim, Jung-Jin; Um, Soo-Jong; Park, Jong-Sup

    2007-10-01

    We studied the in vitro mechanism of etoposide-induced cell death in cervical cancer cells. Etoposide is cytotoxic to these cells, causing cell death by both apoptosis and autophagy, which has recently been described as a possible mechanism for nonapoptotic cell death. Electron microscopy revealed that autophagosomes/autolysosomes exhibited an autophagic appearance in the presence of etoposide. When autophagy was blocked by inhibitors of autophagy, including 3-methyladenine, both the expression of beclin 1 protein and the antitumor effect of etoposide were suppressed. Benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a pan-caspase inhibitor, reduced etoposide-induced cytotoxicity in CaSki cells. Hence, autophagy and apoptosis likely occur concurrently in etoposide-treated cervical cancer cells.

  20. Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling*

    PubMed Central

    Antonopoulos, Christina; Russo, Hana M.; El Sanadi, Caroline; Martin, Bradley N.; Li, Xiaoxia; Kaiser, William J.; Mocarski, Edward S.; Dubyak, George R.

    2015-01-01

    We recently described the induction of noncanonical IL-1β processing via caspase-8 recruited to ripoptosome signaling platforms in myeloid leukocytes. Here, we demonstrate that activated NLRP3·ASC inflammasomes recruit caspase-8 to drive IL-1β processing in murine bone marrow-derived dendritic cells (BMDC) independent of caspase-1 and -11. Sustained stimulation (>2 h) of LPS-primed caspase-1-deficient (Casp1/11−/−) BMDC with the canonical NLRP3 inflammasome agonist nigericin results in release of bioactive IL-1β in conjunction with robust caspase-8 activation. This IL-1β processing and caspase-8 activation do not proceed in Nlrp3−/− or Asc−/− BMDC and are suppressed by pharmacological inhibition of caspase-8, indicating that caspase-8 can act as a direct IL-1β-converting enzyme during NLRP3 inflammasome activation. In contrast to the rapid caspase-1-mediated death of wild type (WT) BMDC via NLRP3-dependent pyroptosis, nigericin-stimulated Casp1/11−/− BMDC exhibit markedly delayed cell death via NLRP3-dependent apoptosis. Biochemical analyses of WT and Casp1/11−/− BMDC indicated that caspase-8 is proteolytically processed within detergent-insoluble ASC-enriched protein complexes prior to extracellular export during nigericin treatment. Although nigericin-stimulated caspase-1 activation and activity are only modestly attenuated in caspase-8-deficient (Casp8−/−Rip3−/−) BMDC, these cells do not exhibit the rapid loss of viability of WT cells. These results support a contribution of caspase-8 to both IL-1β production and regulated death signaling via NLRP3 inflammasomes. In the absence of caspase-1, NLRP3 inflammasomes directly utilize caspase-8 as both a pro-apoptotic initiator and major IL-1β-converting protease. In the presence of caspase-1, caspase-8 acts as a positive modulator of the NLRP3-dependent caspase-1 signaling cascades that drive both IL-1β production and pyroptotic death. PMID:26100631

  1. Caspase-8 as an Effector and Regulator of NLRP3 Inflammasome Signaling.

    PubMed

    Antonopoulos, Christina; Russo, Hana M; El Sanadi, Caroline; Martin, Bradley N; Li, Xiaoxia; Kaiser, William J; Mocarski, Edward S; Dubyak, George R

    2015-08-14

    We recently described the induction of noncanonical IL-1β processing via caspase-8 recruited to ripoptosome signaling platforms in myeloid leukocytes. Here, we demonstrate that activated NLRP3·ASC inflammasomes recruit caspase-8 to drive IL-1β processing in murine bone marrow-derived dendritic cells (BMDC) independent of caspase-1 and -11. Sustained stimulation (>2 h) of LPS-primed caspase-1-deficient (Casp1/11(-/-)) BMDC with the canonical NLRP3 inflammasome agonist nigericin results in release of bioactive IL-1β in conjunction with robust caspase-8 activation. This IL-1β processing and caspase-8 activation do not proceed in Nlrp3(-/-) or Asc(-/-) BMDC and are suppressed by pharmacological inhibition of caspase-8, indicating that caspase-8 can act as a direct IL-1β-converting enzyme during NLRP3 inflammasome activation. In contrast to the rapid caspase-1-mediated death of wild type (WT) BMDC via NLRP3-dependent pyroptosis, nigericin-stimulated Casp1/11(-/-) BMDC exhibit markedly delayed cell death via NLRP3-dependent apoptosis. Biochemical analyses of WT and Casp1/11(-/-) BMDC indicated that caspase-8 is proteolytically processed within detergent-insoluble ASC-enriched protein complexes prior to extracellular export during nigericin treatment. Although nigericin-stimulated caspase-1 activation and activity are only modestly attenuated in caspase-8-deficient (Casp8(-/-)Rip3(-/-)) BMDC, these cells do not exhibit the rapid loss of viability of WT cells. These results support a contribution of caspase-8 to both IL-1β production and regulated death signaling via NLRP3 inflammasomes. In the absence of caspase-1, NLRP3 inflammasomes directly utilize caspase-8 as both a pro-apoptotic initiator and major IL-1β-converting protease. In the presence of caspase-1, caspase-8 acts as a positive modulator of the NLRP3-dependent caspase-1 signaling cascades that drive both IL-1β production and pyroptotic death. © 2015 by The American Society for Biochemistry and

  2. Deubiquitinases Regulate the Activity of Caspase-1 and Interleukin-1β Secretion via Assembly of the Inflammasome*

    PubMed Central

    Lopez-Castejon, Gloria; Luheshi, Nadia M.; Compan, Vincent; High, Stephen; Whitehead, Roger C.; Flitsch, Sabine; Kirov, Aleksandr; Prudovsky, Igor; Swanton, Eileithyia; Brough, David

    2013-01-01

    IL-1β is a potent pro-inflammatory cytokine produced in response to infection or injury. It is synthesized as an inactive precursor that is activated by the protease caspase-1 within a cytosolic molecular complex called the inflammasome. Assembly of this complex is triggered by a range of structurally diverse damage or pathogen associated stimuli, and the signaling pathways through which these act are poorly understood. Ubiquitination is a post-translational modification essential for maintaining cellular homeostasis. It can be reversed by deubiquitinase enzymes (DUBs) that remove ubiquitin moieties from the protein thus modifying its fate. DUBs present specificity toward different ubiquitin chain topologies and are crucial for recycling ubiquitin molecules before protein degradation as well as regulating key cellular processes such as protein trafficking, gene transcription, and signaling. We report here that small molecule inhibitors of DUB activity inhibit inflammasome activation. Inhibition of DUBs blocked the processing and release of IL-1β in both mouse and human macrophages. DUB activity was necessary for inflammasome association as DUB inhibition also impaired ASC oligomerization and caspase-1 activation without directly blocking caspase-1 activity. These data reveal the requirement for DUB activity in a key reaction of the innate immune response and highlight the therapeutic potential of DUB inhibitors for chronic auto-inflammatory diseases. PMID:23209292

  3. In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety

    PubMed Central

    Ganesan, Rajkumar; Jelakovic, Stjepan; Mittl, Peer R. E.; Caflisch, Amedeo; Grütter, Markus G.

    2011-01-01

    Using a fragment-based docking procedure, several small-molecule inhibitors of caspase-3 were identified and tested and the crystal structures of three inhibitor complexes were determined. The crystal structures revealed that one inhibitor (NSC 18508) occupies only the S1 subsite, while two other inhibitors (NSC 89167 and NSC 251810) bind only to the prime part of the substrate-binding site. One of the major conformational changes observed in all three caspase-3–inhibitor complexes is a rotation of the Tyr204 side chain, which blocks the S2 subsite. In addition, the structural variability of the residues shaping the S1–S4 as well as the S1′ subsites supports an induced-fit mechanism for the binding of the inhibitors in the active site. The high-resolution crystal structures reported here provide novel insights into the architecture of the substrate-binding site, which might be useful for the design of more potent caspase inhibitors. PMID:21821879

  4. Knockdown of LRP/LR induces apoptosis in pancreatic cancer and neuroblastoma cells through activation of caspases.

    PubMed

    Chetty, Carryn J; Ferreira, Eloise; Jovanovic, Katarina; Weiss, Stefan F T

    2017-09-10

    The 37kDa/67kDa laminin receptor (LRP/LR) serves various physiological and pathological roles such as enhancing tumour-related processes including metastasis, angiogenesis, cellular viability and telomerase activation in cancerous cell lines. The present study investigates the effect of siRNA mediated downregulation of LRP/LR on pancreatic cancer (AsPC-1) and neuroblastoma (IMR-32) cells. MTT and BrdU assays revealed that siRNA mediated downregulation of LRP resulted in a significant reduction in cell viability and cell proliferation. In addition, knock-down of LRP resulted in phosphatidylserine externalization, diminished nuclear integrity and significantly enhanced caspase-3 activity, which is indicative of apoptosis. LRP downregulation resulted in a significant increase in caspase-8 activity in IMR-32 cells and enhanced caspase-8 and 9 activity in AsPC-1 cells. These data recommend siRNA mediated knock-down of LRP as a potential therapeutic avenue for the treatment of pancreatic cancer and neuroblastoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dasatinib promotes paclitaxel-induced necroptosis in lung adenocarcinoma with phosphorylated caspase-8 by c-Src.

    PubMed

    Diao, Yan; Ma, Xiaobin; Min, WeiLi; Lin, Shuai; Kang, HuaFeng; Dai, ZhiJun; Wang, Xijing; Zhao, Yang

    2016-08-28

    Cisplatin and paclitaxel are considered to be the backbone of chemotherapy in lung adenocarcinoma. These agents show pleiotropic effects on cell death. However, the precise mechanisms remain unclear. The present study reported that phosphorylated caspase-8 at tyrosine 380 (p-Casp8) was characterized as a biomarker of chemoresistance to TP regimen (cisplatin and paclitaxel) in patients with resectable lung adenocarcinoma with significantly poorer 5-year disease-free survival (DFS) and overall survival (OS). Cisplatin killed lung adenocarcinoma cells regardless of c-Src-induced caspase-8 phosphorylation at tyrosine 380. Subsequently, we identified a novel mechanism by which paclitaxel induced necroptosis in lung adenocarcinoma cells that was dependent upon p-Casp8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3. Moreover, dasatinib, a c-Src inhibitor, dephosphorylated caspase-8 to facilitate necroptosis, rather than apoptosis, in paclitaxel-treated p-Casp8-expressing lung adenocarcinoma cells. The data from our study revealed previously unrecognized roles of p-Casp8 as a positive effector in the initiation of necroptosis and as a negative effector in the repression of the interaction between RIPK1 and RIPK3. Moreover, these outcomes supported the need for further clinical studies with the goal of evaluating the efficacy of dasatinib plus paclitaxel in the treatment of lung adenocarcinoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Caspase-dependant activation of chymotrypsin-like proteases mediates nuclear events during Jurkat T cell apoptosis

    SciTech Connect

    O'Connell, A.R.; Lee, B.W.; Stenson-Cox, C. . E-mail: catherine.stenson@nuigalway.ie

    2006-06-30

    Apoptosis involves a cascade of biochemical and morphological changes resulting in the systematic disintegration of the cell. Caspases are central mediators of this process. Supporting and primary roles for serine proteases as pro-apoptotic mediators have also been highlighted. Evidence for such roles comes largely from the use of pharmacological inhibitors; as a consequence information regarding their apoptotic function and biochemical properties has been limited. Here, we circumvented limitations associated with traditional serine protease inhibitors through use of a fluorescently labelled inhibitor of serine proteases (FLISP) that allowed for analysis of the specificity, regulation and positioning of apoptotic serine proteases within a classical apoptotic cascade. We demonstrate that staurosporine triggers a caspase-dependant induction of chymotrypsin-like activity in the nucleus of apoptotic Jurkat T cells. We show that serine protease activity is required for the generation of late stage nuclear events including condensation, fragmentation and DNA degradation. Furthermore, we reveal caspase-dependant activation of two chymotrypsin-like protein species that we hypothesize mediate cell death-associated nuclear events.

  7. Temporal and spatial distribution of activated caspase-3 after subdural kainic acid infusions in rat spinal cord.

    PubMed

    Nottingham, Stephanie A; Springer, Joe E

    2003-09-29

    The molecular events initiating apoptosis following traumatic spinal cord injury (SCI) remain poorly understood. Soon after injury, the spinal cord is exposed to numerous secondary insults, including elevated levels of glutamate, that contribute to cell dysfunction and death. In the present study, we attempted to mimic the actions of glutamate by subdural infusion of the selective glutamate receptor agonist, kainic acid, into the uninjured rat spinal cord. Immunohistochemical colocalization studies revealed that activated caspase-3 was present in ventral horn motor neurons at 24 hours, but not 4 hours or 96 hours, following kainic acid treatment. However, at no time point examined was there evidence of significant neuronal loss. Kainic acid resulted in caspase-3 activation in several glial cell populations at all time points examined, with the most pronounced effect occurring at 24 hours following infusion. In particular, caspase-3 activation was observed in a significant number of oligodendroglia in the dorsal and ventral funiculi, and there was a pronounced loss of oligodendroglia at 96 hours following treatment. The results of these experiments indicate a role for glutamate as a mediator of oligodendroglial apoptosis in traumatic SCI. In addition, understanding the apoptotic signaling events activated by glutamate will be important for developing therapies targeting this cell death process.

  8. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    PubMed

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  9. Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection

    USGS Publications Warehouse

    Vojtech, Lucia N.; Scharping, Nichole; Woodson, James C.; Hansen, John D.

    2012-01-01

    The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1β) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1β is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1β. Although zebrafish encode orthologs of IL-1β and inflammatory caspases, the processing of IL-1β by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1β processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1β processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1β into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1β, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1β in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.                   

  10. CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas.

    PubMed

    Soung, Young Hwa; Lee, Jong Woo; Kim, Su Young; Jang, Jin; Park, Yong Gyu; Park, Won Sang; Nam, Suk Woo; Lee, Jung Young; Yoo, Nam Jin; Lee, Sug Hyung

    2005-02-01

    Several lines of evidence indicate that deregulation of apoptosis is involved in the mechanisms of cancer development. Caspase-8 activation plays a central role in the initiation phase of apoptosis. The aim of this study was to explore the possibility that genetic alteration of CASPASE-8 gene is involved in the development of human cancers, including gastric cancers. We have analyzed the entire coding region of human CASPASE-8 gene for the detection of somatic mutations in 162 gastric carcinomas (40 early and 122 advanced cancers), 185 non-small cell lung cancers, 93 breast carcinomas, and 88 acute leukemias by PCR-single-strand conformation polymorphism. Of the cancers analyzed, 13 cancers harbored CASPASE-8 somatic mutations. Interestingly, all of the mutations were detected in the advanced gastric cancers (10.7% of the 122 samples). We expressed the tumor-derived caspase-8 mutants in 293T, 293, and HT1080 cells and found that most of the mutants (9 of the 10 mutations tested) markedly decreased the cell death activity of caspase-8. In addition, in the cells with the inactivating caspase-8 mutants, cleavage of poly(ADP-ribose)polymerase was markedly reduced compared with that of wild-type caspase-8. The occurrence of CASPASE-8 mutation and the inactivation of cell death activity by the mutants suggest that CASPASE-8 gene mutation may affect the pathogenesis of gastric cancers, especially at the late stage of gastric carcinogenesis.

  11. Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1β production.

    PubMed

    Man, Si Ming; Tourlomousis, Panagiotis; Hopkins, Lee; Monie, Tom P; Fitzgerald, Katherine A; Bryant, Clare E

    2013-11-15

    Nucleotide-binding oligomerization domain-like receptors (NLRs) detect pathogens and danger-associated signals within the cell. Salmonella enterica serovar Typhimurium, an intracellular pathogen, activates caspase-1 required for the processing of the proinflammatory cytokines, pro-IL-1β and pro-IL-18, and pyroptosis. In this study, we show that Salmonella infection induces the formation of an apoptosis-associated specklike protein containing a CARD (ASC)-Caspase-8-Caspase-1 inflammasome in macrophages. Caspase-8 and caspase-1 are recruited to the ASC focus independently of one other. Salmonella infection initiates caspase-8 proteolysis in a manner dependent on NLRC4 and ASC, but not NLRP3, caspase-1 or caspase-11. Caspase-8 primarily mediates the synthesis of pro-IL-1β, but is dispensable for Salmonella-induced cell death. Overall, our findings highlight that the ASC inflammasome can recruit different members of the caspase family to induce distinct effector functions in response to Salmonella infection.

  12. Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism.

    PubMed

    Feng, Xiao; Yu, Yang; He, Sijia; Cheng, Jin; Gong, Yanping; Zhang, Zhengxiang; Yang, Xuguang; Xu, Bing; Liu, Xinjian; Li, Chuan-Yuan; Tian, Ling; Huang, Qian

    2017-01-28

    Vascular recovery or re-angiogenesis after radiotherapy plays a significant role in tumor recurrence, whereas molecular mechanisms of this process remain elusive. In this work, we found that dying glioma cells promoted post-irradiation angiogenesis through a caspase 3 dependent mechanism. Evidence in vitro and in vivo indicated that caspase 3 inhibition undermined proangiogenic effects of dying glioma cells. Proteolytic inactivation of caspase 3 in glioma cells reduced tumorigenicity. Importantly, we identified that NF-κB/COX-2/PGE2 axis acted as downstream signaling of caspase 3, mediating proangiogenic response after irradiation. Additionally, VEGF-A, regulated by caspase 3 possibly through phosphorylated eIF4E, was recognized as another downstream factor participating in the proangiogenic response. In conclusion, these data demonstrated that caspase 3 in dying glioma cells supported the proangiogenic response after irradiation by governing NF-κB/COX-2/PGE2 axis and p-eIF4E/VEGF-A signaling. While inducing caspase 3 activation has been a generally-adopted notion in cancer therapeutics, our study counterintuitively illustrated that caspase 3 activation in dying glioma cells unfavorably supported post-irradiation angiogenesis. This double-edged role of caspase 3 suggested that taming caspase 3 from the opposite side, not always activating it, may provide novel therapeutic strategies due to restricted post-irradiation angiogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Granzyme release and caspase activation in activated human T-lymphocytes.

    PubMed

    Zapata, J M; Takahashi, R; Salvesen, G S; Reed, J C

    1998-03-20

    Recently it has been reported that caspase-3 activation occurs in stimulated T-lymphocytes without associated apoptosis (Miossec, C., Dutilleul, V., Fassy, F., and Diu-Hercend, A. (1997) J. Biol. Chem. 272, 13459-13462). To explore this phenomenon, human peripheral blood lymphocytes (PBLs) were stimulated with mitogenic lectins or anti-CD3 antibody, and the proteolytic processing of different caspases and caspase substrates was analyzed by immunoblotting. Proteolytic processing of caspases-3 and -7 and the caspase substrates poly(ADP-ribose) polymerase, GDP dissociation inhibitor, and PKCdelta was observed when PBLs were activated in vitro, and lysates were prepared using RIPA buffer which contains 1% Nonidet P-40, 0.5% deoxycholate, and 0.1% SDS. In contrast, when a lysis buffer containing 2% SDS was used, the caspases remained in their zymogen pro-forms, and no proteolytic processing of caspase substrates was detected. Moreover, in experiments using intact cells and a cell-permeable fluorigenic caspase substrate, no caspase activity was observed in activated T-cells, whereas it was clearly detected when PBLs were treated with the apoptosis-inducing anticancer drug etoposide. Since the granzyme B is a direct activator of caspase-3 and its expression is induced following T-cell activation, we tested the effects of anti-GraB, an engineered serpin that specifically inhibits GraB. When the activated T-lymphocytes were lysed in RIPA buffer containing anti-GraB, no proteolytic processing or activation of caspase-3 was observed, strongly suggesting that release of GraB or similar proteases from their storage sites in cytotoxic granules during the lysis procedure is responsible for caspase activation. These findings demonstrate that T-cells do not process caspases upon activation and caution about the method of cell lysis used when studying granzyme-expressing cells.

  14. Caspase-1 activity as a possible predictor of apoptosis induced by cisplatin in gastric cancer cells.

    PubMed

    Muguruma, K; Nakata, B; Yanagawa, K; Nitta, A; Yashiro, M; Onoda, N; Hirakawa, K

    2000-11-01

    Recent studies have shown that caspases, which are cystein proteases, elevate endonuclease activity and induce apoptosis. Caspase-1, an interleukin-1beta converting enzyme, has been reported to be related with anti-cancer drug induced apoptosis as well as with caspase-3. To elucidate the caspase-1 activity, which might be a predictor for the effect of chemotherapy, we examined the changes of caspase-1 activity induced after exposure to cisplatin (CDDP) in six gastric cancer cell lines. A high correlation between the 50% inhibitory concentration (IC50) and caspase-1 activity ratio was shown (r=0.83, p=0.041) (caspase-1 activity ratio: the caspase-1 activity of cells at 4 h after CDDP treatment/the caspase-1 activity of untreated cells). Further, we examined the correlation between caspase-1 activity and apoptosis induced by CDDP in two cell lines that have very different CDDP sensitivities; OCUM-2M and OCUM-2M/DDP (IC50; 0. 85+/-0.4 microg/ml and 9.0+/-1.2 microg/ml, respectively). The apoptotic index of OCUM-2M was significantly higher than that of OCUM-2M/DDP (19.8+/-3.8% vs. 4.5+/-1.2%, respectively; p=0.0005). In both cell lines, caspase-1 activity began to increase immediately after exposure to CDDP and peaked at approximately 4 h after cessation of exposure to CDDP, and gradually decreased thereafter. The caspase-1 activity of OCUM-2M was approximately 1.8-times higher than that of OCUM-2M/DDP at 4 h after exposure to CDDP. Taken together, our results indicate that evaluating the changes of caspase-1 activity after exposure to CDDP may be useful to predict apoptosis following CDDP treatment in gastric cancer cells.

  15. Deltamethrin-induced oxidative stress and mitochondrial caspase-dependent signaling pathways in murine splenocytes.

    PubMed

    Kumar, Anoop; Sasmal, D; Bhaskar, Amand; Mukhopadhyay, Kunal; Thakur, Aman; Sharma, Neelima

    2016-07-01

    Deltamethrin (DLM) is a well-known pyrethroid insecticide used extensively in pest control. Exposure to DLM has been demonstrated to cause apoptosis in various cells. However, the immunotoxic effects of DLM on mammalian system and its mechanism is still an open question to be explored. To explore these effects, this study has been designed to first observe the interactions of DLM to immune cell receptors and its effects on the immune system. The docking score revealed that DLM has strong binding affinity toward the CD45 and CD28 receptors. In vitro study revealed that DLM induces apoptosis in murine splenocytes in a concentration-dependent manner. The earliest markers of apoptosis such as enhanced reactive oxygen species and caspase 3 activation are evident as early as 1 h by 25 and 50 µM DLM. Western blot analysis demonstrated that p38 MAP kinase and Bax expression is increased in a concentration-dependent manner, whereas Bcl 2 expression is significantly reduced after 3 h of DLM treatment. Glutathione depletion has been also observed at 3 and 6 h by 25 and 50 µM concentration of DLM. Flow cytometry results imply that the fraction of hypodiploid cells has gradually increased with all the concentrations of DLM at 18 h. N-acetyl cysteine effectively reduces the percentage of apoptotic cells, which is increased by DLM. In contrast, buthionine sulfoxamine causes an elevation in the percentage of apoptotic cells. Phenotyping data imply the effect of DLM toxicity in murine splenocytes. In brief, the study demonstrates that DLM causes apoptosis through its interaction with CD45 and CD28 receptors, leading to oxidative stress and activation of the mitochondrial caspase-dependent pathways which ultimately affects the immune functions. This study provides mechanistic information by which DLM causes toxicity in murine splenocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 808-819, 2016.

  16. Drosophila caspase activity is required independently of apoptosis to produce active TNF/Eiger during nociceptive sensitization.

    PubMed

    Jo, Juyeon; Im, Seol Hee; Babcock, Daniel T; Iyer, Srividya C; Gunawan, Felona; Cox, Daniel N; Galko, Michael J

    2017-05-11

    Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive (pain) sensitization in Drosophila and vertebrates. Nociceptive sensitization in Drosophila larvae following UV-induced tissue damage is accompanied by epidermal apoptosis and requires epidermal-derived TNF/Eiger and the initiator caspase, Dronc. Major gaps remain regarding TNF function in sensitization, including the relationship between apoptosis/tissue damage and TNF production, the downstream signaling in this context, and the target genes that modulate nociceptive behaviors. Here, apoptotic cell death and thermal nociceptive sensitization are genetically and procedurally separable in a Drosophila model of UV-induced nociceptive sensitization. Activation of epidermal Dronc induces TNF-dependent but effector caspase-independent nociceptive sensitization in the absence of UV. In addition, knockdown of Dronc attenuated nociceptive sensitization induced by full-length TNF/Eiger but not by a constitutively soluble form. UV irradiation induced TNF production in both in vitro and in vivo, but TNF secretion into hemolymph was not sufficient to induce thermal nociceptive sensitization. Downstream mediators of TNF-induced sensitization included two TNF receptor-associated factors, a p38 kinase, and the transcription factor nuclear factor kappa B. Finally, sensory neuron-specific microarray analysis revealed downstream TNF target genes induced during thermal nociceptive sensitization. One of these, enhancer of zeste (E(z)), functions downstream of TNF during thermal nociceptive sensitization. Our findings suggest that an initiator caspase is involved in TNF processing/secretion during nociceptive sensitization, and that TNF activation leads to a specific downstream signaling cascade and gene transcription required for sensitization. These findings have implications for both the evolution of inflammatory caspase function following tissue damage signals and the action of TNF during sensitization

  17. Preclinical Studies Identify Non-Apoptotic Low-Level Caspase-3 as Therapeutic Target in Pemphigus Vulgaris

    PubMed Central

    Luyet, Camille; Schulze, Katja; Sayar, Beyza S.; Howald, Denise; Müller, Eliane J.; Galichet, Arnaud

    2015-01-01

    The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients’ biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases

  18. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris.

    PubMed

    Luyet, Camille; Schulze, Katja; Sayar, Beyza S; Howald, Denise; Müller, Eliane J; Galichet, Arnaud

    2015-01-01

    The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients' biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases including

  19. Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways.

    PubMed

    Zhang, Zhiqun; Larner, Stephen F; Liu, Ming Cheng; Zheng, Wenrong; Hayes, Ronald L; Wang, Kevin K W

    2009-11-01

    Apoptosis and oncotic necrosis in neuronal and glial cells have been documented in many neurological diseases. Distinguishing between these two major types of cell death in different neurological diseases is needed in order to better reveal the injury mechanisms so as to open up opportunities for therapy development. Accumulating evidence suggests apoptosis and oncosis epitomize the extreme ends of a broad spectrum of morphological and biochemical events. Biochemical markers that can distinguish between the calpain and caspase dominated types of cell death would help in this process. In this study, three chemical agents, maitotoxin (MTX), staurosporine (STS) and thylenediaminetetraacetic acid (EDTA), were used to induce different types of cell death in PC12 neuronal-like cells. MTX-induced necrosis, as determined by the increased levels of calpain-specific cleaved fragments of spectrin by antibodies specific to the calpain-cleaved 150 kDa alphaII-spectrin breakdown product (SBDP150) and 145 kDa alphaII-spectrin breakdown product (SBDP145). In this paradigm, there were no detectable SBDP150i and SBDP120 fragments as determined by antibodies specific to the caspase-cleaved specific fragments similar to those seen in the EDTA-mediated apoptotic PC-12 cells. In contrast to the calpain specific MTX necrosis treatment and the caspase EDTA apoptotic treatment is the STS treatment which induced both proteases as shown by the increase in all the SBDP fragments. Furthermore, compared to SBDP150, SBDP145 appears to be a more specific and sensitive biomarker for calpain activation. Taken together, our results suggested calpains and caspases which dominate the two major types of cell death could be independently discriminated by specifically examining the multiple alphaII-spectrin cleavage breakdown products.

  20. Caspase 3 from rock bream (Oplegnathus fasciatus): genomic characterization and transcriptional profiling upon bacterial and viral inductions.

    PubMed

    Elvitigala, Don Anushka Sandaruwan; Whang, Ilson; Premachandra, H K A; Umasuthan, Navaneethaiyer; Oh, Myung-Joo; Jung, Sung-Ju; Yeo, Sang-Yeob; Lim, Bong-Soo; Lee, Jeong-Ho; Park, Hae-Chul; Lee, Jehee

    2012-07-01

    Caspase 3 is a prominent mediator of apoptosis and participates in the cell death signaling cascade. In this study, caspase 3 was identified (Rbcasp3) and characterized from rock bream (Oplegnathus fasciatus). The full-length cDNA of Rbcasp3 is 2683 bp and contains an open reading frame of 849 bp, which encodes a 283 amino acid protein with a calculated molecular mass of 31.2 kDa and isoelectric point of 6.31. The amino acid sequence resembles the conventional caspase 3 domain architecture, including crucial amino acid residues in the catalytic site and binding pocket. The genomic length of Rbcasp3 is 7529 bp, and encompasses six exons interrupted by five introns. Phylogenetic analysis affirmed that Rbcasp3 represents a complex group in fish that has been shaped by gene duplication and diversification. Many putative transcription factor binding sites were identified in the predicted promoter region of Rbcasp3, including immune factor- and cancer signal-inducible sites. Rbcasp3, excluding the pro-domain, was expressed in Escherichia coli. The recombinant protein showed a detectable activity against the mammalian caspase 3/7-specific substrate DEVD-pNA, indicating a functional role in physiology. Quantitative real time PCR assay detected Rbcasp3 expression in all examined tissues, but with high abundance in blood, liver and brain. Transcriptional profiling of rock bream liver tissue revealed that challenge with lipopolysaccharides (LPS) caused prolonged up-regulation of Rbcasp3 mRNA whereas, Edwardsiella tarda (E. tarda) stimulated a late-phase significant transcriptional response. Rock bream iridovirus (RBIV) up-regulated Rbcasp3 transcription significantly at late-phase, however polyinosinic-polycytidylic acid (poly(I:C)) induced Rbcasp3 significantly at early-phase. Our findings suggest that Rbcasp3 functions as a cysteine-aspartate-specific protease and contributes to immune responses against bacterial and viral infections. Copyright © 2012 Elsevier Ltd. All

  1. Apoptosis and Caspase 3 Pathway Role on Anti-Proliferative Effects of Scrophulariaoxy Sepala Methanolic Extract on Caco-2 Cells.

    PubMed

    Namvaran, Ali; Fazeli, Mehdi; Farajnia, Safar; Hamidian, Gholamreza; Rezazadeh, Hassan

    2017-09-01

    Colorectal cancer is one the most important malignancies worldwide and finding new treatment option for this cancer is of high priority. Natural compounds are common source of drugs for treatment of various diseases including cancers. The aim of this study was to investigate the effects of Scrophularia oxysepala extract on Caco-2 cells and explore the possible role of caspase 3 pathway in inducing cell death in this cancer cells in compare with chemotherapy agents of cisplatin and capecitabine. The methanolic extract of Scrophularia oxysepala (SO) was prepared by drench method. The IC50 of extract, cisplatin and capecitabine on Caco-2 cells were determined by MTT assay. The effect of SO extract on caspase 3 expression and inducing apoptosis were determined using TUNEL assay and caspase 3 ELISA methods, respectively. The IC50 of SO extract, cisplatin and capecitabine were 300, 195 and 80 µg/ml, respectively. Analysis for apoptosis revealed that SO methanolic extract increased apoptosis significantly (P<0.001) compared with control group. The effect of high doses of SO extract on apoptosis induction were comparable to cisplatin but significantly were higher than capecitabine. Only high doses of SO methanolic extract showed significant effects (P<0.05) on increasing caspase 3 compared to control group. The methanolic extract of SO showed inhibitory effect on Caco-2 cells and induced apoptosis in a dose-dependent manner comparable to cisplatin and higher than capecitabine 2 commonly used chemotherapeutic agent for various cancers. © Georg Thieme Verlag KG Stuttgart · New York.

  2. TRAIL-Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stress-Induced Signal Transduction Pathways.

    PubMed

    Lee, Dae-Hee; Sung, Ki Sa; Guo, Zong Sheng; Kwon, William Taehyung; Bartlett, David L; Oh, Sang Cheul; Kwon, Yong Tae; Lee, Yong J

    2016-05-01

    It is well known that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis can be initially triggered by surface death receptors (the extrinsic pathway) and subsequently amplified through mitochondrial dysfunction (the intrinsic pathway). However, little is known about signaling pathways activated by the TRAIL-induced endoplasmic reticulum (ER) stress response. In this study, we report that TRAIL-induced apoptosis is associated with the endoplasmic reticulum (ER) stress response. Human colorectal carcinoma HCT116 cells were treated with TRAIL and the ER stress-induced signal transduction pathway was investigated. During TRAIL treatment, expression of ER stress marker genes, in particular the BiP (binding immunoglobulin protein) gene, was increased and activation of the PERK (PKR-like ER kinase)-eIF2α (eukaryotic initiation factor 2α)-ATF4 (activating transcription factor 4)-CHOP (CCAAT-enhancer-binding protein homologous protein) apoptotic signal transduction pathway occurred. Experimental data from use of a siRNA (small interfering RNA) technique, caspase inhibitor, and caspase-3-deficient cell line revealed that TRAIL-induced caspase activation is a prerequisite for the TRAIL-induced ER stress response. TRAIL-induced ER stress was triggered by caspase-8-mediated cleavage of BAP31 (B cell receptor-associated protein 31). The involvement of the proapoptotic PERK-CHOP pathway in TRAIL-induced apoptosis was verified by using a PERK knockout (PERK(-/-)) mouse embryo fibroblast (MEF) cell line and a CHOP(-/-) MEF cell line. These results suggest that TRAIL-induced the activation of ER stress response plays a role in TRAIL-induced apoptotic death.

  3. Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex.

    PubMed

    Twiddy, Davina; Brown, David G; Adrain, Colin; Jukes, Rebekah; Martin, Seamus J; Cohen, Gerald M; MacFarlane, Marion; Cain, Kelvin

    2004-05-07

    The apoptosome is a large caspase-activating ( approximately 700-1400 kDa) complex, which is assembled from Apaf-1 and caspase-9 when cytochrome c is released during mitochondrial-dependent apoptotic cell death. Apaf-1 the core scaffold protein is approximately 135 kDa and contains CARD (caspase recruitment domain), CED-4, and multiple (13) WD40 repeat domains, which can potentially interact with a variety of unknown regulatory proteins. To identify such proteins we activated THP.1 lysates with dATP/cytochrome c and used sucrose density centrifugation and affinity-based methods to purify the apoptosome for analysis by MALDI-TOF mass spectrometry. First, we used a glutathione S-transferase (GST) fusion protein (GST-casp9(1-130)) containing the CARD domain of caspase-9-(1-130), which binds to the CARD domain of Apaf-1 when it is in the apoptosome and blocks recruitment/activation of caspase-9. This affinity-purified apoptosome complex contained only Apaf-1XL and GST-casp9(1-130), demonstrating that the WD40 and CED-4 domains of Apaf-1 do not stably bind other cytosolic proteins. Next we used a monoclonal antibody to caspase-9 to immunopurify the native active apoptosome complex from cell lysates, containing negligible levels of cytochrome c, second mitochondria-derived activator of caspase (Smac), or Omi/HtrA2. This apoptosome complex exhibited low caspase-processing activity and contained four stably associated proteins, namely Apaf-1, pro-p35/34 forms of caspase-9, pro-p20 forms of caspase-3, X-linked inhibitor of apoptosis (XIAP), and cytochrome c, which was only bound transiently to the complex. However, in lysates containing Smac and Omi/HtrA2, the caspase-processing activity of the purified apoptosome complex increased 6-8-fold and contained only Apaf-1 and the p35/p34-processed subunits of caspase-9. During apoptosis, Smac, Omi/HtrA2, and cytochrome c are released simultaneously from mitochondria, and thus it is likely that the functional apoptosome complex in

  4. Characterization of Social Behaviors in caspase-3 deficient mice

    PubMed Central

    Lo, Shih-Ching; Scearce-Levie, Kimberly; Sheng, Morgan

    2016-01-01

    Impaired social interaction is a defining feature of autism spectrum disorder, a neurodevelopmental disorder that shows a strong male preponderance in prevalence. Studies have identified neural circuits, neuromodulators and genetic factors involved in social behaviors, but mechanistic understanding of gender-specific social deficits is lacking. We report that deletion of the caspase-3 gene, encoding a protease with functions in apoptosis and neural plasticity, alters specific social behaviors in male mice, while leaving females unaffected. Casp3−/− mice showed normal behavioral responses to olfactory cues from food, neutral chemical and biological sources. Both Casp3−/− males and females displayed robust social exploration, sociability, recognition and preference for an enclosed novel mouse in the three-chamber test. However, Casp3−/− males showed significantly reduced social interaction behaviors when exposed to a freely moving novel mouse, including decreased interaction time and diminished mounting. Thus caspase-3 is essential for a subset of social behaviors, but despite similar hyper-locomotion in both sexes, only male Casp3−/− mice exhibited social interaction deficits, which is interesting given the male bias of autism. PMID:26783106

  5. Extracellular Caspase-8 Dependent Apoptosis on HeLa Cancer Cells and MRC-5 Normal Cells by ICD-85 (Venom Derived Peptides)

    PubMed Central

    Zare-Mirakabadi, Abbas; Sarzaeem, Ali

    2012-01-01

    Background Our previous studies revealed an inhibitory effect of ICD-85 (venom derived peptides) on MDA-MB231 and HL-60 cell lines, through induction of apoptosis. The purpose of this study was to investigate apoptosis-induced mechanism on HeLa and MRC-5 cells by ICD-85 through activation of caspase-8. Methods Cell viability, cytosolic enzyme Lactate Dehydrogenase (LDH) and cell morphology were assessed under unexposed and ICD-85 exposed conditions.Caspase-8 activity was assayed by caspase-8 colorimetric assay Kit. Results The results show that Inhibitory Concentration 50% (IC50) value of ICD-85 for HeLa cells at 24 h was estimated and found to be 25.32±2.15 µg/mL. Furthermore, treatment of HeLa cells with ICD-85 at concentrations of 1.6×10 and 2.6×10 µg/mL did not significantly increase LDH release. Morphological changes in HeLa cells on treatment with ICD-85 compared with untreated HeLa cells consistent with an apoptotic mechanism of cell death, such as cell shrinkage which finally results in the generation of apoptotic bodies. However, when MRC-5 cells were exposed to ICD-85, no significant changes in cell morphology and LDH were observed at concentrations below 2.6×10µg/ml. Also, the apoptosis-induction mechanism by ICD-85 on HeLa cells was found through activation of caspase-8 and the activity of caspase-8 in HeLa cells was 1.5 folds more than its activity on MRC-5 cells. Conclusion Therefore, the apoptosis-induced mechanisms by ICD-85 are through activation of caspase-8 and concerning the least cytotoxic effect on MRC-5 cells, ICD-85 may be used as anticancer compound to inhibit growth of cancer cells. PMID:25352970

  6. Temporal regulation of Drosophila IAP1 determines caspase functions in sensory organ development.

    PubMed

    Koto, Akiko; Kuranaga, Erina; Miura, Masayuki

    2009-10-19

    The caspases comprise a family of cysteine proteases that function in various cellular processes, including apoptosis. However, how the balance is struck between the caspases' role in cell death and their nonapoptotic functions is unclear. To address this issue, we monitored the protein turnover of an endogenous caspase inhibitor, Drosophila IAP1 (DIAP1). DIAP1 is an E3 ubiquitin ligase that promotes the ubiquitination of caspases and thereby prevents caspase activation. For this study, we developed a fluorescent probe to monitor DIAP1 turnover in the external sensory organ precursor (SOP) lineage of living Drosophila. The SOP divides asymmetrically to make the shaft, socket, and sheath cells, and the neuron that comprise each sensory organ. We found that the quantity of DIAP1 changed dramatically depending on the cell type and maturity, and that the temporal regulation of DIAP1 turnover determines whether caspases function nonapoptotically in cellular morphogenesis or cause cell death.

  7. Oligomerization and activation of caspase-9, induced by Apaf-1 CARD

    PubMed Central

    Shiozaki, Eric N.; Chai, Jijie; Shi, Yigong

    2002-01-01

    Apaf-1 facilitates the proteolytic activation of procaspase-9 and maintains the hyperactive state of the processed caspase-9. The underlying molecular mechanisms for these activities remain poorly characterized. Here we report that the isolated Apaf-1 caspase recruitment domain (CARD) forms a large hetero-oligomer with the active caspase-9. The catalytic activity of caspase-9 is significantly enhanced in this complex, demonstrating that Apaf-1 CARD allosterically up-regulates caspase-9 activity. Point mutations that inactivate the interactions between Apaf-1 CARD and the prodomain of caspase-9 also abolished the formation of this complex. Based on these observations, we discuss the implications of this complex on the observed Apaf-1 function. PMID:11904389

  8. Mutational analysis of proapoptotic caspase-9 gene in common human carcinomas.

    PubMed

    Soung, Young Hwa; Lee, Jong Woo; Kim, Su Young; Park, Won Sang; Nam, Suk Woo; Lee, Jung Young; Yoo, Nam Jin; Lee, Sug Hyung

    2006-04-01

    Mounting evidence indicates that deregulation of apoptosis is involved in the mechanisms of cancer development. Caspase-9 plays a crucial role in the initiation phase of the intrinsic apoptosis pathway. To explore the possibility that the genetic alterations of caspase-9 might be involved in the development of human cancers, we analyzed the entire coding region and all splice sites of the human caspase-9 gene for the detection of somatic mutations in a series of 353 cancers, including 180 gastric, 104 colorectal and 69 lung adenocarcinomas. Overall, we detected three somatic mutations of caspase-9, but all of the mutations were silent mutations. The mutations were observed in 2 of 104 colorectal carcinomas and 1 of 180 gastric carcinomas. These data indicate that the caspase-9 gene is rarely mutated in gastric, colorectal and lung adenocarcinomas, and suggest that caspase-9 gene mutation may not contribute to the pathogenesis of these cancers.

  9. Evolution of caspase-mediated cell death and differentiation: twins separated at birth

    PubMed Central

    Bell, Ryan A V; Megeney, Lynn A

    2017-01-01

    The phenotypic and biochemical similarities between caspase-mediated apoptosis and cellular differentiation are striking. They include such diverse phenomenon as mitochondrial membrane perturbations, cytoskeletal rearrangements and DNA fragmentation. The parallels between the two disparate processes suggest some common ancestry and highlight the paradoxical nature of the death-centric view of caspases. That is, what is the driving selective pressure that sustains death-inducing proteins throughout eukaryotic evolution? Plausibly, caspase function may be rooted in a primordial non-death function, such as cell differentiation, and was co-opted for its role in programmed cell death. This review will delve into the links between caspase-mediated apoptosis and cell differentiation and examine the distinguishing features of these events. More critically, we chronicle the evolutionary origins of caspases and propose that caspases may have held an ancient role in mediating the fidelity of cell division/differentiation through its effects on proteostasis and protein quality control. PMID:28338655

  10. Defects in regulation of apoptosis in caspase-2-deficient mice

    PubMed Central

    Bergeron, Louise; Perez, Gloria I.; Macdonald, Glen; Shi, Lianfa; Sun, Yi; Jurisicova, Andrea; Varmuza, Sue; Latham, Keith E.; Flaws, Jodi A.; Salter, Jessica C.M.; Hara, Hideaki; Moskowitz, Michael A.; Li, En; Greenberg, Arnold; Tilly, Jonathan L.; Yuan, Junying

    1998-01-01

    During embryonic development, a large number of cells die naturally to shape the new organism. Members of the caspase family of proteases are essential intracellular death effectors. Herein, we generated caspase-2-deficient mice to evaluate the requirement for this enzyme in various paradigms of apoptosis. Excess numbers of germ cells were endowed in ovaries of mutant mice and the oocytes were found to be resistant to cell death following exposure to chemotherapeutic drugs. Apoptosis mediated by granzyme B and perforin was defective in caspase-2-deficient B lymphoblasts. In contrast, cell death of motor neurons during development was accelerated in caspase-2-deficient mice. In addition, caspase-2-deficient sympathetic neurons underwent apoptosis more effectively than wild-type neurons when deprived of NGF. Thus, caspase-2 acts both as a positive and negative cell death effector, depending upon cell lineage and stage of development. PMID:9573047

  11. Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin.

    PubMed

    Hentze, H; Lin, X Y; Choi, M S K; Porter, A G

    2003-09-01

    The potassium ionophore nigericin induces cell death and promotes the maturation and release of IL-1beta in lipopolysaccharide (LPS)-primed monocytes and macrophages, the latter depending on caspase-1 activation by an unknown mechanism. Here, we investigate the pathway that triggers cell death and activates caspase-1. We show that without LPS priming, nigericin alone triggered caspase-1 activation and IL-18 generation in THP-1 monocytic cells. Simultaneously, nigericin induced caspase-1-independent necrotic cell death, which was blocked by the cathepsin B inhibitor CA-074-Me and other cathepsin inhibitors. Cathepsin B activation after nigericin treatment was determined biochemically and corroborated by rapid lysosomal leakage and translocation of cathepsin B to the cytoplasm. IL-18 maturation was prevented by both caspase-1 and cathepsin B inhibitors in THP-1 cells, primary mouse macrophages and human blood monocytes. Moreover, IL-18 generation was reduced in THP-1 cells stably transformed either with cystatin A (an endogenous cathepsin inhibitor) or antisense cathepsin B cDNA. Collectively, our study establishes a critical role for cathepsin B in nigericin-induced caspase-1-dependent IL-18 maturation and caspase-1-independent necrosis.

  12. Pharmacological Inhibition of Caspase-2 Protects Axotomised Retinal Ganglion Cells from Apoptosis in Adult Rats

    PubMed Central

    Vigneswara, Vasanthy; Berry, Martin; Logan, Ann; Ahmed, Zubair

    2012-01-01

    Severing the axons of retinal ganglion cells (RGC) by crushing the optic nerve (ONC) causes the majority of RGC to degenerate and die, primarily by apoptosis. We showed recently that after ONC in adult rats, caspase-2 activation occurred specifically in RGC while no localisation of caspase-3 was observed in ganglion cells but in cells of the inner nuclear layer. We further showed that inhibition of caspase-2 using a single injection of stably modified siRNA to caspase-2 protected almost all RGC from death at 7 days, offering significant protection for up to 1 month after ONC. In the present study, we confirmed that cleaved caspase-2 was localised and activated in RGC (and occasional neurons in the inner nuclear layer), while TUNEL+ RGC were also observed after ONC. We then investigated if suppression of caspase-2 using serial intravitreal injections of the pharmacological inhibitor z-VDVAD-fmk (z-VDVAD) protected RGC from death for 15 days after ONC. Treatment of eyes with z-VDVAD suppressed cleaved caspase-2 activation by >85% at 3–4 days after ONC. Increasing concentrations of z-VDVAD protected greater numbers of RGC from death at 15 days after ONC, up to a maximum of 60% using 4000 ng/ml of z-VDVAD, compared to PBS treated controls. The 15-day treatment with 4000 ng/ml of z-VDVAD after ONC suppressed levels of cleaved caspase-2 but no significant changes in levels of cleaved caspase-3, -6, -7 or -8 were detected. Although suppression of caspase-2 protected 60% of RGC from death, RGC axon regeneration was not promoted. These results suggest that caspase-2 specifically mediates death of RGC after ONC and that suppression of caspase-2 may be a useful therapeutic strategy to enhance RGC survival not only after axotomy but also in diseases where RGC death occurs such as glaucoma and optic neuritis. PMID:23285297

  13. Estrous sheep serum enables in vitro capacitation of ram spermatozoa while preventing caspase activation.

    PubMed

    Del Olmo, E; García-Álvarez, O; Maroto-Morales, A; Ramón, M; Jiménez-Rabadán, P; Iniesta-Cuerda, M; Anel-Lopez, L; Martinez-Pastor, F; Soler, A J; Garde, J J; Fernández-Santos, M R

    2016-01-15

    Estrous sheep serum (ESS) is considered the most efficient agent for in vitro capacitation of ram spermatozoa. We have explored the relationship between caspase activation and capacitation in ram. Semen samples from 17 rams were cryopreserved. In vivo fertility was evaluated after intrauterine artificial insemination. Samples were submitted to four treatments: control, ESS (10%), caspase inhibitor (Z-VAD-FMK), and estrous ewe serum plus caspase inhibitor (I + E). Sperm samples were incubated for 30 minutes at 38.5 °C and 5% CO2 and analyzed with flow cytometry for mitochondrial membrane potential (MitoTracker deep red), sperm viability and apoptosis-like changes (YO-PRO-1/propidium iodide), acrosomal status (peanut agglutinin-fluorescein isothiocyanate), membrane fluidity (merocyanine 540), and caspase activity (Vybrant FAM kits for polycaspases, caspase-8, and caspases 3-7). Estrous sheep serum induced changes compatible with capacitation, doubling the proportion of viable spermatozoa with increased merocyanine 540 and increasing YO-PRO-1(+) and acrosome-reacted spermatozoa (P < 0.05). Incubation increased the proportion of spermatozoa with activated caspases (P < 0.05), which was abolished by the treatments. We detected a simultaneous decrease in the proportion of the viable and caspase(-) spermatozoa after the incubation, which was prevented by the presence of estrous ewe serum (P < 0.05). The analysis of caspases 3/7 and 8 resulted in less marked differences. Fertility was positively related to viability and inactivated caspases and negatively to viable-capacitated spermatozoa and active caspases. In vitro induction of capacitation in thawed ram spermatozoa by using ESS suggests a downregulation in apoptotic pathways. However, males with the lowest fertility showed parameters similar to high-fertility males, suggesting that other factors were involved apart from capacitation and/or caspase activation.

  14. Low doses of the novel caspase-inhibitor GS-9450 leads to lower caspase-3 and -8 expression on peripheral CD4+ and CD8+ T-cells.

    PubMed

    Arends, J E; Hoepelman, A I M; Nanlohy, N M; Höppener, F J P; Hirsch, K R; Park, J G; van Baarle, D

    2011-09-01

    Chronic hepatitis C virus (HCV) infection is characterized by increased rates of apoptotic hepatocytes and activated caspases have been shown in HCV-infected patients. GS-9450, a novel caspase-inhibitor has demonstrated hepatoprotective activity in fibrosis/apoptosis animal models. This study evaluated the effects of GS-9450 on peripheral T-cell apoptosis in chronic HCV-infected patients. As sub study of the GS-US-227-0102, a double-blind, placebo-controlled phase 2a trial evaluating the safety and tolerability of GS-9450, apoptosis of peripheral CD4+ and CD8+ T-cells was measured using activated caspase-3, activated caspase-8 and CD95 (Fas). Blood samples were drawn at baseline, day 14 after therapy and at 5 weeks off-treatment follow-up in the first cohort of 10 mg. In contrast to the placebo-treated patients, GS-9450 caused a median of 46% decrease in ALT-values from baseline to day 14 in all treated patients (median of 118-64 U/l) rising again to a median of 140 U/l (19%) at 5 weeks off-treatment follow-up. In GS9450-treated patients, during treatment and follow-up, percentages of activated caspase-3+ and caspase-8 expression tended to decrease, in contrast to placebo-treated patients. Interestingly, compared to healthy controls, higher percentages of caspase-3 and caspase-8 positive CD4+ and CD8+ T-cells were demonstrated in HCV-infected patients at baseline. Decreased ALT-values were observed in all HCV-infected patients during treatment with low dose of the caspase-inhibitor GS-9450 accompanied by a lower expression of caspase-3 and -8 on peripheral T-cells. Furthermore, at baseline percentages of activated caspase-3, activated caspase-8 and CD95+ T-cells were higher in chronic HCV-infected patients compared to healthy controls.

  15. Caspase-8 inhibition represses initial human monocyte activation in septic shock model

    PubMed Central

    Oliva-Martin, Maria Jose; Sanchez-Abarca, Luis Ignacio; Rodhe, Johanna; Carrillo-Jimenez, Alejandro; Vlachos, Pinelopi; Herrera, Antonio Jose; Garcia-Quintanilla, Albert; Caballero-Velazquez, Teresa; Perez-Simon, Jose Antonio; Joseph, Bertrand; Venero, Jose Luis

    2016-01-01

    In septic patients, the onset of septic shock occurs due to the over-activation of monocytes. We tested the therapeutic potential of directly targeting innate immune cell activation to limit the cytokine storm and downstream phases. We initially investigated whether caspase-8 could be an appropriate target given it has recently been shown to be involved in microglial activation. We found that LPS caused a mild increase in caspase-8 activity and that the caspase-8 inhibitor IETD-fmk partially decreased monocyte activation. Furthermore, caspase-8 inhibition induced necroptotic cell death of activated monocytes. Despite inducing necroptosis, caspase-8 inhibition reduced LPS-induced expression and release of IL-1β and IL-10. Thus, blocking monocyte activation has positive effects on both the pro and anti-inflammatory phases of septic shock. We also found that in primary mouse monocytes, caspase-8 inhibition did not reduce LPS-induced activation or induce necroptosis. On the other hand, broad caspase inhibitors, which have already been shown to improve survival in mouse models of sepsis, achieved both. Thus, given that monocyte activation can be regulated in humans via the inhibition of a single caspase, we propose that the therapeutic use of caspase-8 inhibitors could represent a more selective alternative that blocks both phases of septic shock at the source. PMID:27250033

  16. Generation and characterization of antibodies specific for caspase-cleaved neo-epitopes: a novel approach.

    PubMed

    Ai, X; Butts, B; Vora, K; Li, W; Tache-Talmadge, C; Fridman, A; Mehmet, H

    2011-09-01

    Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity.

  17. Generation and characterization of antibodies specific for caspase-cleaved neo-epitopes: a novel approach

    PubMed Central

    Ai, X; Butts, B; Vora, K; Li, W; Tache-Talmadge, C; Fridman, A; Mehmet, H

    2011-01-01

    Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity. PMID:21881607

  18. Implication of calpain in caspase activation during B cell clonal deletion.

    PubMed Central

    Ruiz-Vela, A; González de Buitrago, G; Martínez-A, C

    1999-01-01

    In the absence of costimulating signals, B cell receptor (BCR) crosslinking on immature B cells triggers the apoptotic cell death program. In the WEHI-231 B cell lymphoma model, anti-IgM crosslinking triggers activation of caspase-7 independently of caspase-8, followed by apoptosis. Two main mechanisms for caspase-7 activation have been proposed: (i) caspase-8 recruitment to death receptors (Fas or tumour necrosis factor); and (ii) changes in mitochondrial membrane permeability and cytochrome c release, which activate caspase-9. Here we report that caspase-7 activation induced by BCR crosslinking is independent of caspase-8 and cytochrome c translocation from mitochondria to the cytosol, as well as of mitochondrial depolarization. In addition, in a cell-free system, the S-100 fraction of anti-IgM-treated WEHI-231 cells induces a caspase activation pattern different from that activated by cytochrome c and dATP. We demonstrate that calpain specifically triggers activation and processing of caspase-7 both in vitro and in vivo, and that both processes are inhibited by calpain inhibitors. Furthermore, calpain activation is associated with decreased expression levels of calpastatin, which is upregulated by CD40 ligation. These data confirm a role for calpain during BCR crosslinking, which may be critical for cell deletion by apoptosis during B cell development and activation. PMID:10487751

  19. Caspase activity is not required for the mitotic checkpoint or mitotic slippage in human cells

    PubMed Central

    Lee, Kyunghee; Kenny, Alison E.; Rieder, Conly L.

    2011-01-01

     Biochemical studies suggest that caspase activity is required for a functional mitotic checkpoint (MC) and mitotic slippage. To test this directly, we followed nontransformed human telomerase immortalized human retinal pigment epithelia (RPE-1) cells through mitosis after inhibiting or depleting selected caspases. We found that inhibiting caspases individually, in combination, or in toto did not affect the duration or fidelity of mitosis in otherwise untreated cells. When satisfaction of the MC was prevented with 500 nM nocodazole or 2.5 μM dimethylenastron (an Eg5 inhibitor), 92–100% of RPE-1 cells slipped from mitosis in the presence of pan-caspase inhibitors or after simultaneously depleting caspase-3 and -9, and they did so with the same kinetics (∼21–22 h) as after treatment with nocodazole or Eg5 inhibitors alone. Surprisingly, inhibiting or depleting caspase-9 alone doubled the number of nocodazole-treated, but not Eg5-inhibited, cells that died in mitosis. In addition, inhibiting or depleting caspase-9 and -3 together accelerated the rate of slippage ∼40% (to ∼13–15 h). Finally, nocodazole-treated cells that recently slipped through mitosis in the presence or absence of pan-caspase inhibitors contained numerous BubR1 foci in their nuclei. From these data, we conclude that caspase activity is not required for a functional MC or for mitotic slippage. PMID:21613548

  20. Engineering a light-activated caspase-3 for precise ablation of neurons in vivo.

    PubMed

    Smart, Ashley D; Pache, Roland A; Thomsen, Nathan D; Kortemme, Tanja; Davis, Graeme W; Wells, James A

    2017-09-11

    The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV-induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms.

  1. Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme

    PubMed Central

    Li, Yini; Zhou, Mengying; Hu, Qi; Bai, Xiao-chen; Huang, Weiyun; Shi, Yigong

    2017-01-01

    Mammalian intrinsic apoptosis requires activation of the initiator caspase-9, which then cleaves and activates the effector caspases to execute cell killing. The heptameric Apaf-1 apoptosome is indispensable for caspase-9 activation by together forming a holoenzyme. The molecular mechanism of caspase-9 activation remains largely enigmatic. Here, we report the cryoelectron microscopy (cryo-EM) structure of an apoptotic holoenzyme and structure-guided biochemical analyses. The caspase recruitment domains (CARDs) of Apaf-1 and caspase-9 assemble in two different ways: a 4:4 complex docks onto the central hub of the apoptosome, and a 2:1 complex binds the periphery of the central hub. The interface between the CARD complex and the central hub is required for caspase-9 activation within the holoenzyme. Unexpectedly, the CARD of free caspase-9 strongly inhibits its proteolytic activity. These structural and biochemical findings demonstrate that the apoptosome activates caspase-9 at least in part through sequestration of the inhibitory CARD domain. PMID:28143931

  2. Somatic mutations of caspase-2 gene in gastric and colorectal cancers.

    PubMed

    Kim, Min Sung; Kim, Ho Shik; Jeong, Eun Goo; Soung, Young Hwa; Yoo, Nam Jin; Lee, Sug Hyung

    2011-10-15

    There is mounting evidence that evasion of apoptosis is a hallmark of cancer. Caspase-2, which plays roles in both extrinsic and intrinsic apoptosis pathways, is considered a candidate tumor suppressor. The aim of this study was to explore the possibility that genetic alterations of caspase-2 gene are present in human cancers. In this study, we analyzed the entire coding sequences of human caspase-2 gene for the detection of somatic point mutations in 90 gastric carcinomas and 100 colorectal carcinomas by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP). Of the cancers analyzed, two gastric cancers (2/90; 2.2%) and two colorectal cancers (2/100; 2.0%) harbored somatic missense mutations of caspase-2. The mutations consisted of p.V46M (at prodomain), p.S157L (at prodomain), p.R357K (at p13 subunit), and p.R397L (at p13 subunit). We expressed these tumor-derived mutants in 293 T cells and found that three of the mutants decreased cell death activity of caspase-2. Our data indicate that somatic mutation of caspase-2 is rare in gastric and colorectal carcinomas. However, functional data of the caspase-2 mutations also suggest that caspase-2 gene mutation might affect the pathogenesis of some gastric and colorectal cancers by inactivating cell death function of caspase-2. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Caspase-1 activity is required for UVB-induced apoptosis of human keratinocytes.

    PubMed

    Sollberger, Gabriel; Strittmatter, Gerhard E; Grossi, Serena; Garstkiewicz, Martha; Auf dem Keller, Ulrich; French, Lars E; Beer, Hans-Dietmar

    2015-05-01

    Caspase-1 has a crucial role in innate immunity as the protease activates the proinflammatory cytokine prointerleukin(IL)-1β. Furthermore, caspase-1 induces pyroptosis, a lytic form of cell death that supports inflammation. Activation of caspase-1 occurs in multi-protein complexes termed inflammasomes, which assemble upon sensing of stress signals. In the skin and in skin-derived keratinocytes, UVB irradiation induces inflammasome-dependent IL-1 secretion and sunburn. Here we present evidence that caspase-1 and caspase-4 are required for UVB-induced apoptosis. In UVB-irradiated human primary keratinocytes, apoptosis occurs significantly later than inflammasome activation but depends on caspase-1 activity. However, it proceeds independently of inflammasome activation. By a proteomics approach, we identified the antiapoptotic Bap31 as a putative caspase-1 substrate. Caspase-1-dependent apoptosis is possibly a recent process in evolution as it was not detected in mice. These results suggest a protective role of caspase-1 in keratinocytes during UVB-induced skin cancer development through the induction of apoptosis.

  4. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury

    PubMed Central

    Mitra, Srabani

    2015-01-01

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury. PMID:26710067

  5. Caspase Inhibition Blocks Cell Death and Enhances Mitophagy but Fails to Promote T-Cell Lymphoma

    PubMed Central

    Wang, Sih-han; Martin, Sean M.; Harris, Peter S.; Knudson, C. Michael

    2011-01-01

    Caspase-9 is a component of the apoptosome that mediates cell death following release of cytochrome c from mitochondria. Inhibition of Caspase-9 with a dominant negative construct (Casp9DN) blocks apoptosome function, promotes viability and has been implicated in carcinogenesis. Inhibition of the apoptosome in vitro impairs mitochondrial function and promotes mitophagy. To examine whether inhibition of the apoptosome would enhance mitophagy and promote oncogenesis in vivo, transgenic mice were generated that express Casp9DN in the T cell lineage. The effects of Casp9DN on thymocyte viability, mitophagy and thymic tumor formation were examined. In primary thymocytes, Casp9DN delayed dexamethasone (Dex)-induced cell death, altered mitochondrial structure, and decreased oxidant production. Transmission electron microscopy (TEM) revealed that inhibition of the apoptosome resulted in structurally abnormal mitochondria that in some cases were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitochondria being engulfed by autophagosomes (mitophagy), confocal microscopy showed colocalization of LC3-GFP and mitochondria. However, Casp9DN did not significantly accelerate T-cell lymphoma alone, or in combination with Lck-Bax38/1, or with Beclin 1+/− mice, two tumor-prone strains in which altered mitochondrial function has been implicated in promoting tumor development. In addition, heterozygous disruption of Beclin 1 had no effect on T-cell lymphoma formation in Lck-Bax38/1 mice. Further studies showed that Beclin 1 levels had no effect on Casp9DN-induced loss of mitochondrial function. These results demonstrate that neither inhibition of apoptosome function nor Beclin 1 haploinsufficiency accelerate T-cell lymphoma development in mice. PMID:21611191

  6. Phylogenomics of caspase-activated DNA fragmentation factor

    SciTech Connect

    Eckhart, Leopold . E-mail: leopold.eckhart@meduniwien.ac.at; Fischer, Heinz; Tschachler, Erwin

    2007-04-27

    The degradation of nuclear DNA by DNA fragmentation factor (DFF) is a key step in apoptosis of mammalian cells. Using comparative genomics, we have here determined the evolutionary history of the genes encoding the two DFF subunits, DFFA (also known as ICAD) and DFFB (CAD). Orthologs of DFFA and DFFB were identified in Nematostella vectensis, a representative of the primitive metazoan clade cnidarians, and in various vertebrates and insects, but not in representatives of urochordates, echinoderms, and nematodes. The domains mediating the interaction of DFFA and DFFB, a caspase cleavage site in DFFA, and the amino acid residues critical for endonuclease activity of DFFB were conserved in Nematostella. These findings suggest that DFF has been a part of the primordial apoptosis system of the eumetazoan common ancestor and that the ancient cell death machinery has degenerated in several evolutionary lineages, including the one leading to the prototypical apoptosis model, Caenorhabditis elegans.

  7. Insight into the inflammasome and caspase-activating mechanisms.

    PubMed

    Gaide, Olivier; Hoffman, Hal M

    2008-01-01

    Inflammasomes are recently discovered molecular complexes that can sense danger signals and specifically activate caspase-1 and -5 and proinflammatory cytokines (IL-1beta and IL-18). Upon signaling, the inflammasome complex forms around a NOD-like receptor family member that serves both as a danger sensor and as a recruiting platform. The number of known triggers that stimulate inflammasomes is rapidly rising, ranging from genetic mutations to microbial products, gout crystals, ultraviolet light and adjuvant chemicals. As a result of this surprising diversity, the inflammasome may have a significant impact on most medical fields. A good understanding of the molecular mechanisms underlying its activation/regulation is essential today, as several therapeutic and diagnostic tools have already reached the bedside, and more are sure to come.

  8. [Advances of researches on caspases in neurodegenerative diseases].

    PubMed

    Xue, Hongyu; Fang, Xuemei; Wang, Weiwei; Gao, Guizhen

    2013-04-01

    Acute and chronic neurodegenerative diseases are illnesses associated with high morbidity and mortality, and few or no effective options are available for their treatments. Many neurodegenerative diseases are included in them, for example, stroke, brain trauma, spinal cord injury, amyotrophic lateral sclerosis (ALS), Huntington's disease, Alzheimer's disease, and Parkinson's disease. Given that central nervous system tissue has very limited, if any, regenerative capacity, it is of utmost importance to limit the damage caused by neuronal death. During the past decade, considerable progress has been made in understanding the process of cell death. In this article, we review the causes and mechanisms of neuronal-cell death, especially as it pertains to the caspases family of proteases associated with cell death. The results may be helpful to the experimental research and clinical application of neurodegenerative diseases.

  9. Apoptosis and caspases regulate death and inflammation in sepsis.

    PubMed

    Hotchkiss, Richard S; Nicholson, Donald W

    2006-11-01

    Although the prevailing concept has been that mortality in sepsis results from an unbridled hyper-inflammatory cytokine-mediated response, the failure of more than 30 clinical trials to treat sepsis by controlling this cytokine response requires a 'rethink' of the molecular mechanism underpinning the development of sepsis. As we discuss here, remarkable new studies indicate that most deaths from sepsis are actually the result of a substantially impaired immune response that is due to extensive death of immune effector cells. Rectification of this apoptotic-inflammatory imbalance using modulators of caspases and other components of the cell-death pathway have shown striking efficacy in stringent animal models of sepsis, indicating an entirely novel path forward for the clinical treatment of human sepsis.

  10. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    PubMed Central

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  11. Tissue Crowding Induces Caspase-Dependent Competition for Space

    PubMed Central

    Levayer, Romain; Dupont, Carole; Moreno, Eduardo

    2016-01-01

    Summary Regulation of tissue size requires fine tuning at the single-cell level of proliferation rate, cell volume, and cell death. Whereas the adjustment of proliferation and growth has been widely studied [1, 2, 3, 4, 5], the contribution of cell death and its adjustment to tissue-scale parameters have been so far much less explored. Recently, it was shown that epithelial cells could be eliminated by live-cell delamination in response to an increase of cell density [6]. Cell delamination was supposed to occur independently of caspase activation and was suggested to be based on a gradual and spontaneous disappearance of junctions in the delaminating cells [6]. Studying the elimination of cells in the midline region of the Drosophila pupal notum, we found that, contrary to what was suggested before, Caspase 3 activation precedes and is required for cell delamination. Yet, using particle image velocimetry, genetics, and laser-induced perturbations, we confirmed [6] that local tissue crowding is necessary and sufficient to drive cell elimination and that cell elimination is independent of known fitness-dependent competition pathways [7, 8, 9]. Accordingly, activation of the oncogene Ras in clones was sufficient to compress the neighboring tissue and eliminate cells up to several cell diameters away from the clones. Mechanical stress has been previously proposed to contribute to cell competition [10, 11]. These results provide the first experimental evidences that crowding-induced death could be an alternative mode of super-competition, namely mechanical super-competition, independent of known fitness markers [7, 8, 9], that could promote tumor growth. PMID:26898471

  12. Caspase-1 Plays a Critical Role in Accelerating Chronic Kidney Disease-Promoted Neointimal Hyperplasia in the Carotid Artery.

    PubMed

    Ferrer, Lucas M; Monroy, Alexandra M; Lopez-Pastrana, Jahaira; Nanayakkara, Gayani; Cueto, Ramon; Li, Ya-Feng; Li, Xinyuan; Wang, Hong; Yang, Xiao-Feng; Choi, Eric T

    2016-04-01

    To determine whether caspase-1 is critical in chronic kidney disease (CKD)-mediated arterial neointimal hyperplasia (NH), we utilized caspase(-/-) mice and induced NH in carotid artery in a CKD environment, and uremic sera-stimulated human vascular smooth muscle cells (VSMC). We made the following findings: (1) Caspase-1 inhibition corrected uremic sera-mediated downregulation of VSMC contractile markers, (2) CKD-promoted NH was attenuated in caspase(-/-) mice, (3) CKD-mediated downregulation of contractile markers was rescued in caspase null mice, and (4) expression of VSMC migration molecule αvβ3 integrin was reduced in caspase(-/-) tissues. Our results suggested that caspase-1 pathway senses CKD metabolic danger signals. Further, CKD-mediated increase of contractile markers in VSMC and increased expression of VSMC migration molecule αvβ3 integrin in NH formation were caspase-1 dependent. Therefore, caspase-1 is a novel therapeutic target for the suppression of CKD-promoted NH.

  13. Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent

    PubMed Central

    Moore, Jonathan D; Rothwell, Nancy J; Gibson, Rosemary M

    2002-01-01

    Caspases and calpains are mediators of apoptotic cell death. The objective of this study was to determine the role of caspases and calpains in primary cerebrocortical neuronal (CCN) death in response to a range of stimuli which reportedly induce neuronal apoptosis. Cell death of primary cultures of rat CCN was induced by staurosporine (STS), C2-ceramide (CER), camptothecin (CMT), hydrogen peroxide (H2O2) or N-methyl-D-aspartate (NMDA). Caspase and calpain activity were assessed by cleavage of α-fodrin or fluorogenic substrates. Cell death was analysed by lactate dehydrogenase (LDH) assay in the absence or presence of the pan-caspase inhibitor Boc-Asp-(OMe)-Fluoromethylketone (Baf) and/or the calpain inhibitor calpeptin (CP). Cell death induced by STS, CER or CMT was accompanied by chromatin condensation and activation of multiple caspases, particularly caspase-3-type proteases. Hydrogen peroxide (H2O2) treatment was accompanied by activation of caspases -1, -6 and -8, but not -3, whereas none of the caspases tested were activated in response to NMDA. With the exception of H2O2, when cell death was accompanied by caspase activation, it was significantly suppressed by Baf. All stimuli also induced calpain activation, but calpeptin only suppressed cell death induced by H2O2. Furthermore, co-treatment with Baf and calpeptin did not alter the cell death relative to either inhibitor alone. These findings suggest the existence of stimulus-dependent routes for the activation of caspases and calpains during death of cortical neurones and imply that although caspases and calpains are activated, their involvement in the execution of cell death varies with the stimulus. PMID:11861336

  14. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model.

    PubMed

    Yang, Cheng; Zhao, Tian; Zhao, Zitong; Jia, Yichen; Li, Long; Zhang, Yufang; Song, Mangen; Rong, Ruiming; Xu, Ming; Nicholson, Michael L; Zhu, Tongyu; Yang, Bin

    2014-10-01

    The naked small interfering RNA (siRNA) of caspase-3, a key player in ischemia reperfusion injury, was effective in cold preserved and hemoreperfused kidneys, but not autotransplanted kidneys in our porcine models. Here, chemically modified serum stabilized caspase-3 siRNAs were further evaluated. The left kidney was retrieved and infused by University of Wisconsin solution with/without 0.3 mg caspase-3 or negative siRNA into the renal artery for 24-hour cold storage (CS). After an intravenous injection of 0.9 mg siRNA and right-uninephrectomy, the left kidney was autotransplanted for 2 weeks. The effectiveness of caspase-3 siRNA was confirmed by caspase-3 knockdown in the post-CS and/or post-transplant kidneys with reduced apoptosis and inflammation, while the functional caspase-3 siRNA in vivo was proved by detected caspase-3 mRNA degradation intermediates. HMGB1 protein was also decreased in the post-transplanted kidneys; correlated positively with renal IL-1β mRNA, but negatively with serum IL-10 or IL-4. The minimal off-target effects of caspase-3 siRNA were seen with favorable systemic responses. More importantly, renal function, associated with active caspase-3, HMGB1, apoptosis, inflammation, and tubulointerstitial damage, was improved by caspase-3 siRNA. Taken together, the 2-week autotransplanted kidneys were protected when caspase-3 siRNA administrated locally and systemically, which provides important evidence for future clinical trials.

  15. Proteinase 3 and Serpin B1: a novel pathway in the regulation of caspase-3 activation, neutrophil spontaneous apoptosis, and inflammation.

    PubMed

    Loison, Fabien; Xu, Yuanfu; Luo, Hongbo R

    Neutrophils are the first responders of the inflammatory response. They are characterized by their potent cytotoxic content but also by their limited lifetime. This short half-life is thought to be a self-protecting mechanism for the host, as highlighted by the numerous pathologies associated with imbalanced neutrophil survival. Neutrophil spontaneous death is the prototype of programmed cell death, harboring all the phenotypic hallmarks of apoptosis and dependent on the activation of the effector caspase-3. However, the pathways regulating neutrophil spontaneous death remain ill-defined. In a recent publication, we determined that in aging neutrophils, the cleavage and activation of caspase-3 was mediated by the serine protease Proteinase 3 (PR3), and was independent of the canonical extrinsic and intrinsic apoptosis pathways. In mature neutrophils, PR3 was stored in granules and progressively released to the cytosol during neutrophil aging. The release of PR3 was dependent on lysosomal membrane permeabilization (LMP). Once in the cytosol, PR3 cleaved procaspase-3 at a site upstream of the caspase-9 cleavage site, leading to caspase-3 activation. Inhibition, knockdown or knockout of PR3 delayed neutrophil apoptosis in vitro and in vivo. The adoptive transfer of both WT and PR3-deficient neutrophils to WT mice revealed that the delayed death of neutrophils lacking PR3 in vivo was due to an altered intrinsic apoptosis/survival pathway and not to difference in the inflammatory microenvironment. The cytosolic inhibitor of serine proteases serpin b1 counterbalanced the activity of PR3 in the cytosol of neutrophils, and the deletion of serpinb1 in neutrophils accelerated their spontaneous death. In summary, our results reveal that PR3 and serpinB1 are part of a newly characterized apoptosis pathway, regulating caspase-3 activation and neutrophil spontaneous death and the survival of neutrophils during inflammation.

  16. Proteinase 3 and Serpin B1: a novel pathway in the regulation of caspase-3 activation, neutrophil spontaneous apoptosis, and inflammation

    PubMed Central

    Xu, Yuanfu; Luo, Hongbo R

    2015-01-01

    Neutrophils are the first responders of the inflammatory response. They are characterized by their potent cytotoxic content but also by their limited lifetime. This short half-life is thought to be a self-protecting mechanism for the host, as highlighted by the numerous pathologies associated with imbalanced neutrophil survival. Neutrophil spontaneous death is the prototype of programmed cell death, harboring all the phenotypic hallmarks of apoptosis and dependent on the activation of the effector caspase-3. However, the pathways regulating neutrophil spontaneous death remain ill-defined. In a recent publication, we determined that in aging neutrophils, the cleavage and activation of caspase-3 was mediated by the serine protease Proteinase 3 (PR3), and was independent of the canonical extrinsic and intrinsic apoptosis pathways. In mature neutrophils, PR3 was stored in granules and progressively released to the cytosol during neutrophil aging. The release of PR3 was dependent on lysosomal membrane permeabilization (LMP). Once in the cytosol, PR3 cleaved procaspase-3 at a site upstream of the caspase-9 cleavage site, leading to caspase-3 activation. Inhibition, knockdown or knockout of PR3 delayed neutrophil apoptosis in vitro and in vivo. The adoptive transfer of both WT and PR3-deficient neutrophils to WT mice revealed that the delayed death of neutrophils lacking PR3 in vivo was due to an altered intrinsic apoptosis/survival pathway and not to difference in the inflammatory microenvironment. The cytosolic inhibitor of serine proteases serpin b1 counterbalanced the activity of PR3 in the cytosol of neutrophils, and the deletion of serpinb1 in neutrophils accelerated their spontaneous death. In summary, our results reveal that PR3 and serpinB1 are part of a newly characterized apoptosis pathway, regulating caspase-3 activation and neutrophil spontaneous death and the survival of neutrophils during inflammation. PMID:26029732

  17. [Effects of zhibal dihuang decotion on UU-infected rat's spermatogenic cell apoptosis and expressions of caspase-3 and caspase-9].

    PubMed

    Liu, Chao-sheng; Lu, Fang-guo; He, Qing-hu

    2011-09-01

    To observe the effects of Zhibai Dihuang Decotion (ZDD) on the ureaplasma urealyticum (UU)-infected rats' spermatogenic cell apoptosis and expressions of Caspase-3 and Caspase-9. 45 out of 60 male SD rats were randomly selected and made into the UU infected animal model. The rest 15 were taken as the sham-operation group. The UU infected model animals were then randomly divided into the model group, the minocycline group, and the ZDD group. From the 10th day after inoculation, normal saline was given to rats of the model group and the sham-operation group by gastrogavage, while corresponding medicines were given to rats in the minocycline group and the ZDD group. All rats were killed after 21 successive days of gastrogavage. The apoptosis rate of reproductive cells, Caspase-3 and Caspase-9 expression levels and ultrastructure changes of spermatogenic cells of each group were detected and compared. There was statistical difference in the positive rate of the UU cultivation results, the apoptosis rate of reproductive cells, Caspase-3 and Caspase-9 expression levels in the sham-operation group, the minocycline group, and the ZDD group when compared with the model group (P<0.05). There was statistical difference in the aforesaid indices in the minocycline group and the ZDD group when compared with the sham-operation group (P<0.05). Still there was no statistical difference in the aforesaid indices between the minocycline group and the ZDD group (P>0.05). UU infection can lead to the increasing of spermatogenic cell's apoptosis in rats. ZDD could actively inhibit the growth and production of UU with anti-UU. One of the mechanisms of ZDD in treating UU infection and improving the sperm quality is through regulating the expressions of the apoptosis effect factors Caspase-3 and Caspase-9.

  18. ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions.

    PubMed

    Sarkar, Anasuya; Duncan, Michelle; Hart, Judy; Hertlein, Erin; Guttridge, Denis C; Wewers, Mark D

    2006-04-15

    Receptor interacting protein-2 (RIP2) is a caspase recruitment domain (CARD)-containing kinase that interacts with caspase-1 and plays an important role in NF-kappaB activation. Apoptosis-associated speck-like protein containing a CARD (ASC) is a PYRIN and CARD-containing molecule, important in the induction of apoptosis and caspase-1 activation. Although RIP2 has also been linked to caspase-1 activation, RIP2 knockout animals fail to show a defect in caspase-1-mediated processing of proIL-1beta to its active form. Therefore, RIP2 function in binding to caspase-1 remains poorly understood. We hypothesized that caspase-1 may serve as a scaffolding molecule that promotes RIP2 interaction with IkappaB kinase-gamma thus inducing NF-kappaB activation. We further hypothesized that ASC, which also interacts with caspase-1 via its CARD, may interfere with the caspase-1 RIP2 interaction. In HEK293 cells, ASC induced prominent activation of caspase-1 and proIL-1beta processing. RIP2 transient transfection induced transcription of an NF-kappaB reporter gene. This RIP2-induced NF-kappaB activity and caspase-1 binding was inhibited in a dose-dependent fashion by ASC. Consistent with a role for caspase-1 as a scaffold for RIP2, caspase-1 knockout macrophages were suppressed in their ability to activate NF-kappaB, and septic caspase-1 knockout animals produced less IL-6, a functional marker of NF-kappaB activity. Lastly, THP-1 cells treated with small interfering RNA for ASC decreased their caspase-1 activity while enhancing their NF-kappaB signal. These data suggest that ASC may direct caspase-1 away from RIP2-mediated NF-kappaB activation, toward caspase-1-mediated processing of proIL-1beta by interfering with the RIP2 caspase-1 interaction.

  19. A novel sesquiterpenoid dimer parviflorene F induces apoptosis by up-regulating the expression of TRAIL-R2 and a caspase-dependent mechanism.

    PubMed

    Ohtsuki, Takashi; Tamaki, Mayu; Toume, Kazuhumi; Ishibashi, Masami

    2008-02-15

    Parviflorene F (1), a novel sesquiterpenoid dimer isolated from Curcuma parviflora Wall, is a cytotoxic compound. In this study, we examined the mechanism of its cytotoxic effect in HeLa cells. Treatment with 1 enhanced the mRNA and protein expression of TRAIL-R2 (tumor necrosis factor alpha-related apoptosis inducing ligand receptor 2). Apoptosis was induced by 1 as revealed by the distribution of DNA and Annexin V/PI staining using flow cytometry. In addition, 1-induced apoptosis was inhibited by human recombinant TRAIL-R2/Fc chimera protein, TRAIL-neutralizing fusion protein. Also, we found that 1 induced the activation of caspase-8, caspase-9, and caspase-3, indicating that the cytotoxic effect of 1 is correlated with apoptosis by a caspase-dependent mechanism through TRAIL-R2. In addition, 1 enhanced TRAIL-induced cell death against HeLa and TRAIL-resistant DLD1 cells. Taken together, up-regulation of TRAIL-R2 by 1 may contribute to sensitization of TRAIL-induced cell death.

  20. NLRP3 (NALP3/CIAS1/Cryopyrin) mediates key innate and healing responses to influenza A virus via the regulation of caspase-1

    PubMed Central

    Thomas, Paul G.; Dash, Pradyot; Aldridge, Jerry R.; Ellebedy, Ali H.; Reynolds, Cory; Funk, Amy J.; Martin, William J.; Lamkanfi, Mohamed; Webby, Richard J.; Boyd, Kelli L.; Doherty, Peter C.; Kanneganti, Thirumala-Devi

    2009-01-01

    SUMMARY Virus-induced IL-1β and IL-18 production in macrophages is mediated via a caspase-1 pathway. Multiple microbial components, including viral RNA, are thought to trigger assembly of the cryopyrin inflammasome and consequent caspase-1 activation. Here we demonstrate that cryopyrin−/− and caspase-1−/− mice are more susceptible than wildtype controls following infection with a pathogenic influenza A virus. This profile of enhanced morbidity correlates with decreased neutrophil and monocyte recruitment and reduced cytokine and chemokine production. Despite the effect on innate immunity, cryopyrin-deficiency was not associated with any obvious defect in virus control or on the later emergence of the adaptive response. Early epithelial necrosis was, however, more severe in the infected mutants, with extensive collagen deposition leading to later respiratory compromise. These findings reveal a novel function of the cryopyrin inflammasome in healing responses. Cryopyrin and caspase-1 are clearly central to both innate immunity and to moderating lung pathology in influenza pneumonia. PMID:19362023

  1. Caspase-mediated proteolysis of the sorting nexin 2 disrupts retromer assembly and potentiates Met/hepatocyte growth factor receptor signaling

    PubMed Central

    Duclos, Catherine M; Champagne, Audrey; Carrier, Julie C; Saucier, Caroline; Lavoie, Christine L; Denault, Jean-Bernard

    2017-01-01

    The unfolding of apoptosis involves the cleavage of hundreds of proteins by the caspase family of cysteinyl peptidases. Among those substrates are proteins involved in intracellular vesicle trafficking with a net outcome of shutting down the crucial processes governing protein transport to organelles and to the plasma membrane. However, because of the intertwining of receptor trafficking and signaling, cleavage of specific proteins may lead to unintended consequences. Here we show that in apoptosis, sorting nexin 1 and 2 (SNX1 and SNX2), two proteins involved in endosomal sorting, are cleaved by initiator caspases and also by executioner caspase-6 in the case of SNX2. Moreover, SNX1 is cleaved at multiple sites, including following glutamate residues. Cleavage of SNX2 results in a loss of association with the endosome-to-trans-Golgi network transport protein Vps35 and in a delocalization from endosomes of its associated partner Vps26. We also demonstrate that SNX2 depletion causes an increase in hepatocyte growth factor receptor tyrosine phosphorylation and Erk1/2 signaling in cells. Finally, we show that SNX2 mRNA and protein levels are decreased in colorectal carcinoma and that lower SNX2 gene expression correlates with an increase in cancer patient mortality. Our study reveals the importance to characterize the cleavage fragments produced by caspases of specific death substrates given their potential implication in the mechanism of regulation of physiological (signaling/trafficking) pathways or in the dysfunction leading to pathogenesis. PMID:28179995

  2. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors.

    PubMed

    Tan, Janice G L; Lee, Yih Yean; Wang, Tianhua; Yap, Miranda G S; Tan, Tin Wee; Ng, Say Kong

    2015-05-01

    CHO cells are major production hosts for recombinant biologics including the rapidly expanding recombinant monoclonal antibodies (mAbs). Heat shock protein 27 (HSP27) expression was observed to be down-regulated towards the late-exponential and stationary phase of CHO fed-batch bioreactor cultures, whereas HSP27 was found to be highly expressed in human pathological cells and reported to have anti-apoptotic functions. These phenotypes suggest that overexpression of HSP27 is a potential cell line engineering strategy for improving robustness of CHO cells. In this work, HSP27 was stably overexpressed in CHO cells producing recombinant mAb and the effects of HSP27 on cell growth, volumetric production titer and product quality were assessed. Concomitantly, HSP27 anti-apoptosis functions in CHO cells were investigated. Stably transfected clones cultured in fed-batch bioreactors displayed 2.2-fold higher peak viable cell density, delayed loss of culture viability by two days and 2.3-fold increase in mAb titer without affecting the N-glycosylation profile, as compared to clones stably transfected with the vector backbone. Co-immunoprecipitation studies revealed HSP27 interactions with Akt, pro-caspase 3 and Daxx and caspase activity profiling showed delayed increase in caspase 2, 3, 8 and 9 activities. These results suggest that HSP27 modulates apoptosis signaling pathways and delays caspase activities to improve performance of CHO fed-batch bioreactor cultures.

  3. Vps41, a protein involved in lysosomal trafficking, interacts with caspase-8.

    PubMed

    Wang, Lu; Pan, Xiao; He, Liangqiang; Zhang, Rong; Chen, Wei; Zhang, Jing; Lu, Min; Hua, Zi-Chun

    2013-01-01

    Caspase-8 is a member of the cysteine-aspartic acid protease (caspase) family which plays a central role in apoptosis and development. We screened caspase-8 interacting proteins from mouse T-cell lymphoma and 7.5-day embryo cDNA libraries by yeast two-hybrid system and obtained eleven positive clones, including Vacuolar protein sorting 41 (Vps41), a protein involved in trafficking of proteins from the late Golgi to the vacuole. The interaction of Vps41 with caspase-8 was confirmed by co-immunoprecipitation (co-IP) and co-localization studies in HEK293T cells. Co-IP experiments also showed that Vps41 binds to the p18 subunit of caspase-8 through its WD40 region and RING-finger motif. Furthermore, we found that overexpression of Vps41 promotes Fas-induced apoptosis in A549 human lung adenocarcinoma cells. The cleavage of caspase-3, a caspase-8 downstream effector, was increased when cells were transfected with Vps41-overexpressing plasmid. Together, these results suggest a novel interaction of caspase-8 with Vps41 and provide a potential role of Vps41 beyond lysosomal trafficking.

  4. Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability.

    PubMed

    Dorstyn, L; Puccini, J; Wilson, C H; Shalini, S; Nicola, M; Moore, S; Kumar, S

    2012-08-01

    Caspase-2 is an initiator caspase, which has been implicated to function in apoptotic and non-apoptotic signalling pathways, including cell-cycle regulation, DNA-damage signalling and tumour suppression. We previously demonstrated that caspase-2 deficiency enhances E1A/Ras oncogene-induced cell transformation and augments lymphomagenesis in the EμMyc mouse model. Caspase-2(-/-) mouse embryonic fibroblasts (casp2(-/-) MEFs) show aberrant cell-cycle checkpoint regulation and a defective apoptotic response following DNA damage. Disruption of cell-cycle checkpoints often leads to genomic instability (GIN), which is a common phenotype of cancer cells and can contribute to cellular transformation. Here we show that caspase-2 deficiency results in increased DNA damage and GIN in proliferating cells. Casp2(-/-) MEFs readily escape senescence in culture and exhibit increased micronuclei formation and sustained DNA damage during cell culture and following γ-irradiation. Metaphase analyses demonstrated that a lack of caspase-2 is associated with increased aneuploidy in both MEFs and in EμMyc lymphoma cells. In addition, casp2(-/-) MEFs and lymphoma cells exhibit significantly decreased telomere length. We also noted that loss of caspase-2 leads to defective p53-mediated signalling and decreased trans-activation of p53 target genes upon DNA damage. Our findings suggest that loss of caspase-2 serves as a key function in maintaining genomic integrity, during cell proliferation and following DNA damage.

  5. Sulfur Mustard Induces Apoptosis in Lung Epithelial Cells via a Caspase Amplification Loop

    DTIC Science & Technology

    2010-01-01

    absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 9, 1046–1056. Dabrowska, M.I., Becks , L.L., Lelli Jr., J.L., Levee, M.G...Breton, P., Bren- ner, C., Boisvieux- Ulrich , E., Marano, F., 2006. Inhibition of caspase-dependent mitochondrial permeability transition protects airway

  6. Post-transcriptional control of executioner caspases by RNA-binding proteins

    PubMed Central

    Subasic, Deni; Stoeger, Thomas; Eisenring, Seline; Matia-González, Ana M.; Imig, Jochen; Zheng, Xue; Xiong, Lei; Gisler, Pascal; Eberhard, Ralf; Holtackers, René; Gerber, André P.; Pelkmans, Lucas; Hengartner, Michael O.

    2016-01-01

    Caspases are key components of apoptotic pathways. Regulation of caspases occurs at several levels, including transcription, proteolytic processing, inhibition of enzymatic function, and protein degradation. In contrast, little is known about the extent of post-transcriptional control of caspases. Here, we describe four conserved RNA-binding proteins (RBPs)—PUF-8, MEX-3, GLD-1, and CGH-1—that sequentially repress the CED-3 caspase in distinct regions of the Caenorhabditis elegans germline. We demonstrate that GLD-1 represses ced-3 mRNA translation via two binding sites in its 3′ untranslated region (UTR), thereby ensuring a dual control of unwanted cell death: at the level of p53/CEP-1 and at the executioner caspase level. Moreover, we identified seven RBPs that regulate human caspase-3 expression and/or activation, including human PUF-8, GLD-1, and CGH-1 homologs PUM1, QKI, and DDX6. Given the presence of unusually long executioner caspase 3′ UTRs in many metazoans, translational control of executioner caspases by RBPs might be a strategy used widely across the animal kingdom to control apoptosis. PMID:27798844

  7. Caspase-1 and IL-1β processing in a teleost fish.

    PubMed

    Reis, Marta I R; do Vale, Ana; Pereira, Pedro J B; Azevedo, Jorge E; Dos Santos, Nuno M S

    2012-01-01

    Interleukine-1β (IL-1β) is the most studied pro-inflammatory cytokine, playing a central role in the generation of systemic and local responses to infection, injury, and immunological challenges. In mammals, IL-1β is synthesized as an inactive 31 kDa precursor that is cleaved by caspase-1 generating a 17.5 kDa secreted active mature form. The caspase-1 cleavage site strictly conserved in all mammalian IL-1β sequences is absent in IL-1β sequences reported for non-mammalian vertebrates. Recently, fish caspase-1 orthologues have been identified in sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) but very little is known regarding their processing and activity. In this work it is shown that sea bass caspase-1 auto-processing is similar to that of the human enzyme, resulting in active p24/p10 and p20/p10 heterodimers. Moreover, the presence of alternatively spliced variants of caspase-1 in sea bass is reported. The existence of caspase-1 isoforms in fish and in mammals suggests that they have been evolutionarily maintained and therefore are likely to play a regulatory role in the inflammatory response, as shown for other caspases. Finally, it is shown that sea bass and avian IL-1β are specifically cleaved by caspase-1 at different but phylogenetically conserved aspartates, distinct from the cleavage site of mammalian IL-1β.

  8. Proteasome inhibitors prevent caspase-1-mediated disease in rodents challenged with anthrax lethal toxin.

    PubMed

    Muehlbauer, Stefan M; Lima, Heriberto; Goldman, David L; Jacobson, Lee S; Rivera, Johanna; Goldberg, Michael F; Palladino, Michael A; Casadevall, Arturo; Brojatsch, Jürgen

    2010-08-01

    NOD-like receptors (NLRs) and caspase-1 are critical components of innate immunity, yet their over-activation has been linked to a long list of microbial and inflammatory diseases, including anthrax. The Bacillus anthracis lethal toxin (LT) has been shown to activate the NLR Nalp1b and caspase-1 and to induce many symptoms of the anthrax disease in susceptible murine strains. In this study we tested whether it is possible to prevent LT-mediated disease by pharmacological inhibition of caspase-1. We found that caspase-1 and proteasome inhibitors blocked LT-mediated caspase-1 activation and cytolysis of LT-sensitive (Fischer and Brown-Norway) rat macrophages. The proteasome inhibitor NPI-0052 also prevented disease progression and death in susceptible Fischer rats and increased survival in BALB/c mice after LT challenge. In addition, NPI-0052 blocked rapid disease progression and death in susceptible Fischer rats and BALB/c mice challenged with LT. In contrast, Lewis rats, which harbor LT-resistant macrophages, showed no signs of caspase-1 activation after LT injection and did not exhibit rapid disease progression. Taken together, our findings indicate that caspase-1 activation is critical for rapid disease progression in rodents challenged with LT. Our studies indicate that pharmacological inhibition of NLR signaling and caspase-1 can be used to treat inflammatory diseases.

  9. Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production

    PubMed Central

    McArthur, Kate; Metcalf, Donald; Lane, Rachael M.; Cambier, John C.; Herold, Marco J.; van Delft, Mark F.; Bedoui, Sammy; Lessene, Guillaume; Ritchie, Matthew E.; Huang, David C.S.

    2015-01-01

    SUMMARY Activated caspases are a hallmark of apoptosis induced by the intrinsic pathway, but they are dispensable for cell death and the apoptotic clearance of cells in vivo. This has led to the suggestion that caspases are activated not just to kill but to prevent dying cells from triggering a host immune response. Here, we show that the caspase cascade suppresses type I interferon (IFN) production by cells undergoing Bak/Bax-mediated apoptosis. Bak and Bax trigger the release of mitochondrial DNA. This is recognized by the cGAS/STING-dependent DNA sensing pathway, which initiates IFN production. Activated caspases attenuate this response. Pharmacological caspase inhibition or genetic deletion of caspase-9, Apaf-1, or caspase-3/7 causes dying cells to secrete IFN-β. In vivo, this precipitates an elevation in IFN-β levels and consequent hematopoietic stem cell dysfunction, which is corrected by loss of Bak and Bax. Thus, the apoptotic caspase cascade functions to render mitochondrial apoptosis immunologically silent. PMID:25525874

  10. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production.

    PubMed

    White, Michael J; McArthur, Kate; Metcalf, Donald; Lane, Rachael M; Cambier, John C; Herold, Marco J; van Delft, Mark F; Bedoui, Sammy; Lessene, Guillaume; Ritchie, Matthew E; Huang, David C S; Kile, Benjamin T

    2014-12-18

    Activated caspases are a hallmark of apoptosis induced by the intrinsic pathway, but they are dispensable for cell death and the apoptotic clearance of cells in vivo. This has led to the suggestion that caspases are activated not just to kill but to prevent dying cells from triggering a host immune response. Here, we show that the caspase cascade suppresses type I interferon (IFN) production by cells undergoing Bak/Bax-mediated apoptosis. Bak and Bax trigger the release of mitochondrial DNA. This is recognized by the cGAS/STING-dependent DNA sensing pathway, which initiates IFN production. Activated caspases attenuate this response. Pharmacological caspase inhibition or genetic deletion of caspase-9, Apaf-1, or caspase-3/7 causes dying cells to secrete IFN-β. In vivo, this precipitates an elevation in IFN-β levels and consequent hematopoietic stem cell dysfunction, which is corrected by loss of Bak and Bax. Thus, the apoptotic caspase cascade functions to render mitochondrial apoptosis immunologically silent.

  11. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models

    PubMed Central

    Qian, Linghui; Zhang, Cheng-Wu; Mao, Yanli; Li, Lin; Gao, Nengyue; Lim, Kah-Leong; Xu, Qing-Hua; Yao, Shao Q.

    2016-01-01

    Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes. PMID:27210613

  12. Prevention of Chlamydia-Induced Infertility by Inhibition of Local Caspase Activity

    PubMed Central

    Igietseme, Joseph U.; Omosun, Yusuf; Partin, James; Goldstein, Jason; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Ansari, Uzma; Eko, Francis O.; Bandea, Claudiu; Zhong, Guangming; Black, Carolyn M.

    2013-01-01

    Tubal factor infertility (TFI) represents 36% of female infertility and genital infection by Chlamydia trachomatis (C. trachomatis) is a major cause. Although TFI is associated with host inflammatory responses to bacterial components, the molecular pathogenesis of Chlamydia-induced infertility remains poorly understood. We investigated the hypothesis that activation of specific cysteine proteases, the caspases, during C. trachomatis genital infection causes the disruption of key fertility-promoting molecules required for embryo development and implantation. We analyzed the effect of caspase inhibition on infertility and the integrity of Dicer, a caspase-sensitive, fertility-promoting ribonuclease III enzyme, and key micro-RNAs in the reproductive system. Genital infection with the inflammation- and caspase-inducing, wild-type C. trachomatis serovar L2 led to infertility, but the noninflammation-inducing, plasmid-free strain did not. We confirmed that caspase-mediated apoptotic tissue destruction may contribute to chlamydial pathogenesis. Caspase-1 or -3 deficiency, or local administration of the pan caspase inhibitor, Z-VAD-FMK into normal mice protected against Chlamydia-induced infertility. Finally, the oviducts of infected infertile mice showed evidence of caspase-mediated cleavage inactivation of Dicer and alteration in critical miRNAs that regulate growth, differentiation, and development, including mir-21. These results provide new insight into the molecular pathogenesis of TFI with significant implications for new strategies for treatment and prevention of chlamydial complications. PMID:23303804

  13. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment.

    PubMed

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B

    2016-02-15

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2(-/-) mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2(-/-) cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2(-/-) primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis.

  14. Caspase-8 Binding to Cardiolipin in Giant Unilamellar Vesicles Provides a Functional Docking Platform for Bid

    PubMed Central

    Perry, Mark; Granjon, Thierry; Gonzalvez, François; Gottlieb, Eyal; Ayala-Sanmartin, Jesus; Klösgen, Beate; Schwille, Petra; Petit, Patrice X.

    2013-01-01

    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria. PMID:23418437

  15. Bacterial Virulence Factor Inhibits Caspase-4/11 Activation in Intestinal Epithelial Cells

    PubMed Central

    Pallett, Mitchell A.; Crepin, Valerie F.; Serafini, Nicolas; Habibzay, Maryam; Kotik, Olga; Sanchez-Garrido, Julia; Di Santo, James P.; Shenoy, Avinash R.; Berger, Cedric N.; Frankel, Gad

    2016-01-01

    The human pathogen enteropathogenic Escherichia coli (EPEC), as well as the mouse pathogen Citrobacter rodentium, colonize the gut mucosa via attaching and effacing lesion formation and cause diarrheal diseases. EPEC and C. rodentium type III secretion system (T3SS) effectors repress innate immune responses and infiltration of immune cells. Inflammatory caspases such as caspase-1 and caspase-4/11 are crucial mediators of host defense and inflammation in the gut via their ability to process cytokines such as IL-1β and IL-18. Here we report that the effector NleF binds the catalytic domain of caspase-4 and inhibits its proteolytic activity. Following infection of intestinal epithelial cells (IECs) EPEC inhibited caspase-4 and IL-18 processing in an NleF-dependent manner. Depletion of caspase-4 in IECs prevented the secretion of mature IL-18 in response to infection with EPEC∆nleF. NleF-dependent inhibition of caspase-11 in colons of mice prevented IL-18 secretion and neutrophil influx at early stages of C. rodentium infection. Neither wild-type C. rodentium nor C. rodentium∆nleF triggered neutrophil infiltration or IL-18 secretion in Cas11 or Casp1/11 deficient mice. Thus, IECs play a key role in modulating early innate immune responses in the gut via a caspase-4/11 - IL-18 axis, which is targeted by virulence factors encoded by enteric pathogens. PMID:27624779

  16. Measurement of caspase-2 activation during different anti-tumor drugs induced apoptosis by FRET technique

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong

    2007-11-01

    Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.

  17. Proteasome Inhibitors Prevent Caspase-1-Mediated Disease in Rodents Challenged with Anthrax Lethal Toxin

    PubMed Central

    Muehlbauer, Stefan M.; Lima, Heriberto; Goldman, David L.; Jacobson, Lee S.; Rivera, Johanna; Goldberg, Michael F.; Palladino, Michael A.; Casadevall, Arturo; Brojatsch, Jürgen

    2010-01-01

    NOD-like receptors (NLRs) and caspase-1 are critical components of innate immunity, yet their over-activation has been linked to a long list of microbial and inflammatory diseases, including anthrax. The Bacillus anthracis lethal toxin (LT) has been shown to activate the NLR Nalp1b and caspase-1 and to induce many symptoms of the anthrax disease in susceptible murine strains. In this study we tested whether it is possible to prevent LT-mediated disease by pharmacological inhibition of caspase-1. We found that caspase-1 and proteasome inhibitors blocked LT-mediated caspase-1 activation and cytolysis of LT-sensitive (Fischer and Brown-Norway) rat macrophages. The proteasome inhibitor NPI-0052 also prevented disease progression and death in susceptible Fischer rats and increased survival in BALB/c mice after LT challenge. In addition, NPI-0052 blocked rapid disease progression and death in susceptible Fischer rats and BALB/c mice challenged with LT. In contrast, Lewis rats, which harbor LT-resistant macrophages, showed no signs of caspase-1 activation after LT injection and did not exhibit rapid disease progression. Taken together, our findings indicate that caspase-1 activation is critical for rapid disease progression in rodents challenged with LT. Our studies indicate that pharmacological inhibition of NLR signaling and caspase-1 can be used to treat inflammatory diseases. PMID:20595632

  18. Caspase-2 is essential for c-Jun transcriptional activation and Bim induction in neuron death

    PubMed Central

    Jean, Ying Y.; Ribe, Elena M.; Pero, Maria Elena; Moskalenko, Marina; Iqbal, Zarah; Marks, Lianna J.; Greene, Lloyd A.; Troy, Carol M.

    2014-01-01

    SYNOPSIS Neuronal apoptotic death generally requires de novo transcription, and activation of the transcription factor c-Jun has been shown to be necessary in multiple neuronal death paradigms. Caspase-2 has been implicated in death of neuronal and non-neuronal cells, but its relationship to transcriptional activation has not been clearly elucidated. Here, using two different neuronal apoptotic paradigms, β-amyloid treatment and NGF withdrawal, we examined the hierarchical role of caspase-2 activation in the transcriptional control of neuron death. Both paradigms induce rapid activation of caspase-2 as well as activation of the transcription factor c-Jun and subsequent induction of the pro-apoptotic BH-3 only protein Bim. Caspase-2 activation is dependent on the adaptor protein RAIDD, and both caspase-2 and RAIDD are required for c-Jun activation and Bim induction. Our work, thus, shows that rapid caspase-2 activation is essential for c-Jun activation and Bim induction in neurons subjected to apoptotic stimuli. This places caspase-2 at an apical position in the apoptotic cascade and demonstrates for the first time that caspase-2 can regulate transcription. PMID:23815625

  19. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment

    PubMed Central

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B

    2016-01-01

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2−/− mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2−/− cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2−/− primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis. PMID:27019748

  20. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  1. Molecular cloning and characterisation of sea bass (Dicentrarchus labrax L.) caspase-3 gene.

    PubMed

    Reis, Marta I R; Nascimento, Diana S; do Vale, Ana; Silva, Manuel T; dos Santos, Nuno M S

    2007-02-01

    Caspase-3 is one of the major caspases operating in apoptosis, cleaving and inactivating a number of molecules and largely contributing to the apoptotic phenotype and the dismantling of the apoptoting cell. The opening reading frame of sea bass (Dicentrarchus labrax L.) caspase-3 has 281 amino acids. The complete sequence of caspase-3 shows a very close homology to the correspondent sequence from other vertebrates, in particularly with that of Takifugu rubripes and Oryzias latipes, with 87.7 and 87.9% of similarity, respectively. Furthermore, the sea bass caspase-3 sequence retains the motifs that are functionally important, such as the pentapeptide active-site motif (QACRG) and the putative cleavage sites at the aspartic acids. In the sea bass genome, the caspase-3 gene exists as a single copy gene and is organised in six exons and five introns. A very low expression of caspase-3 was detected by RT-PCR in various organs of non-stimulated sea bass, with slightly higher levels in thymus and heart and was increased in head kidneys of Photobacterium damselae ssp. piscicida infected sea bass. This increased expression was accompanied by the occurrence of high numbers of apoptoting cells with activated caspase-3.

  2. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8

    PubMed Central

    Sprick, Martin R.; Rieser, Eva; Stahl, Heiko; Grosse-Wilde, Anne; Weigand, Markus A.; Walczak, Henning

    2002-01-01

    The involvement of the death adaptor protein FADD and the apoptosis-initiating caspase-8 in CD95 and TRAIL death signalling has recently been demonstrated by the analysis of the native death-inducing signalling complex (DISC) that forms upon ligand-induced receptor cross-linking. However, the role of caspase-10, the other death-effector-domain-containing caspase besides caspase-8, in death receptor signalling has been controversial. Here we show that caspase-10 is recruited not only to the native TRAIL DISC but also to the native CD95 DISC, and that FADD is necessary for its recruitment to and activation at these two protein complexes. With respect to the function of caspase-10, we show that it is not required for apoptosis induction. In addition, caspase-10 can not substitute for caspase-8, as the defect in apoptosis induction observed in caspase-8-deficient cells could not be rescued by overexpression of caspase-10. Finally, we demonstrate that caspase-10 is cleaved during CD95-induced apoptosis of activated T cells. These results show that caspase-10 activation occurs in primary cells, but that its function differs from that of caspase-8. PMID:12198154

  3. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells.

    PubMed

    O'Brien, Martha; Moehring, Danielle; Muñoz-Planillo, Raúl; Núñez, Gabriel; Callaway, Justin; Ting, Jenny; Scurria, Mike; Ugo, Tim; Bernad, Laurent; Cali, James; Lazar, Dan

    2017-03-04

    Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1(-/-) mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective

  4. The caspase pathway as a possible therapeutic target in experimental pemphigus.

    PubMed

    Pacheco-Tovar, Deyanira; López-Luna, Argelia; Herrera-Esparza, Rafael; Avalos-Díaz, Esperanza

    2011-03-02

    Apoptosis plays a role in pemphigus IgG-dependent acantholysis; theoretically, the blockade of the caspase pathway could prevent the blistering that is caused by pemphigus autoantibodies. Using this strategy, we attempted to block the pathogenic effect of pemphigus IgG in Balb/c mice by using the caspase inhibitor Ac-DEVD-CMK. This inhibitor was administrated before the injection of pemphigus IgG into neonatal mice. The main results of the present investigation are as follows: (1) pemphigus IgG induces intraepidermal blisters in Balb/c neonatal mice; (2) keratinocytes around the blister and acantholytic cells undergo apoptosis; (3) the caspases inhibitor Ac-DEVD-CMK prevents apoptosis; (4) the inhibition of the caspase pathway prevents blister formation. In conclusion, inhibition of the caspase pathway may be a promising therapeutic tool that can help in the treatment of pemphigus flare ups.

  5. Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3.

    PubMed

    Janzen, Viktor; Fleming, Heather E; Riedt, Tamara; Karlsson, Göran; Riese, Matthew J; Lo Celso, Cristina; Reynolds, Griffin; Milne, Craig D; Paige, Christopher J; Karlsson, Stefan; Woo, Minna; Scadden, David T

    2008-06-05

    Limited responsiveness to inflammatory cytokines is a feature of adult hematopoietic stem cells and contributes to the relative quiescence and durability of the stem cell population in vivo. Here we report that the executioner Caspase, Caspase-3, unexpectedly participates in that process. Mice deficient in Caspase-3 had increased numbers of immunophenotypic long-term repopulating stem cells in association with multiple functional changes, most prominently cell cycling. Though these changes were cell autonomous, they reflected altered activation by exogenous signals. Caspase-3(-/-) cells exhibited cell type-specific changes in phosphorylated members of the Ras-Raf-MEK-ERK pathway in response to specific cytokines, while notably, members of other pathways, such as pSTAT3, pSTAT5, pAKT, pp38 MAPK, pSmad2, and pSmad3, were unaffected. Caspase-3 contributes to stem cell quiescence, dampening specific signaling events and thereby cell responsiveness to microenvironmental stimuli.

  6. Hematopoietic stem cell responsiveness to exogenous signals limited by Caspase-3

    PubMed Central

    Janzen, Viktor; Fleming, Heather E; Riedt, Tamara; Karlsson, Göran; Riese, Mathew J; Celso, Cristina Lo; Reynolds, Griffin; Milne, Craig D; Paige, Christopher J; Karlsson, Stefan; Woo, Minna; Scadden, David T.

    2010-01-01

    Limited responsiveness to inflammatory cytokines is a feature of adult hematopoietic stem cells, and contributes to the relative quiescence and durability of the stem cell population in vivo. Here we report that the executioner Caspase, Caspase-3, unexpectedly participates in that process. Mice deficient in Caspase-3 had increased numbers of immunophenotypic long-term repopulating stem cells in association with multiple functional changes, most prominently cell cycling. While these changes were cell autonomous, they reflected altered activation by exogenous signals. Caspase-3−/− cells exhibited cell type specific changes in phosphorylated members of the Ras-Raf-MEK-ERK pathway in response to specific cytokines while, notably, members of other pathways such as pSTAT3, pSTAT5, pAKT, pp38 MAPK, pSmad2 and pSmad3 were unaffected. Caspase-3 contributes to stem cell quiescence, dampening specific signaling events and thereby cell responsiveness to microenvironmental stimuli. PMID:18522851

  7. The Caspase Pathway as a Possible Therapeutic Target in Experimental Pemphigus

    PubMed Central

    Pacheco-Tovar, Deyanira; López-Luna, Argelia; Herrera-Esparza, Rafael; Avalos-Díaz, Esperanza

    2011-01-01

    Apoptosis plays a role in pemphigus IgG-dependent acantholysis; theoretically, the blockade of the caspase pathway could prevent the blistering that is caused by pemphigus autoantibodies. Using this strategy, we attempted to block the pathogenic effect of pemphigus IgG in Balb/c mice by using the caspase inhibitor Ac-DEVD-CMK. This inhibitor was administrated before the injection of pemphigus IgG into neonatal mice. The main results of the present investigation are as follows: (1) pemphigus IgG induces intraepidermal blisters in Balb/c neonatal mice; (2) keratinocytes around the blister and acantholytic cells undergo apoptosis; (3) the caspases inhibitor Ac-DEVD-CMK prevents apoptosis; (4) the inhibition of the caspase pathway prevents blister formation. In conclusion, inhibition of the caspase pathway may be a promising therapeutic tool that can help in the treatment of pemphigus flare ups. PMID:21403857

  8. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria

    PubMed Central

    Miao, Edward A.; Leaf, Irina A.; Treuting, Piper M.; Mao, Dat P.; Dors, Monica; Sarkar, Anasuya; Warren, Sarah E.; Wewers, Mark D.; Aderem, Alan

    2010-01-01

    Summary Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of IL-1β and IL-18. While wild type Salmonella typhimurium infection is lethal to mice, a strain that persistently expresses flagellin was cleared by the cytosolic flagellin detection pathway via NLRC4 activation of caspase-1; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1 induced pyroptotic cell death, released bacteria from macrophages and exposed them to uptake and killing by reactive oxygen species in neutrophils. Similarly, caspase-1 cleared unmanipulated Legionella and Burkholderia by cytokine-independent mechanisms. This demonstrates for the first time that caspase-1 clears intracellular bacteria in vivo independent of IL-1β and IL-18, and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system. PMID:21057511

  9. Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide

    PubMed Central

    Roy, Sophie; Bayly, Christopher I.; Gareau, Yves; Houtzager, Vicky M.; Kargman, Stacia; Keen, Sabina L. C.; Rowland, Kathleen; Seiden, Isolde M.; Thornberry, Nancy A.; Nicholson, Donald W.

    2001-01-01

    Caspase-3 is synthesized as a dormant proenzyme and is maintained in an inactive conformation by an Asp-Asp-Asp “safety-catch” regulatory tripeptide contained within a flexible loop near the large-subunit/small-subunit junction. Removal of this “safety catch” results in substantially enhanced autocatalytic maturation as well as increased vulnerability to proteolytic activation by upstream proteases in the apoptotic pathway such as caspase-9 and granzyme B. The safety catch functions through multiple ionic interactions that are disrupted by acidification, which occurs in the cytosol of cells during the early stages of apoptosis. We propose that the caspase-3 safety catch is a key regulatory checkpoint in the apoptotic cascade that regulates terminal events in the caspase cascade by modulating the triggering of caspase-3 activation. PMID:11353841

  10. New roles for old enzymes: killer caspases as the engine of cell behavior changes

    PubMed Central

    Connolly, Patrick F.; Jäger, Richard; Fearnhead, Howard O.

    2014-01-01

    It has become increasingly clear that caspases, far from being merely cell death effectors, have a much wider range of functions within the cell. These functions are as diverse as signal transduction and cytoskeletal remodeling, and caspases are now known to have an essential role in cell proliferation, migration, and differentiation. There is also evidence that apoptotic cells themselves can direct the behavior of nearby cells through the caspase-dependent secretion of paracrine signaling factors. In some processes, including the differentiation of skeletal muscle myoblasts, both caspase activation in differentiating cells as well as signaling from apoptotic cells has been reported. Here, we review the non-apoptotic outcomes of caspase activity in a range of different model systems and attempt to integrate this knowledge. PMID:24795644

  11. Sublethal Caspase Activation Promotes Generation of Cardiomyocytes from Embryonic Stem Cells

    PubMed Central

    Österholm, Cecilia; Wang, Heng; Beltrán-Rodríguez, Antonio; Varas-Godoy, Manuel; Månsson-Broberg, Agneta; Uhlén, Per; Simon, András; Grinnemo, Karl-Henrik

    2015-01-01

    Generation of new cardiomyocytes is critical for cardiac repair following myocardial injury, but which kind of stimuli is most important for cardiomyocyte regeneration is still unclear. Here we explore if apoptotic stimuli, manifested through caspase activation, influences cardiac progenitor up-regulation and cardiomyocyte differentiation. Using mouse embryonic stem cells as a cellular model, we show that sublethal activation of caspases increases the yield of cardiomyocytes while concurrently promoting the proliferation and differentiation of c-Kit+/α-actininlow cardiac progenitor cells. A broad-spectrum caspase inhibitor blocked these effects. In addition, the caspase inhibitor reversed the mRNA expression of genes expressed in cardiomyocytes and their precursors. Our study demonstrates that sublethal caspase-activation has an important role in cardiomyocyte differentiation and may have significant implications for promoting cardiac regeneration after myocardial injury involving exogenous or endogenous cell sources. PMID:25763592

  12. A Highly Potent and Selective Caspase 1 Inhibitor that Utilizes a Key 3-Cyanopropanoic Acid Moiety

    PubMed Central

    Boxer, Matthew B.; Quinn, Amy M.; Shen, Min; Jadhav, Ajit; Leister, William; Simeonov, Anton; Auld, Douglas S.; Thomas, Craig J.

    2011-01-01

    Herein we examine the potential of a nitrile-containing proprionic acid moiety as an electrophile for covalent attack by the active site cysteine residue of caspase 1. The syntheses of several cyanopropanate containing small molecules based upon the optimized peptidic scaffold of the prodrug VX-765 were accomplished and found to be potent inhibitors of caspase 1 (IC50s ≤ 1 nM). Examination of these novel small molecules versus a caspase panel demonstrated an impressive degree of selectivity for caspase 1 inhibition. Assessment of hydrolytic stability and selected ADME properties highlighted these agents as potentially useful tools for studying caspase 1 down-regulation in various settings including in vivo analyses. PMID:20229566

  13. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy

    PubMed Central

    Huang, Qian; Li, Fang; Liu, Xinjian; Li, Wenrong; Shi, Wei; Liu, Fei-Fei; O’Sullivan, Brian; He, Zhimin; Peng, Yuanlin; Tan, Aik-Choon; Zhou, Ling; Shen, Jingping; Han, Gangwen; Wang, Xiao-Jing; Thorburn, Jackie; Thorburn, Andrew; Jimeno, Antonio; Raben, David; Bedford, Joel S.; Li, Chuan-Yuan

    2011-01-01

    Summary In cancer treatment, apoptosis is a well-recognized cell death mechanism through which cytotoxic agents kill tumor cells. Here we report that dying tumor cells use the apoptotic process to generate potent growth-stimulating signals to stimulate the repopulation of tumors undergoing radiotherapy. Surprisingly, activated caspase 3, a key executioner of apoptosis, plays key roles in the growth stimulation. One downstream effector that caspase 3 regulates is prostaglandin E2, which can potently stimulates growth of surviving tumor cells. Deficiency of caspase 3 either in tumor cells or in tumor stroma caused significant tumor sensitivity to radiotherapy in xenograft or mouse tumors. In human cancer patients, higher levels of activated caspase 3 in tumor tissues are correlated with significantly increased rate of recurrence and deaths. We propose the existence of a “Phoenix Rising” pathway of cell death-induced tumor repopulation in which caspase 3 plays key roles. PMID:21725296

  14. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function.

    PubMed

    Guey, Baptiste; Bodnar, Mélanie; Manié, Serge N; Tardivel, Aubry; Petrilli, Virginie

    2014-12-02

    Inflammasomes are caspase-1-activating multiprotein complexes. The mouse nucleotide-binding domain and leucine rich repeat pyrin containing 1b (NLRP1b) inflammasome was identified as the sensor of Bacillus anthracis lethal toxin (LT) in mouse macrophages from sensitive strains such as BALB/c. Upon exposure to LT, the NLRP1b inflammasome activates caspase-1 to produce mature IL-1β and induce pyroptosis. Both processes are believed to depend on autoproteolysed caspase-1. In contrast to human NLRP1, mouse NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that the assembly of the NLRP1b inflammasome does not require the adaptor apoptosis-associated speck-like protein containing a CARD (ASC). LT-induced NLRP1b inflammasome activation was shown to be impaired upon inhibition of potassium efflux, which is known to play a major role in NLRP3 inflammasome formation and ASC dimerization. We investigated whether NLRP3 and/or ASC were required for caspase-1 activation upon LT stimulation in the BALB/c background. The NLRP1b inflammasome activation was assessed in both macrophages and dendritic cells lacking either ASC or NLRP3. Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b inflammasome activity. Surprisingly, the absence of ASC resulted in IL-1β cleavage and pyroptosis, despite the absence of caspase-1 autoprocessing activity. By reconstituting caspase-1/caspase-11(-/-) cells with a noncleavable or catalytically inactive mutant version of caspase-1, we directly demonstrated that noncleavable caspase-1 is fully active in response to the NLRP1b activator LT, whereas it is nonfunctional in response to the NLRP3 activator nigericin. Taken together, these results establish variable requirements for caspase-1 cleavage depending on the pathogen and the responding NLR.

  15. Caspase 8 gene variants in healthy North Indian population and comparison with worldwide ethnic group variations

    PubMed Central

    George, Ginu P.; Mittal, Rama D.

    2010-01-01

    BACKGROUND: Many strategies are being used for the quest for the disease causing genes. Inter-individual variations in several genes exist. Thus, even if they share the same disease-associated allele, the genomic backgrounds – and hence potential interacting alleles at other loci – of people with different regional ancestries may differ, with a consequent variation in the severity of their disease. MATERIALS AND METHOD: The present study was conducted to determine the distribution of Caspase 8 IVS12-19G/A, Caspase 8D302H, Caspase 8 -652del and Caspase 8 -678del polymorphisms (as frequency distribution of caspases in Indians generally is not yet known), which was then compared with different populations globally. Polymerase chain reaction (PCR)-based analysis was conducted in 205 normal healthy individuals of similar ethnicity. RESULTS: The variant allele frequencies were 17.6% (A) in Caspase 8 IVS12-19G/A, 13.2% (H) in Caspase 8D302H, 23.2% (Del) in Caspase 8 -652del and 24.6% (Del) in Caspase 8 -678del. Further, comparison of frequency distribution of these genes was done with various published studies of different ethnic groups globally. CONCLUSION: It is anticipated from our results that the frequency of these caspase genes exhibits distinctive patterns in India, which could perhaps be attributed to ethnic variation. This study is important as it can form a baseline for screening individuals who are at high risk due to exposure to environmental carcinogens and cancer predisposition, and therefore, might help in investigating linked polymorphisms in a way that will not obscure potential associations between genotype and phenotype. PMID:21206702

  16. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis.

    PubMed

    Chung, H; Vilaysane, A; Lau, A; Stahl, M; Morampudi, V; Bondzi-Simpson, A; Platnich, J M; Bracey, N A; French, M-C; Beck, P L; Chun, J; Vallance, B A; Muruve, D A

    2016-08-01

    Nod-like receptor, pyrin containing 3 (NLRP3) is characterized primarily as a canonical caspase-1 activating inflammasome in macrophages. NLRP3 is also expressed in the epithelium of the kidney and gut; however, its function remains largely undefined. Primary mouse tubular epithelial cells (TEC) lacking Nlrp3 displayed reduced apoptosis downstream of the tumor necrosis factor (TNF) receptor and CD95. TECs were identified as type II apoptotic cells that activated caspase-8, tBid and mitochondrial apoptosis via caspase-9, responses that were reduced in Nlrp3-/- cells. The activation of caspase-8 during extrinsic apoptosis induced by TNFα/cycloheximide (TNFα/CHX) was dependent on adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and completely independent of caspase-1 or caspase-11. TECs and primary human proximal tubular epithelial cells (HPTC) did not activate a canonical inflammasome, caspase-1, or IL-1β secretion in response to TNFα/CHX or NLRP3-dependent triggers, such as ATP or nigericin. In cell fractionation studies and by confocal microscopy, NLRP3 colocalized with ASC and caspase-8 in speck-like complexes at the mitochondria during apoptosis. The formation of NLRP3/ASC/caspase-8 specks in response to TNFα/CHX was downstream of TNFR signaling and dependent on potassium efflux. Epithelial ASC specks were present in enteroids undergoing apoptosis and in the injured tubules of wild-type but not Nlrp3-/- or ASC-/- mice following ureteric unilateral obstruction in vivo. These data show that NLRP3 and ASC form a conserved non-canonical platform for caspase-8 activation, independent of the inflammasome that regulates apoptosis within epithelial cells.

  17. Fenretinide Activates Caspases and Induces Apoptosis in Gliomas

    PubMed Central

    Puduvalli, Vinaykumar K.; Saito, Yoshiki; Xu, Ruishu; Kouraklis, Gregory P.; Levin, Victor A.; Kyritsis, Athanassios P.

    2014-01-01

    The synthetic retinoid fenretinide (N-[4-hydroxyphenyl] retinamide or 4HPR) has been shown to not only inhibit cell growth but also to induce apoptosis in a variety of malignant cell lines. It is being tested presently for its potential as a chemopreventive agent against several cancers. A related retinoid, 13-cis-retinoic acid (cRA), has been shown to have activity against gliomas in vitro as well as in a recent clinical study. The present study aimed at assessing the activity of fenretinide against glioma cells in vitro and comparing it with that of cRA at pharmacologically relevant doses. We hypothesized that the ability of fenretinide to induce apoptosis would make it more potent against gliomas than cRA. Four glioma cell lines (D54, U251, U87MG, and EFC-2) were treated with fenretinide (1–100 µM) and showed dose- and time-dependent induction of cell death. At pharmacologically relevant doses, fenretinide was more active against glioma cells than cRA because of its ability to induce apoptosis. Flow cytometric studies using D54 cells demonstrated no significant changes in the cell cycle distribution compared with untreated control, but a sub-G1 fraction consistent with apoptosis was detected. Terminal deoxynucleotidyl transferase-mediated nick end labeling assay indicated that the apoptotic fraction was cell cycle nonspecific. Fenretinide treatment resulted in cleavage of poly ADP-ribose polymerase, indicating an activation of the caspase 3. Immunofluorescence studies using the nuclear stain 4′,6-diamidine-2′-phenylindole dihydrochloride showed nuclear condensation and an apoptotic morphology. Hence, this study demonstrates that, at clinically relevant doses, fenretinide is a potent inducer of apoptosis in gliomas acting via the caspase pathway. We also show that at clinically achievable doses, fenretinide has more activity against gliomas than comparable doses of cRA. The favorable side effect profile seen in previous clinical studies and the in vitro

  18. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    PubMed

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  19. Chromatin collapse during caspase-dependent apoptotic cell death requires DNA fragmentation factor, 40-kDa subunit-/caspase-activated deoxyribonuclease-mediated 3'-OH single-strand DNA breaks.

    PubMed

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X; Yuste, Victor J

    2013-03-29

    Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD(-/-) cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3'-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3'-OH ends in single-strand rather than double-strand DNA nicks/breaks.

  20. Chromatin Collapse during Caspase-dependent Apoptotic Cell Death Requires DNA Fragmentation Factor, 40-kDa Subunit-/Caspase-activated Deoxyribonuclease-mediated 3′-OH Single-strand DNA Breaks*

    PubMed Central

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X.; Yuste, Victor J.

    2013-01-01

    Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks. PMID:23430749

  1. Activation of caspases-3, -6, and -9 during finasteride treatment of benign prostatic hyperplasia.

    PubMed

    Bozec, Aline; Ruffion, Alain; Decaussin, Myriam; Andre, Jean; Devonec, Marian; Benahmed, Mohamed; Mauduit, Claire

    2005-01-01

    Benign prostatic hyperplasia (BPH) results from an increase in both epithelial and stromal compartments of the human prostate. Although inhibitors of 5alpha-reductase such as finasteride have been shown to reduce the size of BPH tissues by inducing apoptosis, their mechanisms of action still remain unknown. The present study supports that such a process triggered by finasteride is caspase dependent with a possible involvement of two effector caspases (caspase-3 and 6) and two initiator caspases (caspase-8 and 9). Indeed, by using tissues from patients affected by BPH and treated by finasteride (5 mg/d) for 2-3, 6-8, or 27-32 d, we observed that the 5alpha-reductase inhibitor induced apoptosis in epithelial cells (evaluated through cell number positive for terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling) as early as 2-3 d of treatment, with a maximal activity (250-fold increase, P < 0.0001) at 6-8 d of treatment. However, after 27-32 d of treatment, the number of apoptotic cells was reduced and was close to control. Caspases-3, -6, -8, and -9 were immunolocalized to (basal and secretory) epithelial cells and to a lesser extent to stromal cells. Activated caspase-3 immunoexpression was restricted to epithelial secretory cells, and its immunostaining intensity appeared to be higher in BPH tissues from patients treated for 2-3 or 6-8 d. Consistently, in Western blotting analyses, activated caspases-3 and -6 were detected as early as 2-3 d of treatment in BPH tissues, and their levels were increased after 6-8 d of treatment. In real time quantitative PCR experiments, caspase-3 and -6 mRNA levels were found to be unchanged after finasteride treatment. Activated caspase-8 was not detected in the different conditions tested, whereas activated caspase-9 protein levels were maximally enhanced after 2-3 d of finasteride treatment. In conclusion, we report here that finasteride treatment of BPH tissues induced a caspase

  2. Ca(2+) and caspases are involved in hydroxyl radical-induced apoptosis in erythrocytes of Jian carp (Cyprinus carpio var. Jian).

    PubMed

    Li, HuaTao; Feng, Lin; Jiang, WeiDan; Liu, Yang; Jiang, Jun; Zhang, YongAn; Wu, Pei; Zhou, XiaoQiu

    2015-10-01

    There are young erythrocytes and mature erythrocytes in the peripheral blood of fish. The present study explored the apoptosis in hydroxyl radical ((·)OH)-induced young and mature erythrocytes of Jian carp (Cyprinus carpio var. Jian). Carp erythrocytes from the peripheral blood were separated into the young fraction, the intermediate fraction and the mature fraction using fixed-angle centrifugation. The erythrocytes in three age fractions were treated with the caspase inhibitors (zVAD-fmk) in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40 μM FeSO4/20 μM H2O2. The results showed that the (·)OH-induced reactive oxygen species (ROS) generation, phosphatidylserine (PS) exposure and DNA fragmentation are caspase dependent in carp erythrocytes. Furthermore, the ROS generation, PS exposure and DNA fragmentation in the more young fraction are more dependent on the caspase activity. This suggested that the caspases are involved in the (·)OH-induced apoptosis in the young erythrocytes of fish. Results also indicated that Ca(2+) is involved in (·)OH-induced calpain activation, PS exposure and DNA fragmentation in carp erythrocytes. Moreover, the calpain activation, DNA fragmentation and PS exposure in the more mature fraction are more dependent on the levels of Ca(2+). This revealed that (·)OH-induced apoptosis is Ca(2+) dependent in the mature erythrocytes of fish. Taken together, there might be two apoptosis pathways in fish erythrocytes: one is the caspase-dependent apoptosis in the young erythrocytes and the other is the Ca(2+)-involved apoptosis in the mature erythrocytes.

  3. Effects of D-aspartate treatment on D-aspartate oxidase, superoxide dismutase, and caspase 3 activities in frog (Rana esculenta) tissues.

    PubMed

    Burrone, Lavinia; Di Giovanni, Marcello; Di Fiore, M Maddalena; Baccari, Gabriella Chieffi; Santillo, Alessandra

    2010-06-01

    Although D-aspartate (D-Asp) has been recognized to have a physiological role within different organs, high concentrations could elicit detrimental effects on those same organs. In this study, we examined the D-aspartate oxidase (D-AspO) activity and the expression of superoxide dismutase 1 (SOD1) and caspase 3 in different tissues of the frog Rana esculenta after chronic D-Asp treatment. Our in vivo experiments, consisting of intraperitoneal (ip) injections of D-Asp (2.0 micromol/g b.w.) in frogs for ten consecutive days, revealed that all examined tissues can take up and accumulate D-Asp. Further, in D-Asp treated frogs, i) the D-AspO activity significantly increased in all tissues (kidney, heart, testis, liver, and brain), ii) the SOD1 expression (antioxidant enzyme) significantly increased in the kidney, and iii) the caspase 3 level (indicative of apoptosis) increased in both brain and heart. Particularly, after the D-Asp treatment we found in both brain and heart (which showed the lowest SOD1 levels) a significant increase of the caspase 3 expression and, vice versa, in the kidney (which showed the highest SOD1 expression) a significant decrease of the caspase 3 expression. Therefore, we speculate that, in frog tissue, D-AspO plays an essential role in modulating the D-Asp concentration. In addition, exaggerated D-Asp concentrations activated SOD1 as cytoprotective mechanism in the kidney, whereas, in the brain and in the heart, where the antioxidant action of SOD1 is limited, caspase 3 was activated.

  4. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    SciTech Connect

    Saquib, Quaiser; Attia, Sabry M.; Siddiqui, Maqsood A.; Aboul-Soud, Mourad A.M.; Al-Khedhairy, Abdulaziz A.; Giesy, John P.; Musarrat, Javed

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  5. Induction of Apoptosis by Green Synthesized Gold Nanoparticles Through Activation of Caspase-3 and 9 in Human Cervical Cancer Cells

    PubMed Central

    Baharara, Javad; Ramezani, Tayebe; Divsalar, Adeleh; Mousavi, Marzieh; Seyedarabi, Arefeh

    2016-01-01

    Background: Gold Nanoparticles (GNPs) are used in imaging and molecular diagnostic applications. As the development of a novel approach in the green synthesis of metal nanoparticles is of great importance and a necessity, a simple and safe method for the synthesis of GNPs using plant extracts of Zataria multiflora leaves was applied in this study and the results on GNPs’ anticancer activity against HeLa cells were reported. Methods: The GNPs were characterized by UV-visible spectroscopy, FTIR, TEM, DLS and Zeta-potential measurements. In addition, the cellular up-take of nanoparticles was investigated using Dark Field Microscopy (DFM). Induction of apoptosis by high dose of GNPs in HeLa cells was assessed by MTT assay, Acridin orange, DAPI staining, Annexin V/PI double-labeling flow cytometry and caspase activity assay. Results: UV-visible spectroscopy results showed a surface plasmon resonance band for GNPs at 530 nm. FTIR results demonstrated an interaction between plant extract and nanoparticles. TEM images revealed different shapes for GNPs and DLS results indicated that the GNPs range in size from 10 to 42 nm. The Zeta potential values of the synthesized GNPs were between 30 to 50 Mev, indicating the formation of stable particles. As evidenced by MTT assay, GNPs inhibit proliferation of HeLa cells in dose-dependent GNPs and cytotoxicity of GNPs in Bone Marrow Mesenchymal Stem Cell (BMSCs) was lower than cancerous cells. At nontoxic concentrations, the cellular up-take of the nanoparticles took place. Acridin orange and DAPI staining showed morphological changes in the cell’s nucleus due to apoptosis. Finally, caspase activity assay demonstrated HeLa cell’s apoptosis through caspase activation. Conclusion: The results showed that GNPs have the ability to induce apoptosis in HeLa cells. PMID:27141266

  6. Nicotine-induced damages in testicular tissue of rats; evidences for bcl-2, p53 and caspase-3 expression

    PubMed Central

    Mosadegh, Maryam; Hasanzadeh, Shapour; Razi, Mazdak

    2017-01-01

    Objective(s): Present study was performed in order to uncover new aspects for nicotine-induced damages on spermatogenesis cell lineage. Materials and Methods: For this purpose, 36 mature male Wistar rats were divided into three groups as; control-sham (0.2 ml, saline normal, IP), low dose (0.2 mg/kg BW-1, IP) nicotine-received and high dose (0.4 mg/kg BW-1, IP) nicotine-received groups. Following 7 weeks, the expression of bcl-2, p53 and caspase-3 at mRNA and protein levels were investigated by using reverse-transcriptase PCR (RT-PCR) and immunohistochemical (IHC) analyses, respectively. Moreover, the serum level of FSH, LH and testosterone were evaluated. Finally, the mRNA damage was analyzed by using special fluorescent staining. Results: Nicotine, at both dose levels, decreased tubular differentiation, spermiogenesis and repopulation indices and enhanced cellular depletion. Animals in nicotine-received groups exhibited a significant (P<0.05) reduction at mRNA and protein levels of bcl-2. More analyses revealed a remarkable (P<0.05) enhancement in expression of p53 and caspase-3 in comparison to control-sham animals. Finally, nicotine resulted in a significant (P<0.05) reduction in serum level of testosterone and elevated mRNA damage. Conclusion: Our data showed that, nicotine by suppressing the testosterone biosynthesis, reducing mRNA and protein levels of bcl-2 and up regulating the p53 and caspase-3 mRNA and protein levels adversely affects the spermatogenesis and results in cellular depletion. PMID:28293398

  7. Caspase-1 (interleukin-1beta-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9.

    PubMed Central

    Annand, R R; Dahlen, J R; Sprecher, C A; De Dreu, P; Foster, D C; Mankovich, J A; Talanian, R V; Kisiel, W; Giegel, D A

    1999-01-01

    The regulation of caspases, cysteine proteinases that cleave their substrates after aspartic residues, is poorly understood, even though they are involved in tightly regulated cellular processes. The recently discovered serpin analogue proteinase inhibitor 9 (PI9) is unique among human serpin analogues in that it has an acidic residue in the putative specificity-determining position of the reactive-site loop. We measured the ability of PI9 to inhibit the amidolytic activity of several caspases. The hydrolysis of peptide substrates by caspase-1 (interleukin-1beta-converting enzyme), caspase-4 and caspase-8 is inhibited by PI9 in a time-dependent manner. The rate of reaction of caspase-1 with PI9, as well as the rate of substrate hydrolysis of the initial caspase-PI9 complex, shows a hyperbolic dependence on the concentration of PI9, indicative of a two-step kinetic mechanism for inhibition with an apparent second-order rate constant of 7x10(2) M(-1).s(-1). The hydrolysis of a tetrapeptide substrate by caspase-3 is not inhibited by PI9. The complexes of caspase-1 and caspase-4 with PI9 can be immunoprecipitated but no complex with caspase-3 can be detected. No complex can be immunoprecipitated if the active site of the caspase is blocked with a covalent inhibitor. These results show that PI9 is an inhibitor of caspase-1 and to a smaller extent caspase-4 and caspase-8, but not of the more distantly related caspase-3. PI9 is the first example of a human serpin analogue that inhibits members of this class of cysteine proteinases. PMID:10477277

  8. Blazeispirol A from Agaricus blazei fermentation product induces cell death in human hepatoma Hep 3B cells through caspase-dependent and caspase-independent pathways.

    PubMed

    Su, Zheng-Yuan; Tung, Yen-Chen; Hwang, Lucy Sun; Sheen, Lee-Yan

    2011-05-11

    Currently, liver cancer is a leading cause of cancer-related death in the world. Hepatocellular carcinoma is the most common type of liver cancer. Previously, it was reported that blazeispirol A (BA) is the most active antihepatoma compound in an ethanolic extract of Agaricus blazei fermentation product. The aim of this study was to understand the antihepatoma mechanism of BA in human liver cancer Hep 3B cells. The results showed that BA inhibited the growth of Hep 3B cells and increased the percentage of cells in sub-G1 phase in a concentration- and time-dependent manner. In addition, BA treatment resulted in DNA fragmentation, caspase-9 and caspase-3 activations, poly(ADP-ribose)polymerase (PARP) degradation, down-regulation of Bcl-2 and Bcl-xL expressions, up-regulation of Bax expression, and disruption of the mitochondrial membrane potential (MMP) in Hep 3B cells. Furthermore, z-VAD-fmk, a caspase inhibitor, did not enhance the viability of BA-treated Hep 3B cells, and BA induced the release of HtrA2/Omi and apoptosis-inducing factor (AIF) from mitochondria into the cytosol. These findings suggested that BA with novel chemopreventive and chemotherapeutic potentials causes both caspase-dependent and caspase-independent cell death in Hep 3B cells.

  9. Galangin induces apoptosis in hepatocellular carcinoma cells through the caspase 8/t-Bid mitochondrial pathway.

    PubMed

    Zhang, Hai-Tao; Wu, Jun; Wen, Min; Su, Li-Juan; Luo, Hui

    2012-01-01

    This study has investigated whether galangin, a flavonol derived from Alpinia officinarum Hance and used as food additives in southern China, induces apoptosis in hepatocellular carcinoma cells (HCCs) by activation of the caspase-8 and Bid pathway. The apoptosis of HCCs was evaluated by in situ uptake of propidium iodide and Hoechst 33258. Protein expressions were detected by Western blotting. Caspase-8 activity was measured using colorimetric method. To confirm the galangin-induced apoptotic pathway, inhibition of caspase-8 activity by Z-IETD-FMK, knockdown of Bid expression with siRNA, and overexpression of Bcl-2 in cells were carried out, respectively. The results show that galangin has significantly induced apoptosis in HCC lines. The caspase-8 is activated, and the cleavage of Bid results in the increase in tBid. The galangin-induced apoptosis is attenuated by Z-IETD-FMK, Bid siRNA, and Bcl-2 overexpression, respectively. However, Bcl-2 fails to suppress caspase-8 activation and the cleavage of Bid. This study has demonstrated that galangin induces apoptosis in HCCs by activating caspase 8/t-Bid mitochondrial pathway. Although Bcl-2 overexpression attenuates galangin-mediated apoptosis of HCCs, it is not mediated by the inhibition of tBid generation and caspase-8 activation.

  10. The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria

    PubMed Central

    Marini, E S; Giampietri, C; Petrungaro, S; Conti, S; Filippini, A; Scorrano, L; Ziparo, E

    2015-01-01

    Components of the death receptor-mediated pathways like caspase-8 have been identified in complexes at intracellular membranes to spatially restrict the processing of local targets. In this study, we report that the long isoform of the cellular FLICE-inhibitory protein (c-FLIPL), a well-known inhibitor of the extrinsic cell death initiator caspase-8, localizes at the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs). ER morphology was disrupted and ER Ca2+-release as well as ER-mitochondria tethering was decreased in c-FLIP−/− mouse embryonic fibroblasts (MEFs). Mechanistically, c-FLIP ablation resulted in enhanced basal caspase-8 activation and in caspase-mediated processing of the ER-shaping protein reticulon-4 (RTN4) that was corrected by re-introduction of c-FLIPL and caspase inhibition, resulting in the recovery of a normal ER morphology and ER-mitochondria juxtaposition. Thus, the caspase-8 inhibitor c-FLIPL emerges as a component of the MAMs signaling platforms, where caspases appear to regulate ER morphology and ER-mitochondria crosstalk by impinging on ER-shaping proteins like the RTN4. PMID:25501600

  11. Detection of damaging nsSNPs on human caspase-cascades related to apoptotic signalling pathway.

    PubMed

    Tomar, Jinny; Gera, V K; Chakraborty, Chiranjib

    2013-09-01

    In tumorigenesis, cancer genetics and the related mutations have been the main topic of study these days. Caspases have been found to be actively involved in the process of apoptosis. Malfunction of apoptosis is one of the causes for cancerous tumors and different caspase mutations are related to that process. It has been found that two groups of caspases involved in this process apoptosis which are initiator caspases and executioner caspases. SNPs have been extensively studied over the last decade, due to their association with a number of genetic diseases. Human SNPs have always been a source of information related to the complex changes associated with their origin. SNPs which can change the resulting amino acid i.e., nonsynonymous SNPs (nsSNPs) are of prime concern these days because of their direct relation with the disease or the respective individual. In this study our focus is not only to detect the nsSNPs available in the human caspase data but to further evaluate the potentially damaging nsSNPs. Using the computational approach we have been able to obtain almost seventy eight nsSNPs, among these few of the nsSNPs seem to have serious consequences, as they have been cross verified from a variety of SNP prediction tools. The functional as well as structural impact of the nsSNPs is determined and discussed. Our predicted nsSNPs on human caspases may be associated with cancer risk.

  12. The IAP-antagonist ARTS initiates caspase activation upstream of cytochrome C and SMAC/Diablo

    PubMed Central

    Edison, N; Zuri, D; Maniv, I; Bornstein, B; Lev, T; Gottfried, Y; Kemeny, S; Garcia-Fernandez, M; Kagan, J; Larisch, S

    2012-01-01

    ARTS (Sept4_i2) is a pro-apoptotic tumor suppressor protein that functions as an antagonist of X-linked IAP (XIAP) to promote apoptosis. It is generally thought that mitochondrial outer membrane permeabilization (MOMP) occurs before activation of caspases and is required for it. Here, we show that ARTS initiates caspase activation upstream of MOMP. In living cells, ARTS is localized to the mitochondrial outer membrane. In response to apoptotic signals, ARTS translocates rapidly to the cytosol in a caspase-independent manner, where it binds XIAP and promotes caspase activation. This translocation precedes the release of cytochrome C and SMAC/Diablo, and ARTS function is required for the normal timing of MOMP. We also show that ARTS-induced caspase activation leads to cleavage of the pro-apoptotic Bcl-2 family protein Bid, known to promote MOMP. We propose that translocation of ARTS initiates a first wave of caspase activation that can promote MOMP. This leads to the subsequent release of additional mitochondrial factors, including cytochrome C and SMAC/Diablo, which then amplifies the caspase cascade and causes apoptosis. PMID:21869827

  13. Identification of AaCASPS7, an effector caspase in Aedes albopictus.

    PubMed

    Feng, Lingyan; Liu, Hao; Li, Xiaomei; Qiao, Jialu; Wang, Shengya; Guo, Deyin; Liu, Qingzhen

    2016-11-15

    Aedes albopictus mosquito is a vector of various arboviruses and is becoming a significant threat to public health due to its rapid global expansion. Several reports suggest that apoptosis could be a factor limiting arbovirus infection in mosquitoes. Thus, it is significant to identify apoptosis pathway and study the correlation between apoptosis and virus infection in mosquitoes. Apoptosis is a type of programmed cell death that plays a vital role in immunity, development, and tissue homeostasis. Caspases are a family of conserved proteases playing important roles in apoptosis. In this study, we identified Aedes albopictus AaCASPS7, a caspase shared high identity with dipteran insect drICE orthologs. Phylogenetic analysis showed the closest relative of AaCASPS7 was Aedes aegypti AeCASPS7. AaCASPS7 displayed several features that were typical of an effector caspase and showed significant activity to effector caspase substrates. Aacasps7 transcripts were expressed ubiquitously in developmental and adult stages in Aedes albopictus mosquitoes. Transient expression of AaCASPS7 induced caspase-dependent apoptosis in C6/36 cells. Taken together the above data, this study identified a novel caspase, AaCASPS7, which might function as an apoptotic caspase. Further study the function of AaCASPS7 would facilitate better understanding the apoptotic mechanism in Aedes albopictus mosquito. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Raf-1 Activation Prevents Caspase 9 Processing Downstream of Apoptosome Formation

    PubMed Central

    Cagnol, Sébastien; Mansour, Anna; Van Obberghen-Schilling, Ellen; Chambard, Jean-Claude

    2011-01-01

    In many cell types, growth factor removal induces the release of cytochrome-c from mitochondria that leads to activation of caspase-9 in the apoptosome complex. Here, we show that sustained stimulation of the Raf-1/MAPK1,3 pathway prevents caspase-9 activation induced by serum depletion in CCL39/ΔRaf-1:ER fibroblasts. The protective effect mediated by Raf-1 is sensitive to MEK inhibition that is sufficient to induce caspase-9 cleavage in exponentially growing cells. Raf-1 activation does not inhibit the release of cytochrome-c from mitochondria while preventing caspase-9 activation. Gel filtration chromatography analysis of apoptosome formation in cells shows that Raf-1/MAPK1,3 activation does not interfere with APAF-1 oligomerization and recruitment of caspase 9. Raf-1-mediated caspase-9 inhibition is sensitive to emetine, indicating that the protective mechanism requires protein synthesis. However, the Raf/MAPK1,3 pathway does not regulate XIAP. Taken together, these results indicate that the Raf-1/MAPK1,3 pathway controls an apoptosis regulator that prevents caspase-9 activation in the apoptosome complex. PMID:21637382

  15. Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells.

    PubMed

    Zhang, Baoyan; Xu, Zhiping; Zhang, Yixi; Shao, Xusheng; Xu, Xiaoyong; Cheng, Jiaogao; Li, Zhong

    2015-03-01

    Fipronil is the first phenylpyrazole insecticide widely used in controlling pests, including pyrethroid, organophosphate and carbamate insecticides. It is generally accepted that fipronil elicits neurotoxicity via interactions with GABA and glutamate receptors, although alternative mechanisms have recently been proposed. This study evaluates the genotoxicity of fipronil and its likely mode of action in Drosophila S2 cells, as an in vitro model. Fipronil administrated the concentration- and time-dependent S2 cell proliferation. Intracellular biochemical assays showed that fipronil-induced S2 cell apoptosis coincided with a decrease in the mitochondrial membrane potential and an increase reactive oxygen species generation, a significant decrease of Bcl-2 and DIAP1, and a marked augmentation of Cyt c and caspase-3. Because caspase-3 is the major executioner caspase downstream of caspase-9 in Drosophila, enzyme activity assays were used to determine the activities of caspase-3 and caspase-9. Our results indicated that fipronil effectively induced apoptosis in Drosophila S2 cells through caspase-dependent mitochondrial pathways.

  16. The two Drosophila cytochrome C proteins can function in both respiration and caspase activation.

    PubMed

    Arama, Eli; Bader, Maya; Srivastava, Mayank; Bergmann, Andreas; Steller, Hermann

    2006-01-11

    Cytochrome C has two apparently separable cellular functions: respiration and caspase activation during apoptosis. While a role of the mitochondria and cytochrome C in the assembly of the apoptosome and caspase activation has been established for mammalian cells, the existence of a comparable function for cytochrome C in invertebrates remains controversial. Drosophila possesses two cytochrome c genes, cyt-c-d and cyt-c-p. We show that only cyt-c-d is required for caspase activation in an apoptosis-like process during spermatid differentiation, whereas cyt-c-p is required for respiration in the soma. However, both cytochrome C proteins can function interchangeably in respiration and caspase activation, and the difference in their genetic requirements can be attributed to differential expression in the soma and testes. Furthermore, orthologues of the apoptosome components, Ark (Apaf-1) and Dronc (caspase-9), are also required for the proper removal of bulk cytoplasm during spermatogenesis. Finally, several mutants that block caspase activation during spermatogenesis were isolated in a genetic screen, including mutants with defects in spermatid mitochondrial organization. These observations establish a role for the mitochondria in caspase activation during spermatogenesis.

  17. The association between plasma caspase-3, atherosclerosis, and vascular function in the Dallas Heart Study.

    PubMed

    Matulevicius, Susan; Rohatgi, Anand; Khera, Amit; Das, Sandeep R; Owens, Andrew; Ayers, Colby R; Timaran, Carlos H; Rosero, Eric B; Drazner, Mark H; Peshock, Ronald M; de Lemos, James A

    2008-10-01

    Caspase-3, an apoptosis protease, is expressed in atherosclerotic plaques. We examined the relationship between plasma caspase-3 levels, aortic compliance, and atherosclerosis. Caspase-3 was measured in 3,221 subjects from the Dallas Heart Study. Electron beam computed tomography measures of coronary calcium (CAC) (n = 2,404) and magnetic resonance imaging (MRI) measures of abdominal aortic wall thickness (AWT) (n = 2,208) and aortic compliance (AC) (n = 2,328) were obtained. Multivariate analyses were performed, adjusting for age, sex, ethnicity, body mass index (BMI), traditional cardiovascular risk factors, and cardiac medications. In univariable analysis, caspase-3 associated with CAC (P < 0.0001), AWT (P = 0.002), and AC (P < 0.0001). After multivariable adjustment, 4th quartile caspase-3 (compared to 1st quartile) was significantly associated with CAC (P = 0.004), AWT (P = 0.02), and AC (P < 0.0001) with similar findings for caspase-3 as a continuous variable. Caspase-3 independently associates with CAC, AWT, and AC, suggesting a link between apoptosis and atherosclerosis.

  18. Local initiation of caspase activation in Drosophila salivary gland programmed cell death in vivo

    PubMed Central

    Takemoto, Kiwamu; Kuranaga, Erina; Tonoki, Ayako; Nagai, Takeharu; Miyawaki, Atsushi; Miura, Masayuki

    2007-01-01

    Programmed cell death, or apoptosis, is an essential event in animal development. Spatiotemporal analysis of caspase activation in vivo could provide new insights into programmed cell death occurring during development. Here, using the FRET-based caspase-3 indicator, SCAT3, we report the results of live-imaging analysis of caspase activation in developing Drosophila in vivo. In Drosophila, the salivary gland is sculpted by caspase-mediated programmed cell death initiated by the steroid hormone 20-hydroxyecdysone (ecdysone). Using a SCAT3 probe, we observed that caspase activation in the salivary glands begins in the anterior cells and is then propagated to the posterior cells in vivo. In vitro salivary gland culture experiments indicated that local exposure of ecdysone to the anterior salivary gland reproduces the caspase activation gradient as observed in vivo. In βFTZ-F1 mutants, caspase activation was delayed and occurred in a random pattern in vivo. In contrast to the in vivo response, the salivary glands from βFTZ-F1 mutants showed a normal in vitro response to ecdysone, suggesting that βFTZ-F1 may be involved in ecdysteroid biosynthesis and secretion of ecdysone from the ring gland for local initiation of programmed cell death. These results imply a role of βFTZ-F1 in coordinating the initiation of salivary gland apoptosis in development. PMID:17679695

  19. Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1.

    PubMed

    Sarkar, Anasuya; Mitra, Srabani; Mehta, Sonya; Raices, Raquel; Wewers, Mark D

    2009-09-25

    Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1beta and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death.

  20. Monocyte Derived Microvesicles Deliver a Cell Death Message via Encapsulated Caspase-1

    PubMed Central

    Sarkar, Anasuya; Mitra, Srabani; Mehta, Sonya; Raices, Raquel; Wewers, Mark D.

    2009-01-01

    Apoptosis depends upon the activation of intracellular caspases which are classically induced by either an intrinsic (mitochondrial based) or extrinsic (cytokine) pathway. However, in the process of explaining how endotoxin activated monocytes are able to induce apoptosis of vascular smooth muscle cells when co-cultured, we uncovered a transcellular apoptosis inducing pathway that utilizes caspase-1 containing microvesicles. Endotoxin stimulated monocytes induce the cell death of VSMCs but this activity is found in 100,000 g pellets of cell free supernatants of these monocytes. This activity is not a direct effect of endotoxin, and is inhibited by the caspase-1 inhibitor YVADcmk but not by inhibitors of Fas-L, IL-1β and IL-18. Importantly, the apoptosis inducing activity co-purifies with 100 nm sized microvesicles as determined by TEM of the pellets. These microvesicles contain caspase-1 and caspase-1 encapsulation is required since disruption of microvesicular integrity destroys the apoptotic activity but not the caspase-1 enzymatic activity. Thus, monocytes are capable of delivering a cell death message which depends upon the release of microvesicles containing functional caspase-1. This transcellular apoptosis induction pathway describes a novel pathway for inflammation induced programmed cell death. PMID:19779610

  1. Kaurene diterpene induces apoptosis in human leukemia cells partly through a caspase-8-dependent pathway.

    PubMed

    Kondoh, Masuo; Suzuki, Ikue; Sato, Masao; Nagashima, Fumihiro; Simizu, Siro; Harada, Motoki; Fujii, Makiko; Osada, Hiroyuki; Asakawa, Yoshinori; Watanabe, Yoshiteru

    2004-10-01

    Defects in apoptosis signaling pathways contribute to tumorigenesis and drug resistance, and these defects are often a cause of failure of chemotherapy. Thus, a major goal in chemotherapy is to find cytotoxic agents that restore the ability of tumor cells to undergo apoptosis. We previously found that an Ent-kaurene diterpene, Ent-11alpha-hydroxy-16-kauren-15-one (KD), induced apoptosis in human promyelocytic leukemia HL-60 cells. Here, we found that caspase-8, an apoptotic factor, is involved in KD-induced apoptosis. Although treatment of HL-60 cells with KD resulted in the activation of caspase-8 and -9, a caspase-8-specific inhibitor but not a caspase-9-specific inhibitor attenuated KD-induced apoptosis. Expression of a catalytically inactive caspase-8 partly attenuated KD-induced apoptosis. Treatment with KD led to a time-dependent cleavage of Bid, a substrate of caspase-8, as well as to the proteolytic processing of procaspase-8, indicating that KD treatment induces apoptosis through a caspase-8-dependent pathway. Moreover, overexpression of the drug resistance factor Bcl-2, which is frequently overexpressed in many tumors, failed to confer resistance to KD-induced cytotoxicity. Thus, KD may be a promising experimental cytotoxic agent that possibly points to new strategies to overcome a drug resistance.

  2. The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model

    PubMed Central

    Inoue, Haruhisa; Tsukita, Kayoko; Iwasato, Takuji; Suzuki, Yasuyuki; Tomioka, Masanori; Tateno, Minako; Nagao, Masahiro; Kawata, Akihiro; Saido, Takaomi C.; Miura, Masayuki; Misawa, Hidemi; Itohara, Shigeyoshi; Takahashi, Ryosuke

    2003-01-01

    Mutant copper/zinc superoxide dismutase (SOD1)-overexpressing transgenic mice, a mouse model for familial amyotrophic lateral sclerosis (ALS), provides an excellent resource for developing novel therapies for ALS. Several observations suggest that mitochondria-dependent apoptotic signaling, including caspase-9 activation, may play an important role in mutant SOD1-related neurodegeneration. To elucidate the role of caspase-9 in ALS, we examined the effects of an inhibitor of X chromosome-linked inhibitor of apoptosis (XIAP), a mammalian inhibitor of caspase-3, -7 and -9, and p35, a baculoviral broad caspase inhibitor that does not inhibit caspase-9. When expressed in spinal motor neurons of mutant SOD1 mice using transgenic techniques, XIAP attenuated disease progression without delaying onset. In contrast, p35 delayed onset without slowing disease progression. Moreover, caspase-9 was activated in spinal motor neurons of human ALS subjects. These data strongly suggest that caspase-9 plays a crucial role in disease progression of ALS and constitutes a promising therapeutic target. PMID:14657037

  3. Monochloramine Impairs Caspase-3 Through Thiol Oxidation and Zn2+ Release

    PubMed Central

    Kohler, Jonathan E.; Mathew, Jeff; Tai, Kaniza; Blass, Amy L.; Kelly, Edward; Soybel, David I.

    2009-01-01

    Background Caspase-3, a pro-apoptotic enzyme, represents a class of proteins in which the active site contains reduced thiol (S-H) groups and is modulated by heavy metal cations such as Zn2+. We explored the effects of the thiol oxidant monochloramine (NH2Cl) on caspase-3 activity within cells of isolated rabbit gastric glands. In addition, we tested the hypothesis that NH2Cl-induced alterations of caspase-3 activity are modulated by oxidant-induced accumulation of Zn2+ within the cytoplasm. Materials and Methods Isolated gastric glands were prepared from rabbit mucosa by collagenase digestion. Caspase-3 activity was measured colorimetrically in suspensions of healthy rabbit gastric glands, following exposure to various concentrations of NH2Cl with or without the zinc chelator TPEN for 1 hour, and re-equilibration in Ringer's solution for 5 hours. Conversion of procaspase 3 to active caspase-3 was monitored by Western blot. Results Monochloramine inhibited caspase-3 activity in a dose dependent fashion. At concentrations of NH2Cl up to 100μM, these effects were prevented if TPEN was given concurrently and were partly reversed if TPEN was given one hour later. Caspase-3 activity was preserved by concurrent treatment with a thiol-reducing agent, dithiothreitol (DTT). Conclusions At pathologically relevant concentrations, NH2Cl impairs caspase-3 activity through oxidation of its thiol groups. Independently from its thiol oxidant effects on the enzyme, NH2Cl-induced accumulation of Zn2+ in the cytoplasm is sufficient to restrain endogenous caspase-3 activity. Our studies suggest that some bacterially generated oxidants such as NH2Cl impair host pathways of apoptosis through release of Zn2+ from endogenous pools. PMID:19118843

  4. Bax Regulates Production of Superoxide in Both Apoptotic and Nonapoptotic Neurons: Role of Caspases

    PubMed Central

    Kirkland, Rebecca A.; Saavedra, Geraldine M.; Cummings, Brian S.; Franklin, James L.

    2010-01-01

    A Bax- and, apparently, mitochondria-dependent increase in superoxide (O2.−) and other reactive oxygen species (ROS) occurs in apoptotic superior cervical ganglion (SCG) and cerebellar granule (CG) neurons. Here we show that Bax also lies upstream of ROS produced in nonapoptotic neurons and present evidence that caspases partially mediate the pro-oxidant effect of Bax. We used the O2.−-sensitive dye MitoSOX to monitor O2.− in neurons expressing different levels of Bax and mitochondrial superoxide dismutase (SOD2). Basal and apoptotic O2.− levels in both SCG and CG neurons were reduced in SOD2 wild-type (wt) cells having lower Bax concentrations. Apoptotic and nonapoptotic neurons from Bax-wt/SOD2-null but not Bax-null/SOD2-null mice had increased O2.− levels. A caspase inhibitor inhibited O2.− in both apoptotic and nonapoptotic SCG neurons. O2.− production increased when wt, but not Bax-null SCG neurons were permeabilized and treated with active caspase 3. There was no apoptosis and little increase in O2.− in SCG neurons from caspase 3-null mice exposed to an apoptotic stimulus. O2.− levels in nonapoptotic caspase 3-null SCG neurons were lower than in wt cells but not as low as in caspase inhibitor-treated cells. These data indicate that Bax lies upstream of most O2.− produced in neurons, that caspase 3 is required for increased O2.− production during neuronal apoptosis, that caspase 3 is partially involved in O2.− production in nonapoptotic neurons, and that other caspases may also be involved in Bax-dependent O2.− production in nonapoptotic cells. PMID:21123558

  5. Caspase-3 Is Involved in the Signalling in Erythroid Differentiation by Targeting Late Progenitors

    PubMed Central

    Giarratana, Marie-Catherine; Darghouth, Dhouha; Faussat, Anne-Marie; Harmand, Laurence; Douay, Luc

    2013-01-01

    A role for caspase activation in erythroid differentiation has been established, yet its precise mode of action remains elusive. A drawback of all previous investigations on caspase activation in ex vivo erythroid differentiation is the lack of an in vitro model producing full enucleation of erythroid cells. Using a culture system which renders nearly 100% enucleated red cells from human CD34+ cells, we investigated the role of active caspase-3 in erythropoiesis. Profound effects of caspase-3 inhibition were found on erythroid cell growth and differentiation when inhibitors were added to CD34+ cells at the start of the culture and showed dose-response to the concentration of inhibitor employed. Enucleation was only reduced as a function of the reduced maturity of the culture and the increased cell death of mature cells while the majority of cells retained their ability to extrude their nuclei. Cell cycle analysis after caspase-3 inhibition showed caspase-3 to play a critical role in cell proliferation and highlighted a novel function of this protease in erythroid differentiation, i.e. its contribution to cell cycle regulation at the mitotic phase. While the effect of caspase-3 inhibitor treatment on CD34+ derived cells was not specific to the erythroid lineage, showing a similar reduction of cell expansion in myeloid cultures, the mechanism of action in both lineages appeared to be distinct with a strong induction of apoptosis causing the decreased yield of myeloid cells. Using a series of colony-forming assays we were able to pinpoint the stage at which cells were most sensitive to caspase-3 inhibition and found activated caspase-3 to play a signalling role in erythroid differentiation by targeting mature BFU-E and CFU-E but not early BFU-E. PMID:23658722

  6. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells

    PubMed Central

    Wang, Shan; He, Meifang; Li, Linmei; Liang, Zhihua; Zou, Zehong

    2016-01-01

    Purpose Cell-in-cell structures are created by one living cell entering another homotypic or heterotypic living cell, which usually leads to the death of the internalized cell, specifically through caspase-dependent cell death (emperitosis) or lysosome-dependent cell death (entosis). Although entosis has attracted great attention, its occurrence is controversial, because one cell line used in its study (MCF-7) is deficient in caspase-3. Methods We investigated this issue using MCF-7 and A431 cell lines, which often display cell-in-cell invasion, and have different levels of caspase-3 expression. Cell-in-cell death morphology, microstructures, and signaling pathways were compared in the two cell lines. Results Our results confirmed that MCF-7 cells are caspase-3 deficient with a partial deletion in the CASP-3 gene. These cells underwent cell death that lacked typical apoptotic properties after staurosporine treatment, whereas caspase-3-sufficient A431 cells displayed typical apoptosis. The presence of caspase-3 was related neither to the lysosome-dependent nor to the caspase-dependent cell-in-cell death pathway. However, the existence of caspase-3 was associated with a switch from lysosome-dependent cell-in-cell death to the apoptotic cell-in-cell death pathway during entosis. Moreover, cellular hypoxia, mitochondrial swelling, release of cytochrome C, and autophagy were observed in internalized cells during entosis. Conclusion The occurrence of caspase-independent entosis is not a cell-specific process. In addition, entosis actually represents a cellular self-repair system, functioning through autophagy, to degrade damaged mitochondria resulting from cellular hypoxia in cell-in-cell structures. However, sustained autophagy-associated signal activation, without reduction in cellular hypoxia, eventually leads to lysosome-dependent intracellular cell death. PMID:27721872

  7. Predicting caspase substrate cleavage sites based on a hybrid SVM-PSSM method.

    PubMed

    Li, Dandan; Jiang, Zhenran; Yu, Weiming; Du, Lei

    2010-12-01

    Caspases play an important role in many critical non-apoptosis processes by cleaving relevant substrates at cleavage sites. Identification of caspase substrate cleavage sites is the key to understand these processes. This paper proposes a hybrid method using support vector machine (SVM) in conjunction with position specific scoring matrices (PSSM) for caspase substrate cleavage sites prediction. Three encoding schemes including orthonormal binary encoding, BLOSUM62 matrix profile and PSSM profile of neighborhood surrounding the substrate cleavage sites were regarded as the input of SVM. The 10-fold cross validation results demonstrate that the SVM-PSSM method performs well with an overall accuracy of 97.619% on a larger dataset.

  8. Caspase-Cleaved Tau Impairs Mitochondrial Dynamics in Alzheimer's Disease.

    PubMed

    Pérez, María José; Vergara-Pulgar, Katiana; Jara, Claudia; Cabezas-Opazo, Fabian; Quintanilla, Rodrigo A

    2017-01-13

    Alzheimer's disease (AD) is characterized by the presence of aggregates of tau protein. Tau truncated by caspase-3 (D421) or tau hyperphosphorylated at Ser396/S404 might play a role in the pathogenesis of AD. Mitochondria are dynamic organelles that modify their size and function through mitochondrial dynamics. Recent studies have shown that alterations of mitochondrial dynamics affect synaptic communication. Therefore, we studied the effects of pathological forms of tau on the regulation of mitochondrial dynamics. We used primary cortical neurons from tau(-/-) knockout mice and immortalized cortical neurons (CN1.4) that were transfected with plasmids containing green fluorescent protein (GFP) or GFP with different tau forms: full-length (GFP-T4), truncated (GFP-T4C3), pseudophosphorylated (GFP-T42EC), or both truncated and pseudophosphorylated modifications of tau (GFP-T4C3-2EC). Cells expressing truncated tau showed fragmented mitochondria compared to cells that expressed full-length tau. These findings were corroborated using primary neurons from tau(-/-) knockout mice that expressed the truncated and both truncated and pseudophosphorylated forms of tau. Interestingly, mitochondrial fragmentation was accompanied by a significant reduction in levels of optic atrophy protein 1 (Opa1) in cells expressing the truncated form of tau. In addition, treatment with low concentrations of amyloid-beta (Aβ) significantly reduced mitochondrial membrane potential, cell viability, and mitochondrial length in cortical cells and primary neurons from tau(-/-) mice that express truncated tau. These results indicate that the presence of tau pathology impairs mitochondrial dynamics by reducing Opa1 levels, an event that could lead to mitochondrial impairment observed in AD.

  9. Caspases in plants: metacaspase gene family in plant stress responses.

    PubMed

    Fagundes, David; Bohn, Bianca; Cabreira, Caroline; Leipelt, Fábio; Dias, Nathalia; Bodanese-Zanettini, Maria H; Cagliari, Alexandro

    2015-11-01

    Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms.

  10. Effects of chlorella on activities of protein tyrosine phosphatases, matrix metalloproteinases, caspases, cytokine release, B and T cell proliferations, and phorbol ester receptor binding.

    PubMed

    Cheng, Fong-Chi; Lin, Atsui; Feng, Jin-Jye; Mizoguchi, Toru; Takekoshi, Hideo; Kubota, Hitoshi; Kato, Yoko; Naoki, Yo

    2004-01-01

    A Chlorella powder was screened using 52 in vitro assay systems for enzyme activity, receptor binding, cellular cytokine release, and B and T cell proliferation. The screening revealed a very potent inhibition of human protein tyrosine phosphatase (PTP) activity of CD45 and PTP1C with 50% inhibitory concentration (IC(50)) values of 0.678 and 1.56 microg/mL, respectively. It also showed a moderate inhibition of other PTPs, including PTP1B (IC(50) = 65.3 microg/mL) and T-cell-PTP (114 microg/mL). Other inhibitory activities and their IC(50) values included inhibition of the human matrix metalloproteinases (MMPs) MMP-1 (127 microg/mL), MMP-3 (185 microg/mL), MMP-7 (18.1 microg/mL), and MMP-9 (237 microg/mL) and the human peptidase caspases caspase 1 (300 microg/mL), caspase 3 (203 microg/mL), caspase 6 (301 microg/mL), caspase 7 (291 microg/mL), and caspase 8 (261 microg/mL), as well as release of the cytokines interleukin (IL)-1 (44.9 microg/mL), IL-2 (14.8 microg/mL), IL-4 (49.2 microg/mL), IL-6 (34.7 microg/mL), interferon-gamma (31.6 microg/mL), and tumor necrosis factor-alpha (11 microg/mL) from human peripheral blood mononuclear cells. Chlorella also inhibited B cell proliferation (16.6 microg/mL) in mouse splenocytes and T cell proliferation (54.2 microg/mL) in mouse thymocytes. The binding of a phorbol ester, phorbol 12,13-dibutyrate, to its receptors was also inhibited by Chlorella with an IC(50) of 152 microg/mL. These results reveal potential pharmacological activities that, if confirmed by in vivo studies, might be exploited for the prevention or treatment of several serious pathologies, including inflammatory disease and cancer.

  11. Preserved otolith organ function in caspase-3 deficient mice with impaired horizontal semicircular canal function

    PubMed Central

    Armstrong, Patrick A; Wood, Scott J; Shimizu, Naoki; Kuster, Kael; Perachio, Adrian; Makishima, Tomoko

    2015-01-01

    Genetically engineered mice are valuable models for elucidation of auditory and vestibular pathology. Our goal was to establish a comprehensive vestibular function testing system in mice using: 1) horizontal angular vestibular-ocular reflex (hVOR) to evaluate semicircular canal function, and 2) otolith-ocular reflex (OOR) to evaluate otolith organ function, and to validate the system by characterizing mice with vestibular dysfunction. We used pseudo-off vertical axis rotation (pOVAR) to induce an otolith-only stimulus using a custom-made centrifuge. For the OOR, horizontal slow phase eye velocity (HEV) and vertical eye position (VEP) was evaluated as a function of acceleration. Using this system, we characterized hVOR and OOR in the caspase-3 (Casp3) mutant mice. Casp3 −/− mice had severely impaired hVOR gain, while Casp3 +/− mice had an intermediate response compared to WT mice. Evaluation of OOR revealed that at low to mid frequencies and stimulus intensity, Casp3 mutants and WT mice had similar responses. At higher frequencies and stimulus intensity, the Casp3 mutants displayed mildly reduced otolith organ related responses. These findings suggest that the Casp3 gene is important for the proper function of the semicircular canals but less important for the otolith organ function. PMID:25827332

  12. Eupalitin induces apoptosis in prostate carcinoma cells through ROS generation and increase of caspase-3 activity.

    PubMed

    Kaleem, Sarjeel; Siddiqui, Sahabjada; Siddiqui, Hefazat Hussain; Badruddeen; Hussain, Arshad; Arshad, Mohammad; Akhtar, Juber; Rizvi, Aleza

    2016-02-01

    Prostate cancer is the second most common malignancy in the human reproductive system. Eupalitin is one of the O-methylated flavonol-exhibited enhanced cancer chemopreventive agents. The current study highlights the structural determination of eupalitin and aims to explore the antitumor activity of eupalitin in human prostate cancer cell (PC3) and its underlying mechanism. Eupalitin structure was determined by using FTIR, (1)H NMR, and (13)C NMR. PC3 cells were treated with increasing concentrations of eupalitin, followed by analysis of the cell viability with an MTT assay. The results demonstrated that eupalitin markedly inhibited the proliferation of PC3 cells in a concentration-dependent manner. The results from fluorescent microscopic analysis of nuclear condensation and intracellular ROS generation determined that eupalitin significantly induced ROS level lead to nuclear apoptosis. Cell cycle analysis revealed that eupalitin-induced cell cycle progression as a percentage of cells in G0/G1 phase decreased whereas S phase increased. Caspase-3 immunofluorescence analysis confirms the efficacy of eupalitin-inducing apoptotic pathway and cell death. Thus, our study is helpful in understanding the mechanism underlying these effects in prostate cancer and it may provide novel molecular targets for prostate cancer therapy. © 2015 International Federation for Cell Biology.

  13. Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein.

    PubMed

    Jin, Tengchuan; Huang, Mo; Smith, Patrick; Jiang, Jiansheng; Xiao, T Sam

    2013-08-01

    The caspase-recruitment domain (CARD) mediates homotypic protein-protein interactions that assemble large oligomeric signaling complexes such as the inflammasomes during innate immune responses. Structural studies of the mammalian CARDs demonstrate that their six-helix bundle folds belong to the death-domain superfamily, whereas such studies have not been reported for other organisms. Here, the zebrafish interferon-induced guanylate-binding protein 1 (zIGBP1) was identified that contains an N-terminal GTPase domain and a helical domain typical of the mammalian guanylate-binding proteins, followed by a FIIND domain and a C-terminal CARD similar to the mammalian inflammasome proteins NLRP1 and CARD8. The structure of the zIGBP1 CARD as a fusion with maltose-binding protein was determined at 1.47 Å resolution. This revealed a six-helix bundle fold similar to the NLRP1 CARD structure with the bent α1 helix typical of all known CARD structures. The zIGBP1 CARD surface contains a positively charged patch near its α1 and α4 helices and a negatively charged patch near its α2, α3 and α5 helices, which may mediate its interaction with partner domains. Further studies using binding assays and other analyses will be required in order to address the physiological function(s) of this zebrafish protein.

  14. Activation of caspase-dependent apoptosis by intracellular delivery of cytochrome c-based nanoparticles

    PubMed Central

    2014-01-01

    Background Cytochrome c is an essential mediator of apoptosis when it is released from the mitochondria to the cytoplasm. This process normally takes place in response to DNA damage, but in many cancer cells (i.e., cancer stem cells) it is disabled due to various mechanisms. However, it has been demonstrated that the targeted delivery of Cytochrome c directly to the cytoplasm of cancer cells selective initiates apoptosis in many cancer cells. In this work we designed a novel nano-sized smart Cytochrome c drug delivery system to induce apoptosis in cancer cells upon delivery. Results Cytochrome c was precipitated with a solvent-displacement method to obtain protein nanoparticles. The size of the Cytochrome c nanoparticles obtained was 100-300 nm in diameter depending on the conditions used, indicating good potential to passively target tumors by the Enhanced Permeability and Retention effect. The surface of Cytochrome c nanoparticles was decorated with poly (lactic-co-glycolic) acid-SH via the linker succinimidyl 3-(2-pyridyldithio) propionate to prevent premature dissolution during delivery. The linker connecting the polymer to the protein nanoparticle contained a disulfide bond thus allowing polymer shedding and subsequent Cytochrome c release under intracellular reducing conditions. A cell-free caspase-3 assay revealed more than 80% of relative caspase activation by Cytochrome c after nanoprecipitation and polymer modification when compared to native Cytochrome c. Incubation of HeLa cells with the Cytochrome c based-nanoparticles showed significant reduction in cell viability after 6 hours while native Cytochrome c showed none. Confocal microscopy confirmed the induction of apoptosis in HeLa cells when they were stained with 4’,6-diamidino-2-phenylindole and propidium iodide after incubation with the Cytochrome c-based nanoparticles. Conclusions Our results demonstrate that the coating with a hydrophobic polymer stabilizes Cytochrome c nanoparticles allowing

  15. Exploiting differences in caspase-2 and -3 S₂ subsites for selectivity: structure-based design, solid-phase synthesis and in vitro activity of novel substrate-based caspase-2 inhibitors.

    PubMed

    Maillard, Michel C; Brookfield, Frederick A; Courtney, Stephen M; Eustache, Florence M; Gemkow, Mark J; Handel, Rebecca K; Johnson, Laura C; Johnson, Peter D; Kerry, Mark A; Krieger, Florian; Meniconi, Mirco; Muñoz-Sanjuán, Ignacio; Palfrey, Jordan J; Park, Hyunsun; Schaertl, Sabine; Taylor, Malcolm G; Weddell, Derek; Dominguez, Celia

    2011-10-01

    Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ∼200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Colonization of Epidermal Tissue by Staphylococcus aureus Produces Localized Hypoxia and Stimulates Secretion of Antioxidant and Caspase-14 Proteins

    PubMed Central

    Lone, Abdul G.; Atci, Erhan; Renslow, Ryan; Beyenal, Haluk; Noh, Susan; Fransson, Boel; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.

    2015-01-01

    A partial-thickness epidermal explant model was colonized with green fluorescent protein (GFP)-expressing Staphylococcus aureus, and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. The oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using elevated-energy mass spectrometry (MSE). S. aureus biofilm grows predominantly in lipid-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2- to 3-fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after 4 days of culture. The colonized explants released significantly (P < 0.01) more antioxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentrations found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in the media from the colonized explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface. PMID:25987705

  17. Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins

    SciTech Connect

    Lone , Abdul G.; Atci, Erhan; Renslow, Ryan S.; Beyenal, Haluk; Noh, S.; Fransson, B.; Abu-Lail, Nehal; Park, Jeong-Jin; Gang, David R.; Call, Douglas R.

    2015-08-31

    A partial-thickness epidermal explant model was colonized with GFP-expressing S. aureus and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. Oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using MSE mass spectrometry. We found that S. aureus biofilm grows predominantly in sebum-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2-3 fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after four days of culture. The colonized explants released significantly (P< 0.01) more anti-oxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentration found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in media from infected explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.

  18. Caspase-9 is required for normal hematopoietic development and protection from alkylator-induced DNA damage in mice

    PubMed Central

    Lu, Elise Peterson; McLellan, Michael; Ding, Li; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Miller, Christopher A.; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Walter, Matthew J.; Ley, Timothy J.

    2014-01-01

    Apoptosis and the DNA damage responses have been implicated in hematopoietic development and differentiation, as well as in the pathogenesis of myelodysplastic syndromes (MDS) and leukemia. However, the importance of late-stage mediators of apoptosis in hematopoiesis and leukemogenesis has not been elucidated. Here, we examine the role of caspase-9 (Casp9), the initiator caspase of the intrinsic apoptotic cascade, in murine fetal and adult hematopoiesis. Casp9 deficiency resulted in decreased erythroid and B-cell progenitor abundance and impaired function of hematopoietic stem cells after transplantation. Mouse bone marrow chimeras lacking Casp9 or its cofactor Apaf1 developed low white blood cell counts, decreased B-cell numbers, anemia, and reduced survival. Defects in apoptosis have also been previously implicated in susceptibility to therapy-related leukemia, a disease caused by exposure to DNA-damaging chemotherapy. We found that the burden of DNA damage was increased in Casp9-deficient cells after exposure to the alkylator, N-ethyl-nitrosourea (ENU). Furthermore, exome sequencing revealed that oligoclonal hematopoiesis emerged in Casp9-deficient bone marrow chimeras after alkylator exposure. Taken together, these findings suggest that defects in apoptosis could be a key step in the pathogenesis of alkylator-associated secondary malignancies. PMID:25349173

  19. Uterine endoplasmic reticulum stress-unfolded protein response regulation of gestational length is caspase-3 and -7–dependent

    PubMed Central

    Kyathanahalli, Chandrashekara; Organ, Kenna; Moreci, Rebecca S.; Anamthathmakula, Prashanth; Hassan, Sonia S.; Caritis, Steve N.; Jeyasuria, Pancharatnam; Condon, Jennifer C.

    2015-01-01

    We previously identified myometrial caspase-3 (CASP3) as a potential regulator of uterine quiescence. We also determined that during pregnancy, the functional activation of uterine CASP3 is likely governed by an integrated endoplasmic reticulum stress response (ERSR) and is consequently limited by an increased unfolded protein response (UPR). The present study examined the functional relevance of uterine UPR-ERSR in maintaining myometrial quiescence and regulating the timing of parturition. In vitro analysis of the human uterine myocyte hTERT-HM cell line revealed that tunicamycin (TM)-induced ERSR modified uterine myocyte contractile responsiveness. Accordingly, alteration of in vivo uterine UPR-ERSR using a pregnant mouse model significantly modified gestational length. We determined that “normal” gestational activation of the ERSR-induced CASP3 and caspase 7 (CASP7) maintains uterine quiescence through previously unidentified proteolytic targeting of the gap junction protein, alpha 1(GJA1); however, surprisingly, TM-induced uterine ERSR triggered an exaggerated UPR that eliminated uterine CASP3 and 7 tocolytic action precociously. These events allowed for a premature increase in myometrial GJA1 levels, elevated contractile responsiveness, and the onset of preterm labor. Importantly, a successful reversal of the magnified ERSR-induced preterm birth phenotype could be achieved by pretreatment with 4-phenylbutrate, a chaperone protein mimic. PMID:26504199

  20. Antiplatelet Aggregation Activity of Walnut Hull Extract via Suppression of Reactive Oxygen Species Generation and Caspase Activation.

    PubMed

    Meshkini, Azadeh; Tahmasbi, Masoumeh

    2017-06-01

    Walnut hull (wal hull) is an agricultural by-product that is widely used in traditional medicine for alleviating pain and treating skin diseases, however, recently it has gained much attention in modern pharmacology due to its antioxidant properties. The current study was aimed to determine the total phenolic, flavonoid, and tannin content of Persian wal hull extract and evaluate its biological effects on platelet function. Experimental data showed that acetone extract of wal hulls has a high content of polyphenolic compounds and antioxidant properties. The analytical study of crude extract by gas chromatography-mass spectrometry demonstrated different types of high- and low-molecular-weight compounds that are basically and biologically important. Moreover, an in vitro study revealed that wal hull extract at a concentration of 50 μg/mL inhibited thrombin-induced platelet aggregation and protein secretion by 50%, without any cytotoxic effects on platelets. The examined extract suppressed reactive oxygen species generation and also caspase activation in thrombin-stimulated platelets. Identically, N-acetylcysteine inhibited the increase of reactive oxygen species level induced by thrombin in platelets, and supported a link between cellular redox status and caspase activation in activated platelets. Presumably, the antiplatelet activity of wal hull extract is related to its polyphenolic compounds and their antioxidant properties. Therefore, wal hulls can be considered as a candidate for thrombotic disorders. Copyright © 2017. Published by Elsevier B.V.

  1. IRGB10 Liberates Bacterial Ligands for Sensing by the AIM2 and Caspase-11-NLRP3 Inflammasomes.

    PubMed

    Man, Si Ming; Karki, Rajendra; Sasai, Miwa; Place, David E; Kesavardhana, Sannula; Temirov, Jamshid; Frase, Sharon; Zhu, Qifan; Malireddi, R K Subbarao; Kuriakose, Teneema; Peters, Jennifer L; Neale, Geoffrey; Brown, Scott A; Yamamoto, Masahiro; Kanneganti, Thirumala-Devi

    2016-10-06

    The inflammasome is an intracellular signaling complex, which on recognition of pathogens and physiological aberration, drives activation of caspase-1, pyroptosis, and the release of the pro-inflammatory cytokines IL-1β and IL-18. Bacterial ligands must secure entry into the cytoplasm to activate inflammasomes; however, the mechanisms by which concealed ligands are liberated in the cytoplasm have remained unclear. Here, we showed that the interferon-inducible protein IRGB10 is essential for activation of the DNA-sensing AIM2 inflammasome by Francisella novicida and contributed to the activation of the LPS-sensing caspase-11 and NLRP3 inflammasome by Gram-negative bacteria. IRGB10 directly targeted cytoplasmic bacteria through a mechanism requiring guanylate-binding proteins. Localization of IRGB10 to the bacterial cell membrane compromised bacterial structural integrity and mediated cytosolic release of ligands for recognition by inflammasome sensors. Overall, our results reveal IRGB10 as part of a conserved signaling hub at the interface between cell-autonomous immunity and innate immune sensing pathways.

  2. ECRG4 is a negative regulator of caspase-8-mediated apoptosis in human T-leukemia cells.

    PubMed

    Matsuzaki, Junichi; Torigoe, Toshihiko; Hirohashi, Yoshihiko; Kamiguchi, Kenjiro; Tamura, Yasuaki; Tsukahara, Tomohide; Kubo, Terufumi; Takahashi, Akari; Nakazawa, Emiri; Saka, Eri; Yasuda, Kazuyo; Takahashi, Shuji; Sato, Noriyuki

    2012-05-01

    We previously established Fas-resistant variant clones from the human T-cell leukemia lines Jurkat and SUP-T13. Comparative gene expression analysis of the Fas-resistant and Fas-sensitive clones revealed several genes that were aberrantly expressed in the Fas-resistant clones. One of the genes, esophageal cancer-related gene 4 (ECRG4), contained a VDAC2-like domain that might be associated with apoptotic signals. In the present study, we examined the subcellular localization and function of ECRG4 in Fas-mediated apoptosis. By confocal fluorescence microscopy, ECRG4-EGFP fusion protein was detected in mitochondria, endoplasmic reticulum and the Golgi apparatus in gene-transfected HeLa cells. Overexpression of ECRG4 in Fas-sensitive Jurkat cells inhibited mitochondrial membrane permeability transition, leading to resistance against Fas-induced apoptosis. Tumor necrosis factor-alpha-induced apoptosis was also suppressed in ECRG4-overexpressing Jurkat cells. Immunoprecipitation assay demonstrated that ECRG4 is associated with procaspase-8. The inhibitory mechanism included the inhibition of caspase-8 activity and Bid cleavage. Since ECRG4 expression is downregulated in activated T cells, our results suggest that ECRG4 is a novel antiapoptotic gene which is involved in the negative regulation of caspase-8-mediated apoptosis in T cells.

  3. Bisphenol A diglycidyl ether induces apoptosis in tumour cells independently of peroxisome proliferator-activated receptor-gamma, in caspase-dependent and -independent manners.

    PubMed Central

    Fehlberg, Sebastian; Trautwein, Stefan; Göke, Alexandra; Göke, Rüdiger

    2002-01-01

    Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors which are involved in many biological processes, such as regulation of cell differentiation, lipid metabolism, inflammation and cell death. PPARs consist of three families, PPAR-alpha, PPAR-delta and PPAR-gamma. Bisphenol A diglycidyl ether (BADGE) has been described as a pure antagonist of PPAR-gamma. However, recent data also revealed PPAR-gamma-agonistic activities of BADGE. Here we show that BADGE kills transformed cells by apoptosis and promotes the cytotoxic effects of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and indomethacin. The cytotoxic effect of BADGE does not require PPAR-gamma expression and is mediated in caspase-dependent and caspase-independent manners. PMID:11879183

  4. Thiamine deficiency caused by thiamine antagonists triggers upregulation of apoptosis inducing factor gene expression and leads to caspase 3-mediated apoptosis in neuronally differentiated rat PC-12 cells.

    PubMed

    Chornyy, Sergiy; Parkhomenko, Julia; Chorna, Nataliya

    2007-01-01

    Recent evidence suggests that alterations in oxidative metabolism induced by thiamine deficiency lead to neuronal cell death. However, the molecular mechanisms underlying this process are still under extensive investigation. Here, we report that rat pheochromocytoma PC-12 cells differentiated in the presence of NGF into neurons undergo apoptosis due to thiamine deficiency caused by antagonists of thiamine - amprolium, pyrithiamine and oxythiamine. Confocal laser scanning fluorescence microscopy revealed that annexin V binds to PC-12 cells in presence of thiamine antagonists after 72 h incubation. Results also show that thiamine antagonists trigger upregulation of gene expression of mitochondrial-derived apoptosis inducing factor, DNA fragmentation, cleavage of caspase 3 and translocation of active product to the nucleus. We therefore propose that apoptosis induced by amprolium, pyrithiamine or oxythiamine occurs via the mitochondria-dependent caspase 3-mediated signaling pathway. In addition, our data indicate that pyrithiamine and oxythiamine are more potent inducers of apoptosis than amprolium.

  5. Delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis, by inducing DR5 and causing caspase-mediated HDAC3 cleavage

    PubMed Central

    Jeon, Hyelin; Sung, Gi-Jun; So, Youngsin; Kim, InKi; Son, JaeKyoung; Lee, Sang-wook; Yoon, Ho-Geun; Choi, Kyung-Chul

    2015-01-01

    TRAIL can induce apoptosis in some cancer cells and is an immune effector in the surveillance and elimination of developing tumors. Yes, some cancers are resistant to TRAIL. Delphinidin, a polyphenolic compound contained in brightly colored fruits and vegetables, has anti-inflammatory, anti-oxidant, and anti-tumorigenic activities. Here we showed that delphinidin sensitized TRAIL-resistant human prostate cancer cells to undergo apoptosis. Cells treated with delphinidin and TRAIL activated the extrinsic and intrinsic pathways of caspase activation. TRAIL-induced apoptosis in prostate cancer cells pretreated with delphinidin was dependent on death receptor 5 (DR5) and downstream cleavage of histone deacetylase 3 (HDAC3). In conclusion, delphinidin sensitizes prostate cancer cells to TRAIL-induced apoptosis by inducing DR5, thus causing caspase-mediated HDAC3 cleavage. Our data reveal a potential way of chemoprevention of prostate cancer by enabling TRAIL-mediated apoptosis. PMID:25991668