Science.gov

Sample records for caspase-2 mediated apoptotic

  1. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment.

    PubMed

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B

    2016-02-15

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2(-/-) mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2(-/-) cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2(-/-) primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis.

  2. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment

    PubMed Central

    Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B

    2016-01-01

    Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2−/− mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2−/− cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2−/− primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis. PMID:27019748

  3. Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis.

    PubMed

    Imre, Gergely; Heering, Jan; Takeda, Armelle-Natsuo; Husmann, Matthias; Thiede, Bernd; zu Heringdorf, Dagmar Meyer; Green, Douglas R; van der Goot, F Gisou; Sinha, Bhanu; Dötsch, Volker; Rajalingam, Krishnaraj

    2012-05-30

    Bacterial pathogens modulate host cell apoptosis to establish a successful infection. Pore-forming toxins (PFTs) secreted by pathogenic bacteria are major virulence factors and have been shown to induce various forms of cell death in infected cells. Here we demonstrate that the highly conserved caspase-2 is required for PFT-mediated apoptosis. Despite being the second mammalian caspase to be identified, the role of caspase-2 during apoptosis remains enigmatic. We show that caspase-2 functions as an initiator caspase during Staphylococcus aureus α-toxin- and Aeromonas aerolysin-mediated apoptosis in epithelial cells. Downregulation of caspase-2 leads to a strong inhibition of PFT-mediated apoptosis. Activation of caspase-2 is PIDDosome-independent, and endogenous caspase-2 is recruited to a high-molecular-weight complex in α-toxin-treated cells. Interestingly, prevention of PFT-induced potassium efflux inhibits the formation of caspase-2 complex, leading to its inactivation, thus resisting apoptosis. These results revealed a thus far unknown, obligatory role for caspase-2 as an initiator caspase during PFT-mediated apoptosis.

  4. TNF receptors regulate vascular homeostasis in zebrafish through a caspase-8, caspase-2 and P53 apoptotic program that bypasses caspase-3.

    PubMed

    Espín, Raquel; Roca, Francisco J; Candel, Sergio; Sepulcre, María P; González-Rosa, Juan M; Alcaraz-Pérez, Francisca; Meseguer, José; Cayuela, María L; Mercader, Nadia; Mulero, Victoriano

    2013-03-01

    Although it is known that tumor necrosis factor receptor (TNFR) signaling plays a crucial role in vascular integrity and homeostasis, the contribution of each receptor to these processes and the signaling pathway involved are still largely unknown. Here, we show that targeted gene knockdown of TNFRSF1B in zebrafish embryos results in the induction of a caspase-8, caspase-2 and P53-dependent apoptotic program in endothelial cells that bypasses caspase-3. Furthermore, the simultaneous depletion of TNFRSF1A or the activation of NF-κB rescue endothelial cell apoptosis, indicating that a signaling balance between both TNFRs is required for endothelial cell integrity. In endothelial cells, TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-κB. Similarly, TNFα promotes the apoptosis of human endothelial cells through TNFRSF1A and triggers caspase-2 and P53 activation. We have identified an evolutionarily conserved apoptotic pathway involved in vascular homeostasis that provides new therapeutic targets for the control of inflammation- and tumor-driven angiogenesis.

  5. Additive effects of nicotine and high-fat diet on hepatocellular apoptosis in mice: Involvement of caspase 2 and inducible nitric oxide synthase-mediated intrinsic pathway signaling

    PubMed Central

    Ivey, R.; Desai, M.; Green, K.; Sinha-Hikim, I.; Friedman, T. C.; Sinha-Hikim, A. P.

    2015-01-01

    Smoking is a major risk factor for diabetes and cardiovascular disease and may contribute to non-alcoholic fatty liver disease (NAFLD). The health risk associated with smoking is exaggerated by obesity and is the leading causes of morbidity and mortality worldwide. We recently demonstrated that combined treatment with nicotine and a high-fat diet (HFD) triggers greater oxidative stress, activates hepatocellular apoptosis, and exacerbates HFD-induced hepatic steatosis. Given that hepatocellular apoptosis plays a pivotal role in the pathogenesis of NAFLD, using this model of exacerbated hepatic steatosis, we elucidated the signal transduction pathways involved in HFD plus nicotine-induced liver cell death. Adult C57BL6 male mice were fed a normal chow diet or HFD with 60% of calories derived from fat and received twice daily IP injections of 0.75 mg/kg BW of nicotine or saline for 10 weeks. High resolution light microscopy revealed markedly higher lipid accumulation in hepatocytes from mice received HFD plus nicotine, compared to mice on HFD alone. Addition of nicotine to HFD further resulted in an increase in the incidence of hepatocellular apoptosis and was associated with activation of caspase 2, induction of inducible nitric oxide synthase (iNOS), and perturbation of the BAX/BCL-2 ratio. Together, our data indicate the involvement of caspase 2 and iNOS –mediated apoptotic signaling in nicotine plus HFD-induced hepatocellular apoptosis. Targeting the caspase 2-mediated death pathway may have a protective role in development and progression of NAFLD. PMID:24830635

  6. Mutations in CRADD Result in Reduced Caspase-2-Mediated Neuronal Apoptosis and Cause Megalencephaly with a Rare Lissencephaly Variant.

    PubMed

    Di Donato, Nataliya; Jean, Ying Y; Maga, A Murat; Krewson, Briana D; Shupp, Alison B; Avrutsky, Maria I; Roy, Achira; Collins, Sarah; Olds, Carissa; Willert, Rebecca A; Czaja, Agnieszka M; Johnson, Rachel; Stover, Jessi A; Gottlieb, Steven; Bartholdi, Deborah; Rauch, Anita; Goldstein, Amy; Boyd-Kyle, Victoria; Aldinger, Kimberly A; Mirzaa, Ghayda M; Nissen, Anke; Brigatti, Karlla W; Puffenberger, Erik G; Millen, Kathleen J; Strauss, Kevin A; Dobyns, William B; Troy, Carol M; Jinks, Robert N

    2016-11-03

    Lissencephaly is a malformation of cortical development typically caused by deficient neuronal migration resulting in cortical thickening and reduced gyration. Here we describe a "thin" lissencephaly (TLIS) variant characterized by megalencephaly, frontal predominant pachygyria, intellectual disability, and seizures. Trio-based whole-exome sequencing and targeted re-sequencing identified recessive mutations of CRADD in six individuals with TLIS from four unrelated families of diverse ethnic backgrounds. CRADD (also known as RAIDD) is a death-domain-containing adaptor protein that oligomerizes with PIDD and caspase-2 to initiate apoptosis. TLIS variants cluster in the CRADD death domain, a platform for interaction with other death-domain-containing proteins including PIDD. Although caspase-2 is expressed in the developing mammalian brain, little is known about its role in cortical development. CRADD/caspase-2 signaling is implicated in neurotrophic factor withdrawal- and amyloid-β-induced dendritic spine collapse and neuronal apoptosis, suggesting a role in cortical sculpting and plasticity. TLIS-associated CRADD variants do not disrupt interactions with caspase-2 or PIDD in co-immunoprecipitation assays, but still abolish CRADD's ability to activate caspase-2, resulting in reduced neuronal apoptosis in vitro. Homozygous Cradd knockout mice display megalencephaly and seizures without obvious defects in cortical lamination, supporting a role for CRADD/caspase-2 signaling in mammalian brain development. Megalencephaly and lissencephaly associated with defective programmed cell death from loss of CRADD function in humans implicate reduced apoptosis as an important pathophysiological mechanism of cortical malformation. Our data suggest that CRADD/caspase-2 signaling is critical for normal gyration of the developing human neocortex and for normal cognitive ability.

  7. Measurement of caspase-2 activation during different anti-tumor drugs induced apoptosis by FRET technique

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong

    2007-11-01

    Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.

  8. Natural Indoles, Indole-3-Carbinol (I3C) and 3,3’-Diindolylmethane (DIM), Attenuate Staphylococcal Enterotoxin B-Mediated Liver Injury by Downregulating miR-31 Expression and Promoting Caspase-2-Mediated Apoptosis

    PubMed Central

    Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2015-01-01

    Staphylococcal enterotoxin B (SEB) is a potent superantigen capable of inducing inflammation characterized by robust immune cell activation and proinflammatory cytokine release. Exposure to SEB can result in food poisoning as well as fatal conditions such as toxic shock syndrome. In the current study, we investigated the effect of natural indoles including indole-3-carbinol (I3C) and 3,3’-diindolylmethane (DIM) on SEB-mediated liver injury. Injection of SEB into D-galactosamine-sensitized female C57BL/6 mice resulted in liver injury as indicated by an increase in enzyme aspartate transaminase (AST) levels, induction of inflammatory cytokines, and massive infiltration of immune cells into the liver. Administration of I3C and DIM (40mg/kg), by intraperitonal injection, attenuated SEB-induced acute liver injury, as evidenced by decrease in AST levels, inflammatory cytokines and cellular infiltration in the liver. I3C and DIM triggered apoptosis in SEB-activated T cells primarily through activation of the intrinsic mitochondrial pathway. In addition, inhibitor studies involving caspases revealed that I3C and DIM-mediated apoptosis in these activated cells was dependent on caspase-2 but independent of caspase-8, 9 and 3. In addition, I3C and DIM caused a decrease in Bcl-2 expression. Both compounds also down-regulated miR-31, which directly targets caspase-2 and influences apoptosis in SEB-activated cells. Our data demonstrate for the first time that indoles can effectively suppress acute hepatic inflammation caused by SEB and that this may be mediated by decreased expression of miR-31 and consequent caspase-2-dependent apoptosis in T cells. PMID:25706292

  9. Human CD14 mediates recognition and phagocytosis of apoptotic cells.

    PubMed

    Devitt, A; Moffatt, O D; Raykundalia, C; Capra, J D; Simmons, D L; Gregory, C D

    1998-04-02

    Cells undergoing programmed cell death (apoptosis) are cleared rapidly in vivo by phagocytes without inducing inflammation. Here we show that the glycosylphosphatidylinositol-linked plasma-membrane glycoprotein CD14 on the surface of human macrophages is important for the recognition and clearance of apoptotic cells. CD14 can also act as a receptor that binds bacterial lipopolysaccharide (LPS), triggering inflammatory responses. Overstimulation of CD14 by LPS can cause the often fatal toxic-shock syndrome. Here we show that apoptotic cells interact with CD14, triggering phagocytosis of the apoptotic cells. This interaction depends on a region of CD14 that is identical to, or at least closely associated with, a region known to bind LPS. However, apoptotic cells, unlike LPS, do not provoke the release of pro-inflammatory cytokines from macrophages. These results indicate that clearance of apoptotic cells is mediated by a receptor whose interactions with 'non-self' components (LPS) and 'self' components (apoptotic cells) produce distinct macrophage responses.

  10. Caspase-2: vestigial remnant or master regulator?

    PubMed

    Troy, Carol M; Ribe, Elena M

    2008-09-23

    Caspase-2, the second mammalian caspase to be identified and the most evolutionarily conserved caspase, has eluded classification. The lack of a profound phenotype in the caspase-2-deficient mouse resulted in decreased interest in caspase-2 for many years. However, advances in the field, including the identification of a potential activation complex and the development of methods to detect active caspase-2, now illuminate our understanding of the function of this caspase. These studies suggest that caspase-2 induces death through two pathways. First, caspase-2 induces cell death independently of the mitochondrial pathway, in a manner similar to that of ced-3, a caspase in Caenorhabditis elegans. Second, caspase-2 also induces cell death upstream of the mitochondrial pathway. The choice of pathway may depend on the type of death stimulus. The placing of caspase-2 upstream and independent of mitochondrial dysfunction provides a potentially new therapeutic target for aberrant cell death.

  11. PUMA-mediated mitochondrial apoptotic disruption by hypoxic postconditioning.

    PubMed

    Li, YuZhen; Guo, Qi; Liu, XiuHua; Wang, Chen; Song, DanDan

    2015-08-01

    Postconditioning can reduce ischemia-reperfusion (I/R)-induced cardiomyocyte apoptosis by targeting mitochondria. p53 upregulated modulator of apoptosis (PUMA) is involved in lethal I/R injury. Here, we hypothesized that postconditioning might inhibit mitochondrial pathway-mediated cardiomyocyte apoptosis by controlling PUMA expression. The cultured neonatal rat cardiomyocytes underwent 3 h of hypoxia and 3 h of reoxygenation. Postconditioning consisted of three cycles of 5 min reoxygenation and 5 min hypoxia after prolonged hypoxia. Hypoxic postconditioning reduced the levels of PUMA mRNA and protein. Concomitantly, the loss of mitochondrial membrane potential, cytochrome c release and caspase-3 activation were decreased significantly by postconditioning. Overexpression of PUMA increased greatly not only the number of apoptotic cardiomyocytes, but also the collapse of mitochondrial membrane potential, cytochrome c release and caspase-3 activation under postconditioning condition. The data suggest that reduction of PUMA expression mediates the endogenous cardioprotective mechanisms of postconditioning by disrupting mitochondrial apoptotic pathway.

  12. Increased sensitivity of early apoptotic cells to complement-mediated lysis.

    PubMed

    Attali, Gitit; Gancz, Dana; Fishelson, Zvi

    2004-11-01

    Opsonization of apoptotic cells with complement proteins contributes to their clearance by phagocytes. Little is known about the lytic effects of complement on apoptotic cells. Sensitivity of cells treated with anti-Fas antibody (Jurkat cells), staurosporine or etoposide (Raji cells) to lysis by complement was examined. As shown here, early apoptotic cells are more sensitive to lysis by antibody and complement than control cells. More complement C3 and C9 bound to apoptotic than to control cells, even though antibody binding was similar. Enhanced killing and C3/C9 deposition were blocked by benzyloxy-Val-Ala-Asp-fluoromethylketone, a pan-caspase inhibitor. Complement-mediated lysis of early apoptotic cells was also prevented by inhibitors of caspases 6, 8, 9 or 10. In contrast, caspase inhibitors had no effect on the lysis of non-apoptotic Jurkat and Raji cells. Early apoptotic Jurkat cells were also more sensitive to lysis by the pore formers streptolysin O and melittin. Sensitivity of Jurkat Bcl-2 transfectants to lysis by complement was analyzed. Enhanced Bcl-2 expression was associated with reduced C3 deposition and lower sensitivity to complement-mediated lysis. These results demonstrate that at an early stage in apoptosis, following caspase activation, cells become sensitive to necrotic-type death by complement and other pore formers. Furthermore, they suggest that Bcl-2 is actively protecting Jurkat cells from complement-mediated lysis.

  13. Methyl methanesulfonate induces apoptosis in p53-deficient H1299 and Hep3B cells through a caspase 2- and mitochondria-associated pathway.

    PubMed

    Jiang, Ying; Zhang, Xiao-Yun; Sun, Li; Zhang, Guang-Lin; Duerksen-Hughes, Penelope; Zhu, Xin-Qiang; Yang, Jun

    2012-11-01

    Methyl methanesulfonate (MMS) has been shown to induce apoptosis in various cell types through p53-dependent pathways. Nevertheless, pharmacological and genetic blockade of p53 functions results in similar or delayed sensitivity to MMS treatment, suggesting the presence of p53-independent apoptotic mechanisms. To understand the p53-independent mechanisms that are engaged during MMS-induced apoptosis, we established MMS-induced apoptotic cell models using p53-deficient H1299 and Hep3B cells. Our results demonstrated that MMS at concentrations of 50, 100, 200, 400 and 800 μM induced the formation of gammaH2AX foci, and that at higher concentrations, 400 and 800 μM, MMS treatment led to apoptosis in the two cell lines. This apoptotic cell death was concurrent with the loss of mitochondrial membrane potential, nuclear-cytosolic translocation of active caspase 2, release of cytochrome c from mitochondria, and the cleavage of caspase 9, caspase 3 and PARP. However, MMS-induced DNA damage failed to stabilize the p53 family members TAp73 and DNp73. These results demonstrated a p53- and p73-independent mechanism for MMS-induced apoptosis that involves the nuclear-cytosolic translocation of active caspase 2 as well as the mitochondria-mediated pathway.

  14. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    PubMed

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  15. FSAP-mediated nucleosome release from late apoptotic cells is inhibited by autoantibodies present in SLE.

    PubMed

    Marsman, Gerben; Stephan, Femke; de Leeuw, Karina; Bulder, Ingrid; Ruinard, Jessica T; de Jong, Jan; Westra, Johanna; Bultink, Irene E M; Voskuyl, Alexandre E; Aarden, Lucien A; Luken, Brenda M; Kallenberg, Cees G M; Zeerleder, Sacha

    2016-03-01

    Inefficient clearance of apoptotic cells and the subsequent exposure of the immune system to nuclear contents are crucially involved in the pathogenesis of systemic lupus erythematosus (SLE). Factor VII-activating protease (FSAP) is activated in serum upon contact with dead cells, and releases nucleosomes from late apoptotic cells into the extracellular environment. We investigated whether FSAP-mediated nucleosome release from late apoptotic cells is affected in SLE patients. Nucleosome release in sera of 27 SLE patients and 30 healthy controls was investigated by incubating late apoptotic Jurkat cells with serum and analyzing the remaining DNA content by flow cytometry. We found that nucleosome release in sera of SLE patients with high disease activity was significantly decreased when compared with that in SLE sera obtained during low disease activity or from healthy individuals. Upon removal of IgG/IgM antibodies from SLE sera, nucleosome release was restored. Similarly, monoclonal antinuclear antibodies inhibited nucleosome release in healthy donor serum or by plasma-purified FSAP. This inhibition was lost when Fab fragments were used, suggesting that antigen cross-linking is involved. In conclusion, FSAP-mediated nucleosome release from late apoptotic cells is greatly impaired in SLE patient sera, possibly hampering the clearance of these cells and thereby propagating inflammation.

  16. Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons.

    PubMed

    Ramachandran, Vinitha; Watts, Lora Talley; Maffi, Shivani Kaushal; Chen, Juanjuan; Schenker, Steven; Henderson, George

    2003-11-15

    In utero ethanol exposure elicits apoptotic cell death in the fetal brain, and this may be mediated by oxidative stress. Our studies utilize cultured fetal rat cortical neurons and illustrate that ethanol elicits a rapid onset of oxidative stress, which culminates in mitochondrially mediated apoptotic cell death. Cells exposed to ethanol (2.5 mg/ml) remained attached to their polylysine matrix during a 24-hr exposure, but they exhibited distinct signs of oxidative stress, decreased viability, and apoptosis. Confocal microscopy of live cortical neurons pretreated with dichlorodihydrofluorescein diacetate demonstrated an increase in reactive oxygen species (ROS) within 5 min of ethanol exposure. The levels of ROS further increased by 58% within 1 hr (P <.05) and by 82% within 2 hr (P <.05), accompanied by increases of mitochondrial 4-hydroxynonenal (HNE). These early events were followed by decreased trypan blue exclusion of 10% to 32% (P <.05) at the 6- to 24-hr time points, respectively. This culminates in apoptotic death, with increases of Annexin V binding of 43%, 89%, 123%, and 238%, at 2, 6, 12, and 24 hr of ethanol treatment, respectively, as well as DNA fragmentation increases of 50% and 65% by 12 and 24 hr, respectively. Release of cytochrome c by mitochondria increased by 53% at 6 hr of exposure (P <.05), concomitant with activation of caspase 3 (52% at 12 hr, P <.05). Pretreatment with N-acetylcysteine increased cellular glutathione and prevented apoptosis. These studies provide a time line illustrating that oxidative stress and formation of a proapoptotic lipid peroxidation product, HNE, precede a cascade of mitochondrially mediated events in cultured fetal cortical neurons, culminating in apoptotic death. The prevention of apoptosis by augmentation of glutathione stores also strongly supports a role for oxidative stress in ethanol-mediated apoptotic death of fetal cortical neurons.

  17. Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids

    PubMed Central

    Lauber, K; Keppeler, H; Munoz, L E; Koppe, U; Schröder, K; Yamaguchi, H; Krönke, G; Uderhardt, S; Wesselborg, S; Belka, C; Nagata, S; Herrmann, M

    2013-01-01

    The phagocytic clearance of apoptotic cells is essential to prevent chronic inflammation and autoimmunity. The phosphatidylserine-binding protein milk fat globule-EGF factor 8 (MFG-E8) is a major opsonin for apoptotic cells, and MFG-E8−/− mice spontaneously develop a lupus-like disease. Similar to human systemic lupus erythematosus (SLE), the murine disease is associated with an impaired clearance of apoptotic cells. SLE is routinely treated with glucocorticoids (GCs), whose anti-inflammatory effects are consentaneously attributed to the transrepression of pro-inflammatory cytokines. Here, we show that the GC-mediated transactivation of MFG-E8 expression and the concomitantly enhanced elimination of apoptotic cells constitute a novel aspect in this context. Patients with chronic inflammation receiving high-dose prednisone therapy displayed substantially increased MFG-E8 mRNA levels in circulating monocytes. MFG-E8 induction was dependent on the GC receptor and several GC response elements within the MFG-E8 promoter. Most intriguingly, the inhibition of MFG-E8 induction by RNA interference or genetic knockout strongly reduced or completely abolished the phagocytosis-enhancing effect of GCs in vitro and in vivo. Thus, MFG-E8-dependent promotion of apoptotic cell clearance is a novel anti-inflammatory facet of GC treatment and renders MFG-E8 a prospective target for future therapeutic interventions in SLE. PMID:23832117

  18. Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids.

    PubMed

    Lauber, K; Keppeler, H; Munoz, L E; Koppe, U; Schröder, K; Yamaguchi, H; Krönke, G; Uderhardt, S; Wesselborg, S; Belka, C; Nagata, S; Herrmann, M

    2013-09-01

    The phagocytic clearance of apoptotic cells is essential to prevent chronic inflammation and autoimmunity. The phosphatidylserine-binding protein milk fat globule-EGF factor 8 (MFG-E8) is a major opsonin for apoptotic cells, and MFG-E8(-/-) mice spontaneously develop a lupus-like disease. Similar to human systemic lupus erythematosus (SLE), the murine disease is associated with an impaired clearance of apoptotic cells. SLE is routinely treated with glucocorticoids (GCs), whose anti-inflammatory effects are consentaneously attributed to the transrepression of pro-inflammatory cytokines. Here, we show that the GC-mediated transactivation of MFG-E8 expression and the concomitantly enhanced elimination of apoptotic cells constitute a novel aspect in this context. Patients with chronic inflammation receiving high-dose prednisone therapy displayed substantially increased MFG-E8 mRNA levels in circulating monocytes. MFG-E8 induction was dependent on the GC receptor and several GC response elements within the MFG-E8 promoter. Most intriguingly, the inhibition of MFG-E8 induction by RNA interference or genetic knockout strongly reduced or completely abolished the phagocytosis-enhancing effect of GCs in vitro and in vivo. Thus, MFG-E8-dependent promotion of apoptotic cell clearance is a novel anti-inflammatory facet of GC treatment and renders MFG-E8 a prospective target for future therapeutic interventions in SLE.

  19. Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice

    PubMed Central

    Dawar, Swati; Shahrin, Nur Hezrin; Sladojevic, Nikolina; D'Andrea, Richard J; Dorstyn, Loretta; Hiwase, Devendra K; Kumar, Sharad

    2016-01-01

    The apoptotic cysteine protease caspase-2 has been shown to suppress tumourigenesis in mice and its reduced expression correlates with poor prognosis in some human malignancies. Caspase-2-deficient mice develop normally but show ageing-related traits and, when challenged by oncogenic stimuli or certain stress, show enhanced tumour development, often accompanied by extensive aneuploidy. As stem cells are susceptible to acquiring age-related functional defects because of their self-renewal and proliferative capacity, we examined whether loss of caspase-2 promotes such defects with age. Using young and aged Casp2−/− mice, we demonstrate that deficiency of caspase-2 results in enhanced aneuploidy and DNA damage in bone marrow (BM) cells with ageing. Furthermore, we demonstrate for the first time that caspase-2 loss results in significant increase in immunophenotypically defined short-term haematopoietic stem cells (HSCs) and multipotent progenitors fractions in BM with a skewed differentiation towards myeloid progenitors with ageing. Caspase-2 deficiency leads to enhanced granulocyte macrophage and erythroid progenitors in aged mice. Colony-forming assays and long-term culture-initiating assay further recapitulated these results. Our results provide the first evidence of caspase-2 in regulating HSC and progenitor differentiation, as well as aneuploidy, in vivo. PMID:27906175

  20. BAD-mediated apoptotic pathway is associated with human cancer development.

    PubMed

    Stickles, Xiaomang B; Marchion, Douglas C; Bicaku, Elona; Al Sawah, Entidhar; Abbasi, Forough; Xiong, Yin; Bou Zgheib, Nadim; Boac, Bernadette M; Orr, Brian C; Judson, Patricia L; Berry, Amy; Hakam, Ardeshir; Wenham, Robert M; Apte, Sachin M; Berglund, Anders E; Lancaster, Johnathan M

    2015-04-01

    The malignant transformation of normal cells is caused in part by aberrant gene expression disrupting the regulation of cell proliferation, apoptosis, senescence and DNA repair. Evidence suggests that the Bcl-2 antagonist of cell death (BAD)-mediated apoptotic pathway influences cancer chemoresistance. In the present study, we explored the role of the BAD-mediated apoptotic pathway in the development and progression of cancer. Using principal component analysis to derive a numeric score representing pathway expression, we evaluated clinico-genomic datasets (n=427) from corresponding normal, pre-invasive and invasive cancers of different types, such as ovarian, endometrial, breast and colon cancers in order to determine the associations between the BAD-mediated apoptotic pathway and cancer development. Immunofluorescence was used to compare the expression levels of phosphorylated BAD [pBAD (serine-112, -136 and -155)] in immortalized normal and invasive ovarian, colon and breast cancer cells. The expression of the BAD-mediated apoptotic pathway phosphatase, PP2C, was evaluated by RT-qPCR in the normal and ovarian cancer tissue samples. The growth-promoting effects of pBAD protein levels in the immortalized normal and cancer cells were assessed using siRNA depletion experiments with MTS assays. The expression of the BAD-mediated apoptotic pathway was associated with the development and/or progression of ovarian (n=106, p<0.001), breast (n=185, p<0.0008; n=61, p=0.04), colon (n=22, p<0.001) and endometrial (n=33, p<0.001) cancers, as well as with ovarian endometriosis (n=20, p<0.001). Higher pBAD protein levels were observed in the cancer cells compared to the immortalized normal cells, whereas PP2C gene expression was lower in the cancer compared to the ovarian tumor tissue samples (n=76, p<0.001). The increased pBAD protein levels after the depletion of PP2C conferred a growth advantage to the immortalized normal and cancer cells. The BAD-mediated apoptotic pathway

  1. {beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation.

    PubMed

    Ahn, Seungkirl; Kim, Jihee; Hara, Makoto R; Ren, Xiu-Rong; Lefkowitz, Robert J

    2009-03-27

    beta-Arrestins, originally discovered as terminators of G protein-coupled receptor signaling, have more recently been appreciated to also function as signal transducers in their own right, although the consequences for cellular physiology have not been well understood. Here we demonstrate that beta-arrestin-2 mediates anti-apoptotic cytoprotective signaling stimulated by a typical 7-transmembrane receptor the angiotensin ATII 1A receptor, expressed endogenously in rat vascular smooth muscle cells or by transfection in HEK-293 cells. Receptor stimulation leads to concerted activation of two pathways, ERK/p90RSK and PI3K/AKT, which converge to phosphorylate and inactivate the pro-apoptotic protein BAD. Anti-apoptotic effects as well as pathway activities can be stimulated by an angiotensin analog (SII), which has been previously shown to activate beta-arrestin but not G protein-dependent signaling, and are abrogated by beta-arrestin-2 small interfering RNA. These findings establish a key role for beta-arrestin-2 in mediating cellular cytoprotective functions by a 7-transmembrane receptor and define the biochemical pathways involved.

  2. Fanconi anemia D2 protein is an apoptotic target mediated by caspases.

    PubMed

    Park, Su-Jung; Beck, Brian D; Saadatzadeh, M Reza; Haneline, Laura S; Clapp, D Wade; Lee, Suk-Hee

    2011-09-01

    FANCD2, a key factor in the FANC-BRCA1 pathway is monoubiquitinated and targeted to discrete nuclear foci following DNA damage. Since monoubiquitination of FANCD2 is a crucial indicator for cellular response to DNA damage, we monitored the fate of FANCD2 and its monoubiquitination following DNA damage. Disappearance of FANCD2 protein was induced following DNA damage in a dose-dependent manner, which correlated with degradation of BRCA1 and poly-ADP ribose polymerase (PARP), known targets for caspase-mediated apoptosis. Disappearance of FANCD2 was not affected by a proteasome inhibitor but was blocked by a caspase inhibitor. DNA damage-induced disappearance of FANCD2 was also observed in cells lacking FANCA, suggesting that disappearance of FANCD2 does not depend on FANC-BRCA1 pathway and FANCD2 monoubiquitination. In keeping with this, cells treated with TNF-α, an apoptotic stimulus without causing any DNA damage, also induced disappearance of FANCD2 without monoubiquitination. Together, our data suggest that FANCD2 is a target for caspase-mediated apoptotic pathway, which may be an early indicator for apoptotic cell death.

  3. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53

    PubMed Central

    Yoon, Kyoung Wan; Byun, Sanguine; Kwon, Eunjeong; Hwang, So-Young; Chu, Kiki; Hiraki, Masatsugu; Jo, Seung-Hee; Weins, Astrid; Hakroush, Samy; Cebulla, Angelika; Sykes, David B.; Greka, Anna; Mundel, Peter; Fisher, David E.; Mandinova, Anna; Lee, Sam W.

    2016-01-01

    The inefficient clearance of dying cells can lead to abnormal immune responses, such as unresolved inflammation and autoimmune conditions. We show that tumor suppressor p53 controls signaling-mediated phagocytosis of apoptotic cells through its target, Death Domain1α (DD1α), which suggests that p53 promotes both the proapoptotic pathway and postapoptotic events. DD1α appears to function as an engulfment ligand or receptor that engages in homophilic intermolecular interaction at intercellular junctions of apoptotic cells and macrophages, unlike other typical scavenger receptors that recognize phosphatidylserine on the surface of dead cells. DD1α-deficient mice showed in vivo defects in clearing dying cells, which led to multiple organ damage indicative of immune dysfunction. p53-induced expression of DD1α thus prevents persistence of cell corpses and ensures efficient generation of precise immune responses. PMID:26228159

  4. E1A enhances cellular sensitivity to DNA-damage-induced apoptosis through PIDD-dependent caspase-2 activation

    PubMed Central

    Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L

    2016-01-01

    Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF-κB)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF-κB-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF-κB activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents. PMID:27833761

  5. E1A enhances cellular sensitivity to DNA-damage-induced apoptosis through PIDD-dependent caspase-2 activation.

    PubMed

    Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L

    2016-01-01

    Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF-κB)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF-κB-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF-κB activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents.

  6. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD)

    PubMed Central

    Okada, Yasunobu; Maeno, Emi; Shimizu, Takahiro; Dezaki, Katsuya; Wang, Jun; Morishima, Shigeru

    2001-01-01

    A fundamental property of animal cells is the ability to regulate their own cell volume. Even under hypotonic stress imposed by either decreased extracellular or increased intracellular osmolarity, the cells can re-adjust their volume after transient osmotic swelling by a mechanism known as regulatory volume decrease (RVD). In most cell types, RVD is accomplished mainly by KCl efflux induced by parallel activation of K+ and Cl− channels. We have studied the molecular mechanism of RVD in a human epithelial cell line (Intestine 407). Osmotic swelling results in a significant increase in the cytosolic Ca2+ concentration and thereby activates intermediate-conductance Ca2+-dependent K+ (IK) channels. Osmotic swelling also induces ATP release from the cells to the extracellular compartment. Released ATP stimulates purinergic ATP (P2Y2) receptors, thereby inducing phospholipase C-mediated Ca2+ mobilization. Thus, RVD is facilitated by stimulation of P2Y2 receptors due to augmentation of IK channels. In contrast, stimulation of another G protein-coupled Ca2+-sensing receptor (CaR) enhances the activity of volume-sensitive outwardly rectifying Cl− channels, thereby facilitating RVD. Therefore, it is possible that Ca2+ efflux stimulated by swelling-induced and P2Y2 receptor-mediated intracellular Ca2+ mobilization activates the CaR, thereby secondarily upregulating the volume-regulatory Cl− conductance. On the other hand, the initial process towards apoptotic cell death is coupled to normotonic cell shrinkage, called apoptotic volume decrease (AVD). Stimulation of death receptors, such as TNFα receptor and Fas, induces AVD and thereafter biochemical apoptotic events in human lymphoid (U937), human epithelial (HeLa), mouse neuroblastoma × rat glioma hybrid (NG108-15) and rat phaeochromocytoma (PC12) cells. In those cells exhibiting AVD, facilitation of RVD is always observed. Both AVD induction and RVD facilitation as well as succeeding apoptotic events can be

  7. MRP- and BCL-2-mediated drug resistance in human SCLC: effects of apoptotic sphingolipids in vitro.

    PubMed

    Khodadadian, M; Leroux, M E; Auzenne, E; Ghosh, S C; Farquhar, D; Evans, R; Spohn, W; Zou, Y; Klostergaard, J

    2009-10-01

    Multidrug-resistance-associated protein (MRP) and BCL-2 contribute to drug resistance expressed in SCLC. To establish whether MRP-mediated drug resistance affects sphingolipid (SL)-induced apoptosis in SCLC, we first examined the human SCLC cell line, UMCC-1, and its MRP over-expressing, drug-resistant subline, UMCC-1/VP. Despite significantly decreased sensitivity to doxorubicin (Dox) and to the etoposide, VP-16, the drug-selected line was essentially equally as sensitive to treatment with exogenous ceramide (Cer), sphingosine (Sp) or dimethyl-sphingosine (DMSP) as the parental line. Next, we observed that high BCL-2-expressing human H69 SCLC cells, that were approximately 160-fold more sensitive to Dox than their combined BCL-2 and MRP-over-expressing (H69AR) counterparts, were only approximately 5-fold more resistant to DMSP. Time-lapse fluorescence microscopy of either UMCC cell line treated with DMSP-Coumarin revealed comparable extents and kinetics of SL uptake, further ruling out MRP-mediated effects on drug uptake. DMSP potentiated the cytotoxic activity of VP-16 and Taxol, but not Dox, in drug-resistant UMCC-1/VP cells. However, this sensitization did not appear to involve DMSP-mediated effects on the function of MRP in drug export; nor did DMSP strongly shift the balance of pro-apoptotic Sps and anti-apoptotic Sp-1-Ps in these cells. We conclude that SL-induced apoptosis markedly overcomes or bypasses MRP-mediated drug resistance relevant to SCLC and may suggest a novel therapeutic approach to chemotherapy for these tumors.

  8. Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production

    PubMed Central

    McArthur, Kate; Metcalf, Donald; Lane, Rachael M.; Cambier, John C.; Herold, Marco J.; van Delft, Mark F.; Bedoui, Sammy; Lessene, Guillaume; Ritchie, Matthew E.; Huang, David C.S.

    2015-01-01

    SUMMARY Activated caspases are a hallmark of apoptosis induced by the intrinsic pathway, but they are dispensable for cell death and the apoptotic clearance of cells in vivo. This has led to the suggestion that caspases are activated not just to kill but to prevent dying cells from triggering a host immune response. Here, we show that the caspase cascade suppresses type I interferon (IFN) production by cells undergoing Bak/Bax-mediated apoptosis. Bak and Bax trigger the release of mitochondrial DNA. This is recognized by the cGAS/STING-dependent DNA sensing pathway, which initiates IFN production. Activated caspases attenuate this response. Pharmacological caspase inhibition or genetic deletion of caspase-9, Apaf-1, or caspase-3/7 causes dying cells to secrete IFN-β. In vivo, this precipitates an elevation in IFN-β levels and consequent hematopoietic stem cell dysfunction, which is corrected by loss of Bak and Bax. Thus, the apoptotic caspase cascade functions to render mitochondrial apoptosis immunologically silent. PMID:25525874

  9. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production.

    PubMed

    White, Michael J; McArthur, Kate; Metcalf, Donald; Lane, Rachael M; Cambier, John C; Herold, Marco J; van Delft, Mark F; Bedoui, Sammy; Lessene, Guillaume; Ritchie, Matthew E; Huang, David C S; Kile, Benjamin T

    2014-12-18

    Activated caspases are a hallmark of apoptosis induced by the intrinsic pathway, but they are dispensable for cell death and the apoptotic clearance of cells in vivo. This has led to the suggestion that caspases are activated not just to kill but to prevent dying cells from triggering a host immune response. Here, we show that the caspase cascade suppresses type I interferon (IFN) production by cells undergoing Bak/Bax-mediated apoptosis. Bak and Bax trigger the release of mitochondrial DNA. This is recognized by the cGAS/STING-dependent DNA sensing pathway, which initiates IFN production. Activated caspases attenuate this response. Pharmacological caspase inhibition or genetic deletion of caspase-9, Apaf-1, or caspase-3/7 causes dying cells to secrete IFN-β. In vivo, this precipitates an elevation in IFN-β levels and consequent hematopoietic stem cell dysfunction, which is corrected by loss of Bak and Bax. Thus, the apoptotic caspase cascade functions to render mitochondrial apoptosis immunologically silent.

  10. Apoptotic mediators in patients with severe and non-severe dengue from Brazil.

    PubMed

    Limonta, Daniel; Torrentes-Carvalho, Amanda; Marinho, Cíntia Ferreira; de Azeredo, Elzinandes Leal; de Souza, Luiz José; Motta-Castro, Ana Rita C; da Cunha, Rivaldo Venâncio; Kubelka, Claire Fernandes; Nogueira, Rita Maria Ribeiro; de-Oliveira-Pinto, Luzia Maria

    2014-08-01

    Despite being the most significant arboviral disease worldwide, dengue has no antiviral treatment or reliable severity predictors. It has been shown that apoptotic cells from blood and tissues may be involved in the complex pathogenesis of dengue. However, very little is known about the interplay between proapoptotic and antiapoptotic mediators in this disease. Therefore, plasma levels of the three proapoptotic mediators Fas ligand (FasL), tumor necrosis factor-α (TNF-α), and TNF-related apoptosis-inducing ligand (TRAIL) were measured in dengue patients. Patients were classified according to the World Health Organization classification of dengue revised in 2009. Additionally, inhibitors of apoptosis protein (IAPs) were determined in plasma (Survivin) and peripheral blood mononuclear cells (PBMCs) lysates (cIAP-1, cIAP-2, XIAP). Levels of apoptotic proteins in plasma were correlated with counts of blood cells. FasL and TRAIL levels were elevated in dengue patients without warning signs when compared to patients with severe dengue and controls. Dengue patients with warning signs showed decreased levels of Survivin compared to patients with severe dengue and controls. TRAIL was inversely correlated with counts of lymphocyte subsets. In contrast, Survivin was positively correlated with leukocyte counts. There was a trend of elevated IAPs levels in PBMCs of patients with severe dengue. The results suggest a likely antiviral effect of TRAIL in dengue. It appears that TRAIL might be involved with apoptosis induction of lymphocytes, whereas IAPs might participate in protecting leukocytes from apoptosis. Further research is needed to explore the interactions between pro and antiapoptotic molecules and their implications in dengue pathogenesis.

  11. GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria.

    PubMed

    John, K; Alla, V; Meier, C; Pützer, B M

    2011-05-01

    p73, a member of the p53 family, shares high sequence homology with p53 and shows many p53-like properties: it binds to p53-DNA target sites, transactivates p53-responsive genes and induces cell cycle arrest and apoptosis. Apart from this transcription-dependent effect, less is known about the downstream mechanism(s) by which p73 controls cell fate at the mitochondria. We have previously identified GRAMD4 (alias KIAA0767 or Death-Inducing-Protein) as a novel p53-independent pro-apoptotic target of E2F1, which localizes to mitochondria. In this study, we found that p73-induced apoptosis is mediated by GRAMD4 expression and translocation to the mitochondria. We showed that this protein physically interacts with Bcl-2, promotes Bax mitochondrial relocalization and oligomerization, and is highly efficient in inducing mitochondrial membrane permeabilization with release of cytochrome c and Smac. Overexpression of p73α and p73β isoforms, but not p53, leads to direct GRAMD4 promoter transactivation. In addition, GRAMD4 induces changes in Bcl-2 and Bax protein levels. GRAMD4 transcription is activated in response to cisplatin (cDDP) in a manner dependent on endogenous p73. Using solid tumor xenografts, ectopic expression of GRAMD4 together with cDDP resulted in enhanced cancer killing. Our findings demonstrate that p73 is able to trigger apoptosis via the mitochondrial pathway by a new mechanism using pro-apoptotic GRAMD4 as mediator, and strongly support its p53-like function.

  12. β-Amyloid-evoked apoptotic cell death is mediated through MKK6-p66shc pathway.

    PubMed

    Bashir, Muneesa; Parray, Arif A; Baba, Rafia A; Bhat, Hina F; Bhat, Sehar S; Mushtaq, Umar; Andrabi, Khurshid I; Khanday, Firdous A

    2014-03-01

    We have previously shown the involvement of p66shc in mediating apoptosis. Here, we demonstrate the novel mechanism of β-Amyloid-induced toxicity in the mammalian cells. β-Amyloid leads to the phosphorylation of p66shc at the serine 36 residue and activates MKK6, by mediating the phosphorylation at serine 207 residue. Treatment of cells with antioxidants blocks β-Amyloid-induced serine phosphorylation of MKK6, reactive oxygen species (ROS) generation, and hence protected cells against β-Amyloid-induced cell death. Our results indicate that serine phosphorylation of p66shc is carried out by active MKK6. MKK6 knock-down resulted in decreased serine 36 phosphorylation of p66shc. Co-immunoprecipitation results demonstrate a direct physical association between p66shc and WT MKK6, but not with its mutants. Increase in β-Amyloid-induced ROS production was observed in the presence of MKK6 and p66shc, when compared to triple mutant of MKK6 (inactive) and S36 mutant of p66shc. ROS scavengers and knock-down against p66shc, and MKK6 significantly decreased the endogenous level of active p66shc, ROS production, and cell death. Finally, we show that the MKK6-p66shc complex mediates β-Amyloid-evoked apoptotic cell death.

  13. PAI1: a novel PP1-interacting protein that mediates human plasma's anti-apoptotic effect in endothelial cells.

    PubMed

    Yao, Hui; He, Guangchun; Chen, Chao; Yan, Shichao; Lu, Lu; Song, Liujiang; Vijayan, K Vinod; Li, Qinglong; Xiong, Li; Miao, Xiongying; Deng, Xiyun

    2017-03-11

    Activation of apoptotic signalling in endothelial cells contributes to the detrimental effects of a variety of pathological stimuli. In investigating the molecular events underlying the anti-apoptotic effect of human plasma in cultured human endothelial cells, we unexpectedly uncovered a novel mechanism of apoptosis suppression by human plasma through an interaction between two previously unrelated proteins. Human plasma inhibited hypoxia-serum deprivation-induced apoptosis and stimulated BAD(S136) and Akt(S473) phosphorylation. Akt1 silencing reversed part (~52%) of the anti-apoptotic effect of human plasma, suggesting the existence of additional mechanisms mediating the anti-apoptotic effect other than Akt signalling. Human plasma disrupted the interaction of BAD with protein phosphatase 1 (PP1). Mass spectrometry identified fourteen PP1-interacting proteins induced by human plasma. Notably, a group of serine protease inhibitors including plasminogen activator inhibitor 1 (PAI1), a major inhibitor of fibrinolysis, were involved. Silencing of PAI1 attenuated the anti-apoptotic effect of human plasma. Furthermore, combined Akt1 and PAI1 silencing attenuated the majority of the anti-apoptotic effect of human plasma. We conclude that human plasma protects against endothelial cell apoptosis through sustained BAD phosphorylation, which is achieved by, at least in part, a novel interaction between PP1 with PAI1.

  14. Dysregulation of the intrinsic apoptotic pathway mediates megakaryocytic hyperplasia in myeloproliferative neoplasms

    PubMed Central

    Malherbe, Jacques A J; Fuller, Kathryn A; Mirzai, Bob; Kavanagh, Simon; So, Chi-Chiu; Ip, Ho-Wan; Guo, Belinda B; Forsyth, Cecily; Howman, Rebecca; Erber, Wendy N

    2016-01-01

    Aims Megakaryocyte expansion in myeloproliferative neoplasms (MPNs) is due to uncontrolled proliferation accompanied by dysregulation of proapoptotic and antiapoptotic mechanisms. Here we have investigated the intrinsic and extrinsic apoptotic pathways of megakaryocytes in human MPNs to further define the mechanisms involved. Methods The megakaryocytic expression of proapoptotic caspase-8, caspase-9, Diablo, p53 and antiapoptotic survivin proteins was investigated in bone marrow specimens of the MPNs (n=145) and controls (n=15) using immunohistochemistry. The megakaryocyte percentage positivity was assessed by light microscopy and correlated with the MPN entity, JAK2V617F/CALR mutation status and platelet count. Results The proportion of megakaryocytes in the MPNs expressing caspase-8, caspase-9, Diablo, survivin and p53 was significantly greater than controls. A greater proportion of myeloproliferative megakaryocytes expressed survivin relative to its reciprocal inhibitor, Diablo. Differences were seen between myelofibrosis, polycythaemia vera and essential thrombocythaemia for caspase-9 and p53. CALR-mutated cases had greater megakaryocyte p53 positivity compared to those with the JAK2V617F mutation. Proapoptotic caspase-9 expression showed a positive correlation with platelet count, which was most marked in myelofibrosis and CALR-mutated cases. Conclusions Disruptions targeting the intrinsic apoptotic cascade promote megakaryocyte hyperplasia and thrombocytosis in the MPNs. There is progressive dysfunction of apoptosis as evidenced by the marked reduction in proapoptotic caspase-9 and accumulation of p53 in myelofibrosis. The dysfunction of caspase-9, which is necessary for proplatelet formation, may be the mechanism for the excess thrombocytosis associated with CALR mutations. Survivin seems to be the key protein mediating the megakaryocyte survival signature in the MPNs and is a potential therapeutic target. PMID:27060176

  15. Upregulation of extrinsic apoptotic pathway in curcumin-mediated antiproliferative effect on human pancreatic carcinogenesis.

    PubMed

    Youns, Mahmoud; Fathy, Gihan Mahmoud

    2013-12-01

    Pancreatic cancer is one of the most lethal human cancers, with almost identical incidence and mortality rates. Curcumin, derived from the rhizome of Curcuma longa, has a long history of use as coloring agent and for a wide variety of disorders. Here, the antiproliferative activity of curcumin and its modulatory effect on gene expression of pancreatic cancer cell lines were investigated. The effect of curcumin on cellular proliferation and viability was monitored by sulphurhodamine B assay. Apoptotic effect was evaluated by flow cytometry and further confirmed by measuring amount of cytoplasmic histone-associated DNA fragments. Analysis of gene expression was performed with and without curcumin treatment using microarray expression profiling techniques. Array results were confirmed by real-time PCR. ingenuity pathway analysis (IPA) has been used to classify the list of differentially expressed genes and to indentify common biomarkergenes modulating the chemopreventive effect of curcumin. Results showed that curcumin induces growth arrest and apoptosis in pancreatic cancer cell lines. Its effect was more obvious on the highly COX-2 expressing cell line. Additionally, the expression of 366 and 356 cancer-related genes, involved in regulation of apoptosis, cell cycle, metastasis, was significantly altered after curcumin treatment in BxPC-3 and MiaPaCa-2 cells, respectively. Our results suggested that up-regulation of the extrinsic apoptotic pathway was among signaling pathways modulating the growth inhibitory effects of curcumin on pancreatic cancer cells. Curcumin effect was mediated through activation of TNFR, CASP 8, CASP3, BID, BAX, and down-regulation of NFκB, NDRG 1, and BCL2L10 genes.

  16. Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function.

    PubMed

    White, Michael J; Schoenwaelder, Simone M; Josefsson, Emma C; Jarman, Kate E; Henley, Katya J; James, Chloé; Debrincat, Marlyse A; Jackson, Shaun P; Huang, David C S; Kile, Benjamin T

    2012-05-03

    Apoptotic caspases, including caspase-9, are thought to facilitate platelet shedding by megakaryocytes. They are known to be activated during platelet apoptosis, and have also been implicated in platelet hemostatic responses. However, the precise requirement for, and the regulation of, apoptotic caspases have never been defined in either megakaryocytes or platelets. To establish the role of caspases in platelet production and function, we generated mice lacking caspase-9 in their hematopoietic system. We demonstrate that both megakaryocytes and platelets possess a functional apoptotic caspase cascade downstream of Bcl-2 family-mediated mitochondrial damage. Caspase-9 is the initiator caspase, and its loss blocks effector caspase activation. Surprisingly, steady-state thrombopoiesis is unperturbed in the absence of caspase-9, indicating that the apoptotic caspase cascade is not required for platelet production. In platelets, loss of caspase-9 confers resistance to the BH3 mimetic ABT-737, blocking phosphatidylserine (PS) exposure and delaying ABT-737-induced thrombocytopenia in vivo. Despite this, steady-state platelet lifespan is normal. Casp9(-/-) platelets are fully capable of physiologic hemostatic responses and functional regulation of adhesive integrins in response to agonist. These studies demonstrate that the apoptotic caspase cascade is required for the efficient death of megakaryocytes and platelets, but is dispensable for their generation and function.

  17. Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster

    PubMed Central

    Xing, Yalan; Su, Tin Tin; Ruohola-Baker, Hannele

    2015-01-01

    Many types of normal and cancer stem cells are resistant to killing by genotoxins, but the mechanism for this resistance is poorly understood. Here we show that adult stem cells in Drosophila melanogaster germline and midgut are resistant to ionizing radiation (IR) or chemically induced apoptosis and dissect the mechanism for this protection. We find that upon IR the receptor tyrosine kinase Tie/Tie-2 is activated, leading to the upregulation of microRNA bantam that represses FOXO-mediated transcription of pro-apoptotic Smac/DIA-BLO orthologue, Hid in germline stem cells. Knockdown of the IR-induced putative Tie ligand, Pvf1, a functional homologue of human Angiopoietin, in differentiating daughter cells renders germline stem cells sensitive to IR, suggesting that the dying daughters send a survival signal to protect their stem cells for future repopulation of the tissue. If conserved in cancer stem cells, this mechanism may provide therapeutic options for the eradication of cancer. PMID:25959206

  18. Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection

    PubMed Central

    Cabral-Piccin, M P; Guillermo, L V C; Vellozo, N S; Filardy, A A; Pereira-Marques, S T; Rigoni, T S; Pereira-Manfro, W F; DosReis, G A; Lopes, M F

    2016-01-01

    Chagas disease is caused by infection with the protozoan Trypanosoma cruzi. CD8 T-lymphocytes help to control infection, but apoptosis of CD8 T cells disrupts immunity and efferocytosis can enhance parasite infection within macrophages. Here, we investigate how apoptosis of activated CD8 T cells affects M1 and M2 macrophage phenotypes. First, we found that CD8 T-lymphocytes and inflammatory monocytes/macrophages infiltrate peritoneum during acute T. cruzi infection. We show that treatment with anti-Fas ligand (FasL) prevents lymphocyte apoptosis, upregulates type-1 responses to parasite antigens, and reduces infection in macrophages cocultured with activated CD8 T cells. Anti-FasL skews mixed M1/M2 macrophage profiles into polarized M1 phenotype, both in vitro and following injection in infected mice. Moreover, inhibition of T-cell apoptosis induces a broad reprogramming of cytokine responses and improves macrophage-mediated immunity to T. cruzi. The results indicate that disposal of apoptotic CD8 T cells increases M2-macrophage differentiation and contributes to parasite persistence. PMID:27195678

  19. Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling.

    PubMed

    Gajate, Consuelo; Mollinedo, Faustino

    2015-05-01

    Membrane lipid rafts are highly ordered membrane domains enriched in cholesterol, sphingolipids and gangliosides that have the property to segregate and concentrate proteins. Lipid and protein composition of lipid rafts differs from that of the surrounding membrane, thus providing sorting platforms and hubs for signal transduction molecules, including CD95 death receptor-mediated signaling. CD95 can be recruited to rafts in a reversible way through S-palmitoylation following activation of cells with its physiological cognate ligand as well as with a wide variety of inducers, including several antitumor drugs through ligand-independent intracellular mechanisms. CD95 translocation to rafts can be modulated pharmacologically, thus becoming a target for the treatment of apoptosis-defective diseases, such as cancer. CD95-mediated signaling largely depends on protein-protein interactions, and the recruitment and concentration of CD95 and distinct downstream apoptotic molecules in membrane raft domains, forming raft-based supramolecular entities that act as hubs for apoptotic signaling molecules, favors the generation and amplification of apoptotic signals. Efficient CD95-mediated apoptosis involves CD95 and raft internalization, as well as the involvement of different subcellular organelles. In this review, we briefly summarize and discuss the involvement of lipid rafts in the regulation of CD95-mediated apoptosis that may provide a new avenue for cancer therapy.

  20. The scavenger receptor SCARF1 mediates apoptotic cell clearance and prevents autoimmunity

    PubMed Central

    Ramirez-Ortiz, Zaida G.; Pendergraft, William F.; Prasad, Amit; Byrne, Michael H.; Iram, Tal; Blanchette, Christopher J.; Luster, Andrew D.; Hacohen, Nir; Khoury, Joseph El; Means, Terry K.

    2013-01-01

    Clearance of apoptotic cells is critical for control of tissue homeostasis however the full range of receptor(s) on phagocytes responsible for recognition of apoptotic cells remains to be identified. Here we show that dendritic cells (DCs), macrophages and endothelial cells use scavenger receptor type F family member 1 (SCARF1) to recognize and engulf apoptotic cells via C1q. Loss of SCARF1 impairs uptake of apoptotic cells. Consequently, in SCARF1-deficient mice, dying cells accumulate in tissues leading to a lupus-like disease with the spontaneous generation of autoantibodies to DNA-containing antigens, immune cell activation, dermatitis and nephritis. The discovery of SCARF1 interactions with C1q and apoptotic cells provides insights into molecular mechanisms involved in maintenance of tolerance and prevention of autoimmune disease. PMID:23892722

  1. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α

    PubMed Central

    Berda-Haddad, Yaël; Robert, Stéphane; Salers, Paul; Zekraoui, Leila; Farnarier, Catherine; Dinarello, Charles A.; Dignat-George, Françoise; Kaplanski, Gilles

    2011-01-01

    Sterile inflammation resulting from cell death is due to the release of cell contents normally inactive and sequestered within the cell; fragments of cell membranes from dying cells also contribute to sterile inflammation. Endothelial cells undergoing stress-induced apoptosis release membrane microparticles, which become vehicles for proinflammatory signals. Here, we show that stress-activated endothelial cells release two distinct populations of particles: One population consists of membrane microparticles (<1 μm, annexin V positive without DNA and no histones) and another larger (1–3 μm) apoptotic body-like particles containing nuclear fragments and histones, representing apoptotic bodies. Contrary to present concepts, endothelial microparticles do not contain IL-1α and do not induce neutrophilic chemokines in vitro. In contrast, the large apoptotic bodies contain the full-length IL-1α precursor and the processed mature form. In vitro, these apoptotic bodies induce monocyte chemotactic protein-1 and IL-8 chemokine secretion in an IL-1α–dependent but IL-1β–independent fashion. Injection of these apoptotic bodies into the peritoneal cavity of mice induces elevated serum neutrophil-inducing chemokines, which was prevented by cotreatment with the IL-1 receptor antagonist. Consistently, injection of these large apoptotic bodies into the peritoneal cavity induced a neutrophilic infiltration that was prevented by IL-1 blockade. Although apoptosis is ordinarily considered noninflammatory, these data demonstrate that nonphagocytosed endothelial apoptotic bodies are inflammatory, providing a vehicle for IL-1α and, therefore, constitute a unique mechanism for sterile inflammation. PMID:22143786

  2. Activation of mitochondria-mediated apoptotic pathway in tri-ortho-cresyl phosphate-induced delayed neuropathy.

    PubMed

    Zou, Chaoshuang; Kou, Ruirui; Gao, Yuan; Xie, Keqin; Song, Fuyong

    2013-06-01

    Previous studies suggest that abnormal neurons death has been implicated in organophosphate-induced delayed neuropathy (OPIDN). However, the precise mechanism of neuronal death in OPIDN remains largely unknown. In this study, adult hens were treated with a dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP) by gavage, and then sacrificed on the time-points of 1, 5, 10, and 21 days after dosing TOCP, respectively. The apoptotic change of spinal cord neurons induced by TOCP was examined, and the role of mitochondria-mediated apoptosis of neurons during OPIDN was investigated. TUNEL assays showed that apoptotic neurons in hen spinal cords began to appear on day 5 following TOCP exposure. Immunohistochemistry and western blot analysis revealed a translocation of cytochrome C from mitochondria to cytoplasm after dosing TOCP. Moreover, the level of Bcl-2, Bcl-xl, Pro-caspase3 and Pro-caspase9 in hen spinal cord was significantly decreased, whereas that of Bax and cleaved-PARP was significantly elevated. Taken together, these findings indicate that the administration of TOCP can induce neuron apoptosis in hen spinal cords, which might be mediated by the activation of mitochondrial apoptotic pathway.

  3. Lysosome biogenesis mediated by vps-18 affects apoptotic cell degradation in Caenorhabditis elegans.

    PubMed

    Xiao, Hui; Chen, Didi; Fang, Zhou; Xu, Jing; Sun, Xiaojuan; Song, Song; Liu, Jiajia; Yang, Chonglin

    2009-01-01

    Appropriate clearance of apoptotic cells (cell corpses) is an important step of programmed cell death. Although genetic and biochemical studies have identified several genes that regulate the engulfment of cell corpses, how these are degraded after being internalized in engulfing cell remains elusive. Here, we show that VPS-18, the Caenorhabditis elegans homologue of yeast Vps18p, is critical to cell corpse degradation. VPS-18 is expressed and functions in engulfing cells. Deletion of vps-18 leads to significant accumulation of cell corpses that are not degraded properly. Furthermore, vps-18 mutation causes strong defects in the biogenesis of endosomes and lysosomes, thus affecting endosomal/lysosomal protein degradation. Importantly, we demonstrate that phagosomes containing internalized cell corpses are unable to fuse with lysosomes in vps-18 mutants. Our findings thus provide direct evidence for the important role of endosomal/lysosomal degradation in proper clearance of apoptotic cells during programmed cell death.

  4. Suppression of macrophage-mediated phagocytosis of apoptotic cells by soluble β-glucan due to a failure of PKC-βII translocation.

    PubMed

    Sekiguchi, Suzuno; Tomisawa, Yui; Ohki, Tomomi; Tsuboi, Kumiko; Nagata, Kisaburo; Kobayashi, Yoshiro

    2016-02-01

    If apoptotic cells are not removed efficiently, they may proceed to the stage of secondary necrosis, which would cause inflammation. Therefore, identification of cause(s) and agent(s) for down-modulating phagocytosis of apoptotic cells would help understand the pathologies. In this study we found that macrophage-mediated phagocytosis of apoptotic cells was suppressed by both soluble and particulate β-glucan. This suppression was not observed when secondary necrotic cells were used. The adhesion of apoptotic cells to macrophages was not suppressed by soluble β-glucan, suggesting that soluble β-glucan suppresses phagocytosis at a post-adhesion step. Experiments involving PKC inhibitors suggested that PKC-βII is required for phagocytosis of apoptotic cells but not secondary necrotic ones by macrophages. Translocation of GFP-PKC-βII from the cytoplasm to membranes occurred upon interaction with apoptotic cells but not secondary necrotic ones. Such translocation was inhibited by soluble β-glucan. Overall, this study suggests that suppression of macrophage-mediated phagocytosis of apoptotic cells by soluble β-glucan is due to a failure of PKC-βII translocation.

  5. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation

    PubMed Central

    Brooks, Craig R; Yeung, Melissa Y; Brooks, Yang S; Chen, Hui; Ichimura, Takaharu; Henderson, Joel M; Bonventre, Joseph V

    2015-01-01

    Phagocytosis of apoptotic cells by both professional and semi-professional phagocytes is required for resolution of organ damage and maintenance of immune tolerance. KIM-1/TIM-1 is a phosphatidylserine receptor that is expressed on epithelial cells and can transform the cells into phagocytes. Here, we demonstrate that KIM-1 phosphorylation and association with p85 results in encapsulation of phagosomes by lipidated LC3 in multi-membrane organelles. KIM-1-mediated phagocytosis is not associated with increased ROS production, and NOX inhibition does not block LC3 lipidation. Autophagy gene expression is required for efficient clearance of apoptotic cells and phagosome maturation. KIM-1-mediated phagocytosis leads to pro-tolerogenic antigen presentation, which suppresses CD4 T-cell proliferation and increases the percentage of regulatory T cells in an autophagy gene-dependent manner. Taken together, these data reveal a novel mechanism of epithelial biology linking phagocytosis, autophagy and antigen presentation to regulation of the inflammatory response. PMID:26282792

  6. Apoptotic Mediators are Upregulated in the Skeletal Muscle of Chronic/Progressive Mouse Model of Parkinson's Disease.

    PubMed

    Erekat, Nour S

    2015-08-01

    Apoptosis has been implicated in the pathogenesis of Parkinson disease (PD). Parkinson disease is characterized by skeletal muscle abnormalities. The aim of this study is to illustrate the impact of PD induction on the expression of apoptotic mediators. Twenty normal albino mice were randomly selected and equally divided in control and PD groups. Chronic Parkinsonism was induced in the PD group using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTP/p). After that, samples from gastrocnemius muscles were evaluated by immunohistochemistry to examine the expression of p53 and active caspase-3 in the two groups of animals. P53 and active caspase-3 expression was significantly higher in gastrocnemius skeletal muscle in PD mice compared with that in the control mice (P value <0.01). Furthermore, we show PD gastrocnemius muscle atrophy measured by significant reduction (P < 0.01) in the muscle fiber cross-sectional area. Thus, our present data suggest that PD induction increased the expression of the apoptotic mediators p53 and active caspase-3 in gastrocnemius muscle, indicating the induction of apoptosis, which was correlative with gastrocnemius muscle atrophy subsequent to the induction of PD.

  7. Hsp72 mediates TAp73α anti-apoptotic effects in small cell lung carcinoma cells.

    PubMed

    Nyman, Ulrika; Muppani, Naveen Reddy; Zhivotovsky, Boris; Joseph, Bertrand

    2011-08-01

    The transcription factor p73, a member of the p53 family of proteins, is involved in the regulation of cell cycle progression and apoptosis. Due to alternative promoters and carboxy-terminal splicing, the P73 gene gives rise to a range of different isoforms. Interestingly, a particular increase in expression of the TAp73α isoform has been reported in various tumours. In addition, TAp73α has been shown to inhibit Bax activation and mitochondrial dysfunctions and thereby to confer small cell lung carcinoma (SCLC) cells resistance to drug-induced apoptosis. However, the precise mechanism by which TAp73α exerts its pro-survival effect is yet unclear. Here we report that TAp73α, but not TAp73β, regulates the expression of inducible Hsp72/HSPA1A. Hsp72 proved to be required for the survival effects of TAp73α as antisense knockdown of Hsp72 resulted in an abolishment of the anti-apoptotic effect of TAp73α in SCLC cells upon Etoposide treatment. Importantly, depletion of Hsp72 allowed activation of Bax, loss of mitochondrial membrane potential and lysosomal membrane permeabilization in SCLC cells even in the presence of TAp73α. Finally, we revealed that TAp73β counteracts the anti-apoptotic effect of TAp73α by preventing Hsp72 induction. Our results thus provide additional evidence for the potential oncogenic role of TAp73α, and extend the understanding of the mechanism for its anti-apoptotic effect.

  8. HSP70 mediates survival in apoptotic cells—Boolean network prediction and experimental validation

    PubMed Central

    Vasaikar, Suhas V.; Ghosh, Sourish; Narain, Priyam; Basu, Anirban; Gomes, James

    2015-01-01

    Neuronal stress or injury results in the activation of proteins, which regulate the balance between survival and apoptosis. However, the complex mechanism of cell signaling involving cell death and survival, activated in response to cellular stress is not yet completely understood. To bring more clarity about these mechanisms, a Boolean network was constructed that represented the apoptotic pathway in neuronal cells. FasL and neurotrophic growth factor (NGF) were considered as inputs in the absence and presence of heat shock proteins known to shift the balance toward survival by rescuing pro-apoptotic cells. The probabilities of survival, DNA repair and apoptosis as cellular fates, in the presence of either the growth factor or FasL, revealed a survival bias encoded in the network. Boolean predictions tested by measuring the mRNA level of caspase-3, caspase-8, and BAX in neuronal Neuro2a (N2a) cell line with NGF and FasL as external input, showed positive correlation with the observed experimental results for survival and apoptotic states. It was observed that HSP70 contributed more toward rescuing cells from apoptosis in comparison to HSP27, HSP40, and HSP90. Overexpression of HSP70 in N2a transfected cells showed reversal of cellular fate from FasL-induced apoptosis to survival. Further, the pro-survival role of the proteins BCL2, IAP, cFLIP, and NFκB determined by vertex perturbation analysis was experimentally validated through protein inhibition experiments using EM20-25, Embelin and Wedelolactone, which resulted in 1.27-, 1.26-, and 1.46-fold increase in apoptosis of N2a cells. The existence of a one-to-one correspondence between cellular fates and attractor states shows that Boolean networks may be employed with confidence in qualitative analytical studies of biological networks. PMID:26379495

  9. HSP70 mediates survival in apoptotic cells-Boolean network prediction and experimental validation.

    PubMed

    Vasaikar, Suhas V; Ghosh, Sourish; Narain, Priyam; Basu, Anirban; Gomes, James

    2015-01-01

    Neuronal stress or injury results in the activation of proteins, which regulate the balance between survival and apoptosis. However, the complex mechanism of cell signaling involving cell death and survival, activated in response to cellular stress is not yet completely understood. To bring more clarity about these mechanisms, a Boolean network was constructed that represented the apoptotic pathway in neuronal cells. FasL and neurotrophic growth factor (NGF) were considered as inputs in the absence and presence of heat shock proteins known to shift the balance toward survival by rescuing pro-apoptotic cells. The probabilities of survival, DNA repair and apoptosis as cellular fates, in the presence of either the growth factor or FasL, revealed a survival bias encoded in the network. Boolean predictions tested by measuring the mRNA level of caspase-3, caspase-8, and BAX in neuronal Neuro2a (N2a) cell line with NGF and FasL as external input, showed positive correlation with the observed experimental results for survival and apoptotic states. It was observed that HSP70 contributed more toward rescuing cells from apoptosis in comparison to HSP27, HSP40, and HSP90. Overexpression of HSP70 in N2a transfected cells showed reversal of cellular fate from FasL-induced apoptosis to survival. Further, the pro-survival role of the proteins BCL2, IAP, cFLIP, and NFκB determined by vertex perturbation analysis was experimentally validated through protein inhibition experiments using EM20-25, Embelin and Wedelolactone, which resulted in 1.27-, 1.26-, and 1.46-fold increase in apoptosis of N2a cells. The existence of a one-to-one correspondence between cellular fates and attractor states shows that Boolean networks may be employed with confidence in qualitative analytical studies of biological networks.

  10. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation.

    PubMed

    Hu, Wenqian; Yuan, Bingbing; Flygare, Johan; Lodish, Harvey F

    2011-12-15

    Long noncoding RNAs (lncRNAs) are differentially expressed under both normal and pathological conditions, implying that they may play important biological functions. Here we examined the expression of lncRNAs during erythropoiesis and identified an erythroid-specific lncRNA with anti-apoptotic activity. Inhibition of this lncRNA blocks erythroid differentiation and promotes apoptosis. Conversely, ectopic expression of this lncRNA can inhibit apoptosis in mouse erythroid cells. This lncRNA represses expression of Pycard, a proapoptotic gene, explaining in part the inhibition of programmed cell death. These findings reveal a novel layer of regulation of cell differentiation and apoptosis by a lncRNA.

  11. Endocytosis and serpentine filopodia drive blebbishield-mediated resurrection of apoptotic cancer stem cells

    PubMed Central

    Jinesh, G G; Kamat, A M

    2016-01-01

    The blebbishield emergency program helps to resurrect apoptotic cancer stem cells (CSCs) themselves. Understanding the mechanisms behind this program is essential to block resurrection of CSCs during cancer therapy. Here we demonstrate that endocytosis drives serpentine filopodia to construct blebbishields from apoptotic bodies and that a VEGF-VEGFR2-endocytosis-p70S6K axis governs subsequent transformation. Disengagement of RalGDS from E-cadherin initiates endocytosis of RalGDS and its novel interaction partners cdc42, VEGFR2, cleaved β-catenin, and PKC-ζ as well as its known interaction partner K-Ras. We also report novel interactions of p45S6K (cleaved p70S6K) and PKM-ζ with PAK-1 filopodia-forming machinery specifically in blebbishields. Thus, a RalGDS-endocytosis-filopodia-VEGFR2-K-Ras-p70S6K axis drives the blebbishield emergency program, and therapeutic targeting of this axis might prevent resurrection of CSCs during cancer therapy. PMID:27226900

  12. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death.

    PubMed

    Kim, Jin Hee; Kang, Tae Heung; Noh, Kyung Hee; Bae, Hyun Cheol; Kim, Seok-Ho; Yoo, Young Do; Seong, Seung-Yong; Kim, Tae Woo

    2009-01-29

    Dendritic cells (DCs) have become an important measure for the treatment of malignancies. Current DC preparations, however, generate short-lived DCs because they are subject to cell death from various apoptotic pressures. Antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is one of the main obstacles to limit the DC-mediated immune priming since CTLs can recognize the target antigen expressing DCs as target cells and kill the DCs. CTLs secret perforin and serine protease granzymes during CTL killing. Perforin and serine protease granzymes induce the release of a number of mitochondrial pro-apoptotic factors, which are controlled by members of the BCL-2 family, such as BAK, BAX and BIM. FasL linking to Fas on DCs triggers the activation of caspase-8, which eventually leads to mitochondria-mediated apoptosis via truncation of BID. In this study, we tried to enhance the DC priming capacity by prolonging DC survival using anti-apoptotic siRNA targeting these key pro-apoptotic molecules in CTL killing. Human papillomavirus (HPV)-16 E7 antigen presenting DCs that were transfected with these anti-apoptotic siRNAs showed increased resistance to T cell-mediated death, leading to enhanced E7-specific CD8(+) T cell activation in vitro and in vivo. Among them, siRNA targeting BIM (siBIM) generated strongest E7-specific E7-specific CD8(+) T cell immunity. More importantly, vaccination with E7 presenting DCs transfected with siBIM was capable of generating a marked therapeutic effect in vaccinated mice. Our data indicate that ex vivo manipulation of DCs with siBIM may represent a plausible strategy for enhancing dendritic cell-based vaccine potency.

  13. Caspase-resistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria.

    PubMed

    Nguyen, M; Breckenridge, D G; Ducret, A; Shore, G C

    2000-09-01

    BAP31 is a 28-kDa integral membrane protein of the endoplasmic reticulum whose cytosolic domain contains two identical caspase recognition sites (AAVD.G) that are preferentially cleaved by initiator caspases, including caspase 8. Cleavage of BAP31 during apoptosis generates a p20 fragment that remains integrated in the membrane and, when expressed ectopically, is a potent inducer of cell death. To examine the consequences of maintaining the structural integrity of BAP31 during apoptosis, the caspase recognition aspartate residues were mutated to alanine residues, and Fas-mediated activation of caspase 8 and cell death were examined in human KB epithelial cells stably expressing the caspase-resistant mutant crBAP31. crBAP31 only modestly slowed the time course for activation of caspases, as assayed by the processing of procaspases 8 and 3 and the measurement of total DEVDase activity. As a result, cleavage of the caspase targets poly(ADP-ribosyl) polymerase and endogenous BAP31, as well as the redistribution of phosphatidylserine and fragmentation of DNA, was observed. In contrast, cytoplasmic membrane blebbing and fragmentation and apoptotic redistribution of actin were strongly inhibited, cell morphology was retained near normal, and the irreversible loss of cell growth potential following removal of the Fas stimulus was delayed. Of note, crBAP31-expressing cells also resisted Fas-mediated release of cytochrome c from mitochondria, and the mitochondrial electrochemical potential was only partly reduced. These results argue that BAP31 cleavage is important for manifesting cytoplasmic apoptotic events associated with membrane fragmentation and reveal an unexpected cross talk between mitochondria and the endoplasmic reticulum during Fas-mediated apoptosis in vivo.

  14. Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remodeling during apoptotic cell engulfment in C. elegans

    PubMed Central

    Shen, Qian; He, Bin; Lu, Nan; Conradt, Barbara; Grant, Barth D.; Zhou, Zheng

    2013-01-01

    The engulfment and subsequent degradation of apoptotic cells by phagocytes is an evolutionarily conserved process that efficiently removes dying cells from animal bodies during development. Here, we report that clathrin heavy chain (CHC-1), a membrane coat protein well known for its role in receptor-mediated endocytosis, and its adaptor epsin (EPN-1) play crucial roles in removing apoptotic cells in Caenorhabditis elegans. Inactivating epn-1 or chc-1 disrupts engulfment by impairing actin polymerization. This defect is partially suppressed by inactivating UNC-60, a cofilin ortholog and actin server/depolymerization protein, further indicating that EPN-1 and CHC-1 regulate actin assembly during pseudopod extension. CHC-1 is enriched on extending pseudopods together with EPN-1, in an EPN-1-dependent manner. Epistasis analysis places epn-1 and chc-1 in the same cell-corpse engulfment pathway as ced-1, ced-6 and dyn-1. CED-1 signaling is necessary for the pseudopod enrichment of EPN-1 and CHC-1. CED-1, CED-6 and DYN-1, like EPN-1 and CHC-1, are essential for the assembly and stability of F-actin underneath pseudopods. We propose that in response to CED-1 signaling, CHC-1 is recruited to the phagocytic cup through EPN-1 and acts as a scaffold protein to organize actin remodeling. Our work reveals novel roles of clathrin and epsin in apoptotic-cell internalization, suggests a Hip1/R-independent mechanism linking clathrin to actin assembly, and ties the CED-1 pathway to cytoskeleton remodeling. PMID:23861060

  15. In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death.

    PubMed

    Azoulay-Zohar, Heftsi; Israelson, Adrian; Abu-Hamad, Salah; Shoshan-Barmatz, Varda

    2004-01-15

    In tumour cells, elevated levels of mitochondria-bound isoforms of hexokinase (HK-I and HK-II) result in the evasion of apoptosis, thereby allowing the cells to continue proliferating. The molecular mechanisms by which bound HK promotes cell survival are not yet fully understood. Our studies relying on the purified mitochondrial outer membrane protein VDAC (voltage-dependent anion channel), isolated mitochondria or cells in culture suggested that the anti-apoptotic activity of HK-I occurs via modulation of the mitochondrial phase of apoptosis. In the present paper, a direct interaction of HK-I with bilayer-reconstituted purified VDAC, inducing channel closure, is demonstrated for the first time. Moreover, HK-I prevented the Ca(2+)-dependent opening of the mitochondrial PTP (permeability transition pore) and release of the pro-apoptotic protein cytochrome c. The effects of HK-I on VDAC activity and PTP opening were prevented by the HK reaction product glucose 6-phosphate, a metabolic intermediate in most biosynthetic pathways. Furthermore, glucose 6-phosphate re-opened both the VDAC and the PTP closed by HK-I. The HK-I-mediated effects on VDAC and PTP were not observed using either yeast HK or HK-I lacking the N-terminal hydrophobic peptide responsible for binding to mitochondria, or in the presence of an antibody specific for the N-terminus of HK-I. Finally, HK-I overexpression in leukaemia-derived U-937 or vascular smooth muscle cells protected against staurosporine-induced apoptosis, with a decrease of up to 70% in cell death. These results offer insight into the mechanisms by which bound HK promotes tumour cell survival, and suggests that its overexpression not only ensures supplies of energy and phosphometabolites, but also reflects an anti-apoptotic defence mechanism.

  16. Cyclin D1 is an essential mediator of apoptotic neuronal cell death.

    PubMed Central

    Kranenburg, O; van der Eb, A J; Zantema, A

    1996-01-01

    Many neurons in the developing nervous system undergo programmed cell death, or apoptosis. However, the molecular mechanism underlying this phenomenon is largely unknown. In the present report, we present evidence that the cell cycle regulator cyclin D1 is involved in the regulation of neuronal cell death. During neuronal apoptosis, cyclin D1-dependent kinase activity is stimulated, due to an increase in cyclin D1 levels. Moreover, artificial elevation of cyclin D1 levels is sufficient to induce apoptosis, even in non-neural cell types. Cyclin D1-induced apoptosis, like neuronal apoptosis, can be inhibited by 21 kDa E1B, Bcl2 and pRb, but not by 55 kDa E1B. Most importantly, however, overexpression of the cyclin D-dependent kinase inhibitor p16INK4 protects neurons from apoptotic cell death, demonstrating that activation of endogenous cyclin D1-dependent kinases is essential during neuronal apoptosis. These data support a model in which neuronal apoptosis results from an aborted attempt to activate the cell cycle in terminally differentiated neurons. Images PMID:8598205

  17. Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic Neuro-2A cells.

    PubMed

    Huang, Shang-Ming; Hsu, Chin-Lin; Chuang, Hong-Chih; Shih, Ping-Hsiao; Wu, Chi-Hao; Yen, Gow-Chin

    2008-11-01

    Methylglyoxal is a reactive dicarbonyl compound generated as an intermediate of glycolysis during the physical glycation in the diabetic condition. It is considered to be a potent precursor of advanced glycation end products (AGEs) formation. Methylglyoxal itself and methylglyoxal-derived AGEs have been commonly implicated in the development of diabetic neuropathy. Our previous study indicated that vanillic acid showed an inhibitory effect against methylglyoxal-mediated Neuro-2A cell apoptosis, suggesting that vanillic acid might possess cytoprotective properties in the prevention of diabetic neuropathy complication. In this study, the effects of vanillic acid on the methylglyoxal-mediated glycation system involved in the progression of Neuro-2A cell apoptosis were further investigated. Our findings indicated that methylglyoxal-induced Neuro-2A cell apoptosis was mediated through the possible glycation mechanism of oxidative stress, activation of the MAPK signaling pathway (p38 and JNK) and oxidation-sensitive protein expression (PKC and p47(phox)) and methylglyoxal-derived N-epsilon-(carboxymethyl)lysine (CML) formation. Vanillic acid, however, suppressed methylglyoxal-induced Neuro-2A cell apoptosis via inhibition of glycation mechanisms including ROS, p38 and JNK, PKC and p47(phox), and methylglyoxal-derived CML formation. In the present study, we established the first evidence that vanillic acid might contribute to the prevention of the development of diabetic neuropathy by blocking the methylglyoxal-mediated intracellular glycation system.

  18. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  19. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    PubMed Central

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C.; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis. PMID:24477292

  20. Identification of genes that function in the TNF-alpha-mediated apoptotic pathway using randomized hybrid ribozyme libraries.

    PubMed

    Kawasaki, Hiroaki; Onuki, Reiko; Suyama, Eigo; Taira, Kazunari

    2002-04-01

    Now that the sequences of many genomes are available, methods are required for the rapid identification of functional genes. We describe here a simple system for the isolation of genes that function in the tumor necrosis factor-alpha (TNF-alpha)-mediated pathway of apoptosis, using RNA helicase-associated ribozyme libraries with randomized substrate-binding arms. Because target-site accessibility considerably limits the effective use of intracellular ribozymes, the effectiveness of a conventional ribozyme library has been low. To overcome this obstacle, we attached to ribozymes an RNA motif (poly(A)-tail) able to interact with endogenous RNA helicase(s) so that the resulting helicase-attached, hybrid ribozymes can more easily attack target sites regardless of their secondary or tertiary structures. When the phenotype of cells changes upon introduction of a ribozyme library, genes responsible for these changes may be identified by sequencing the active ribozyme clones. In the case of TNF-alpha-mediated apoptosis, when a ribozyme library was introduced into MCF-7 cells, surviving clones were completely or partially resistant to TNF-alpha-induced apoptosis. We identified many pro-apoptotic genes and partial sequences of previously uncharacterized genes using this method. Our gene discovery system should be generally applicable to the identification of functional genes in various systems.

  1. The role of lysosomes in BDE 47-mediated activation of mitochondrial apoptotic pathway in HepG2 cells.

    PubMed

    Liu, Xiaohui; Wang, Jian; Lu, Chengquan; Zhu, Chunyan; Qian, Bo; Li, Zhenwei; Liu, Chang; Shao, Jing; Yan, Jinsong

    2015-04-01

    Polybrominated diphenyl ethers (PBDEs) are a group of widely used flame retardants. The rising presence of PBDEs in human tissues has received considerable concerns with regard to potential health risks. While the mitochondrial-apoptotic pathway has been suggested in PBDEs-induced apoptosis, the role of lysosomes is yet to be understood. In the present study, HepG2 cells were exposed to BDE 47 at various concentrations and durations to establish the causal and temporal relationships among various cellular events, such as cell viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis, and expression of cytochrome C and caspase 3. The involvement of lysosomes was simultaneously studied by evaluating lysosomal membrane permeability (LMP) and changes in the expression of cathepsin B, a lysosome hydrolase. In addition, a cathepsin B inhibitor (10 μM CA-074) was used to determine the involvement of lysosomes and potential interactions between lysosomes and mitochondria. Our results showed that ROS production was an initial response of HepG2 to BDE 47 exposure, followed by a decreased MMP; a loss of MMP caused additional ROS generation which acted to induce LMP; an increased LMP resulted in a release of cathepsin B which aggravated the loss of MMP leading to release of cytochrome C and caspase 3 and subsequent apoptosis. Pretreatment with CA-074 did not abolish the initial ROS generation, however, all downstream events were dramatically alleviated. Taken together, our data indicate that lysosomes might be involved in BDE 47-mediated mitochondrial-apoptotic pathway in HepG2 cells, possibly through feedback interactions between mitochondria and lysosomes.

  2. Fibril growth and seeding capacity play key roles in α-synuclein-mediated apoptotic cell death

    PubMed Central

    Mahul-Mellier, A-L; Vercruysse, F; Maco, B; Ait-Bouziad, N; De Roo, M; Muller, D; Lashuel, H A

    2015-01-01

    The role of extracellular α-synuclein (α-syn) in the initiation and the spreading of neurodegeneration in Parkinson's disease (PD) has been studied extensively over the past 10 years. However, the nature of the α-syn toxic species and the molecular mechanisms by which they may contribute to neuronal cell loss remain controversial. In this study, we show that fully characterized recombinant monomeric, fibrillar or stabilized forms of oligomeric α-syn do not trigger significant cell death when added individually to neuroblastoma cell lines. However, a mixture of preformed fibrils (PFFs) with monomeric α-syn becomes toxic under conditions that promote their growth and amyloid formation. In hippocampal primary neurons and ex vivo hippocampal slice cultures, α-syn PFFs are capable of inducing a moderate toxicity over time that is greatly exacerbated upon promoting fibril growth by addition of monomeric α-syn. The causal relationship between α-syn aggregation and cellular toxicity was further investigated by assessing the effect of inhibiting fibrillization on α-syn-induced cell death. Remarkably, our data show that blocking fibril growth by treatment with known pharmacological inhibitor of α-syn fibrillization (Tolcapone) or replacing monomeric α-syn by monomeric β-synuclein in α-syn mixture composition prevent α-syn-induced toxicity in both neuroblastoma cell lines and hippocampal primary neurons. We demonstrate that exogenously added α-syn fibrils bind to the plasma membrane and serve as nucleation sites for the formation of α-syn fibrils and promote the accumulation and internalization of these aggregates that in turn activate both the extrinsic and intrinsic apoptotic cell death pathways in our cellular models. Our results support the hypothesis that ongoing aggregation and fibrillization of extracellular α-syn play central roles in α-syn extracellular toxicity, and suggest that inhibiting fibril growth and seeding capacity constitute a viable

  3. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson's disease.

    PubMed

    Arduíno, Daniela Moniz; Esteves, A Raquel; Cardoso, Sandra M; Oliveira, Catarina R

    2009-09-01

    Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. Many cellular mechanisms are thought to be involved in the death of these specific neurons in PD, including oxidative stress, changes of intracellular calcium homeostasis, and mitochondrial dysfunction. Since recent studies have revealed that also endoplasmic reticulum (ER) stress in conjunction with abnormal protein degradation can contribute to the PD pathophysiology, we investigated here the molecular mechanisms underlying the interplay between ER and mitochondria and its relevance in the control of neuronal cell death in PD. We observed that MPP+ induced changes in the mitochondrial function, affecting mitochondrial membrane potential and electron transport chain function. Likewise, it was also evident the unfolded protein response activation by an overexpression of GRP78 protein. Moreover, stress stimuli caused the release of Ca2+ from the ER that consistently induced mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free Ca2+. Besides, Ca2+ release inhibition prevented MPP+ mediated mitochondria-dependent caspases activation. Our findings show that ER and mitochondria are in a close communication, establishing a dynamic ER-Ca2+-mitochondria interconnection that can play a prominent role in the neuronal cell death induction under particular stressful circumstances of PD pathology.

  4. Resveratrol attenuates acute kidney injury by inhibiting death receptor-mediated apoptotic pathways in a cisplatin-induced rat model

    PubMed Central

    Hao, Qiufa; Xiao, Xiaoyan; Zhen, Junhui; Feng, Jinbo; Song, Chun; Jiang, Bei; Hu, Zhao

    2016-01-01

    Acute kidney injury is a clinical syndrome characterized by a loss of renal function and acute tubular necrosis. Resveratrol exerts a wide range of pharmacological effects based on its anti-inflammatory, antioxidant and cytoprotective properties. The present study aimed to evaluate whether resveratrol attenuates acute kidney injury in a cisplatin-induced rat model and to investigate the potential mechanisms involved. Rats were randomly divided into four treatment groups: Control, cisplatin, resveratrol, and cisplatin plus resveratrol. Rats exposed to cisplatin displayed acute kidney injury, identified by analysis of renal function and histopathological observation. Resveratrol significantly ameliorated the increased serum creatinine, blood urea nitrogen, renal index and histopathological damage induced by cisplatin. Furthermore, compared with untreated control animals, cisplatin lead to significantly increased expression of Fas ligand, tumor necrosis factor-α (TNF-α), caspase-8 and Bcl-2 associated protein X apoptosis regulator (Bax), and decreased expression of anti-apoptosis regulators, BH3 interacting domain death agonist (BID) and B cell lymphoma 2 apoptosis regulator (Bcl-2). Administration of resveratrol significantly reversed the cisplatin-induced alteration in these apoptosis-associated proteins. In conclusion, these findings suggest that resveratrol attenuates cisplatin-induced acute kidney injury through inactivation of the death receptor-mediated apoptotic pathway, and may provide a new therapeutic strategy to ameliorate the process of acute kidney injury. PMID:27600998

  5. MCMV-mediated Inhibition of the Pro-apoptotic Bak Protein Is Required for Optimal In Vivo Replication

    PubMed Central

    Fleming, Peter; Kvansakul, Marc; Voigt, Valentina; Kile, Benjamin T.; Kluck, Ruth M.; Huang, David C. S.; Degli-Esposti, Mariapia A.; Andoniou, Christopher E.

    2013-01-01

    Successful replication and transmission of large DNA viruses such as the cytomegaloviruses (CMV) family of viruses depends on the ability to interfere with multiple aspects of the host immune response. Apoptosis functions as a host innate defence mechanism against viral infection, and the capacity to interfere with this process is essential for the replication of many viruses. The Bcl-2 family of proteins are the principle regulators of apoptosis, with two pro-apoptotic members, Bax and Bak, essential for apoptosis to proceed. The m38.5 protein encoded by murine CMV (MCMV) has been identified as Bax-specific inhibitor of apoptosis. Recently, m41.1, a protein product encoded by the m41 open reading frame (ORF) of MCMV, has been shown to inhibit Bak activity in vitro. Here we show that m41.1 is critical for optimal MCMV replication in vivo. Growth of a m41.1 mutant was attenuated in multiple organs, a defect that was not apparent in Bak−/− mice. Thus, m41.1 promotes MCMV replication by inhibiting Bak-dependent apoptosis during in vivo infection. The results show that Bax and Bak mediate non-redundant functions during MCMV infection and that the virus produces distinct inhibitors for each protein to counter the activity of these proteins. PMID:23468630

  6. Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells.

    PubMed

    Ji, Lili; Shen, Kaikai; Jiang, Ping; Morahan, Grant; Wang, Zhengtao

    2011-08-01

    Andrographolide (ANDRO), isolated from the traditional herbal medicine Andrographis paniculata, is reported to have the potential therapeutic effects for hepatocellular carcinoma (HCC) in our previous reports. Here, we investigated the mechanism of ANDRO-mediated apoptotic cell death, focusing on the involvement of cellular reduced glutathione (GSH) homeostasis and c-Jun NH(2) -Terminal kinase (JNK). Buthionine sulfoximine (BSO), an inhibitor of cellular GSH biosynthesis, significantly augmented ANDRO-induced cytotoxicity in hepatoma Hep3B and HepG2 cells. BSO depleted cellular GSH, and augmented ANDRO-induced apoptosis, inhibition of colony formation and JNK activation in Hep3B cells. All these effects could be reversed by GSH monoethyl ester (GSH.EE), whose deacetylation replenishes cellular GSH. BSO also augmented ANDRO-induced activation of apoptosis signal-regulating kinase 1 (ASK1), mitogen-activated protein kinase kinase-4 (MKK4) and c-Jun, which are all up-stream or down-stream signals of JNK. Further results showed that JNK inhibitor SP600125 and 420116 both reversed ANDRO-induced cytotoxicity, and SP600125 also decreased ANDRO-increased intracellular GSH and GCL activity. Finally, we showed that in nude mice bearing xenografted Hep3B tumors, BSO improved the inhibition of tumor growth by ANDRO. Taken together, our results suggest that there is a crosstalk between JNK activation and cellular GSH homeostasis, and ANDRO targets this to induce cytotoxicity in hepatoma cells.

  7. Hydroxylation of multi-walled carbon nanotubes reduces their cytotoxicity by limiting the activation of mitochondrial mediated apoptotic pathway.

    PubMed

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2014-04-01

    Hydroxylation of carbon nanotubes (CNTs) can enhance their dispersibility in water, and allows the capability to conjugate with other molecules for the expected applications. However, the cytotoxicity of hydroxylated CNTs has not been thoroughly investigated. Here, we compared the cytotoxicity of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) on a human cell line with that of pristine multi-walled carbon nanotubes (p-MWCNTs). We showed that while both MWCNTs-OH and p-MWCNTs induced apoptosis in a time- and dose-dependent manner, MWCNTs-OH triggered a significantly milder cytotoxic response than that of p-MWCNTs. We further showed that such attenuated response could be attributed to a reduced disruption of the mitochondrial membrane potential (MMP), leading to the attenuation of both cytochrome c (cyt-c) release and activation of caspases. These findings suggest that MWCNTs-OH, could be more biocompatible for in vivo applications than that of p-MWCNTs by limiting the activation of the mitochondrial mediated apoptotic pathway.

  8. The apoptotic engulfment protein Ced-6 participates in clathrin-mediated yolk uptake in Drosophila egg chambers

    PubMed Central

    Jha, Anupma; Watkins, Simon C.; Traub, Linton M.

    2012-01-01

    Clathrin-mediated endocytosis and phagocytosis are both selective surface internalization processes but have little known mechanistic similarity or interdependence. Here we show that the phosphotyrosine-binding (PTB) domain protein Ced-6, a well-established phagocytosis component that operates as a transducer of so-called “eat-me” signals during engulfment of apoptotic cells and microorganisms, is expressed in the female Drosophila germline and that Ced-6 expression correlates with ovarian follicle development. Ced-6 exhibits all the known biochemical properties of a clathrin-associated sorting protein, yet ced-6–null flies are semifertile despite massive accumulation of soluble yolk precursors in the hemolymph. This is because redundant sorting signals within the cytosolic domain of the Drosophila vitellogenin receptor Yolkless, a low density lipoprotein receptor superfamily member, occur; a functional atypical dileucine signal binds to the endocytic AP-2 clathrin adaptor directly. Nonetheless, the Ced-6 PTB domain specifically recognizes the noncanonical Yolkless FXNPXA sorting sequence and in HeLa cells promotes the rapid, clathrin-dependent uptake of a Yolkless chimera lacking the distal dileucine signal. Ced-6 thus operates in vivo as a clathrin adaptor. Because the human Ced-6 orthologue GULP similarly binds to clathrin machinery, localizes to cell surface clathrin-coated structures, and is enriched in placental clathrin-coated vesicles, new possibilities for Ced-6/Gulp operation during phagocytosis must be considered. PMID:22398720

  9. Induction of a Cellular DNA Damage Response by Porcine Circovirus Type 2 Facilitates Viral Replication and Mediates Apoptotic Responses

    PubMed Central

    Wei, Li; Zhu, Shanshan; Wang, Jing; Quan, Rong; Yan, Xu; Li, Zixue; Hou, Lei; Wang, Naidong; Yang, Yi; Jiang, Haijun; Liu, Jue

    2016-01-01

    Cellular DNA damage response (DDR) triggered by infection of DNA viruses mediate cell cycle checkpoint activation, DNA repair, or apoptosis induction. In the present study, infection of porcine circovirus type 2 (PCV2), which serves as a major etiological agent of PCV2-associated diseases (PCVAD), was found to elicit a DNA damage response (DDR) as observed by the phosphorylation of H2AX and RPA32 following infection. The response requires active viral replication, and all the ATM (ataxia telangiectasia-mutated kinase), ATR (ATM- and Rad3-related kinase), and DNA-PK (DNA-dependent protein kinase) are the transducers of the DDR signaling events in the PCV2-infected cells as demonstrated by the phosphorylation of ATM, ATR, and DNA-PK signalings as well as reductions in their activations after treatment with specific kinase inhibitors. Inhibitions of ATM, ATR, and DNA-PK activations block viral replication and prevent apoptotic responses as observed by decreases in cleaved poly-ADP ribose polymerase (PARP) and caspase-3 as well as fragmented DNA following PCV2 infection. These results reveal that PCV2 is able to exploit the cellular DNA damage response machinery for its own efficient replication and for apoptosis induction, further extending our understanding for the molecular mechanism of PCV2 infection. PMID:27982097

  10. IRES-mediated translation of the pro-apoptotic Bcl2 family member PUMA.

    PubMed

    Shaltouki, Atossa; Harford, Terri J; Komar, Anton A; Weyman, Crystal M

    2013-01-01

    The proapoptotic Bcl-2 family member PUMA is a critical regulator of apoptosis. We have previously shown that PUMA plays a pivotal role in the apoptosis associated with skeletal myoblast differentiation and that a MyoD-dependent mechanism is responsible for the increased expression of PUMA in these cells. Herein, we report that the increased expression of PUMA under these conditions involves regulation at the level of translation. Specifically, we have found that the increase in PUMA protein levels occurs under conditions of decreased total protein synthesis, eIF2-alpha phosphorylation and hypophosphorylation of eIF4E-BP, suggesting that PUMA translation is proceeding via an alternative initiation mechanism. Polyribosome analysis of PUMA mRNA further corroborated this suggestion. A combination of in vitro and ex vivo (cellular) approaches has provided evidence suggesting that PUMA mRNA 5'UTR harbors an Internal Ribosome Entry Site (IRES) element. Using mono- and bi-cistronic reporter constructs, we have delineated an mRNA fragment that allows for cap-independent translation in vitro and ex vivo (in skeletal myoblasts) in response to culture in differentiation media (DM), or in response to treatment with the DNA-damaging agent, etoposide. This mRNA fragment also supports translation in HeLa and 293T cells. Thus, our data has revealed a novel IRES-mediated regulation of PUMA expression in several cell types and in response to several stimuli. These findings contribute to our understanding and potential manipulation of any developmental or therapeutic scenario involving PUMA.

  11. SAFB1 Mediates Repression of Immune Regulators and Apoptotic Genes in Breast Cancer Cells*

    PubMed Central

    Hammerich-Hille, Stephanie; Kaipparettu, Benny A.; Tsimelzon, Anna; Creighton, Chad J.; Jiang, Shiming; Polo, Jose M.; Melnick, Ari; Meyer, Rene; Oesterreich, Steffi

    2010-01-01

    The scaffold attachment factors SAFB1 and SAFB2 are paralogs, which are involved in cell cycle regulation, apoptosis, differentiation, and stress response. They have been shown to function as estrogen receptor corepressors, and there is evidence for a role in breast tumorigenesis. To identify their endogenous target genes in MCF-7 breast cancer cells, we utilized a combined approach of chromatin immunoprecipitation (ChIP)-on-chip and gene expression array studies. By performing ChIP-on-chip on microarrays containing 24,000 promoters, we identified 541 SAFB1/SAFB2-binding sites in promoters of known genes, with significant enrichment on chromosomes 1 and 6. Gene expression analysis revealed that the majority of target genes were induced in the absence of SAFB1 or SAFB2 and less were repressed. Interestingly, there was no significant overlap between the genes identified by ChIP-on-chip and gene expression array analysis, suggesting regulation through regions outside the proximal promoters. In contrast to SAFB2, which shared most of its target genes with SAFB1, SAFB1 had many unique target genes, most of them involved in the regulation of the immune system. A subsequent analysis of the estrogen treatment group revealed that 12% of estrogen-regulated genes were dependent on SAFB1, with the majority being estrogen-repressed genes. These were primarily genes involved in apoptosis, such as BBC3, NEDD9, and OPG. Thus, this study confirms the primary role of SAFB1/SAFB2 as corepressors and also uncovers a previously unknown role for SAFB1 in the regulation of immune genes and in estrogen-mediated repression of genes. PMID:19901029

  12. Soy Isoflavones Genistein and Daidzein Exert Anti-Apoptotic Actions via a Selective ER-mediated Mechanism in Neurons following HIV-1 Tat1–86 Exposure

    PubMed Central

    Adams, Sheila M.; Aksenova, Marina V.; Aksenov, Michael Y.; Mactutus, Charles F.; Booze, Rosemarie M.

    2012-01-01

    Background HIV-1 viral protein Tat partially mediates the neural dysfunction and neuronal cell death associated with HIV-1 induced neurodegeneration and neurocognitive disorders. Soy isoflavones provide protection against various neurotoxic insults to maintain neuronal function and thus help preserve neurocognitive capacity. Methodology/Principal Findings We demonstrate in primary cortical cell cultures that 17β-estradiol or isoflavones (genistein or daidzein) attenuate Tat1–86-induced expression of apoptotic proteins and subsequent cell death. Exposure of cultured neurons to the estrogen receptor antagonist ICI 182,780 abolished the anti-apoptotic actions of isoflavones. Use of ERα or ERβ specific antagonists determined the involvement of both ER isoforms in genistein and daidzein inhibition of caspase activity; ERβ selectively mediated downregulation of mitochondrial pro-apoptotic protein Bax. The findings suggest soy isoflavones effectively diminished HIV-1 Tat-induced apoptotic signaling. Conclusions/Significance Collectively, our results suggest that soy isoflavones represent an adjunctive therapeutic option with combination anti-retroviral therapy (cART) to preserve neuronal functioning and sustain neurocognitive abilities of HIV-1 infected persons. PMID:22629415

  13. Efficacious gene silencing in serum and significant apoptotic activity induction by survivin downregulation mediated by new cationic gemini tocopheryl lipids.

    PubMed

    Kumar, Krishan; Maiti, Bappa; Kondaiah, Paturu; Bhattacharya, Santanu

    2015-02-02

    Nonviral gene delivery offers cationic liposomes as promising instruments for the delivery of double-stranded RNA (ds RNA) molecules for successful sequence-specific gene silencing (RNA interference). The efficient delivery of siRNA (small interfering RNA) to cells while avoiding unexpected side effects is an important prerequisite for the exploitation of the power of this excellent tool. We present here six new tocopherol based cationic gemini lipids, which induce substantial gene knockdown without any obvious cytotoxicity. All the efficient coliposomal formulations derived from each of these geminis and a helper lipid, dioleoylphosphatidylethanolamine (DOPE), were well characterized using physical methods such as atomic force microscopy (AFM) and dynamic light scattering (DLS). Zeta potential measurements were conducted to estimate the surface charge of these formulations. Flow cytometric analysis showed that the optimized coliposomal formulations could transfect anti-GFP siRNA efficiently in three different GFP expressing cell lines, viz., HEK 293T, HeLa, and Caco-2, significantly better than a potent commercial standard Lipofectamine 2000 (L2K) both in the absence and in the presence of serum (FBS). Notably, the knockdown activity of coliposomes of gemini lipids was not affected even in the presence of serum (10% and 50% FBS) while it dropped down for L2K significantly. Observations under a fluorescence microscope, RT-PCR, and Western blot analysis substantiated the flow cytometry results. The efficient cellular entry of labeled siRNA in GFP expressing cells as evidenced from confocal microscopy put forward these gemini lipids among the potent lipidic carriers for siRNA. The efficient transfection capabilities were also profiled in a more relevant fashion while performing siRNA transfections against survivin (an anti-apoptotic protein) which induced substantial apoptosis. Furthermore, the survivin downregulation improved the therapeutic efficacy levels of an

  14. Regulation of CRADD-caspase 2 cascade by histone deacetylase 1 in gastric cancer

    PubMed Central

    Shen, Qi; Tang, Wanfen; Sun, Jie; Feng, Lifeng; Jin, Hongchuan; Wang, Xian

    2014-01-01

    CRADD, also referred as RAIDD, is an adaptor protein that could interact with both caspase 2 and RIP that can promote apoptosis once activated. HDAC inhibitors are promising anti-cancer agents by inducing apoptosis of various cancer cells. In this study, we found that CRADD was induced by TSA (trichostatin A) to activate caspase 2-dependent apoptosis. CRADD was downregulated in gastric cancer and the restoration of its expression suppressed the viability of gastric cancer cells. HDAC1 was responsible for its downregulation in gastric cancer since HDAC1 siRNA upregulated CRADD expression and HDAC1 directly bound to the promoter of CRADD. Therefore, the high expression of HDAC1 can downregulate CRADD to confer gastric cancer cells the resistance to caspase 2-dependent apoptosis. HDAC inhibitors, potential anti-cancer drugs under investigation, can promote caspase 2-dependent apoptosis by inducing the expression of CRADD. PMID:25360218

  15. Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects.

    PubMed

    Biswas, Chayanika; Zuo, Xiaoming; Chen, Sharon C-A; Schibeci, Stephen D; Forwood, Jade K; Jolliffe, Katrina A; Sorrell, Tania C; Djordjevic, Julianne T

    2014-06-01

    Miltefosine (MI) is a novel, potential antifungal agent with activity against some yeast and filamentous fungal pathogens. We previously demonstrated in the model yeast, Saccharomyces cerevisiae, that MI causes disruption of mitochondrial membrane potential and apoptosis-like cell death via interaction with the Cox9p sub-unit of cytochrome c oxidase (COX). To identify additional mechanisms of antifungal action, MI resistance was induced in S. cerevisiae by exposure to the mutagen, ethyl methanesulfonate, and gene mutation(s) responsible for resistance were investigated. An MI-resistant haploid strain (H-C101) was created. Resistance was retained in the diploid strain (D-C101) following mating, confirming dominant inheritance. Phenotypic assessment of individual D-C101 tetrads revealed that only one mutant gene contributed to the MI-resistance phenotype. To identify this gene, the genome of H-C101 was sequenced and 17 mutated genes, including metacaspase-encoding MCA1, were identified. The MCA1 mutation resulted in substitution of asparagine (N) with aspartic acid (D) at position 164 (MCA1(N164D)). MI resistance was found to be primarily due to MCA1(N164D), as single-copy episomal expression of MCA1(N164D), but not two other mutated genes (FAS1(T1417I) and BCK2(T104A)), resulted in MI resistance in the wild-type strain. Furthermore, an MCA1 deletion mutant (mca1Δ) was MI-resistant. MI treatment led to accumulation of reactive oxygen species (ROS) in MI-resistant (MCA1(N164D)-expressing and mca1Δ) strains and MI-susceptible (MCA1-expressing) strains, but failed to activate Mca1 in the MI-resistant strains, demonstrating that ROS accumulation does not contribute to the fungicidal effect of MI. In conclusion, functional disruption of Mca1, leads to MI resistance and inability to mediate MI-induced apoptotic effects. Mca1-mediated apoptosis is therefore a major mechanism of MI-induced antifungal action.

  16. The Protective Properties of the Strawberry (Fragaria ananassa) against Carbon Tetrachloride-Induced Hepatotoxicity in Rats Mediated by Anti-Apoptotic and Upregulation of Antioxidant Genes Expression Effects

    PubMed Central

    Hamed, Sherifa S.; AL-Yhya, Nouf A.; El-Khadragy, Manal F.; Al-Olayan, Ebtesam M.; Alajmi, Reem A.; Hassan, Zeinab K.; Hassan, Salwa B.; Abdel Moneim, Ahmed E.

    2016-01-01

    The strawberry (Fragaria ananassa) has been extensively used to treat a wide range of ailments in many cultures. The present study was aimed at evaluating the hepatoprotective effect of strawberry juice on experimentally induced liver injury in rats. To this end, rats were introperitoneally injected with carbon tetrachloride (CCl4) with or without strawberry juice supplementation for 12 weeks and the hepatoprotective effect of strawberry was assessed by measuring serum liver enzyme markers, hepatic tissue redox status and apoptotic markers with various techniques including biochemistry, ELISA, quantitative PCR assays and histochemistry. The hepatoprotective effect of the strawberry was evident by preventing CCl4-induced increase in liver enzymes levels. Determination of oxidative balance showed that strawberry treatment significantly blunted CCl4-induced increase in oxidative stress markers and decrease in enzymatic and non-enzymatic molecules in hepatic tissue. Furthermore, strawberry supplementation enhanced the anti-apoptotic protein, Bcl-2, and restrained the pro-apoptotic proteins Bax and caspase-3 with a marked reduction in collagen areas in hepatic tissue. These findings demonstrated that strawberry (F. ananassa) juice possessed antioxidant, anti-apoptotic and anti-fibrotic properties, probably mediated by the presence of polyphenols and flavonoids compounds. PMID:27547187

  17. The Protective Properties of the Strawberry (Fragaria ananassa) against Carbon Tetrachloride-Induced Hepatotoxicity in Rats Mediated by Anti-Apoptotic and Upregulation of Antioxidant Genes Expression Effects.

    PubMed

    Hamed, Sherifa S; Al-Yhya, Nouf A; El-Khadragy, Manal F; Al-Olayan, Ebtesam M; Alajmi, Reem A; Hassan, Zeinab K; Hassan, Salwa B; Abdel Moneim, Ahmed E

    2016-01-01

    The strawberry (Fragaria ananassa) has been extensively used to treat a wide range of ailments in many cultures. The present study was aimed at evaluating the hepatoprotective effect of strawberry juice on experimentally induced liver injury in rats. To this end, rats were introperitoneally injected with carbon tetrachloride (CCl4) with or without strawberry juice supplementation for 12 weeks and the hepatoprotective effect of strawberry was assessed by measuring serum liver enzyme markers, hepatic tissue redox status and apoptotic markers with various techniques including biochemistry, ELISA, quantitative PCR assays and histochemistry. The hepatoprotective effect of the strawberry was evident by preventing CCl4-induced increase in liver enzymes levels. Determination of oxidative balance showed that strawberry treatment significantly blunted CCl4-induced increase in oxidative stress markers and decrease in enzymatic and non-enzymatic molecules in hepatic tissue. Furthermore, strawberry supplementation enhanced the anti-apoptotic protein, Bcl-2, and restrained the pro-apoptotic proteins Bax and caspase-3 with a marked reduction in collagen areas in hepatic tissue. These findings demonstrated that strawberry (F. ananassa) juice possessed antioxidant, anti-apoptotic and anti-fibrotic properties, probably mediated by the presence of polyphenols and flavonoids compounds.

  18. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells

    PubMed Central

    Ulbrich, Felix; Kaufmann, Kai B.; Meske, Alexander; Lagrèze, Wolf A.; Augustynik, Michael; Buerkle, Hartmut; Ramao, Carlos C.; Biermann, Julia

    2016-01-01

    Purpose Ischemia and reperfusion injury may induce apoptosis and lead to sustained tissue damage and loss of function, especially in neuronal organs. While carbon monoxide is known to exert protective effects after various harmful events, the mechanism of carbon monoxide releasing molecules in neuronal tissue has not been investigated yet. We hypothesize that the carbon monoxide releasing molecule (CORM) ALF-186, administered after neuronal ischemia-reperfusion injury (IRI), counteracts retinal apoptosis and its involved signaling pathways and consecutively reduces neuronal tissue damage. Methods IRI was performed in rat´s retinae for 1 hour. The water-soluble CORM ALF-186 (10 mg/kg) was administered intravenously via a tail vein after reperfusion. After 24 and 48 hours, retinal tissue was harvested to analyze mRNA and protein expression of Bcl-2, Bax, Caspase-3, ERK1/2, p38 and JNK. Densities of fluorogold pre-labeled retinal ganglion cells (RGC) were analyzed 7 days after IRI. Immunohistochemistry was performed on retinal cross sections. Results ALF-186 significantly reduced IRI mediated loss of RGC. ALF-186 treatment differentially affected mitogen-activated protein kinases (MAPK) phosphorylation: ALF-186 activated p38 and suppressed ERK1/2 phosphorylation, while JNK remained unchanged. Furthermore, ALF-186 treatment affected mitochondrial apoptosis, decreasing pro-apoptotic Bax and Caspase-3-cleavage, but increasing anti-apoptotic Bcl-2. Inhibition of p38-MAPK using SB203580 reduced ALF-186 mediated anti-apoptotic effects. Conclusion In this study, ALF-186 mediated substantial neuroprotection, affecting intracellular apoptotic signaling, mainly via MAPK p38. CORMs may thus represent a promising therapeutic alternative treating neuronal IRI. PMID:27764224

  19. Integrin αVβ5-mediated Removal of Apoptotic Cell Debris by the Eye Lens and Its Inhibition by UV Light Exposure.

    PubMed

    Chauss, Daniel; Brennan, Lisa A; Bakina, Olga; Kantorow, Marc

    2015-12-18

    Accumulation of apoptotic material is toxic and associated with cataract and other disease states. Identification of mechanisms that prevent accumulation of apoptotic debris is important for establishing the etiology of these diseases. The ocular lens is routinely assaulted by UV light that causes lens cell apoptosis and is associated with cataract formation. To date, no molecular mechanism for removal of toxic apoptotic debris has been identified in the lens. Vesicular debris within lens cells exposed to UV light has been observed raising speculation that lens cells themselves could act as phagocytes to remove toxic apoptotic debris. However, phagocytosis has not been confirmed as a function of the intact eye lens, and no mechanism for lens phagocytosis has been established. Here, we demonstrate that the eye lens is capable of phagocytizing extracellular lens cell debris. Using high throughput RNA sequencing and bioinformatics analysis, we establish that lens epithelial cells express members of the integrin αVβ5-mediated phagocytosis pathway and that internalized cell debris co-localizes with αVβ5 and with RAB7 and Rab-interacting lysosomal protein that are required for phagosome maturation and fusion with lysosomes. We demonstrate that the αVβ5 receptor is required for lens epithelial cell phagocytosis and that UV light treatment of lens epithelial cells results in damage to the αVβ5 receptor with concomitant loss of phagocytosis. These data suggest that loss of αVβ5-mediated phagocytosis by the eye lens could result in accumulation of toxic cell debris that could contribute to UV light-induced cataract formation.

  20. Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination.

    PubMed

    Crauwels, Peter; Bohn, Rebecca; Thomas, Meike; Gottwalt, Stefan; Jäckel, Florian; Krämer, Susi; Bank, Elena; Tenzer, Stefan; Walther, Paul; Bastian, Max; van Zandbergen, Ger

    2015-01-01

    Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed--in contrast to viable parasites--that apoptotic-like parasites enter an LC3(+), autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4(+) T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells' autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.

  1. AW00179 potentiates TRAIL-mediated death of human lung cancer H1299 cells through ROS-JNK-c-Jun-mediated up-regulation of DR5 and down-regulation of anti-apoptotic molecules.

    PubMed

    Hwang, Mi-Kyung; Ryu, Byung Jun; Kim, Seong Hwan

    2012-10-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells, but when used alone, it is not effective at treating TRAIL-resistant tumors. This resistance is challenging for TRAIL-based anti-cancer therapies. In this study, we found that 1-(4-trifluoromethoxy-phenyl)-3-[4-(5-trifluoromethyl-2,5-dihydro-pyrazol-1-yl)-phenyl]-urea (AW00179) sensitized human lung cancer H1299 cells to TRAIL-mediated apoptosis. Even in the absence of TRAIL, AW00179 strongly induced DR5 expression and decreased the expression of anti-apoptotic proteins, suggesting that the sensitizing effect of AW00179 on TRAIL-mediated apoptosis is due to increased levels of DR5 protein and decreased anti-apoptotic molecules. AW00179 also induced the activation of c-Jun and ERK; however, a pharmacologic inhibition study revealed that JNK-c-Jun signaling is involved in the induction of DR5 expression. In addition, reactive oxygen species (ROS) appear to be involved in AW00179 activity. In conclusion, AW00179 has the potential to sensitize H1299 cells to TRAIL-mediated apoptosis through two distinct mechanisms: ROS-JNK-c-Jun-mediated up-regulation of DR5, and down-regulation of anti-apoptotic molecules.

  2. Autocrine secretion of 15d-PGJ2 mediates simvastatin-induced apoptotic burst in human metastatic melanoma cells

    PubMed Central

    Wasinger, Christine; Künzl, Martin; Minichsdorfer, Christoph; Höller, Christoph; Zellner, Maria; Hohenegger, Martin

    2014-01-01

    Background and Purpose Despite new therapeutic approaches, metastatic melanomas still have a poor prognosis. Statins reduce low-density lipoprotein cholesterol and exert anti-inflammatory and anti-proliferative actions. We have recently shown that simvastatin triggers an apoptotic burst in human metastatic melanoma cells by the synthesis of an autocrine factor. Experimental Approach The current in vitro study was performed in human metastatic melanoma cell lines (A375, 518a2) and primary human melanocytes and melanoma cells. The secretome of simvastatin-stressed cells was analysed with two-dimensional difference gel electrophoresis and MS. The signalling pathways involved were analysed at the protein and mRNA level using pharmacological approaches and siRNA technology. Key Results Simvastatin was shown to activate a stress cascade, leading to the synthesis of 15-deoxy-12,14-PGJ2 (15d-PGJ2), in a p38- and COX-2-dependent manner. Significant concentrations of 15d-PGJ2 were reached in the medium of melanoma cells, which were sufficient to activate caspase 8 and the mitochondrial pathway of apoptosis. Inhibition of lipocalin-type PGD synthase, a key enzyme for 15d-PGJ2 synthesis, abolished the apoptotic effect of simvastatin. Moreover, 15d-PGJ2 was shown to bind to the fatty acid-binding protein 5 (FABP5), which was up-regulated and predominantly detected in the secretome of simvastatin-stressed cells. Knockdown of FABP5 abolished simvastatin-induced activation of PPAR-γ and amplified the apoptotic response. Conclusions and Implications We characterized simvastatin-induced activation of the 15d-PGJ2/FABP5 signalling cascades, which triggered an apoptotic burst in melanoma cells but did not affect primary human melanocytes. These data support the rationale for the pharmacological targeting of 15d-PGJ2 in metastatic melanoma. PMID:25091578

  3. Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling

    PubMed Central

    Fan, Chongxi; Yang, Yang; Liu, Yong; Jiang, Shuai; Di, Shouyin; Hu, Wei; Ma, Zhiqiang; Li, Tian; Zhu, Yifang; Xin, Zhenlong; Wu, Guiling; Han, Jing; Li, Xiaofei; Yan, Xiaolong

    2016-01-01

    In this study, we investigated the antitumor activity of icariin (ICA) in human esophageal squamous cell carcinoma (ESCC) in vitro and in vivo and explored the role of endoplasmic reticulum stress (ERS) signaling in this activity. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human EC109 and TE1 ESCCs. Additionally, ICA exhibited strong antitumor activity, as evidenced by reductions in cell migration, adhesion, and intracellular glutathione (GSH) levels and by increases in the EC109 and TE1 cell apoptotic index, Caspase 9 activity, reactive oxygen species (ROS) level, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Furthermore, ICA treatments upregulated the levels of ERS-related molecules (p-PERK, GRP78, ATF4, p-eIF2α, and CHOP) and a pro-apoptotic protein (PUMA) and simultaneously downregulated an anti-apoptotic protein (Bcl2) in the two ESCC cell lines. The downregulation of ERS signaling using eIF2α siRNA desensitized EC109 and TE1 cells to ICA treatment, and the upregulation of ERS signaling using thapsigargin sensitized EC109 and TE1 cells to ICA treatment. In summary, ERS activation may represent a mechanism of action for the anticancer activity of ICA in ESCCs, and the activation of ERS signaling may represent a novel therapeutic intervention for human esophageal cancer. PMID:26892033

  4. Tip60 HAT activity mediates APP induced lethality and apoptotic cell death in the CNS of a Drosophila Alzheimer's disease model.

    PubMed

    Pirooznia, Sheila K; Sarthi, Jessica; Johnson, Ashley A; Toth, Meridith S; Chiu, Kellie; Koduri, Sravanthi; Elefant, Felice

    2012-01-01

    Histone acetylation of chromatin promotes dynamic transcriptional responses in neurons that influence neuroplasticity critical for cognitive ability. It has been demonstrated that Tip60 histone acetyltransferase (HAT) activity is involved in the transcriptional regulation of genes enriched for neuronal function as well as the control of synaptic plasticity. Accordingly, Tip60 has been implicated in the neurodegenerative disorder Alzheimer's disease (AD) via transcriptional regulatory complex formation with the AD linked amyloid precursor protein (APP) intracellular domain (AICD). As such, inappropriate complex formation may contribute to AD-linked neurodegeneration by misregulation of target genes involved in neurogenesis; however, a direct and causative epigenetic based role for Tip60 HAT activity in this process during neuronal development in vivo remains unclear. Here, we demonstrate that nervous system specific loss of Tip60 HAT activity enhances APP mediated lethality and neuronal apoptotic cell death in the central nervous system (CNS) of a transgenic AD fly model while remarkably, overexpression of Tip60 diminishes these defects. Notably, all of these effects are dependent upon the C-terminus of APP that is required for transcriptional regulatory complex formation with Tip60. Importantly, we show that the expression of certain AD linked Tip60 gene targets critical for regulating apoptotic pathways are modified in the presence of APP. Our results are the first to demonstrate a functional interaction between Tip60 and APP in mediating nervous system development and apoptotic neuronal cell death in the CNS of an AD fly model in vivo, and support a novel neuroprotective role for Tip60 HAT activity in AD neurodegenerative pathology.

  5. Sanguisorba officinalis L synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondria-caspase-dependent apoptotic pathway

    PubMed Central

    Liu, Meng-ping; Liao, Min; Dai, Cong; Chen, Jie-feng; Yang, Chun-juan; Liu, Ming; Chen, Zuan-guang; Yao, Mei-cun

    2016-01-01

    Sanguisorba officinalis L. radix is a widely used herb called DiYu (DY) in China and has an extensive range of bioactivities, including anti-cancer, anti-inflammatory, and anti-oxidative activities. However, there is little evidence to support its anti-cancer effects against colorectal cancer (CRC). The first-line chemotherapeutic agent 5-fluorouracil (5-FU) is used to treat CRC, but its efficiency is hampered by acquired drug resistance. This study found that a water extract of DY exerted anti-proliferative effects against two CRC cell lines (HCT-116 and RKO), and it sensitized CRC cells to 5-FU therapy by activating a reactive oxygen species (ROS)-mediated, mitochondria-caspase-dependent apoptotic pathway. Co-treatment of DY and 5-FU significantly elevated ROS levels, up-regulated Bax/Bcl-2 ratio and triggered mitochondrial dysfunction, followed by a release of cytochrome c and up-regulation of proteins such as cleaved-caspase-9/3 and cleaved-PARP. Additionally, the induction of autophagy may be involved in mediating synergism of DY in HCT-116 cells. Gallic acid (GA), catechinic acid (CA) and ellagic acid (EA) were identified as the potential chief constituents responsible for the synergistic effects of DY. In conclusion, co-treatment of DY, specifically GA, CA and EA, with 5-FU may be a potential alternative therapeutic strategy for CRC by enhancing an intrinsic apoptotic pathway. PMID:27671231

  6. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    SciTech Connect

    Song, Shasha; Wang, Shuang; Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin; Zhu, Daling

    2013-08-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway.

  7. P38 MAP kinase mediates apoptosis after genipin treatment in non-small-cell lung cancer H1299 cells via a mitochondrial apoptotic cascade.

    PubMed

    Yang, Xue; Yao, Jie; Luo, Yue; Han, Yongguang; Wang, Zuobai; Du, Linfang

    2013-01-01

    Genipin, an active constituent of Gardenia fruit, has been reported to show an anti-tumor effect in several cancer cell systems. Here, we demonstrate how genipin exhibits a strong apoptotic cell death effect in human non-small-cell lung cancer H1299 cells. Genipin-mediated decrease in cell viability was observed through apoptosis as demonstrated by induction of a sub-G1 peak through flow cytometry, DNA fragmentation measured by TUNEL assay, and cleavage of poly ADP-ribose-polymerase. During genipin-induced apoptosis, the mitochondrial execution pathway was activated by caspase-9 and -3 activation as examined by a kinetic study, cytochrome c release, and a dose-dependent increase in Bax/Bcl-2 ratio. A search for the downstream pathway reveals that genipin-induced apoptosis was mediated by an increase in phosphorylated p38MAPK expression, which further activated downstream signaling by phosphorylating ATF-2. SB203580, a p38MAPK inhibitor, markedly blocked the formation of TUNEL-positive apoptotic cells in genipin-treated cells. Besides, the interference of p38MAPK inhibited Bax expression and cytochrome c release. Altogether, our observations imply that genipin causes increased levels of Bax in response to p38MAPK signaling, which results in the initiation of mitochondrial death cascade, and therefore it holds promise as a potential chemotherapeutic agent for the treatment of H1299 cells.

  8. Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells.

    PubMed

    Urresti, Jorge; Ruiz-Meana, Marisol; Coccia, Elena; Arévalo, Juan Carlos; Castellano, José; Fernández-Sanz, Celia; Galenkamp, Koen M O; Planells-Ferrer, Laura; Moubarak, Rana S; Llecha-Cano, Núria; Reix, Stéphanie; García-Dorado, David; Barneda-Zahonero, Bruna; Comella, Joan X

    2016-01-15

    Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG.

  9. Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells*

    PubMed Central

    Urresti, Jorge; Ruiz-Meana, Marisol; Coccia, Elena; Arévalo, Juan Carlos; Castellano, José; Fernández-Sanz, Celia; Galenkamp, Koen M. O.; Planells-Ferrer, Laura; Moubarak, Rana S.; Llecha-Cano, Núria; Reix, Stéphanie; García-Dorado, David; Barneda-Zahonero, Bruna; Comella, Joan X.

    2016-01-01

    Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG. PMID:26582200

  10. Activation of AMPK/MnSOD signaling mediates anti-apoptotic effect of hepatitis B virus in hepatoma cells

    PubMed Central

    Li, Lei; Hong, Hong-Hai; Chen, Shi-Ping; Ma, Cai-Qi; Liu, Han-Yan; Yao, Ya-Chao

    2016-01-01

    AIM: To investigate the anti-apoptotic capability of the hepatitis B virus (HBV) in the HepG2 hepatoma cell line and the underlying mechanisms. METHODS: Cell viability and apoptosis were measured by MTT assay and flow cytometry, respectively. Targeted knockdown of manganese superoxide dismutase (MnSOD), AMP-activated protein kinase (AMPK) and hepatitis B virus X protein (HBx) genes as well as AMPK agonist AICAR and antagonist compound C were employed to determine the correlations of expression of these genes. RESULTS: HBV markedly protected the hepatoma cells from growth suppression and cell death in the condition of serum deprivation. A decrease of superoxide anion production accompanied with an increase of MnSOD expression and activity was found in HepG2.215 cells. Moreover, AMPK activation contributed to the up-regulation of MnSOD. HBx protein was identified to induce the expression of AMPK and MnSOD. CONCLUSION: Our results suggest that HBV suppresses mitochondrial superoxide level and exerts an anti-apoptotic effect by activating AMPK/MnSOD signaling pathway, which may provide a novel pharmacological strategy to prevent HCC. PMID:27158203

  11. Biomechanical insult switches PEA-15 activity to uncouple its anti-apoptotic function and promote erk mediated tissue remodeling.

    PubMed

    Exler, Rachel E; Guo, Xiaoxin; Chan, Darren; Livne-Bar, Izhar; Vicic, Nevena; Flanagan, John G; Sivak, Jeremy M

    2016-01-15

    Biomechanical insult contributes to many chronic pathological processes, yet the resulting influences on signal transduction mechanisms are poorly understood. The retina presents an excellent mechanotransduction model, as mechanical strain on sensitive astrocytes of the optic nerve head (ONH) is intimately linked to chronic tissue remodeling and excavation by matrix metalloproteinases (MMPs), and apoptotic cell death. However, the mechanism by which these effects are induced by biomechanical strain is unclear. We previously identified the small adapter protein, PEA-15 (phosphoprotein enriched in astrocytes), through proteomic analyses of human ONH astrocytes subjected to pathologically relevant biomechanical insult. Under resting conditions PEA-15 is regulated through phosphorylation of two key serine residues to inhibit extrinsic apoptosis and ERK1/2 signaling. However, we surprisingly observed that biomechanical insult dramatically switches PEA-15 phosphorylation and function to uncouple its anti-apoptotic activity, and promote ERK1/2-dependent MMP-2 and MMP-9 secretion. These results reveal a novel cell autonomous mechanism by which biomechanical strain rapidly modifies this signaling pathway to generate altered tissue injury responses.

  12. Role of the Mitochondria in Immune-Mediated Apoptotic Death of the Human Pancreatic β Cell Line βLox5

    PubMed Central

    Lightfoot, Yaíma L.; Chen, Jing; Mathews, Clayton E.

    2011-01-01

    Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA) depleted βLox5 cells, or βLox5 ρ0 cells. βLox5 ρ0 cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ0 cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways. PMID:21738580

  13. The RNA-binding protein TIAR is translocated from the nucleus to the cytoplasm during Fas-mediated apoptotic cell death.

    PubMed

    Taupin, J L; Tian, Q; Kedersha, N; Robertson, M; Anderson, P

    1995-02-28

    We have determined the structure, intracellular localization, and tissue distribution of TIAR, a TIA-1-related RNA-binding protein. Two related isoforms of TIAR, migrating at 42 and 50 kDa, are expressed in primate cells. Unlike TIA-1, which is found in the granules of cytotoxic lymphocytes, TIAR is concentrated in the nucleus of hematopoietic and nonhematopoietic cells. Because TIAR can trigger DNA fragmentation in permeabilized thymocytes, it is a candidate effector of apoptotic cell death. Consistent with this possibility, we have found that the expression and intracellular localization of TIAR change dramatically during Fas-mediated apoptosis. TIAR moves from the nucleus to the cytoplasm within 30 min of Fas ligation. Redistribution of TIAR precedes the onset of DNA fragmentation and is not a nonspecific consequence of nuclear disintegration. Cytoplasmic redistribution of TIAR is not observed during cellular activation triggered by mitogens such as concanavalin A or phytohemagglutinin. Our results suggest that cytoplasmic redistribution of TIAR may be a general feature of the apoptotic program.

  14. The p53-inducible gene 3 involved in flavonoid-induced cytotoxicity through the reactive oxygen species-mediated mitochondrial apoptotic pathway in human hepatoma cells.

    PubMed

    Zhang, Qiang; Cheng, Guangdong; Qiu, Hongbin; Zhu, Liling; Ren, Zhongjuan; Zhao, Wei; Zhang, Tao; Liu, Lei

    2015-05-01

    Flavonoids have been reported to exhibit prooxidant cytotoxicity against cancer cells, but the underlying mechanism is still poorly understood. Here we investigated the potential mechanism that p53-inducible gene 3 (PIG3), a NADPH:quinone oxidoreductase, mediated the prooxidant cytotoxicity of flavonoids on human hepatoma HepG2 cells. The results showed that flavonoids (apigenin, luteolin, kaempferol, and quercetin) inhibited the growth of HepG2 cells in a dosage- and time-dependent manner, and induced the morphological changes characteristic of apoptosis in HepG2 cells. We also found that expression of PIG3 was increased markedly in HepG2 cells treated with flavonoids at both mRNA and protein levels, which was accompanied by increased intracellular ROS production and a decreased mitochondrial membrane potential (ΔΨm). All these effects were largely reversed through knockdown of the PIG3 gene in HepG2 cells. Western blotting indicated that flavonoids increased cytochrome c release, upregulated the ratio of Bax/Bcl-2, and activated the caspases-9 and -3. Moreover, knockdown of PIG3 could reverse the changes of these apoptotic-related proteins. These results suggest that PIG3 plays an important role in regulating the prooxidant activity and apoptosis-inducing action of flavonoids on HepG2 cells though the ROS-triggered mitochondrial apoptotic pathway.

  15. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells.

    PubMed

    Hsin, Yi-Hong; Chen, Chun-Feng; Huang, Shing; Shih, Tung-Sheng; Lai, Ping-Shan; Chueh, Pin Ju

    2008-07-10

    Nanomaterials and nanoparticles have received considerable attention recently because of their unique properties and diverse biotechnology and life sciences applications. Nanosilver products, which have well-known antimicrobial properties, have been used extensively in a range of medical settings. Despite the widespread use of nanosilver products, relatively few studies have been undertaken to determine the biological effects of nanosilver exposure. The purpose of this study was to evaluate the toxicity of nanosilver and to elucidate possible molecular mechanisms underlying the biological effects of nanosilver. Here, we show that nanosilver is cytotoxic, inducing apoptosis in NIH3T3 fibroblast cells. Treatment with nanosilver induced the release of cytochrome c into the cytosol and translocation of Bax to mitochondria, indicating that nanosilver-mediated apoptosis is mitochondria-dependent. Nanosilver-induced apoptosis was associated with the generation of reactive oxygen species (ROS) and JNK activation, and inhibition of either ROS or JNK attenuated nanosilver-induced apoptosis. In nanosilver-resistant HCT116 cells, up-regulation of the anti-apoptotic proteins, Bcl-2 appeared to be associated with a diminished apoptotic response. Taken together, our results provide the first evidence for a molecular mechanism of nanosilver cytotoxicity, showing that nanosilver acts through ROS and JNK to induce apoptosis via the mitochondrial pathway.

  16. Correlation of Glucocorticoid-mediated E4BP4 upregulation with altered expression of pro- and anti-apoptotic genes in CEM human lymphoblastic leukemia cells

    PubMed Central

    Beach, Jessica A.; Nary, Laura J.; Hovanessian, Rebeka; Medh, Rheem D.

    2014-01-01

    In C.elegans, motoneuron apoptosis is regulated via a ces-2 – ces-1 – egl-1 pathway. We tested whether human CEM lymphoblastic leukemia cells undergo apoptosis via an analogous pathway. We have previously shown that E4BP4, a ces-2 ortholog, mediates glucocorticoid (GC)-dependent upregulation of BIM, an egl-1 ortholog, in GC-sensitive CEM C7-14 cells and in CEM C1-15 mE#3 cells, which are sensitized to GCs by ectopic expression of E4BP4. In the present study, we demonstrate that the human ces-1 orthologs, SLUG and SNAIL, are not significantly repressed in correlation with E4BP4 expression. Expression of E4BP4 homologs, the PAR family genes, especially HLF, encoding a known anti-apoptotic factor, was inverse to that of E4BP4 and BIM. Expression of pro- and anti-apoptotic genes in CEM cells was analyzed via an apoptosis PCR Array. We identified BIRC3 and BIM as genes whose expression paralleled that of E4BP4, while FASLG, TRAF4, BCL2A1, BCL2L1, BCL2L2 and CD40LG as genes whose expression was opposite to that of E4BP4. PMID:25101525

  17. Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells.

    PubMed

    Lu, Guo Dong; Shen, Han-Ming; Chung, Maxey C M; Ong, Choon Nam

    2007-09-01

    Aloe-emodin (AE), one of the main bioactive anthraquinones of Rheum palmatum, possesses potent antitumor properties. Our previous proteomic study revealed that AE-induced apoptosis was associated with oxidative stress and oxidation of many redox-sensitive proteins. In this study, we aimed to further dissect the cell death-signaling pathways in AE-induced apoptosis. AE was found to cause redox imbalance and deplete the intracellular-reduced glutathione (GSH). Manipulation of the intracellular GSH with buthionine-L-sulfoximine (a GSH synthesis inhibitor) sensitized, and with glutathione monomethyl ester (a GSH donor) protected the AE-induced apoptosis, respectively. More importantly, AE treatment led to evident and sustained activation of c-Jun N-terminal kinase (JNK), an important stress-responsive mitogen-activated protein kinase (MAPK). Over-expression of antioxidant gene sod1 significantly reduced AE-induced JNK activation and cell death, suggesting that oxidative stress-mediated JNK is the effector molecule in AE-induced apoptosis. Such a notion was clearly supported by subsequent studies in which JNK activation was inhibited by JNK inhibitor, JNK small interfering RNA knockdown or over-expression of dominant-negative JNK. In addition, we provided evidence demonstrating the critical role of apoptosis signal-regulating kinase 1, a well-established MAPK kinase kinase, in AE-induced JNK activation and apoptotic cell death. Finally, we showed that dissociation of inactive JNK-Glutathione S-transferase pi (GST-pi) complex was also involved in JNK activation through GST-pi oxidation. Taken together, these results suggest that AE-induced apoptotic cell death is mediated via oxidative stress and sustained JNK activation.

  18. HnRNP-L mediates bladder cancer progression by inhibiting apoptotic signaling and enhancing MAPK signaling pathways.

    PubMed

    Lv, Daojun; Wu, Huayan; Xing, Rongwei; Shu, Fangpeng; Lei, Bin; Lei, Chengyong; Zhou, Xumin; Wan, Bo; Yang, Yu; Zhong, Liren; Mao, Xiangming; Zou, Yaguang

    2017-01-11

    Heterogeneous nuclear ribonucleoprotein L (hnRNP-L) is a promoter of various kinds of cancers, but its actions in bladder cancer (BC) are unclear. In this study, we investigated the function and the underlying mechanism of hnRNP-L in bladder carcinogenesis. Our results demonstrated that enhanced hnRNP-L expression in BC tissues was associated with poor overall survival of BC patients. Depletion of hnRNP-L significantly suppressed cell proliferation in vitro and inhibited xenograft tumor growth in vivo. Furthermore, downregulation of hnRNP-L resulted in G1-phase cell cycle arrest and enhanced apoptosis accompanied by inhibition of EMT and cell migration. All these cellular changes were reversed by ectopic expression of hnRNP-L. Deletion of hnRNP-L resulted in decreased expression of Bcl-2, enhanced expression of caspases-3, -6 and -9 and inhibition of the MAPK signaling pathway. These findings demonstrate that hnRNP-L contributes to poor prognosis and tumor progression of BC by inhibiting the intrinsic apoptotic signaling and enhancing MAPK signaling pathways.

  19. SCAR/WAVE-mediated processing of engulfed apoptotic corpses is essential for effective macrophage migration in Drosophila

    PubMed Central

    Evans, I R; Ghai, P A; Urbančič, V; Tan, K-L; Wood, W

    2013-01-01

    In vitro studies have shown that SCAR/WAVE activates the Arp2/3 complex to generate actin filaments, which in many cell types are organised into lamellipodia that are thought to have an important role in cell migration. Here we demonstrate that SCAR is utilised by Drosophila macrophages to drive their developmental and inflammatory migrations and that it is regulated via the Hem/Kette/Nap1-containing SCAR/WAVE complex. SCAR is also important in protecting against bacterial pathogens and in wound repair as SCAR mutant embryos succumb more readily to both sterile and infected wounds. However, in addition to driving the formation of lamellipodia in macrophages, SCAR is required cell autonomously for the correct processing of phagocytosed apoptotic corpses by these professional phagocytes. Removal of this phagocytic burden by preventing apoptosis rescues macrophage lamellipodia formation and partially restores motility. Our results show that efficient processing of phagosomes is critical for effective macrophage migration in vivo. These findings have important implications for the resolution of macrophages from chronic wounds and the behaviour of those associated with tumours, because phagocytosis of debris may serve to prolong the presence of these cells at these sites of pathology. PMID:23328632

  20. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    PubMed

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.

  1. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    PubMed Central

    Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  2. Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells

    PubMed Central

    Ke, Sunkui; Zhou, Tong; Yang, Peiyan; Wang, Yange; Zhang, Peng; Chen, Keman; Ren, Lei; Ye, Shefang

    2017-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its agonistic receptors have been identified as highly promising antitumor agents preferentially eliminating cancer cells with minimal damage, the emergence of TRAIL resistance in most cancers may contribute to therapeutic failure. Thus, there is an urgent need for new approaches to overcome TRAIL resistance. Gold nanoparticles (AuNPs) are one of the most promising nanomaterials that show immense antitumor potential via targeting various cellular and molecular processes; however, the effects of AuNPs on TRAIL sensitivity in cancer cells remain unclear. In this study, we found that AuNPs combined with TRAIL exhibited a greater potency in promoting apoptosis in non-small-cell lung cancer (NSCLC) cells compared with TRAIL alone, suggesting that AuNPs sensitize cancer cells to TRAIL. Further experiments demonstrated that the combination of TRAIL and AuNPs was more effective in causing excessive mitochondrial fragmentation in cancer cells accompanied by a dramatic increase in mitochondrial recruitment of dynamin-related protein 1 (Drp1), mitochondrial dysfunctions, and enhancement of autophagy induction. Small interfering RNA (siRNA) silencing of Drp1 or inhibition of autophagy could effectively alleviate apoptosis in cells exposed to TRAIL combined with AuNPs. In vivo studies revealed that AuNPs augmented TRAIL sensitivity in tumor-bearing mice. Our data indicated that AuNPs potentiate apoptotic response to TRAIL in NSCLC cells through Drp1-dependent mitochondrial fission, and TRAIL combined with AuNPs can be a potential chemotherapeutic strategy for the treatment of NSCLC.

  3. Antiapoptotic and Antioxidant Properties of Orthosiphon stamineus Benth (Cat's Whiskers): Intervention in the Bcl-2-Mediated Apoptotic Pathway

    PubMed Central

    Abdelwahab, Siddig Ibrahim; Mohan, Syam; Mohamed Elhassan, Manal; Al-Mekhlafi, Nabil; Mariod, Abdelbasit Adam; Abdul, Ahmad Bustamam; Abdulla, Mahmood Ameen; Alkharfy, Khalid M.

    2011-01-01

    Antiapoptotic and antioxidant activities of aqueous-methanolic extract (CAME) of Orthosiphonstamineus Benth(OS), and its hexane (HF), chloroform (CF), n-butanol (NBF), ethyl acetate (EAF) and water (WF) fractions were investigated. Antioxidant properties were evaluated using the assays of Folin-Ciocalteu, aluminiumtrichloride, β-carotene bleaching and DPPH. The role of OS against hydrogen peroxide induced apoptosis on MDA-M231 epithelial cells was examined using MTT assay, phase contrast microscope, colorimetric assay of caspase-3, western blot and quantitative real-time PCR. Results showed that EAF showed the highest total phenolic content followed by CAME, NBF, WF, CF and HF, respectively. Flavonoid content was in the order of the CF > EAF > HF > CAME > NBF > WF. The IC50 values on DPPH assay for different extract/fractions were 126.2 ± 23, 31.25 ± 1.2, 15.25 ± 2.3, 13.56 ± 1.9, 23.0 ± 3.2, and 16.66 ± 1.5 μg/ml for HF, CF, EAF, NBF, WF and CAME, respectively. OSreduced the oxidation of β-carotene by hydroperoxides. Cell death was dose-dependently inhibited by pretreatment with OS. Caspase-3 and distinct morphological features suggest the anti-apoptotic activities of OS. This plant not only increased the expression of Bcl-2, but also decreased Bax expression, and ultimately reduced H2O2-induced apoptosis. The current results showed that phenolics may provide health and nutritional benefits. PMID:21234328

  4. Charge Profile Analysis Reveals That Activation of Pro-apoptotic Regulators Bax and Bak Relies on Charge Transfer Mediated Allosteric Regulation

    PubMed Central

    Ionescu, Crina-Maria; Svobodová Vařeková, Radka; Prehn, Jochen H. M.; Huber, Heinrich J.; Koča, Jaroslav

    2012-01-01

    The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure. PMID:22719244

  5. Chromatin collapse during caspase-dependent apoptotic cell death requires DNA fragmentation factor, 40-kDa subunit-/caspase-activated deoxyribonuclease-mediated 3'-OH single-strand DNA breaks.

    PubMed

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X; Yuste, Victor J

    2013-03-29

    Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD(-/-) cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3'-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3'-OH ends in single-strand rather than double-strand DNA nicks/breaks.

  6. Nitric oxide mediates coral bleaching through an apoptotic-like cell death pathway: evidence from a model sea anemone-dinoflagellate symbiosis.

    PubMed

    Hawkins, Thomas D; Bradley, Benjamin J; Davy, Simon K

    2013-12-01

    Coral bleaching (involving the loss of symbiotic algae from the cnidarian host) is a major threat to coral reefs and appears to be mediated at the cellular level by nitric oxide (NO). In this study, we examined the specific role of NO in bleaching using the sea anemone Aiptasia pulchella, a model system for the study of corals. Exposure of A. pulchella to high-temperature shock (26-33°C over <1 h) or an NO donor (S-nitrosoglutathione) resulted in significant increases in host caspase-like enzyme activity. These responses were reflected in the intensities of bleaching, which were significantly higher in heat- or NO-treated specimens than in controls maintained in seawater at 26°C. Notably, the inhibition of caspase-like activity prevented bleaching even in the presence of an NO donor or at elevated temperature. The additional use of an NO scavenger controlled for effects mediated by agents other than NO. We also exposed A. pulchella to a more ecologically relevant treatment (an increase from 26 to 33°C over 6-7 d). Again, host NO synthesis correlated with the activation of caspase-like enzyme activity. Therefore, we conclude that NO's involvement in cnidarian bleaching arises through the regulation of host apoptotic pathways.

  7. ERK-mediated activation of Fas apoptotic inhibitory molecule 2 (Faim2) prevents apoptosis of 661W cells in a model of detachment-induced photoreceptor cell death.

    PubMed

    Besirli, Cagri G; Zheng, Qiong-Duon; Reed, David M; Zacks, David N

    2012-01-01

    In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death.

  8. Mangiferin Attenuates Diabetic Nephropathy by Inhibiting Oxidative Stress Mediated Signaling Cascade, TNFα Related and Mitochondrial Dependent Apoptotic Pathways in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

    2014-01-01

    Oxidative stress plays a crucial role in the progression of diabetic nephropathy in hyperglycemic conditions. It has already been reported that mangiferin, a natural C-glucosyl xanthone and polyhydroxy polyphenol compound protects kidneys from diabetic nephropathy. However, little is known about the mechanism of its beneficial action in this pathophysiology. The present study, therefore, examines the detailed mechanism of the beneficial action of mangiferin on STZ-induced diabetic nephropathy in Wister rats as the working model. A significant increase in plasma glucose level, kidney to body weight ratio, glomerular hypertrophy and hydropic changes as well as enhanced nephrotoxicity related markers (BUN, plasma creatinine, uric acid and urinary albumin) were observed in the experimental animals. Furthermore, increased oxidative stress related parameters, increased ROS production and decreased the intracellular antioxidant defenses were detected in the kidney. Studies on the oxidative stress mediated signaling cascades in diabetic nephropathy demonstrated that PKC isoforms (PKCα, PKCβ and PKCε), MAPKs (p38, JNK and ERK1/2), transcription factor (NF-κB) and TGF-β1 pathways were involved in this pathophysiology. Besides, TNFα was released in this hyperglycemic condition, which in turn activated caspase 8, cleaved Bid to tBid and finally the mitochorndia-dependent apoptotic pathway. In addition, oxidative stress also disturbed the proapoptotic-antiapoptotic (Bax and Bcl-2) balance and activated mitochorndia-dependent apoptosis via caspase 9, caspase 3 and PARP cleavage. Mangiferin treatment, post to hyperglycemia, successfully inhibited all of these changes and protected the cells from apoptotic death. PMID:25233093

  9. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    SciTech Connect

    Ji Lili; Chen Ying; Liu Tianyu; Wang Zhengtao

    2008-09-15

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 {mu}M)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 {mu}M clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 {mu}M) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway.

  10. Crotonaldehyde induces heat shock protein 72 expression that mediates anti-apoptotic effects in human endothelial cells.

    PubMed

    Ryu, Dong Sun; Yang, Hana; Lee, Seung Eun; Park, Cheung-Seog; Jin, Young-Ho; Park, Yong Seek

    2013-11-25

    Crotonaldehyde is a highly reactive aldehyde and a common environmental pollutant. It occurs in cigarette smoke and automobile exhaust, and is also endogenously generated by lipid peroxidation. Reactive aldehydes, such as crotonaldehyde, are considered to be important mediators of cell damage. Since endothelial apoptosis is considered to be the first step in the pathogenesis of cardiovascular disease, there have been many efforts to protect endothelial cell from oxidative stress. Heat shock protein 72 (HSP72) is a representative stress-inducible HSP70 family protein, and its synthesis is increased in response to multiple stressors. In the present study, we investigated the effect of crotonaldehyde on the up-regulation of HSP72 in human umbilical vein endothelial cells (HUVECs). Crotonaldehyde treatment caused nuclear accumulation of the heat shock transcription factor 1 (HSF1), leading to the induction of HSP72. Inhibition of the c-Jun N-terminal kinases (JNK) signaling pathways, reduction of intracellular calcium level and blocking of reactive oxygen species (ROS) generation resulted in significant blockage of crotonaldehyde-mediated HSP72 induction. In addition, HSP72 silencing by siRNA or calcium chelating by BAPTA/AM resulted in an obvious increase in the rate of apoptosis in crotonaldehyde-stimulated HUVECs. In summary, our data demonstrated that crotonaldehyde-induced HSP72 expression in HUVECs is mediated by the JNK-HSF1 pathway, and involves calcium ions and ROS, which is an adaptive response to oxidative stress caused by crotonaldehyde.

  11. Regulation of anti-apoptotic signaling by Kruppel-like factors 4 and 5 mediates lapatinib resistance in breast cancer

    PubMed Central

    Farrugia, M K; Sharma, S B; Lin, C-C; McLaughlin, S L; Vanderbilt, D B; Ammer, A G; Salkeni, M A; Stoilov, P; Agazie, Y M; Creighton, C J; Ruppert, J M

    2015-01-01

    The Kruppel-like transcription factors (KLFs) 4 and 5 (KLF4/5) are coexpressed in mouse embryonic stem cells, where they function redundantly to maintain pluripotency. In mammary carcinoma, KLF4/5 can each impact the malignant phenotype, but potential linkages to drug resistance remain unclear. In primary human breast cancers, we observed a positive correlation between KLF4/5 transcript abundance, particularly in the human epidermal growth factor receptor 2 (HER2)-enriched subtype. Furthermore, KLF4/5 protein was rapidly upregulated in human breast cancer cells following treatment with the HER2/epidermal growth factor receptor inhibitor, lapatinib. In addition, we observed a positive correlation between these factors in the primary tumors of genetically engineered mouse models (GEMMs). In particular, the levels of both factors were enriched in the basal-like tumors of the C3(1) TAg (SV40 large T antigen transgenic mice under control of the C3(1)/prostatein promoter) GEMM. Using tumor cells derived from this model as well as human breast cancer cells, suppression of KLF4 and/or KLF5 sensitized HER2-overexpressing cells to lapatinib. Indicating cooperativity, greater effects were observed when both genes were depleted. KLF4/5-deficient cells had reduced basal mRNA and protein levels of the anti-apoptotic factors myeloid cell leukemia 1 (MCL1) and B-cell lymphoma-extra large (BCL-XL). Moreover, MCL1 was upregulated by lapatinib in a KLF4/5-dependent manner, and enforced expression of MCL1 in KLF4/5-deficient cells restored drug resistance. In addition, combined suppression of KLF4/5 in cultured tumor cells additively inhibited anchorage-independent growth, resistance to anoikis and tumor formation in immunocompromised mice. Consistent with their cooperative role in drug resistance and other malignant properties, KLF4/5 levels selectively stratified human HER2-enriched breast cancer by distant metastasis-free survival. These results identify KLF4 and KLF5 as

  12. Exploiting Novel Calcium-Mediated Apoptotic Processes for the Treatment of Human Breast Cancers with Elevated Nqo1 Levels

    DTIC Science & Technology

    2008-03-01

    lap exposure We had previously demonstrated that the NQO1-mediated metabolism of β-lap caused ROS a ). We joining is essential for cellular...To confirm that DNA-PK was essential in resistance to β-lap-induced cell death, MCF-7 We previously showed that β-lap-induced cell death...37(5-7), 203-218. o Bentle, M.S., Dong, Y., Reinicke, K.E., Bey, E.A., and Boothman, D.A. Non- Homologous End Joining is Essential for Cellular

  13. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells.

    PubMed

    Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A; Bugalho, Maria João; Silva, Ana Luísa

    2017-01-01

    Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas.

  14. Hyperthermia-enhanced TRAIL- and mapatumumab-induced apoptotic death is mediated through mitochondria in human colon cancer cells.

    PubMed

    Song, Xinxin; Kim, Han-Cheon; Kim, Seog-Young; Basse, Per; Park, Bae-Hang; Lee, Byeong-Chel; Lee, Yong J

    2012-05-01

    Colorectal cancer is the third leading cause of cancer-related mortality in the world; death usually results from uncontrolled metastatic disease. Previously, we developed a novel strategy of TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) in combination with hyperthermia to treat hepatic colorectal metastases. However, previous studies suggest a potential hepatocyte cytotoxicity with TRAIL. Unlike TRAIL, anti-human TRAIL receptor antibody induces apoptosis without hepatocyte toxicity. In this study, we evaluated the anti-tumor efficacy of humanized anti-death receptor 4 (DR4) antibody mapatumumab (Mapa) by comparing it with TRAIL in combination with hyperthermia. TRAIL, which binds to both DR4 and death receptor 5 (DR5), was approximately tenfold more effective than Mapa in inducing apoptosis. However, hyperthermia enhances apoptosis induced by either agent. We observed that the synergistic effect was mediated through elevation of reactive oxygen species, c-Jun N-terminal kinase activation, Bax oligomerization, and translocalization to the mitochondria, loss of mitochondrial membrane potential, release of cytochrome c to cytosol, activation of caspases, and increase in poly(ADP-ribose) polymerase cleavage. We believe that the successful outcome of this study will support the application of Mapa in combination with hyperthermia to colorectal hepatic metastases.

  15. IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells.

    PubMed

    Gao, J; Senthil, M; Ren, B; Yan, J; Xing, Q; Yu, J; Zhang, L; Yim, J H

    2010-04-01

    Interferon regulatory factor-1 (IRF-1) is a transcription factor that acts as a tumor suppressor and causes apoptosis in cancer cells. We evaluated IRF-1-induced apoptosis in gastric cancer cell lines. We established stable clones in AGS cells that have a tetracycline-inducible IRF-1 expression system. We used these clones and recombinant adenovirus expressing IRF-1 to explore the mechanism of IRF-1-induced apoptosis in gastric cancer. Expression of IRF-1 causes apoptosis in gastric cancer cell lines as shown by phosphatidylserine exposure and cleavage of caspase-8, caspase-3, and Bid with the mitochondrial release of cytochrome c. However, inhibition of caspase-8 and Bid did not inhibit apoptosis and did not decrease cleaved caspase-9 or mitochondrial release of cytochrome c. We then show that IRF-1 upregulates PUMA (p53 upregulated modulator of apoptosis), which is known to activate apoptosis by the intrinsic pathway; this can be p53-independent. IRF-1 binds to distinct sites in the promoter of PUMA and activates PUMA transcription. Moreover, molecular markers of mitochondrial apoptosis are eliminated in PUMA knockout and knockdown cells and phosphatidylserine exposure is decreased dramatically. Finally, we show that IFN-gamma induces IRF-1-mediated upregulation of PUMA in cancer cells. We conclude that IRF-1 can induce apoptosis by the intrinsic pathway independent of the extrinsic pathway by upregulation of PUMA.

  16. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells

    PubMed Central

    Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A.; Bugalho, Maria João

    2017-01-01

    Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas. PMID:28234980

  17. Immunosuppressive effects of apoptotic cells

    NASA Astrophysics Data System (ADS)

    Voll, Reinhard E.; Herrmann, Martin; Roth, Edith A.; Stach, Christian; Kalden, Joachim R.; Girkontaite, Irute

    1997-11-01

    Apoptotic cell death is important in the development and homeostasis of multicellular organisms and is a highly controlled means of eliminating dangerous, damaged or unnecessary cells without causing an inflammatory response or tissue damage,. We now show that the presence of apoptotic cells during monocyte activation increases their secretion of the anti-inflammatory and immunoregulatory cytokine interleukin 10 (IL-10) and decreases secretion of the proinflammatory cytokines tumour necrosis factor-α (TNF-α), IL-1 and IL-12. This may inhibit inflammation and contribute to impaired cell-mediated immunity in conditions associated with increased apoptosis, such as viral infections, pregnancy, cancer and exposure to radiation.

  18. Fatty Acid Synthesis and Control of Caspase 2 in Prostate Cancer

    DTIC Science & Technology

    2013-05-01

    July 2011- 30 June 2012 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fatty Acid Synthesis and control of Caspase 2 in Prostate Cancer 5b. GRANT...Introduction…………………………………………………………….………..….. 4 Body………………………………………………………………………………….. 4 -6 Key Research Accomplishments...combination  with  inhibitors  of  NADPH  production   ( DHEA ),  fatty  acid  synthesis,  (C75,  C93,  cerulenin)  and  CaMKII

  19. Chloroplastic NADPH oxidase-like activity-mediated perpetual hydrogen peroxide generation in the chloroplast induces apoptotic-like death of Brassica napus leaf protoplasts.

    PubMed

    Tewari, Rajesh Kumar; Watanabe, Daisuke; Watanabe, Masami

    2012-01-01

    Despite extensive research over the past years, regeneration from protoplasts has been observed in only a limited number of plant species. Protoplasts undergo complex metabolic modification during their isolation. The isolation of protoplasts induces reactive oxygen species (ROS) generation in Brassica napus leaf protoplasts. The present study was conducted to provide new insight into the mechanism of ROS generation in B. napus leaf protoplasts. In vivo localization of H(2)O(2) and enzymes involved in H(2)O(2) generation and detoxification, molecular antioxidant-ascorbate and its redox state and lipid peroxidation were investigated in the leaf and isolated protoplasts. Incubating leaf strips in the macerating enzyme (ME) for different duration (3, 6, and 12 h) induced accumulation of H(2)O(2) and malondialdehyde (lipid peroxidation, an index of membrane damage) in protoplasts. The level of H(2)O(2) was highest just after protoplast isolation and subsequently decreased during culture. Superoxide generating NADPH oxidase (NOX)-like activity was enhanced, whereas superoxide dismutase (SOD) and ascorbate peroxidase (APX) decreased in the protoplasts compared to leaves. Diaminobenzidine peroxidase (DAB-POD) activity was also lower in the protoplasts compared to leaves. Total ascorbate content, ascorbate to dehydroascorbate ratio (redox state), were enhanced in the protoplasts compared to leaves. Higher activity of NOX-like enzyme and weakening in the activity of antioxidant enzymes (SOD, APX, and DAB-POD) in protoplasts resulted in excessive accumulation of H(2)O(2) in chloroplasts of protoplasts. Chloroplastic NADPH oxidase-like activity mediated perpetual H(2)O(2) generation probably induced apoptotic-like cell death of B. napus leaf protoplasts as indicated by parallel DNA laddering and decreased mitochondrial membrane potential.

  20. Apoptotic effects of Physalis minima L. chloroform extract in human breast carcinoma T-47D cells mediated by c-myc-, p53-, and caspase-3-dependent pathways.

    PubMed

    Ooi, Kheng Leong; Tengku Muhammad, Tengku Sifzizul; Lim, Chui Hun; Sulaiman, Shaida Fariza

    2010-03-01

    The chloroform extract of Physalis minima produced a significant growth inhibition against human T-47D breast carcinoma cells as compared with other extracts with an EC(50) value of 3.8 microg/mL. An analysis of cell death mechanisms indicated that the extract elicited an apoptotic cell death. mRNA expression analysis revealed the coregulation of apoptotic genes, that is, c-myc , p53, and caspase-3. The c-myc was significantly induced by the chloroform extract at the earlier phase of treatment, followed by p53 and caspase-3. Biochemical assay and ultrastructural observation displayed typical apoptotic features in the treated cells, including DNA fragmentation, blebbing and convolution of cell membrane, clumping and margination of chromatin, and production of membrane-bound apoptotic bodies. The presence of different stages of apoptotic cell death and phosphatidylserine externalization were further reconfirmed by annexin V and propidium iodide staining. Thus, the results from this study strongly suggest that the chloroform extract of P. minima induced apoptotic cell death via p53-, caspase-3-, and c-myc-dependent pathways.

  1. Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells

    PubMed Central

    Reyes-Zurita, Fernando J.; Rufino-Palomares, Eva E.; García-Salguero, Leticia; Peragón, Juan; Medina, Pedro P.; Parra, Andrés; Cascante, Marta; Lupiáñez, José A.

    2016-01-01

    Maslinic acid (MA) is a natural triterpene present in high concentrations in the waxy skin of olives. We have previously reported that MA induces apoptotic cell death via the mitochondrial apoptotic pathway in HT29 colon cancer cells. Here, we show that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner. MA triggered a series of effects associated with apoptosis, including the cleavage of caspases -8 and -3, and increased the levels of t-Bid within a few hours of its addition to the culture medium. MA had no effect on the expression of the Bax protein, release of cytochrome-c or on the mitochondrial membrane potential. This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line. Our results suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 colon-cancer cells, and that in Caco-2 cells MA seems to work independently of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin. PMID:26751572

  2. An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways

    PubMed Central

    Ditzel, Mark; Meier, Pascal

    2017-01-01

    Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc’s apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells. PMID:28207763

  3. ERK mediates anti-apoptotic effect through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to DNA damage in normal human embryonic fibroblast (HEF) cells.

    PubMed

    Heo, Jee-In; Oh, Soo-Jin; Kho, Yoon-Jung; Kim, Jeong-Hyeon; Kang, Hong-Joon; Park, Seong-Hoon; Kim, Hyun-Seok; Shin, Jong-Yeon; Kim, Min-Ju; Kim, Sung Chan; Park, Jae-Bong; Kim, Jaebong; Lee, Jae-Yong

    2011-04-01

    Since anti-apoptotic effect of ERK has not been elucidated clearly in DNA-damage-induced cell death, the role of ERK was examined in normal HEF cells treated with mild DNA damage using etoposide or camptothecin. ERK was activated by DNA damage in HEF cells. PD98059 increased apoptosis and reduced DNA-damage-induced p21Waf1/Cip1/Sdi level. Depletion of p21Waf1/Cip1/Sdi induced cell death and PD98059 induced additional cell death. DNA-damage-induced increase in cytoplasmic localization and phosphorylation of threonine residues of p21Waf1/Cip1/Sdi was reversed by PD98059. Thus, the results suggest that ERK pathway mediates anti-apoptotic effects through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to mild DNA damage.

  4. Glaucarubinone sensitizes KB cells to paclitaxel by inhibiting ABC transporters via ROS-dependent and p53-mediated activation of apoptotic signaling pathways

    PubMed Central

    Karthikeyan, Subburayan; Hoti, Sugeerappa Laxmanappa; Nazeer, Yasin; Hegde, Harsha Vasudev

    2016-01-01

    Multidrug resistance (MDR) is considered to be the major contributor to failure of chemotherapy in oral squamous cell carcinoma (SCC). This study was aimed to explore the effects and mechanisms of glaucarubinone (GLU), one of the major quassinoids from Simarouba glauca DC, in potentiating cytotoxicity of paclitaxel (PTX), an anticancer drug in KB cells. Our data showed that the administration of GLU pre-treatment significantly enhanced PTX anti-proliferative effect in ABCB1 over-expressing KB cells. The Rh 123 drug efflux studies revealed that there was a significant transport function inhibition by GLU-PTX treatment. Interestingly, it was also found that this enhanced anticancer efficacy of GLU was associated with PTX-induced cell arrest in the G2/M phase of cell cycle. Further, the combined treatment of GLU-PTX had significant decrease in the expression levels of P-gp, MRPs, and BCRP in resistant KB cells at both mRNA and protein levels. Furthermore, the combination treatments showed significant reactive oxygen species (ROS) production, chromatin condensation and reduced mitochondrial membrane potential in resistant KB cells. The results from DNA fragmentation analysis also demonstrated the GLU induced apoptosis in KB cells and its synergy with PTX. Importantly, GLU and/or PTX triggered apoptosis through the activation of pro-apoptotic proteins such as p53, Bax, and caspase-9. Our findings demonstrated for the first time that GLU causes cell death in human oral cancer cells via the ROS-dependent suppression of MDR transporters and p53-mediated activation of the intrinsic mitochondrial pathway of apoptosis. Additionally, the present study also focussed on investigation of the protective effect of GLU and combination drugs in human normal blood lymphocytes. Normal blood lymphocytes assay indicated that GLU is able to induce selective toxicity in cancer cells and in silico molecular docking studies support the choice of GLU as ABC inhibitor to enhance PTX efficacy

  5. Human chorionic gonadotropin suppresses human breast cancer cell growth directly via p53-mediated mitochondrial apoptotic pathway and indirectly via ovarian steroid secretion.

    PubMed

    Yuri, Takashi; Kinoshita, Yuichi; Emoto, Yuko; Yoshizawa, Katsuhiko; Tsubura, Airo

    2014-03-01

    The tumor-suppressive effects of human chorionic gonadotropin (hCG) against human breast cancer cells were examined. In cell viability assays, hCG inhibited the growth of three human breast cancer cell lines (estrogen receptor (ER)-positive KPL-1 and MCF-7, and ER-negative MKL-F cells), and the growth inhibition activity of hCG was most pronounced against KPL-1 cells (luteinizing hormone/chorionic gonadotropin receptor (LHCGR)-positive and luminal-A subtype). In hCG-treated KPL-1 cells, immunoblotting analysis revealed the expression of tumor suppressor protein p53 peaking at 12 h following treatment, followed by cleavage of caspase-9 and caspase-3 at 24 h and 48 h, respectively. KPL-1-transplanted athymic mice were divided into 3 groups: a sham-treated group that received an inoculation of KPL-1 cells at 6 weeks of age followed by daily intraperitoneal (i.p.) injection of saline; an in vitro hCG-treated KPL-1 group that received an inoculation of KPL-1 cells pre-treated with 100 IU/ml hCG in vitro for 48 h at 6 weeks of age, followed by daily i.p. injection of saline; and an in vivo hCG-treated group that received an KPL-1 cell inoculation at 6 weeks of age, followed by daily i.p. injection of 100 IU hCG. The daily injections of saline or hCG continued until the end of the experiment when mice reached 11 weeks of age. KPL-1 tumor growth was retarded in in vitro and in vivo hCG-treated mice compared to sham-treated controls, and the final tumor volume and tumor weight tended to be suppressed in the in vitro hCG-treated group and were significantly suppressed in the in vivo hCG-treated group. In vivo 100-IU hCG injections for 5 weeks elevated serum estradiol levels (35.7 vs. 23.5 pg/ml); thus, the mechanisms of hCG action may be directly coordinated via the p53-mediated mitochondrial apoptotic pathway and indirectly through ovarian steroid secretion that elevates estrogen levels. It is thus concluded that hCG may be an attractive agent for treating human breast

  6. Sex-specific alterations in glucose homeostasis and metabolic parameters during ageing of caspase-2-deficient mice

    PubMed Central

    Wilson, C H; Nikolic, A; Kentish, S J; Shalini, S; Hatzinikolas, G; Page, A J; Dorstyn, L; Kumar, S

    2016-01-01

    Gender-specific differences are commonly found in metabolic pathways and in response to nutritional manipulation. Previously, we identified a role for caspase-2 in age-related glucose homeostasis and lipid metabolism using male caspase-2-deficient (Casp2−/−) mice. Here we show that the resistance to age-induced glucose tolerance does not occur in female Casp2−/− mice and it appears to be independent of insulin sensitivity in males. Using fasting (18 h) as a means to further investigate the role of caspase-2 in energy and lipid metabolism, we identified sex-specific differences in the fasting response and lipid mobilization. In aged (18–22 months) male Casp2−/− mice, a significant decrease in fasting liver mass, but not total body weight, was observed while in females, total body weight, but not liver mass, was reduced when compared with wild-type (WT) animals. Fasting-induced lipolysis of adipose tissue was enhanced in male Casp2−/− mice as indicated by a significant reduction in white adipocyte cell size, and increased serum-free fatty acids. In females, white adipocyte cell size was significantly smaller in both fed and fasted Casp2−/− mice. No difference in fasting-induced hepatosteatosis was observed in the absence of caspase-2. Further analysis of white adipose tissue (WAT) indicated that female Casp2−/− mice may have enhanced fatty acid recycling and metabolism with expression of genes involved in glyceroneogenesis and fatty acid oxidation increased. Loss of Casp2 also increased fasting-induced autophagy in both male and female liver and in female skeletal muscle. Our observations suggest that caspase-2 can regulate glucose homeostasis and lipid metabolism in a tissue and sex-specific manner. PMID:27551503

  7. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    SciTech Connect

    Chang, Chun-Yu; Shen, Chao-Yu; Kang, Chao-Kai; Sher, Yuh-Pyng; Sheu, Wayne H.-H.; Chang, Chia-Che; Lee, Tsung-Han

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation.

  8. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots.

    PubMed

    Singh, Braj R; Singh, Brahma N; Khan, W; Singh, H B; Naqvi, A H

    2012-08-01

    Cadmium sulfide (CdS) quantum dots (QDs) have raised great attention because of their superior optical properties and wide utilization in biological and biomedical studies. However, little is known about the cell death mechanisms of CdS QDs in human cancer cells. This study was designed to investigate the possible mechanisms of apoptosis induced by biosurfactant stabilized CdS QDs (denoted as "bsCdS QDs") in human prostate cancer LNCaP cells. It was also noteworthy that apoptosis correlated with reactive oxygen species (ROS) production, mitochondrial damage, oxidative stress and chromatin condensation in a dose- and time-dependent manner. Results also showed involvement of caspases, Bcl-2 family proteins, heat shock protein 70, and a cell-cycle checkpoint protein p53 in apoptosis induction by bsCdS QDs in LNCaP cells. Moreover, pro-apoptotic protein Bax was upregulated and the anti-apoptotic proteins, survivin and NF-κB were downregulated in bsCdS QDs exposed cells. Protection of N-acetyl cysteine (NAC) against ROS clearly suggested the implication of ROS in hyper-activation of apoptosis and cell death. It is encouraging to conclude that biologically stabilized CdS QDs bear the potential of its applications in biomedicine, such as tumor therapy specifically by inducing caspase-dependent apoptotic cell death of human prostate cancer LNCaP cells.

  9. The tumor-modulatory effects of Caspase-2 and Pidd1 do not require the scaffold protein Raidd

    PubMed Central

    Peintner, L; Dorstyn, L; Kumar, S; Aneichyk, T; Villunger, A; Manzl, C

    2015-01-01

    The receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD/CRADD) functions as a dual adaptor and is a constituent of different multi-protein complexes implicated in the regulation of inflammation and cell death. Within the PIDDosome complex, RAIDD connects the cell death-related protease, Caspase-2, with the p53-induced protein with a death domain 1 (PIDD1). As such, RAIDD has been implicated in DNA-damage-induced apoptosis as well as in tumorigenesis. As loss of Caspase-2 leads to an acceleration of tumor onset in the Eμ-Myc mouse lymphoma model, whereas loss of Pidd1 actually delays onset of this disease, we set out to interrogate the role of Raidd in cancer in more detail. Our data obtained analyzing Eμ-Myc/Raidd−/− mice indicate that Raidd is unable to protect from c-Myc-driven lymphomagenesis. Similarly, we failed to observe a modulatory effect of Raidd deficiency on DNA-damage-driven cancer. The role of Caspase-2 as a tumor suppressor and that of Pidd1 as a tumor promoter can therefore be uncoupled from their ability to interact with the Raidd scaffold, pointing toward the existence of alternative signaling modules engaging these two proteins in this context. PMID:25857265

  10. Cytotoxic effects of Urtica dioica radix on human colon (HT29) and gastric (MKN45) cancer cells mediated through oxidative and apoptotic mechanisms.

    PubMed

    Ghasemi, S; Moradzadeh, M; Mousavi, S H; Sadeghnia, H R

    2016-10-15

    Defects in the apoptotic pathways are responsible for both the colorectal cancer pathogenesis and resistance to therapy. In this study, we examined the level of cellular oxidants, cytotoxicity and apoptosis induced by hydroalcoholic extract of U. dioica radix (0-2000 µg/mL) and oxaliplatin (0-1000 µg/mL, as positive control) in human gastric (MKN45) and colon (HT29) cancer, as well as normal human foreskin fibroblast (HFF) cells. Exposure to U. dioica or oxaliplatin showed a concentration dependent suppression in cell survival with IC50 values of 24.7, 249.9 and 857.5 µg/mL for HT29, MKN45 and HFF cells after 72 h treatment, respectively. ROS formation and lipid peroxidation were also concentration-dependently increased following treatment with U. dioica, similar to oxaliplatin. In addition, the number of apoptotic cells significantly increased concomitantly with concentration of U. dioica as compared with control cells, which is similar to oxaliplatin and serum-deprived cancer cells. In conclusion, the present study demonstrated that U. dioica inhibited proliferation of gastric and colorectal cancer cells while posing no significant toxic effect on normal cells. U. dioica not only increased levels of oxidants, but also induced concomitant increase of apoptosis. The precise signaling pathway by which U. dioica induce apoptosis needs further research.

  11. Astroglial U87 Cells Protect Neuronal SH-SY5Y Cells from Indirect Effect of Radiation by Reducing DNA Damage and Inhibiting Fas Mediated Apoptotic Pathway in Coculture System.

    PubMed

    Saeed, Yasmeen; Rehman, Abdul; Xie, Bingjie; Xu, Jin; Hong, Ma; Hong, Qing; Deng, Yulin

    2015-08-01

    Recent studies provide the evidence that indirect effects of radiation could lead to neuronal cells death but underlying mechanism is not completely understood. On the other hand astroglial cells are known to protect neuronal cells against stress conditions in vivo and invitro. Yet, the fate of neuronal cells and the neuroprotective effect of coculture system (with glial cells) in response to indirect radiation exposure remain rarely discussed. Here, we purpose that the indirect effect of radiation may induce DNA damage by cell cycle arrest and receptor mediated apoptotic cascade which lead to apoptotic death of neuronal SH-SY5Y cells. We also hypothesized that coculture (with glial U87) may relieved the neuronal SH-SY5Y cells from toxicity of indirect effects radiation by reducing DNA damage and expression of apoptotic proteins in vitro. In the present study irradiated cell conditioned medium (ICCM) was used as source of indirect effect of radiation. Neuronal SH-SY5Y cells were exposed to ICCM with and without coculture with (glial U87) in transwell coculture system respectively. Various endpoints such as, cell survival number assay, Annexin V/PI assay, cell cycle analysis by flow cytometer, mRNA level of Fas receptor by q RT-PCR, expression of key apoptotic proteins by western blot and estimation of neurotrophic factors by ELISA method were analyzed into neuronal SH-SY5Y cells with and without co culture after ICCM exposure respectively. We found that ICCM induced DNA damage in neuronal SH-SY5Y cells by significant increase in cell cycle arrest at S-phase (***P < 0.001) which was further supported by over expression of P53 protein (**P < 0.01). While coculture (with glial U87), significantly reduced the ICCM induced cell cycle arrest and expression of P53 ((###) P < 0.001) neuronal SH-SY5Y cells. Further investigation of the underlying apoptotic mechanism revealed that in coculture system; ICCM induced elevated level of FAS mRNA level was significantly reduced

  12. ER-Dependent Ca++-mediated Cytosolic ROS as an Effector for Induction of Mitochondrial Apoptotic and ATM-JNK Signal Pathways in Gallic Acid-treated Human Oral Cancer Cells.

    PubMed

    Lu, Yao-Cheng; Lin, Meng-Liang; Su, Hong-Lin; Chen, Shih-Shun

    2016-02-01

    Release of calcium (Ca(++)) from the endoplasmic reticulum (ER) has been proposed to be involved in induction of apoptosis by oxidative stress. Using inhibitor of ER Ca(++) release dantrolene and inhibitor of mitochondrial Ca(++) uptake Ru-360, we demonstrated that Ca(++) release from the ER was associated with generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential, and apoptosis of human oral cancer (OC) cells induced by gallic acid (GA). Small interfering RNA-mediated suppression of protein kinase RNA-like endoplasmic reticulum kinase inhibited tunicamycin-induced induction of 78 kDa glucose-regulated protein, C/EBP homologous protein, pro-caspase-12 cleavage, cytosolic Ca(++) increase and apoptosis, but did not attenuate the increase in cytosolic Ca(++) level and apoptosis induced by GA. Ataxia telangiectasia mutated (ATM)-mediated c-Jun N-terminal kinase (JNK) phosphorylation and apoptosis by GA was blocked by dantrolene. The specificity of ROS-mediated ATM-JNK activation was confirmed by treatment with N-acetylcysteine, a ROS scavenger. Blockade of ATM activation by specific inhibitor KU55933, short hairpin RNA, or kinase-dead ATM overexpression suppressed JNK phosphorylation but did not completely inhibit cytosolic ROS production, mitochondrial cytochrome c release, pro-caspase-3 cleavage, and apoptosis induced by GA. Taken together, these results indicate that GA induces OC cell apoptosis by inducing the activation of mitochondrial apoptotic and ATM-JNK signal pathways, likely through ER Ca(++)-mediated ROS production.

  13. Viral apoptotic mimicry.

    PubMed

    Amara, Ali; Mercer, Jason

    2015-08-01

    As opportunistic pathogens, viruses have evolved many elegant strategies to manipulate host cells for infectious entry and replication. Viral apoptotic mimicry, defined by the exposure of phosphatidylserine - a marker for apoptosis - on the pathogen surface, is emerging as a common theme used by enveloped viruses to promote infection. Focusing on the four best described examples (vaccinia virus, dengue virus, Ebola virus and pseudotyped lentivirus), we summarize our current understanding of apoptotic mimicry as a mechanism for virus entry, binding and immune evasion. We also describe recent examples of non-enveloped viruses that use this mimicry strategy, and discuss future directions and how viral apoptotic mimicry could be targeted therapeutically.

  14. Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arrestment, and death receptor mediated apoptotic pathway.

    PubMed

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2015-08-01

    In this study, the effects of carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) on human normal liver cell line L02 was compared with that of pristine multiwalled carbon nanotubes (p-MWCNTs). It was shown that compared with MWCNTs-COOH, p-MWCNTs induced apoptosis, reduced the level of intracellular antioxidant glutathione more significantly, and caused severer cell membrane damage as demonstrated by lactate dehydrogenase leakage. Cell cycles were arrested by both MWCNTs, while p-MWCNTs induced higher ratio of G0/G1 phase arrestment as compared with MWCNTs-COOH. Caspase-8 was also activated after both MWCNTs exposure, indicating extrinsic apoptotic pathway was involved in the apoptosis induced by MWCNTs exposure, more importantly, MWCNTs-COOH significantly reduced the activation of caspase-8 as compared with p-MWCNTs. All these results suggested that MWCNTs-COOH might be safer for in vivo application as compared with p-MWCNTs.

  15. Anticancer and apoptotic activities of oleanolic acid are mediated through cell cycle arrest and disruption of mitochondrial membrane potential in HepG2 human hepatocellular carcinoma cells

    PubMed Central

    ZHU, YUE-YONG; HUANG, HONG-YAN; WU, YIN-LIAN

    2015-01-01

    Hepatocellular carcinoma (HCC) is an aggressive form of cancer, with high rates of morbidity and mortality, a poor prognosis and limited therapeutic options. The objective of the present study was to demonstrate the anticancer activity of oleanolic acid in HepG2 human HCC cells. Cell viability was evaluated using an MTT assay, following administration of various doses of oleanolic acid. The effect of oleanolic acid on cell cycle phase distribution and mitochondrial membrane potential was evaluated using flow cytometry with propidium iodide and rhodamine-123 DNA-binding cationic fluorescent dyes. Fluorescence microscopy was employed to detect morphological changes in HepG2 cells following oleanolic acid treatment. The results revealed that oleanolic acid induced a dose-dependent, as well as time-dependent inhibition in the growth of HepG2 cancer cells. Following acridine orange and ethidium bromide staining, treatment with various doses (0, 5, 25 and 50 µM) of oleanolic acid induced typical morphological changes associated with apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and apoptotic body formation. Cell cycle analysis revealed that oleanolic acid induced cell cycle arrest in HepG2 cells at the sub-G1 (apoptotic) phase of the cell cycle, in a dose-dependent manner. Staining with Annexin V-fluorescein isothiocyanate and propidium iodide revealed that apoptosis occurred early in these cells. Oleanolic acid treatment also resulted in fragmentation of nuclear DNA in a dose-dependent manner, producing the typical features of DNA laddering on an agarose gel. The results also demonstrated that oleanolic acid treatment resulted in a potent loss of mitochondrial membrane potential, which also occurred in a dose-dependent manner. Therefore, oleanolic acid may be used as a therapeutic agent in the treatment of human HCC. PMID:26151733

  16. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine co-expressing pro-apoptotic caspase-3.

    PubMed

    Gartner, Tatiana; Romano, Marta; Suin, Vanessa; Kalai, Michaël; Korf, Hannelie; De Baetselier, Patrick; Huygen, Kris

    2008-03-10

    DNA vaccination is a potent means for inducing strong cell-mediated immune responses and protective immunity against viral, bacterial and parasite pathogens in rodents. In an attempt to increase cross-presentation through apoptosis, the DNA-encoding caspase-2 prodomain followed by wild-type or catalytically inactive mutated caspase-3 was inserted into a plasmid encoding the 32 kDa mycolyl transferase (Ag85A) from Mycobacterium tuberculosis. Transient transfection showed that the mutated caspase induced slow apoptosis, normal protein expression and NF-kappaB activation while wild-type caspase induced rapid apoptosis, lower protein expression and no NF-kappaB activation. Ag85A specific antibody production was increased by co-expressing the mutated and decreased by co-expressing the wild-type caspase. Vaccination with pro-apoptotic plasmids triggered more Ag85A specific IFN-gamma producing spleen cells, and more efficient IL-2 and IFN-gamma producing memory cells in spleen and lungs after M. tuberculosis challenge. Compared to DNA-encoding secreted Ag85A, vaccination with DNA co-expressing wild-type caspase increased protection after infection with M. tuberculosis, while vaccination with plasmid co-expressing mutated caspase was not protective, possibly due to the stimulation of IL-6, IL-10 and IL-17A production.

  17. Resveratrol Sensitizes Acute Myelogenous Leukemia Cells to Histone Deacetylase Inhibitors through Reactive Oxygen Species-Mediated Activation of the Extrinsic Apoptotic PathwayS⃞

    PubMed Central

    Yaseen, Alae; Chen, Shuang; Hock, Stefanie; Rosato, Roberto; Dent, Paul; Dai, Yun

    2012-01-01

    Histone deacetylase inhibitors (HDACIs) activate the prosurvival nuclear factor-κB (NF-κB) pathway by hyperacetylating RelA/p65, whereas the chemopreventive agent resveratrol inhibits NF-κB by activating the class III histone deacetylase Sirt1. Interactions between resveratrol and pan-HDACIs (vorinostat and panobinostat) were examined in human acute myelogenous leukemia (AML) cells. Pharmacologically achievable resveratrol concentrations (25–50 μM) synergistically potentiated HDACI lethality in AML cell lines and primary AML blasts. Resveratrol antagonized RelA acetylation and NF-κB activation in HDACI-treated cells. However, short hairpin RNA Sirt1 knockdown failed to modify HDACI sensitivity, which suggests that factors other than or in addition to Sirt1 activation contribute to resveratrol/HDACI interactions. These interactions were associated with death receptor 5 (DR5) up-regulation and caspase-8 activation, whereas cells expressing dominant-negative caspase-8 were substantially protected from resveratrol/HDACI treatment, which suggests a significant functional role for the extrinsic apoptotic pathway in lethality. Exposure to resveratrol with HDACI induced sustained reactive oxygen species (ROS) generation, which was accompanied by increased levels of DNA double-strand breaks, as reflected in γH2A.X and comet assays. The free radical scavenger Mn(III)tetrakis(4-benzoic acid)porphyrin chloride blocked ROS generation, DR5 up-regulation, caspase-8 activation, DNA damage, and apoptosis, which indicates a primary role for oxidative injury in lethality. Analyses of cell-cycle progression and 5-ethynyl-2′-deoxyuridine incorporation through flow cytometry revealed that resveratrol induced S-phase accumulation; this effect was abrogated by HDACI coadministration, which suggests that cells undergoing DNA synthesis may be particularly vulnerable to HDACI lethality. Collectively, these findings indicate that resveratrol interacts synergistically with HDACIs in

  18. ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer

    PubMed Central

    Zou, Peng; Zhang, Junru; Xia, Yiqun; Kanchana, Karvannan; Guo, Guilong; Chen, Wenbo; Huang, Yi; Wang, Zhe; Yang, Shulin; Liang, Guang

    2015-01-01

    Gastric cancer is one of the leading causes of cancer mortality in the world, and finding novel agents and strategies for the treatment of advanced gastric cancer is of urgent need. Curcumin is a well-known natural product with anti-cancer ability, but is limited by its poor chemical stability. In this study, an analog of curcumin with high chemical stability, WZ35, was designed and evaluated for its anti-cancer effects and underlying mechanisms against human gastric cancer. WZ35 showed much stronger anti-proliferative effects than curcumin, accompanied by dose-dependent induction of cell cycle arrest and apoptosis in gastric cancer cells. Mechanistically, our data showed that WZ35 induced reactive oxygen species (ROS) production, resulting in the activation of both JNK-mitochondrial and ER stress apoptotic pathways and eventually cell apoptosis in SGC-7901 cells. Blockage of ROS production totally reversed WZ35-induced JNK and ER stress activation as well as cancer cell apoptosis. In vivo, WZ35 showed a significant reduction in SGC-7901 xenograft tumor size in a dose-dependent manner. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human gastric cancer treatment. PMID:25714022

  19. Mediation of endogenous antioxidant enzymes and apoptotic signaling by resveratrol following muscle disuse in the gastrocnemius muscles of young and old rats.

    PubMed

    Jackson, Janna R; Ryan, Michael J; Hao, Yanlei; Alway, Stephen E

    2010-12-01

    Hindlimb suspension (HLS) elicits muscle atrophy, oxidative stress, and apoptosis in skeletal muscle. Increases in oxidative stress can have detrimental effects on muscle mass and function, and it can potentially lead to myonuclear apoptosis. Resveratrol is a naturally occurring polyphenol possessing both antioxidant and antiaging properties. To analyze the capacity of resveratrol to attenuate oxidative stress, apoptosis and muscle force loss were measured following 14 days of HLS. Young (6 mo) and old (34 mo) rats were administered either 12.5 mg·kg(-1)·day(-1) of trans-resveratrol, or 0.1% carboxymethylcellulose for 21 days, including 14 days of HLS. HLS induced a significant decrease in plantarflexor isometric force, but resveratrol blunted this loss in old animals. Resveratrol increased gastrocnemius catalase activity, MnSOD activity, and MnSOD protein content following HLS. Resveratrol reduced hydrogen peroxide and lipid peroxidation levels in muscles from old animals after HLS. Caspase 9 abundance was reduced and Bcl-2 was increased, but other apoptotic markers were not affected by resveratrol in the gastrocnemius muscle after HLS. The data indicate that resveratrol has a protective effect against oxidative stress and muscle force loss in old HLS animals; however, resveratrol was unable to attenuate apoptosis following HLS. These results suggest that resveratrol has the potential to be an effective therapeutic agent to treat muscle functional decrements via improving the redox status associated with disuse.

  20. Cytoprotective and anti-apoptotic effects of Satureja khuzestanica essential oil against busulfan-mediated sperm damage and seminiferous tubules destruction in adult male mice.

    PubMed

    Nasimi, P; Vahdati, A; Tabandeh, M R; Khatamsaz, S

    2016-02-01

    We studied the protective effect of Satureja khuzestanica essential oil (SKEO) against damage caused by busulfan on testis in male mice. The NMRI mice (n = 40) were assigned to four groups including: G1: control, G2: treated with busulfan for 4 days (3.2 mg kg(-1)), G3: receive busulfan (4 days, 3.2 mg kg(-1)) and SKEO (28 days, 225 mg kg(-1)) at the same time, G4: pre-treated with SKEO (7 days, 225 mg kg(-1)) and subsequently cotreated with busulfan (4 days, 3.2 mg kg(-1)) and SKEO (28 days, 225 mg kg(-1)). The histological changes of testis were analysed using H&E staining. Sperm parameters, cytotoxic and apoptotic factors were also studied by computer-aided sperm analyzer, MTT and TUNEL assays respectively. Our results showed that SKEO pre-administration significantly improved all parameters of epididymal spermatozoa and decreased germinal epithelium destruction following busulfan chemotherapy. We also found lower MTT levels and TUNEL-positive cells in SKEO pre-treated groups. In conclusion, SKEO possesses beneficial effects on sperm parameters when taken before chemotherapy and continued during and after chemotherapy for a long time, than when used short-term coinciding with the chemotherapy. Our results support valuable data about the application of SKEO for protection against adverse effects of busulfan on male genital system in patients under chemotherapy.

  1. Adenovirus-mediated ectopic expression of Msx2 in even-numbered rhombomeres induces apoptotic elimination of cranial neural crest cells in ovo.

    PubMed

    Takahashi, K; Nuckolls, G H; Tanaka, O; Semba, I; Takahashi, I; Dashner, R; Shum, L; Slavkin, H C

    1998-05-01

    Distinct cranial neural crest-derived cell types (a number of neuronal as well as non-neuronal cell lineages) are generated at characteristic times and positions in the rhombomeres of the hindbrain in developing vertebrate embryos. To examine this developmental process, we developed a novel strategy designed to test the efficacy of gain-of-function Msx2 expression within rhombomeres in ovo prior to the emigration of cranial neural crest cells (CNCC). Previous studies indicate that CNCC from odd-numbered rhombomeres (r3 and r5) undergo apoptosis in response to exogenous BMP4. We provide evidence that targeted infection in ovo using adenovirus containing Msx2 and a reporter molecule indicative of translation can induce apoptosis in either even- or odd-numbered rhombomeres. Furthermore, infected lacZ-control explants indicated that CNCC emigrated, and that 20% of these cells were double positive for crest cell markers HNK-1 and beta-gal. In contrast, there were no HNK-1 and Msx2 double positive cells emigrating from Msx2 infected explants. These results support the hypothesis that apoptotic elimination of CNCC can be induced by 'gain-of-function' Msx2 expression in even-numbered rhombomeres. These inductive interactions involve qualitative, quantitative, positional and temporal differences in TGF-beta-related signals, Msx2 expression and other transcriptional control.

  2. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase.

    PubMed

    Bratton, D L; Fadok, V A; Richter, D A; Kailey, J M; Guthrie, L A; Henson, P M

    1997-10-17

    Phosphatidylserine (PS), ordinarily sequestered in the plasma membrane inner leaflet, appears in the outer leaflet during apoptosis, where it triggers non-inflammatory phagocytic recognition of the apoptotic cell. The mechanism of PS appearance during apoptosis is not well understood but has been associated with loss of aminophospholipid translocase activity and nonspecific flip-flop of phospholipids of various classes. The human leukemic cell line HL-60, the T cell line Jurkat, and peripheral blood neutrophils, undergoing apoptosis induced either with UV irradiation or anti-Fas antibody, were probed in the cytofluorograph for (i) surface PS using fluorescein isothiocyanate-labeled annexin V, (ii) PS uptake by the aminophospholipid translocase using [6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] caproyl] (NBD)-labeled PS, (iii) nonspecific uptake of phospholipids (as a measure of transbilayer flip-flop) using NBD-labeled phosphatidylcholine, and (iv) the appearance of hypodiploid DNA. In all three types of cells undergoing apoptosis, the appearance of PS followed loss of aminophospholipid translocase and was accompanied by nonspecific phospholipid flip-flop. Importantly, however, in the absence of extracellular calcium, the appearance of PS was completely inhibited despite DNA fragmentation and loss of aminophospholipid translocase activity, the latter demonstrating that loss of the translocase is insufficient for PS appearance during apoptosis. Furthermore, while both the appearance of PS and nonspecific phospholipid uptake demonstrated identical extracellular calcium requirements with an ED50 of nearly 100 microM, the magnitude of PS appearance depended on the level of aminophospholipid translocase activity. Taken together, the data strongly suggest that while nonspecific flip-flop is the driving event for PS appearance in the plasma membrane outer leaflet, aminophospholipid translocase activity ultimately modulates its appearance.

  3. An Investigation of the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Green Synthesized Zinc Oxide Nanoparticles Using Eclipta prostrata on Human Liver Carcinoma Cells

    PubMed Central

    Chung, Ill-Min; Abdul Rahuman, Abdul; Marimuthu, Sampath; Vishnu Kirthi, Arivarasan; Anbarasan, Karunanithi; Rajakumar, Govindasamy

    2015-01-01

    Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs, especially from plants. In the present study, a simple, eco-friendly, and inexpensive approach was followed for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the aqueous leaf extract of Eclipta prostrata. The synthesized ZnO NPs were characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), High-resolution transmission electron microscopy (HRTEM), and Selected area (electron) diffraction (SAED). The HRTEM images confirmed the presence of triangle, radial, hexagonal, rod, and rectangle, shaped with an average size of 29 ± 1.3 nm. The functional groups for synthesized ZnO NPs were 3852 cm−1 for H-H weak peak, 3138 cm−1 for aromatic C-H extend, and 1648 cm−1 for Aromatic ring stretch. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), caspase and DNA fragmentation assays were carried out using various concentrations of ZnO NPs ranging from 1 to 100 mg/mL. The synthesized ZnO NPs showed dose dependent cytopathic effects in the Hep-G2 cell line. At 100 mg/mL concentration, the synthesized ZnO NPs exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. PMID:28347066

  4. Reactive oxygen species mediate Terbufos-induced apoptosis in mouse testicular cell lines via the modulation of cell cycle and pro-apoptotic proteins.

    PubMed

    Hung, Jui-Hsiang; Chen, Chia-Yun; Omar, Hany A; Huang, Kuo-Yuan; Tsao, Che-Chia; Chiu, Chien-Chih; Chen, Yi-Ling; Chen, Po-Han; Teng, Yen-Ni

    2015-09-15

    Terbufos (S-t-butylthiomethyl-O,O-diethyl phosphorodithioate) is a highly toxic organophosphate which is extensively used as an insecticide and nematicide. Chronic exposure to terbufos causes neuronal injury and predisposes to neurodegenerative diseases. Accumulating evidence has shown that the exposure to terbufos, as an occupational risk factor, may also cause reproductive disorders. However, the exact mechanisms of reproductive toxicity remain unclear. The present study aimed to investigate the toxic effect of terbufos on testicular cells and to explore the mechanism of toxicity on a cellular level. The cytotoxic effects of terbufos on mouse immortalized spermatogonia (GC-1), spermatocytes (GC-2), Leydig (TM3), and Sertoli (TM4) cell lines were assessed by MTT assays, caspase activation, flow cytometry, TUNEL assay, Western blot, and cell cycle analysis. The exposure to different concentrations of terbufos ranging from 50 to 800 μM for 6 h caused significant death in all the used testicular cell lines. Terbufos increased reactive oxygen species (ROS) production, reduced mitochondrial membrane potential, and initiated apoptosis, which was confirmed by a dose-dependent increase in the number of TUNEL-positive apoptotic cells. Blocking ROS production by N-acetyl cysteine (NAC) protected GC-1 cells from terbufos-induced cell death. The results demonstrated that terbufos induces ROS, apoptosis, and DNA damage in testicular cell lines and it should be considered potentially hazardous to testis. Together, this study provided potential molecular mechanisms of terbufos-induced toxicity in testicular cells and suggests a possible protective measure. © 2015 Wiley Periodicals, Inc. Environ Toxicol, 2015.

  5. Chloroacetic acid induced neuronal cells death through oxidative stress-mediated p38-MAPK activation pathway regulated mitochondria-dependent apoptotic signals.

    PubMed

    Chen, Chun-Hung; Chen, Sz-Jie; Su, Chin-Chuan; Yen, Cheng-Chieh; Tseng, To-Jung; Jinn, Tzyy-Rong; Tang, Feng-Cheng; Chen, Kuo-Liang; Su, Yi-Chang; Lee, kuan-I; Hung, Dong-Zong; Huang, Chun-Fa

    2013-01-07

    Chloroacetic acid (CA), a toxic chlorinated analog of acetic acid, is widely used in chemical industries as an herbicide, detergent, and disinfectant, and chemical intermediates that are formed during the synthesis of various products. In addition, CA has been found as a by-product of chlorination disinfection of drinking water. However, there is little known about neurotoxic injuries of CA on the mammalian, the toxic effects and molecular mechanisms of CA-induced neuronal cell injury are mostly unknown. In this study, we examined the cytotoxicity of CA on cultured Neuro-2a cells and investigated the possible mechanisms of CA-induced neurotoxicity. Treatment of Neuro-2a cells with CA significantly reduced the number of viable cells (in a dose-dependent manner with a range from 0.1 to 3mM), increased the generation of ROS, and reduced the intracellular levels of glutathione depletion. CA also increased the number of sub-G1 hypodiploid cells; increased mitochondrial dysfunction (loss of MMP, cytochrome c release, and accompanied by Bcl-2 and Mcl-1 down-regulation and Bax up-regulation), and activated the caspase cascades activations, which displayed features of mitochondria-dependent apoptosis pathway. These CA-induced apoptosis-related signals were markedly prevented by the antioxidant N-acetylcysteine (NAC). Moreover, CA activated the JNK and p38-MAPK pathways, but did not that ERK1/2 pathway, in treated Neuro-2a cells. Pretreatment with NAC and specific p38-MAPK inhibitor (SB203580), but not JNK inhibitor (SP600125) effectively abrogated the phosphorylation of p38-MAPK and attenuated the apoptotic signals (including: decrease in cytotoxicity, caspase-3/-7 activation, the cytosolic cytochrome c release, and the reversed alteration of Bcl-2 and Bax mRNA) in CA-treated Neuro-2a cells. Taken together, these data suggest that oxidative stress-induced p38-MAPK activated pathway-regulated mitochondria-dependent apoptosis plays an important role in CA-caused neuronal cell

  6. Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor.

    PubMed

    Bromberg, Natália; Dreyfuss, Juliana L; Regatieri, Caio V; Palladino, Marcelly V; Durán, Nelson; Nader, Helena B; Haun, Marcela; Justo, Giselle Z

    2010-06-07

    The continuing threat to biodiversity lends urgency to the need of identification of sustainable source of natural products. This is not so much trouble if there is a microbial source of the compound. Herein, violacein, a natural indolic pigment extracted from Chromobacterium violaceum, was evaluated for its antitumoral potential against the Ehrlich ascites tumor (EAT) in vivo and in vitro. Evaluation of violacein cytotoxicity using different endpoints indicated that EAT cells were twofold (IC(50)=5.0 microM) more sensitive to the compound than normal human peripheral blood lymphocytes. In vitro studies indicated that violacein cytotoxicity to EAT cells is mediated by a rapid (8-12h) production of reactive oxygen species (ROS) and a decrease in intracellular GSH levels, probably due to oxidative stress. Additionally, apoptosis was primarily induced, as demonstrated by an increase in Annexin-V positive cells, concurrently with increased levels of DNA fragmentation and increased caspase-2, caspase-9 and caspase-3 activities up to 4.5-, 6.0- and 5.5-fold, respectively, after 72 h of treatment. Moreover, doses of 0.1 and 1.0 microg kg(-1) violacein, administered intraperitoneally (i.p.) to EAT-bearing mice throughout the lifespan of the animals significantly inhibited tumor growth and increased survival of mice. In view of these results, a 35-day toxicity study was conducted in vivo. Complete hematology, biochemistry (ALT, AST and creatinine levels) and histopathological analysis of liver and kidney indicated that daily doses of violacein up to 1000 microg kg(-1) for 35 days are well tolerated and did not cause hematotoxicity nor renal or hepatotoxicity when administered i.p. to mice. Altogether, these results indicate that violacein causes oxidative stress and an imbalance in the antioxidant defense machinery of cells culminating in apoptotic cell death. Furthermore, this is the first report of its antitumor activity in vivo, which occurs in the absence of toxicity to

  7. The non-ankyrin C terminus of Ikappa Balpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta 1-mediated growth suppression.

    PubMed

    Chang, Nan-Shan

    2002-03-22

    Transforming growth factor beta (TGF-beta1) suppresses the growth of mink lung Mv1Lu epithelial cells, whereas testicular hyaluronidase abolishes the growth inhibition. Exposure of Mv1Lu cells to TGF-beta1 rapidly resulted in down-regulation of cytosolic IkappaBalpha and hyaluronidase prevented this effect, suggesting a possible role of IkappaBalpha in the growth regulation. Ectopic expression of wild-type and dominant negative IkappaBalpha prevented TGF-beta1-mediated growth suppression. Nonetheless, the blocking effect of IkappaBalpha is not related to regulation of NF-kappaB function by its N-terminal ankyrin-repeat region (amino acids 1-243). Removal of the PEST (proline-glutamic acid-serine-threonine) domain-containing C terminus (amino acids 244-314) abolished the IkappaBalpha function, and the C terminus alone blocked the TGF-beta1 growth-inhibitory effect. Co-immunoprecipitation by anti-p53 antibody using Mv1Lu and other types of cells, as well as rat liver and spleen, revealed that a portion of cytosolic IkappaBalpha physically interacted with p53. In contrast, Mdm2, an inhibitor of p53, was barely detectable in the immunoprecipitates. The cytosolic p53 x IkappaBalpha complex rapidly dissociated in response to apoptotic stress, etoposide- and UV-mediated DNA damage, hypoxia, and TGF-beta1-mediated growth suppression. Also, a rapid increase in the formation of the nuclear p53 x IkappaBalpha complex was observed during exposure to etoposide and UV. In contrast, TGF-beta1-mediated promotion of fibroblast growth failed to mediate p53 x IkappaBalpha dissociation. Mapping by yeast two-hybrid showed that the non-ankyrin C terminus of IkappaBalpha physically interacted with the proline-rich region and a phosphorylation site, serine 46, in p53. Deletion of serine 46 or alteration of serine 46 to glycine abolished the p53 x IkappaBalpha interaction. Alteration to threonine retained the binding interaction, suggesting that serine 46 phosphorylation is involved in the

  8. L-PGDS Mediates Vagus Nerve Stimulation-Induced Neuroprotection in a Rat Model of Ischemic Stroke by Suppressing the Apoptotic Response.

    PubMed

    Zhang, Lina; Ma, Jingxi; Jin, Xinhao; Jia, Gongwei; Jiang, Ying; Li, Changqing

    2017-02-01

    The role of lipocalin prostaglandin D2 synthase (L-PGDS) in brain ischemia has not been fully clarified to date. Vagus nerve stimulation (VNS) protects against cerebral ischemia/reperfusion (I/R) injury, but the mechanisms involved need further exploration. This study investigated the role of L-PGDS in cerebral I/R and whether this process was involved in the mechanism of VNS-mediated neuroprotection. Male Sprague-Dawley rats were pretreated with a lentiviral vector (LV) through intracerebroventricular injection, followed by middle cerebral artery occlusion (MCAO) and VNS treatment. The expression of L-PGDS in the peri-infarct cortex was examined. The localization of L-PGDS was determined using double immunofluorescence staining. Neurologic scores, infarct volume and neuronal apoptosis were evaluated at 24 h after reperfusion. The expression of apoptosis-related molecules was measured by western blot analysis. The expression of L-PGDS in the peri-infarct cortex increased at 12 h, reached a peak at 24 h after reperfusion, and lasted up to 3 days. VNS treatment further enhanced the expression of L-PGDS following ischemic stroke. L-PGDS was mainly expressed in neurons in the peri-infarct cortex. I/R rats treated with VNS showed better neurological deficit scores, reduced infarct volume, and decreased neuronal apoptosis as indicated by the decreased levels of Bax and cleaved caspase-3 as well as increased levels of Bcl-2. Strikingly, the beneficial effects of VNS were weakened after L-PGDS down-regulation. In general, our results suggest that L-PGDS is a potential mediator of VNS-induced neuroprotection against I/R injury.

  9. Rapamycin-enhanced mitomycin C-induced apoptotic death is mediated through the S6K1-Bad-Bak pathway in peritoneal carcinomatosis.

    PubMed

    Song, X; Dilly, A-K; Kim, S-Y; Choudry, H A; Lee, Y J

    2014-06-05

    Peritoneal carcinomatosis (PC) is the most common secondary cancerous disease, and more effective novel regimens are needed. In this study, we identified a novel combination treatment for PC, chemotherapeutic agent mitomycin C in combination with mTOR (mammalian target of rapamycin) inhibitor rapamycin. We observed that the combination of mitomycin C and rapamycin induced synergistic cytotoxicity and apoptosis, which was mediated through an increase in caspase activation. The combination of mitomycin C and rapamycin inactivated p70 S6 ribosomal kinase (S6K1) and dephosphorylated Bad, leading to dissociation of Bcl-xL from Bak, which resulted in Bak oligomerization, mitochondria dysfunction and cytochrome c release. PF-4708671, a S6K1-specific inhibitor, enhanced the combination treatment-induced apoptosis, whereas S6K1 E389 DeltaCT-HA (S6K1 active form) dramatically decreased the induction of apoptosis. In addition, the combination treatment significantly inhibited LS174T intraperitoneal tumor growth in vivo. This study provides a preclinical rationale for apoptosis induction linked with the mTOR pathway through a combination of chemotherapeutic agents and mTOR inhibitor, and will support this combinatorial strategy to PC patients.

  10. Rapamycin-enhanced mitomycin C-induced apoptotic death is mediated through the S6K1–Bad–Bak pathway in peritoneal carcinomatosis

    PubMed Central

    Song, X; Dilly, A-K; Kim, S-Y; Choudry, H A; Lee, Y J

    2014-01-01

    Peritoneal carcinomatosis (PC) is the most common secondary cancerous disease, and more effective novel regimens are needed. In this study, we identified a novel combination treatment for PC, chemotherapeutic agent mitomycin C in combination with mTOR (mammalian target of rapamycin) inhibitor rapamycin. We observed that the combination of mitomycin C and rapamycin induced synergistic cytotoxicity and apoptosis, which was mediated through an increase in caspase activation. The combination of mitomycin C and rapamycin inactivated p70 S6 ribosomal kinase (S6K1) and dephosphorylated Bad, leading to dissociation of Bcl-xL from Bak, which resulted in Bak oligomerization, mitochondria dysfunction and cytochrome c release. PF-4708671, a S6K1-specific inhibitor, enhanced the combination treatment-induced apoptosis, whereas S6K1 E389 DeltaCT-HA (S6K1 active form) dramatically decreased the induction of apoptosis. In addition, the combination treatment significantly inhibited LS174T intraperitoneal tumor growth in vivo. This study provides a preclinical rationale for apoptosis induction linked with the mTOR pathway through a combination of chemotherapeutic agents and mTOR inhibitor, and will support this combinatorial strategy to PC patients. PMID:24901052

  11. The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells.

    PubMed

    Šemeláková, Martina; Mikeš, Jaromír; Jendželovský, Rastislav; Fedoročko, Peter

    2012-12-05

    Photodynamic therapy is a rapidly-developing anti-cancer approach for the treatment of various types of malignant as well as non-malignant diseases. In this study, hypericin-mediated photodynamic therapy (HY-PDT) in sub-optimal dose was combined with hyperforin (HP) or its stable derivative aristoforin (AR) in an effort to improve efficacy on the cellular level. The logic of this combination is based on the fact that both bioactive compounds naturally occur in plants of Hypericum sp. At relatively low concentrations up to 5 μM, hyperforin and aristoforin were able to stimulate onset of apoptosis in HT-29 colon adenocarcinoma cells exposed to HY-PDT, inhibit cell cycle progression, suppress expression of matrixmetalloproteinases-2/-9 together with cell adhesivity, thereby affecting the clonogenic potential of the cells. As the action of aristoforin was more pronounced, in line with our assumption, these changes were also linked in this case with hypericin accumulation and increased ROS generation leading to dissipation of mitochondrial membrane potential in a significant portion of the cells, as well as activation of caspase-3. Comparison of HT-29 cells to another colon adenocarcinoma-derived cell line HCT-116 demonstrated significant differences in sensitivity of different cell lines to PDT, however, accumulated effect of HY-PDT with HP/AR proved similar in both tested cell lines. The presented data may help to elucidate the mechanisms of action for different bioactive constituents of St. John's wort, which are increasingly recognized as being able to regulate a variety of pathobiological processes, thus possessing potential therapeutic properties.

  12. Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells.

    PubMed

    Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J

    2013-04-04

    Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIP(L)), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIP(L) in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIP(L) protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIP(L) was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIP(L). These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIP(L) ubiquitination and proteolysis, as mutant c-FLIP(L) lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIP(L) by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases.

  13. A sustained deficiency of mitochondrial respiratory complex III induces an apoptotic cell death through the p53-mediated inhibition of pro-survival activities of the activating transcription factor 4.

    PubMed

    Evstafieva, A G; Garaeva, A A; Khutornenko, A A; Klepikova, A V; Logacheva, M D; Penin, A A; Novakovsky, G E; Kovaleva, I E; Chumakov, P M

    2014-11-06

    Generation of energy in mitochondria is subjected to physiological regulation at many levels, and its malfunction may result in mitochondrial diseases. Mitochondrial dysfunction is associated with different environmental influences or certain genetic conditions, and can be artificially induced by inhibitors acting at different steps of the mitochondrial electron transport chain (ETC). We found that a short-term (5 h) inhibition of ETC complex III with myxothiazol results in the phosphorylation of translation initiation factor eIF2α and upregulation of mRNA for the activating transcription factor 4 (ATF4) and several ATF4-regulated genes. The changes are characteristic for the adaptive integrated stress response (ISR), which is known to be triggered by unfolded proteins, nutrient and metabolic deficiency, and mitochondrial dysfunctions. However, after a prolonged incubation with myxothiazol (13-17 h), levels of ATF4 mRNA and ATF4-regulated transcripts were found substantially suppressed. The suppression was dependent on the p53 response, which is triggered by the impairment of the complex III-dependent de novo biosynthesis of pyrimidines by mitochondrial dihydroorotate dehydrogenase. The initial adaptive induction of ATF4/ISR acted to promote viability of cells by attenuating apoptosis. In contrast, the induction of p53 upon a sustained inhibition of ETC complex III produced a pro-apoptotic effect, which was additionally stimulated by the p53-mediated abrogation of the pro-survival activities of the ISR. Interestingly, a sustained inhibition of ETC complex I by piericidine did not induce the p53 response and stably maintained the pro-survival activation of ATF4/ISR. We conclude that a downregulation of mitochondrial ETC generally induces adaptive pro-survival responses, which are specifically abrogated by the suicidal p53 response triggered by the genetic risks of the pyrimidine nucleotide deficiency.

  14. The Anti-Apoptotic and Cardioprotective Effects of Salvianolic Acid A on Rat Cardiomyocytes following Ischemia/Reperfusion by DUSP-Mediated Regulation of the ERK1/2/JNK Pathway

    PubMed Central

    Chen, Qiuping; Zhu, Shasha; Liu, Yang; Pan, Defeng; Chen, Xiaohu; Li, Dongye

    2014-01-01

    /R group. SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation. PMID:25019380

  15. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  16. P2X7 Receptor-mediated Scavenger Activity of Mononuclear Phagocytes toward Non-opsonized Particles and Apoptotic Cells Is Inhibited by Serum Glycoproteins but Remains Active in Cerebrospinal Fluid*

    PubMed Central

    Gu, Ben J.; Duce, James A.; Valova, Valentina A.; Wong, Bruce; Bush, Ashley I.; Petrou, Steven; Wiley, James S.

    2012-01-01

    Rapid phagocytosis of non-opsonized particles including apoptotic cells is an important process that involves direct recognition of the target by multiple scavenger receptors including P2X7 on the phagocyte surface. Using a real-time phagocytosis assay, we studied the effect of serum proteins on this phagocytic process. Inclusion of 1–5% serum completely abolished phagocytosis of non-opsonized YG beads by human monocytes. Inhibition was reversed by pretreatment of serum with 1–10 mm tetraethylenepentamine, a copper/zinc chelator. Inhibitory proteins from the serum were determined as negatively charged glycoproteins (pI < 6) with molecular masses between 100 and 300 kDa. A glycoprotein-rich inhibitory fraction of serum not only abolished YG bead uptake but also inhibited phagocytosis of apoptotic lymphocytes or neuronal cells by human monocyte-derived macrophages. Three copper- and/or zinc-containing serum glycoproteins, ceruloplasmin, serum amyloid P-component, and amyloid precursor protein, were identified, and the purified proteins were shown to inhibit the phagocytosis of beads by monocytes as well as phagocytosis of apoptotic neuronal cells by macrophages. Human adult cerebrospinal fluid, which contains very little glycoprotein, had no inhibitory effect on phagocytosis of either beads or apoptotic cells. These data suggest for the first time that metal-interacting glycoproteins present within serum are able to inhibit the scavenger activity of mononuclear phagocytes toward insoluble debris and apoptotic cells. PMID:22461619

  17. Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils.

    PubMed

    Castro, Sowmya A; Collighan, Russell; Lambert, Peter A; Dias, Irundika Hk; Chauhan, Parbata; Bland, Charlotte E; Milic, Ivana; Milward, Michael R; Cooper, Paul R; Devitt, Andrew

    2017-03-02

    Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, while apoptotic cells and their derived secretome were shown to inhibit TNF-α-induced expression by P. gingivalis lipopolysaccharide, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together, these data indicate that P. gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms, including rapid, potent gingipain-mediated inflammation, coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus, gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease.

  18. Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation.

    PubMed

    Kim, Ki Young; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2007-09-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit human lung cancers by inducing apoptosis and differentiation. In the present study, we elucidated the apoptotic mechanism of PPARgamma activation in human lung cancers by using a novel PPARgamma agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy)-3-phenyl-(1H-indene-2-carboxylic acid ethyl ester (KR-62980), and rosiglitazone. PPARgamma activation selectively inhibited cell viability of non-small-cell lung cancer with little effect on small-cell lung cancer and normal lung cells. The cell death induced by PPARgamma activation presented apoptotic features of oligonucleosomal DNA fragmentation in A549 human non-small-cell lung cancer cell line. Reactive oxygen species (ROS) production was accompanied by increased expression of proline oxidase (POX), a redox enzyme expressed in mitochondria, upon incubation with the agonists. POX RNA interference treatment blocked PPARgamma-induced ROS formation and cytotoxicity, suggesting that POX plays a functional role in apoptosis through ROS formation. The apoptotic effects by the agonists were antagonized by bisphenol A diglycidyl ether, a PPARgamma antagonist, and by knockdown of PPARgamma expression, indicating the involvement of PPARgamma in these actions. The results of the present study suggest that PPARgamma activation induces apoptotic cell death in non-small-cell lung carcinoma mainly through ROS formation via POX induction.

  19. Caspase-2 and microRNA34a/c regulate lidocaine-induced dorsal root ganglia apoptosis in vitro.

    PubMed

    Li, Yandong; Jia, Zhi; Zhang, Laizhu; Wang, Jianguo; Yin, Guangming

    2015-11-15

    Epidural administration of lidocaine may cause neurotoxicity in spinal cord dorsal root ganglia neurons (DRGNs). In this study, we explored the underling mechanisms of apoptotic pathways of lidocaine-induced apoptosis in DRGNs. Neonatal rat DRGNs were treated with lidocaine to induced apoptosis in vitro. Western blot showed caspase- (casp-) 2/3/9 proteins were all upregulated by lidocaine in DRGNs. However, inhibition of casp-2 protected lidocaine-induced apoptosis in DRGNs, whereas Casp3/9 inhibition did not. The possible upstream epigenetic regulators of casp-2, microRNA-34 (miR-34) family, including miR-34a/b/c, were evaluated by dual-luciferase reporter assay and qRT-PCR. We found miR-34a/c, but not miR-34b, were down-regulated in lidocaine-induced DRGN apoptosis. Subsequent upregulation of miR-34 family showed miR-34a/c were able to inhibit casp-2 and protect lidocaine-induced apoptosis in DRGNs, whereas miR-34b did not. Thus, out study shows that casp-2, in association with miR-34a/c was actively involved in lidocaine-induced apoptosis in DRGNs. Inhibiting casp-2 or upregulating miR-34a/c may provide novel meanings to protect local anesthetic-induced neurotoxicity.

  20. Apoptotic pathway induced by noscapine in human myelogenous leukemic cells.

    PubMed

    Heidari, Nastaran; Goliaei, Bahram; Moghaddam, Parvaneh Rahimi; Rahbar-Roshandel, Nahid; Mahmoudian, Massoud

    2007-11-01

    It has been shown that noscapine, an opium-derived phthalideisoquinoline alkaloid that is currently being used as an oral antitussive drug, induces apoptosis in myeloid leukemia cells. The molecular mechanism responsible for the anticancer effects of noscapine is poorly understood. In the current study, the apoptotic effects of noscapine on two myeloid cell lines, apoptosis-proficient HL60 cells and apoptosis-resistant K562 cells, were analyzed. An increase in the activity of caspase-2, -3, -6, -8 and -9, poly(ADP ribose) polymerase cleavage, detection of phosphatidylserine on the outer layer of the cell membrane, nucleation of chromatin, and DNA fragmentation suggested the induction of apoptosis. Noscapine increased the Bax/Bcl-2 ratio with a significant decrease of Bcl-2 expression accompanied with Bcl-2 phosphorylation. Using an inhibitory approach, the activation of the caspase cascade involved in the noscapine-induced apoptosis was analyzed. We observed no inhibitory effect of the caspase-8 inhibitor on caspase-9 activity. In view of these results and taking into consideration that K562 cells are Fas-null, we suggested that caspase-8 is activated in a Fas-independent manner downstream of caspase-9. In conclusion, noscapine can induce apoptosis in both apoptosis-proficient and apoptosis-resistant leukemic cells, and it can be a novel candidate in the treatment of hematological malignancies.

  1. Involvement of pro-apoptotic and anti-apoptotic factors in the early development of the human pituitary gland.

    PubMed

    Saraga-Babic, M; Bazina, M; Vukojevic, K; Bocina, I; Stefanovic, V

    2008-10-01

    The spatial and temporal pattern of appearance of pro-apoptotic caspase-3 and p53 proteins, and anti-apoptotic bcl-2 protein was investigated in the developing pituitary gland of 6 human embryos 5-8-weeks old, using morphological and immunohistochemical techniques. Their dynamic appearance was analyzed in the Rathke's pouch (future adenohypophysis), mesenchyme, and in the developing neurohypophysis. In the 5th and 6th week, caspase-3 positive cells appeared in the Rathke's pouch (5%) and stalk (11%), in the mesenchyme, but not in the neurohypophysis. In the 6th and 7th week, apoptotic cells were more numerous in the caudal part of the Rathke's pouch due to its separation from the oral epithelium. Pro-apoptotic p53 protein was detected in all parts of the pituitary gland throughout the investigated period. Nuclear condensations characterized cells positive to caspase-3 and p53 proteins. Apoptotic cells displayed condensations of nuclear chromatin on an ultrastructural level as well. While caspase-3 dependent pathway of cell death participated in morphogenesis of the adenohypophysis and associated connective tissue, p53-mediated apoptosis most likely participates in morphogenesis of all parts of the gland, including neurohypophysis. The anti-apoptotic bcl-2 protein was also detected in all parts of the developing gland. With advancing development, the positivity to bcl-2 protein increased in the cells of the adenohypophysis, while it decreased in the neurohypophysis. Bcl-2 protein probably prevented cell death in all parts of the gland and enhanced cell differentiation. The described pattern of appearance of the investigated pro-apoptotic and anti-apoptotic factors might be important for normal morphogenesis and function of the pituitary gland.

  2. Activation-induced CD154 expression abrogates tolerance induced by apoptotic cells*

    PubMed Central

    Gurung, Prajwal; Kucaba, Tamara A.; Ferguson, Thomas A.; Griffith, Thomas S.

    2009-01-01

    The decision to generate a productive immune response or tolerance often depends on the context in which T cells first see Ag. Using a classical system of tolerance induction, we examined the immunological consequence of Ag encountered in the presence of naïve or activated apoptotic cells. Naïve apoptotic cells induced tolerance when injected i.v.; however, previously activated apoptotic cells induced immunity. Further analysis revealed a key role for CD154, as tolerance resulted after i.v. injection of either naïve or activated apoptotic CD154−/− T cells, while co-injection of an agonistic anti-CD40 mAb with naïve apoptotic T cells induced robust immunity. DC fed activated apoptotic T cells in vitro produced IL-12p40 in a CD154-dependent manner, and the use of IL-12p40−/− mice or mAb-mediated neutralization of IL-12 revealed a link between CD154, IL-12, and the ability of activated apoptotic T cells to induce immunity rather than tolerance. Collectively these results show that CD154 expression on apoptotic T cells can determine the outcome of an immune response to Ag recognized within the context of the apoptotic cells, and suggest the balance between naïve and activated apoptotic T cells may dictate whether a productive immune response is encouraged. PMID:19841180

  3. Design, synthesis, and evaluation of aza-peptide Michael acceptors as selective and potent inhibitors of caspases-2, -3, -6, -7, -8, -9, and -10.

    PubMed

    Ekici, Ozlem Dogan; Li, Zhao Zhao; Campbell, Amy J; James, Karen Ellis; Asgian, Juliana L; Mikolajczyk, Jowita; Salvesen, Guy S; Ganesan, Rajkumar; Jelakovic, Stjepan; Grütter, Markus G; Powers, James C

    2006-09-21

    Aza-peptide Michael acceptors are a novel class of inhibitors that are potent and specific for caspases-2, -3, -6, -7, -8, -9, and -10. The second-order rate constants are in the order of 10(6) M(-1) s(-1). The aza-peptide Michael acceptor inhibitor 18t (Cbz-Asp-Glu-Val-AAsp-trans-CH=CH-CON(CH(2)-1-Naphth)(2) is the most potent compound and it inhibits caspase-3 with a k(2) value of 5620000 M(-1) s(-1). The inhibitor 18t is 13700, 190, 6.4, 594, 37500, and 173-fold more selective for caspase-3 over caspases-2, -6, -7, -8, -9, and -10, respectively. Aza-peptide Michael acceptors designed with caspase specific sequences are selective and do not show any cross reactivity with clan CA cysteine proteases such as papain, cathepsin B, and calpains. High-resolution crystal structures of caspase-3 and caspase-8 in complex with aza-peptide Michael acceptor inhibitors demonstrate the nucleophilic attack on C2 and provide insight into the selectivity and potency of the inhibitors with respect to the P1' moiety.

  4. The Modulation of Apoptotic Pathways by Gammaherpesviruses

    PubMed Central

    Banerjee, Shuvomoy; Uppal, Timsy; Strahan, Roxanne; Dabral, Prerna; Verma, Subhash C.

    2016-01-01

    Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells. PMID:27199919

  5. Isolinderalactone inhibits proliferation of A549 human non‑small cell lung cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas receptor and soluble Fas ligand-mediated apoptotic pathway.

    PubMed

    Chang, Wei-An; Lin, En-Shyh; Tsai, Ming-Ju; Huang, Ming-Shyan; Kuo, Po-Lin

    2014-05-01

    Lung cancer is currently the leading cause of cancer-related mortality worldwide. In Taiwan, lung cancer is also the type of malignancy that is the major cause of cancer-mortality. Investigating the mechanism of apoptosis of lung cancer cells is important in the treatment of lung cancer. In the present study, isolinderalactone was demonstrated to exhibit anticancer effects in A549 human non-small cell lung cancer cells. The effect of isolinderalactone on apoptosis, cell cycle distribution p21 levels and the Fas receptor and soluble Fas ligand (sFasL) were assayed in order to determine the mechanism underlying the anticancer effect of isolinderalactone. It was demonstrated that isolinderalactone may induce p21 expression and then cause the cell cycle arrest of A549 cells. The data of the present study also revealed that the Fas/sFasL apoptotic system is significant in the mechanism of isolinderalactone‑induced apoptosis of A549 cells. These novel findings demonstrated that isolinderalactone may cause the cell cycle arrest of A549 cells by induction of p21, and induce apoptosis of A549 human non-small-cell lung carcinoma cells through the Fas/sFasL apoptotic system.

  6. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

    PubMed Central

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  7. Anti-inflammatory, pro-apoptotic, and anti-proliferative effects of a methanolic neem (Azadirachta indica) leaf extract are mediated via modulation of the nuclear factor-κB pathway.

    PubMed

    Schumacher, Marc; Cerella, Claudia; Reuter, Simone; Dicato, Mario; Diederich, Marc

    2011-05-01

    Azadirachta indica (neem tree) is used in traditional Indian medicine for its pharmacological properties including cancer prevention and treatment. Here, we studied a neem extract's anti-inflammatory potential via the nuclear factor-κB (NF-κB) signaling pathway, linked to cancer, inflammation, and apoptosis. Cultured human leukemia cells were treated with a methanolic neem leaf extract with or without tumor necrosis factor (TNF)-α stimulation. Inhibition of NF-κB activity was demonstrated by luciferase assay and electrophoretic mobility shift assay (EMSA). Inhibition of viability by neem extracts was assessed by luminescent assays. Western blot analysis allowed assessing the inhibitory effect of the neem extract on TNF-α-induced degradation of inhibitor of κB (IκB) and nuclear translocation of the NF-κB p50/p65 heterodimer. Inhibition of IκB kinase (IKK) activity was shown as well as the effect of neem extract on the induction of apoptotic cell death mechanisms by nuclear fragmentation analysis and flow cytometry analysis. In conclusion, our data provide evidence for a strong effect of the neem extract on pro-inflammatory cell signaling and apoptotic cell death mechanisms, contributing to a better understanding of the mechanisms triggered by Azadirachta indica.

  8. Apoptotic markers in protozoan parasites

    PubMed Central

    2010-01-01

    The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities. PMID:21062457

  9. c-Met Overexpression Contributes to the Acquired Apoptotic Resistance of Nonadherent Ovarian Cancer Cells through a Cross Talk Mediated by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/212

    PubMed Central

    Tang, Maggie K S; Zhou, Hong Y; Yam, Judy W P; Wong, Alice S T

    2010-01-01

    Ovarian cancer is the most lethal gynecologic cancer mainly because of widespread peritoneal dissemination and malignant ascites. Key to this is the capacity of tumor cells to escape suspension-induced apoptosis (anoikis), which also underlies their resistance to chemotherapy. Here, we used a nonadherent cell culture model to investigate the molecular mechanisms of apoptotic resistance of ovarian cancer cells that may mimic the chemoresistance found in solid tumors. We found that ovarian cancer cells acquired a remarkable resistance to anoikis and apoptosis induced by exposure to clinically relevant doses of two front-line chemotherapeutic drugs cisplatin and paclitaxel when grown in three-dimensional than monolayer cultures. Inhibition of the hepatocyte growth factor (HGF) receptor c-Met, which is frequently overexpressed in ovarian cancer, by a specific inhibitor or small interfering RNA blocked the acquired anoikis resistance and restored chemosensitivity in three-dimensional not in two-dimensional cultures. These effects were found to be dependent on both phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) 1/2 signaling pathways. Inhibitors of PI3K/Akt abrogated ERK1/2 activation and its associated anoikis resistance in response to HGF, suggesting a signaling relay between these two pathways. Furthermore, we identified a central role of Ras as a mechanism of this cross talk. Interestingly, Ras did not lie upstream of PI3K/Akt, whereas PI3K/Akt signaling to ERK1/2 involved Ras. These findings shed new light on the apoptotic resistance mechanism of nonadherent ovarian cancer ascites cells and may have important clinical implications. PMID:20126471

  10. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease

    PubMed Central

    Du, Aiying; Xie, Jing; Guo, Kaijie; Yang, Lei; Wan, Yihan; OuYang, Qi; Zhang, Xuejin; Niu, Xin; Lu, Lu; Wu, Jun; Zhang, Xuejun

    2015-01-01

    In addition to terminating neurotransmission by hydrolyzing acetylcholine, synaptic acetylcholinesterase (AChES) has been found to have a pro-apoptotic role. However, the underlying mechanism has rarely been investigated. Here, we report a nuclear translocation-dependent role for AChES as an apoptotic deoxyribonuclease (DNase). AChES polypeptide binds to and cleaves naked DNA at physiological pH in a Ca2+–Mg2+-dependent manner. It also cleaves chromosomal DNA both in pre-fixed and in apoptotic cells. In the presence of a pan-caspase inhibitor, the cleavage still occurred after nuclear translocation of AChES, implying that AChES-DNase acts in a CAD- and EndoG-independent manner. AChE gene knockout impairs apoptotic DNA cleavage; this impairment is rescued by overexpression of the wild-type but not (aa 32–138)-deleted AChES. Furthermore, in comparison with the nuclear-localized wild-type AChES, (aa 32–138)-deleted AChES loses the capacity to initiate apoptosis. These observations confirm that AChES mediates apoptosis via its DNase activity. PMID:27462404

  11. The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases

    PubMed Central

    Cuda, Carla M.; Pope, Richard M.; Perlman, Harris

    2017-01-01

    Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including but not limited to toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis. Elevated levels of signalling mediators of both the extrinsic and intrinsic apoptotic as well as the autophagy death pathways are observed in the joints of patients with rheumatoid arthritis. Furthermore, in rheumatoid arthritis patients, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these death pathways has made considerable progress, this review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapeutic targets for rheumatoid arthritis and other rheumatic diseases. PMID:27549026

  12. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    PubMed

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  13. Interaction of apoptotic cells with macrophages upregulates COX-2/PGE2 and HGF expression via a positive feedback loop.

    PubMed

    Byun, Ji Yeon; Youn, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Woo, So-Yeon; Kang, Jihee Lee

    2014-01-01

    Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2 expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cells in vitro and in vivo orchestrate the interaction between COX-2/PGE2 and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2 production. Both NS-398 and COX-2-siRNA, as well as the PGE2 receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2 induction. The in vivo relevance of the interaction between the COX-2/PGE2 and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages following in vivo exposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2 and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.

  14. EBNA3C-mediated regulation of aurora kinase B contributes to Epstein-Barr virus-induced B-cell proliferation through modulation of the activities of the retinoblastoma protein and apoptotic caspases.

    PubMed

    Jha, Hem Chandra; Lu, Jie; Saha, Abhik; Cai, Qiliang; Banerjee, Shuvomoy; Prasad, Mahadesh A J; Robertson, Erle S

    2013-11-01

    Epstein-Barr virus (EBV) is an oncogenic gammaherpesvirus that is implicated in several human malignancies, including Burkitt's lymphoma (BL), posttransplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma (NPC), and AIDS-associated lymphomas. Epstein-Barr nuclear antigen 3C (EBNA3C), one of the essential EBV latent antigens, can induce mammalian cell cycle progression through its interaction with cell cycle regulators. Aurora kinase B (AK-B) is important for cell division, and deregulation of AK-B is associated with aneuploidy, incomplete mitotic exit, and cell death. Our present study shows that EBNA3C contributes to upregulation of AK-B transcript levels by enhancing the activity of its promoter. Further, EBNA3C also increased the stability of the AK-B protein, and the presence of EBNA3C leads to reduced ubiquitination of AK-B. Importantly, EBNA3C in association with wild-type AK-B but not with its kinase-dead mutant led to enhanced cell proliferation, and AK-B knockdown can induce nuclear blebbing and cell death. This phenomenon was rescued in the presence of EBNA3C. Knockdown of AK-B resulted in activation of caspase 3 and caspase 9, along with poly(ADP-ribose) polymerase 1 (PARP1) cleavage, which is known to be an important contributor to apoptotic signaling. Importantly, EBNA3C failed to stabilize the kinase-dead mutant of AK-B compared to wild-type AK-B, which suggests a role for the kinase domain in AK-B stabilization and downstream phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). This study demonstrates the functional relevance of AK-B kinase activity in EBNA3C-regulated B-cell proliferation and apoptosis.

  15. Activation-induced cell death of memory CD8+ T cells from pleural effusion of lung cancer patients is mediated by the type II Fas-induced apoptotic pathway.

    PubMed

    Prado-Garcia, Heriberto; Romero-Garcia, Susana; Morales-Fuentes, Jorge; Aguilar-Cazares, Dolores; Lopez-Gonzalez, Jose Sullivan

    2012-07-01

    Lung cancer is the second most common form of cancer and the leading cause of cancer death worldwide. Pleural effusions, containing high numbers of mononuclear and tumor cells, are frequent in patients with advanced stages of lung cancer. We reported that in pleural effusions from primary lung cancer, the CD8+ T cell subpopulation, and particularly the terminally differentiated subset, is reduced compared to that of non-malignant effusions. We analyzed the participation of activation-induced cell death (AICD) and extrinsic pathways (type I or II) as mechanisms for the decrease in pleural effusion CD8+ T cell subpopulation. Pleural effusion or peripheral blood CD4+ and CD8+ T cells, from lung cancer patients, were stimulated with anti-CD3 antibody and analyzed for (a) apoptosis by annexin-V-binding and TUNEL assay, (b) transcript levels of Fas ligand (FasL) and TRAIL by real-time RT-PCR, (c) expression of FasL and TRAIL, measured as integrated mean fluorescence intensities (iMFI) by flow cytometry, (d) expression of Bcl-2 and BIM molecules, measured as MFI, and (e) apoptosis inhibition using caspase-8 and -9 inhibitors. Pleural effusion CD8+ T cells, but not CD4+ T cells, from cancer patients underwent AICD. Blocking FasL/Fas pathway protected from AICD. Upregulation of FasL and TRAIL expressions was found in pleural effusion CD8+ T cells, which also showed a subset of Bcl-2 low cells. In memory CD8+ T cells, AICD depended on both extrinsic and intrinsic apoptotic pathways. Hence, in the pleural space of lung cancer patients, AICD might compromise the antitumor function of CD8+ T cells.

  16. Measurement of phagocytic engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester.

    PubMed

    Aziz, Monowar; Yang, Weng-Lang; Wang, Ping

    2013-01-01

    Considerable interest has emerged towards phagocytosis of apoptotic cells, due to its intricate molecular mechanisms and important regulatory functions in development, homoeostasis, and immune tolerance. Impaired clearance of apoptotic cells leads to immune-mediated disorders. Current quantification methods of the engulfment of apoptotic cells by macrophages are potentially flawed by several limitations. Adherent macrophage populations are overlaid with apoptotic targets in suspension and then co-cultured for a definite period, which may give rise to two different features: (1) engulfed and (2) non-engulfed macrophages that are surface-bound cell populations. Rigorous washing to dislodge surface-bound apoptotic cells before assessment of phagocytosis may lead to loss of phagocytes, thereby skewing the apparent magnitude of the overall phagocytic response. There is a need for simple and reliable methods to clearly determine the internalization of apoptotic cells. In this unit, we demonstrate the use of pHrodo-succinimidyl ester (SE), a pH-sensitive fluorescent dye, to label the apoptotic cells for monitoring the phagocytosis. After engulfment, the intensity of pHrodo light emission will be elevated due to the pH change inside of macrophages. The shift of pHrodo light emission can be detected by a flow cytometer or using a fluorescence microscope.

  17. Apoptotic cells enhance pathogenesis of Listeria monocytogenes.

    PubMed

    Pattabiraman, Goutham; Palasiewicz, Karol; Visvabharathy, Lavanya; Freitag, Nancy E; Ucker, David S

    2017-04-01

    Infections by pathogenic microorganisms elicit host immune responses, which crucially limit those infections. Pathogens employ various strategies to evade host immunity. We have identified the exploitation of the repertoire of potent immunosuppressive responses elicited normally by apoptotic cells ("Innate Apoptotic Immunity"; IAI) as one of these strategies. In the case of Listeria monocytogenes, an environmentally ubiquitous, foodborne bacterial pathogen capable of causing life-threatening invasive disease in immunocompromised and elderly individuals, the induction of host cell apoptosis appears to play an important role in pathogenesis. Previous studies have documented extensive lymphocyte apoptosis resulting from L. monocytogenes infection and demonstrated paradoxically that lymphocyte-deficient animals exhibit diminished susceptibility to listerial pathogenicity. We speculated that the triggering of IAI following the induction of host cell apoptosis was responsible for enhanced pathogenesis, and that the administration of exogenous apoptotic cells would serve to exert this effect. Importantly, apoptotic cells, which are not susceptible to L. monocytogenes infection, do not provide a niche for bacterial replication. Our experiments confirm that apoptotic cells, including exogenous apoptotic cells induced to die independently of the pathogen, specifically enhance pathogenesis. The recognition of a role of apoptotic cells and Innate Apoptotic Immunity in microbial pathogenesis provides an intriguing and novel insight for therapeutic approaches for the control of pathogenic infections.

  18. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation

    PubMed Central

    Huynh, Mai-Lan N.; Fadok, Valerie A.; Henson, Peter M.

    2002-01-01

    Ingestion of apoptotic cells in vitro by macrophages induces TGF-β1 secretion, resulting in an anti-inflammatory effect and suppression of proinflammatory mediators. Here, we show in vivo that direct instillation of apoptotic cells enhanced the resolution of acute inflammation. This enhancement appeared to require phosphatidylserine (PS) on the apoptotic cells and local induction of TGF-β1. Working with thioglycollate-stimulated peritonea or LPS-stimulated lungs, we examined the effect of apoptotic cell uptake on TGF-β1 induction. Viable or opsonized apoptotic human Jurkat T cells, or apoptotic PLB-985 cells, human monomyelocytes that do not express PS during apoptosis, failed to induce TGF-β1. PS liposomes, or PS directly transferred onto the PLB-985 surface membranes, restored the TGF-β1 induction. Apoptotic cell instillation into LPS-stimulated lungs reduced proinflammatory chemokine levels in the bronchoalveolar lavage fluid (BALF). Additionally, total inflammatory cell counts in the BALF were markedly reduced 1–5 days after apoptotic cell instillation, an effect that could be reversed by opsonization or coinstillation of TGF-β1 neutralizing antibody. This reduction resulted from early decrease in neutrophils and later decreases in lymphocytes and macrophages. In conclusion, apoptotic cell recognition and clearance, via exposure of PS and ligation of its receptor, induce TGF-β1 secretion, resulting in accelerated resolution of inflammation. PMID:11781349

  19. Evidence for apoptotic cell death in Alzheimer's disease.

    PubMed

    Smale, G; Nichols, N R; Brady, D R; Finch, C E; Horton, W E

    1995-06-01

    We provide evidence for apoptosis in Alzheimer's disease using the in situ labeling technique TUNEL (terminal transferase-mediated dUTP-biotin nick end labeling). The technique specifically detects apoptotic cells by utilizing terminal transferase to incorporate biotinylated nucleotides into the fragmented DNA of apoptotic cells. The labeled cells are visualized by reaction with avidin peroxidase and a suitable substrate. Sections from the hippocampus of Alzheimer-diseased (AD) brains and non-AD brains were examined for apoptosis. While considerable variation in the quantity of apoptotic cells was observed among individual samples, the incidence of apoptosis in AD brains was elevated in comparison to age-matched, non-AD brains in specific regions of the hippocampal formation. Immunostaining indicated that both neurons and astrocytes were undergoing apoptosis, although the majority of the TUNEL-positive cells appeared to be glial, based on the location of the stained cells. These data suggest that apoptosis may be involved in both the primary neuronal cell loss and in the glial response that is a component of AD.

  20. EPO Mediates Neurotrophic, Neuroprotective, Anti-Oxidant, and Anti-Apoptotic Effects via Downregulation of miR-451 and miR-885-5p in SH-SY5Y Neuron-Like Cells.

    PubMed

    Alural, Begum; Duran, Gizem Ayna; Tufekci, Kemal Ugur; Allmer, Jens; Onkal, Zeynep; Tunali, Dogan; Genc, Kursad; Genc, Sermin

    2014-01-01

    Erythropoietin (EPO) is a neuroprotective cytokine, which has been applied in several animal models presenting neurological disorders. One of the proposed modes of action resulting in neuroprotection is post-transcriptional gene expression regulation. This directly brings to mind microRNAs (miRNAs), which are small non-coding RNAs that regulate gene expression at the post-transcriptional level. It has not yet been evaluated whether miRNAs participate in the biological effects of EPO or whether it, inversely, modulates specific miRNAs in neuronal cells. In this study, we employed miRNA and mRNA arrays to identify how EPO exerts its biological function. Notably, miR-451 and miR-885-5p are downregulated in EPO-treated SH-SY5Y neuronal-like cells. Accordingly, target prediction and transcriptome analysis of cells treated with EPO revealed an alteration of the expression of genes involved in apoptosis, cell survival, proliferation, and migration. Low expression of miRNAs in SH-SY5Y was correlated with high expression of their target genes, vascular endothelial growth factor A, matrix metallo peptidase 9 (MMP9), cyclin-dependent kinase 2 (CDK2), erythropoietin receptor, Mini chromosome maintenance complex 5 (MCM5), B-cell lymphoma 2 (BCL2), and Galanin (GAL). Cell viability, apoptosis, proliferation, and migration assays were carried out for functional analysis after transfection with miRNA mimics, which inhibited some biological actions of EPO such as neuroprotection, anti-oxidation, anti-apoptosis, and migratory effects. In this study, we report for the first time that EPO downregulates the expression of miRNAs (miR-451 and miR-885-5p) in SH-SY5Y neuronal-like cells. The correlation between the over-expression of miRNAs and the decrease in EPO-mediated biological effects suggests that miR-451 and miR-885-5p may play a key role in the mediation of biological function.

  1. Mycobacterium tuberculosis blocks annexin-1 crosslinking and thus apoptotic envelope completion on infected cells to maintain virulence

    PubMed Central

    Gan, Huixian; Lee, Jinhee; Ren, Fucheng; Chen, Minjian; Kornfeld, Hardy; Remold, Heinz G.

    2017-01-01

    Macrophages infected with attenuated Mycobacterium tuberculosis strain H37Ra become apoptotic, limiting bacterial replication and facilitating antigen presentation. Here, we demonstrate that cells infected with H37Ra became apoptotic after formation of an apoptotic envelope on their surface was complete. This process required exposure of phosphatidylserine on the cell surface followed by deposition of the phospholipid-binding protein annexin-1 and then transglutaminase-mediated crosslinking of annexin-1 via its N-terminal domain. In macrophages infected with virulent strain H37Rv, in contrast, the N-terminal domain of annexin-1 was removed by proteolysis thus preventing completion of the apoptotic envelope, which results in macrophage death by necrosis. Host defense of virulent Mycobacterium tuberculosis thus occurs by failure to form the apoptotic envelope, which leads to macrophage necrosis and dissemination of infection in the lung. PMID:18794848

  2. Intercellular transfer of apoptotic signals via electrofusion

    SciTech Connect

    Park, Jin Suk; Lee, Wilson; McCulloch, Christopher A.

    2012-05-01

    We determined whether cells that are induced to undergo anoikis by matrix detachment can initiate apoptosis in healthy cells following electroporation-induced fusion. Separate populations of MDCK cells undergoing anoikis and stained with FITC-annexin or viable MDCK cells that were labeled with spectrally discrete fluorescent beads were electroporated. Cells were analyzed by flow cytometry for enumeration of viable cells with beads, apoptotic cells or fused cells. Electroporation promoted a 49-fold increase of the percentage of viable cells that had fused with apoptotic cells. Apoptotic cell-viable cell fusions were 8-fold more likely to not attach to cell culture plastic and 2.3-fold less likely to proliferate after 24 hr incubation than viable cell fusion controls. These data demonstrate that apoptotic signals can be transferred between cells by electrofusion, possibly suggesting a novel investigative approach for optimizing targeted cell deletion in cancer treatment.

  3. An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure.

    PubMed

    Segawa, Katsumori; Nagata, Shigekazu

    2015-11-01

    Apoptosis and the clearance of apoptotic cells are essential processes in animal development and homeostasis. For apoptotic cells to be cleared, they must display an 'eat me' signal, most likely phosphatidylserine (PtdSer) exposure, which prompts phagocytes to engulf the cells. PtdSer, which is recognized by several different systems, is normally confined to the cytoplasmic leaflet of the plasma membrane by a 'flippase'; apoptosis activates a 'scramblase' that quickly exposes PtdSer on the cell surface. The molecules that flip and scramble phospholipids at the plasma membrane have recently been identified. Here we discuss recent findings regarding the molecular mechanisms of apoptotic PtdSer exposure and the clearance of apoptotic cells.

  4. Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase

    PubMed Central

    Ravishankar, Buvana; Liu, Haiyun; Shinde, Rahul; Chandler, Phillip; Baban, Babak; Tanaka, Masato; Munn, David H.; Mellor, Andrew L.; Karlsson, Mikael C. I.; McGaha, Tracy L.

    2012-01-01

    Tolerance to self-antigens present in apoptotic cells is critical to maintain immune-homeostasis and prevent systemic autoimmunity. However, mechanisms that sustain self-tolerance are poorly understood. Here we show that systemic administration of apoptotic cells to mice induced splenic expression of the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). IDO expression was confined to the splenic marginal zone and was abrogated by depletion of CD169+ cells. Pharmacologic inhibition of IDO skewed the immune response to apoptotic cells, resulting in increased proinflammatory cytokine production and increased effector T-cell responses toward apoptotic cell-associated antigens. Presymptomatic lupus-prone MRLlpr/lpr mice exhibited abnormal elevated IDO expression in the marginal zone and red pulp and inhibition of IDO markedly accelerated disease progression. Moreover, chronic exposure of IDO-deficient mice to apoptotic cells induced a lupus-like disease with serum autoreactivity to double-stranded DNA associated with renal pathology and increased mortality. Thus, IDO limits innate and adaptive immunity to apoptotic self-antigens and IDO-mediated regulation inhibits inflammatory pathology caused by systemic autoimmune disease. PMID:22355111

  5. A Novel Anticancer Agent, 8-Methoxypyrimido[4′,5′:4,5]thieno(2,3-b) Quinoline-4(3H)-One Induces Neuro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and -Independent Apoptotic Pathways

    PubMed Central

    Sahu, Upasana; Sidhar, Himakshi; Ghate, Pankaj S.; Advirao, Gopal M.; Raghavan, Sathees C.; Giri, Ranjit K.

    2013-01-01

    Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido [4′,5′:4,5]thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly (ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively

  6. Helicobacter pylori infection inhibits phagocyte clearance of apoptotic gastric epithelial cells.

    PubMed

    Bimczok, Diane; Smythies, Lesley E; Waites, Ken B; Grams, Jayleen M; Stahl, Richard D; Mannon, Peter J; Peter, Shajan; Wilcox, C Mel; Harris, Paul R; Das, Soumita; Ernst, Peter B; Smith, Phillip D

    2013-06-15

    Increased apoptotic death of gastric epithelial cells is a hallmark of Helicobacter pylori infection, and altered epithelial cell turnover is an important contributor to gastric carcinogenesis. To address the fate of apoptotic gastric epithelial cells and their role in H. pylori mucosal disease, we investigated phagocyte clearance of apoptotic gastric epithelial cells in H. pylori infection. Human gastric mononuclear phagocytes were analyzed for their ability to take up apoptotic epithelial cells (AECs) in vivo using immunofluorescence analysis. We then used primary human gastric epithelial cells induced to undergo apoptosis by exposure to live H. pylori to study apoptotic cell uptake by autologous monocyte-derived macrophages. We show that HLA-DR(+) mononuclear phagocytes in human gastric mucosa contain cytokeratin-positive and TUNEL-positive AEC material, indicating that gastric phagocytes are involved in AEC clearance. We further show that H. pylori both increased apoptosis in primary gastric epithelial cells and decreased phagocytosis of the AECs by autologous monocyte-derived macrophages. Reduced macrophage clearance of apoptotic cells was mediated in part by H. pylori-induced macrophage TNF-α, which was expressed at higher levels in H. pylori-infected, compared with uninfected, gastric mucosa. Importantly, we show that H. pylori-infected gastric mucosa contained significantly higher numbers of AECs and higher levels of nonphagocytosed TUNEL-positive apoptotic material, consistent with a defect in apoptotic cell clearance. Thus, as shown in other autoimmune and chronic inflammatory diseases, insufficient phagocyte clearance may contribute to the chronic and self-perpetuating inflammation in human H. pylori infection.

  7. Ras Homolog Enriched in Brain (Rheb) Enhances Apoptotic Signaling*

    PubMed Central

    Karassek, Sascha; Berghaus, Carsten; Schwarten, Melanie; Goemans, Christoph G.; Ohse, Nadine; Kock, Gerd; Jockers, Katharina; Neumann, Sebastian; Gottfried, Sebastian; Herrmann, Christian; Heumann, Rolf; Stoll, Raphael

    2010-01-01

    Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). Because of the well established potential of activated Ras to promote survival, we sought to investigate the ability of Rheb signaling to phenocopy Ras. We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, TNFα, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced by UV light or TNFα but did not prevent Rheb-mediated apoptosis. To gain structural insight into the signaling mechanisms, we determined the structure of Rheb-GDP by NMR. The complex adopts the typical canonical fold of RasGTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV or TNFα-induced apoptosis and suppressed enhancement by Rheb overexpression. In conclusion, Rheb-mTOR activation not only promotes normal cell growth but also enhances apoptosis in response to diverse toxic stimuli via an ASK-1-mediated mechanism. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications. PMID:20685651

  8. Gene polymorphisms, apoptotic capacity and cancer risk.

    PubMed

    Imyanitov, Evgeny N

    2009-04-01

    Programmed cell death has been implicated in various aspects of cancer development. Apoptotic capacity is a subject of significant interindividual variations, which are largely attributed to hereditary traits. Single nucleotide polymorphisms (SNPs) located within cell death genes may influence cancer risk in various ways. Low activity of apoptosis may favor cancer development because of the failure to eliminate cellular clones carrying DNA damage and propensity to inflammation, but may also protect against malignancy due to preservation of antitumor immune cells. Phenotyping studies assessing cell death rate in cancer patients versus healthy controls are limited in number and produced controversial results. TP53 R72P polymorphism is the only SNP whose functional impact on apoptotic response has been replicated in independent investigations. Intriguingly, meta-analysis of TP53 genotyping studies has provided evidence for the association between apoptosis-deficient TP53 genotype and tumor susceptibility. Systematic analysis of cancer-predisposing relevance of other apoptotic gene SNPs remains to be done.

  9. Detection of apoptotic cells using immunohistochemistry.

    PubMed

    Newbold, Andrea; Martin, Ben P; Cullinane, Carleen; Bots, Michael

    2014-11-03

    Immunohistochemistry is commonly used to show the presence of apoptotic cells in situ. In this protocol, B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples are fixed and sectioned, and fragmented DNA (a feature of apoptotic cells) is end-labeled by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Immunohistochemical methods are then used to detect the labeled DNA and identify B-cell lymphoma cells in the last stage of apoptosis. Because the assay can lead to false-positive results, it is advisable to carry out an additional assay (e.g., immunohistochemistry for active caspase-3) to confirm the presence of apoptotic cells.

  10. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes.

    PubMed

    Fadok, V A; Bratton, D L; Frasch, S C; Warner, M L; Henson, P M

    1998-07-01

    Exposure of phosphatidylserine on the outer leaflet of the plasma membrane is a surface change common to many apoptotic cells. Normally restricted to the inner leaflet, phosphatidylserine appears as a result of decreased aminophospholipid translocase activity and activation of a calcium-dependent scramblase. Phosphatidylserine exposure has several potential biological consequences, one of which is recognition and removal of the apoptotic cell by phagocytes. It is still not clear which receptors mediate PS recognition on apoptotic cells; however, several interesting candidates have been proposed. These include the Class B scavenger and thrombospondin receptor CD36, an oxLDL receptor (CD68), CD14, annexins, beta2 glycoprotein I, gas-6 and a novel activity expressed on macrophages stimulated with digestible particles such as beta-glucan. Whether PS is the sole ligand recognized by phagocytes or whether it associated with other molecules to form a complex ligand remains to be determined.

  11. The role of intrinsic apoptotic signaling in hemorrhagic shock-induced microvascular endothelial cell barrier dysfunction.

    PubMed

    Sawant, Devendra A; Tharakan, Binu; Hunter, Felicia A; Childs, Ed W

    2014-11-01

    Hemorrhagic shock leads to endothelial cell barrier dysfunction resulting in microvascular hyperpermeability. Hemorrhagic shock-induced microvascular hyperpermeability is associated with worse clinical outcomes in patients with traumatic injuries. The results from our laboratory have illustrated a possible pathophysiological mechanism showing involvement of mitochondria-mediated "intrinsic" apoptotic signaling in regulating hemorrhagic shock-induced microvascular hyperpermeability. Hemorrhagic shock results in overexpression of Bcl-2 family of pro-apoptotic protein, BAK, in the microvascular endothelial cells. The increase in BAK initiates "intrinsic" apoptotic signaling cascade with the release of mitochondrial cytochrome c in the cytoplasm and activation of downstream effector caspase-3, leading to loss of endothelial cell barrier integrity. Thus, this review article offers a brief overview of important findings from our past and present research work along with new leads for future research. The summary of our research work will provide information leading to different avenues in developing novel strategies against microvascular hyperpermeability following hemorrhagic shock.

  12. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers.

    PubMed

    LaBelle, James L; Katz, Samuel G; Bird, Gregory H; Gavathiotis, Evripidis; Stewart, Michelle L; Lawrence, Chelsea; Fisher, Jill K; Godes, Marina; Pitter, Kenneth; Kung, Andrew L; Walensky, Loren D

    2012-06-01

    Cancer cells subvert the natural balance between cellular life and death, achieving immortality through pathologic enforcement of survival pathways and blockade of cell death mechanisms. Pro-apoptotic BCL-2 family proteins are frequently disarmed in relapsed and refractory cancer through genetic deletion or interaction-based neutralization by overexpressed antiapoptotic proteins, resulting in resistance to chemotherapy and radiation treatments. New pharmacologic strategies are urgently needed to overcome these formidable apoptotic blockades. We harnessed the natural killing activity of BCL-2-interacting mediator of cell death (BIM), which contains one of the most potent BH3 death domains of the BCL-2 protein family, to restore BH3-dependent cell death in resistant hematologic cancers. A hydrocarbon-stapled peptide modeled after the BIM BH3 helix broadly targeted BCL-2 family proteins with high affinity, blocked inhibitory antiapoptotic interactions, directly triggered proapoptotic activity, and induced dose-responsive and BH3 sequence-specific cell death of hematologic cancer cells. The therapeutic potential of stapled BIM BH3 was highlighted by the selective activation of cell death in the aberrant lymphoid infiltrates of mice reconstituted with BIM-deficient bone marrow and in a human AML xenograft model. Thus, we found that broad and multimodal targeting of the BCL-2 family pathway can overcome pathologic barriers to cell death.

  13. Modafinil Abrogates Methamphetamine-Induced Neuroinflammation and Apoptotic Effects in the Mouse Striatum

    PubMed Central

    Goitia, Belen; Garcia-Rill, Edgar; Krasnova, Irina N.; Cadet, Jean Lud; Urbano, Francisco J.; Bisagno, Veronica

    2012-01-01

    Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4×5 mg/kg, i.p., 2 h apart) and modafinil co-administration (2×90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections) on glial cells (microglia and astroglia). We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum. PMID:23056363

  14. The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis.

    PubMed

    Sánchez-Alcázar, José A; Rodríguez-Hernández, Angeles; Cordero, Mario D; Fernández-Ayala, Daniel J M; Brea-Calvo, Gloria; Garcia, Katherina; Navas, Plácido

    2007-07-01

    It has recently been shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis. We demonstrate that this microtubule reformation occurs in many cell types and under different apoptotic stimuli. We confirm that the apoptotic microtubule network possesses a novel organization, whose nucleation appears independent of conventional gamma-tubulin ring complex containing structures. Our analysis suggests that microtubules are closely associated with the plasma membrane, forming a cortical ring or cellular "cocoon". Concomitantly other components of the cytoskeleton, such as actin and cytokeratins disassemble. We found that colchicine-mediated disruption of apoptotic microtubule network results in enhanced plasma membrane permeability and secondary necrosis, suggesting that the reformation of a microtubule cytoskeleton plays an important role in preserving plasma membrane integrity during apoptosis. Significantly, cells induced to enter apoptosis in the presence of the pan-caspase inhibitor z-VAD, nevertheless form microtubule-like structures suggesting that microtubule formation is not dependent on caspase activation. In contrast we found that treatment with EGTA-AM, an intracellular calcium chelator, prevents apoptotic microtubule network formation, suggesting that intracellular calcium may play an essential role in the microtubule reformation. We propose that apoptotic microtubule network is required to maintain plasma membrane integrity during the execution phase of apoptosis.

  15. Pro-apoptotic Bid is required for the resolution of the effector phase of inflammatory arthritis

    PubMed Central

    Scatizzi, John C; Hutcheson, Jack; Bickel, Emily; Haines, G Kenneth; Perlman, Harris

    2007-01-01

    Rheumatoid arthritis is an autoimmune disease characterized by hyperplasia of the synovial lining and destruction of cartilage and bone. Recent studies have suggested that a lack of apoptosis contributes to the hyperplasia of the synovial lining and to the failure in eliminating autoreactive cells. Mice lacking Fas or Bim, two pro-apoptotic proteins that mediate the extrinsic and intrinsic death cascades, respectively, develop enhanced K/BxN serum transfer-induced arthritis. Since the pro-apoptotic protein Bid functions as an intermediate between the extrinsic and intrinsic apoptotic pathways, we examined the role that it plays in inflammatory arthritis. Mice deficient in Bid (Bid-/-) show a delay in the resolution of K/BxN serum transfer-induced arthritis. Bid-/- mice display increased inflammation, bone destruction, and pannus formation compared to wild-type mice. Furthermore, Bid-/- mice have elevated levels of CXC chemokine and IL-1β in serum, which are associated with more inflammatory cells throughout the arthritic joint. In addition, there are fewer apoptotic cells in the synovium of Bid-/- compared to Wt mice. These data suggest that extrinsic and intrinsic apoptotic pathways cooperate through Bid to limit development of inflammatory arthritis. PMID:17509138

  16. Cadmium induces an apoptotic response in sea urchin embryos

    PubMed Central

    Agnello, Maria; Filosto, Simone; Scudiero, Rosaria; Rinaldi, Anna M.; Roccheri, Maria C.

    2007-01-01

    Cadmium is a heavy metal toxic for living organisms even at low concentrations. It does not have any biological role, and since it is a permanent metal ion, it is accumulated by many organisms. In the present paper we have studied the apoptotic effects of continuous exposure to subacute/sublethal cadmium concentrations on a model system: Paracentrotus lividus embryos. We demonstrated, by atomic absorption spectrometry, that the intracellular amount of metal increased during exposure time. We found, using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, that long treatments with cadmium triggered a severe DNA fragmentation. We demonstrated, by immunocytochemistry on whole-mount embryos, that treatment with cadmium causes activation of caspase-3 and cleavage of death substrates α-fodrin and lamin A. Incubating the embryos since fertilization with Z-DEVD FMK, a caspase-3 inhibitor, we found, by immunocytochemistry, that cleavage by caspase-3 and cleavage of death substrates were inactivated. PMID:17441506

  17. Resin monomer 2-hydroxyethyl methacrylate (HEMA) is a potent inducer of apoptotic cell death in human and mouse cells.

    PubMed

    Paranjpe, A; Bordador, L C F; Wang, M-Y; Hume, W R; Jewett, A

    2005-02-01

    Mechanisms by which the resin monomer 2-hydroxyethyl methacrylate (HEMA) induces hypersensitivity reactions in humans are not well-established, nor have the direct effects of HEMA on cell death been fully characterized. The objective of this study was to establish whether HEMA is capable of inducing apoptotic cell death, and whether differences exist in the levels of apoptotic death induced by HEMA in cells obtained from healthy individuals and from patients with established HEMA hypersensitivity. HEMA induced apoptotic death in Peripheral Blood Mononuclear Cells (PBMCs) obtained from both healthy and HEMA-sensitized patients and in the murine RAW cells in a dose-dependent manner. However, induction of cell death by HEMA was lower in PBMCs obtained from patients in comparison with healthy individuals. Studies reported in this paper demonstrate that HEMA induces apoptotic death, and that decreased susceptibility of lymphocytes to HEMA-mediated death might be an important mechanism for the generation and persistence of hypersensitivity reactions in patients.

  18. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    SciTech Connect

    Herbert, Katharine J.; Cook, Anthony L. Snow, Elizabeth T.

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.

  19. Skeletal muscle stem cells express anti-apoptotic ErbB receptors during activation from quiescence

    SciTech Connect

    Golding, Jon P. . E-mail: j.p.golding@open.ac.uk; Calderbank, Emma; Partridge, Terence A.; Beauchamp, Jonathan R.

    2007-01-15

    To be effective for tissue repair, satellite cells (the stem cells of adult muscle) must survive the initial activation from quiescence. Using an in vitro model of satellite cell activation, we show that erbB1, erbB2 and erbB3, members of the EGF receptor tyrosine kinase family, appear on satellite cells within 6 h of activation. We show that signalling via erbB2 provides an anti-apoptotic survival mechanism for satellite cells during the first 24 h, as they progress to a proliferative state. Inhibition of erbB2 signalling with AG825 reduced satellite cell numbers, concomitant with elevated caspase-8 activation and TUNEL labelling of apoptotic satellite cells. In serum-free conditions, satellite cell apoptosis could be largely prevented by a mixture of erbB1, erbB3 and erbB4 ligand growth factors, but not by neuregulin alone (erbB3/erbB4 ligand). Furthermore, using inhibitors specific to discrete intracellular signalling pathways, we identify MEK as a pro-apoptotic mediator, and the erbB-regulated factor STAT3 as an anti-apoptotic mediator during satellite cell activation. These results implicate erbB2 signalling in the preservation of a full compliment of satellite cells as they activate in the context of a damaged muscle.

  20. Fas transduces dual apoptotic and trophic signals in hematopoietic progenitors.

    PubMed

    Pearl-Yafe, Michal; Stein, Jerry; Yolcu, Esma S; Farkas, Daniel L; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir

    2007-12-01

    Stem cells and progenitors are often required to realize their differentiation potential in hostile microenvironments. The Fas/Fas ligand (FasL) interaction is a major effector pathway of apoptosis, which negatively regulates the expansion of differentiated hematopoietic cells. The involvement of this molecular interaction in the function of hematopoietic stem and progenitor cells is not well understood. In the murine syngeneic transplant setting, both Fas and FasL are acutely upregulated in bone marrow-homed donor cells; however, the Fas(+) cells are largely insensitive to FasL-induced apoptosis. In heterogeneous populations of lineage-negative (lin(-)) bone marrow cells and progenitors isolated by counterflow centrifugal elutriation, trimerization of the Fas receptor enhanced the clonogenic activity. Inhibition of caspases 3 and 8 did not affect the trophic signals mediated by Fas, yet it efficiently blocked the apoptotic pathways. Fas-mediated tropism appears to be of physiological significance, as pre-exposure of donor cells to FasL improved the radioprotective qualities of hematopoietic progenitors, resulting in superior survival of myeloablated hosts. Under these conditions, the activity of long-term reconstituting cells was not affected, as determined in sequential secondary and tertiary transplants. Dual caspase-independent tropic and caspase-dependent apoptotic signaling place the Fas receptor at an important junction of activation and death. This regulatory mechanism of hematopoietic homeostasis activates progenitors to promote the recovery from aplasia and converts into a negative regulator in distal stages of cell differentiation. Disclosure of potential conflicts of interest is found at the end of this article.

  1. Stabilization of apoptotic cells: generation of zombie cells.

    PubMed

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-08-14

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn(2+) (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy.

  2. Stabilization of apoptotic cells: generation of zombie cells

    PubMed Central

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-01-01

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy. PMID:25118929

  3. Cancer therapeutics: Targeting the apoptotic pathway.

    PubMed

    Khan, Khurum H; Blanco-Codesido, Montserrat; Molife, L Rhoda

    2014-06-01

    Apoptosis, a physiological process of programmed cell death, is disrupted in various malignancies. It has been exploited as an anti-cancer strategy traditionally by inducing DNA damage with chemotherapy and radiotherapy. With an increased understanding of the intrinsic and extrinsic pathways of apoptosis in recent years, novel approaches of targeting the apoptotic pathways have been tested in pre-clinical and clinical models. There are several early phase clinical trials investigating the therapeutic role of pro-apoptotic agents, both as single agents and in combination. In this review, we examine such treatment strategies, detailing the various compounds currently under clinical investigation, their potential roles in cancer therapeutics, and discussing approaches to their optimal use in the clinic.

  4. Apoptotic death sensor: an organelle's alter ego?

    PubMed

    Bratton, S B; Cohen, G M

    2001-06-01

    Caspases are intracellular cysteine proteases that are primarily responsible for the stereotypic morphological and biochemical changes that are associated with apoptosis. Caspases are often activated by the apoptotic protease-activating factor 1 (APAF-1) apoptosome, a complex that is formed following mitochondrial release of cytochrome c in response to many death-inducing stimuli. Both pro- and anti-apoptotic BCL-2 family members regulate apoptosis, primarily by their effects on mitochondria, whereas many inhibitor of apoptosis proteins (IAPs) regulate apoptosis by directly inhibiting distinct caspases. Exposure of cells to chemicals and radiation, as well as loss of trophic stimuli, perturb cellular homeostasis and, depending on the type of cellular stress, particular or multiple organelles appear to 'sense' the damage and signal the cell to undergo apoptosis by stimulating the formation of unique and/or common caspase-activating complexes.

  5. Antiproliferative and apoptotic effects of spanish honeys

    PubMed Central

    Morales, Paloma; Haza, Ana Isabel

    2013-01-01

    Background: Current evidence supports that consumption of polyphenols has beneficial effects against numerous diseases mostly associated with their antioxidant activity. Honey is a good source of antioxidants since it contains a great variety of phenolic compounds. Objective: The main objective of this work was to investigate the antiproliferative and apoptotic effects of three crude commercial honeys of different floral origin (heather, rosemary and polyfloral honey) from Madrid Autonomic Community (Spain) as well as of an artificial honey in human peripheral blood promyelocytic leukemia cells (HL-60). Material and Methods: HL-60 cells were cultured in the presence of honeys at various concentrations for up to 72 hours and the percentage of cell viability was evaluated by MTT assay. Apoptotic cells were identified by chromatin condensation and flow cytometry analysis. ROS production was determined using 2´,7´-dichlorodihydrofluorescein diacetate (H2DCFDA). Results: The three types of crude commercial honey induced apoptosis in a concentration and time dependent-manner. In addition, honeys with the higher phenolic content, heather and polyfloral, were the most effective to induce apoptosis in HL-60 cells. However, honeys did not generate reactive oxygen species (ROS) and N-acetyl-L-cysteine (NAC) could not block honeys-induced apoptosis in HL-60 cells. Conclusion: These data support that honeys induced apoptosis in HL-60 cells through a ROS-independent cell death pathway. Moreover, our findings indicate that the antiproliferative and apoptotic effects of honey varied according to the floral origin and the phenolic content. PMID:23930007

  6. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting

    PubMed Central

    Atkin-Smith, Georgia K.; Paone, Stephanie; Zanker, Damien J.; Duan, Mubing; Phan, Than K.; Chen, Weisan; Hulett, Mark D.; Poon, Ivan K. H.

    2017-01-01

    Apoptotic bodies (ApoBDs) are membrane-bound extracellular vesicles that can mediate intercellular communication in physiological and pathological settings. By combining recently developed analytical strategies with fluorescence-activated cell sorting (FACS), we have developed a method that enables the isolation of ApoBDs from cultured cells to 99% purity. In addition, this approach also enables the identification and isolation of cell type-specific ApoBDs from tissue, bodily fluid and blood-derived samples. PMID:28057919

  7. Interaction of pro-apoptotic protein HGTD-P with heat shock protein 90 is required for induction of mitochondrial apoptotic cascades.

    PubMed

    Kim, Jee-Youn; Kim, Su-Mi; Ko, Jeong-Hun; Yim, Ji-Hye; Park, Jin-Hae; Park, Jae-Hoon

    2006-05-29

    HGTD-P is a hypoxia-responsive pro-apoptotic protein that transmits hypoxic signals directly to mitochondria. When overexpressed, HGTD-P induces cell death via typical mitochondrial apoptotic cascades. However, much is unknown about post-transcriptional modification and signaling networks of HGTD-P in association with cell death-regulating proteins. We performed yeast two-hybrid screening to identify the molecules involved in HGTD-P-mediated cell death pathways. In this study, we show that heat shock protein 90 physically interacts with HGTD-P and that suppression of Hsp90 activity by low concentrations of geldanamycin reduced HGTD-P-induced mitochondrial catastrophe through inhibition of mitochondrial translocation of HGTD-P.

  8. Stabilization Of Apoptotic Cells: Generation Of Zombie Cells.

    PubMed

    Sánchez Alcázar, José A; Oropesa Ávila, Manuel; Andrade Talavera, Yuniesky; Garrido Maraver, Juan; de Lavera, Isabel; de la Mata, Mario; Cotán, David; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer Gómez, Elisabet; Rodríguez Moreno, Antonio

    2015-08-01

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. We were able by using a cocktail composed of taxol (a microtubule stabilizer), Zn(2+) (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant) to stabilize H460 apoptotic cells in cell cultures for at least 72hours preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cells characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels, plasma membrane potential, PS externalization and ability of being phagocytosed. Stabilized apoptotic cells can be considered as dying cells in which the cellular cortex and plasma membrane are maintained intact or alive. In a metaphorical sense, we can consider them as "living dead" or "zombie cells". Stabilization of apoptotic cells can be used for reliable detection and quantification of apoptosis in cultured cells and may allow a safer administration of apoptotic cells in clinical applications. Furthermore, it opens new avenues in the functional reconstruction of apoptotic cells for longer preservation.

  9. PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines

    PubMed Central

    Yoon, Y-S; Kim, S-Y; Kim, M-J; Lim, J-H; Cho, M-S; Kang, J L

    2015-01-01

    Changes in macrophage phenotype have been implicated in apoptotic cell-mediated immune modulation via induction of peroxisome proliferator-activated receptor-γ (PPARγ). In this study, we characterized PPARγ induction by apoptotic cell instillation over the course of bleomycin-induced lung injury in C57BL/6 mice. Next, the role of PPARγ activation in resolving lung inflammation and fibrosis was investigated. Our data demonstrate that apoptotic cell instillation after bleomycin results in immediate and prolonged enhancement of PPARγ mRNA and protein in alveolar macrophages and lung. Moreover, PPARγ activity and expression of its target molecules, including CD36, macrophage mannose receptor, and arginase 1, were persistently enhanced following apoptotic cell instillation. Coadministration of the PPARγ antagonist, GW9662, reversed the enhanced efferocytosis, and the reduced proinflammatory cytokine expression, neutrophil recruitment, myeloperoxidase activity, hydroxyproline contents, and fibrosis markers, including type 1 collagen α2, fibronectin and α-smooth muscle actin (α-SMA), in the lung by apoptotic cell instillation. In addition, inhibition of PPARγ activity reversed the expression of transforming growth factor-β (TGF-β), interleukin (IL)-10, and hepatocyte growth factor (HGF). These findings indicate that one-time apoptotic cell instillation contributes to anti-inflammatory and antifibrotic responses via upregulation of PPARγ expression and subsequent activation, leading to regulation of efferocytosis and production of proresolving cytokines. PMID:25586556

  10. Engulfment and clearance of apoptotic cells based on a GlcNAc-binding lectin-like property of surface vimentin.

    PubMed

    Ise, Hirohiko; Goto, Mitsuaki; Komura, Kenta; Akaike, Toshihiro

    2012-06-01

    The clearance of apoptotic cells is important to maintain tissue homeostasis. The engulfment of apoptotic cells is performed by professional phagocytes, such as macrophages, and also by non-professional phagocytes, such as mesenchymal cells. Here, we show that vimentin, a cytoskeletal protein, functions as an engulfment receptor on neighboring phagocytes, which recognize O-linked β-N-acetylglucosamine (O-GlcNAc)-modified proteins from apoptotic cells as "eat me" ligands. Previously, we reported that vimentin possesses a GlcNAc-binding lectin-like property on cell surface. However, the physiological relevance of the surface localization and GlcNAc-binding property of vimentin remained unclear. In the present study, we observed that O-GlcNAc proteins from apoptotic cells interacted with the surface vimentin of neighboring phagocytes and that this interaction induced serine 71-phosphorylation and recruitment of vimentin to the cell surface of the neighboring phagocytes. Moreover, tetrameric vimentin that was disassembled by serine 71-phosphorylation possessed a GlcNAc-binding activity and was localized to the cell surface. We demonstrated our findings in vimentin-expressing common cell lines such as HeLa cells. Furthermore, during normal developmental processes, the phagocytic engulfment and clearance of apoptotic footplate cells in mouse embryos was mediated by the interaction of surface vimentin with O-GlcNAc proteins. Our results suggest a common mechanism for the clearance of apoptotic cells, through the interaction of surface vimentin with O-GlcNAc-modified proteins.

  11. Ebola Virus Does Not Block Apoptotic Signaling Pathways

    PubMed Central

    Olejnik, Judith; Alonso, Jesus; Schmidt, Kristina M.; Yan, Zhen; Wang, Wei; Marzi, Andrea; Ebihara, Hideki; Yang, Jinghua; Patterson, Jean L.; Ryabchikova, Elena

    2013-01-01

    Since viruses rely on functional cellular machinery for efficient propagation, apoptosis is an important mechanism to fight viral infections. In this study, we sought to determine the mechanism of cell death caused by Ebola virus (EBOV) infection by assaying for multiple stages of apoptosis and hallmarks of necrosis. Our data indicate that EBOV does not induce apoptosis in infected cells but rather leads to a nonapoptotic form of cell death. Ultrastructural analysis confirmed necrotic cell death of EBOV-infected cells. To investigate if EBOV blocks the induction of apoptosis, infected cells were treated with different apoptosis-inducing agents. Surprisingly, EBOV-infected cells remained sensitive to apoptosis induced by external stimuli. Neither receptor- nor mitochondrion-mediated apoptosis signaling was inhibited in EBOV infection. Although double-stranded RNA (dsRNA)-induced activation of protein kinase R (PKR) was blocked in EBOV-infected cells, induction of apoptosis mediated by dsRNA was not suppressed. When EBOV-infected cells were treated with dsRNA-dependent caspase recruiter (dsCARE), an antiviral protein that selectively induces apoptosis in cells containing dsRNA, virus titers were strongly reduced. These data show that the inability of EBOV to block apoptotic pathways may open up new strategies toward the development of antiviral therapeutics. PMID:23468487

  12. Role of apoptotic hepatocytes in HCV dissemination: regulation by acetaldehyde.

    PubMed

    Ganesan, Murali; Natarajan, Sathish Kumar; Zhang, Jinjin; Mott, Justin L; Poluektova, Larisa I; McVicker, Benita L; Kharbanda, Kusum K; Tuma, Dean J; Osna, Natalia A

    2016-06-01

    Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1β, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.

  13. Improvement of DC vaccine with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell carcinoma.

    PubMed

    Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Chen, Wei R; Wang, Xiuli

    2015-07-10

    Dendritic cell (DC) based vaccines have emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have achieved only limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated using electron microscopy, FACS, and ELISA. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with a mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including morphology maturation (enlargement of dendrites and increase of lysosomes), phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secrete IFN-γ and IL-12, and to induce T cell proliferation). Most interestingly, PDT-induced apoptotic tumor cells are more capable of potentiating maturation of DCs than PDT-treated or freeze/thaw treated necrotic tumor cells. ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumors in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing a DC-based cancer vaccine, which could improve the clinical application of PDT-DC vaccines.

  14. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation

    PubMed Central

    Lee, Yoonjung; Byun, Hee Sun; Seok, Jeong Ho; Park, Kyeong Ah; Won, Minho; Seo, Wonhyoung; Lee, So-Ra; Kang, Kidong; Sohn, Kyung-Cheol; Lee, Ill Young; Kim, Hyeong-Geug; Son, Chang Gue; Shen, Han-Ming; Hur, Gang Min

    2016-01-01

    Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades. PMID:27117478

  15. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    PubMed Central

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-01-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential

  16. Pro-apoptotic effects of nivalenol and deoxynivalenol trichothecenes in J774A.1 murine macrophages.

    PubMed

    Marzocco, Stefania; Russo, Rosario; Bianco, Giuseppe; Autore, Giuseppina; Severino, Lorella

    2009-08-25

    Nivalenol (NIV) and deoxynivalenol (DON) are trichothecenes mycotoxins produced by Fusarium fungi that occur in cereal grains alone or in combination. Several studies have shown that exposure to high concentrations of these mycotoxins resulted in decreased cell proliferation; however, the molecular mechanism underlying their activities are still partially known. In this study, we evaluated the effects of NIV and DON, alone and in combination, on J7741.A macrophages viability. The results of the current study show that both NIV and DON (10-100 microM) significantly stimulate apoptosis in J774A.1 macrophages in a concentration-dependent manner; in particular, NIV results a stronger pro-apoptotic effect than DON on cultured J774A.1 murine macrophages. No interactive effects were observed by exposing J774A.1 cells to both NIV and DON simultaneously. Pro-apoptotic activity induced by both mycotoxins seems to be essentially mediated by caspase-3 and is associated with a cell cycle blocking in G0/G1 phase. Moreover, our results show that NIV and DON are able to influence apoptotic pathway by ERK, pro-apoptotic protein Bax, caspase-3 and poly-ADP-ribose synthase (PARP), DNA repairing enzyme.

  17. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    SciTech Connect

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  18. Boolean Model of Yeast Apoptosis as a Tool to Study Yeast and Human Apoptotic Regulations

    PubMed Central

    Kazemzadeh, Laleh; Cvijovic, Marija; Petranovic, Dina

    2012-01-01

    Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested. PMID:23233838

  19. Apoptotic rate in patients with myelodisplastic syndrome treated with modulatory compounds of pro-apoptotic cytokines.

    PubMed

    Moldoveanu, Elena; Moicean, Andreea; Vidulescu, Cristina; Marta, Daciana; Colita, Adriana

    2003-01-01

    Excessive apoptosis has a central role in ineffective hematopoiesis in myelodysplastic syndrome (MDS). The aim of the study was to quantify apoptosis and Bcl-2 expression in patients with MDS and to use these parameters in the evaluation of treatment efficacy with compounds modulating proapoptotic cytokines. Bone marrow (BM) samples from eight MDS patients were studied: four with refractory anemia and four with refractory anemia with ringed sideroblasts. Two patients with Hodgkin disease without BM determination were studied for control. Therapy consisted in administration of pentoxyphylline, dexamethasone and ciprofloxacin. Biochemical assay of apoptosis and Bcl-2 was performed using annexin V-biotin conjugate antibody and anti-human Bcl-2 antibody respectively, followed by streptavidine-peroxidase conjugate, and peroxidase substrate. Ultrastructural investigation of BM samples was performed with standard electron microscopy techniques. Most of BM hematopoietic cells in the MDS patients had ultrastructural features of various stages of apoptosis including chromatin condensation and margination, cytoplasm condensation and budding of nuclear and plasma membranes to produce apoptotic bodies. Bcl-2 expression showed an inverse correlation with the rate of the apoptotic process. Periodic evaluation of these two parameters has shown an increase of Bcl-2 expression and a decrease of apoptotic rate in patients who had responded to the treatment. Response to the treatment was appreciated in accordance with their transfusion needs. Treatment efficiency diminished in time. The rate of apoptosis was inversely correlated with the level of Bcl-2 expression. These results confirm the importance of the apoptotic process evaluation in monitoring MDS treatment.

  20. VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia.

    PubMed

    Prezma, T; Shteinfer, A; Admoni, L; Raviv, Z; Sela, I; Levi, I; Shoshan-Barmatz, V

    2013-09-19

    The voltage-dependent anion channel 1 (VDAC1), localized in the outer mitochondrial membrane, mediates metabolic cross-talk between the mitochondrion and the cytoplasm and thus serves a fundamental role in cell energy metabolism. VDAC1 also plays a key role in mitochondria-mediated apoptosis, interacting with anti-apoptotic proteins. Resistance of cancer cells to apoptosis involves quenching the mitochondrial apoptotic pathway by over-expression of anti-apoptotic/pro-survival hexokinase (HK) and Bcl-2 family proteins, proteins that mediate their anti-apoptotic activities via interaction with VDAC1. Using specifically designed VDAC1-based cell-penetrating peptides, we targeted these anti-apoptotic proteins to prevent their pro-survival/anti-apoptotic activities. Anti-apoptotic proteins are expressed at high levels in B-cell chronic lymphocytic leukemia (CLL), an incurable disease requiring innovative new approaches to improve therapeutic outcome. CLL is characterized by a clonal accumulation of mature neoplastic B cells that are resistant to apoptosis. Specifically, we demonstrate that the VDAC1-based peptides (Antp-LP4 and N-Terminal-Antp) selectively kill peripheral blood mononuclear cells (PBMCs) obtained from CLL patients, yet spare those obtained from healthy donors. The cell death induction competence of the peptides was well correlated with the amount of double positive CD19/CD5 cancerous CLL PBMCs, further illustrating their selectivity toward cancer cells. Moreover, these VDAC1-based peptides induced apoptosis by activating the mitochondria-mediated pathway, reflected in membrane blebbing, condensation of nuclei, DNA fragmentation, release of mitochondrial cytochrome c, loss of mitochondrial membrane potential, decreased cellular ATP levels and detachment of HK, all leading to apoptotic cell death. Thus, the mode of action of the peptides involves decreasing energy production and inducing apoptosis. Over 27 versions of cell-penetrating VDAC1-based peptides

  1. Apoptotic cell clearance: basic biology and therapeutic potential

    PubMed Central

    Poon, Ivan K. H.; Lucas, Christopher D.

    2014-01-01

    Prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with a variety of inflammatory diseases and autoimmunity. Conversely, under certain conditions such as killing tumour cells by specific cell death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and anti-tumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies. PMID:24481336

  2. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death

    PubMed Central

    Fritsch, Jürgen; Fickers, Ricarda; Klawitter, Jan; Särchen, Vinzenz; Zingler, Philipp; Adam, Dieter; Janssen, Ottmar; Krause, Eberhard; Schütze, Stefan

    2016-01-01

    During apoptosis induction by TNF, the extrinsic and intrinsic apoptosis pathways converge at the lysosomal-mitochondrial interface. Earlier studies showed that the lysosomal aspartic protease Cathepsin D (CtsD) cleaves Bid to tBid, resulting in the amplification of the initial apoptotic cascade via mitochondrial outer membrane permeabilization (MOMP). The goal of this study was to identify further targets for CtsD that might be involved in activation upon death receptor ligation. Using a proteomics screen, we identified the heat shock protein 90 (HSP90) to be cleaved by CtsD after stimulation of U937 or other cell lines with TNF, FasL and TRAIL. HSP90 cleavage corresponded to apoptosis sensitivity of the cell lines to the different stimuli. After mutation of the cleavage site, HSP90 partially prevented apoptosis induction in U937 and Jurkat cells. Overexpression of the cleavage fragments in U937 and Jurkat cells showed no effect on apoptosis, excluding a direct pro-apoptotic function of these fragments. Pharmacological inhibition of HSP90 with 17AAG boosted ligand mediated apoptosis by enhancing Bid cleavage and caspase-9 activation. Together, we demonstrated that HSP90 plays an anti-apoptotic role in death receptor signalling and that CtsD-mediated cleavage of HSP90 sensitizes cells for apoptosis. These findings identify HSP90 as a potential target for cancer therapy in combination with death ligands (e.g. TNF or TRAIL). PMID:27716614

  3. In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila

    PubMed Central

    Tang, Ho Lam; Tang, Ho Man; Fung, Ming Chiu; Hardwick, J. Marie

    2017-01-01

    Caspases are the key mediators of apoptotic cell death via their proteolytic activity. When caspases are activated in cells to levels detectable by available technologies, apoptosis is generally assumed to occur shortly thereafter. Caspases can cleave many functional and structural components to cause rapid and complete cell destruction within a few minutes. However, accumulating evidence indicates that in normal healthy cells the same caspases have other functions, presumably at lower enzymatic levels. Studies of non-apoptotic caspase activity have been hampered by difficulties with detecting low levels of caspase activity and with tracking ultimate cell fate in vivo. Here, we illustrate the use of an ultrasensitive caspase reporter, CaspaseTracker, which permanently labels cells that have experienced caspase activity in whole animals. This in vivo dual color CaspaseTracker biosensor for Drosophila melanogaster transiently expresses red fluorescent protein (RFP) to indicate recent or on-going caspase activity, and permanently expresses green fluorescent protein (GFP) in cells that have experienced caspase activity at any time in the past yet did not die. Importantly, this caspase-dependent in vivo biosensor readily reveals the presence of non-apoptotic caspase activity in the tissues of organ systems throughout the adult fly. This is demonstrated using whole mount dissections of individual flies to detect biosensor activity in healthy cells throughout the brain, gut, malpighian tubules, cardia, ovary ducts and other tissues. CaspaseTracker detects non-apoptotic caspase activity in long-lived cells, as biosensor activity is detected in adult neurons and in other tissues at least 10 days after caspase activation. This biosensor serves as an important tool to uncover the roles and molecular mechanisms of non-apoptotic caspase activity in live animals. PMID:27929458

  4. Bax Regulates Production of Superoxide in Both Apoptotic and Nonapoptotic Neurons: Role of Caspases

    PubMed Central

    Kirkland, Rebecca A.; Saavedra, Geraldine M.; Cummings, Brian S.; Franklin, James L.

    2010-01-01

    A Bax- and, apparently, mitochondria-dependent increase in superoxide (O2.−) and other reactive oxygen species (ROS) occurs in apoptotic superior cervical ganglion (SCG) and cerebellar granule (CG) neurons. Here we show that Bax also lies upstream of ROS produced in nonapoptotic neurons and present evidence that caspases partially mediate the pro-oxidant effect of Bax. We used the O2.−-sensitive dye MitoSOX to monitor O2.− in neurons expressing different levels of Bax and mitochondrial superoxide dismutase (SOD2). Basal and apoptotic O2.− levels in both SCG and CG neurons were reduced in SOD2 wild-type (wt) cells having lower Bax concentrations. Apoptotic and nonapoptotic neurons from Bax-wt/SOD2-null but not Bax-null/SOD2-null mice had increased O2.− levels. A caspase inhibitor inhibited O2.− in both apoptotic and nonapoptotic SCG neurons. O2.− production increased when wt, but not Bax-null SCG neurons were permeabilized and treated with active caspase 3. There was no apoptosis and little increase in O2.− in SCG neurons from caspase 3-null mice exposed to an apoptotic stimulus. O2.− levels in nonapoptotic caspase 3-null SCG neurons were lower than in wt cells but not as low as in caspase inhibitor-treated cells. These data indicate that Bax lies upstream of most O2.− produced in neurons, that caspase 3 is required for increased O2.− production during neuronal apoptosis, that caspase 3 is partially involved in O2.− production in nonapoptotic neurons, and that other caspases may also be involved in Bax-dependent O2.− production in nonapoptotic cells. PMID:21123558

  5. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  6. Mangiferin Has an Additive Effect on the Apoptotic Properties of Hesperidin in Cyclopia sp. Tea Extracts

    PubMed Central

    Bartoszewski, Rafal; Hering, Anna; Marszałł, Marcin; Stefanowicz Hajduk, Justyna; Bartoszewska, Sylwia; Kapoor, Niren; Kochan, Kinga; Ochocka, Renata

    2014-01-01

    A variety of biological pro-health activities have been reported for mangiferin and hesperidin, two major phenolic compounds of Honeybush (Cyclopia sp.) tea extracts. Given their increasing popularity, there is a need for understanding the mechanisms underlying the biological effects of these compounds. In this study, we used real-time cytotoxicity cellular analysis of the Cyclopia sp. extracts on HeLa cells and found that the higher hesperidin content in non-fermented "green" extracts correlated with their higher cytotoxicity compared to the fermented extracts. We also found that mangiferin had a modulatory effect on the apoptotic effects of hesperidin. Quantitative PCR analysis of hesperidin-induced changes in apoptotic gene expression profile indicated that two death receptor pathway members, TRADD and TRAMP, were up regulated. The results of this study suggest that hesperidin mediates apoptosis in HeLa cells through extrinsic pathway for programmed cell death. PMID:24633329

  7. Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways

    PubMed Central

    Zeng, Hui; Wu, Huixia; Sloane, Valerie; Jones, Rheinallt; Yu, Yimin; Lin, Patricia; Gewirtz, Andrew T.; Neish, Andrew S.

    2015-01-01

    Flagellin, the primary structural component of bacterial flagella, is recognized by Toll-like receptor 5 (TLR5) present on the basolateral surface of intestinal epithelial cells. Utilizing biochemical assays of proinflammatory signaling pathways and mRNA expression profiling, we found that purified flagellin could recapitulate the human epithelial cell proinflammatory responses activated by flagellated pathogenic bacteria. Flagellin-induced proinflammatory activation showed similar kinetics and gene specificity as that induced by the classical endogenous proinflammatory cytokine TNF-α, although both responses were more rapid than that elicited by viable flagellated bacteria. Flagellin, like TNF-α, activated a number of antiapoptotic mediators, and pretreatment of epithelial cells with this bacterial protein could protect cells from subsequent bacterially mediated apoptotic challenge. However, when NF-κB-mediated or phosphatidylinositol 3-kinase/Akt proinflammatory signaling was blocked, flagellin could induce programmed cell death. Consistently, we demonstrate that flagellin and viable flagellate Salmonella induces both the extrinsic and intrinsic caspase activation pathways, with the extrinsic pathway (caspase 8) activated by purified flagellin in a TLR5-dependant fashion. We conclude that interaction of flagellin with epithelial cells induces caspase activation in parallel with proinflammatory responses. Such intertwining of proinflammatory and apoptotic signaling mediated by bacterial products suggests roles for host programmed cell death in the pathogenesis of enteric infections. PMID:16179598

  8. Antcin B and its ester derivative from Antrodia camphorata induce apoptosis in hepatocellular carcinoma cells involves enhancing oxidative stress coincident with activation of intrinsic and extrinsic apoptotic pathway.

    PubMed

    Hsieh, Yun-Chih; Rao, Yerra Koteswara; Whang-Peng, Jacqueline; Huang, Chi-Ying F; Shyue, Song-Kun; Hsu, Shih-Lan; Tzeng, Yew-Min

    2011-10-26

    The triterpenoids methylantcinate B (MAB) and antcin B (AB), isolated from the medicinal mushroom Antrodia camphorata , have been identified as strong cytotoxic agents against various type of cancer cells; however, the mechanisms of MAB- and AB-induced cytotoxicity have not been adequately explored. This study investigated the roles of caspase cascades, reactive oxygen species (ROS), DNA damage, mitochondrial disruption, and Bax and Bcl-2 proteins in MAB- and AB-induced apoptosis of hepatocellular carcinoma (HCC) HepG2 cells. Here, we showed that MAB and AB induced apoptosis in HepG2 cells, as characterized by increased DNA fragmentation, cleavage of PARP, sub-G1 population, chromatin condensation, loss of mitochondrial membrane potential, and release of cytochrome c. Increasing the levels of caspase-2, -3, -8, and -9 activities was involved in MAB- and AB-induced apoptosis, and they could be attenuated by inhibitors of specific caspases, indicating that MAB and AB triggered the caspase-dependent apoptotic pathway. Additionally, the enhanced apoptotic effect correlates with high expression of Fas, Fas ligand, as well as Bax and decreased protein levels of Bcl-(XL) and Bcl-2, suggesting that both the extrinsic and intrinsic apoptosis pathways were involved in the apoptotic processes. Incubation of HepG2 cells with antioxidant enzymes superoxide dismutase and catalase and antioxidants N-acetylcysteine and ascorbic acid attenuated the ROS generation and apoptosis induced by MAB and AB, which indicate that ROS plays a pivotal role in cell death. NADPH oxidase activation was observed in MAB- and AB-stimulated HepG2 cells; however, inhibition of such activation by diphenylamine significantly blocked MAB- and AB-induced ROS production and increased cell viability. Taken together, our results provide the first evidence that triterpenoids MAB and AB induced a NADPH oxidase-provoked oxidative stress and extrinsic and intrinsic apoptosis as a critical mechanism of cause cell

  9. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases.

    PubMed

    Lüthi, Alexander U; Cullen, Sean P; McNeela, Edel A; Duriez, Patrick J; Afonina, Inna S; Sheridan, Clare; Brumatti, Gabriela; Taylor, Rebecca C; Kersse, Kristof; Vandenabeele, Peter; Lavelle, Ed C; Martin, Seamus J

    2009-07-17

    Interleukin-33 (IL-33) is a member of the IL-1 family and is involved in polarization of T cells toward a T helper 2 (Th2) cell phenotype. IL-33 is thought to be activated via caspase-1-dependent proteolysis, similar to the proinflammatory cytokines IL-1 beta and IL-18, but this remains unproven. Here we showed that IL-33 was processed by caspases activated during apoptosis (caspase-3 and -7) but was not a physiological substrate for caspases associated with inflammation (caspase-1, -4, and -5). Furthermore, caspase-dependent processing of IL-33 was not required for ST2 receptor binding or ST2-dependent activation of the NF-kappaB transcription factor. Indeed, caspase-dependent proteolysis of IL-33 dramatically attenuated IL-33 bioactivity in vitro and in vivo. These data suggest that IL-33 does not require proteolysis for activation, but rather, that IL-33 bioactivity is diminished through caspase-dependent proteolysis within apoptotic cells. Thus, caspase-mediated proteolysis acts as a switch to dampen the proinflammatory properties of IL-33.

  10. Computational modeling of apoptotic signaling pathways induced by cisplatin

    PubMed Central

    2012-01-01

    Background Apoptosis is an essential property of all higher organisms that involves extremely complex signaling pathways. Mathematical modeling provides a rigorous integrative approach for analyzing and understanding such intricate biological systems. Results Here, we constructed a large-scale, literature-based model of apoptosis pathways responding to an external stimulus, cisplatin. Our model includes the key elements of three apoptotic pathways induced by cisplatin: death receptor-mediated, mitochondrial, and endoplasmic reticulum-stress pathways. We showed that cisplatin-induced apoptosis had dose- and time-dependent characteristics, and the level of apoptosis was saturated at higher concentrations of cisplatin. Simulated results demonstrated that the effect of the mitochondrial pathway on apoptosis was the strongest of the three pathways. The cross-talk effect among pathways accounted for approximately 25% of the total apoptosis level. Conclusions Using this model, we revealed a novel mechanism by which cisplatin induces dose-dependent cell death. Our finding that the level of apoptosis was affected by not only cisplatin concentration, but also by cross talk among pathways provides in silico evidence for a functional impact of system-level characteristics of signaling pathways on apoptosis. PMID:22967854

  11. Phytochemical profile and apoptotic activity of Onopordum cynarocephalum.

    PubMed

    Formisano, Carmen; Rigano, Daniela; Russo, Alessandra; Cardile, Venera; Caggia, Silvia; Apostolides Arnold, Nelly; Mari, Angela; Piacente, Sonia; Rosselli, Sergio; Senatore, Felice; Bruno, Maurizio

    2012-10-01

    A phytochemical investigation of acetone and chloroform extracts of the aerial parts of Onopordum cynarocephalum Boiss. et Blanche was carried out. It led to the isolation of two new sesquiterpenes, the elemane aldehyde (2) and the eudesmane (11), together with 15 known compounds: two lignans (1 and 15) and 13 sesquiterpenes (3-10, 12-14, 16, 17). The structures were elucidated by spectroscopic analyses, especially 1D and 2D NMR spectra. The anti-growth effect against three human melanoma cell lines, M14, A375, and A2058, of the different extracts and compounds of O. cynarocephalum was also investigated. Among them, the chloroform extract exhibited the strongest biological activity, while the most active compounds were the lignan arctigenin (1), and the sesquiterpenes, compounds 3, 5, and 6 belonging to the elemane type, and 7 belonging to the eudesmane type. Our data also demonstrate that acetone and chloroform extracts induce, in the A375 cell line, apoptotic cell death that could be related to an overall action of the compounds present, but in particular to the lignans arctigenin (1) and the sesquiterpenes compounds 3-8 and 16. In fact, these molecules were able to induce a high DNA fragmentation, correlated to a significant increase of the caspase-3 enzyme activity. Furthermore, apoptosis appears to be mediated, at least in part, via PTEN activity and the inhibition of Hsp70 expression.

  12. Genes of the Mitochondrial Apoptotic Pathway in Mytilus galloprovincialis

    PubMed Central

    Figueras, Antonio; Novoa, Beatriz

    2013-01-01

    Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress. PMID:23626691

  13. Protective effects of melittin on transforming growth factor-{beta}1 injury to hepatocytes via anti-apoptotic mechanism

    SciTech Connect

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun; Park, Yoon-Yub; Han, Sang-Mi; Park, Kwan-kyu

    2011-10-15

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytes were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

  14. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    PubMed

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  15. The Macrophage Phagocytic Receptor CD36 Promotes Fibrogenic Pathways on Removal of Apoptotic Cells during Chronic Kidney Injury

    PubMed Central

    Pennathur, Subramaniam; Pasichnyk, Katie; Bahrami, Nadia M.; Zeng, Lixia; Febbraio, Maria; Yamaguchi, Ikuyo; Okamura, Daryl M.

    2016-01-01

    The removal of apoptotic cells is an innate function of tissue macrophages; however, its role in disease progression is unclear. The present study was designed to investigate the role of macrophage CD36, a recognized receptor of apoptotic cells and oxidized lipids, in two models of kidney injury: unilateral ureteral obstruction (UUO) and ischemia reperfusion. To differentiate the macrophage CD36-specific effects in vivo, we generated CD36 chimeric mice by bone marrow transplantation and evaluated the two models. Fibrosis severity was substantially decreased after UUO with a corresponding decrease in matrix synthesis in macrophage CD36-deficient mice. Despite a reduction in fibrosis severity, a 56% increase in apoptotic cells was found without an increase in apoptotic effectors. In addition, a substantial reduction was observed in tumor necrosis factor-α and transforming growth factor-β1 mRNA levels and intracellular bioactive oxidized lipid levels in CD36-deficient macrophages. To validate the functional role of macrophage CD36, we performed unilateral ischemia reperfusion, followed by contralateral nephrectomy. Similarly, we found that the severity of fibrosis was reduced by 55% with a corresponding improvement in kidney function by 88% in macrophage CD36-deficient mice. Taken together, these data suggest that macrophage CD36 is a critical regulator of oxidative fibrogenic signaling and that CD36-mediated phagocytosis of apoptotic cells may serve as an important pathway in the progression of fibrosis. PMID:26092500

  16. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    PubMed Central

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  17. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.

    PubMed Central

    Fadok, V A; Bratton, D L; Konowal, A; Freed, P W; Westcott, J Y; Henson, P M

    1998-01-01

    Apoptosis in vivo is followed almost inevitably by rapid uptake into adjacent phagocytic cells, a critical process in tissue remodeling, regulation of the immune response, or resolution of inflammation. Phagocytosis of apoptotic cells by macrophages has been suggested to be a quiet process that does not lead to production of inflammatory mediators. Here we show that phagocytosis of apoptotic neutrophils (in contrast to immunoglobulin G-opsonized apoptotic cells) actively inhibited the production of interleukin (IL)-1beta, IL-8, IL-10, granulocyte macrophage colony-stimulating factor, and tumor necrosis factor-alpha, as well as leukotriene C4 and thromboxane B2, by human monocyte-derived macrophages. In contrast, production of transforming growth factor (TGF)-beta1, prostaglandin E2, and platelet-activating factor (PAF) was increased. The latter appeared to be involved in the inhibition of proinflammatory cytokine production because addition of exogenous TGF-beta1, prostaglandin E2, or PAF resulted in inhibition of lipopolysaccharide-stimulated cytokine production. Furthermore, anti-TGF-beta antibody, indomethacin, or PAF receptor antagonists restored cytokine production in lipopolysaccharide-stimulated macrophages that had phagocytosed apoptotic cells. These results suggest that binding and/or phagocytosis of apoptotic cells induces active antiinflammatory or suppressive properties in human macrophages. Therefore, it is likely that resolution of inflammation depends not only on the removal of apoptotic cells but on active suppression of inflammatory mediator production. Disorders in either could result in chronic inflammatory diseases. PMID:9466984

  18. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.

    PubMed

    Fadok, V A; Bratton, D L; Konowal, A; Freed, P W; Westcott, J Y; Henson, P M

    1998-02-15

    Apoptosis in vivo is followed almost inevitably by rapid uptake into adjacent phagocytic cells, a critical process in tissue remodeling, regulation of the immune response, or resolution of inflammation. Phagocytosis of apoptotic cells by macrophages has been suggested to be a quiet process that does not lead to production of inflammatory mediators. Here we show that phagocytosis of apoptotic neutrophils (in contrast to immunoglobulin G-opsonized apoptotic cells) actively inhibited the production of interleukin (IL)-1beta, IL-8, IL-10, granulocyte macrophage colony-stimulating factor, and tumor necrosis factor-alpha, as well as leukotriene C4 and thromboxane B2, by human monocyte-derived macrophages. In contrast, production of transforming growth factor (TGF)-beta1, prostaglandin E2, and platelet-activating factor (PAF) was increased. The latter appeared to be involved in the inhibition of proinflammatory cytokine production because addition of exogenous TGF-beta1, prostaglandin E2, or PAF resulted in inhibition of lipopolysaccharide-stimulated cytokine production. Furthermore, anti-TGF-beta antibody, indomethacin, or PAF receptor antagonists restored cytokine production in lipopolysaccharide-stimulated macrophages that had phagocytosed apoptotic cells. These results suggest that binding and/or phagocytosis of apoptotic cells induces active antiinflammatory or suppressive properties in human macrophages. Therefore, it is likely that resolution of inflammation depends not only on the removal of apoptotic cells but on active suppression of inflammatory mediator production. Disorders in either could result in chronic inflammatory diseases.

  19. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    SciTech Connect

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee; Choi, Hyeong-Jwa; Na, Tae-Young; Nemeno, Judee Grace E.; Lee, Jeong Ik; Yoon, Taek Joon; Choi, In-Soo; Lee, Minyoung; Lee, Jae-Seon; Kang, Young-Sun

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  20. Protein tyrosine phosphatases PTP-1B, SHP-2, and PTEN facilitate Rb/E2F-associated apoptotic signaling.

    PubMed

    Morales, Liza D; Casillas Pavón, Edgar A; Shin, Jun Wan; Garcia, Alexander; Capetillo, Mario; Kim, Dae Joon; Lieman, Jonathan H

    2014-01-01

    To maintain tissue homeostasis, apoptosis is functionally linked to the cell cycle through the retinoblastoma (Rb)/E2F pathway. When the Rb tumor suppressor protein is functionally inactivated, E2F1 elicits an apoptotic response through both intrinsic (caspase-9 mediated) and extrinsic (caspase-8 mediated) apoptotic pathways in order to eliminate hyperproliferative cells. Rb/E2F-associated apoptosis has been demonstrated to be associated with the loss of constitutive transcriptional repression by Rb/E2F complexes and mediated by caspase-8. Protein tyrosine phosphatases (PTPs) PTP-1B and SHP-2 have been previously shown to be directly activated by loss of Rb/E2F repression during Rb/E2F-associated apoptosis. In this current study, we demonstrate that the PTEN tumor suppressor is also directly activated by loss of Rb/E2F repression. We also demonstrate that PTP-1B, SHP-2, and PTEN play a functional role in Rb/E2F-associated apoptosis. Knockdown of PTP1B, SHP2, or PTEN expression with small interfering RNA (siRNA) in apoptotic cells increases cell viability and rescues cells from the Rb/E2F-associated apoptotic response. Furthermore, rescue from apoptosis coincides with inhibition of caspase-8 and caspase-3 cleavage (activation). Our results indicate PTP-1B, SHP-2, and PTEN all play a functional role in Rb/E2F-associated apoptotic signal transduction and provide further evidence that PTP-1B, SHP-2, and PTEN can contribute to tumor suppression through an Rb/E2F-associated mechanism.

  1. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    SciTech Connect

    Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.; Dessing, Mark C.; Schuetze, Denise M.; Eldering, Eric; Spaargaren, Marcel; Pals, Steven T.

    2011-03-04

    Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causes constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which

  2. Reduction of spontaneous metastases through induction of carbohydrate cross-reactive apoptotic antibodies.

    PubMed

    Monzavi-Karbassi, Behjatolah; Artaud, Cecile; Jousheghany, Fariba; Hennings, Leah; Carcel-Trullols, Jaime; Shaaf, Saeid; Korourian, Soheila; Kieber-Emmons, Thomas

    2005-06-01

    The selective targeting of tumor-associated carbohydrate Ags by the induction of serum Abs that trigger apoptosis of tumor cells as a means to reduce circulating tumor cells and micrometastases would be an advantage in cancer vaccine development. Some plant lectins like Griffonia simplicifolia lectin I and wheat germ agglutinin mediate the apoptosis of tumor cells. We investigated the possibility of using these lectins as templates to select peptide mimotopes of tumor-associated carbohydrate Ags as immunogens to generate cross-reactive Abs capable of mediating apoptosis of tumor cells. In this study, we show that immunization with a mimotope selected based on its reactivity with Griffonia simplicifolia lectin I and wheat germ agglutinin induced serum IgM Abs in mice that mediated the apoptosis of murine 4T1 and human MCF7 cell lines in vitro, paralleling the apoptotic activity of the lectins. Vaccine-induced anti-carbohydrate Abs reduced the outgrowth of micrometastases in the 4T1 spontaneous tumor model, significantly increasing survival time of tumor-bearing animals. This finding parallels suggestions that carbohydrate-reactive IgM with apoptotic activity may have merit in the adjuvant setting if the right carbohydrate-associated targets are identified.

  3. Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells.

    PubMed

    Ordoñez, Raquel; Fernández, Anna; Prieto-Domínguez, Néstor; Martínez, Laura; García-Ruiz, Carmen; Fernández-Checa, José C; Mauriz, José L; González-Gallego, Javier

    2015-09-01

    Autophagy is a process that maintains homeostasis during stress, although it also contributes to cell death under specific contexts. Ceramides have emerged as important effectors in the regulation of autophagy, mediating the crosstalk with apoptosis. Melatonin induces apoptosis of cancer cells; however, its role in autophagy and ceramide metabolism has yet to be clearly elucidated. This study was aimed to evaluate the effect of melatonin administration on autophagy and ceramide metabolism and its possible link with melatonin-induced apoptotic cell death in hepatocarcinoma (HCC) cells. Melatonin (2 mm) transiently induced autophagy in HepG2 cells through JNK phosphorylation, characterized by increased Beclin-1 expression, p62 degradation, and LC3II and LAMP-2 colocalization, which translated in decreased cell viability. Moreover, ATG5 silencing sensitized HepG2 cells to melatonin-induced apoptosis, suggesting a dual role of autophagy in cell death. Melatonin enhanced ceramide levels through both de novo synthesis and acid sphingomyelinase (ASMase) stimulation. Serine palmitoyltransferase (SPT) inhibition with myriocin prevented melatonin-induced autophagy and ASMase inhibition with imipramine-impaired autophagy flux. However, ASMase inhibition partially protected HepG2 cells against melatonin, while SPT inhibition significantly enhanced cell death. Findings suggest a crosstalk between SPT-mediated ceramide generation and autophagy in protecting against melatonin, while specific ASMase-induced ceramide production participates in melatonin-mediated cell death. Thus, dual blocking of SPT and autophagy emerges as a potential strategy to potentiate the apoptotic effects of melatonin in liver cancer cells.

  4. Apoptotic effect of sodium acetate on a human gastric adenocarcinoma epithelial cell line.

    PubMed

    Xia, Y; Zhang, X L; Jin, F; Wang, Q X; Xiao, R; Hao, Z H; Gui, Q D; Sun, J

    2016-10-05

    The objective of this study was to investigate the effect of sodium acetate on the viability of the human gastric adenocarcinoma (AGS) epithelial cell line. AGS cells were exposed to a range of concentrations of sodium acetate for different periods of time, and the sodium acetate-induced cytotoxic effects, including cell viability, DNA fragmentation, apoptotic gene expression, and caspase activity, were assessed. The changes in these phenotypes were quantified by performing a lactate dehydrogenase cell viability assay, annexin V staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and several caspase activity assays. In vitro studies demonstrated that the cytotoxicity of sodium acetate on the AGS cell line were dose- and time-dependent manners. No differences were found between the negative control and sodium acetate-treated cells stained with annexin V and subjected to the TUNEL assay. However, caspase-3 activity was increased in AGS cells exposed to sodium acetate. Overall, it was concluded that sodium acetate exerted an apoptotic effect in AGS cells via a caspase-dependent apoptotic pathway.

  5. Apoptotic and proinflammatory effect of combustion-generated organic nanoparticles in endothelial cells.

    PubMed

    Pedata, Paola; Bergamasco, Nadia; D'Anna, Andrea; Minutolo, Patrizia; Servillo, Luigi; Sannolo, Nicola; Balestrieri, Maria Luisa

    2013-06-07

    Air pollution exposure in industrialized cities is associated with an increased risk of morbidity and mortality attributed to cardiovascular diseases. Combustion exhausts emitted from motor vehicles and industries represent a major source of nanoparticles in the atmosphere. Flame-generated organic carbon nanoparticles (OC NPs) provide interesting model nanoparticles that simulate fresh combustion emissions near roadways or combustion sources. These model nanoparticles can be produced by controlling flame operating conditions and used to test possible toxicological mechanisms responsible for the observed health effects. OC NPs were used to investigate their possible effect on endothelial cells (EC) growth and production of proinflammatory lipid mediators. Results indicated a dose and time-dependent reduction in cell viability following incubation of EC with OC NPs for 24 and 48h. Fluorescence-activated cell sorting revealed that EC treated with OC NPs showed a cell proliferation index significantly lower than that of control cells and an increased apoptotic cell death. The annexin assay confirmed the increased apoptotic cell death. Moreover, OC NPs also induced a time-dependent increase of proinflammatory lysophospholipid production. These results, establishing that OC NPs induce EC proinflammatory lysophosholipid production and apoptotic cell death, provide the first evidence of the detrimental effect of OC NPs on EC.

  6. Tetrabromobisphenol-A induces apoptotic death of auditory cells and hearing loss.

    PubMed

    Park, Channy; Kim, Se-Jin; Lee, Won Kyo; Moon, Sung Kyun; Kwak, SeongAe; Choe, Seong-Kyu; Park, Raekil

    2016-09-30

    Phenolic tetrabromobisphenol-A (TBBPA) and its derivatives are commonly used flame-retardants, in spite of reported toxic effects including neurotoxicity, immunotoxicity, nephrotoxicity, and hepatotoxicity. However, the effects of TBBPA on ototoxicity have not yet been reported. In this study, we investigated the effect of TBBPA on hearing function in vivo and in vitro. Auditory Brainstem Response (ABR) threshold was markedly increased in mice after oral administration of TBBPA, indicating that TBBPA causes hearing loss. In addition, TBBPA induced the loss of both zebrafish neuromasts and hair cells in the rat cochlea in a dose-dependent manner. Mechanistically, hearing loss is largely attributed to apoptotic cell death, as TBBPA increased the expression of pro-apoptotic genes but decreased the expression of anti-apoptotic genes. We also found that TBBPA induced oxidative stress, and importantly, pretreatment with NAC, an anti-oxidant reagent, reduced TBBPA-induced reactive oxygen species (ROS) generation and partially prevented cell death. Our results show that TBBPA-mediated ROS generation induces ototoxicity and hearing loss. These findings implicate TBBPA as a potential environmental ototoxin by exerting its hazardous effects on the auditory system.

  7. Suppression of FVIII Inhibitor Formation in Hemophilic Mice by Delivery of Transgene Modified Apoptotic Fibroblasts

    PubMed Central

    Su, Rui-Jun; Epp, Angela; Latchman, Yvette; Bolgiano, Doug; Pipe, Steven W; Josephson, Neil C

    2009-01-01

    The development of inhibitory antibodies to factor VIII (FVIII) is currently the most significant complication of FVIII replacement therapy in the management of patients with severe hemophilia A. Immune tolerance protocols for the eradication of inhibitors require daily delivery of intravenous FVIII for at least 6 months and are unsuccessful in 20–40% of treated patients. We hypothesize that tolerance can be induced more efficiently and reliably by delivery of FVIII antigen within autologous apoptotic cells (ACs). In this study, we demonstrated suppression of the T cell and inhibitor responses to FVIII by infusion of FVIII expression vector modified apoptotic syngeneic fibroblasts in both naive and preimmunized hemophilia A mice. ACs without FVIII antigen exerted modest generalized immune suppression mediated by anti-inflammatory signals. However, FVIII expressing apoptotic syngeneic fibroblasts produced much stronger antigen-specific immune suppression. Mice treated with these fibroblasts generated CD4+ T cells that suppressed the immune response to FVIII after adoptive transfer into naive recipients and antigen-specific CD4+CD25+ regulatory T cells (Tregs) that inhibited the proliferation of FVIII responsive effector T cells in vitro. These preclinical results demonstrate the potential for using FVIII vector modified autologous ACs to treat high-titer inhibitors in patients with hemophilia A. PMID:19755963

  8. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition

    PubMed Central

    Murakami, Y; Tian, L; Voss, O H; Margulies, D H; Krzewski, K; Coligan, J E

    2014-01-01

    The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway. PMID:25034781

  9. Non-apoptotic functions of BCL-2 family proteins.

    PubMed

    Gross, Atan; Katz, Samuel G

    2017-02-24

    The BCL-2 family proteins are major regulators of the apoptosis process, but the mechanisms by which they regulate this process are only partially understood. It is now well documented that these proteins play additional non-apoptotic roles that are likely to be related to their apoptotic roles and to provide important clues to cracking their mechanisms of action. It seems that these non-apoptotic roles are largely related to the activation of cellular survival pathways designated to maintain or regain cellular survival, but, if unsuccessful, will switch over into a pro-apoptotic mode. These non-apoptotic roles span a wide range of processes that include the regulation of mitochondrial physiology (metabolism, electron transport chain, morphology, permeability transition), endoplasmic reticulum physiology (calcium homeostasis, unfolded protein response (UPR)), nuclear processes (cell cycle, DNA damage response (DDR)), whole-cell metabolism (glucose and lipid), and autophagy. Here we review all these different non-apoptotic roles, make an attempt to link them to the apoptotic roles, and present many open questions for future research directions in this fascinating field.Cell Death and Differentiation advance online publication, 24 February 2017; doi:10.1038/cdd.2017.22.

  10. Macrophage recognition of ICAM-3 on apoptotic leukocytes.

    PubMed

    Moffatt, O D; Devitt, A; Bell, E D; Simmons, D L; Gregory, C D

    1999-06-01

    Cells undergoing apoptosis are cleared rapidly by phagocytes, thus preventing tissue damage caused by loss of plasma membrane integrity. In this study, we show that the surface of leukocytes is altered during apoptosis such that the first Ig-like domain of ICAM-3 (CD50) can participate in the recognition and phagocytosis of the apoptotic cells by macrophages. Macrophage recognition of apoptotic cell-associated ICAM-3 was demonstrated both on leukocytes and, following transfection of exogenous ICAM-3, on nonleukocytes. The change in ICAM-3 was a consistent consequence of apoptosis triggered by various stimuli, suggesting that it occurs as part of a final common pathway of apoptosis. Alteration of ICAM-3 on apoptotic cells permitting recognition by macrophages resulted in a switch in ICAM-3-binding preference from the prototypic ICAM-3 counterreceptor, LFA-1, to an alternative macrophage receptor. Using mAbs to block macrophage/apoptotic cell interactions, we were unable to obtain evidence that either the alternative ICAM-3 counterreceptor alpha d beta 2 or the apoptotic cell receptor alpha v beta 3 was involved in the recognition of ICAM-3. By contrast, mAb blockade of macrophage CD14 inhibited ICAM-3-dependent recognition of apoptotic cells. These results show that ICAM-3 can function as a phagocytic marker of apoptotic leukocytes on which it acquires altered macrophage receptor-binding activity.

  11. Cobra venom cytotoxins; apoptotic or necrotic agents?

    PubMed

    Ebrahim, Karim; Shirazi, Farshad H; Mirakabadi, Abbas Zare; Vatanpour, Hossein

    2015-12-15

    Organs homeostasis is controlled by a dynamic balance between cell proliferation and apoptosis. Failure to induction of apoptosis has been implicated in tumor development. Cytotoxin-I (CTX-I) and cytotoxin-II (CTX-II) are two physiologically active polypeptides found in Caspian cobra venom. Anticancer activity and mechanism of cell death induced by these toxins have been studied. The toxins were purified by different chromatographic steps and their cytotoxicity and pattern of cell death were determined by MTT, LDH release, acridine orange/ethidium bromide (AO/EtBr) double staining, flow cytometric analysis, caspase-3 activity and neutral red assays. The IC50 of CTX-II in MCF-7, HepG2, DU-145 and HL-60 was 4.1 ± 1.3, 21.2 ± 4.4, 9.4 ± 1.8 μg/mL and 16.3 ± 1.9 respectively while the IC50 of this toxin in normal MDCK cell line was 54.5 ± 3.9 μg/mL. LDH release suddenly increase after a specific toxins concentrations in all cell lines. AO/EtBr double staining, flow cytometric analysis and caspase-3 activity assay confirm dose and time-dependent induction of apoptosis by both toxins. CTX-I and CTX-II treated cells lost their lysosomal membrane integrity and couldn't uptake neutral red day. CTX-I and CTX-II showed significant anticancer activity with minimum effects on normal cells and better IC50 compared to current anticancer drug; cisplatin. They induce their apoptotic effect via lysosomal pathways and release of cathepsins to cytosol. These effects were seen in limited rage of toxins concentrations and pattern of cell death rapidly changes to necrosis by increase in toxin's concentration. In conclusion, significant apoptogenic effects of these toxins candidate them as a possible anticancer agent.

  12. Severe apoptotic enteropathy caused by methotrexate treatment for rheumatoid arthritis.

    PubMed

    Toquet, Ségolène; Nguyen, Yohan; Sabbagh, Adel; Djerada, Zoubir; Boulagnon, Camille; Bani-Sadr, Firouzé

    2016-03-01

    The folic acid antagonist methotrexate is a cornerstone treatment of rheumatoid arthritis. Its use is limited chiefly by gastrointestinal toxicity, which is among the main reasons for methotrexate discontinuation. Here, we report the case of a 40-year-old man on chronic methotrexate therapy in whom life-threatening apoptotic enteropathy with watery diarrhea and hypovolemic shock developed after he was switched from the oral to the intramuscular route, with no change in dosage. Colonic biopsies suggested drug-induced colitis, showing a nonspecific, mildly inflammatory infiltrate of lymphocytes and plasma cells, dilated damaged crypts, and a marked increase in basal crypt apoptosis (>20 apoptotic bodies/100 crypts). Clinicians should be aware that methotrexate can cause life-threatening apoptotic enteropathy. Increased basal crypt apoptosis in colonic biopsies with more than 5 apoptotic bodies/100 crypts should routinely suggest drug-induced enteropathy.

  13. Cytoplasmic and Nuclear Anti-Apoptotic Roles of αB-Crystallin in Retinal Pigment Epithelial Cells

    PubMed Central

    Yoo, Seung Hee; Jeong, Na Young; Ryu, Won Yeol; Ahn, Hee Bae; Park, Woo Chan; Rho, Sae Heun; Yoon, Hee Seong; Choi, Yung Hyun; Yoo, Young Hyun

    2012-01-01

    In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO) can alter the function of the basement membrane of retinal pigment epithelial (RPE) cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis. PMID:23049853

  14. Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells.

    PubMed

    Michels, G; Wätjen, W; Weber, N; Niering, P; Chovolou, Y; Kampkötter, A; Proksch, P; Kahl, R

    2006-08-15

    Resveratrol (trans-3,5,4',-trihydroxystilbene) is assumed to possess cancer-preventive and cancer-therapeutic properties. The aim of this project was to analyze cellular effects of resveratrol in metabolically active H4IIE rat hepatoma cells in comparison to metabolically poorly active C6 rat glioma cells. Resveratrol is rapidly taken up by both cell types and acts as a potent intracellular antioxidant. On the other hand, resveratrol in higher concentrations is relatively toxic to both cell lines as measured by the neutral red accumulation assay. In H4IIE cells, resveratrol concentrations rapidly decline to very low levels during the first hours of incubation due to formation of resveratrol glucuronides. The first resveratrol effect found at 3h after the start of resveratrol treatment was the induction of mild DNA damage as detected by the comet assay. Cell death was caused via induction of apoptosis as detected by caspase activation, oligonucleosomal DNA fragmentation and formation of apoptotic nuclei. Following DNA damage, resveratrol led to an activation of caspases 2 and 8/10 at 6h and consequently of caspase 3 at 12h, but failed to activate caspase 9. In contrast to H4IIE cells, resveratrol is not metabolised in C6 glioma cells and accumulates to concentrations which are assumed to drive the cell into necrosis. This suggests that the mode of cell death caused by resveratrol and the usefulness of resveratrol for cancer prevention and treatment critically depends on the metabolic capacity of the tumor cell to be eradicated.

  15. Artificial rearing inhibits apoptotic cell death through action on pro-apoptotic signaling molecules during brain development: replacement licking partially reverses these effects.

    PubMed

    Chatterjee-Chakraborty, Munmun; Chatterjee, Diptendu

    2010-08-12

    Early life stress associated with being reared without mother, siblings, and nest affects the formation of neuronal networks during rat development. Prior work shows that in comparison to mother-reared male rats, artificial rearing results in elevated numbers of neurons in adulthood and reduced apoptosis during the first postnatal week. Replacement with stroking stimulation, designed to simulate mothers' licking, reversed these effects in most brain areas. The present communication explored the effects of early rearing manipulations on signaling proteins. Male rats were reared until postnatal day 7 either in an artificial-feeding paradigm (AR) or with their mothers (MR). AR animals received different amounts of maternal-like stimulation using a soft paintbrush. Brains were extracted and prepared for molecular assays of 1) apoptosis and 2) pro and anti-apoptotic proteins on day 7 of postnatal life. Results showed that stimulation of the AR pups reversed the effects of artificial rearing on apoptosis in a dose dependent manner; low and very high levels of stimulation were without effect whereas moderate levels of stimulation produced effects on apoptosis similar to effects seen in mother-reared controls. Moreover, this artificial rearing effect and the pattern of reversal with stroking were also found for levels of pro-apoptotic Bax protein, the ratio of Bax/Bcl-2 and levels of activated caspase-3 which we believe mediates programmed cell death.

  16. Apoptotic cell death in rat epididymis following epichlorohydrin treatment.

    PubMed

    Lee, I-C; Kim, K-H; Kim, S-H; Baek, H-S; Moon, C; Kim, S-H; Yun, W-K; Nam, K-H; Kim, H-C; Kim, J-C

    2013-06-01

    Epichlorohydrin (ECH) is an antifertility agent that acts both as an epididymal toxicant and an agent capable of directly affecting sperm motility. This study identified the time course of apoptotic cell death in rat epididymides after ECH treatment. Rats were administrated with a single oral dose of ECH (50 mg/kg). ECH-induced apoptotic changes were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and its related mechanism was confirmed by Western blot analysis and colorimetric assay. The TUNEL assay showed that the number of apoptotic cells increased at 8 h, reached a maximum level at 12 h, and then decreased progressively. The Western blot analysis demonstrated no significant changes in proapoptotic Bcl-2-associated X (Bax) and anti-apoptotic Bcl-2 expression during the time course of the study. However, phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) and phospho-c-Jun amino-terminal kinase (p-JNK) expression increased at 8-24 h. Caspase-3 and caspase-8 activities also increased at 8-48 h and 12-48 h, respectively, in the same manner as p-p38 MAPK and p-JNK expression. These results indicate that ECH induced apoptotic changes in rat epididymides and that the apoptotic cell death may be related more to the MAPK pathway than to the mitochondrial pathway.

  17. Apoptotic markers in human blood platelets treated with peroxynitrite.

    PubMed

    Wachowicz, Barbara; Rywaniak, Joanna Zofia; Nowak, Paweł

    2008-12-01

    Platelets are anucleated cells that upon activation by agonists or during storage may develop apoptotic events. The role of peroxynitrite and its reactive intermediates in apoptotic process in blood platelets is unknown. In order to study the appearance of biomarkers of apoptosis in platelets after treatment with peroxynitrite and with thrombin different markers were chosen: annexin V binding (phosphatidylserine exposure), platelet microparticle formation, mitochondrial membrane depolarization, caspase-3 activation and P-selectin expression. In gel-filtrated platelets treated with different concentrations of peroxynitrite (0.01, 0.1, 1.0 mM, 10 minute, 37 degrees C) a significant increase of phosphatidylserine exposure (about 36% at the highest concentration, p < 0.01) and the platelet microparticle formation were observed. Peroxynitrite caused a dose-dependent caspase-3 activation and depolarization of mitochondrial potential. The same apoptotic markers were appeared in thrombin-activated platelets. Dose-dependent tyrosine nitration in platelet proteins caused by peroxynitrite was reduced in the presence of (-)-epicatechin. Moreover, (-)-epicatechin distinctly reduced the level of apoptotic markers. The obtained results indicate that peroxynitrite responsible for oxidative/nitrative stress and changes in platelet function may promote in vitro apoptotic events in human gel-filtrated platelets via intrinsic pathway. Nitration of tyrosine seems to be partly associated with the appearance of apoptotic markers in platelets.

  18. Cytosolic pro-apoptotic SPIKE induces mitochondrial apoptosis in cancer.

    PubMed

    Nikolic, Ivana; Kastratovic, Tatjana; Zelen, Ivanka; Zivanovic, Aleksandar; Arsenijevic, Slobodan; Mitrovic, Marina

    2010-04-30

    Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic "BH3-only" BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast. In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase's downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.

  19. Para-Phenylenediamine Induces Apoptotic Death of Melanoma Cells and Reduces Melanoma Tumour Growth in Mice

    PubMed Central

    Bhowmick, Debajit; Bhar, Kaushik; Mallick, Sanjaya K.; Das, Subhadip; Chatterjee, Nabanita; Sarkar, Tuhin Subhra; Chakrabarti, Rajarshi; Das Saha, Krishna; Siddhanta, Anirban

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD) in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS), and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma. PMID:27293892

  20. Cannabidiol induced a contrasting pro-apoptotic effect between freshly isolated and precultured human monocytes

    SciTech Connect

    Wu, Hsin-Ying; Chang, An-Chi; Wang, Chia-Chi; Kuo, Fu-Hua; Lee, Chi-Ya; Liu, Der-Zen; Jan, Tong-Rong

    2010-08-01

    It has been documented that cannabidiol (CBD) induced apoptosis in a variety of transformed cells, including lymphocytic and monocytic leukemias. In contrast, a differential sensitivity between normal lymphocytes and monocytes to CBD-mediated apoptosis has been reported. The present study investigated the pro-apoptotic effect of CBD on human peripheral monocytes that were either freshly isolated or precultured for 72 h. CBD markedly enhanced apoptosis of freshly isolated monocytes in a time- and concentration-dependent manner, whereas precultured monocytes were insensitive. By comparison, both cells were sensitive to doxorubicin-induced apoptosis. CBD significantly diminished the cellular thiols and glutathione in freshly isolated monocytes. The apoptosis induced by CBD was abrogated in the presence of N-acetyl-{sub L}-cysteine, a precursor of glutathione. In addition, precultured monocytes contained a significantly greater level of glutathione and heme oxygenase-1 (HO-1) compared to the freshly isolated cells. The HO-1 competitive inhibitor zinc protoporphyrin partially but significantly restored the sensitivity of precultured monocytes to CBD-mediated apoptosis. Collectively, our results demonstrated a contrasting pro-apoptotic effect of CBD between precultured and freshly isolated monocytes, which was closely associated with the cellular level of glutathione and the antioxidative capability of the cells.

  1. Nuclear localization is required for induction of apoptotic cell death by the Rb-associated p84N5 death domain protein.

    PubMed

    Evans, Randall L; Poe, Bryan S; Goodrich, David W

    2002-07-11

    The mechanisms utilized to transduce apoptotic signals that originate from within the nucleus, in response to DNA damage for example, are not well understood. Identifying these mechanisms is important for predicting how tumor cells will respond to genotoxic radiation or chemotherapy. The Rb tumor suppressor protein can inhibit apoptosis triggered by DNA damage, but how it does so is unclear. We have previously characterized a death domain protein, p84N5, that specifically associates with an amino-terminal domain of Rb protein. The p84N5 death domain is required for its ability to trigger apoptotic cell death. Association with Rb protein inhibits p84N5-induced apoptosis suggesting that it may be a mediator of Rb's effects on apoptosis. Unlike other death domain-containing apoptotic signaling proteins, however, p84N5 is localized predominantly within the nucleus of interphase cells. Here we test whether p84N5 requires nuclear localization in order to trigger apoptosis. We identify the p84N5 nuclear localization signal and demonstrate that nuclear localization is required for p84N5-induced apoptosis. To our knowledge, this identifies p84N5 as the first death-domain containing apoptotic signaling protein that functions within the nucleus. By analogy to other death domain containing proteins, p84N5 may play some role in apoptotic signaling within the nucleus. Further, p84N5 is a potential mediator of Rb protein's effects on DNA damage induced apoptosis.

  2. The role of macrophages in the removal of apoptotic B-cells in the sheep ileal Peyer's patch.

    PubMed

    Bhogal, Hardeep S; Kennedy, Laurie J; Babic, Kelly; Reynolds, John D

    2004-06-01

    In the process of generating the cells that populate the sheep's B-cell pool, the ileal Peyer's patch (PP) produces an immense number of B-cells and then destroys most of them by apoptosis. Rapid clearance of these apoptotic cells is essential for tissue homeostasis and for preventing pathology. Macrophages comprise a small percentage of cells in the follicles. They resemble macrophages found in other tissues and can be identified by the expression of MHC Class II and CD14. In this study, enriched macrophages co-cultured with apoptotic ileal PP cells showed increased DNA content as they ingested apoptotic cells. The higher the proportion of apoptotic cells in culture the greater the increase in DNA content of the macrophages. This occurred when B-cell apoptosis was initiated by a period in culture or in response to treating the animals with steroids. Thus, macrophages resident in the ileal PP follicle mediate the phagocytosis and removal of discarded B-cells.

  3. Intrinsic, Pro-Apoptotic Effects of IGFBP-3 on Breast Cancer Cells are Reversible: Involvement of PKA, Rho, and Ceramide

    PubMed Central

    Perks, Claire M.; Burrows, Carla; Holly, Jeff M. P.

    2011-01-01

    We established previously that IGFBP-3 could exert positive or negative effects on cell function depending upon the extracellular matrix composition and by interacting with integrin signaling. To elicit its pro-apoptotic effects IGFBP-3 bound to caveolin-1 and the beta 1 integrin receptor and increased their association culminating in MAPK activation. Disruption of these complexes or blocking the beta 1 integrin receptor reversed these intrinsic actions of IGFBP-3. In this study we have examined the signaling pathway between integrin receptor binding and MAPK activation that mediates the intrinsic, pro-apoptotic actions of IGFBP-3. We found on inhibiting protein kinase A (PKA), Rho associated kinase (ROCK), and ceramide, the accentuating effects of IGFBP-3 on apoptotic triggers were reversed, such that IGFBP-3 then conferred cell survival. We established that IGFBP-3 activated Rho, the upstream regulator of ROCK and that beta1 integrin and PKA were upstream of Rho activation, whereas the involvement of ceramide was downstream. The beta 1 integrin, PKA, Rho, and ceramide were all upstream of MAPK activation. These data highlight key components involved in the pro-apoptotic effects of IGFBP-3 and that inhibiting them leads to a reversal in the action of IGFBP-3. PMID:22654794

  4. Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant.

    PubMed Central

    Rowan, S; Ludwig, R L; Haupt, Y; Bates, S; Lu, X; Oren, M; Vousden, K H

    1996-01-01

    The p53 tumor-suppressor gene product is frequently inactivated in malignancies by point mutation. Although most tumor-derived p53 mutants show loss of sequence specific transcriptional activation, some mutants have been identified which retain this activity. One such mutant, p53175P, is defective for the suppression of transformation in rodent cells, despite retaining the ability to suppress the growth of p53-null human cells. We now demonstrate that p53175P can induce a cell-cycle arrest in appropriate cell types but shows loss of apoptotic function. Our results therefore support a direct role of p53 transcriptional activation in mediating a cell-cycle arrest and demonstrate that such activity is not sufficient for the full apoptotic response. These data suggest that either p53 can induce apoptosis through a transcriptionally independent mechanism, a function lost by p53175P, or that this mutant has specifically lost the ability to activate genes which contribute to cell death, despite activation of genes responsible for the G1 arrest. This dissociation of the cell-cycle arrest and apoptotic activities of p53 indicates that inactivation of p53 apoptotic function without concomitant loss of growth inhibition can suffice to relieve p53-dependent tumor-suppression in vivo and thereby contribute to tumor development. Images PMID:8631304

  5. The apoptotic pathways effect of fine particulate from cooking oil fumes in primary fetal alveolar type II epithelial cells.

    PubMed

    Che, Zhen; Liu, Ying; Chen, Yanyan; Cao, Jiyu; Liang, Chunmei; Wang, Lei; Ding, Rui

    2014-02-01

    Apoptosis occurs along three major pathways: (i) an extrinsic pathway, mediated by death receptors; (ii) an intrinsic pathway centered on mitochondria; and (iii) an ER-stress pathway. We investigated the apoptotic pathway effects of cooking oil fumes (COF) in fetal lung type II-like epithelium cells (AEC II). Exposure to COF caused up-regulation of the pro-apoptotic protein Bax and down-regulation of the anti-apoptotic protein Bcl-2. COF induced the mitochondrial permeability transition, an early event in apoptosis; cytochrome c was translocated from the mitochondria to the cytoplasm and nucleus. Caspase-9 and caspase-3 were activated, as a consequence of the mitochondrial permeability transition. The death receptor apoptotic pathway was triggered by COF, as indicated by a change in Fas expression, resulting in increased caspase-8 content. COF exposure arrested the cell cycle the at G0-G1 phase. In summary, COF can lead to apoptosis via mitochondrial and death receptor pathways in AEC II cells.

  6. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G.

    PubMed

    Widlak, Piotr; Garrard, William T

    2005-04-15

    Toward the end of the 20th and beginning of the 21st centuries, clever in vitro biochemical complementation experiments and genetic screens from the laboratories of Xiaodong Wang, Shigekazu Nagata, and Ding Xue led to the discovery of two major apoptotic nucleases, termed DNA fragmentation factor (DFF) or caspase-activated DNase (CAD) and endonuclease G (Endo G). Both endonucleases attack chromatin to yield 3'-hydroxyl groups and 5'-phosphate residues, first at the level of 50-300 kb cleavage products and next at the level of internucleosomal DNA fragmentation, but these nucleases possess completely different cellular locations in normal cells and are regulated in vastly different ways. In non-apoptotic cells, DFF exists in the nucleus as a heterodimer, composed of a 45 kD chaperone and inhibitor subunit (DFF45) [also called inhibitor of CAD (ICAD-L)] and a 40 kD latent nuclease subunit (DFF40/CAD). Apoptotic activation of caspase-3 or -7 results in the cleavage of DFF45/ICAD and release of active DFF40/CAD nuclease. DFF40's nuclease activity is further activated by specific chromosomal proteins, such as histone H1, HMGB1/2, and topoisomerase II. DFF is regulated by multiple pre- and post-activation fail-safe steps, which include the requirements for DFF45/ICAD, Hsp70, and Hsp40 proteins to mediate appropriate folding during translation to generate a potentially activatable nuclease, and the synthesis in stoichiometric excess of the inhibitors (DFF45/35; ICAD-S/L). By contrast, Endo G resides in the mitochondrial intermembrane space in normal cells, and is released into the nucleus upon apoptotic disruption of mitochondrial membrane permeability in association with co-activators such as apoptosis-inducing factor (AIF). Understanding further regulatory check-points involved in safeguarding non-apoptotic cells against accidental activation of these nucleases remain as future challenges, as well as designing ways to selectively activate these nucleases in tumor cells.

  7. Surface code—biophysical signals for apoptotic cell clearance

    NASA Astrophysics Data System (ADS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

    2013-12-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

  8. Rho kinase regulates fragmentation and phagocytosis of apoptotic cells

    SciTech Connect

    Orlando, Kelly A.; Stone, Nicole L.; Pittman, Randall N. . E-mail: pittman@pharm.med.upenn.edu

    2006-01-01

    During the execution phase of apoptosis, a cell undergoes cytoplasmic and nuclear changes that prepare it for death and phagocytosis. The end-point of the execution phase is condensation into a single apoptotic body or fragmentation into multiple apoptotic bodies. Fragmentation is thought to facilitate phagocytosis; however, mechanisms regulating fragmentation are unknown. An isoform of Rho kinase, ROCK-I, drives membrane blebbing through its activation of actin-myosin contraction; this raises the possibility that ROCK-I may regulate other execution phase events, such as cellular fragmentation. Here, we show that COS-7 cells fragment into a number of small apoptotic bodies during apoptosis; treating with ROCK inhibitors (Y-27632 or H-1152) prevents fragmentation. Latrunculin B and blebbistatin, drugs that interfere with actin-myosin contraction, also inhibit fragmentation. During apoptosis, ROCK-I is cleaved and activated by caspases, while ROCK-II is not activated, but rather translocates to a cytoskeletal fraction. siRNA knock-down of ROCK-I but not ROCK-II inhibits fragmentation of dying cells, consistent with ROCK-I being required for apoptotic fragmentation. Finally, cells dying in the presence of the ROCK inhibitor Y-27632 are not efficiently phagocytized. These data show that ROCK plays an essential role in fragmentation and phagocytosis of apoptotic cells.

  9. Carbocisteine promotes phagocytosis of apoptotic cells by alveolar macrophages.

    PubMed

    Inoue, Masako; Ishibashi, Yuji; Nogawa, Hisashi; Yasue, Tokutaro

    2012-02-29

    Clearance of apoptotic cells, so-called efferocytosis, by alveolar macrophages (AMs) is important for lung homeostasis and is impaired in pulmonary inflammatory diseases, such as chronic obstructive pulmonary disease and asthma. Carbocisteine, a mucoregulatory drug, corrects the contents of fucose in airway mucus and has anti-inflammatory properties in airway inflammation. Thus, we conducted the present study to better understand the anti-inflammatory properties of carbocisteine. First, we induced airway inflammation in mice with lipopolysaccharide intratracheally. Carbocisteine significantly decreased neutrophil numbers in bronchoalveolar lavage fluid at the resolution phase of inflammation, implying the promotion of neutrophil clearance. Then, we investigated whether carbocisteine would enhance the efferocytosis by AMs isolated from mice and found that this drug promoted not only the phagocytosis but also the binding of apoptotic cells to AMs in vitro. Furthermore, carbocisteine decreased the fucose residues stained with fluorescent fucose-binding lectin, Lens culinaris agglutinin, on the cell surface of AMs. We found here that removing fucose residues from cell surfaces of AMs by fucosidase markedly enhanced both the binding and phagocytosis of apoptotic cells. Finally, AMs from mice orally given carbocisteine also promoted both the binding and phagocytosis ex vivo similarly to in vitro. These results suggest that carbocisteine could promote the clearance of apoptotic cells by AMs in airway. In addition, the present findings suggest that the binding and phagocytosis of apoptotic cells may be modulated by fucose residues on the cell surface of AMs.

  10. Gamma tocotrienol, a potent radioprotector, preferentially upregulates expression of anti-apoptotic genes to promote intestinal cell survival.

    PubMed

    Suman, Shubhankar; Datta, Kamal; Chakraborty, Kushal; Kulkarni, Shilpa S; Doiron, Kathryn; Fornace, Albert J; Sree Kumar, K; Hauer-Jensen, Martin; Ghosh, Sanchita P

    2013-10-01

    Gamma tocotrienol (GT3) has been reported as a potent ameliorator of radiation-induced gastrointestinal (GI) toxicity when administered prophylactically. This study aimed to evaluate the role of GT3 mediated pro- and anti-apoptotic gene regulation in protecting mice from radiation-induced GI damage. Male 10- to 12-weeks-old CD2F1 mice were administered with a single dose of 200 mg/kg of GT3 or equal volume of vehicle (5% Tween-80) 24 h before exposure to 11 Gy of whole-body γ-radiation. Mouse jejunum was surgically removed 4 and 24h after radiation exposure, and was used for PCR array, histology, immunohistochemistry, and immunoblot analysis. Results were compared among vehicle pre-treated no radiation, vehicle pre-treated irradiated, and GT3 pre-treated irradiated groups. GT3 pretreated irradiated groups, both 4h and 24h after radiation, showed greater upregulation of anti-apoptotic gene expression than vehicle pretreated irradiated groups. TUNEL staining and intestinal crypt analysis showed protection of jejunum after GT3 pre-treatment and immunoblot results were supportive of PCR data. Our study demonstrated that GT3-mediated protection of intestinal cells from a GI-toxic dose of radiation occurred via upregulation of antiapoptotic and downregulation of pro-apoptotic factors, both at the transcript as well as at the protein levels.

  11. The Sound of Silence: Signaling by Apoptotic Cells

    PubMed Central

    Fogarty, Caitlin E.; Bergmann, Andreas

    2016-01-01

    Apoptosis is a carefully choreographed process of cellular self-destruction in the absence of inflammation. During the death process, apoptotic cells actively communicate with their environment, signaling to both their immediate neighbors as well as distant sentinels. Some of these signals direct the anti-inflammatory immune response, instructing specific subsets of phagocytes to participate in the limited and careful clearance of dying cellular debris. These immunomodulatory signals can also regulate the activation state of the engulfing phagocytes. Other signals derived from apoptotic cells contribute to tissue growth control with the common goal of maintaining tissue integrity. Derangements in these growth control signals during prolonged apoptosis can lead to excessive cell loss or proliferation. Here, we highlight some of the most intriguing signals produced by apoptotic cells during the course of normal development as well as during physiological disturbances such as atherosclerosis and cancer. PMID:26431570

  12. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle.

    PubMed

    Adhihetty, Peter J; Ljubicic, Vladimir; Hood, David A

    2007-03-01

    Chronic contractile activity of skeletal muscle induces an increase in mitochondria located in proximity to the sarcolemma [subsarcolemmal (SS)] and in mitochondria interspersed between the myofibrils [intermyofibrillar (IMF)]. These are energetically favorable metabolic adaptations, but because mitochondria are also involved in apoptosis, we investigated the effect of chronic contractile activity on mitochondrially mediated apoptotic signaling in muscle. We hypothesized that chronic contractile activity would provide protection against mitochondrially mediated apoptosis despite an elevation in the expression of proapoptotic proteins. To induce mitochondrial biogenesis, we chronically stimulated (10 Hz; 3 h/day) rat muscle for 7 days. Chronic contractile activity did not alter the Bax/Bcl-2 ratio, an index of apoptotic susceptibility, and did not affect manganese superoxide dismutase levels. However, contractile activity increased antiapoptotic 70-kDa heat shock protein and apoptosis repressor with a caspase recruitment domain by 1.3- and 1.4-fold (P<0.05), respectively. Contractile activity elevated SS mitochondrial reactive oxygen species (ROS) production 1.4- and 1.9-fold (P<0.05) during states IV and III respiration, respectively, whereas IMF mitochondrial state IV ROS production was suppressed by 28% (P<0.05) and was unaffected during state III respiration. Following stimulation, exogenous ROS treatment produced less cytochrome c release (25-40%) from SS and IMF mitochondria, and also reduced apoptosis-inducing factor release (approximately 30%) from IMF mitochondria, despite higher inherent cytochrome c and apoptosis-inducing factor expression. Chronic contractile activity did not alter mitochondrial permeability transition pore (mtPTP) components in either subfraction. However, SS mitochondria exhibited a significant increase in the time to Vmax of mtPTP opening. Thus, chronic contractile activity induces predominantly antiapoptotic adaptations in both

  13. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner

    PubMed Central

    Hughes, K. R.; Harnisch, L. C.; Alcon-Giner, C.; Mitra, S.; Wright, C. J.; Ketskemety, J.

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi—a process termed ‘cell shedding’. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. PMID:28123052

  14. Uncoupling complement C1s activation from C1q binding in apoptotic cell phagocytosis and immunosuppressive capacity.

    PubMed

    Colonna, Lucrezia; Parry, Graham C; Panicker, Sandip; Elkon, Keith B

    2016-02-01

    Complement activation contributes to inflammation in many diseases, yet it also supports physiologic apoptotic cells (AC) clearance and its downstream immunosuppressive effects. The roles of individual complement components in AC phagocytosis have been difficult to dissect with artificially depleted sera. Using human in vitro systems and the novel antibody complement C1s inhibitor TNT003, we uncoupled the role of the enzymatic activation of the classical pathway from the opsonizing role of C1q in mediating a) the phagocytosis of early and late AC, and b) the immunosuppressive capacity of early AC. We found that C1s inhibition had a small impact on the physiologic clearance of early AC, leaving their immunosuppressive properties entirely unaffected, while mainly inhibiting the phagocytosis of late apoptotic/secondary necrotic cells. Our data suggest that C1s inhibition may represent a valuable therapeutic strategy to control classical pathway activation without causing significant AC accumulation in diseases without defects in AC phagocytosis.

  15. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner.

    PubMed

    Hughes, K R; Harnisch, L C; Alcon-Giner, C; Mitra, S; Wright, C J; Ketskemety, J; van Sinderen, D; Watson, A J M; Hall, L J

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi-a process termed 'cell shedding'. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes.

  16. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3

    PubMed Central

    Li, Z; Bridges, B; Olson, J; Weinman, SA

    2017-01-01

    The multispecific transcription factor and tumor suppressor FOXO3 is an important mediator of apoptosis, but the mechanisms that control its proapoptotic function are poorly understood. There has long been evidence that acetylation promotes FOXO3-driven apoptosis and recently a specific JNK (c-Jun N-terminal kinase)-dependent S574 phosphorylated form (p-FOXO3) has been shown to be specifically apoptotic. This study examined whether acetylation and S574 phosphorylation act independently or in concert to regulate the apoptotic function of FOXO3. We observed that both sirtuins 1 and 7 (SIRT1 and SIRT7) are able to deacetylate FOXO3 in vitro and in vivo, and that lipopolysaccharide (LPS) treatment of THP-1 monocytes induced a rapid increase of FOXO3 acetylation, partly by suppression of SIRT1 and SIRT7. Acetylation was required for S574 phosphorylation and cellular apoptosis. Deacetylation of FOXO3 by SIRT activation or SIRT1 or SIRT7 overexpression prevented its S574 phosphorylation and blocked apoptosis in response to LPS. We also found that acetylated FOXO3 preferentially bound JNK1, and a mutant FOXO3 lacking four known acetylation sites (K242, 259, 290 and 569R) abolished JNK1 binding and failed to induce apoptosis. This interplay of acetylation and phosphorylation also regulated cell death in primary human peripheral blood monocytes (PBMs). PBMs isolated from alcoholic hepatitis patients had high expression of SIRT1 and SIRT7 and failed to induce p-FOXO3 and apoptosis in response to LPS. PBMs from healthy controls had lower SIRT1 and SIRT7 and readily formed p-FOXO3 and underwent apoptosis when similarly treated. These results reveal that acetylation is permissive for generation of the apoptotic form of FOXO3 and the activity of SIRT1 and particularly SIRT7 regulate this process in vivo, allowing control of monocyte apoptosis in response to LPS. PMID:27669435

  17. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells

    SciTech Connect

    Nicolaou, Katerina A.; Liapis, Vasilis; Evdokiou, Andreas; Constantinou, Constantina; Magiatis, Prokopios; Skaltsounis, Alex L.; Koumas, Laura; Costeas, Paul A.; Constantinou, Andreas I.

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer The effects of 6BIO and 7BIO are evaluated against five breast cancer cell lines. Black-Right-Pointing-Pointer 6BIO induces a caspase dependent apoptotic effect via the intrinsic pathway. Black-Right-Pointing-Pointer 7BIO promotes G{sub 2}/M cells cycle arrest. Black-Right-Pointing-Pointer 7BIO triggers a caspase-8 mediated apoptotic pathway. Black-Right-Pointing-Pointer 7BIO triggers and a caspase independent pathway. -- Abstract: Indirubin derivatives gained interest in recent years for their anticancer and antimetastatic properties. The objective of the present study was to evaluate and compare the anticancer properties of the two novel bromo-substituted derivatives 6-bromoindirubin-3 Prime -oxime (6BIO) and 7-bromoindirubin-3 Prime -oxime (7BIO) in five different breast cancer cell lines. Cell viability assays identified that 6BIO and 7BIO are most effective in preventing the proliferation of the MDA-MB-231-TXSA breast cancer cell line from a total of five breast cancer cell lined examined. In addition it was found that the two compounds induce apoptosis via different mechanisms. 6BIO induces caspase-dependent programmed cell death through the intrinsic (mitochondrial) caspase-9 pathway. 7BIO up-regulates p21 and promotes G{sub 2}/M cell cycle arrest which is subsequently followed by the activation of two different apoptotic pathways: (a) a pathway that involves the upregulation of DR4/DR5 and activation of caspase-8 and (b) a caspase independent pathway. In conclusion, this study provides important insights regarding the molecular pathways leading to cell cycle arrest and apoptosis by two indirubin derivatives that can find clinical applications in targeted cancer therapeutics.

  18. Treadmill exercise ameliorates apoptotic cell death in the retinas of diabetic rats.

    PubMed

    Kim, Dae-Young; Jung, Sun-Young; Kim, Chang-Ju; Sung, Yun-Hee; Kim, Jae-Deung

    2013-06-01

    Apoptotic neuronal cell death in the retina is a hallmark of diabetic retinopathy. Exercise has been recommended for the alleviation of symptoms in patients with diabetes. In the present study, the effect of treadmill exercise on apoptosis in the retinas of diabetic rats was investigated. Diabetes was induced by intraperitoneal injection of streptozotocin. The rats in the exercise groups ran on a treadmill for 30 min/day, 5 times a week, over the course of 6 weeks. In this study, the terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end labeling (TUNEL) assay, immunohistochemistry staining of caspase‑3 and western blot analysis for Bax, Bcl‑2 and phosphorylated protein kinase B (p‑Akt) in the retinas of diabetic rats were performed. The results demonstrated that the number of TUNEL‑ and caspase‑3‑positive cells was increased in the retinas of diabetic rats, whereas treadmill exercise decreased these numbers. In addition, the expression of the pro‑apoptotic protein Bax and the anti‑apoptotic protein Bcl‑2 was enhanced in the retinas of diabetic rats. Treadmill exercise suppressed Bax and enhanced Bcl‑2 levels. The expression of the cell survival factor, p‑Akt, was decreased in the retinas of diabetic rats and treadmill exercise increased the expression of p‑Akt. The results of the present study demonstrated that treadmill exercise ameliorated diabetes‑induced apoptosis in retinal cells by enhancing p‑Akt levels in the retina. Treadmill exercise represents an effective strategy to delay or prevent the onset of ocular complications in diabetic patients.

  19. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3.

    PubMed

    Li, Z; Bridges, B; Olson, J; Weinman, S A

    2017-03-30

    The multispecific transcription factor and tumor suppressor FOXO3 is an important mediator of apoptosis, but the mechanisms that control its proapoptotic function are poorly understood. There has long been evidence that acetylation promotes FOXO3-driven apoptosis and recently a specific JNK (c-Jun N-terminal kinase)-dependent S574 phosphorylated form (p-FOXO3) has been shown to be specifically apoptotic. This study examined whether acetylation and S574 phosphorylation act independently or in concert to regulate the apoptotic function of FOXO3. We observed that both sirtuins 1 and 7 (SIRT1 and SIRT7) are able to deacetylate FOXO3 in vitro and in vivo, and that lipopolysaccharide (LPS) treatment of THP-1 monocytes induced a rapid increase of FOXO3 acetylation, partly by suppression of SIRT1 and SIRT7. Acetylation was required for S574 phosphorylation and cellular apoptosis. Deacetylation of FOXO3 by SIRT activation or SIRT1 or SIRT7 overexpression prevented its S574 phosphorylation and blocked apoptosis in response to LPS. We also found that acetylated FOXO3 preferentially bound JNK1, and a mutant FOXO3 lacking four known acetylation sites (K242, 259, 290 and 569R) abolished JNK1 binding and failed to induce apoptosis. This interplay of acetylation and phosphorylation also regulated cell death in primary human peripheral blood monocytes (PBMs). PBMs isolated from alcoholic hepatitis patients had high expression of SIRT1 and SIRT7 and failed to induce p-FOXO3 and apoptosis in response to LPS. PBMs from healthy controls had lower SIRT1 and SIRT7 and readily formed p-FOXO3 and underwent apoptosis when similarly treated. These results reveal that acetylation is permissive for generation of the apoptotic form of FOXO3 and the activity of SIRT1 and particularly SIRT7 regulate this process in vivo, allowing control of monocyte apoptosis in response to LPS.

  20. Effects of vitamin E on the cinnamaldehyde-induced apoptotic mechanism in human PLC/PRF/5 cells.

    PubMed

    Wu, Shu-Jing; Ng, Lean-Teik; Lin, Chun-Ching

    2004-11-01

    1. Cinnamaldehyde has been shown to be effective in inducing cell apoptosis in a number of human cancer cells. The aim of the present study was to investigate the effect of vitamin E on the apoptotic signalling mechanism induced by cinnamaldehyde in human hepatoma PLC/PRF/5 cells. 2. Using the XTT assay, cinnamaldehyde exhibited a powerful antiproliferative effect on PLC/PRF/5 cells. Apoptosis was elicited when cells were treated with 1 micromol/L cinnamaldehyde, as characterized by the appearance of phosphatidylserine on the outer surface of the plasma membrane. 3. The apoptotic effect induced by cinnamaldehyde could be further supported by the release of cytochrome c, Smac/Diablo and Omi/HtrA2 from mitochondria to the cytosol and activation of caspase 3. Cinnamaldehyde also upregulated the expression of pro-apoptotic protein (Bax) and down-regulated the levels of anti-apoptotic proteins, such as Bcl-2 and the inhibitor of apoptosis protein family (X-linked inhibitor of apoptosis protein (XIAP), cellular inhibitor of apoptosis protein (cIAP)-1 and cIAP-2). 4. Cinnamaldehyde induces the generation of reactive oxygen species (ROS) in cells. Following the pre-incubation of PLC/PRF/5 cells with anti-oxidants, it was found that 100 micromol/L vitamin E significantly diminished the effect of cinnamaldehyde-induced apoptosis, whereas a lesser effect was seen with on 100 micromol/L N-acetyl-L-cysteine. Vitamin E effectively blocked the release of cytochrome c, Smac/Diablo and Omi/HtrA2 from mitochondria to the cytosol in cells treated with cinnamaldehyde. Vitamin E also markedly suppressed caspase 3 activation. The expression of apoptotic inhibitors (XIAP, cIAP-1, cIAP-2) and anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) proteins was affected by vitamin E pretreatment. 5. Taken together, the results suggest that cinnamaldehyde triggers apoptosis possibly through the mitochondrial pathway. Pretreatment with vitamin E markedly prevented cinnamaldehyde-mediated apoptosis

  1. Biphasic regulation of chondrocytes by Rela through induction of anti-apoptotic and catabolic target genes

    PubMed Central

    Kobayashi, Hiroshi; Chang, Song Ho; Mori, Daisuke; Itoh, Shozo; Hirata, Makoto; Hosaka, Yoko; Taniguchi, Yuki; Okada, Keita; Mori, Yoshifumi; Yano, Fumiko; Chung, Ung-il; Akiyama, Haruhiko; Kawaguchi, Hiroshi; Tanaka, Sakae; Saito, Taku

    2016-01-01

    In vitro studies have shown that Rela/p65, a key subunit mediating NF-κB signalling, is involved in chondrogenic differentiation, cell survival and catabolic enzyme production. Here, we analyse in vivo functions of Rela in embryonic limbs and adult articular cartilage, and find that Rela protects chondrocytes from apoptosis through induction of anti-apoptotic genes including Pik3r1. During skeletal development, homozygous knockout of Rela leads to impaired growth through enhanced chondrocyte apoptosis, whereas heterozygous knockout of Rela does not alter growth. In articular cartilage, homozygous knockout of Rela at 7 weeks leads to marked acceleration of osteoarthritis through enhanced chondrocyte apoptosis, whereas heterozygous knockout of Rela results in suppression of osteoarthritis development through inhibition of catabolic gene expression. Haploinsufficiency or a low dose of an IKK inhibitor suppresses catabolic gene expression, but does not alter anti-apoptotic gene expression. The biphasic regulation of chondrocytes by Rela contributes to understanding the pathophysiology of osteoarthritis. PMID:27830706

  2. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-04-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes.

  3. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons.

    PubMed

    Prakash, Jay; Chouhan, Shikha; Yadav, Satyndra Kumar; Westfall, Susan; Rai, Sachchida Nand; Singh, Surya Pratap

    2014-12-01

    Maneb (MB) and paraquat (PQ) are environmental toxins that have been experimentally used to induce selective damage of dopaminergic neurons leading to the development of Parkinson's disease (PD). Although the mechanism of this selective neuronal toxicity in not fully understood, oxidative stress has been linked to the pathogenesis of PD. The present study investigates the mechanisms of neuroprotection elicited by Withania somnifera (Ws), a herb traditionally recognized by the Indian system of medicine, Ayurveda. An ethanolic root extract of Ws was co-treated with the MB-PQ induced mouse model of PD and was shown to significantly rescue canonical indicators of PD including compromised locomotor activity, reduced dopamine in the substantia nigra and various aspects of oxidative damage. In particular, Ws reduced the expression of iNOS, a measure of oxidative stress. Ws also significantly improved the MB + PQ mediated induction of a pro-apoptotic state by reducing Bax and inducing Bcl-2 protein expression, respectively. Finally, Ws reduced expression of the pro-inflammatory marker of astrocyte activation, GFAP. Altogether, the present study suggests that Ws treatment provides nigrostriatal dopaminergic neuroprotection against MB-PQ induced Parkinsonism by the modulation of oxidative stress and apoptotic machinery possibly accounting for the behavioural effects.

  4. Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer's disease

    PubMed Central

    Wang, Yan; Cai, Biao; Shao, Jing; Wang, Ting-ting; Cai, Run-ze; Ma, Chang-ju; Han, Tao; Du, Jun

    2016-01-01

    Genistein is effective against amyloid-β toxicity, but the underlying mechanisms are unclear. We hypothesized that genistein may protect neurons by inhibiting the mitochondrial apoptotic pathway, and thereby play a role in the prevention of Alzheimer’s disease. A rat model of Alzheimer’s disease was established by intraperitoneal injection of D-galactose and intracerebral injection of amyloid-β peptide (25–35). In the genistein treatment groups, a 7-day pretreatment with genistein (10, 30, 90 mg/kg) was given prior to establishing Alzheimer’s disease model, for 49 consecutive days. Terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated a reduction in apoptosis in the hippocampus of rats treated with genistein. Western blot analysis showed that expression levels of capase-3, Bax and cytochrome c were decreased compared with the model group. Furthermore, immunohistochemical staining revealed reductions in cytochrome c and Bax immunoreactivity in these rats. Morris water maze revealed a substantial shortening of escape latency by genistein in Alzheimer’s disease rats. These findings suggest that genistein decreases neuronal loss in the hippocampus, and improves learning and memory ability. The neuroprotective effects of genistein are associated with the inhibition of the mitochondrial apoptotic pathway, as shown by its ability to reduce levels of caspase-3, Bax and cytochrome c. PMID:27630702

  5. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    PubMed Central

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  6. Selective apoptotic effect of Zelkova serrata twig extract on mouth epidermoid carcinoma through p53 activation.

    PubMed

    Kang, Hoe-Jin; Jang, Young-Joo

    2012-06-01

    Apoptosis or programmed cell death plays an essential role in chemotherapy-induced tumor cell killing, and inducers of apoptosis are commonly used in cancer therapy. Treatment with Zelkova serrata extracts was performed in human gingival fibroblast (HGF), mouth epidermoid carcinoma cell (KB), lower gingival squamous cancer cell (YD38) and tongue mucoepidermoid carcinoma cells (YD15). We observed that extract prepared from Zelkova serrata twig selectively inhibited proliferation of various oral cancer cells, but not normal gingival fibroblasts, in a dose-dependent manner. Caspase-8-mediated apoptosis was induced by treatment with the extract only in mouth epidermoid carcinoma and not in other types of cancer cells, including lower gingival squamous cell carcinoma. The selective apoptotic effect of Zelkova serrata twig extract in mouth epidermoid carcinoma was dependent on normal p53 status. Apoptosis was not remarkably induced by treatment with the extract in either lower gingival squamous or tongue mucoepidermoid carcinoma cells, both of which contain abnormalities of p53. Upon treatment with Zelkova serrata twig extract, mouth epidermoid carcinoma cells accumulated in S phase by activation of p21. These data indicate that Zelkova serrata twig extract exerted a cancer type-specific, p53-dependent apoptotic effect and disturbed the cell cycle, which suggests that herbal medicine could be a treatment for specific types of cancers.

  7. Nicotinamide Inhibits Alkylating Agent-Induced Apoptotic Neurodegeneration in the Developing Rat Brain

    PubMed Central

    Naseer, Muhammad Imran; Ullah, Ikram; Suh, Joo Won; Kim, Myeong Ok

    2011-01-01

    Background Exposure to the chemotherapeutic alkylating agent thiotepa during brain development leads to neurological complications arising from neurodegeneration and irreversible damage to the developing central nerve system (CNS). Administration of single dose of thiotepa in 7-d postnatal (P7) rat triggers activation of apoptotic cascade and widespread neuronal death. The present study was aimed to elucidate whether nicotinamide may prevent thiotepa-induced neurodegeneration in the developing rat brain. Methodology/Principal Findings Neuronal cell death induced by thiotepa was associated with the induction of Bax, release of cytochrome-c from mitochondria into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1). Post-treatment of developing rats with nicotinamide suppressed thiotepa-induced upregulation of Bax, reduced cytochrome-c release into the cytosol and reduced expression of activated caspase-3 and cleavage of PARP-1. Cresyl violet staining showed numerous dead cells in the cortex hippocampus and thalamus; post-treatment with nicotinamide reduced the number of dead cells in these brain regions. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) and immunohistochemical analysis of caspase-3 show that thiotepa-induced cell death is apoptotic and that it is inhibited by nicotinamide treatment. Conclusion Nicotinamide (Nic) treatment with thiotepa significantly improved neuronal survival and alleviated neuronal cell death in the developing rat. These data demonstrate that nicotinamide shows promise as a therapeutic and neuroprotective agent for the treatment of neurodegenerative disorders in newborns and infants. PMID:22164206

  8. Apoptotic and anti-proliferative effects of all-trans retinoic acid

    SciTech Connect

    Zamora, Monica; Ortega, Juan Alberto; Alana, Lide; Vinas, Octavi; Mampel, Teresa . E-mail: tmampel@ub.edu

    2006-06-10

    We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy.

  9. The small GTPase Cdc42 initiates an apoptotic signaling pathway in Jurkat T lymphocytes.

    PubMed Central

    Chuang, T H; Hahn, K M; Lee, J D; Danley, D E; Bokoch, G M

    1997-01-01

    Apoptosis plays an important role in regulating development and homeostasis of the immune system, yet the elements of the signaling pathways that control cell death have not been well defined. When expressed in Jurkat T cells, an activated form of the small GTPase Cdc42 induces cell death exhibiting the characteristics of apoptosis. The death response induced by Cdc42 is mediated by activation of a protein kinase cascade leading to stimulation of c-Jun amino terminal kinase (JNK). Apoptosis initiated by Cdc42 is inhibited by dominant negative components of the JNK cascade and by reagents that block activity of the ICE protease (caspase) family, suggesting that stimulation of the JNK kinase cascade can lead to caspase activation. The sequence of morphological events observed typically in apoptotic cells is modified in the presence of activated Cdc42, suggesting that this GTPase may account for some aspects of cytoskeletal regulation during the apoptotic program. These data suggest a means through which the biochemical and morphological events occurring during apoptosis may be coordinately regulated. Images PMID:9307966

  10. Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2.

    PubMed

    Brecht, Kerstin; Weigert, Andreas; Hu, Jiong; Popp, Rüdiger; Fisslthaler, Beate; Korff, Thomas; Fleming, Ingrid; Geisslinger, Gerd; Brüne, Bernhard

    2011-07-01

    Macrophages contribute to tissue homeostasis in the developing as well as the adult organism. They promote tissue regeneration and remodeling after injury, which requires efficient neoangiogenesis. Signaling pathways activating an angiogenic program in macrophages are still poorly defined. We report that apoptotic cells (ACs), which originate from stressed or damaged tissues, can induce angiogenic properties in primary human macrophages. The signal originating from ACs is the lipid mediator sphingosine-1-phosphate (S1P), which activates S1P1/3 on macrophages to up-regulate cyclooxygenase-2. The formation and liberation of prostaglandin E(2) (PGE(2)) then stimulates migration of endothelial cells. This is demonstrated by using PGE(2) receptor antagonists or a neutralizing PGE(2) antibody in vitro, thereby attenuating endothelial cell migration using a Boyden chamber assay. In vivo, neutralization of PGE(2) from proangiogenic macrophage supernatants blocked vessel formation into Matrigel plugs. In particular, apoptotic cancer cells shifted prostanoid formation in macrophages selectively toward PGE(2) by up-regulating cyclooxygenase-2 and microsomal prostaglandin E synthase-1 (mPGES1), while down-regulating the PGE(2)-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) or prostaglandin-D synthase (PGDS). Angiogenic programming of macrophages by ACs, therefore, may control responses to tissue stress such as in tumors, where macrophages support cancer progression.

  11. Yeast lsm pro-apoptotic mutants show defects in S-phase entry and progression.

    PubMed

    Palermo, Vanessa; Cundari, Enrico; Mangiapelo, Eleonora; Falcone, Claudio; Mazzoni, Cristina

    2010-10-01

    Expression of the histone genes is tightly coupled to rates of DNA synthesis in yeast and histone mRNAs are modulated both transcriptionally and post-transcriptionally. Trf4 and Trf5, poly(A) polymerases, that mediates polyadenylation and consequent degradation) and Rrp6, an exosome component, play a role in the regulation of histone mRNA levels. In this paper we show that in the mRNA degradation mutant Kllsm4Δ1, histone mRNAs are induced early in the S-phase and maintained at high level all along the entire cell cycle due to a delay in the exit from S-phase and/or entry into M-phase. The overexpression of the HIR1 gene (Histone transcriptional repressor), previously isolated as a multicopy suppressor of the apoptotic phenotypes observed in Kllsm4Δ1, can also restore the normal cycling of histone genes expression. We also found that low doses of hydroxyurea neutralize the onset of the apoptotic phenotypes in Kllsm4Δ1, as well in another mRNA decapping mutants (lsm1) and, in addition, increase the chronological lifespan in both strains suggesting that an entry delay into the S phase can recover some cellular defects in decapping mutants.

  12. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes

    PubMed Central

    Suresh Babu, Sahana; Thandavarayan, Rajarajan A.; Joladarashi, Darukeshwara; Jeyabal, Prince; Krishnamurthy, Shashirekha; Bhimaraj, Arvind; Youker, Keith A.; Krishnamurthy, Prasanna

    2016-01-01

    Efferocytosis, a process of clearance of apoptotic cells by phagocytes, is essential for successful resolution of inflammation and maintenance of tissue homeostasis. Diabetes compromises the function of macrophages leading to adverse inflammatory response during wound healing, myocardial injury, atherosclerosis and autoimmune disorders. However, the effect of diabetes on macrophage-mediated efferocytosis of apoptotic cardiomyocytes (ACM) and the molecular mechanisms involved are not understood so far. In the present study we found that invitro efferocytosis of ACM was impaired in macrophages from db/db (diabetic) mice. Macrophages exposed to high glucose (HG) decreases microRNA-126 (miR-126) expression with a corresponding increase in ADAM9 expression. Dual-luciferase reporter assay confirms that ADAM9 3′UTR contains miR-126 target site. ADAM9 inhibition reduces HG-induced proteolytic cleavage of Mer tyrosine receptor kinase (MerTK, a proto-oncogene that plays a critical role in phagocytosis), resulting in shedding of soluble-Mer (sMER) and loss of MERTK function. Over-expression of miR-126 attenuates HG-induced impairment of efferocytosis. Furthermore, human diabetic hearts show lower miR-126 expression with a corresponding increase in ADAM9 expression vs. normal counterparts. These data suggests that diabetes impairs efferocytosis of ACM and that strategies to enhance efferocytosis might attenuate diabetes-induced impairment in inflammation resolution and cardiac repair after injury. PMID:27827458

  13. A G-tract element in apoptotic agents-induced alternative splicing.

    PubMed

    Hai, Yan; Cao, Wenguang; Liu, Guodong; Hong, Say-Pham; Elela, Sherif Abou; Klinck, Roscoe; Chu, Jiayou; Xie, Jiuyong

    2008-06-01

    Alternative splicing of a single pre-mRNA transcript can produce protein isoforms that promote either cell growth or death. Here we show that Ro-31-8220 (Ro), an apoptotic agent that inhibits protein kinase C and activates the c-Jun N terminal kinase, decreased the proportion of the cell growth-promoting Bcl-xL splice variant. Targeted mutagenesis analyses narrowed down a critical sequence to a 16-nt G-tract element (Gt16). Transferring this element to a heterologous gene conferred Ro response on an otherwise constitutive exon. The Ro effect was reduced by okadaic acid, an inhibitor of protein phosphatases PP1 and PP2A, in a concentration-dependent manner. Search in the human genome followed by RT-PCR identified a group of genes that contain similar exonic G-tract elements and are responsive to Ro. Moreover, the Gt16 element also mediates the regulation of alternative splicing by other cell apoptosis-inducers particularly retinoic acid. Therefore, the G-tract element likely plays a role in the apoptotic agents-induced alternative splicing of a group of genes. The functions of these genes imply that this regulation will have impact on cell growth/death.

  14. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells.

    PubMed

    Wang, S; He, M-f; Chen, Y-h; Wang, M-y; Yu, X-M; Bai, J; Zhu, H-y; Wang, Y-y; Zhao, H; Mei, Q; Nie, J; Ma, J; Wang, J-f; Wen, Q; Ma, L; Wang, Y; Wang, X-n

    2013-10-10

    A cell-in-cell process refers to the invasion of one living cell into another homotypic or heterotypic cell. Different from non-apoptotic death processes of internalized cells termed entosis or cannibalism, we previously reported an apoptotic cell-in-cell death occurring during heterotypic cell-in-cell formation. In this study, we further demonstrated that the apoptotic cell-in-cell death occurred only in internalized immune killer cells expressing granzyme B (GzmB). Vacuole wrapping around the internalized cells inside the target cells was the common hallmark during the early stage of all cell-in-cell processes, which resulted in the accumulation of reactive oxygen species and subsequent mitochondrial injury of encapsulated killer or non-cytotoxic immune cells. However, internalized killer cells mediated rapid bubbling of the vacuoles with the subsequent degranulation of GzmB inside the vacuole of the target cells and underwent the reuptake of GzmB by killer cells themselves. The confinement of GzmB inside the vacuole surpassed the lysosome-mediated cell death occurring in heterotypic or homotypic entosis processes, resulting in a GzmB-triggered caspase-dependent apoptotic cell-in-cell death of internalized killer cells. On the contrary, internalized killer cells from GzmB-deficient mice underwent a typical non-apoptotic entotic cell-in-cell death similar to that of non-cytotoxic immune cells or tumor cells. Our results thus demonstrated the critical involvement of immune cells with cytotoxic property in apoptotic cell-in-cell death, which we termed as emperitosis taken from emperipolesis and apoptosis. Whereas entosis or cannibalism may serve as a feed-on mechanism to exacerbate and nourish tumor cells, emperitosis of immune killer cells inside tumor cells may serve as an in-cell danger sensation model to prevent the killing of target cells from inside, implying a unique mechanism for tumor cells to escape from immune surveillance.

  15. Apoptosis in immune-mediated diseases

    PubMed Central

    Sankari, S. Leena; Babu, N. Aravindha; Rajesh, E.; Kasthuri, M.

    2015-01-01

    Apoptosis plays a significant role in both the physiological and pathological process. A dysfunctional apoptotic system can lead to either excessive removal or prolonged survival of cells. Therefore, dysregulation is involved in the pathogenesis of a variety of immunological diseases. The present review aims to provide an overview regarding role of apoptosis in immune-mediated disease. PMID:26015710

  16. BH3-only protein BIM mediates heat shock-induced apoptosis.

    PubMed

    Mahajan, Indra M; Chen, Miao-Der; Muro, Israel; Robertson, John D; Wright, Casey W; Bratton, Shawn B

    2014-01-01

    Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax(-/-)Bak(-/-) cells and better than either Bid(-/-) or dominant-negative caspase-9-expressing cells. Only Bim(-/-) and Bax(-/-)Bak(-/-) cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid(-/-) cells, it readily did so in Bim(-/-) cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1(-/-) cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-X(L) with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members.

  17. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    PubMed Central

    Dlamini, Zodwa; Tshidino, Shonisani C.; Hull, Rodney

    2015-01-01

    Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets. PMID:26580598

  18. Innate and Adaptive Immune Response to Apoptotic Cells

    PubMed Central

    Peng, YuFeng; Martin, David A; Kenkel, Justin; Zhang, Kang; Ogden, Carol Anne; Elkon, Keith B.

    2007-01-01

    The immune system is constantly exposed to dying cells, most of which arise during central tolerance and from effete circulating immune cells. Under homeostatic conditions, phagocytes (predominantly macrophages and dendritic cells) belonging to the innate immune system, rapidly ingest cells and their debris. Apoptotic cell removal requires recognition of altered self on the apoptotic membrane, a process which is facilitated by natural antibodies and serum opsonins. Recognition, may be site and context specific. Uptake and ingestion of apoptotic cells promotes an immunosuppressive environment that avoids inflammatory responses to self antigens. However, it does not preclude a T cell response and it is likely that constant exposure to self antigen, particularly by immature dendritic cells, leads to T cell tolerance. Tolerance occurs by several different mechanisms including anergy and deletion (for CD8+ T cells) and induction of T regulatory cells (for CD4+ T cells). Failed apoptotic cell clearance promotes immune responses to self antigens, especially when the cellular contents are leaked from the cell (necrosis). Inflammatory responses may be induced by nucleic acid stimulation of toll like receptors and other immune sensors, specific intracellular proteins and non protein (uric acid) stimulation of inflammasomes. PMID:17888627

  19. Monitoring circulating apoptotic cells by in-vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Wei, Xunbin; Tan, Yuan; Chen, Yun; Zhang, Li; Li, Yan; Liu, Guangda; Wu, Bin; Wang, Chen

    2008-02-01

    Chemotherapies currently constitute one main venue of cancer treatment. For a large number of adult and elderly patients, however, treatment options are poor. These patients may suffer from disease that is resistant to conventional chemotherapy or may not be candidates for curative therapies because of advanced age or poor medical conditions. To control disease in these patients, new therapies must be developed that are selectively targeted to unique characteristics of tumor cell growth and metastasis. A reliable early evaluation and prediction of response to the chemotherapy is critical to its success. Chemotherapies induce apoptosis in tumor cells and a portion of such apoptotic cancer cells may be present in the circulation. However, the fate of circulating tumor cells is difficult to assess with conventional methods that require blood sampling. We report the in situ measurement of circulating apoptotic cells in live animals using in vivo flow cytometry, a novel method that enables real-time detection and quantification of circulating cells without blood extraction. Apoptotic cells are rapidly cleared from the circulation with a half-life of ~10 minutes. Real-time monitoring of circulating apoptotic cells can be useful for detecting early changes in disease processes, as well as for monitoring response to therapeutic intervention.

  20. Allosteric Inhibition of Anti-Apoptotic MCL-1

    PubMed Central

    Lee, Susan; Wales, Thomas E.; Escudero, Silvia; Cohen, Daniel T.; Luccarelli, James; Gallagher, Catherine; Cohen, Nicole A.; Huhn, Annissa J.; Bird, Gregory H.; Engen, John R.; Walensky, Loren D.

    2016-01-01

    MCL-1 is an anti-apoptotic BCL-2 family protein that has emerged as a major pathogenic factor in human cancer. Like BCL-2, MCL-1 bears a surface groove whose function is to sequester the BH3 killer domains of pro-apoptotic BCL-2 family members, a mechanism harnessed by cancer cells to establish formidable apoptotic blockades. Whereas drugging the BH3-binding groove has been achieved for BCL-2, translating this approach to MCL-1 has been challenging. Here, we report an alternative mechanism for MCL-1 inhibition by small molecule covalent modification of C286 at a novel interaction site distant from the BH3-binding groove. Our structure-function analyses revealed that the BH3-binding capacity of MCL-1 and its suppression of BAX are impaired by molecular engagement, a phenomenon recapitulated by C286W mutagenic mimicry in vitro and in cells. Thus, we characterize an allosteric mechanism for disrupting the anti-apoptotic, BH3-binding activity of MCL-1, informing a new strategy for disarming MCL-1 in cancer. PMID:27159560

  1. Apoptotic Cell Death of Human Interstitial Cells of Cajal

    PubMed Central

    De Giorgio, Roberto; Faussone Pellegrini, Maria Simonetta; Garrity-Park, Megan M.; Miller, Steven M.; Schmalz, Philip F.; Young-Fadok, Tonia M.; Larson, David W.; Dozois, Eric J.; Camilleri, Michael; Stanghellini, Vincenzo; Szurszewski, Joseph H.; Farrugia, Gianrico

    2008-01-01

    Interstitial cells of Cajal (ICC) are specialized mesenchyme-derived cells that regulate contractility and excitability of many smooth muscles with loss of ICC seen in a variety of gut motility disorders. Maintenance of ICC numbers is tightly regulated, with several factors known to regulate proliferation. In contrast, the fate of ICC is not established. The aim of this study was to investigate whether apoptosis plays a role in the regulation of ICC numbers in the normal colon. ICC were identified by immunolabeling for the c-Kit receptor tyrosine kinase and by electron microscopy. Apoptosis was detected in colon tissue by immunolabeling for activated caspase-3, terminal dUTP nucleotide end labeling, and ultrastructural changes in the cells. Apoptotic ICC were identified and counted in double labeled tissue sections. Apoptotic ICC were identified in all layers of the colonic muscle. In the muscularis propria 1.5 ± 0.2% of ICC were positive for activated caspase-3 and in the circular muscle layer 2.1 ± 0.9% of ICC were positive for TUNEL. Apoptotic ICC were identified by electron microscopy. Apoptotic cell death is ongoing in ICC. The level of apoptosis in ICC in healthy colon indicates that these cells must be continually regenerated to maintain intact networks. PMID:18798796

  2. Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle

    PubMed Central

    Siu, Parco M; Alway, Stephen E

    2005-01-01

    Apoptosis has been implicated in the regulation of denervation-induced muscle atrophy. However, the activation of apoptotic signal transduction during muscle denervation has not been fully elucidated. The present study examined the apoptotic responses to denervation in rat gastrocnemius muscle. Following 14 days of denervation, the extent of apoptotic DNA fragmentation as determined by a cytosolic nucleosome ELISA was increased by 100% in the gastrocnemius muscle. RT-PCR and immunoblot analyses indicated that Bax was dramatically upregulated while Bcl-2 was modestly increased; however, the Bax/Bcl-2 ratio was significantly increased in denervated muscles relative to control muscles. Analyses of ELISA and immunoblots from mitochondria-free cytosol extracts showed a significant increase in mitochondria-associated apoptotic factors, including cytochrome c, Smac/DIABLO and apoptosis-inducing factor (AIF). In addition to the upregulation of caspase-3 and -9 mRNA, pro-/cleaved caspase protein and proteolytic activity levels, the X-linked inhibitor of apoptosis (XIAP) protein level was downregulated. The cleaved product of poly(ADP-ribose) polymerase (PARP) was detected in muscle samples following denervation. Although we did not find a difference in the inhibitor of DNA binding/ differentiation-2 (Id2) and c-Myc protein contents between the denervated and control muscles, the protein content of tumour suppressor p53 was significantly increased in both the nuclear and the cytosolic fractions with denervation. Moreover, denervation increased the protein content of HSP70, whereas the MnSOD (a mitochondrial isoform of superoxide dismutase) protein content was diminished, which indicated that denervation might have induced cellular and/or oxidative stress. Our data show that mitochondria-associated apoptotic signalling is upregulated during muscle denervation. We interpret these findings to indicate that apoptosis has a physiologically important role in regulating denervation

  3. Macrophage migration inhibitory factor interacts with HBx and inhibits its apoptotic activity

    SciTech Connect

    Zhang Shimeng; Lin Ruxian; Zhou Zhe; Wen Siyuan; Lin Li; Chen Suhong; Shan Yajun; Cong Yuwen; Wang Shengqi . E-mail: sqwang@nic.bmi.ac.cn

    2006-04-07

    HBx, a transcriptional transactivating protein of hepatitis B virus (HBV), is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the precise molecular mechanism remains largely elusive. We used the yeast two-hybrid system to identify that HBx interacts with MIF directly. Macrophage migration inhibitory factor (MIF) is implicated in the regulation of inflammation, cell growth, and even tumor formation. The interaction between HBx and MIF was verified with co-immunoprecipitation, GST pull-down, and cellular colocalization. The expression of MIF was up-regulated in HBV particle producing cell 2.2.15 compared with HepG2 cell. Both HBx and MIF cause HepG2 cell G /G{sub 1} phase arrest, proliferation inhibition, and apoptosis. However, MIF can counteract the apoptotic effect of HBx. These results may provide evidence to explain the link between HBV infection and hepatocellular carcinoma.

  4. Apoptotic neuron-secreted HN12 inhibits cell apoptosis in Hirschsprung’s disease

    PubMed Central

    Du, Chunxia; Xie, Hua; Zang, Rujin; Shen, Ziyang; Li, Hongxing; Chen, Pingfa; Xu, Xiaoqun; Xia, Yankai; Tang, Weibing

    2016-01-01

    Perturbation in apoptosis can lead to Hirschsprung’s disease (HSCR), which is a genetic disorder of neural crest development. It is believed that long noncoding RNAs (lncRNAs) play a role in the progression of HSCR. This study shows that apoptotic neurons can suppress apoptosis of nonapoptotic cells by secreting exosomes that contain high levels of HN12 lncRNA. Elevated exogenous HN12 in nonapoptotic cells effectively inhibited cell apoptosis by maintaining the function of mitochondria, including the production of ATP and the release of cytochrome C. These results demonstrate that secreted lncRNAs may serve as signaling molecules mediating intercellular communication in HSCR. In addition, high HN12 levels in the circulation worked as a biomarker for predicting HSCR, providing a potential, novel, noninvasive diagnostic approach for early screening of HSCR. PMID:27853370

  5. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

    NASA Astrophysics Data System (ADS)

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing

    2016-07-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.

  6. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  7. Association between lymphocyte expression of the apoptotic receptor Fas and pain in critically ill patients

    PubMed Central

    Papathanassoglou, Elizabeth DE; Mpouzika, Meropi DA; Giannakopoulou, Margarita; Bozas, Evangelos; Middleton, Nicos; Tsiaousis, George; Karabinis, Andreas

    2017-01-01

    Objective Lymphocyte apoptosis in critical illness is associated with immunosuppression. We explored for the first time the associations between pain ratings and expression of the apoptotic receptor Fas on B and T cells in critically ill patients and the potential mediating effects of adrenocorticotropic hormone (ACTH), cortisol, and substance P (SP). Design This is an exploratory correlational study with repeated measurements (14 days followup) and cross-sectional comparisons. Setting This study was conducted in a state hospital in the metropolitan area of Athens, Greece. Participants The participants were 36 consecutive critically ill patients and 36 matched controls. Outcome measures Pain measured by the self-reported numeric rating scale [NRS], the behavioral pain scale, and the pain assessment scale was the primary outcome measure. Flow cytometry (Fas), electrochemiluminescence (ACTH and cortisol) and enzyme-linked immunosorbent assay (SP) were used. Mixed linear models for repeated measurements and bivariable associations at discrete time points were employed. Results Significant pain at rest was noted. Pain ratings associated with Fas expression on cytotoxic T cells (P=0.041) and B cells (P=0.005), even after adjustment for a number of clinical treatment factors (P=0.006 and P=0.052, respectively). On the day that more patients were able to communicate, Fas on B cells (r=0.897, P=0.029) and cytotoxic T cells (r=0.832; P=0.037) associated with NRS ratings. Associations between pain ratings and ACTH serum levels were noted (P<0.05). When stress neuropeptide levels were added to the model, the statistical significance of the associations between pain ratings and Fas expression was attenuated (P=0.052–0.063), suggesting that stress neuropeptides may partially mediate the association. Conclusion Preliminary evidence for the association between pain and lymphocyte apoptotic susceptibility is provided. The role of pain management in maintaining immunocompetence

  8. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway

    PubMed Central

    Dai, Zhipeng; Yang, Jingjing; Zheng, Jin

    2016-01-01

    Background Iron overload is recognized as a new pathogenfor osteoporosis. Various studies demonstrated that iron overload could induce apoptosis in osteoblasts and osteoporosis in vivo. However, the exact molecular mechanisms involved in the iron overload-mediated induction of apoptosis in osteoblasts has not been explored. Purpose In this study, we attempted to determine whether the mitochondrial apoptotic pathway is involved in iron-induced osteoblastic cell death and to investigate the beneficial effect of N-acetyl-cysteine (NAC) in iron-induced cytotoxicity. Methods The MC3T3-E1 osteoblastic cell line was treated with various concentrations of ferric ion in the absence or presence of NAC, and intracellular iron, cell viability, reactive oxygen species, functionand morphology changes of mitochondria and mitochondrial apoptosis related key indicators were detected by commercial kits. In addition, to further explain potential mechanisms underlying iron overload-related osteoporosis, we also assessed cell viability, apoptosis, and osteogenic differentiation potential in bone marrow-derived mesenchymal stemcells(MSCs) by commercial kits. Results Ferric ion demonstrated concentration-dependent cytotoxic effects on osteoblasts. After incubation with iron, an elevation of intracelluar labile iron levels and a concomitant over-generation of reactive oxygen species (ROS) were detected by flow cytometry in osteoblasts. Nox4 (NADPH oxidase 4), an important ROS producer, was also evaluated by western blot. Apoptosis, which was evaluated by Annexin V/propidium iodide staining, Hoechst 33258 staining, and the activation of caspase-3, was detected after exposure to iron. Iron contributed to the permeabilizatio of mitochondria, leading to the release of cytochrome C (cyto C), which, in turn, induced mitochondrial apoptosis in osteoblasts via activation of Caspase-3, up-regulation of Bax, and down-regulation of Bcl-2. NAC could reverse iron-mediated mitochondrial dysfunction and

  9. Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization but partially affects its apoptotic activity

    SciTech Connect

    Lee, Y.-H.; Cheng, C.-M.; Chang, Y.-F.; Wang, T.-Y.; Yuo, C.-Y.; E-mail: m815006@kmu.edu.tw

    2007-03-09

    Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in human tumor cells but not in normal cells. In addition, Apoptin also exhibits tumor-specific nuclear localization and tumor-specific phosphorylation on threonine 108 (T108). Here, we studied the effects of T108 phosphorylation on the tumor-specific nuclear localization and apoptotic activity of Apoptin. We first showed that a hemagglutinin (HA)-tagged Apoptin, but not the green fluorescent protein-fused Apoptin used in many previous studies, exhibited the same intracellular distribution pattern as native Apoptin. We then made and analyzed an HA-Apoptin mutant with its T108 phosphorylation site abolished. We found that Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization and abolishing the T108 phosphorylation of Apoptin does affect its apoptotic activity in tumor cells but only partially. Our results support the previous finding that Apoptin contains two distinct apoptosis domains located separately at the N- and C-terminal regions and suggest that the T108 phosphorylation may only be required for the apoptotic activity mediated through the C-terminal apoptosis domain.

  10. Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans.

    PubMed

    Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O

    2014-06-01

    The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans.

  11. Externalization and recognition by macrophages of large subunit of eukaryotic translation initiation factor 3 in apoptotic cells

    SciTech Connect

    Nakai, Yuji; Shiratsuchi, Akiko; Manaka, Junko; Nakayama, Hiroshi; Takio, Koji; Zhang Jianting; Suganuma, Tatsuo; Nakanishi, Yoshinobu . E-mail: nakanaka@kenroku.kanazawa-u.ac.jp

    2005-09-10

    We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages [C. Fujii, A. Shiratsuchi, J. Manaka, S. Yonehara, Y. Nakanishi. Cell Death Differ. 8 (2001) 1113-1122]. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis.

  12. Fenugreek, a naturally occurring edible spice, kills MCF-7 human breast cancer cells via an apoptotic pathway.

    PubMed

    Khoja, Kholoud K; Shaf, Gowhar; Hasan, Tarique N; Syed, Naveed Ahmed; Al-Khalifa, Abdrohman S; Al-Assaf, Abdullah H; Alshatwi, Ali A

    2011-01-01

    There is growing use of anticancer complementary and alternative medicines worldwide. Trigonella foenum graecum (Fenugreek) is traditionally applied to treat disorders such as diabetes, high cholesterol, wounds, inflammation, and gastrointestinal ailments. Fenugreek is also reported to have anticancer properties due to its active beneficial chemical constituents. The mechanism of action of several anticancer drugs is based on their ability to induce apoptosis. The objective of the study was to characterize the downstream apoptotic genes targeted by FCE in MCF-7 human immortalized breast cells. FCE effectively killed MCF-7 cells through induction of apoptosis,confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and RT-PCR assays. When cells were exposed to 50 μg/mL FCE for 24 hours, 23.2% apoptotic cells resulted, while a 48-hour exposure to 50 μg/mL caused 73.8% apoptosis. This was associated with increased expression of Caspase 3, 8, 9, p53, Fas, FADD, Bax and Bak in a time-and dose-dependent manner, as determined by real- time quantitative PCR. In summary, the induction of apoptosis by FCE is effected by its ability to increase the expression of pro-apoptotic genes and the spice holds promise for consideration in complementary therapy for breast cancer patients.

  13. Tetramethylpyrazine Protects against Early Brain Injury after Experimental Subarachnoid Hemorrhage by Affecting Mitochondrial-Dependent Caspase-3 Apoptotic Pathway

    PubMed Central

    Xiao, Xiaolan

    2017-01-01

    This study was to test the hypothesis that tetramethylpyrazine (TMP) protected against early brain injury after subarachnoid hemorrhage (SAH) by affecting the mitochondrial-dependent caspase-3 apoptotic pathway. TMP was administrated after the rats' prechiasmatic SAH mode. Animal neurobehavioral functions were assessed and the mitochondrial morphology, mitochondrial and cytoplasmic calcium, and mitochondrial membrane potential changes (Δψm) of the brain tissues were measured. The expressions of cytoplasmic cytochrome c (cyt c), second mitochondria-derived activator of caspases (Smac), and cleaved caspase-3 B-cell lymphoma 2 (bcl-2) in cells were determined and cellular apoptosis was detected. The treatment of TMP resulted in less apoptotic cells and milder mitochondrial injury and potentially performed better in the neurobehavioral outcome compared to those with saline. Also, TMP ameliorated calcium overload in mitochondria and cytoplasm and alleviated the decrease of Δψm. In addition, TMP inhibited the expression of cytoplasmic cyt c, Smac, and cleaved caspase-3, yet it upregulated the expression of bcl-2. These findings suggest that TMP exerts an antiapoptosis property in the SAH rat model and this is probably mediated by the caspase-3 apoptotic pathway triggered by mitochondrial calcium overload. The finding offers a new therapeutic candidate for early brain injury after SAH. PMID:28337226

  14. Interaction between caspase-8 activation and endoplasmic reticulum stress in glycochenodeoxycholic acid-induced apoptotic HepG2 cells.

    PubMed

    Iizaka, Toru; Tsuji, Mayumi; Oyamada, Hideto; Morio, Yuri; Oguchi, Katsuji

    2007-11-30

    The accumulation of hydrophobic bile acid, such as glycochenodeoxycholic acid (GCDCA), in the liver has been thought to induce hepatocellular damage in human chronic cholestatic liver diseases. We previously reported that GCDCA-induced apoptosis was promoted by both mitochondria-mediated and endoplasmic reticulum (ER) stress-associated pathways in rat hepatocytes. In this study, we elucidated the relationship between these pathways in GCDCA-induced apoptotic HepG2 cells. HepG2 cells were treated with GCDCA (100-500microM) with or without a caspase-8 inhibitor, Z-IETD-fluoromethyl ketone (Z-IETD-FMK) (30microM) for 3-24h. We demonstrated the presence of both apoptotic pathways in these cells; that is, we showed increases in cleaved caspase-3 proteins, the release of cytochrome c from mitochondria, and the expression of ER resident molecular chaperone Bip mRNA and ER stress response-associated transcription factor Chop mRNA. On the other hand, pretreatment with Z-IETD-FMK significantly reduced the increases, compared with treatment with GCDCA alone. Immunofluorescence microscopic analysis showed that treatment with GCDCA increased the cleavage of BAP31, an integral membrane protein of ER, and pretreatment with Z-IETD-FMK suppressed the increase of caspase-8 and BAP31 cleavage. In conclusion, these results suggest that intact activated caspase-8 may promote and amplify the ER stress response by cleaving BAP31 in GCDCA-induced apoptotic cells.

  15. Prostaglandin D2 synthase: Apoptotic factor in alzheimer plasma, inducer of reactive oxygen species, inflammatory cytokines and dialysis dementia

    PubMed Central

    Maesaka, John K.; Sodam, Bali; Palaia, Thomas; Ragolia, Louis; Batuman, Vecihi; Miyawaki, Nobuyuki; Shastry, Shubha; Youmans, Steven; El-Sabban, Marwan

    2013-01-01

    Background: Apoptosis, reactive oxygen species (ROS) and inflammatory cytokines have all been implicated in the development of Alzheimer’s disease (AD). Objectives: The present study identifies the apoptotic factor that was responsible for the fourfold increase in apoptotic rates that we previously noted when pig proximal tubule, LLC-PK1, cells were exposed to AD plasma as compared to plasma from normal controls and multi-infarct dementia. Patients and Methods: The apoptotic factor was isolated from AD urine and identified as lipocalin-type prostaglandin D2 synthase (L-PGDS). L-PGDS was found to be the major apoptotic factor in AD plasma as determined by inhibition of apoptosis approximating control levels by the cyclo-oxygenase (COX) 2 inhibitor, NS398, and the antibody to L-PGDS. Blood levels of L-PGDS, however, were not elevated in AD. We now demonstrate a receptor-mediated uptake of L-PGDS in PC12 neuronal cells that was time, dose and temperature-dependent and was saturable by competition with cold L-PGDS and albumin. Further proof of this endocytosis was provided by an electron microscopic study of gold labeled L-PGDS and immunofluorescence with Alexa-labeled L-PGDS. Results: The recombinant L-PGDS and wild type (WT) L-PGDS increased ROS but only the WTL-PGDS increased IL6 and TNFα, suggesting that differences in glycosylation of L-PGDS in AD was responsible for this discrepancy. Conclusions: These data collectively suggest that L-PGDS might play an important role in the development of dementia in patients on dialysis and of AD. PMID:24475446

  16. Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation.

    PubMed

    Hsu, Yung-Ho; Cheng, Chung-Yi; Chen, Yen-Cheng; Chen, Tso-Hsiao; Sue, Yuh-Mou; Tsai, Wei-Lun; Chen, Cheng-Hsien

    2012-08-15

    Adipokine leptin reportedly acts on the kidney in pathophysiological states. However, the influence of leptin on renal tubular epithelial cells is still unclear. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. This study aims to investigate the influence of long-term leptin treatment on gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) and mice. We monitored apoptosis and molecular mechanisms using annexin V/ propidium iodide staining and small interfering RNA transfection. In NRK-52E cells, leptin reduced gentamicin-induced apoptosis at 24h, but significantly increased apoptosis at 48 h. Long-term treatment of leptin decreased Bcl-x(L) expression and increased caspase activity in gentamicin-treated NRK-52E cells. Leptin also increased the expression of cyclooxygenase-2 (COX-2) and its product, prostaglandin E(2) (PGE(2)), in a dose-dependent manner. The COX-2 inhibitor, NS398 (N-[2-(Cyclohexyloxy)-4- nitrophenyl]methanesulfonamide), blocked PGE(2) augmentation and the pro-apoptotic effects of leptin. The addition of PGE(2) recovered the pro-apoptotic effect of leptin in NS398-treated NRK-52E cells. In a mouse animal model, a 10 day leptin treatment significantly increased gentamicin-induced apoptotic cells in proximal tubules. NS398 treatment inhibited this in vivo pro-apoptotic effect of leptin. Results reveal that long-term elevation of leptin induces COX-2-mediated PGE(2) augmentation in renal tubular cells, and then increases these cells' susceptibility to gentamicin-induced apoptosis.

  17. ET-46ONCOLYTIC VIRAL THERAPY FOR MALIGNANT GLIOMAS USING MYXOMA VIRUS DELETED FOR ANTI-APOPTOTIC M11L GENE

    PubMed Central

    Pisklakova, Alexandra; McKenzie, Brienne; Kenchappa, Rajappa; McFadden, Grant; Forsyth, Peter

    2014-01-01

    Brain Tumour Initiating Cells (BTICs) are stem-like cells hypothesized to mediate recurrence in high-grade gliomas. Myxoma virus (MyxV) is a promising oncolytic virus, which is highly effective in conventional long term resistant glioma cell lines and less effective in BTICs. We hypothesized that one possible factor limiting efficacy in BTICs is that cell death following infection with MyxV is inhibited by virally encoded anti-apoptotic proteins, such as the Bcl-2 structural homologue, M011L. To test this we evaluated and compared the efficacy of wtMYXV versus the viral construct MyxV-M011L-KO (in which the anti-apoptotic protein M11L has been deleted) in BTICs. We found that WT-MyxV does not induce significant level of apoptosis in infected BTICs, but that MyxV-M011L-KO induces dramatically more apoptosisas shown by caspase activation, PARP cleavage, and Cytochrome C release from the mitochondria M11L from the WT-MyxV localized to the mitochondrial membrane and prevented the association of Bax with the mitochondrial membrane. Finally, silencing of Bax using specific siRNAs significantly blocked the induction of apoptosis and cell death that occurs after infection with mutant MyxV-M011L-KO virus. Therefore MyxV-M011L-KO, which is has the anti-apoptotic virally derived gene M11L, dramatically improves the oncolytic efficacy in BTICs and this is dependent on the presence of the pro-apoptotic host protein, Bax. This is the first demonstration, that the MyxV mutant, genetically modified to promote apoptosis in tumor initiating cells, is significantly more efficacious than the wildtype virus. Strategies, such as this one, that promotes apoptosis in tumor initiating cells might be particularly effective.

  18. A mathematical model for apoptotic switch in Drosophila

    NASA Astrophysics Data System (ADS)

    Ziraldo, Riccardo; Ma, Lan

    2015-10-01

    Apoptosis is an evolutionarily-conserved process of autonomous cell death. The molecular switch mechanism underlying the fate decision of apoptosis in mammalian cells has been intensively studied by mathematical modeling. In contrast, the apoptotic switch in invertebrates, with highly conserved signaling proteins and pathway, remains poorly understood mechanistically and calls for theoretical elucidation. In this study, we develop a mathematical model of the apoptosis pathway in Drosophila and compare the switch mechanism to that in mammals. Enumeration of the elementary reactions for the model demonstrates that the molecular interactions among the signaling components are considerably different from their mammalian counterparts. A notable distinction in network organization is that the direct positive feedback from the effector caspase (EC) to the initiator caspase in mammalian pathway is replaced by a double-negative regulation in Drosophila. The model is calibrated by experimental input-output relationship and the simulated trajectories exhibit all-or-none bimodal behavior. Bifurcation diagrams confirm that the model of Drosophila apoptotic switch possesses bistability, a well-recognized feature for an apoptosis system. Since the apoptotic protease activating factor-1 (APAF1) induced irreversible activation of caspase is an essential and beneficial property for the mammalian apoptotic switch, we perform analysis of the bistable caspase activation with respect to the input of DARK protein, the Drosophila homolog of APAF1. Interestingly, this bistable behavior in Drosophila is predicted to be reversible. Further analysis suggests that the mechanism underlying the systems property of reversibility is the double-negative feedback from the EC to the initiator caspase. Using theoretical modeling, our study proposes plausible evolution of the switch mechanism for apoptosis between organisms.

  19. The complexity of apoptotic cell death in mollusks: An update.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2015-09-01

    Apoptosis is a type of programmed cell death that produces changes in cell morphology and in biochemical intracellular processes without inflammatory reactions. The components of the apoptotic pathways are conserved throughout evolution. Caspases are key molecules involved in the transduction of the death signal and are responsible for many of the biochemical and morphological changes associated with apoptosis. Nowadays, It is known that caspases are activated through two major apoptotic pathways (the extrinsic or death receptor pathway and the intrinsic or mitochondrial pathway), but there are also evidences of at least other alternative pathway (the perforin/granzyme pathway). Apoptosis in mollusks seems to be similar in complexity to apoptosis in vertebrates but also has unique features maybe related to their recurrent exposure to environmental changes, pollutants, pathogens and also related to the sedentary nature of some stages in the life cycle of mollusks bivalves and gastropods. As in other animals, apoptotic process is involved in the maintenance of tissue homeostasis and also constitutes an important immune response that can be triggered by a variety of stimuli, including cytokines, hormones, toxic insults, viruses, and protozoan parasites. The main goal of this work is to present the current knowledge of the molecular mechanisms of apoptosis in mollusks and to highlight those steps that need further study.

  20. Apoptotic cell signaling in cancer progression and therapy†

    PubMed Central

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-01-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed. PMID:21340093

  1. Apoptotic cell signaling in cancer progression and therapy.

    PubMed

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-04-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed.

  2. PDT-apoptotic tumor cells induce macrophage immune response

    NASA Astrophysics Data System (ADS)

    Zhou, Fei-fan; Xing, Da; Chen, Wei R.

    2008-02-01

    Photodynamic therapy (PDT) functions as a cancer therapy through two major cell death mechanisms: apoptosis and necrosis. Immunological responses induced by PDT has been mainly associated with necrosis while apoptosis associated immune responses have not fully investigated. Heat shock proteins (HSPs) play an important role in regulating immune responses. In present study, we studied whether apoptotic tumor cells could induce immune response and how the HSP70 regulates immune response. The endocytosis of tumor cells by the activated macrophages was observed at single cell level by LSM. The TNF-α release of macrophages induced by co-incubated with PDT-apoptotic tumor cells was detected by ELISA. We found that apoptotic tumor cells treated by PDT could activate the macrophages, and the immune effect decreased evidently when HSP70 was blocked. These findings not only show that apoptosis can induce immunological responses, but also show HSP70 may serves as a danger signal for immune cells and induce immune responses to regulate the efficacy of PDT.

  3. The cytotoxic and pro-apoptotic effects of phenylephrine on corneal stromal cells via a mitochondrion-dependent pathway both in vitro and in vivo.

    PubMed

    Zhao, Jun; Qiu, Yue; Tian, Cheng-Lei; Fan, Ting-Jun

    2016-08-01

    Phenylephrine (PHE), a selective α1-adrenergic receptor agonist, is often used as a decongestant for mydriasis prior to cataract surgery, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of PHE to the cornea and its cellular and molecular mechanisms remain unknown. To provide references for secure medication and prospective therapeutic interventions of PHE, we investigated the cytotoxicity of PHE to corneal stroma and its possible mechanisms using an in vitro model of human corneal stromal (HCS) cells and an in vivo model of cat keratocytes. We found that PHE, above the concentration of 0.0781125% (1/128 of its clinical therapeutic dosage), had a dose- and time-dependent cytotoxicity to HCS cells by inducing morphological abnormality and viability decline, as well as S phase arrest. Moreover, PHE induced apoptosis of HCS cells by inducing plasma membrane permeability elevation, phosphatidylserine externalization, DNA fragmentation and apoptotic body formation. Furthermore, PHE could induce activations of caspase-3 and -9, disruption of mitochondrial transmembrane potential, downregulation of anti-apoptotic Bcl-xL, upregulation of pro-apoptotic Bax, along with upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor. The cytotoxic and pro-apoptotic effects of PHE were also proven by the induced apoptotic-like ultrastructural alterations of keratocytes in vivo. Taken together, our results suggest that PHE has a significant cytotoxicity to corneal stroma cells both in vitro and in vivo by inducing cell apoptosis, and the pro-apoptotic effect of PHE is achieved via a Bcl-2 family proteins-mediated mitochondrion-dependent pathway.

  4. Exogenous H2S regulates endoplasmic reticulum-mitochondria cross-talk to inhibit apoptotic pathways in STZ-induced type I diabetes.

    PubMed

    Yang, Fan; Yu, Xiangjing; Li, Ting; Wu, Jianjun; Zhao, Yajun; Liu, Jiaqi; Sun, Aili; Dong, Shiyun; Wu, Jichao; Zhong, Xin; Xu, Changqing; Lu, Fanghao; Zhang, Weihua

    2017-03-01

    The upregulation of reactive oxygen species (ROS) is a primary cause of cardiomyocyte apoptosis in diabetes cardiomyopathy (DCM). Mitofusin-2 (Mfn-2) is a key protein that bridges the mitochondria and endoplasmic reticulum (ER). Hydrogen sulfide (H2S)-mediated cardioprotection is related to antioxidant effects. The present study demonstrated that H2S inhibited the interaction between the ER and mitochondrial apoptotic pathway. This study investigated cardiac function, ultrastructural changes in the ER and mitochondria, apoptotic rate using TUNEL, and the expression of ER stress-associated proteins and mitochondrial apoptotic proteins in cardiac tissues in STZ-induced type I diabetic rats treated with or without NaHS (donor of H2S). Mitochondria of cardiac tissues were isolated, and MPTP opening and cytochrome c (cyt C) and Mfn-2 expression were also detected. Our data showed that hyperglycemia decreased the cardiac function by ultrasound cardiogram, and the administration of exogenous H2S ameliorated these changes. We demonstrated that the expression of ER stress sensors and apoptotic rates were elevated in cardiac tissue of DCM and cultured H9C2 cells, but the expression of these proteins was reduced following exogenous H2S treatment. The expression of mitochondrial apoptotic proteins, cyt C, and mPTP opening was decreased following treatment with exogenous H2S. In our experiment, the expression and immunofluorescence of Mfn-2 were both decreased after transfection with Mfn-2-siRNA. Hyperglycemia stimulated ER interactions and mitochondrial apoptotic pathways, which were inhibited by exogenous H2S treatment through the regulation of Mfn-2 expression.

  5. Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia

    SciTech Connect

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2010-11-12

    Research highlights: {yields} Ischemia induces high level of iPLA{sub 2} resulting in caspase-independent myocyte death. {yields} Urocortin causes iPLA{sub 2} down-regulation leading to avoidance of non-apoptotic death. {yields} The survival-promoting effect of urocortin is abrogated by CRH receptor antagonist. -- Abstract: Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A{sub 2} (iPLA{sub 2}) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of {approx}10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA{sub 2}, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.

  6. Enhanced survival of Leishmania major in neutrophil granulocytes in the presence of apoptotic cells

    PubMed Central

    Hellberg, Lars; Köhl, Jörg; Laskay, Tamás

    2017-01-01

    Neutrophil granulocytes are the first leukocytes that encounter and phagocytose Leishmania major (L. major) parasites in the infected skin. The parasites can nonetheless survive within neutrophils. However, the mechanisms enabling the survival of Leishmania within neutrophils are still elusive. Previous findings indicated that human neutrophils can engulf apoptotic cells. Since apoptotic neutrophils are abundant in infected tissues, we hypothesized that the uptake of apoptotic cells results in diminished anti-leishmanial activity and, consequently, contributes to enhanced survival of the parasites at the site of infection. In the present study, we demonstrated that L. major-infected primary human neutrophils acquire enhanced capacity to engulf apoptotic cells. This was associated with increased expression of the complement receptors 1 and 3 involved in phagocytosis of apoptotic cells. Next, we showed that ingestion of apoptotic cells affects neutrophil antimicrobial functions. We observed that phagocytosis of apoptotic cells by neutrophils downregulates the phosphorylation of p38 MAPK and PKCδ, the kinases involved in activation of NADPH oxidase and hence reactive oxygen species (ROS) production. In line, uptake of apoptotic cells inhibits TNF- and L. major-induced ROS production by neutrophils. Importantly, we found that the survival of Leishmania in neutrophils is strongly enhanced in neutrophils exposed to apoptotic cells. Together, our findings reveal that apoptotic cells promote L. major survival within neutrophils by downregulating critical antimicrobial functions. This suggests that the induction of enhanced uptake of apoptotic cells represents a novel evasion mechanism of the parasites that facilitates their survival in neutrophil granulocytes. PMID:28187163

  7. Novel anti-apoptotic mechanism of A20 through targeting ASK1 to suppress TNF-induced JNK activation.

    PubMed

    Won, M; Park, K A; Byun, H S; Sohn, K-C; Kim, Y-R; Jeon, J; Hong, J H; Park, J; Seok, J H; Kim, J M; Yoon, W-H; Jang, I-S; Shen, H M; Liu, Z G; Hur, G M

    2010-12-01

    The zinc-finger protein A20 has crucial physiological functions as a dual inhibitor of nuclear factor-κB (NF-κB) activation and apoptosis in tumor necrosis factor (TNF) receptor 1 signaling pathway. Although the molecular basis for the anti-NF-κB function of A20 has been well elucidated, the anti-apoptotic function of A20 is largely unknown. Here, we report a novel mechanism underlying the anti-apoptotic function of A20: A20 blocks TNF-induced apoptosis through suppression of c-jun N-terminal kinase (JNK) by targeting apoptosis signal-regulating kinase1 (ASK1). First, the ectopic expression of A20 drastically inhibits TNF-induced JNK activation and apoptosis in multiple cell types including those deficient of NF-κB activation. Unexpectedly, the blunting effect of A20 on TNF-induced JNK activation is not mediated by affecting the TNFR1 signaling complex formation. Instead, A20 interacts with ASK1, an important MAPKK kinase in the JNK signaling cascade. More importantly, overexpression of wild-type A20, but not of mutant A20 (ZnF4; C624A, C627A), promotes degradation of the ASK1 through the ubiquitin-proteasome system. Taken together, the results from this study reveal a novel anti-apoptotic mechanism of A20 in TNF signaling pathway: A20 binds to ASK1 and mediates ASK1 degradation, leading to suppression of JNK activation and eventually blockage of apoptosis.

  8. Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin.

    PubMed

    Li, Bing; Chu, Xianming; Gao, Meihua; Li, Wuxiu

    2010-01-01

    The aim of this study was to investigate the pro-apoptotic mechanism of C-phycocyanin (C-PC)-mediated photodynamic therapy (PDT) in a murine tumor model and cultured MCF-7 cells. The mice were divided into four groups: control, He-Ne laser radiation, C-PC treatment, and C-PC treatment + He-Ne laser radiation. The effects of C-PC and/or laser on immune organs, immunocyte proliferation, tumor genesis, and apoptosis-related proteins expressions were investigated by immunohistochemistry, in situ hybridization, MTT, electron microscope, western blot, and immunofluorescence assay. The results showed that He-Ne laser treatment alone showed marginal effects. In C-PC-treated mice, the weight of immune organs, proliferation of immunocytes, and expression of pro-apoptotic Fas protein were increased, whereas the tumor weight and the expressions of anti-apoptotic proteins (NF-kappaB and P53) and CD44 mRNA were comparatively decreased. In vitro, C-PC was able to inhibit MCF-7 cell proliferation and cause ultrastructural changes including microvilli loss, formation of membrane blebs, and chromatin condensation. Moreover, C-PC treatment could activate caspase-9 expression, induce cytochrome c release, and downregulate Bcl-2 expression. When combined with He-Ne laser irradiation, the effects of C-PC treatment were further enhanced. Facilitating the apoptosis signals transduction and finally leading to the apoptosis of MCF-7 cells may be the mechanism of the anti-tumor activities of C-PC-mediated PDT.

  9. The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process.

    PubMed

    Baxter, Amy A; Poon, Ivan Kh; Hulett, Mark D

    2017-01-01

    Cationic anti-microbial peptides (CAPs) have an important role in host innate defense against pathogens such as bacteria and fungi. Many CAPs including defensins also exhibit selective cytotoxic activity towards mammalian cells via both apoptotic and non-apoptotic processes, and are being investigated as potential anticancer agents. The anti-fungal plant defensin from ornamental tobacco, Nicotiana alata Defensin 1 (NaD1), was recently shown to induce necrotic-like cell death in a number of tumor cell types within 30 min of treatment, at a concentration of 10 μM. NaD1-mediated cell killing within these experimental parameters has been shown to occur via binding to the plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) in target cells to facilitate membrane destabilization and subsequent lysis. Whether NaD1 is also capable of inducing apoptosis in tumor cells has not been reported previously. In this study, treatment of MM170 (melanoma) and Jurkat T (leukemia) cells with subacute (<10 μM) concentrations of NaD1 over 6-24 h was investigated to determine whether NaD1 could induce cell death via apoptosis. At subacute concentrations, NaD1 did not efficiently induce membrane permeabilization within 30 min, but markedly reduced cell viability over 24 h. In contrast to other CAPs that have been shown to induce apoptosis through caspase activation, dying cells were not sensitive to a pancaspase inhibitor nor did they display caspase activity or DNA fragmentation over the 24 h treatment time. Furthermore, over the 24 h period, cells exhibited necrotic phenotypes and succumbed to membrane permeabilization. These results indicate that the cytotoxic mechanism of NaD1 at subacute concentrations is membranolytic rather than apoptotic and is also likely to be mediated through a PIP2-targeting cell lytic pathway.

  10. The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process

    PubMed Central

    Baxter, Amy A; Poon, Ivan KH; Hulett, Mark D

    2017-01-01

    Cationic anti-microbial peptides (CAPs) have an important role in host innate defense against pathogens such as bacteria and fungi. Many CAPs including defensins also exhibit selective cytotoxic activity towards mammalian cells via both apoptotic and non-apoptotic processes, and are being investigated as potential anticancer agents. The anti-fungal plant defensin from ornamental tobacco, Nicotiana alata Defensin 1 (NaD1), was recently shown to induce necrotic-like cell death in a number of tumor cell types within 30 min of treatment, at a concentration of 10 μM. NaD1-mediated cell killing within these experimental parameters has been shown to occur via binding to the plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) in target cells to facilitate membrane destabilization and subsequent lysis. Whether NaD1 is also capable of inducing apoptosis in tumor cells has not been reported previously. In this study, treatment of MM170 (melanoma) and Jurkat T (leukemia) cells with subacute (<10 μM) concentrations of NaD1 over 6–24 h was investigated to determine whether NaD1 could induce cell death via apoptosis. At subacute concentrations, NaD1 did not efficiently induce membrane permeabilization within 30 min, but markedly reduced cell viability over 24 h. In contrast to other CAPs that have been shown to induce apoptosis through caspase activation, dying cells were not sensitive to a pancaspase inhibitor nor did they display caspase activity or DNA fragmentation over the 24 h treatment time. Furthermore, over the 24 h period, cells exhibited necrotic phenotypes and succumbed to membrane permeabilization. These results indicate that the cytotoxic mechanism of NaD1 at subacute concentrations is membranolytic rather than apoptotic and is also likely to be mediated through a PIP2-targeting cell lytic pathway. PMID:28179997

  11. In non-transformed cells Bak activates upon loss of anti-apoptotic Bcl-XL and Mcl-1 but in the absence of active BH3-only proteins

    PubMed Central

    Senft, D; Weber, A; Saathoff, F; Berking, C; Heppt, M V; Kammerbauer, C; Rothenfusser, S; Kellner, S; Kurgyis, Z; Besch, R; Häcker, G

    2015-01-01

    Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak. PMID:26610208

  12. Deep Sequencing Identification of Novel Glucocorticoid-Responsive miRNAs in Apoptotic Primary Lymphocytes

    PubMed Central

    Mav, Deepak; Scoltock, Alyson B.; Cidlowski, John A.

    2013-01-01

    Apoptosis of lymphocytes governs the response of the immune system to environmental stress and toxic insult. Signaling through the ubiquitously expressed glucocorticoid receptor, stress-induced glucocorticoid hormones induce apoptosis via mechanisms requiring altered gene expression. Several reports have detailed the changes in gene expression mediating glucocorticoid-induced apoptosis of lymphocytes. However, few studies have examined the role of non-coding miRNAs in this essential physiological process. Previously, using hybridization-based gene expression analysis and deep sequencing of small RNAs, we described the prevalent post-transcriptional repression of annotated miRNAs during glucocorticoid-induced apoptosis of lymphocytes. Here, we describe the development of a customized bioinformatics pipeline that facilitates the deep sequencing-mediated discovery of novel glucocorticoid-responsive miRNAs in apoptotic primary lymphocytes. This analysis identifies the potential presence of over 200 novel glucocorticoid-responsive miRNAs. We have validated the expression of two novel glucocorticoid-responsive miRNAs using small RNA-specific qPCR. Furthermore, through the use of Ingenuity Pathways Analysis (IPA) we determined that the putative targets of these novel validated miRNAs are predicted to regulate cell death processes. These findings identify two and predict the presence of additional novel glucocorticoid-responsive miRNAs in the rat transcriptome, suggesting a potential role for both annotated and novel miRNAs in glucocorticoid-induced apoptosis of lymphocytes. PMID:24250753

  13. Calcium ionophoretic and apoptotic effects of ferutinin in the human Jurkat T-cell line.

    PubMed

    Macho, Antonio; Blanco-Molina, Magdalena; Spagliardi, Paola; Appendino, Giovanni; Bremner, Paul; Heinrich, Michael; Fiebich, Bernd L; Muñoz, Eduardo

    2004-09-01

    We have investigated the ionophoretic and apoptotic properties of the daucane sesquiterpene ferutinin and three related compounds, ferutidin, 2-alpha-hydroxyferutidin and teferin, all isolated from various species of plants from the genus Ferula. Ferutinin induced a biphasic elevation of intracellular Ca2+ in the leukemia T-cell line, Jurkat. First, a rapid calcium peak was observed and inhibited by BAPTA-AM. This initial calcium mobilization was followed by a sustained elevation, mediated by the entry of extracellular calcium through L-type calcium channels and sensitive to inhibition by EGTA. Moreover, ferutinin-induced apoptosis in Jurkat cells, and this event was preceded, in a cyclosporine-A sensitive manner, by a loss of mitochondrial transmembrane potential (DeltaPsim) and by an increase in intracellular reactive oxygen species. Ferutinin-induced DNA fragmentation was mediated by a caspase-3-dependent pathway, and was initiated independently of any specific phase of the cell cycle. The evaluation of ferutinin analogs in calcium mobilization and apoptosis assays showed strict structure-activity relationships, with p-hydroxylation of the benzoyl moiety being requested for activity.

  14. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells

    PubMed Central

    Wang, X; Gerdes, H-H

    2015-01-01

    Tunneling nanotubes (TNTs) are F-actin-based membrane tubes that form between cells in culture and in tissues. They mediate intercellular communication ranging from electrical signalling to the transfer of organelles. Here, we studied the role of TNTs in the interaction between apoptotic and healthy cells. We found that pheochromocytoma (PC) 12 cells treated with ultraviolet light (UV) were rescued when cocultured with untreated PC12 cells. UV-treated cells formed a different type of TNT with untreated PC12 cells, which was characterized by continuous microtubule localized inside these TNTs. The dynamic behaviour of mCherry-tagged end-binding protein 3 and the accumulation of detyrosinated tubulin in these TNTs indicate that they are regulated structures. In addition, these TNTs show different biophysical properties, for example, increased diameter allowing dye entry, prolonged lifetime and decreased membrane fluidity. Further studies demonstrated that microtubule-containing TNTs were formed by stressed cells, which had lost cytochrome c but did not enter into the execution phase of apoptosis characterized by caspase-3 activation. Moreover, mitochondria colocalized with microtubules in TNTs and transited along these structures from healthy to stressed cells. Importantly, impaired formation of TNTs and untreated cells carrying defective mitochondria were unable to rescue UV-treated cells in the coculture. We conclude that TNT-mediated transfer of functional mitochondria reverse stressed cells in the early stages of apoptosis. This provides new insights into the survival mechanisms of damaged cells in a multicellular context. PMID:25571977

  15. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death.

    PubMed

    Panaretakis, Theocharis; Kepp, Oliver; Brockmeier, Ulf; Tesniere, Antoine; Bjorklund, Ann-Charlotte; Chapman, Daniel C; Durchschlag, Michael; Joza, Nicholas; Pierron, Gérard; van Endert, Peter; Yuan, Junying; Zitvogel, Laurence; Madeo, Frank; Williams, David B; Kroemer, Guido

    2009-03-04

    Dying tumour cells can elicit a potent anticancer immune response by exposing the calreticulin (CRT)/ERp57 complex on the cell surface before the cells manifest any signs of apoptosis. Here, we enumerate elements of the pathway that mediates pre-apoptotic CRT/ERp57 exposure in response to several immunogenic anticancer agents. Early activation of the endoplasmic reticulum (ER)-sessile kinase PERK leads to phosphorylation of the translation initiation factor eIF2alpha, followed by partial activation of caspase-8 (but not caspase-3), caspase-8-mediated cleavage of the ER protein BAP31 and conformational activation of Bax and Bak. Finally, a pool of CRT that has transited the Golgi apparatus is secreted by SNARE-dependent exocytosis. Knock-in mutation of eIF2alpha (to make it non-phosphorylatable) or BAP31 (to render it uncleavable), depletion of PERK, caspase-8, BAP31, Bax, Bak or SNAREs abolished CRT/ERp57 exposure induced by anthracyclines, oxaliplatin and ultraviolet C light. Depletion of PERK, caspase-8 or SNAREs had no effect on cell death induced by anthracyclines, yet abolished the immunogenicity of cell death, which could be restored by absorbing recombinant CRT to the cell surface.

  16. Cyclin B1/Cdk1 Phosphorylation of Mitochondrial p53 Induces Anti-Apoptotic Response

    PubMed Central

    Nantajit, Danupon; Fan, Ming; Duru, Nadire; Wen, Yunfei; Reed, John C.; Li, Jian Jian

    2010-01-01

    The pro-apoptotic function of p53 has been well defined in preventing genomic instability and cell transformation. However, the intriguing fact that p53 contributes to a pro-survival advantage of tumor cells under DNA damage conditions raises a critical question in radiation therapy for the 50% human cancers with intact p53 function. Herein, we reveal an anti-apoptotic role of mitochondrial p53 regulated by the cell cycle complex cyclin B1/Cdk1 in irradiated human colon cancer HCT116 cells with p53+/+ status. Steady-state levels of p53 and cyclin B1/Cdk1 were identified in the mitochondria of many human and mouse cells, and their mitochondrial influx was significantly enhanced by radiation. The mitochondrial kinase activity of cyclin B1/Cdk1 was found to specifically phosphorylate p53 at Ser-315 residue, leading to enhanced mitochondrial ATP production and reduced mitochondrial apoptosis. The improved mitochondrial function can be blocked by transfection of mutant p53 Ser-315-Ala, or by siRNA knockdown of cyclin B1 and Cdk1 genes. Enforced translocation of cyclin B1 and Cdk1 into mitochondria with a mitochondrial-targeting-peptide increased levels of Ser-315 phosphorylation on mitochondrial p53, improved ATP production and decreased apoptosis by sequestering p53 from binding to Bcl-2 and Bcl-xL. Furthermore, reconstitution of wild-type p53 in p53-deficient HCT116 p53−/− cells resulted in an increased mitochondrial ATP production and suppression of apoptosis. Such phenomena were absent in the p53-deficient HCT116 p53−/− cells reconstituted with the mutant p53. These results demonstrate a unique anti-apoptotic function of mitochondrial p53 regulated by cyclin B1/Cdk1-mediated Ser-315 phosphorylation in p53-wild-type tumor cells, which may provide insights for improving the efficacy of anti-cancer therapy, especially for tumors that retain p53. PMID:20808790

  17. Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite.

    PubMed

    Yapislar, Hande; Taskin, Eylem; Ozdas, Sule; Akin, Demet; Sonmez, Emine

    2016-04-01

    Growing evidence has been reported on adriamycin (ADR) hepatotoxicity in literature. Hepatotoxicity caused by the use of drugs has a serious undesirable effect in the cure of cancer patients that needs to be eliminated. The exact mechanism of ADR on non-cancerous tissue still remains to be a mystery. The zeolite (clinoptilolite) minerals form a complex group of aluminosilicates that often occur as accessory minerals in intermediate and basic rocks. In light of this information, we investigated the possible anti-inflammatory and anti-apoptotic effects of clinoptilolite in ADR that is inducing the toxicity in primary liver cell culture. Primary liver cell culture from rat was used in the study. We had three experiment groups including the following: (1) cells treated only with 50 μM ADR for 24 h, (2) cells treated with the 50 μM ADR for 24 h and then treated with 10(-4) M zeolite for 1 h, and (3) cells were incubated with 50 μM ADR for 24 h and then incubated with 10(-4) M zeolite for 24 h to test its long-term effects. After that, western blotting was performed in order to evaluate protein expression levels of several inflammation markers including IL-1β, tumor necrosis factor (TNF)-α, and nuclear factor kappa B (NF-κB), and immunohistochemistry was carried out to detect apoptosis in liver cell culture. Also, TdT-dUTP Terminal Nick-End Labeling (TUNEL) method was used for detecting apoptosis. We found elevated levels of inflammatory protein and apoptotic markers in ADR-administered cells (p < 0.05). Inflammatory and apoptotic markers decreased significantly after treated with zeolite (p < 0.05). The present study was pointed out that ADR causes hepatotoxicity via apoptosis and/or inflammation processes resulting from initiator NF-κB and TNF which causes proinflammatory mediators such as IL-1β. Elevation of inflammation might give rise to trigger apoptosis. Clinoptilolite counteracted the apoptosis and inflammation induced by ADR arising from the

  18. Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to survive thermal stress and bleaching.

    PubMed

    Kvitt, Hagit; Rosenfeld, Hanna; Zandbank, Keren; Tchernov, Dan

    2011-01-01

    Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like) cloned in this study. In corals exposed to thermal stress (32 or 34°C), caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6-48 h) and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32°C, and recovered back symbionts when placed at 24°C. These results point to a two-stage response in corals that withstand thermal stress: (i) the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii) acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival.

  19. Differential regulation of hepatic apoptotic pathways by dietary olive and sunflower oils in the aging rat.

    PubMed

    Bello, Rosario I; Gómez-Díaz, Consuelo; Burón, María I; Navas, Plácido; Villalba, José M

    2006-11-01

    In this work we have studied how dietary fat affects aging-related changes in a number of factors that regulate rat hepatic apoptosis. Animals were fed lifelong with two experimental diets containing either virgin olive oil or sunflower oil as dietary fat. Caspases of the intrinsic and extrinsic pathways of apoptosis, Bcl-2 and Bax polypeptide levels, and plasma membrane neutral sphingomyelinase activity were determined at 6, 12, and 24 months of age. Caspase-8/10 activity (a marker of the extrinsic pathway) was not affected by either aging or dietary fat, but activities of both caspase-9 (a marker of the intrinsic pathway) and caspase-3 (an executioner caspase) were significantly depressed in liver from animals fed on a sunflower oil-based diet. These decreases were not observed in animals fed with a diet based on virgin olive oil, which also resulted in significantly lower Bcl-2/Bax ratios. On the other hand, in comparison with sunflower, dietary olive oil decreased oxidative stress in liver from aged rats, resulting in lower levels of membrane hydroperoxides and higher coenzyme Q levels in plasma membrane. Plasma membrane Mg(2+)-dependent neutral sphingomyelinase was strongly activated in aged rats fed on the sunflower oil diet, but no aging-related increase was observed in animals fed on the olive oil diet. Our results support that dietary oil can alter significantly the susceptibility of hepatocytes to different apoptotic stimuli by altering both pro- and anti-apoptotic mediators, which reinforces the importance of the diet in aging studies. Because virgin olive oil may increase susceptibility of hepatocytes to apoptosis induced through the intrinsic pathway under conditions of decreased oxidative stress, our results may have important implications to understand the potential beneficial effects of that edible oil against liver carcinogenesis during aging.

  20. Altered Transmission of HOX and Apoptotic SNPs Identify a Potential Common Pathway for Clubfoot

    PubMed Central

    Ester, Audrey R.; Weymouth, Katelyn S.; Burt, Amber; Wise, Carol; Scott, Allison; Gurnett, Christina A; Dobbs, Matthew B.; Blanton, Susan H.; Hecht, Jacqueline T.

    2009-01-01

    Clubfoot is a common birth defect that affects 135,000 newborns each year worldwide. It is characterized by equinus deformity of one or both feet and hypoplastic calf muscles. Despite numerous study approaches, the cause(s) remains poorly understood although a multifactorial etiology is generally accepted. We considered the HOXA and HOXD gene clusters and insulin-like growth factor binding protein 3 (IGFBP3) as candidate genes because of their important roles in limb and muscle morphogenesis. Twenty SNPs from the HOXA and HOXD gene clusters and 12 SNPs in IGFBP3 were genotyped in a sample composed of nonHispanic white and Hispanic multiplex and simplex families (discovery samples) and a second sample of nonHispanic white simplex trios (validation sample). Four SNPs (rs6668, rs2428431, rs3801776 and rs3779456) in the HOXA cluster demonstrated altered transmission in the discovery sample, but only rs3801776, located in the HOXA basal promoter region, showed altered transmission in both the discovery and validation samples (p=0.004 and p=0.028). Interestingly, HOXA9 is expressed in muscle during development. A SNP in IGFBP3, rs13223993, also showed altered transmission (p=0.003) in the discovery sample. Gene-gene interactions were identified between variants in HOXA, HOXD and IGFBP3 and with previously associated SNPs in mitochondrial-mediated apoptotic genes. The most significant interactions were found between CASP3 SNPS and variants in HOXA, HOXD and IGFBP3. These results suggest a biologic model for clubfoot in which perturbation of HOX and apoptotic genes together affect muscle and limb development, which may cause the downstream failure of limb rotation into a plantar grade position. PMID:19938081

  1. Usage of whey protein may cause liver damage via inflammatory and apoptotic responses.

    PubMed

    Gürgen, S G; Yücel, A T; Karakuş, A Ç; Çeçen, D; Özen, G; Koçtürk, S

    2015-07-01

    The purpose of this study was to investigate the long- and short-term inflammatory and apoptotic effects of whey protein on the livers of non-exercising rats. Thirty rats were divided into three groups namely (1) control group, (2) short-term whey (WS) protein diet (252 g/kg for 5 days), and (3) long-term whey (WL) protein diet (252 g/kg for 4 weeks). Interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), and cytokeratin 18 (CK-18-M30) were assessed using enzyme-linked immunosorbent assay and immunohistochemical methods. Apoptosis was evaluated using the terminal transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method. Hepatotoxicity was evaluated by quantitation of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Based on the biochemical levels and immunohistochemical results, the highest level of IL-1β was identified in the WL group (p < 0.01). The IL-6 and TNF-α results were slightly lower in the WS group than in the control group and were highest in the WL group (p < 0.01). The CK-18-M30 and TUNEL results were highest in the WS group and exhibited medium intensity in the WL group (p < 0.01). AST results were statistically significant for all groups, while our ALT groups were particularly significant between the WL and control groups (p < 0.01). The results showed that when whey protein is used in an uninformed manner and without exercising, adverse effects on the liver may occur by increasing the apoptotic signal in the short term and increasing inflammatory markers and hepatotoxicity in the long term.

  2. Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands.

    PubMed Central

    Day, Catherine L; Puthalakath, Hamsa; Skea, Gretchen; Strasser, Andreas; Barsukov, Igor; Lian, Lu-Yun; Huang, David C S; Hinds, Mark G

    2004-01-01

    The dynein and myosin V motor complexes are multi-protein structures that function to transport molecules and organelles within the cell. DLC (dynein light-chain) proteins, found as components of both dynein and myosin V motor complexes, connect the complexes to their cargoes. One of the roles of these motor complexes is to selectively sequester the pro-apoptotic 'BH3-only' (Bcl-2 homology 3-only) proteins, Bim (Bcl-2-interacting mediator of cell death) and Bmf (Bcl-2-modifying factor), and so regulate their cell death-inducing function. In vivo DLC2 is found exclusively as a component of the myosin V motor complex and Bmf binds DLC2 selectively. On the other hand, Bim interacts with DLC1 (LC8), an integral component of the dynein motor complex. The two DLCs share 93% sequence identity yet show unambiguous in vivo specificity for their respective BH3-only ligands. To investigate this specificity the three-dimensional solution structure of DLC2 was elucidated using NMR spectroscopy. In vitro structural and mutagenesis studies show that Bmf and Bim have identical binding characteristics to recombinant DLC2 or DLC1. Thus the selectivity shown by Bmf and Bim for binding DLC1 or DLC2, respectively, does not reside in their DLC-binding domains. Remarkably, mutational analysis of DLC1 and DLC2 indicates that a single surface residue (residue 41) determines the specific localization of DLCs with their respective motor complexes. These results suggest a molecular mechanism for the specific compartmentalization of DLCs and their pro-apoptotic cargoes and implicate other protein(s) in defining the specificity between the cargoes and the DLC proteins. PMID:14561217

  3. The extrinsic apoptotic signaling pathway in gastric adenocarcinomas assessed by tissue microarray.

    PubMed

    Gomes, Thiago S; Oshima, Celina T F; Segreto, Helena R C; Barrazueta, Luis M; Costa, Henrique O; Lima, Flavio O; Forones, Nora M; Ribeiro, Daniel A

    2011-10-15

    The purpose of this investigation was to analyze the immunoexpression of FasL, Fas, FADD, cleaved caspase 8, and cleaved caspase 3 in gastric cancer. Formalin-fixed and paraffin-embedded gastric adenocarcinoma tissues from 87 patients, including adjacent normal tissues, were included on tissue microarray by immunohistochemistry. The tumor and the adjacent normal tissues were positive for FasL in 66.7% and 90.6%, for Fas in 52.8% and 52.4%, for FADD in 67.4% and 82.3%, for cleaved caspase 8 in 27.9% and 37.7%, and for cleaved caspase 3 in 33.7% and 8.3%, respectively. FasL and the FADD from tumor were statistically different in relation to the histological type. Cleaved caspase 8 was statistically different in relation to clinical stage (p=0.031). The FADD from normal tissue was statistically different in relation to age (p=0.039), sex (p=0.055), clinical stage (p=0.019), and Fas was different in relation to tumor size (p=0.012). In the tumor, we observed a correlation between FasL and Fas, FasL and FADD, and FasL and cleaved caspase 3. In the adjacent normal tissue, a correlation was observed between FasL and Fas, FasL and FADD. There was no association of another marker with sex, age, clinical stage, and survival. Our results suggest that these proteins mediate the early extrinsic apoptotic pathway in gastric cancer and adjacent normal mucosa. FasL protein binds to Fas protein and subsequently binds to death receptor FADD signaling activation of the extrinsic apoptotic pathway. In this phase, there was inhibition of caspase 8 and, consequently, decreased apoptosis.

  4. Evidence that glucocorticoid- and cyclic AMP-induced apoptotic pathways in lymphocytes share distal events.

    PubMed Central

    Dowd, D R; Miesfeld, R L

    1992-01-01

    WEHI7.2 murine lymphocytes undergo apoptotic death when exposed to glucocorticoids or elevated levels of intracellular cyclic AMP (cAMP), and these pathways are initiated by the glucocorticoid receptor (GR) and protein kinase A, respectively. We report the isolation and characterization of a novel WEHI7.2 variant cell line, WR256, which was selected in a single step for growth in the presence of dexamethasone and arose at a frequency of approximately 10(-10). The defect was not GR-related, as WR256 expressed functional GR and underwent GR-dependent events associated with apoptosis, such as hormone-dependent gene transcription and inhibition of cell proliferation. Moreover, the glucocorticoid-resistant phenotype was stable in culture and did not revert after treatment with 5-azacytidine or upon stable expression of GR cDNA. In addition, WR256 did not exhibit the diminished mitochondrial activity commonly associated with apoptosis. Interestingly, WR256 was also found to be resistant to 8-bromo-cAMP and forskolin despite having normal levels of protein kinase A activity and the ability to induce cAMP-dependent transcription. We examined the steady-state transcript levels of bcl-2, a gene whose protein product acts dominantly to inhibit thymocyte apoptosis, to determine whether elevated bcl-2 expression could account for the resistant phenotype. Our data showed that bcl-2 RNA levels were similar in the two cell lines and not altered by either dexamethasone or 8-bromo-cAMP treatment. These results suggest that WR256 exhibits a "deathless" phenotype and has a unique defect in a step of the apoptotic cascade that may be common to the glucocorticoid- and cAMP-mediated cell death pathways. Images PMID:1378529

  5. Cytotoxic and pro-apoptotic activities of cynaropicrin, a sesquiterpene lactone, on the viability of leukocyte cancer cell lines.

    PubMed

    Cho, Jae Youl; Kim, Ae Ra; Jung, Jee H; Chun, Taehoon; Rhee, Man Hee; Yoo, Eun Sook

    2004-05-25

    Cynaropicrin, a sesquiterpene lactone from Saussurea lappa, has been reported to possess immunomodulatory effects on cytokine release, nitric oxide production and immunosuppressive effects. In this study, we have examined cytotoxic effect of cynaropicrin against several types of cell lines such as macrophages, eosinophils, fibroblasts and lymphocytes. Cynaropicrin potently inhibited the proliferation of leukocyte cancer cell lines, such as U937, Eol-1 and Jurkat T cells, but some other cells such as Chang liver cells and human fibroblast cell lines were not strongly suppressed by cynaropicrin treatment. The cytotoxic effect of cynaropicrin was due to inducing apoptosis and cell cycle arrest at G1/S phase, according to flow-cytometric, DNA fragmentation and morphological analyses using U937 cells. Evidence that combination treatment with l-cysteine and N-acetyl-l-cysteine, reactive oxygen species scavengers, or rottlerin (1-[6-[(3-acetyl-2,4,6-trihydroxy-5-methylphenyl)methyl]-5,7-dihydroxy-2, 2-dimethyl-2H-1-benzopyran-8-yl]-3-phenyl-2-propen-1-one), a specific protein kinase (PK) Cdelta inhibitor, abolished cynaropicrin-mediated cytotoxicity and morphological change, and that cynaropicrin-induced proteolytic cleavage of PKCdelta suggests that reactive oxygen species and PKCdelta may play an important role in mediating pro-apoptotic activity by cynaropicrin. Taken together, these results indicate that cynaropicrin may be a potential anticancer agent against some leukocyte cancer cells such as lymphoma or leukemia, through pro-apoptotic activity.

  6. A DR4:tBID axis drives the p53 apoptotic response by promoting oligomerization of poised BAX

    PubMed Central

    Henry, Ryan E; Andrysik, Zdenek; París, Ramiro; Galbraith, Matthew D; Espinosa, Joaquín M

    2012-01-01

    The cellular response to p53 activation varies greatly in a stimulus- and cell type-specific manner. Dissecting the molecular mechanisms defining these cell fate choices will assist the development of effective p53-based cancer therapies and also illuminate fundamental processes by which gene networks control cellular behaviour. Using an experimental system wherein stimulus-specific p53 responses are elicited by non-genotoxic versus genotoxic agents, we discovered a novel mechanism that determines whether cells undergo proliferation arrest or cell death. Strikingly, we observe that key mediators of cell-cycle arrest (p21, 14-3-3σ) and apoptosis (PUMA, BAX) are equally activated regardless of outcome. In fact, arresting cells display strong translocation of PUMA and BAX to the mitochondria, yet fail to release cytochrome C or activate caspases. Surprisingly, the key differential events in apoptotic cells are p53-dependent activation of the DR4 death receptor pathway, caspase 8-mediated cleavage of BID, and BID-dependent activation of poised BAX at the mitochondria. These results reveal a previously unappreciated role for DR4 and the extrinsic apoptotic pathway in cell fate choice following p53 activation. PMID:22246181

  7. Anti-apoptotic action of API2-MALT1 fusion protein involved in t(11;18)(q21;q21) MALT lymphoma.

    PubMed

    Hosokawa, Y

    2005-01-01

    At least three distinct chromosomal translocations, t(11;18)(q21;q21), t(1;14)(p22;q32) and t(14;18)(q32;q21) involving the API2 (also known as c-IAP2)-MALT1 fusion protein, BCL10, and MALT1, respectively, have been implicated in the molecular pathogenesis of mucosa associated lymphoid tissue (MALT) lymphoma. Our findings showed that several variants of the API2-MALT1 fusion protein can occur in patients with t(11;18)(q21;q21), and that API2-MALT1 can potently enfance activation of nuclear factor (NF)-kappaB signaling, which may be relevant to the pathogenesis of MALT lymphomas. We also found that MALT1 is rapidly degraded via the ubiquitin-proteasome pathway, as is the case with API2, but upon the synthesis of fusion, API2-MALT1 becomes stable against this pathway. This stability of API2-MALT1 may thus result in inappropriate nuclear factor (NF)-kappaB activation, thereby contributing to the pathogenesis of MALT lymphoma. Recent biochemical and genetic studies have clearly shown that BCL10 and MALT1 form a physical and functional complex and are both required for NF-kappaB activation by antigen receptor stimulation in T and B lymphocytes. It has also been shown that CARMA1, a newly discovered member of the membrane-associated guanylate kinase (MAGUK) families, is critical for antigen receptor-stimulated NF-kappaB activation. It can be assumed that API2-MALT1 can bypass this normal BCL10/MALT1 cellular signaling pathway linked to NF-kappaB activation, thereby inducing antigen receptor-independent proliferation of lymphocytes. Furthermore, BCL10/MALT1- and API2-MALT1-induced NF-kappaB activation may contribute to anti-apoptotic action probably through NF-kappaB-mediated upregulation of apoptotic inhibitor genes. We recently provided direct evidence that API2-MALT1 indeed exerts anti-apoptotic action, in part, through its direct interaction with apoptotic regulators including Smac. Taken together, these findings prompt us to hypothesize that the anti-apoptotic action

  8. CNB-001, a novel pyrazole derivative mitigates motor impairments associated with neurodegeneration via suppression of neuroinflammatory and apoptotic response in experimental Parkinson's disease mice.

    PubMed

    Jayaraj, Richard L; Elangovan, Namasivayam; Dhanalakshmi, Chinnasamy; Manivasagam, Thamilarasan; Essa, Musthafa Mohamed

    2014-09-05

    Parkinson's disease (PD) is characterized by the progressive degeneration via apoptosis of nigrostriatal dopaminergic neurons associated with inflammation, resulting in behavioral anomalies. Therefore, an anti-apoptotic and anti-inflammatory regimen may be useful in treatment of PD. CNB-001, a novel pyrazole derivative of curcumin and cyclohexyl bisphenol A has superior biological properties than its parental compounds. The present study utilizes a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD to investigate anti-inflammatory and anti-apoptotic mediated neuroprotection of CNB-001. The administration of MPTP (30 mg/kg for four successive days) significantly induced motor impairments as determined by behavioral studies (narrow beam test, catalepsy and akinesia), lowered dopamine levels and up-regulated the expressions of the inflammatory and apoptotic markers (tumor necrosis factor-alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase, glial fibrillary acidic protein, cyclooxygenase-2 and Bax). Moreover, MPTP treatment attenuated Bcl-2 and nigrostriatal dopamine transporter expression and also increased total nitrite and citrulline levels in comparison to the control group. However, co-treatment with CNB-001 significantly attenuated motor impairments and pathological changes caused by MPTP administration. Collectively, our results demonstrate that CNB-001 is neuroprotective through its anti-inflammatory and anti-apoptotic properties. Thus, CNB-001 has potential to be further developed as a therapeutic candidate for treatment of PD.

  9. STAT1, STAT3 and p38MAPK are involved in the apoptotic effect induced by a chimeric cyclic interferon-{alpha}2b peptide

    SciTech Connect

    Blank, Viviana C.; Pena, Clara; Roguin, Leonor P.

    2010-02-15

    In the search of mimetic peptides of the interferon-{alpha}2b molecule (IFN-{alpha}2b), we have previously designed and synthesized a chimeric cyclic peptide of the IFN-{alpha}2b that inhibits WISH cell proliferation by inducing an apoptotic response. Here, we first studied the ability of this peptide to activate intracellular signaling pathways and then evaluated the participation of some signals in the induction of apoptosis. Stimulation of WISH cells with the cyclic peptide showed tyrosine phosphorylation of Jak1 and Tyk2 kinases, tyrosine and serine phosphorylation of STAT1 and STAT3 transcription factors and activation of p38 MAPK pathway, although phosphorylation levels or kinetics were in some conditions different to those obtained under IFN-{alpha}2b stimulus. JNK and p44/42 pathways were not activated by the peptide in WISH cells. We also showed that STAT1 and STAT3 downregulation by RNA interference decreased the antiproliferative activity and the amount of apoptotic cells induced by the peptide. Pharmacological inhibition of p38 MAPK also reduced the peptide growth inhibitory activity and the apoptotic effect. Thus, we demonstrated that the cyclic peptide regulates WISH cell proliferation through the activation of Jak/STAT signaling pathway. In addition, our results indicate that p38 MAPK may also be involved in cell growth regulation. This study suggests that STAT1, STAT3 and p38 MAPK would be mediating the antitumor and apoptotic response triggered by the cyclic peptide in WISH cells.

  10. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    PubMed

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins.

  11. PEGylated apoptotic protein-loaded PLGA microspheres for cancer therapy

    PubMed Central

    Byeon, Hyeong Jun; Kim, Insoo; Choi, Ji Su; Lee, Eun Seong; Shin, Beom Soo; Youn, Yu Seok

    2015-01-01

    The aim of the current study was to investigate the antitumor potential of poly (D,L-lactic-co-glycolic acid) microspheres (PLGA MSs) containing polyethylene glycol (PEG)-conjugated (PEGylated) tumor necrosis factor–related apoptosis-inducing ligand (PEG-TRAIL). PEG-TRAIL PLGA MSs were prepared by using a water-in-oil-in-water double-emulsion method, and the apoptotic activities of supernatants released from the PLGA MSs at days 1, 3, and 7 were examined. The antitumor effect caused by PEG-TRAIL PLGA MSs was evaluated in pancreatic Mia Paca-2 cell-xenografted mice. PEG-TRAIL PLGA MS was found to be spherical and 14.4±1.06 μm in size, and its encapsulation efficiency was significantly greater than that of TRAIL MS (85.7%±4.1% vs 43.3%±10.9%, respectively). The PLGA MS gradually released PEG-TRAIL for 14 days, and the released PEG-TRAIL was shown to have clear apoptotic activity in Mia Paca-2 cells, whereas TRAIL released after 1 day had a negligible activity. Finally, PEG-TRAIL PLGA MS displayed remarkably greater antitumor efficacy than blank or TRAIL PLGA MS in Mia Paca-2 cell-xenografted mice in terms of tumor volume and weight, apparently due to increased stability and well-retained apoptotic activity of PEG-TRAIL in PLGA MS. We believe that this PLGA MS system, combined with PEG-TRAIL, should be considered a promising candidate for treating pancreatic cancer. PMID:25632232

  12. PEGylated apoptotic protein-loaded PLGA microspheres for cancer therapy.

    PubMed

    Byeon, Hyeong Jun; Kim, Insoo; Choi, Ji Su; Lee, Eun Seong; Shin, Beom Soo; Youn, Yu Seok

    2015-01-01

    The aim of the current study was to investigate the antitumor potential of poly (D,L-lactic-co-glycolic acid) microspheres (PLGA MSs) containing polyethylene glycol (PEG)-conjugated (PEGylated) tumor necrosis factor-related apoptosis-inducing ligand (PEG-TRAIL). PEG-TRAIL PLGA MSs were prepared by using a water-in-oil-in-water double-emulsion method, and the apoptotic activities of supernatants released from the PLGA MSs at days 1, 3, and 7 were examined. The antitumor effect caused by PEG-TRAIL PLGA MSs was evaluated in pancreatic Mia Paca-2 cell-xenografted mice. PEG-TRAIL PLGA MS was found to be spherical and 14.4±1.06 μm in size, and its encapsulation efficiency was significantly greater than that of TRAIL MS (85.7%±4.1% vs 43.3%±10.9%, respectively). The PLGA MS gradually released PEG-TRAIL for 14 days, and the released PEG-TRAIL was shown to have clear apoptotic activity in Mia Paca-2 cells, whereas TRAIL released after 1 day had a negligible activity. Finally, PEG-TRAIL PLGA MS displayed remarkably greater antitumor efficacy than blank or TRAIL PLGA MS in Mia Paca-2 cell-xenografted mice in terms of tumor volume and weight, apparently due to increased stability and well-retained apoptotic activity of PEG-TRAIL in PLGA MS. We believe that this PLGA MS system, combined with PEG-TRAIL, should be considered a promising candidate for treating pancreatic cancer.

  13. Nucleosome positioning patterns derived from human apoptotic nucleosomes.

    PubMed

    Frenkel, Zakharia M; Trifonov, Edward N; Volkovich, Zeev; Bettecken, Thomas

    2011-12-01

    This communication reports on the nucleosome positioning patterns (bendability matrices) for the human genome, derived from over 8_million nucleosome DNA sequences obtained from apoptotically digested lymphocytes. This digestion procedure is used here for the first time for the purpose of extraction and sequencing of the nucleosome DNA fragments. The dominant motifs suggested by the matrices of DNA bendability calculated for light and heavy isochores are significantly different. Both, however, are in full agreement with the linear description YRRRRRYYYYYR, and with earlier derivations by N-gram extensions. Thus, the choice of the nucleosome positioning patterns crucially depends on the G + C composition of the analyzed sequences.

  14. Harnessing the apoptotic programs in cancer stem-like cells.

    PubMed

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population.

  15. Heat-induced fibrillation of BclXL apoptotic repressor.

    PubMed

    Bhat, Vikas; Olenick, Max B; Schuchardt, Brett J; Mikles, David C; Deegan, Brian J; McDonald, Caleb B; Seldeen, Kenneth L; Kurouski, Dmitry; Faridi, Mohd Hafeez; Shareef, Mohammed M; Gupta, Vineet; Lednev, Igor K; Farooq, Amjad

    2013-09-01

    The BclXL apoptotic repressor bears the propensity to associate into megadalton oligomers in solution, particularly under acidic pH. Herein, using various biophysical methods, we analyze the effect of temperature on the oligomerization of BclXL. Our data show that BclXL undergoes irreversible aggregation and assembles into highly-ordered rope-like homogeneous fibrils with length in the order of mm and a diameter in the μm-range under elevated temperatures. Remarkably, the formation of such fibrils correlates with the decay of a largely α-helical fold into a predominantly β-sheet architecture of BclXL in a manner akin to the formation of amyloid fibrils. Further interrogation reveals that while BclXL fibrils formed under elevated temperatures show no observable affinity toward BH3 ligands, they appear to be optimally primed for insertion into cardiolipin bicelles. This salient observation strongly argues that BclXL fibrils likely represent an on-pathway intermediate for insertion into mitochondrial outer membrane during the onset of apoptosis. Collectively, our study sheds light on the propensity of BclXL to form amyloid-like fibrils with important consequences on its mechanism of action in gauging the apoptotic fate of cells in health and disease.

  16. Apoptotic and nonapoptotic function of caspase 7 in spermatogenesis.

    PubMed

    Lei, Bin; Zhou, Xuming; Lv, Daojun; Wan, Bo; Wu, Huayan; Zhong, Liren; Shu, Fangpeng; Mao, Xiangming

    2017-01-01

    Recent studies have reported that caspase 7 has an apoptotic and nonapoptotic function. However, the relationship between caspase 7 and spermatogenesis remains unknown. This study aimed to investigate the possible function of caspase 7 during normal and abnormal spermatogenesis. The cleaved form of caspase 7 was detected in testis tissues at different postpartum times (5-14 weeks) by qRT-PCR, Western blot and immunohistochemistry (IHC). Then, the mice models of spermatogenic dysfunction were obtained by busulfan (30 mg kg-1 to further evaluate the potential function and mechanism of caspase 7. qRT-PCR and Western blot results showed that caspase 7 expression was gradually elevated from 5 to 14 weeks, which was not connected with apoptosis. IHC results revealed that caspase 7 was mainly located in spermatogenic cells and Leydig cells. In addition, spermatogenic dysfunction induced by busulfan gradually enhanced the apoptosis and elevated the expression of caspase 3, caspase 6, and caspase 9, but decreased the expression of caspase 7 in spermatogenic cells. However, when spermatogenic cells were mostly disappeared at the fourth week after busulfan treatment, caspase 7 expression in Leydig cells was significantly increased and positively correlated with the expression of caspase 3, caspase 6, and caspase 9. Therefore, these results indicate that caspase 7 has a nonapoptic function that participates in normal spermatogenesis, but also displays apoptotic function in spermatogenic dysfunction.

  17. Development of novel cyclic peptides as pro-apoptotic agents.

    PubMed

    Brindisi, Margherita; Maramai, Samuele; Brogi, Simone; Fanigliulo, Emanuela; Butini, Stefania; Guarino, Egeria; Casagni, Alice; Lamponi, Stefania; Bonechi, Claudia; Nathwani, Seema M; Finetti, Federica; Ragonese, Francesco; Arcidiacono, Paola; Campiglia, Pietro; Valenti, Salvatore; Novellino, Ettore; Spaccapelo, Roberta; Morbidelli, Lucia; Zisterer, Daniela M; Williams, Clive D; Donati, Alessandro; Baldari, Cosima; Campiani, Giuseppe; Ulivieri, Cristina; Gemma, Sandra

    2016-07-19

    Our recent finding that paclitaxel behaves as a peptidomimetic of the endogenous protein Nur77 inspired the design of two peptides (PEP1 and PEP2) reproducing the effects of paclitaxel on Bcl-2 and tubulin, proving the peptidomimetic nature of paclitaxel. Starting from these peptide-hits, we herein describe the synthesis and the biological investigation of linear and cyclic peptides structurally related to PEP2. While linear peptides (2a,b, 3a,b, 4, 6a-f) were found inactive in cell-based assays, biological analysis revealed a pro-apoptotic effect for most of the cyclic peptides (5a-g). Cellular permeability of 5a (and also of 2a,b) on HL60 cells was assessed through confocal microscopy analysis. Further cellular studies on a panel of leukemic cell lines (HL60, Jurkat, MEC, EBVB) and solid tumor cell lines (breast cancer MCF-7 cells, human melanoma A375 and 501Mel cells, and murine melanoma B16F1 cells) confirmed the pro-apoptotic effect of the cyclic peptides. Cell cycle analysis revealed that treatment with 5a, 5c, 5d or 5f resulted in an increase in the number of cells in the sub-G0/G1 peak. Direct interaction with tubulin (turbidimetric assay) and with microtubules (immunostaining experiments) was assessed in vitro for the most promising compounds.

  18. Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response.

    PubMed

    Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J

    2016-11-10

    Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231-1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process.

  19. Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response

    PubMed Central

    Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J

    2016-01-01

    Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231–1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process. PMID:27831555

  20. The possible FAT1-mediated apoptotic pathways in porcine cumulus cells.

    PubMed

    Wu, Xinhui; Fu, Yao; Sun, Xulei; Liu, Chang; Chai, Menglong; Chen, Chengzhen; Dai, Lisheng; Gao, Yan; Jiang, Hao; Zhang, Jiabao

    2017-01-01

    Porcine cumulus cells are localized around oocytes and act as a specific type of granulosa that plays essential roles in the development and maturation of oocytes, the development and atresia of follicles, and the development of embryos. Studies of FAT1 have demonstrated its functions in cell-cell contact, actin dynamics, and cell growth suppression. To understand whether the FAT1 gene affects the apoptosis of porcine cumulus cells and to elucidate the mechanism of this potential action, FAT1 was knocked down using RNA interference. The lack of FAT1 resulted in stable expression of CTNNB, enhanced expression of cleaved CASP3, but decreased the BCL2/BAX ratios at both the mRNA and protein levels. These results indicated that FAT1 inhibited porcine cumulus cell apoptosis via different pathways. Taken together, these data provide new insights into the mechanisms of the association between FAT1 and porcine cumulus cell apoptosis.

  1. Senescence may mediate conversion of tau phosphorylation-induced apoptotic escape to neurodegeneration.

    PubMed

    Wang, Jian-Zhi; Wang, Zhi-Hao

    2015-08-01

    Neurodegeneration is the characteristic pathology in the brains of Alzheimer's disease (AD). However, the nature and molecular mechanism leading to the degeneration are not clarified. Given that only the neurons filled with neurofibrillary tangles survive to the end stage of the disease and the major component of the tangles is the hyperphosphorylated tau proteins, it is conceivable that tau hyperphosphorylation must play a crucial role in AD neurodegeneration. We have demonstrated that tau hyperphosphorylation renders the cells more resistant to the acute apoptosis. The molecular mechanisms involve substrate competition of tau and β-catenin for glycogen synthase kinase 3β (GSK-3β); activation of Akt; preservation of Bcl-2 and suppression of Bax, cytosolic cytochrome-c, and caspase-3 activity; and upregulation of unfolded protein response (UPR), i.e., up-regulating phosphorylation of PERK, eIF2 and IRE1 with an increased cleavage of ATF6 and ATF4. On the other hand, tau hyperphosphorylation promotes its intracellular accumulation and disrupts axonal transport; hyperphosphorylated tau also impairs cholinergic function and inhibits proteasome activity. These findings indicate that tau hyperphosphorylation and its intracellular accumulation play dual role in the evolution of AD. We speculate that transient tau phosphorylation helps cells abort from an acute apoptosis, while persistent tau hyperphosphorylation/accumulation may trigger cell senescence that eventually causes a chronic neurodegeneration. Therefore, the nature of "AD neurodegeneration" may represent a new type of tau-regulated chronic neuron death; and the stage of cell senescence may provide a broad window for the intervention of AD.

  2. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells

    SciTech Connect

    Dieudonne, Marie-Noelle; Bussiere, Marianne; Dos Santos, Esther; Leneveu, Marie-Christine; Giudicelli, Yves . E-mail: biochip@wanadoo.fr; Pecquery, Rene

    2006-06-23

    It is well established that obesity is a risk factor for breast cancer and that blood levels of adiponectin, a hormone mainly secreted by white adipocytes, are inversely correlated with the body fat mass. As adiponectin elicits anti-proliferative effects in some cell types, we tested the hypothesis that adiponectin could influence human breast cancer MCF-7 cell growth. Here we show that MCF-7 cells express adiponectin receptors and respond to human recombinant adiponectin by reducing their growth, AMPkinase activation, and p42/p44 MAPkinase inactivation. Further, we demonstrate that the anti-proliferative effect of adiponectin involves activation of cell apoptosis and inhibition of cell cycle. These findings suggest that adiponectin could act in vivo as a paracrine/endocrine growth inhibitor towards mammary epithelial cells. Moreover, adipose adiponectin production being strongly reduced in obesity, this study may help to explain why obesity is a risk factor of developing breast cancers.

  3. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient

    NASA Technical Reports Server (NTRS)

    Sun, E.; Gao, Y.; Chen, J.; Roberts, A. I.; Wang, X.; Chen, Z.; Shi, Y.

    2004-01-01

    Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.

  4. Activation of endoplasmic reticulum stress and the extrinsic apoptotic pathway in human lung cancer cells by the new synthetic flavonoid, LZ-205

    PubMed Central

    Li, Wei; Miao, Hanchi; Huang, Shaoliang; Zhou, Yuxin; Sun, Yang; Li, Zhiyu; Guo, Qinglong; Zhao, Li

    2016-01-01

    It has been shown that flavonoids have anti-tumor activity. In this study, LZ-205, a newly synthesized flavonoid, was found to be effective in inducing apoptosis in human lung cancer cells in vivo and in vitro. Mechanistically, LZ-205 triggers reactive oxygen species (ROS)-induced endoplasmic reticulum (ER) stress and unfolded protein response, which could be reversed by silencing CHOP, a mediator of the ER stress-associated apoptosis. In addition, LZ-205-induced apoptosis is accompanied by the activation of both the mitochondrial apoptotic and extrinsic pathways, followed by decreased mitochondrial membrane potential (ΔΨm) and the alteration of the expression of mitochondria-related pro- and anti-apoptotic proteins. LZ-205 exhibits a potential antitumor effect in BALB/c nude mice bearing H460 tumor with low systemic toxicity. In summary, both the ROS-mediated ER stress pathway and the exogenous apoptotic pathway are involved in LZ-205-induced apoptosis in vitro and in vivo. Our data show a therapeutic potential of LZ-205 for the treatment of lung cancer. PMID:27895312

  5. Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons

    PubMed Central

    Park, Ji Hye; Kim, Chung Kwon; Lee, Sang Bae; Lee, Kyung-Hoon; Cho, Sung-Woo; Ahn, Jee-Yin

    2016-01-01

    Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells. PMID:26899247

  6. Caspase Deficiency: Involvement in Breast Carcinogenesis and Resistance

    DTIC Science & Technology

    2001-07-01

    cancer restores sensi- factors by betulinic acid . J. Biol. Chem., 273: 33942-33948, 1998. tivity to different apoptotic stimuli and reduces tumor...proteases that mediate apoptotic execution (18, 19). They specifically cleave their substrate after an aspartic acid residue. The apical caspases (2...Company, 1998. free packaging cell line. Nucleic Acids Res., 18: 3587-3596, 1990. 56. Blume, K. G., Forman, S. J., O’Donnell, M. R., Doroshow, J. H

  7. Macrophages programmed by apoptotic cells inhibit epithelial-mesenchymal transition in lung alveolar epithelial cells via PGE2, PGD2, and HGF

    PubMed Central

    Yoon, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Park, Young Mi; Kang, Jihee Lee

    2016-01-01

    Apoptotic cell clearance results in the release of growth factors and the action of signaling molecules involved in tissue homeostasis maintenance. Here, we investigated whether and how macrophages programmed by apoptotic cells inhibit the TGF-β1-induced Epithelial-mesenchymal transition (EMT) process in lung alveolar epithelial cells. Treatment with conditioned medium derived from macrophages exposed to apoptotic cells, but not viable or necrotic cells, inhibited TGF-β1-induced EMT, including loss of E-cadherin, synthesis of N-cadherin and α-smooth muscle actin, and induction of EMT-activating transcription factors, such as Snail1/2, Zeb1/2, and Twist1. Exposure of macrophages to cyclooxygenase (COX-2) inhibitors (NS-398 and COX-2 siRNA) or RhoA/Rho kinase inhibitors (Y-27632 and RhoA siRNA) and LA-4 cells to antagonists of prostaglandin E2 (PGE2) receptor (EP4 [AH-23848]), PGD2 receptors (DP1 [BW-A868C] and DP2 [BAY-u3405]), or the hepatocyte growth factor (HGF) receptor c-Met (PHA-665752), reversed EMT inhibition by the conditioned medium. Additionally, we found that apoptotic cell instillation inhibited bleomycin-mediated EMT in primary mouse alveolar type II epithelial cells in vivo. Our data suggest a new model for epithelial cell homeostasis, by which the anti-EMT programming of macrophages by apoptotic cells may control the progressive fibrotic reaction via the production of potent paracrine EMT inhibitors. PMID:26875548

  8. IL-10 restricts dendritic cell (DC) growth at the monocyte-to-monocyte-derived DC interface by disrupting anti-apoptotic and cytoprotective autophagic molecular machinery.

    PubMed

    Martin, Carla; Espaillat, Mel Pilar; Santiago-Schwarz, Frances

    2015-12-01

    An evolving premise is that cytoprotective autophagy responses are essential to monocyte-macrophage differentiation. Whether autophagy functions similarly during the monocyte-to-dendritic cell (DC) transition is unclear. IL-10, which induces apoptosis in maturing human DCs, has been shown to inhibit starvation-induced autophagy in murine macrophage cell lines. Based on the strict requirement that Bcl-2-mediated anti-apoptotic processes are implemented during the monocyte-to-DC transition, we hypothesized that cytoprotective autophagy responses also operate at the monocyte-DC interface and that IL-10 inhibits both anti-apoptotic and cytoprotective autophagy responses at this critical juncture. In support of our premise, we show that levels of anti-apoptotic Bcl-2 and autophagy-associated LC3 and Beclin-1 proteins are coincidentally upregulated during the monocyte-to-DC transition. Autophagy was substantiated by increased autophagosome visualization after bafilomycin treatment. Moreover, the autophagy inhibitor 3-MA restricted DC differentiation by prompting apoptosis. IL-10 implemented apoptosis that was coincidentally associated with reduced levels of Bcl-2 and widespread disruption of the autophagic flux. During peak apoptosis, IL-10 produced the death of newly committed DCs. However, cells surviving the IL-10 apoptotic schedule were highly phagocytic macrophage-like cells displaying reduced capacity to stimulate allogeneic naïve T cells in a mixed leukocyte reaction, increased levels of LC3, and mature autophagosomes. Thus, IL-10's negative control of DC-driven adaptive immunity at the monocyte-DC interface includes disruption of coordinately regulated molecular networks involved in pro-survival autophagy and anti-apoptotic responses.

  9. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells.

    PubMed

    Ledvina, Vojtěch; Janečková, Eva; Matalová, Eva; Klepárník, Karel

    2017-01-01

    Analysing the chemical content of individual cells has already been proven to reveal unique information on various biological processes. Single-cell analysis provides more accurate and reliable results for biology and medicine than analyses of extracts from cell populations, where a natural heterogeneity is averaged. To meet the requirements in the research of important biologically active molecules, such as caspases, we have developed a miniaturized device for simultaneous analyses of individual cells. A stainless steel body with a carousel holder enables high-sensitivity parallel detections in eight microvials. The holder is mounted in front of a photomultiplier tube with cooled photocathode working in photon counting mode. The detection of active caspase-3/7, central effector caspases in apoptosis, in single cells is based on the bioluminescence chemistry commercially available as Caspase-Glo(®) 3/7 reagent developed by Promega. Individual cells were captured from a culture medium under microscope and transferred by micromanipulator into detection microvial filled with the reagent. As a result of testing, the limits of detection and quantification were determined to be 0.27/0.86 of active caspase-3/7 content in an average apoptotic cell and 0.46/2.92 for non-apoptotic cells. Application potential of this technology in laboratory diagnostics and related medical research is discussed. Graphical abstract Miniaturized device for simultaneous analyses of individual cells.

  10. Mediation Analysis

    PubMed Central

    MacKinnon, David P.; Fairchild, Amanda J.; Fritz, Matthew S.

    2010-01-01

    Mediating variables are prominent in psychological theory and research. A mediating variable transmits the effect of an independent variable on a dependent variable. Differences between mediating variables and confounders, moderators, and covariates are outlined. Statistical methods to assess mediation and modern comprehensive approaches are described. Future directions for mediation analysis are discussed. PMID:16968208

  11. Developmental regulation and modulation of apoptotic genes expression in sheep oocytes and embryos cultured in vitro with L-carnitine.

    PubMed

    Mishra, A; Reddy, I J; Gupta, Psp; Mondal, S

    2016-12-01

    The objective of this study was to find out the impact of L-carnitine (10 mM) on developmental regulation of preimplantation sheep embryos cultured in vitro when supplemented in maturation medium and post-fertilization medium separately. Subsequent objective was to observe the L-carnitine-mediated alteration in expression of apoptotic genes (Bcl2, Bax, Casp3 and PCNA) in sheep oocytes and developing embryos produced in vitro. Oocytes matured with L-carnitine showed significantly (p < .05) higher cleavage (67.23% vs 43.12%), morula (47.65% vs 28.58%) and blastocysts (32.12% vs 13.24%) percentage as compared to presumptive zygotes cultured with L-carnitine during post-fertilization period. So it is suggested to use L-carnitine during maturation than post-fertilization period. Antiapoptotic and proliferative effects of L-carnitine were confirmed by inducing culture medium with actinomycin D (apoptotic agent) and TNFα (antiproliferative agent), respectively, with and without L-carnitine. Oocytes and embryos cultured with actinomycin D and TNFα showed developmental arrest with significant (p < .05) decrease in morula and blastocysts percentage but supplementation of L-carnitine to actinomycin D and TNFα induced culture medium showed similar result as that of control. L-carnitine supplementation during IVM significantly (p < .05) upregulated the expression of Bcl2 and PCNA genes in majority of the developmental stages. Although L-carnitine upregulated the expression of Bax in initial developmental stages but downregulated at latter part, whereas the expression of Casp3 was upregulated upto 16-cell stage but after that there was no difference in expression. Expression of GAPDH gene was not affected by L-carnitine supplementation. In conclusion, L-carnitine acted as an antiapoptotic and proliferative compound during embryo development and supplementation of L-carnitine during IVM altered the expression of apoptotic genes in the developmental stages of embryos.

  12. Metabolic Regulation of CaMKII Protein and Caspases in Xenopus laevis Egg Extracts*

    PubMed Central

    McCoy, Francis; Darbandi, Rashid; Chen, Si-Ing; Eckard, Laura; Dodd, Keela; Jones, Kelly; Baucum, Anthony J.; Gibbons, Jennifer A.; Lin, Sue-Hwa; Colbran, Roger J.; Nutt, Leta K.

    2013-01-01

    The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways. PMID:23400775

  13. Inhibition of Protein Kinase Akt1 by Apoptosis Signal-regulating Kinase-1 (ASK1) Is Involved in Apoptotic Inhibition of Regulatory Volume Increase*

    PubMed Central

    Subramanyam, Muthangi; Takahashi, Nobuyuki; Hasegawa, Yuichi; Mohri, Tatsuma; Okada, Yasunobu

    2010-01-01

    Most animal cell types regulate their cell volume after an osmotic volume change. The regulatory volume increase (RVI) occurs through uptake of NaCl and osmotically obliged water after osmotic shrinkage. However, apoptotic cells undergo persistent cell shrinkage without showing signs of RVI. Persistence of the apoptotic volume decrease is a prerequisite to apoptosis induction. We previously demonstrated that volume regulation is inhibited in human epithelial HeLa cells stimulated with the apoptosis inducer. Here, we studied signaling mechanisms underlying the apoptotic inhibition of RVI in HeLa cells. Hypertonic stimulation was found to induce phosphorylation of a Ser/Thr protein kinase Akt (protein kinase B). Shrinkage-induced Akt activation was essential for RVI induction because RVI was suppressed by an Akt inhibitor, expression of a dominant negative form of Akt, or small interfering RNA-mediated knockdown of Akt1 (but not Akt2). Staurosporine, tumor necrosis factor-α, or a Fas ligand inhibited both RVI and hypertonicity-induced Akt activation in a manner sensitive to a scavenger for reactive oxygen species (ROS). Any of apoptosis inducers also induced phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) in a ROS-dependent manner. Suppression of (ASK1) expression blocked the effects of apoptosis, in hypertonic conditions, on both RVI induction and Akt activation. Thus, it is concluded that in human epithelial cells, shrinkage-induced activation of Akt1 is involved in the RVI process and that apoptotic inhibition of RVI is caused by inhibition of Akt activation, which results from ROS-mediated activation of ASK1. PMID:20048146

  14. Detection of apoptotic cells using propidium iodide staining.

    PubMed

    Newbold, Andrea; Martin, Ben P; Cullinane, Carleen; Bots, Michael

    2014-11-03

    Flow cytometry assays are often used to detect apoptotic cells in in vitro cultures. Depending on the experimental model, these assays can also be useful in evaluating apoptosis in vivo. In this protocol, we describe a propidium iodide (PI) flow cytometry assay to evaluate B-cell lymphomas that have undergone apoptosis in vivo. B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples collected from the lymph nodes and/or the spleen are used to prepare a single-cell suspension that is exposed to a hypotonic solution containing the fluorochrome PI. The DNA content of the cells, now labeled with PI, is analyzed by flow cytometry. Nuclear DNA content is lost during apoptosis, resulting in a hypodiploid (or sub-G1) DNA profile during flow cytometry. In contrast, healthy cells display a sharp diploid DNA profile.

  15. Rapamycin induces the anti-apoptotic protein survivin in neuroblastoma.

    PubMed

    Samkari, Ayman; Cooper, Zachary A; Holloway, Michael P; Liu, Jiebin; Altura, Rachel A

    2012-01-01

    Neuroblastoma is the most common solid tumor of infancy, accounting for 15% of all cancer cell deaths in children. Expression of the anti-apoptotic protein survivin in these tumors correlates with poor prognostic features and resistance to therapy. The mammalian target of rapamycin (mTOR) protein is being explored as a potential therapeutic target in patients with this disease. The objective of this study was to test the hypothesis that rapamycin regulates survivin expression and function in neuroblastoma cells. To explore this hypothesis, we treated two different neuroblastoma lines (NB7, NB8) and a well-characterized control lung cancer cell line, A549, with varying doses of rapamycin (0.1-10μM) for serial time points (2-48 hours). RNA and protein expression levels were then evaluated by quantitative RT-PCR and western blotting, respectively. Cell proliferation and apoptosis were assayed by WST-1 and Annexin V. The results showed a rapamycin-dependent increase in survivin mRNA and protein levels in the neuroblastoma cell lines in a dose- and time-dependent fashion, while a decrease in these levels was observed in control cells. Rapamycin inhibited cell proliferation in both A549 and neuroblastoma cells however neuroblastoma cells had less apoptosis than A549 cells (9% vs. 20%). In summary, our results indicate that rapamycin induces expression of the anti-apoptotic protein survivin in neuroblastoma cells which may protect these cells from programmed cell death. Induction of survivin by rapamycin could therefore be a potential mechanism of neuroblastoma tumor cell resistance and rapamycin may not be an effective therapeutic agent for these tumors.

  16. HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation

    PubMed Central

    De Nicola, F; Catena, V; Rinaldo, C; Bruno, T; Iezzi, S; Sorino, C; Desantis, A; Camerini, S; Crescenzi, M; Floridi, A; Passananti, C; Soddu, S; Fanciulli, M

    2014-01-01

    Che-1/AATF is an RNA polymerase II-binding protein that is involved in the regulation of gene transcription, which undergoes stabilization and accumulation in response to DNA damage. We have previously demonstrated that following apoptotic induction, Che-1 protein levels are downregulated through its interaction with the E3 ligase HDM2, which leads to Che-1 degradation by ubiquitylation. This interaction is mediated by Pin1, which determines a phosphorylation-dependent conformational change. Here we demonstrate that HIPK2, a proapoptotic kinase, is involved in Che-1 degradation. HIPK2 interacts with Che-1 and, upon genotoxic stress, phosphorylates it at specific residues. This event strongly increases HDM2/Che-1 interaction and degradation of Che-1 protein via ubiquitin-dependent proteasomal system. In agreement with these findings, we found that HIPK2 depletion strongly decreases Che-1 ubiquitylation and degradation. Notably, Che-1 overexpression strongly counteracts HIPK2-induced apoptosis. Our results establish Che-1 as a new HIPK2 target and confirm its important role in the cellular response to DNA damage. PMID:25210797

  17. Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways

    PubMed Central

    Cui, Derong; Shang, Hanbing; Zhang, Xiaoli; Jiang, Wei; Jia, Xiaofeng

    2016-01-01

    The mechanism of neuronal death induced by ischemic injury remains unknown. We investigated whether autophagy and p53 signaling played a role in the apoptosis of hippocampal neurons following global cerebral ischemia-reperfusion (I/R) injury, in a rat model of 8-min asphyxial cardiac arrest (CA) and resuscitation. Increased autophagosome numbers, expression of lysosomal cathepsin B, cathepsin D, Beclin-1, and microtubule-associated protein light chain 3 (LC3) suggested autophagy in hippocampal cells. The expression of tumor suppressor protein 53 (p53) and its target genes: Bax, p53-upregulated modulator of apoptosis (PUMA), and damage-regulated autophagy modulator (DRAM) were upregulated following CA. The p53-specific inhibitor pifithrin-α (PFT-α) significantly reduced the expression of pro-apoptotic proteins (Bax and PUMA) and autophagic proteins (LC3-II and DRAM) that generally increase following CA. PFT-α also reduced hippocampal neuronal damage following CA. Similarly, 3-methyladenine (3-MA), which inhibits autophagy and bafilomycin A1 (BFA), which inhibits lysosomes, significantly inhibited hippocampal neuronal damage after CA. These results indicate that CA affects both autophagy and apoptosis, partially mediated by p53. Autophagy plays a significant role in hippocampal neuronal death induced by cerebral I/R following asphyxial-CA. PMID:27273382

  18. Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells.

    PubMed

    Cullen, Sean P; Henry, Conor M; Kearney, Conor J; Logue, Susan E; Feoktistova, Maria; Tynan, Graham A; Lavelle, Ed C; Leverkus, Martin; Martin, Seamus J

    2013-03-28

    Apoptosis is commonly thought to represent an immunologically silent or even anti-inflammatory mode of cell death, resulting in cell clearance in the absence of explicit activation of the immune system. However, here we show that Fas/CD95-induced apoptosis is associated with the production of an array of cytokines and chemokines, including IL-6, IL-8, CXCL1, MCP-1, and GMCSF. Fas-induced production of MCP-1 and IL-8 promoted chemotaxis of phagocytes toward apoptotic cells, suggesting that these factors serve as "find-me" signals in this context. We also show that RIPK1 and IAPs are required for optimal production of cytokines and chemokines in response to Fas receptor stimulation. Consequently, a synthetic IAP antagonist potently suppressed Fas-dependent expression of multiple proinflammatory mediators and inhibited Fas-induced chemotaxis. Thus, in addition to provoking apoptosis, Fas receptor stimulation can trigger the secretion of chemotactic factors and other immunologically active proteins that can influence immune responsiveness toward dying cells.

  19. Mechanical strain delivers anti-apoptotic and proliferative signals to gingival fibroblasts.

    PubMed

    Danciu, T E; Gagari, E; Adam, R M; Damoulis, P D; Freeman, M R

    2004-08-01

    Physical forces play a critical role in the survival and proliferation of many cell types, including fibroblasts. Gingival fibroblasts are exposed to mechanical stress during mastication, orthodontic tooth movement, and wound healing following periodontal surgery. The aim of this study was to examine the effect of mechanical strain on human gingival fibroblasts (hGF). Cells were subjected to short-term (up to 60 min) and long-term (up to 48 hrs) 20% average elongation at 0.1 Hz. We monitored survival signaling by evaluating the phosphorylation status and localization of Forkhead box (FoxO) family members, which are mediators of apoptosis. We also examined strain-induced proliferation by measuring the level of proliferating cell nuclear antigen (PCNA). We observed that cyclic strain caused the phosphorylation and retention in the cytoplasm of FoxO family members. Moreover, mechanical strain resulted in increased ERK kinase phosphorylation and PCNA expression. In conclusion, cyclic strain delivers anti-apoptotic and proliferative stimuli to hGF.

  20. Dealcoholated red wine induces autophagic and apoptotic cell death in an osteosarcoma cell line.

    PubMed

    Tedesco, I; Russo, M; Bilotto, S; Spagnuolo, C; Scognamiglio, A; Palumbo, R; Nappo, A; Iacomino, G; Moio, L; Russo, G L

    2013-10-01

    Until recently, the supposed preventive effects of red wine against cardiovascular diseases, the so-called "French Paradox", has been associated to its antioxidant properties. The interest in the anticancer capacity of polyphenols present in red wine strongly increased consequently to the enormous number of studies on resveratrol. In this study, using lyophilized red wine, we present evidence that its anticancer effect in a cellular model is mediated by apoptotic and autophagic cell death. Using a human osteosarcoma cell line, U2Os, we found that the lyophilized red wine was cytotoxic in a dose-dependent manner with a maximum effect in the range of 100-200 μg/ml equivalents of gallic acid. A mixed phenotype of types I/II cell death was evidenced by means of specific assays following treatment of U2Os with lyophilized red wine, e.g., autophagy and apoptosis. We found that cell death induced by lyophilized red wine proceeded through a mechanism independent from its anti-oxidant activity and involving the inhibition of PI3K/Akt kinase signaling. Considering the relative low concentration of each single bioactive compound in lyophilized red wine, our study suggests the activation of synergistic mechanism able to inhibit growth in malignant cells.

  1. d-Amino Acid Position Influences the Anticancer Activity of Galaxamide Analogs: An Apoptotic Mechanism Study

    PubMed Central

    Bai, Defa; Yu, Siming; Zhong, Shenghui; Zhao, Bingxin; Qiu, Shaoling; Chen, Jianwei; Lunagariya, Jignesh; Liao, Xiaojian; Xu, Shihai

    2017-01-01

    Galaxamide, an extract from Galaxaura filamentosa, is a cyclic pentapeptide containing five l-leucines. Due to the particular cyclic structure and the excellent anticancer activity, synthesis of Galaxamide and its analogs and their subsequent bio-applications have attracted great attention. In the present work, we synthesized six Galaxamide analogs by replacing one of the l-leucines with phenylalanine and varying the d-amino acid position. The anticancer effect of the synthesized Galaxamide analogs was tested against four in vitro human cancer cell lines, human hepatocellular cells (HepG2), human breast cancer cell (MCF-7), human breast adenocarcinoma cells (MDA-MB-435) and a human cervical carcinoma cell line (Hela). Results showed that Galaxamide analogs with different d-amino acid positions displayed distinct anticancer potential. The Galaxamide analog containing d-amino acid at position 5 (Analog-6) presented the strongest anticancer activity. The mechanism study revealed that Analog-6 could cause the early apoptosis of HepG2 cells by inhibiting their growth in the sub-G1 stage of the cell cycle and induce the chromatin condensation and fragmentation, which can be seen as 68% of HepG2 cells inhibited in the sub-G1 stage. Moreover, a mitochondria-mediated pathway was found to be involved in the apoptotic process of Analog-6 on HepG2 cells. PMID:28287429

  2. Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus

    PubMed Central

    Li, Hao; Fu, Yang-Xin; Wu, Qi; Zhou, Yong; Crossman, David K.; Yang, PingAr; Li, Jun; Luo, Bao; Morel, Laurence M.; Kabarowski, Janusz H.; Yagita, Hideo; Ware, Carl F.; Hsu, Hui-Chen; Mountz, John D.

    2015-01-01

    Systemic lupus erythematosus (SLE) is a severe autoimmune disease that is associated with increased circulating apoptotic cell autoantigens (AC-Ags) as well as increased type I IFN signaling. Here, we describe a pathogenic mechanism in which follicular translocation of marginal zone (MZ) B cells in the spleens of BXD2 lupus mice disrupts marginal zone macrophages (MZMs), which normally clear AC debris and prevent follicular entry of AC-Ags. Phagocytosis of ACs by splenic MZMs required the megakaryoblastic leukemia 1 (MKL1) transcriptional coactivator–mediated mechanosensing pathway, which was maintained by MZ B cells through expression of membrane lymphotoxin-α1β2 (mLT). Specifically, type I IFN–induced follicular shuttling of mLT-expressing MZ B cells disengaged interactions between these MZ B cells and LTβ receptor–expressing MZMs, thereby downregulating MKL1 in MZMs. Loss of MKL1 expression in MZMs led to defective F-actin polymerization, inability to clear ACs, and, eventually, MZM dissipation. Aggregation of plasmacytoid DCs in the splenic perifollicular region, follicular translocation of MZ B cells, and loss of MKL1 and MZMs were also observed in an additional murine lupus model and in the spleens of patients with SLE. Collectively, the results suggest that lupus might be interrupted by strategies that maintain or enhance mechanosensing signaling in the MZM barrier to prevent follicular entry of AC-Ags. PMID:26098211

  3. Artocarpus communis Induces Autophagic Instead of Apoptotic Cell Death in Human Hepatocellular Carcinoma Cells.

    PubMed

    Tzeng, Cheng-Wei; Tzeng, Wen-Sheng; Lin, Liang-Tzung; Lee, Chiang-Wen; Yen, Ming-Hong; Yen, Feng-Lin; Lin, Chun-Ching

    2015-01-01

    For centuries, natural plant extracts have played an important role in traditional medicine for curing and preventing diseases. Studies have revealed that Artocarpus communis possess various bioactivities, such as anti-inflammation, anti-oxidant, and anticancer activities. A. communis offers economic value as a source of edible fruit, yields timber, and is widely used in folk medicines. However, little is known about its molecular mechanisms of anticancer activity. Here, we demonstrate the antiproliferative activity of A. communis methanol extract (AM) and its dichloromethane fraction (AD) in two human hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. Colony assay showed the long-term inhibitory effect of both extracts on cell growth. DNA laddering and immunoblotting analyses revealed that both extracts did not induce apoptosis in the hepatoma cell lines. AM and AD-treated cells demonstrated different cell cycle distribution compared to UV-treated cells, which presented apoptotic cell death with high sub-G1 ratio. Instead, acridine orange staining revealed that AM and AD triggered autophagosome accumulation. Immunoblotting showed a significant expression of autophagy-related proteins, which indicated the autophagic cell death (ACD) of hepatoma cell lines. This study therefore demonstrates that A. communis AM and its dichloromethane fraction can induce ACD in HCC cells and elucidates the potential of A. communis extracts for development as anti tumor therapeutic agents that utilize autophagy as mechanism in mediating cancer cell death.

  4. Elevation of GM2 ganglioside during ethanol-induced apoptotic neurodegeneration in the developing mouse brain.

    PubMed

    Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko

    2012-05-01

    GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration.

  5. miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells.

    PubMed

    Liao, Yalin; Du, Xiaogu; Lönnerdal, Bo

    2010-09-01

    Lactoferrin (Lf) is an abundantly expressed protein in human milk. Lactoferrin exhibits several important biological functions, and its expression is regulated by multiple environmental factors. Cellular endogenous factors, however, have not been extensively studied with regard to lactoferrin gene expression. In this study, we showed that lactoferrin gene expression and function are directly targeted by miR-214 in HC11 and MCF7 cells. In the lactoferrin mRNA 3 prime untranslated region (UTR) of human, mouse, rat, pig, bovine, camel, and goat species, there is a conserved region that perfectly matches the seed region of miR-214. Transfection of miR-214 mimic in HEK293 cells dose-dependently inhibited the activity of pGL3-control vector containing lactoferrin mRNA 3 prime UTR downstream of the luciferase gene. In HC11 cells, miR-214 overexpression inhibited the induction of lactoferrin expression by beta -estradiol (E2) and dexamethasone-prolactin-insulin (DPI). Furthermore, in MCF7 cells, overexpression of miR-214 markedly decreased lactoferrin expression (P lt 0.05), and inhibition of endogenous miR-214 expression increased lactoferrin expression and cellular apoptotic activities (P lt 0.05). In summary, our data showed that miR-214 is directly involved in lactoferrin expression and lactoferrin mediated cancer susceptibility (proapoptotic activities) in mammary epithelial cells.

  6. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells.

    PubMed

    Kalaaji, Manar; Mortensen, Elin; Jørgensen, Leif; Olsen, Randi; Rekvig, Ole Petter

    2006-06-01

    Antibodies to dsDNA represent a classification criterion for systemic lupus erythematosus. Subpopulations of these antibodies are involved in lupus nephritis. No known marker separates nephritogenic from non-nephritogenic anti-dsDNA antibodies. It is not clear whether specificity for glomerular target antigens or intrinsic antibody-affinity for dsDNA or nucleosomes is a critical parameter. Furthermore, it is still controversial whether glomerular target antigen(s) is constituted by nucleosomes or by non-nucleosomal glomerular structures. Previously, we have demonstrated that antibodies eluted from murine nephritic kidneys recognize nucleosomes, but not other glomerular antigens. In this study, we determined the structures that bind nephritogenic autoantibodies in vivo by transmission electron microscopy, immune electron microscopy, and colocalization immune electron microscopy using experimental antibodies to dsDNA, to histones and transcription factors, or to laminin. The data obtained are consistent and point at glomerular basement membrane-associated nucleosomes as target structures for the nephritogenic autoantibodies. Terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling or caspase-3 assays demonstrate that lupus nephritis is linked to intraglomerular cell apoptosis. The data suggest that nucleosomes are released by apoptosis and associate with glomerulus basement membranes, which may then be targeted by pathogenic anti-nucleosome antibodies. Thus, apoptotic nucleosomes may represent both inducer and target structures for nephritogenic autoantibodies in systemic lupus erythematosus.

  7. An unfractionated fucoidan from Ascophyllum nodosum: extraction, characterization, and apoptotic effects in vitro.

    PubMed

    Foley, Sarah A; Szegezdi, Eva; Mulloy, Barbara; Samali, Afshin; Tuohy, Maria G

    2011-09-23

    An unfractionated fucoidan was extracted from the brown alga Ascophyllum nodosum. Extraction of fucoidan from seaweed was carried out using an innovative low-chemical process. A combinational approach involving compositional analysis, HPAEC, IR analysis, GPC, and NMR was employed to elucidate the composition and structure of an unfractionated fucoidan from A. nodosum. This fucoidan is composed mainly of fucose (52.1%), and also galactose (6.1%), glucose (21.3%), and xylose (16.5%). Sulfate content was determined to be 19%. GPC data indicated a polydisperse fucoidan containing two main size fractions (47 and 420 kDa). NMR analyses revealed a fucoidan displaying broad, complex signals as expected for such a high molecular weight and heterogeneous polymer with resonances consistent with a fucoidan isolated previously from A. nodosum. The effects of fucoidan on the apoptosis of human colon carcinoma cells and fucoidan-mediated signaling pathways were also investigated. Fucoidan decreased cell viability and induced apoptosis of HCT116 colon carcinoma cells. Fucoidan treatment of HCT116 cells induced activation of caspases-9 and -3 and the cleavage of PARP, led to apoptotic morphological changes, and altered mitochondrial membrane permeability. These results detail the structure and biological activity of an unfractionated fucoidan from A. nodosum.

  8. d-Amino Acid Position Influences the Anticancer Activity of Galaxamide Analogs: An Apoptotic Mechanism Study.

    PubMed

    Bai, Defa; Yu, Siming; Zhong, Shenghui; Zhao, Bingxin; Qiu, Shaoling; Chen, Jianwei; Lunagariya, Jignesh; Liao, Xiaojian; Xu, Shihai

    2017-03-10

    Galaxamide, an extract from Galaxaura filamentosa, is a cyclic pentapeptide containing five l-leucines. Due to the particular cyclic structure and the excellent anticancer activity, synthesis of Galaxamide and its analogs and their subsequent bio-applications have attracted great attention. In the present work, we synthesized six Galaxamide analogs by replacing one of the l-leucines with phenylalanine and varying the d-amino acid position. The anticancer effect of the synthesized Galaxamide analogs was tested against four in vitro human cancer cell lines, human hepatocellular cells (HepG₂), human breast cancer cell (MCF-7), human breast adenocarcinoma cells (MDA-MB-435) and a human cervical carcinoma cell line (Hela). Results showed that Galaxamide analogs with different d-amino acid positions displayed distinct anticancer potential. The Galaxamide analog containing d-amino acid at position 5 (Analog-6) presented the strongest anticancer activity. The mechanism study revealed that Analog-6 could cause the early apoptosis of HepG₂ cells by inhibiting their growth in the sub-G1 stage of the cell cycle and induce the chromatin condensation and fragmentation, which can be seen as 68% of HepG₂ cells inhibited in the sub-G1 stage. Moreover, a mitochondria-mediated pathway was found to be involved in the apoptotic process of Analog-6 on HepG₂ cells.

  9. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes

    PubMed Central

    Bernerd, Francoise; Sarasin, Alain; Magnaldo, Thierry

    1999-01-01

    Galectin-7 is a β-galactoside binding protein specifically expressed in stratified epithelia and notably in epidermis, but barely detectable in epidermal tumors and absent from squamous carcinoma cell lines. Galectin-7 gene is an early transcriptional target of the tumor suppressor protein P53 [Polyak, K., Xia, Y., Zweier, J., Kinzler, K. & Vogelstein, B. (1997) Nature (London) 389, 300–305]. Because p53 transcriptional activity is increased by genotoxic stresses we have examined the possible effects of ultraviolet radiations (UVB) on galectin-7 expression in epidermal keratinocytes. The amounts of galectin-7 mRNA and protein are increased rapidly after UVB irradiation of epidermal keratinocytes. The increase of galectin-7 is parallel to P53 stabilization. UVB irradiation of skin reconstructed in vitro and of human skin ex vivo demonstrates that galectin-7 overexpression is associated with sunburn/apoptotic keratinocytes. Transfection of a galectin-7 expression vector results in a significant increase in terminal deoxynucleotidyltransferase-mediated UTP end labeling-positive keratinocytes. The present findings demonstrate a keratinocyte-specific protein involved in the UV-induced apoptosis, an essential process in the maintenance of epidermal homeostasis. PMID:10500176

  10. Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells

    PubMed Central

    Bontempo, Paola; Mita, Luigi; Doto, Antonella; Miceli, Marco; Nebbioso, Angela; Lepore, Ilaria; Franci, GianLuigi; Menafra, Roberta; Carafa, Vincenzo; Conte, Mariarosaria; De Bellis, Floriana; Manzo, Fabio; Di Cerbo, Vincenzo; Benedetti, Rosaria; D'Amato, Loredana; Marino, Maria; Bolli, Alessandro; Del Pozzo, Giovanna; Diano, Nadia; Portaccio, Marianna; Mita, Gustavo D; Vietri, Maria Teresa; Cioffi, Michele; Nola, Ernesto; Dell'Aversana, Carmela; Sica, Vincenzo; Molinari, Anna Maria; Altucci, Lucia

    2009-01-01

    Background: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenol)propane) is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. Methods: Cell cycle, apoptosis and differentiation analyses; western blots. Results: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. Conclusion: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis. PMID:19538739

  11. Tula hantavirus triggers pro-apoptotic signals of ER stress in Vero E6 cells.

    PubMed

    Li, Xiao-Dong; Lankinen, Hilkka; Putkuri, Niina; Vapalahti, Olli; Vaheri, Antti

    2005-03-01

    Tula virus is a member of the Hantavirus genus of the family Bunyaviridae. Viruses of this family have an unusual pattern of intracellular maturation at the ER-Golgi compartment. We recently found that Tula virus, similar to several other hantaviruses, is able to induce apoptosis in cultured cells [Li, X.D., Kukkonen, S., Vapalahti, O., Plyusnin, A., Lankinen, H., Vaheri, A., 2004. Tula hantavirus infection of Vero E6 cells induces apoptosis involving caspase 8 activation. J. Gen. Virol. 85, 3261-3268.]. However, the cellular mechanisms remain to be clarified. In this study, we demonstrate that the progressive replication of Tula virus in Vero E6 cells initiates several death programs that are intimately associated with ER stress: (1) early activation of ER-resident caspase-12; (2) phosphorylation of Jun NH2-terminal kinase (JNK) and its downstream target transcriptional factor, c-jun; (3) induction of the pro-apoptotic transcriptional factor, growth arrest- and DNA damage-inducible gene 153, or C/EBP homologous protein (Gadd153/chop); and (4) changes in the ER-membrane protein BAP31 implying cross-talk with the mitochondrial apoptosis pathway. Furthermore, we confirmed that a sustained ER stress was induced marked by an increased expression of an ER chaperone Grp78/BiP. Taken together, we have identified involvement of ER stress-mediated death program in Tula virus-infected Vero E6 cells which provides a new approach to understand the mechanisms in hantavirus-induced apoptosis.

  12. Apoptotic pathway induced by transduction of RUNX3 in the human gastric carcinoma cell line MKN-1.

    PubMed

    Nagahama, Yumi; Ishimaru, Mika; Osaki, Mitsuhiko; Inoue, Toshiaki; Maeda, Akihiro; Nakada, Chisato; Moriyama, Masatsugu; Sato, Kenzo; Oshimura, Mitsuo; Ito, Hisao

    2008-01-01

    The human runt-related transcription factor 3 gene (RUNX3) is considered to be a candidate tumor suppressor gene in gastric carcinoma. However, the role of RUNX3 in the regulation of cell proliferation remains unclear. In the present study, we constructed an adenoviral vector encoding human RUNX3 cDNA under the control of a Tet-responsive promoter (Ad-Tet-FLAG-RUNX3), which regulates the expression of RUNX3 in the presence or absence of doxycycline. A recombinant adenoviral expression vector encoding LacZ (Ad-Tet-LacZ) was used as a negative control. The effect of the transduction of RUNX3 on cell growth was examined using the Tet-On system in a human gastric carcinoma cell line, MKN-1. Exogenous RUNX3 expression was induced successfully by Ad-Tet-FLAG-RUNX3, but not Ad-Tet-LacZ, in the presence of doxycycline in the MKN-1 cells. At 72 h after infection, the proliferative activity in RUNX3-expressing cells was 55% or less of that of the control cells. Flow cytometry revealed that the sub-G(1) peak was increased in cells expressing RUNX3 (34.11%), indicating that the inhibition of cell growth was due to apoptosis, which was confirmed based on Hoechst 33258 staining, the release of cytochrome c from mitochondria into the cytosol, and detection of cleaved caspase-3 by western blotting in MKN-1 cells. Comprehensive analysis using a cDNA microarray showed that RUNX3 upregulated 17 apoptosis-related genes (including FADD, TRAF6, caspase-2, ING1, ING4, Calpain 10, and DNase1) and downregulated 135 apoptosis-related genes (including FLIP, PEA15, TXN2, HSPD1, IKK, and TIAL1) in MKN-1 cells. Pathway analyses to generate functional networks of the genes suggested that promotion of the formation of the death-inducing signaling complex and activation of the mitochondria-mediated pathway were associated with RUNX3-induced apoptosis. In conclusion, our findings suggest that exogenous RUNX3 expression suppressed cell proliferation by inducing apoptosis via the death

  13. MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway.

    PubMed

    Koetz-Ploch, Lisa; Hanniford, Douglas; Dolgalev, Igor; Sokolova, Elena; Zhong, Judy; Díaz-Martínez, Marta; Bernstein, Emily; Darvishian, Farbod; Flaherty, Keith T; Chapman, Paul B; Tawbi, Hussein; Hernando, Eva

    2017-01-31

    Melanoma patients with BRAF(V)(600E) -mutant tumors display striking responses to BRAF inhibitors (BRAFi); however, almost all invariably relapse with drug-resistant disease. Here we report that microRNA-125a (miR-125a) expression is upregulated in human melanoma cells and patient tissues upon acquisition of BRAFi resistance. We show that miR-125a induction confers resistance to BRAF(V)(600E) melanoma cells to BRAFi by directly suppressing pro-apoptotic components of the intrinsic apoptosis pathway, including BAK1 and MLK3. Apoptotic suppression and prolonged survival favor reactivation of the MAPK and AKT pathways by drug-resistant melanoma cells. We demonstrate that miR-125a inhibition suppresses the emergence of resistance to BRAFi and, in a subset of resistant melanoma cell lines, leads to partial drug re-sensitization. Finally, we show that miR-125a upregulation is mediated by TGFβ signaling. In conclusion, the identification of this novel role for miR-125a in BRAFi resistance exposes clinically relevant mechanisms of melanoma cell survival that can be exploited therapeutically. This article is protected by copyright. All rights reserved.

  14. Effects of cinnamon (Cinnamomum zeylanicum) bark oil on testicular antioxidant values, apoptotic germ cell and sperm quality.

    PubMed

    Yüce, A; Türk, G; Çeribaşi, S; Sönmez, M; Çiftçi, M; Güvenç, M

    2013-08-01

    Cinnamon and its contents have multifactorial properties such as antioxidant, anti-inflammatory and antidiabetic. Male infertility is one of the major health problems in life. The aim of this study was to investigate the effects of long-term cinnamon bark oil (CBO) ingestion on testicular antioxidant values, apoptotic germ cell and sperm quality of adult rats. Twelve male healthy Wistar rats were divided into two groups, each group containing six rats. While olive oil was given to control group, 100 mg kg(-1)  CBO was administered to the other group by gavage daily for 10 weeks. Body and reproductive organ weights, sperm characteristics, testicular lipid peroxidation and antioxidant enzyme activities, and testicular apoptosis via terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method were examined. A significant decrease in malondialdehyde level and marked increases in reduced glutathione level, glutathione peroxidase and catalase activities were observed in rats treated with CBO compared with the control group. CBO consumption provided a significant increase in weights of testes and epididymides, epididymal sperm concentration, sperm motility and diameter of seminiferous tubules when compared with the control group. However, CBO consumption tended to decrease the abnormal sperm rate and apoptotic germ cell count, but it did not reach statistical significance. It is concluded that CBO has improvement effect on testicular oxidant-antioxidant balance and sperm quality, and its consumption may be useful for asthenozoospermic men.

  15. RENAL PRO-APOPTOTIC PROTEINS ARE REDUCED BY GROWTH HORMONE RESISTANCE BUT NOT BY VISCERAL FAT REMOVAL

    PubMed Central

    Gesing, Adam; Bartke, Andrzej; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Masternak, Michal M.

    2013-01-01

    The growth hormone (GH) receptor knockout (GHRKO) mice are highly insulin sensitive and long-lived. Surgical visceral fat removal (VFR) improves insulin signaling in normal mice and rats and extends longevity in rats. We have previously demonstrated decreased expression of certain pro-apoptotic genes in kidneys of GHRKO mice, and suggested that this may contribute to the increased longevity of these animals. The aim of the present study was to examine the level of the following proteins: caspase-3, caspase-9, caspase-8, bax, bad, phospho-bad (p-bad), bcl-2, Smac/DIABLO, Apaf-1, phospho-p53 (pp53) and cytochrome c (cyc) in male GHRKO and normal (N) mice subjected to VFR or sham surgery, at approximately 6 months of age. The kidneys were collected 2 months after VFR. Results: Caspase-3, caspase-8, bax, bad, Smac/DIABLO, Apaf-1 and pp53 levels were decreased in GHRKO mice as compared to N animals. VFR did not change the level of any of the examined proteins. Conclusion: Decreased renal levels of pro-apoptotic proteins may contribute to extended lifespan due to targeted disruption of GH receptor (Ghr) gene but are apparently not involved in mediating the effects of VFR. PMID:21391871

  16. Protein regulation and Apoptotic induction in human breast carcinoma cells (MCF-7) through lectin from G. beauts.

    PubMed

    Ponraj, Thondhi; Paulpandi, Manickam; Vivek, Raju; Vimala, Karuppaiya; Kannan, Soundarapandian

    2017-02-01

    Lectins are proteins that show a variety of biological activities. Nevertheless, information on lectin from Gluttonous beauts and their anticancer activities are very limited. In this study, we purified a lectin from hemolymph of G. beauts and identified its molecular weight to be 66kDa. The effect of lectin at different concentrations (μg/mL) on the cell growth and apoptosis were evaluated against MCF-7 and MCF-10A cells, whereas cytotoxicity to the MCF-7 cells mediated by lectin was observed and the mechanism of action of the lectin in including apoptosis in cancer cells via the intrinsic pathway was also proposed. The MCF-7 cells were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation. In MCF-10A cells lectin did not show any adverse effect even at higher concentration. Cell cycle analysis also showed a significant cell cycle arrest on selected cells after lectin treatment. Western blotting suggested that lectin up regulates the apoptotic protein expression in MCF-7 cells while it down regulates the level of Bcl-2 expression.

  17. Wound healing defect of Vav3-/- mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils.

    PubMed

    Sindrilaru, Anca; Peters, Thorsten; Schymeinsky, Jürgen; Oreshkova, Tsvetelina; Wang, Honglin; Gompf, Anne; Mannella, Francesca; Wlaschek, Meinhard; Sunderkötter, Cord; Rudolph, Karl Lenhard; Walzog, Barbara; Bustelo, Xosé R; Fischer, Klaus D; Scharffetter-Kochanek, Karin

    2009-05-21

    Vav proteins are guanine-nucleotide exchange factors implicated in leukocyte functions by relaying signals from immune response receptors and integrins to Rho-GTPases. We here provide first evidence for a role of Vav3 for beta(2)-integrins-mediated macrophage functions during wound healing. Vav3(-/-) and Vav1(-/-)/Vav3(-/-) mice revealed significantly delayed healing of full-thickness excisional wounds. Furthermore, Vav3(-/-) bone marrow chimeras showed an identical healing defect, suggesting that Vav3 deficiency in leukocytes, but not in other cells, is causal for the impaired wound healing. Vav3 was required for the phagocytotic cup formation preceding macrophage phagocytosis of apoptotic neutrophils. Immunoprecipitation and confocal microscopy revealed Vav3 activation and colocalization with beta(2)-integrins at the macrophage membrane upon adhesion to ICAM-1. Moreover, local injection of Vav3(-/-) or beta(2)-integrin(CD18)(-/-) macrophages into wound margins failed to restore the healing defect of Vav3(-/-) mice, suggesting Vav3 to control the beta(2)-integrin-dependent formation of a functional phagocytic synapse. Impaired phagocytosis of apoptotic neutrophils by Vav3(-/-) macrophages was causal for their reduced release of active transforming growth factor (TGF)-beta(1), for decreased myofibroblasts differentiation and myofibroblast-driven wound contraction. TGF-beta(1) deficiency in Vav3(-/-) macrophages was causally responsible for the healing defect, as local injection of either Vav3-competent macrophages or recombinant TGF-beta(1) into wounds of Vav3(-/-) mice fully rescued the delayed wound healing.

  18. Pro-apoptotic Bim suppresses breast tumor cell metastasis and is a target gene of SNAI2.

    PubMed

    Merino, D; Best, S A; Asselin-Labat, M-L; Vaillant, F; Pal, B; Dickins, R A; Anderson, R L; Strasser, A; Bouillet, P; Lindeman, G J; Visvader, J E

    2015-07-23

    Evasion of cell death is fundamental to the development of cancer and its metastasis. The role of the BCL-2-mediated (intrinsic) apoptotic program in these processes remains poorly understood. Here we have investigated the relevance of the pro-apoptotic protein BIM to breast cancer progression using the MMTV-Polyoma middle-T (PyMT) transgenic model. BIM deficiency in PyMT females did not affect primary tumor growth, but substantially increased the survival of metastatic cells within the lung. These data reveal a role for BIM in the suppression of breast cancer metastasis. Intriguingly, we observed a striking correlation between the expression of BIM and the epithelial to mesenchymal transition transcription factor SNAI2 at the proliferative edge of the tumors. Overexpression and knockdown studies confirmed that these two genes were coordinately expressed, and chromatin immunoprecipitation analysis further revealed that Bim is a target of SNAI2. Taken together, our findings suggest that SNAI2-driven BIM-induced apoptosis may temper metastasis by governing the survival of disseminating breast tumor cells.

  19. Jedi-1 and MEGF10 signal engulfment of apoptotic neurons through the tyrosine kinase Syk.

    PubMed

    Scheib, Jami L; Sullivan, Chelsea S; Carter, Bruce D

    2012-09-19

    During the development of the peripheral nervous system there is extensive apoptosis, and these neuronal corpses need to be cleared to prevent an inflammatory response. Recently, Jedi-1 and MEGF10, both expressed in glial precursor cells, were identified in mouse as having an essential role in this phagocytosis (Wu et al., 2009); however, the mechanisms by which they promote engulfment remained unknown. Both Jedi-1 and MEGF10 are homologous to the Drosophila melanogaster receptor Draper, which mediates engulfment through activation of the tyrosine kinase Shark. Here, we identify Syk, the mammalian homolog of Shark, as a signal transducer for both Jedi-1 and MEGF10. Syk interacted with each receptor independently through the immunoreceptor tyrosine-based activation motifs (ITAMs) in their intracellular domains. The interaction was enhanced by phosphorylation of the tyrosines in the ITAMs by Src family kinases (SFKs). Jedi association with Syk and activation of the kinase was also induced by exposure to dead cells. Expression of either Jedi-1 or MEGF10 in HeLa cells facilitated engulfment of carboxylated microspheres to a similar extent, and there was no additive effect when they were coexpressed. Mutation of the ITAM tyrosines of Jedi-1 and MEGF10 prevented engulfment. The SFK inhibitor PP2 or a selective Syk inhibitor (BAY 61-3606) also blocked engulfment. Similarly, in cocultures of glial precursors and dying sensory neurons from embryonic mice, addition of PP2 or knock down of endogenous Syk decreased the phagocytosis of apoptotic neurons. These results indicate that both Jedi-1 and MEGF10 can mediate phagocytosis independently through the recruitment of Syk.

  20. Estrogen Opposes the Apoptotic Effects of Bone Morphogenetic Protein 7 on Tissue Remodeling

    PubMed Central

    Monroe, David G.; Jin, Donald F.; Sanders, Michel M.

    2000-01-01

    Interactions between estrogen and growth factor signaling pathways at the level of gene expression play important roles in the function of reproductive tissues. For example, estrogen regulates transforming growth factor beta (TGFβ) in the uterus during the proliferative phase of the mammalian reproductive cycle. Bone morphogenetic protein 7 (BMP-7), a member of the TGFβ superfamily, is also involved in the development and function of reproductive tissues. However, relatively few studies have addressed the expression of BMP-7 in reproductive tissues, and the role of BMP-7 remains unclear. As part of an ongoing effort to understand how estrogen represses gene expression and to study its interactions with other signaling pathways, chick BMP-7 (cBMP-7) was cloned. cBMP-7 mRNA levels are repressed threefold within 8 h following estrogen treatment in the chick oviduct, an extremely estrogen-responsive reproductive tissue. This regulation occurs at the transcriptional level. Estrogen has a protective role in many tissues, and withdrawal from estrogen often leads to tissue regression; however, the mechanisms mediating regression of the oviduct remain unknown. Terminal transferase-mediated end-labeling and DNA laddering assays demonstrated that regression of the oviduct during estrogen withdrawal involves apoptosis, which is a novel observation. cBMP-7 mRNA levels during estrogen withdrawal increase concurrently with the apoptotic index of the oviduct. Furthermore, addition of purified BMP-7 induces apoptosis in primary oviduct cells. This report demonstrates that the function of BMP-7 in the oviduct involves the induction of apoptosis and that estrogen plays an important role in opposing this function. PMID:10848589

  1. Pro-apoptotic gene regulation in the Caribbean fruit fly, Anastrepha suspensa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional activation of pro-apoptotic genes in response to cytotoxic stimuli is a conserved feature of the cell death pathway proposed for metazoans. However, understanding the extent of this conservation in insects, as well as other organisms, has been limited by the lack of known pro-apoptot...

  2. Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Jeremic, Ivica; Biermann, Mona; Chaurio, Ricardo; Schorn, Christine; Muñoz, Luis E.; Herrmann, Martin

    2013-12-01

    Healthy cells exhibit an asymmetric plasma membrane with phosphatidylserine (PS) located on the cytoplasmic leaflet of the plasma membrane bilayer. Annexin A5-FITC, a PS binding protein, is commonly used to evaluate apoptosis in flow cytometry. PS exposed by apoptotic cells serves as a major ‘eat-me’ signal for phagocytes. Although exposition of PS has been observed after alternative stimuli, no clearance of viable, PS exposing cells has been detected. Thus, besides PS exposure, membranes of viable and apoptotic cells might exhibit specific characteristics. Here, we show that Annexin A5 binds in a cooperative manner to different types of dead cells. Shrunken apoptotic cells thereby showed the highest Hill coefficient values. Contrarily, parafomaldehyde fixation of apoptotic cells completely abrogates the cooperativity effect seen with dead and dying cells. We tend to speculate that the cooperative binding of Annexin A5 to the membranes of apoptotic cells reflects higher fluidity of the exposed membranes facilitating PS clustering.

  3. Penicillium antifungal protein (PAF) is involved in the apoptotic and autophagic processes of the producer Penicillium chrysogenum.

    PubMed

    Kovács, Barbara; Hegedűs, Nikoletta; Bálint, Mihály; Szabó, Zsuzsa; Emri, Tamás; Kiss, Gréta; Antal, Miklós; Pócsi, István; Leiter, Eva

    2014-09-01

    PAF, which is produced by the filamentous fungus Pencicillium chrysogenum, is a small antifungal protein, triggering ROS-mediated apoptotic cell death in Aspergillus nidulans. In this work, we provide information on the function of PAF in the host P. chrysogenum considering that carbon-starving cultures of the Δpaf mutant strain showed significantly reduced apoptosis rates in comparison to the wild-type (wt) strain. Moreover, the addition of PAF to the Δpaf strain resulted in a twofold increase in the apoptosis rate. PAF was also involved in the regulation of the autophagy machinery of this fungus, since several Saccharomyces cerevisiae autophagy-related ortholog genes, e.g. those of atg7, atg22 and tipA, were repressed in the deletion strain. This phenomenon was accompanied by the absence of autophagosomes in the Δpaf strain, even in old hyphae.

  4. Pulsed Electromagnetic Field with Temozolomide Can Elicit an Epigenetic Pro-apoptotic Effect on Glioblastoma T98G Cells.

    PubMed

    Pasi, Francesca; Fassina, Lorenzo; Mognaschi, Maria Evelina; Lupo, Giuseppe; Corbella, Franco; Nano, Rosanna; Capelli, Enrica

    2016-11-01

    Treatment with pulsed electromagnetic fields (PEMFs) is emerging as an interesting therapeutic option for patients with cancer. The literature has demonstrated that low-frequency/low-energy electromagnetic fields do not cause predictable effects on DNA; however, they can epigenetically act on gene expression. The aim of the present work was to study a possible epigenetic effect of a PEMF, mediated by miRNAs, on a human glioblastoma cell line (T98G). We tested a PEMF (maximum magnetic induction, 2 mT; frequency, 75 Hz) that has been demonstrated to induce autophagy in glioblastoma cells. In particular, we studied the effect of PEMF on the expression of genes involved in cancer progression and a promising synergistic effect with temozolomide, a frequently used drug to treat glioblastoma multiforme. We found that electromagnetic stimulation in combination with temozolomide can elicit an epigenetic pro-apoptotic effect in the chemo- and radioresistant T98G glioblastoma cell line.

  5. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming

    PubMed Central

    Allam, Ramanjaneyulu; Lawlor, Kate E; Yu, Eric Chi-Wang; Mildenhall, Alison L; Moujalled, Donia M; Lewis, Rowena S; Ke, Francine; Mason, Kylie D; White, Michael J; Stacey, Katryn J; Strasser, Andreas; O’Reilly, Lorraine A; Alexander, Warren; Kile, Benjamin T; Vaux, David L; Vince, James E

    2014-01-01

    A current paradigm proposes that mitochondrial damage is a critical determinant of NLRP3 inflammasome activation. Here, we genetically assess whether mitochondrial signalling represents a unified mechanism to explain how NLRP3 is activated by divergent stimuli. Neither co-deletion of the essential executioners of mitochondrial apoptosis BAK and BAX, nor removal of the mitochondrial permeability transition pore component cyclophilin D, nor loss of the mitophagy regulator Parkin, nor deficiency in MAVS affects NLRP3 inflammasome function. In contrast, caspase-8, a caspase essential for death-receptor-mediated apoptosis, is required for efficient Toll-like-receptor-induced inflammasome priming and cytokine production. Collectively, these results demonstrate that mitochondrial apoptosis is not required for NLRP3 activation, and highlight an important non-apoptotic role for caspase-8 in regulating inflammasome activation and pro-inflammatory cytokine levels. PMID:24990442

  6. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming.

    PubMed

    Allam, Ramanjaneyulu; Lawlor, Kate E; Yu, Eric Chi-Wang; Mildenhall, Alison L; Moujalled, Donia M; Lewis, Rowena S; Ke, Francine; Mason, Kylie D; White, Michael J; Stacey, Katryn J; Strasser, Andreas; O'Reilly, Lorraine A; Alexander, Warren; Kile, Benjamin T; Vaux, David L; Vince, James E

    2014-09-01

    A current paradigm proposes that mitochondrial damage is a critical determinant of NLRP3 inflammasome activation. Here, we genetically assess whether mitochondrial signalling represents a unified mechanism to explain how NLRP3 is activated by divergent stimuli. Neither co-deletion of the essential executioners of mitochondrial apoptosis BAK and BAX, nor removal of the mitochondrial permeability transition pore component cyclophilin D, nor loss of the mitophagy regulator Parkin, nor deficiency in MAVS affects NLRP3 inflammasome function. In contrast, caspase-8, a caspase essential for death-receptor-mediated apoptosis, is required for efficient Toll-like-receptor-induced inflammasome priming and cytokine production. Collectively, these results demonstrate that mitochondrial apoptosis is not required for NLRP3 activation, and highlight an important non-apoptotic role for caspase-8 in regulating inflammasome activation and pro-inflammatory cytokine levels.

  7. Apoptotic Capacity and Risk of Squamous Cell Carcinoma of the Head and Neck

    PubMed Central

    Liu, Zhensheng; Liu, Hongliang; Han, Peng; Gao, Fengqin; Dahlstrom, Kristina R.; Li, Guojun; Owzar, Kouros; Zevallos, Jose P.; Sturgis, Erich M.; Wei, Qingyi

    2017-01-01

    Background Tobacco smoke and alcohol drinking are the major risk factors for squamous cell carcinoma of the head and neck (SCCHN). Smoking and drinking cause DNA damage leading to apoptosis, and insufficient apoptotic capacity may favor development of cancer because of the dysfunction of removing damaged cells. In the present study, we investigated the association between camptothecin (CPT)-induced apoptotic capacity and risk of SCCHN in a North American population. Methods In a case-control study of 708 SCCHN patients and 685 matched cancer-free controls, we measured apoptotic capacity in cultured peripheral blood lymphocytes (PBLs) in response to in vitro exposure to CPT by using the flow cytometry-based method. Results We found that the mean level of apoptotic capacity in the cases (45.9±23.3%) was significantly lower than that in the controls (49.0±23.1%) (P = 0.002). When we used the median level of apoptotic capacity in the controls as the cutoff value for calculating adjusted odds ratios (ORs), subjects with a reduced apoptotic capacity had an increased risk (adjusted OR = 1.42, 95% confidence interval [CI] = 1.13–1.78, P = 0.002), especially for those who were age ≥57 (1.73, 1.25–2.38, 0.0009), men (1.76, 1.36–2.27, < 0.0001) and ever drinkers (1.67, 1.27–2.21, 0.0003), and these variables significantly interacted with apoptotic capacity (Pinteraction = 0.015, 0.005 and 0.009, respectively). A further fitted prediction model suggested that the inclusion of apoptotic capacity significantly improved in the prediction of SCCHN risk. Conclusion Individuals with a reduced CPT-induced apoptotic capacity may be at an increased risk of developing SCCHN, and apoptotic capacity may be a biomarker for susceptibility to SCCHN. PMID:28033527

  8. Targeting of apoptotic pathways by SMAC or BH3 mimetics distinctly sensitizes paclitaxel-resistant triple negative breast cancer cells.

    PubMed

    Panayotopoulou, Effrosini G; Müller, Anna-Katharina; Börries, Melanie; Busch, Hauke; Hu, Guohong; Lev, Sima

    2017-02-06

    Standard chemotherapy is the only systemic treatment for triple-negative breast cancer (TNBC), and despite the good initial response, resistance remains a major therapeutic obstacle. Here, we employed a High-Throughput Screen to identify targeted therapies that overcome chemoresistance in TNBC. We applied short-term paclitaxel treatment and screened 320 small-molecule inhibitors of known targets to identify drugs that preferentially and efficiently target paclitaxel-treated TNBC cells. Among these compounds the SMAC mimetics (BV6, Birinapant) and BH3-mimetics (ABT-737/263) were recognized as potent targeted therapy for multiple paclitaxel-residual TNBC cell lines. However, acquired paclitaxel resistance through repeated paclitaxel pulses result in desensitization to BV6, but not to ABT-263, suggesting that short- and long-term paclitaxel resistance are mediated by distinct mechanisms. Gene expression profiling of paclitaxel-residual, -resistant and naïve MDA-MB-231 cells demonstrated that paclitaxel-residual, as opposed to -resistant cells, were characterized by an apoptotic signature, with downregulation of anti-apoptotic genes (BCL2, BIRC5), induction of apoptosis inducers (IL24, PDCD4), and enrichment of TNFα/NF-κB pathway, including upregulation of TNFSF15, coupled with cell-cycle arrest. BIRC5 and FOXM1 downregulation and IL24 induction was also evident in breast cancer patient datasets following taxane treatment. Exposure of naïve or paclitaxel-resistant cells to supernatants of paclitaxel-residual cells sensitized them to BV6, and treatment with TNFα enhanced BV6 potency, suggesting that sensitization to BV6 is mediated, at least partially, by secreted factor(s). Our results suggest that administration of SMAC or BH3 mimetics following short-term paclitaxel treatment could be an effective therapeutic strategy for TNBC, while only BH3-mimetics could effectively overcome long-term paclitaxel resistance.

  9. Apoptotic effect of noscapine in breast cancer cell lines.

    PubMed

    Quisbert-Valenzuela, Edwin O; Calaf, Gloria M

    2016-06-01

    Cancer is a public health problem in the world and breast cancer is the most frequently cancer in women. Approximately 15% of the breast cancers are triple-negative. Apoptosis regulates normal growth, homeostasis, development, embryogenesis and appropriate strategy to treat cancer. Bax is a protein pro-apoptotic enhancer of apoptosis in contrast to Bcl-2 with antiapoptotic properties. Initiator caspase-9 and caspase-8 are features of intrinsic and extrinsic apoptosis pathway, respectively. NF-κB is a transcription factor known to be involved in the initiation and progression of breast cancer. Noscapine, an alkaloid derived from opium is used as antitussive and showed antitumor properties that induced apoptosis in cancer cell lines. The aim of the present study was to determine the apoptotic effect of noscapine in breast cancer cell lines compared to breast normal cell line. Three cell lines were used: i) a control breast cell line MCF-10F; ii) a luminal-like adenocarcinoma triple-positive breast cell line MCF-7; iii) breast cancer triple-negative cell line MDA-MB-231. Our results showed that noscapine had lower toxicity in normal cells and was an effective anticancer agent that induced apoptosis in breast cancer cells because it increases Bax gene and protein expression in three cell lines, while decreases Bcl-xL gene expression, and Bcl-2 protein expression decreased in breast cancer cell lines. Therefore, Bax/Bcl-2 ratio increased in the three cell lines. This drug increased caspase-9 gene expression in breast cancer cell lines and caspase-8 gene expression increased in MCF-10F and MDA-MB-231. Furthermore, it increased cleavage of caspase-8, suggesting that noscapine-induced apoptosis is probably due to the involvement of extrinsic and intrinsic apoptosis pathways. Antiapoptotic gene and protein expression diminished and proapoptotic gene and protein expression increased noscapine-induced expression, probably due to decrease in NF-κB gene and protein expression

  10. Gastroprotective effect of nymphayol isolated from Nymphaea stellata (Willd.) flowers: contribution of antioxidant, anti-inflammatory and anti-apoptotic activities.

    PubMed

    Antonisamy, Paulrayer; Subash-Babu, Pandurangan; Alshatwi, Ali A; Aravinthan, Adithan; Ignacimuthu, Savarimuthu; Choi, Ki Choon; Kim, Jong-Hoon

    2014-12-05

    Gastric ulcer is an illness that affects a great number of people worldwide. The goal of the present research was to assess the anti-ulcerogenic activity of nymphayol (NYM), isolated from Nymphaea stellata, against an ethanol-induced ulcer model in rats. Administration of ethanol elevates the levels of the ulcer index (UI) along with causing tremendous increases in lipid peroxidation and myeloperoxidase (MPO) and significant decreases in gastric mucus, catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and prostaglandin E2 (PGE2). However, the NYM- (45 mg/kg) pretreated animals showed considerable increases in antioxidants, gastric mucus, and PGE2 level and significant decreases in UI, lipid peroxidation, and MPO level. Pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) were increased and the level of interleukin-10 (IL-10), an anti-inflammatory cytokine, was decreased in ethanol-induced ulcerated animals, and these inequalities were amended by NYM pretreatment. Pro-apoptotic markers including caspase-8, caspase-9, and caspase-3 were decreased and Bcl-2, an anti-apoptotic marker, was increased through NYM pretreatment, as compared with the ethanol-induced ulcer group. Pretreatment with indomethacin, SC560, rofecoxib, and Nω-Nitro-L-arginine methyl ester (L-NAME) considerably prevented the ulcer protective activity of NYM (45 mg/kg), indicating the involvement of cyclooxygenase (COX) and nitric oxide synthase (NOS) in NYM-mediated gastroprotection against ethanol-induced ulcer. These outcomes suggest that the gastroprotective effect of NYM might be mediated by adjustment of inflammatory mediators and apoptotic markers and increasing antioxidants.

  11. Reduced association of anti-apoptotic protein Mcl-1 with E3 ligase Mule increases the stability of Mcl-1 in breast cancer cells

    PubMed Central

    Pervin, S; Tran, A; Tran, L; Urman, R; Braga, M; Chaudhuri, G; Singh, R

    2011-01-01

    Background: Mechanisms that increase resistance to apoptosis help promote cellular transformation. Cancer cells have deregulated apoptotic pathways, where increased expression and stability of anti-apoptotic proteins Mcl-1 and Bcl-2 increases resistance to apoptosis. Pathways that increase the stability of proteins in cancer cells remain poorly understood. Methods: Using human mammary epithelial and established breast cancer cell lines, we assessed the mechanisms that increase the stability of anti-apoptotic proteins in breast cancer cells by caspase assay, western blot, small-inhibitory RNA treatment and immunoprecipitation. Results: While breast cancer cells were resistant to de novo inhibition of protein synthesis, a rapid proteosome-mediated degradation of Mcl-1 and Bcl-2 induced apoptosis in mammary epithelial cells. Although Mule, an E3 ligase that targets Mcl-1 for degradation was expressed in mammary epithelial and breast cancer cell lines, rapid increase of polyubiquitinated Mcl-1 and Bcl-2 was detected only in mammary epithelial cells. Only transient formation of the Mule–Mcl-1 complex was detected in breast cancer cells. Downregulation of pERK1/2 in breast cancer cells reduced Mcl-1 levels and increased Mcl-1/Mule complex. Conclusion: Our findings suggest that reduced Mule/Mcl-1 complex has a significant role in increasing the stability of Mcl-1 in breast cancer cells and increased resistance to apoptosis. PMID:21730980

  12. ERK1/2 acts as a switch between necrotic and apoptotic cell death in ether phospholipid edelfosine-treated glioblastoma cells.

    PubMed

    Melo-Lima, Sara; Lopes, Maria C; Mollinedo, Faustino

    2015-01-01

    Glioblastoma is characterized by constitutive apoptosis resistance and survival signaling expression, but paradoxically is a necrosis-prone neoplasm. Incubation of human U118 glioblastoma cells with the antitumor alkylphospholipid analog edelfosine induced a potent necrotic cell death, whereas apoptosis was scarce. Preincubation of U118 cells with the selective MEK1/2 inhibitor U0126, which inhibits MEK1/2-mediated activation of ERK1/2, led to a switch from necrosis to caspase-dependent apoptosis following edelfosine treatment. Combined treatment of U0126 and edelfosine totally inhibited ERK1/2 phosphorylation, and led to RIPK1 and RelA/NF-κB degradation, together with a strong activation of caspase-3 and -8. This apoptotic response was accompanied by the activation of the intrinsic apoptotic pathway with mitochondrial transmembrane potential loss, Bcl-xL degradation and caspase-9 activation. Inhibition of ERK phosphorylation also led to a dramatic increase in edelfosine-induced apoptosis when the alkylphospholipid analog was used at a low micromolar range, suggesting that ERK phosphorylation acts as a potent regulator of apoptotic cell death in edelfosine-treated U118 cells. These data show that inhibition of MEK1/2-ERK1/2 signaling pathway highly potentiates edelfosine-induced apoptosis in glioblastoma U118 cells and switches the type of edelfosine-induced cell death from necrosis to apoptosis.

  13. IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids.

    PubMed

    Zizzo, Gaetano; Cohen, Philip L

    2013-05-15

    Exposure of human monocytes/macrophages to anti-inflammatory agents, such as IL-10 or glucocorticoids, can lead to two separate fates: either Fas/CD95-mediated apoptosis or differentiation into regulatory and efferocytic M2c (CD14(bright)CD16(+)CD163(+)Mer tyrosine kinase(+)) macrophages. We found that the prevalent effect depends on the type of Th cytokine environment and on the stage of monocyte-to-macrophage differentiation. In particular, the presence of IFN-γ (Th1 inflammation) or the prolonged exposure to IL-4 (chronic Th2 inflammation) promotes apoptosis of monocytes/macrophages and causes resistance to M2c differentiation, thus provoking impaired clearance of apoptotic neutrophils, uncontrolled accumulation of apoptotic cells, and persistent inflammation. In contrast, the presence of IL-17 (Th17 environment) prevents monocyte/macrophage apoptosis and elicits intense M2c differentiation, thus ensuring efficient clearance of apoptotic neutrophils and restoration of anti-inflammatory conditions. Additionally, the Th environment affects the expression of two distinct Mer tyrosine kinase isoforms: IL-4 downregulates the membrane isoform but induces an intracellular and Gas6-dependent isoform, whereas IFN-γ downregulates both and IL-17 upregulates both. Our data support an unexpected role for IL-17 in orchestrating resolution of innate inflammation, whereas IFN-γ and IL-4 emerge as major determinants of IL-10 and glucocorticoid resistance.

  14. Induction of apoptosis in hepatocellular carcinoma Smmc-7721 cells by vitamin K(2) is associated with p53 and independent of the intrinsic apoptotic pathway.

    PubMed

    Li, Lu; Qi, Zhiling; Qian, Jin; Bi, Fuyong; Lv, Jun; Xu, Lei; Zhang, Ling; Chen, Hongyu; Jia, Renbing

    2010-09-01

    Vitamin K(2) (VK(2)) can exert cell growth inhibitory effects in various human cancer cells. In this study, we investigated the cell growth inhibitory effects of VK(2) in hepatocellular carcinoma Smmc-7721 cells and the mechanisms involved. We found that VK(2)-inhibited cell proliferation in Smmc-7721 cells in a dose-dependent manner, and the IC50 of VK(2) in Smmc-7721 cells was 9.73 microM at 24 h. The data from flow cytometric analyses, DNA fragmentation assays, and caspase 3 activity assays revealed that apoptosis was the determining factor in VK(2) activity. Furthermore, a significant increase in p53 phosphorylation and protein level was exhibited in apoptotic cells treated with VK(2), although there were no changes in p53 mRNA expression. Bax expression was unaffected by VK(2) in Smmc-7721 cells. In addition, our study showed that caspase 3 was activated by caspase 8, not caspase 9, in Smmc-7721 cells treated with VK(2). In summary, these data suggested that VK(2) can inhibit the growth of Smmc-7721 cells by induction of apoptosis involving caspase 8 activation and p53. This apoptotic process was not mediated by the intrinsic apoptotic pathway.

  15. Myocardial oxidative damage is induced by cardiac Fas-dependent and mitochondria-dependent apoptotic pathways in human cocaine-related overdose

    PubMed Central

    Turillazzi, Emanuela; Cerretani, Daniela; Cantatore, Santina; Fiaschi, Anna Ida; Frati, Paola; Micheli, Lucia; Neri, Margherita; Cipolloni, Luigi; Di Paolo, Marco; Pinchi, Enrica; Riezzo, Irene; Santurro, Alessandro; Vullo, Annamaria; Fineschi, Vittorio

    2017-01-01

    The aim of this study is to analyse cardiac specimens from human cocaine-related overdose, to verify the hypothesis that cardiac toxicity by acute exposure to high dosage of cocaine could be mediated by unbalanced myocardial oxidative stress, and to evaluate the apoptotic response. To address these issues, biochemical and immunohistological markers of oxidative/nitrosative stress were evaluated. We found that i-NOS, NOX2 and nitrotyrosine expression were significantly higher in the hearts of subjects who had died from high doses of cocaine, compared to the control group. Increase of these markers was associated with a dramatic increase in 8-OHdG, another marker of oxidative stress. A high number of TUNEL-positive apoptotic myocells was observed in the study group compared to the control group. The immunoexpression of TNF-α was significantly higher in the cocaine group compared to the control group. Furthermore, we detected a significantly stronger immunoresponse to anti-SMAC/DIABLO in our study group compared to control cases. Both cardiac Fas-dependent and mitochondria-dependent apoptotic pathways appeared to be activated to a greater extent in the cocaine group than in the control group. Our results highlight the central role of oxidative stress in cocaine toxicity. High levels of NOS can promote the oxidation process and lead to apoptosis. PMID:28281685

  16. Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure

    PubMed Central

    Suzuki, Jun; Imanishi, Eiichi; Nagata, Shigekazu

    2016-01-01

    Xk-related protein (Xkr) 8, a protein carrying 10 transmembrane regions, is essential for scrambling phospholipids during apoptosis. Here, we found Xkr8 as a complex with basigin (BSG) or neuroplastin (NPTN), type I membrane proteins in the Ig superfamily. In BSG−/−NPTN−/− cells, Xkr8 localized intracellularly, and the apoptosis stimuli failed to expose phosphatidylserine, indicating that BSG and NPTN chaperone Xkr8 to the plasma membrane to execute its scrambling activity. Mutational analyses of BSG showed that the atypical glutamic acid in the transmembrane region is required for BSG’s association with Xkr8. In cells exposed to apoptotic signals, Xkr8 was cleaved at the C terminus and the Xkr8/BSG complex formed a higher-order complex, likely to be a heterotetramer consisting of two molecules of Xkr8 and two molecules of BSG or NPTN, suggesting that this cleavage causes the formation of a larger complex of Xkr8-BSG/NPTN for phospholipid scrambling. PMID:27503893

  17. Dopamine Promotes Striatal Neuronal Apoptotic Death via ERK Signaling Cascades

    PubMed Central

    Chen, Jun; Rusnak, Milan; Lombroso, Paul J.; Sidhu, Anita

    2009-01-01

    Although the mechanisms underlying striatal neurodegeneration are poorly understood, we have shown that striatal pathogenesis may be initiated by high synaptic levels of extracellular dopamine (DA). Here we investigated in rat striatal primary neurons the mobilization of the mitogen activated protein kinase (MAPK) signaling pathways after treatment with DA. Instead of observing an elevation of the archetypical pro-cytotoxic MAPKs, p-JNK and p-p38 MAPK, we found that DA, acting through D1 DA receptors, induced a sustained stimulation of the phosphorylated form of extracellular signal-regulated kinase (p-ERK) via a cAMP/PKA/Rap1/B-Raf/MEK pathway. Blockade of D2 DA receptors, β-adrenergic receptors or NMDA receptors with receptor-specific antagonists had no significant effect on this process. Activation of D1 DA receptors and PKA by DA caused phosphorylation and inactivation of the striatal–enriched tyrosine phosphatase (STEP), an important phosphatase for the dephosphorylation and subsequent inactivation of p-ERK in striatum. Interestingly p-ERK was primarily retained in the cytoplasm, with only low amounts translocated to the nucleus. The scaffold protein β-arrestin2 interacted with both p-ERK and D1 DA receptor, triggering the cytosolic retention of p-ERK and inducing striatal neuronal apoptotic death. These data provide unique insight into a novel role of p-ERK in striatal neurodegeneration. PMID:19200235

  18. Galleria mellonella lysozyme induces apoptotic changes in Candida albicans cells.

    PubMed

    Sowa-Jasiłek, Aneta; Zdybicka-Barabas, Agnieszka; Stączek, Sylwia; Wydrych, Jerzy; Skrzypiec, Krzysztof; Mak, Paweł; Deryło, Kamil; Tchórzewski, Marek; Cytryńska, Małgorzata

    2016-12-01

    The greater wax moth Galleria mellonella has been increasingly used as a model host to determine Candida albicans virulence and efficacy of antifungal treatment. The G. mellonella lysozyme, similarly to its human counterpart, is a member of the c-type family of lysozymes that exhibits antibacterial and antifungal activity. However, in contrast to the relatively well explained bactericidal action, the mechanism of fungistatic and/or fungicidal activity of lysozymes is still not clear. In the present study we provide the direct evidences that the G. mellonella lysozyme binds to the protoplasts as well as to the intact C. albicans cells and decreases the survival rate of both these forms in a time-dependent manner. No enzymatic activity of the lysozyme towards typical chitinase and β-glucanase substrates was detected, indicating that hydrolysis of main fungal cell wall components is not responsible for anti-Candida activity of the lysozyme. On the other hand, pre-treatment of cells with tetraethylammonium, a potassium channel blocker, prevented them from the lysozyme action, suggesting that lysozyme acts by induction of programmed cell death. In fact, the C. albicans cells treated with the lysozyme exhibited typical apoptotic features, i.e. loss of mitochondrial membrane potential, phosphatidylserine exposure in the outer leaflet of the cell membrane, as well as chromatin condensation and DNA fragmentation.

  19. Insights into the apoptotic death of immune cells in sepsis.

    PubMed

    Luan, Ying-yi; Yao, Yong-ming; Xiao, Xian-zhong; Sheng, Zhi-yong

    2015-01-01

    Sepsis with subsequent multiple-organ dysfunction is a distinct systemic inflammatory response to concealed or obvious infection, and it is a leading cause of death in intensive care units. Thus, one of the key goals in critical care medicine is to develop novel therapeutic strategies that will affect favorably on outcome of septic patients. In addition to systemic response to infection, apoptosis is implicated to be an important mechanism of the death of immune cells, including neutrophils, macrophages, T lymphocytes, and dendritic cells, and it is usually followed by the development of multiple-organ failure in sepsis. The implication of apoptosis of immune cells is now highlighted by multiple studies that demonstrate that prevention of cell apoptosis can improve survival in relevant animal models of severe sepsis. In this review, we focus on major apoptotic death pathways and molecular mechanisms that regulate apoptosis of different immune cells, and advances in these areas that may be translated into more promising therapies for the prevention and treatment of severe sepsis.

  20. Unphosphorylated STAT1 promotes sarcoma development through repressing expression of Fas and Bad and conferring apoptotic resistance

    PubMed Central

    Zimmerman, Mary A.; Rahman, Nur-Taz; Yang, Dafeng; Lahat, Guy; Lazar, Alexander J.; Pollock, Raphael; Lev, Dina; Liu, Kebin

    2012-01-01

    STAT1 exists in phosphorylated (pSTAT1) and unphosphorylated (uSTAT1) forms each regulated by IFN-γ. Although STAT1 is a key mediator of the IFN-γ signaling pathway, an essential component of the host cancer immunosurveillance system, STAT1 is also overexpressed in certain human cancers where the functions of pSTAT1 and uSTAT1 are ill-defined. Using a murine model of soft tissue sarcoma (STS), we demonstrate that disruption of the IFN effector molecule IRF8 decreases pSTAT1 and increases uSTAT1 in STS cells, thereby increasing their metastatic potential. We determined that the IRF8 gene promoter was hypermethylated frequently in human STS. An analysis of 123 human STS specimens revealed that high uSTAT1 levels in tumor cells was correlated with a reduction in disease-specific survival, whereas high pSTAT1 levels in tumor cells was correlated with an increase in disease-specific survival. In addition, uSTAT1 levels were negatively correlated with pSTAT1 levels in these STS specimens. Mechanistic investigations revealed that IRF8 suppressed STAT1 transcription by binding the STAT1 promoter. RNAi-mediated silencing of STAT1 in STS cells was sufficient to increase expression of the apoptotic mediators Fas and Bad and to elevate the sensitivity of STS cells to Fas-mediated apoptosis. Together, our findings show how the phosphorylation status of pSTAT1 determines its function as a tumor suppressor, with uSTAT1 acting as a tumor promoter that acts by elevating resistance to Fas-mediated apoptosis to promote immune escape. PMID:22805310

  1. Multisite phosphorylation of c-Jun at threonine 91/93/95 triggers the onset of c-Jun pro-apoptotic activity in cerebellar granule neurons

    PubMed Central

    Reddy, C E; Albanito, L; De Marco, P; Aiello, D; Maggiolini, M; Napoli, A; Musti, A M

    2013-01-01

    Cerebellar granule cell (CGC) apoptosis by trophic/potassium (TK) deprivation is a model of election to study the interplay of pro-apoptotic and pro-survival signaling pathways in neuronal cell death. In this model, the c-Jun N-terminal kinase (JNK) induces pro-apoptotic genes through the c-Jun/activator protein 1 (AP-1) transcription factor. On the other side, a survival pathway initiated by lithium leads to repression of pro-apoptotic c-Jun/AP-1 target genes without interfering with JNK activity. Yet, the mechanism by which lithium inhibits c-Jun activity remains to be elucidated. Here, we used this model system to study the regulation and function of site-specific c-Jun phosphorylation at the S63 and T91/T93 JNK sites in neuronal cell death. We found that TK-deprivation led to c-Jun multiphosphorylation at all three JNK sites. However, immunofluorescence analysis of c-Jun phosphorylation at single cell level revealed that the S63 site was phosphorylated in all c-Jun-expressing cells, whereas the response of T91/T93 phosphorylation was more sensitive, mirroring the switch-like apoptotic response of CGCs. Conversely, lithium prevented T91T93 phosphorylation and cell death without affecting the S63 site, suggesting that T91T93 phosphorylation triggers c-Jun pro-apoptotic activity. Accordingly, a c-Jun mutant lacking the T95 priming site for T91/93 phosphorylation protected CGCs from apoptosis, whereas it was able to induce neurite outgrowth in PC12 cells. Vice versa, a c-Jun mutant bearing aspartate substitution of T95 overwhelmed lithium-mediate protection of CGCs from TK-deprivation, validating that inhibition of T91/T93/T95 phosphorylation underlies the effect of lithium on cell death. Mass spectrometry analysis confirmed multiphosphorylation of c-Jun at T91/T93/T95 in cells. Moreover, JNK phosphorylated recombinant c-Jun at T91/T93 in a T95-dependent manner. On the basis of our results, we propose that T91/T93/T95 multiphosphorylation of c-Jun functions as a

  2. Metabolic Regulation of Caspase 2 in Breast Cancer

    DTIC Science & Technology

    2011-04-01

    FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER...for maximal enzymatic activity3, 4 . Active C2 has been demonstrated to signal through the mitochondrial-dependent pathway of programmed cell death... 4 nutrients over time, which eventually results in activation of the apical enzyme C211. The manuscript established that C2 is held in an

  3. Metabolic Regulation of Caspase 2 in Breast Cancer

    DTIC Science & Technology

    2009-04-01

    Kurokawa, Yongjun Wang, Seth S. Margolis, Rafael A. Fissore, and Sally Kornbluth Scheduled for publication in Developmental Cell in June, 2009...Manabu Kurokawa1, Yongjun Wang4, Seth S. Margolis1, Rafael A. Fissore3, and Sally Kornbluth1 1Department of Pharmacology and Cancer Biology, Duke

  4. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell

    PubMed Central

    Li, Wei; Zou, Wei; Yang, Yihong; Chai, Yongping; Chen, Baohui; Cheng, Shiya; Tian, Dong

    2012-01-01

    Apoptotic cell degradation is a fundamental process for organism development, and impaired clearance causes inflammatory or autoimmune disease. Although autophagy genes were reported to be essential for exposing the engulfment signal on apoptotic cells, their roles in phagocytes for apoptotic cell removal are not well understood. In this paper, we develop live-cell imaging techniques to study apoptotic cell clearance in the Caenorhabditis elegans Q neuroblast lineage. We show that the autophagy proteins LGG-1/LC3, ATG-18, and EPG-5 were sequentially recruited to internalized apoptotic Q cells in the phagocyte. In atg-18 or epg-5 mutants, apoptotic Q cells were internalized but not properly degraded; this phenotype was fully rescued by the expression of autophagy genes in the phagocyte. Time-lapse analysis of autophagy mutants revealed that recruitment of the small guanosine triphosphatases RAB-5 and RAB-7 to the phagosome and the formation of phagolysosome were all significantly delayed. Thus, autophagy genes act within the phagocyte to promote apoptotic cell degradation. PMID:22451698

  5. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1

    PubMed Central

    Fond, Aaron M.; Lee, Chang Sup; Schulman, Ira G.; Kiss, Robert S.; Ravichandran, Kodi S.

    2015-01-01

    Macrophages clear millions of apoptotic cells daily and, during this process, take up large quantities of cholesterol. The membrane transporter ABCA1 is a key player in cholesterol efflux from macrophages and has been shown via human genetic studies to provide protection against cardiovascular disease. How the apoptotic cell clearance process is linked to macrophage ABCA1 expression is not known. Here, we identified a plasma membrane–initiated signaling pathway that drives a rapid upregulation of ABCA1 mRNA and protein. This pathway involves the phagocytic receptor brain-specific angiogenesis inhibitor 1 (BAI1), which recognizes phosphatidylserine on apoptotic cells, and the intracellular signaling intermediates engulfment cell motility 1 (ELMO1) and Rac1, as ABCA1 induction was attenuated in primary macrophages from mice lacking these molecules. Moreover, this apoptotic cell–initiated pathway functioned independently of the liver X receptor (LXR) sterol–sensing machinery that is known to regulate ABCA1 expression and cholesterol efflux. When placed on a high-fat diet, mice lacking BAI1 had increased numbers of apoptotic cells in their aortic roots, which correlated with altered lipid profiles. In contrast, macrophages from engineered mice with transgenic BAI1 overexpression showed greater ABCA1 induction in response to apoptotic cells compared with those from control animals. Collectively, these data identify a membrane-initiated pathway that is triggered by apoptotic cells to enhance ABCA1 within engulfing phagocytes and with functional consequences in vivo. PMID:26075824

  6. Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury.

    PubMed

    Sinson, G; Perri, B R; Trojanowski, J Q; Flamm, E S; McIntosh, T K

    1997-03-01

    This study explores the effects of infusion of nerve growth factor (NGF) on behavioral outcome and cell death in the septal region using the clinically relevant model of fluid-percussion brain injury in the rat. Animals were subjected to fluid-percussion brain injury and 24 hours later a miniosmotic pump was implanted to infuse NGF (12 animals) or vehicle (12 animals) directly into the region of maximum injury for 2 weeks. Four weeks postinjury the animals were tested for cognitive function using a Morris Water Maze paradigm. Neurological motor function was evaluated over a 4-week postinjury period. The rats receiving NGF infusions had significantly higher memory scores than vehicle-treated animals. Examination of the cholinergic neurons in the medial septal region using choline acetyltransferase immunohistochemistry demonstrated significant cell loss after injury. Infusion of NGF significantly attenuated loss of these cholinergic neurons. A second group of animals was subjected to fluid-percussion brain injury alone (23 rats) or injury followed by NGF infusion (18 rats). These animals were killed between 24 hours and 2 weeks postinjury and the septal region was examined for the presence of apoptotic cells using the terminal deoxynucleotidyl transferase-mediated biotinylated-deoxyuridinetriphosphate nick-end labeling technique. Apoptotic cells were identified as early as 24 hours postinjury; their numbers peaked at 4 and 7 days, and then declined by 14 days. The NGF-treated animals had some apoptotic cells; however, even at 7 days there were significantly fewer of these cells. No significant motor differences were observed between the NGF- and vehicle-treated groups. These data indicate that NGF administration beginning 24 hours after fluid-percussion brain injury has a beneficial effect on cognition and results in sparing of cholinergic septal neurons. These improvements persist after cessation of NGF administration. The beneficial effects of NGF may be related to

  7. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe2O4) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models.

  8. Antifungal Mechanism of Action of Lactoferrin: Identification of H+-ATPase (P3A-Type) as a New Apoptotic-Cell Membrane Receptor

    PubMed Central

    2016-01-01

    Human lactoferrin (hLf) is a protein of the innate immune system which induces an apoptotic-like process in yeast. Determination of the susceptibility to lactoferrin of several yeast species under different metabolic conditions, respiratory activity, cytoplasmic ATP levels, and external medium acidification mediated by glucose assays suggested plasma membrane Pma1p (P3A-type ATPase) as the hLf molecular target. The inhibition of plasma membrane ATPase activity by hLf and the identification of Pma1p as the hLf-binding membrane protein confirmed the previous physiological evidence. Consistent with this, cytoplasmic ATP levels progressively increased in hLf-treated Candida albicans cells. However, oligomycin, a specific inhibitor of the mitochondrial F-type ATPase proton pump (mtATPase), abrogated the antifungal activity of hLf, indicating a crucial role for mtATPase in the apoptotic process. We suggest that lactoferrin targeted plasma membrane Pma1p H+-ATPase, perturbing the cytoplasmic ion homeostasis (i.e., cytoplasmic H+ accumulation and subsequent K+ efflux) and inducing a lethal mitochondrial dysfunction. This initial event involved a normal mitochondrial ATP synthase activity responsible for both the ATP increment and subsequent hypothetical mitochondrial proton flooding process. We conclude that human lactoferrin inhibited Pma1p H+-ATPase, inducing an apoptotic-like process in metabolically active yeast. Involvement of mitochondrial H+-ATPase (nonreverted) was essential for the progress of this programmed cell death in which the ionic homeostasis perturbation seems to precede classical nonionic apoptotic events. PMID:27139463

  9. Repeated low-dose 17β-estradiol treatment prevents activation of apoptotic signaling both in the synaptosomal and cellular fraction in rat prefrontal cortex following cerebral ischemia.

    PubMed

    Stanojlović, Miloš; Zlatković, Jelena; Guševac, Ivana; Grković, Ivana; Mitrović, Nataša; Zarić, Marina; Horvat, Anica; Drakulić, Dunja

    2015-01-01

    Disturbance in blood circulation is associated with numerous pathological conditions characterized by cognitive decline and neurodegeneration. Activation of pro-apoptotic signaling previously detected in the synaptosomal fraction may underlie neurodegeneration in the prefrontal cortex of rats submitted to permanent bilateral common carotid arteries occlusion (two-vessel occlusion, 2VO). 17β-Estradiol (E) exerts potent neuroprotective effects in the brain affecting, among other, ischemia-induced pathological changes. As most significant changes in rats submitted to 2VO were observed on 7th day following the insult, of interest was to examine whether 7 day treatment with low dose of E (33.3 µg/kg/day) prevents formerly reported neurodegeneration and may represent additional therapy during the early post-ischemic period. Role of E treatment on apoptotic pathway was monitored on Bcl-2 family members, cytochrome c, caspase 3 and PARP protein level in the synaptosomal (P2) fraction of the prefrontal cortex. Furthermore, changes of these proteins were examined in the cytosolic, mitochondrial and nuclear fraction, with the emphasis on potential involvement of extracellular signal-regulated kinases (ERK) and protein kinase B (Akt) activation and their role in nuclear translocation of transcriptional nuclear factor kappa B (NF-kB) associated with alteration of Bax and Bcl-2 gene expression. The extent of cellular damage was determined using DNA fragmentation and Fluoro-Jade B staining. The absence of activation of apoptotic cascade both in the P2 and cell accompanied with decreased DNA fragmentation and number of degenerating neurons clearly indicates that E treatment ensures the efficient protection against ischemic insult. Moreover, E-mediated modulation of pro-apoptotic signaling in the cortical cellular fractions involves cooperative activation of ERK and Akt, which may be implicated in the observed prevention of neurodegenerative changes.

  10. Adenosine produced from adenine nucleotides through an interaction between apoptotic cells and engulfing macrophages contributes to the appearance of transglutaminase 2 in dying thymocytes.

    PubMed

    Sándor, Katalin; Pallai, Anna; Duró, Edina; Legendre, Pascal; Couillin, Isabelle; Sághy, Tibor; Szondy, Zsuzsa

    2017-03-01

    Transglutaminase 2 (TG2) has been known for a long time to be associated with the in vivo apoptosis program of various cell types, including T cells. Though the expression of the enzyme is strongly induced in mouse thymocytes following apoptosis induction in vivo, no significant induction of TG2 can be detected, when thymocytes are induced to die by the same stimuli in vitro indicating that signals arriving from the tissue environment are required for the proper in vivo induction of the enzyme. Previous studies from our laboratory have demonstrated that two of these signals, transforming growth factor-β (TGF-β) and retinoids, are produced by macrophages engulfing apoptotic cells. However, in addition to TGF-β and retinoids, engulfing macrophages produce adenosine as well. Here, we show that in vitro adenosine, adenosine, and retinoic acid or adenosine, TGF-β and retinoic acids together can significantly enhance the TG2 mRNA expression in dying thymocytes. The effect of adenosine is mediated via adenosine A2A receptors (A2ARs) and the A2AR-triggered adenylate cyclase signaling pathway. In accordance, loss of A2ARs in A2AR null mice significantly attenuates the in vivo induction of TG2 following apoptosis induction in the thymus indicating that adenosine indeed contributes in vivo to the apoptosis-related appearance of the enzyme. We also demonstrate that adenosine is produced extracellularly during engulfment of apoptotic thymocytes, partly from adenine nucleotides released via thymocyte pannexin-1 channels. Our data reveal a novel crosstalk between macrophages and apoptotic cells, in which apoptotic cell uptake-related adenosine production contributes to the appearance of TG2 in the dying thymocytes.

  11. 3,4-dihydroxyphenylethanol attenuates spatio-cognitive deficits in an Alzheimer's disease mouse model: modulation of the molecular signals in neuronal survival-apoptotic programs.

    PubMed

    Arunsundar, Mohanasundaram; Shanmugarajan, Thukani Sathanantham; Ravichandran, Velayutham

    2015-02-01

    Alzheimer's disease (AD), the most common type of dementia, is a devastating neurodegenerative disease characterized by progressive neuro-cognitive dysfunction. In our study, we investigated the potential of 3,4-dihydroxyphenylethanol (DOPET), a dopamine metabolite, and also a polyphenol from olive oil, in ameliorating soluble oligomeric amyloid β1-42 plus ibotenic acid (oA42i)-induced neuro-behavioral dysfunction in C57BL/6 mice. The results depicted that intracerebroventricular injection of oA42i negatively altered the spatial reference and working memories in mice, whereas DOPET treatment significantly augmented the spatio-cognitive abilities against oA42i. Upon investigation of the underlying mechanisms, oA42i-intoxicated mice displayed significantly activated death kinases including JNK- and p38-MAPKs with concomitantly inhibited ERK-MAPK/RSK2, PI3K/Akt1, and JAK2/STAT3 survival signaling pathways in the hippocampal neurons. Conversely, DOPET treatment reversed these dysregulated signaling mechanisms comparable to the sham-operated mice. Notably, oA42i administration altered the Bcl-2/Bad levels and activated the caspase-dependent mitochondria-mediated apoptotic pathway involving cytochrome c, apoptotic protease activating factor-1, and caspase-9/3. In contrary, DOPET administration stabilized the dysregulated activities of these apoptotic/anti-apoptotic markers and preserved the mitochondrial ultra-architecture. Besides, we observed that oA42i intoxication substantially down-regulated the expression of genes involved in the regulation of survival and memory functions including sirtuin-1, cyclic AMP response element-binding protein (CREB), CREB-target genes (BDNF, c-Fos, Nurr1, and Egr1) and a disintegrin and metalloprotease 10. Fascinatingly, DOPET treatment significantly diminished these aberrations when compared to the oA42i group. Taken together, these results accentuate that DOPET may be a multipotent agent to combat AD.

  12. Role of ion transport in control of apoptotic cell death.

    PubMed

    Lang, Florian; Hoffmann, Else K

    2012-07-01

    Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.

  13. Micronucleus formation during chromatin condensation and under apoptotic conditions.

    PubMed

    Kiraly, Gabor; Simonyi, Athene S; Turani, Melinda; Juhasz, Istvan; Nagy, Gabor; Banfalvi, Gaspar

    2017-02-01

    In early S phase the newly replicated DNA is folded back to increasingly compact structures. The process of chromatin condensation inside the nucleus starts with the formation of a micronucleus observed in five established cell lines (K562, CHO, Indian muntjac, murine preB and SCC). Supercoiling of chromatin generates a polarized end-plate region extruded from the nucleus. The extruded chromatin is turned around itself forming the head portion (micronucleus) visible by fluorescence microscopy until the middle of S phase when chromatin structures are succeeded by distinguishable early forms of chromosomes. The generation of micronuclei upon apoptotic treatment was achieved by the methotrexate (MTX) treatment of cells. A close correlation was found between the frequency of micronucleus and MTX concentration, with low frequency at low (0.1 µM) and increasingly higher frequency between 1 and 100 µM concentrations. Characteristic deformation and shrinkage of nuclei indicated apoptosis. High MTX concentration (100 µM) caused the enlargement and necrotic disruption of nuclei. Inhibition of DNA synthesis during replicative DNA synthesis by biotinylated nucleotide prevented the formation of metaphase chromosomes and elevated the frequency of early intermediates of chromosome condensation including micronucleus formation. Based on these observations the micronucleus is regarded as: (a) a regularly occuring element of early chromatin condensation and (b) a typical sign of nuclear membrane damage under toxic conditions. Explanation is given why the micronucleus is hidden in nuclei under normal chromatin condensation and why chromatin motifs including micronuclei become visible upon cellular damage.

  14. The apoptotic initiator caspase-8: its functional ubiquity and genetic diversity during animal evolution.

    PubMed

    Sakamaki, Kazuhiro; Shimizu, Kouhei; Iwata, Hiroaki; Imai, Kenichiro; Satou, Yutaka; Funayama, Noriko; Nozaki, Masami; Yajima, Mamiko; Nishimura, Osamu; Higuchi, Mayura; Chiba, Kumiko; Yoshimoto, Michi; Kimura, Haruna; Gracey, Andrew Y; Shimizu, Takashi; Tomii, Kentaro; Gotoh, Osamu; Akasaka, Koji; Sawasaki, Tatsuya; Miller, David J

    2014-12-01

    The caspases, a family of cysteine proteases, play multiple roles in apoptosis, inflammation, and cellular differentiation. Caspase-8 (Casp8), which was first identified in humans, functions as an initiator caspase in the apoptotic signaling mediated by cell-surface death receptors. To understand the evolution of function in the Casp8 protein family, casp8 orthologs were identified from a comprehensive range of vertebrates and invertebrates, including sponges and cnidarians, and characterized at both the gene and protein levels. Some introns have been conserved from cnidarians to mammals, but both losses and gains have also occurred; a new intron arose during teleost evolution, whereas in the ascidian Ciona intestinalis, the casp8 gene is intronless and is organized in an operon with a neighboring gene. Casp8 activities are near ubiquitous throughout the animal kingdom. Exogenous expression of a representative range of nonmammalian Casp8 proteins in cultured mammalian cells induced cell death, implying that these proteins possess proapoptotic activity. The cnidarian Casp8 proteins differ considerably from their bilaterian counterparts in terms of amino acid residues in the catalytic pocket, but display the same substrate specificity as human CASP8, highlighting the complexity of spatial structural interactions involved in enzymatic activity. Finally, it was confirmed that the interaction with an adaptor molecule, Fas-associated death domain protein, is also evolutionarily ancient. Thus, despite structural diversity and cooption to a variety of new functions, the ancient origins and near ubiquitous distribution of this activity across the animal kingdom emphasize the importance and utility of Casp8 as a central component of the metazoan molecular toolkit.

  15. Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death.

    PubMed

    Bosnjak, Mihajlo; Ristic, Biljana; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Perovic, Vladimir; Bogdanovic, Andrija; Paunovic, Verica; Markovic, Ivanka; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.

  16. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as reve