Science.gov

Sample records for cast copper base

  1. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    SciTech Connect

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  2. Grain refinement of permanent mold cast copper base alloys. Final report

    SciTech Connect

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  3. Evaluation of thiouracil-based adhesive systems for bonding cast silver-palladium-copper-gold alloy.

    PubMed

    Yamashita, Miyuki; Koizumi, Hiroyasu; Ishii, Takaya; Furuchi, Mika; Matsumura, Hideo

    2010-09-01

    This study aimed to evaluate the effect of adhesive systems based on a thiouracil monomer on bonding to silver-palladium-copper-gold (Ag-Pd-Cu-Au) alloy (Castwell M.C.12). Disk specimens were cast from the alloy and then air-abraded with alumina. The disks were bonded using six bonding systems selected from four primers and three luting materials. Shear bond strengths were determined both before and after thermocycling. Bond strength varied from 2.7 MPa to 32.0 MPa. Three systems based on a thiouracil monomer (MTU-6) showed durable bonding to the alloy, with post-thermocycling bond strengths of 22.4 MPa for the Metaltite (MTU-6) primer and Super-Bond, a tri-n-butylborane (TBB) initiated resin, 9.0 MPa for the Multi-Bond II resin, and 8.1 MPa for the Metaltite and Bistite II system. It can be concluded that a combination of thiouracil-based primer and TBB initiated resin is effective for bonding Ag-Pd-Cu-Au alloy.

  4. Selecting copper and copper alloys; Part 2: Cast products

    SciTech Connect

    Peters, D.T. ); Kundig, K.J.A. , Randolph, NJ )

    1994-06-01

    This article provides an introduction to the properties, characteristics, and applications of cast coppers and copper alloys. An overview of alloy families is presented since it is impractical to describe all 130 standard grades in detail. However, additional technical information is readily available from the Copper Development Assn. Inc. (CDA) and the resources listed in the references and bibliography at the end of the article. Copper casting alloys are primarily selected for either their corrosion resistance, or their combination of corrosion resistance and mechanical properties. The materials also feature good castability, high machinability, and, compared with other corrosion-resistant alloys, reasonable cost. Additional benefits include biofouling resistance--important in marine applications--and a spectrum of attractive colors. Many of the alloys also have favorable tribological properties, which explains their widespread use for sleeve bearings, wear plates, gears, and other wear-prone components.

  5. RAW COPPER SLABS USED IN CASTING OPERATIONS AT BUFFALO PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RAW COPPER SLABS USED IN CASTING OPERATIONS AT BUFFALO PLANT OF AMERICAN BRASS COMPANY. MATERIALS STORAGE FOR THE CAST SHOP NOW OCCUPIES A PORTION OF THE ORIGINAL BRASS MILL BUILT BY THE BUFFALO COPPER AND BRASS ROLLING MILL IN 1906-07 AND EXPANDED IN 1911. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  6. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  7. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  8. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  9. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  10. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from copper casting operations...

  11. Casting copper to tungsten for high power arc lamp cathodes

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1973-01-01

    A method for making 400-kW arc lamp cathodes is described. The cathodes are made by casting a 1.75-in. diameter copper body onto a thoriated tungsten insert. The addition of 0.5-percent nickel to the copper prevents voids from forming at the copper-tungsten interface. Cathodes made by this process have withstood more than 110 hours of operation in a 400-kW arc lamp.

  12. Development of lead-free copper alloy graphite castings. Annual report, January--December 1995

    SciTech Connect

    Rohatgi, P.K.

    1996-10-01

    The distribution of graphite particles in graphite containing copper alloy was further improved very significantly using several procedures and technological modifications. The developed techniques attacked the graphite distribution problem in two ways. Realizing that clustering of very fine (5um) graphite particles is one of the two major problems, a pretreatment process has been developed using aluminum powders to deagglomerate graphite particles. Along with this, a two-stage stirring technique was used to first incorporate and then to distribute uniformly the deagglomerated particles in the melt. During this year, based on these developments, several components were cast to evaluate the castability of Cu alloy-graphite melts. In addition, machinability tests were done to clearly established that addition of graphite particles improve the machinability of copper MMC alloys over and above that of monolithic copper alloys. The results show that the machining chip sizes and cutting forces of Cu alloys containing graphite particles are smaller than these of the corresponding monolithic Cu alloys. This clearly establishes that the presence of graphite particles in copper alloy improves the machinability in a fashion similar to lead additions to copper alloys. Centrifugal casting of shapes of different sizes appear to be a very attractive method for casting graphite containing copper alloys, since all the graphite particles (regardless of their distribution in the melt) are forced to segregate to the inner periphery of the castings where they impart a very desirable solid lubrication property for bushing and bearing use. A very large number of cylindrical elements of lead bearing copper alloys are now used for similar bearing bushing applications and the manufacturers of these type of bearings are under safety and health hazard pressure to remove lead. This year several parameters for centrifugal casting of copper graphite alloys have been established.

  13. Microstructures of ancient and modern cast silver–copper alloys

    SciTech Connect

    Northover, S.M.; Northover, J.P.

    2014-04-01

    The microstructures of modern cast Sterling silver and of cast silver objects about 2500 years old have been compared using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray microanalysis (EDX) and electron backscatter diffraction (EBSD). Microstructures of both ancient and modern alloys were typified by silver-rich dendrites with a few pools of eutectic and occasional cuprite particles with an oxidised rim on the outer surface. EBSD showed the dendrites to have a complex internal structure, often involving extensive twinning. There was copious intragranular precipitation within the dendrites, in the form of very fine copper-rich rods which TEM, X-ray diffraction (XRD), SEM and STEM suggest to be of a metastable face-centred-cubic (FCC) phase with a cube–cube orientation relationship to the silver-rich matrix but a higher silver content than the copper-rich β in the eutectic. Samples from ancient objects displayed a wider range of microstructures including a fine scale interpenetration of the adjoining grains not seen in the modern material. Although this study found no unambiguous evidence that this resulted from microstructural change produced over archaeological time, the copper supersaturation remaining after intragranular precipitation suggests that such changes, previously proposed for wrought and annealed material, may indeed occur in ancient silver castings. - Highlights: • Similar twinned structures and oxidised surfaces seen in ancient and modern cast silver • General precipitation of fine Cu-rich rods apparently formed by discontinuous precipitation is characteristic of as-cast silver. • The fine rods are cube-cube related to the matrix in contrast with the eutectic. • The silver-rich phase remains supersaturated with copper. • Possibly age-related grain boundary features seen in ancient cast silver.

  14. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    SciTech Connect

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  15. Quenching of cast iron with a high copper content

    NASA Astrophysics Data System (ADS)

    Stepanova, Natalia; Bataev, Anatoly; Razumakov, Aleksey

    2015-10-01

    The structure, hardness, and microhardness of hypoeutectic white cast iron alloyed with copper after quenching at 1000 and 1120°C is studied. Features of cupric inclusion separation are detected and its size distribution is shown. After quenching the structure consists of martensite, residual austenite, and vermicular graphite. A decrease in the size and volume fraction of globular cupric inclusions is detected, along with the complete dissolution of nanoscale cupric inclusions, which are located in the ferrite of pearlite colonies. The result of these structural changes is a 30% increase in iron hardness. Cast iron quenching at 1120° C is followed by an increase in the austenite volume fraction to 69%. This effect is due to a decrease in the volume fraction of graphite and a corresponding increase in the carbon content in γ-Fe. Cupric inclusions are located mainly along boundaries of austenitic grains.

  16. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  17. Simulation and Experiment on Direct Continuous Casting Process of Lead Frame Copper Alloy

    NASA Astrophysics Data System (ADS)

    Guojie, Huang; Shuisheng, Xie; Lei, Cheng

    2010-06-01

    Direct Continuous Casting (D.C.C) is an important method in casting lead frame copper alloy. In this paper, numerical simulation is adopted to investigate the casting process in order to optimize the D.C.C technical parameters, such as the casting temperature, casting speed and cooling intensity. According to the numerical results, the reasonable parameters are that the casting temperature is between 1413 K˜1413 K, the casting speed is between 8 m/h˜10 m/h and the speed of cooling water is between 4.2 m/s˜4.6 m/s. And the depth of liquid-solid boundary is measured in different casting temperature and casting speed by experiments. The results show the actual measurements have a little deviation with the numerical simulation. The results of numerical simulation provide the significant reference to the actual experiments.

  18. [Determination of copper alloy hardness, in original form and after casting as a function of casting techniques].

    PubMed

    Bombonatti, P E; de Barros, L E; Scaranelo, R M; Pellizzer, A J; Feitosa, S A

    1990-01-01

    It was evaluated the Vickers hardness of five high-copper casting alloys, in their original package form and after casting, according to the casting method used. That way, ten ingots, supplied by the manufacturers of each alloy, were included in self-curing acrylic resin, polished, numerated and submitted to Vickers hardness test at load of 200 g during 30 seconds. Afterwards the numerated ingots were removed from the acrylic resin and five of those were cast in an electrical casting machine and the other five in a centrifugal casting machine with an air/gas torch. The specimens obtained were included in self-curing acrylic resin, polished and submitted to Vickers hardness test. As a result it was verified that there is a variation of hardness among the alloys tested, and the use of the electrical casting machine produced lower hardness values than those produced when used the centrifugal casting machine with an air/gas torch. Also, there is a decrease of hardness of the cast alloys when they are tested in their original form and after casting.

  19. [Effect of casting techniques on castability of copper-aluminum alloys].

    PubMed

    Scaranelo, R M; Bombonatti, P E; de Barros, L E; Pellizzer, A J

    1990-01-01

    It was evaluated the castability of four copper-aluminium alloy according the melting casting method used. The specimens were made using polyester mesh screen, with 11 x 11 filaments of 0.26 mm thick, fixed along of two adjacent edges in wax bar, with the sprue attached at their junction. The alloys were in an electrical casting machine and a centrifugal casting machine with an air/gas torch. The castability values were obtained by the percentage of completed segments of the resulting cast alloy screen. It was verified that the use of the electrical casting machine produced higher castability values to the copper-aluminium alloys than those produced by a centrifugal casting machine with an air/gas torch.

  20. Emulsion based cast booster - a priming system

    SciTech Connect

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiated with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.

  1. Scanning infrared microscopy investigation of copper precipitation in cast multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Xi, Zhenqiang; Yang, Deren; Moeller, H. J.

    2006-01-01

    The behavior of copper precipitation in cast multicrystalline silicon (mc-Si) annealed at different temperatures under air cooling (30 K/s) or slow cooling (0.3 K/s) was investigated by scanning infrared microscopy (SIRM). Comparing to Czochralski-grown silicon (Cz-Si), copper precipitated more easily in mc-Si, and the lowest temperature of copper precipitation in mc-Si was about 700 °C, lower than that in Cz-Si. It was also observed that copper preferably precipitated on grain boundaries so that near the grain boundaries the denuded zone formed. The results indicate that the defects including dislocations, grain boundaries and microdefects, as the heteronucleation sites, enhanced copper precipitation. Moreover, cooling rates had a great influence on the copper precipitation, especially at lower annealing temperatures. Generally air cooling led to the formation of high density of copper-precipitate colonies.

  2. Development of lead-free copper alloy-graphite casting. Annual report, January--December 1994

    SciTech Connect

    Rohatgi, P.K.

    1996-02-01

    Water model experiments were conducted to develop a two-stage stirring method for obtaining higher yields and a more uniform distribution of particles in copper alloys. This was followed by several melts for synthesis of copper-graphite alloys in which T1 was used as a wetting agent to improve the wettability of graphite in the copper melt. In the first stage, a vortex method was employed to facilitate the suction of graphite particles into the copper melt. In the second stage, the specially designed stirrer was used to avoid the formation of vortex in melt. The two stage stirring was found to considerably improve the recovery of graphite, over those obtained with the prior practice of single stage stirring. In addition, graphite recoveries increased with increasing Ti content. Flotation, fluidity, and directional solidification experiments were also conducted on copper-graphite alloys synthesized in this study. Tests showed that the spiral fluidity length of the yellow brass alloy increased with temperature and decreased with graphite. The fluidity of copper-graphite alloys investigated to date remained adequate to make a variety of castings. The observations of microstructure of directional solidification and flotation showed that in certain castings the graphite particles were agglomerated and they float to the upper part of the castings where they reduced the size of grains. However, in the agglomerated form, the graphite particles improved the machinability of copper alloys in a manner similar to lead. The result of the first years work provide an improved method of synthesis of lead free copper graphite alloys with improved machinability and adequate fluidity. Future work will continue to further improve the distribution of graphite particles in casting while retaining adequate fluidity and improved machinability. Techniques like centrifugal casting will be developed to concentrate graphite in regions where it is required for machinability in bearings.

  3. Numerical simulation of the solidification processes of copper during vacuum continuous casting

    NASA Astrophysics Data System (ADS)

    Tsai, D. C.; Hwang, W. S.

    2012-03-01

    A numerical simulation method is used to analyze the microstructure evolution of 8-mm-diameter copper rods during the vacuum continuous casting (VCC) process. The macro-microscopic coupling method is adopted to develop a temperature field model and a microstructure prediction model. The effects of casting parameters, including casting speed, pouring temperature, cooling rate, and casting dimension on the location and shape of the solid-liquid (S/L) interface and solidified microstructure are considered. Simulation results show that the casting speed has a large effect on the position and shape of the S/L interface and grain morphology. With an increase of casting speed, the shape of the S/L interface changes from a planar shape into an elliptical shape or a narrow, pear shape, and the grain morphology indicates a change from axial growth to axial-radial growth or completely radial growth. The simulation predictions agree well with the microstructure observations of cast specimens. Further analysis of the effects of other casting parameters on the position and shape of the S/L interface reveals that the casting dimension has more influence on the position and shape of the S/L interface and grain morphology than do pouring temperature and cooling rate. The simulation results can be summarized to obtain a discriminant of shape factor (η), which defines the shape of the S/L interface and grain morphology.

  4. Hand-based thumb spica casting.

    PubMed

    Roberts, W O

    1998-03-01

    A hand-based thumb spica cast can be used to protect the metacarpophalangeal (MCP) and interphalangeal (IP) joints of the thumb after uncomplicated ulnar collateral ligament (UCL) sprains and certain other thumb injuries. The cast allows continued participation in many activities, letting the patient grip an implement and move the wrist joint but immobilizing the thumb joints.

  5. Accuracy of Small Base Metal Dental Castings,

    DTIC Science & Technology

    1980-07-10

    aCCURACY OF SMALL BASE METAL DENTAL CASTINGS,(U) M JUL 80 E A HUBET, S 6 VERMILYEA, M .J KUFFLER UNCLASSIFIED NE7 hhhhh *EN UN~CLASSIFIED SECURITY...TPCCSI70NO. 3. RECIPIENT’S .CATALOG NUMBER I _% dSutte 5. TYPE OF REPORT & PERIOD COVERED Accuracy of Small Base Metal Dental Castings Manuscript S...base metal- alloys is countered by their inadequate casting accuracy . Until this problem can be overcome, the acceptance of such alloys for routine use

  6. Conventionally cast and forged copper alloy for high-heat-flux thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Repas, George A.

    1987-01-01

    The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.

  7. Increasing the life of molds for casting copper and its alloys

    NASA Astrophysics Data System (ADS)

    Smirnov, A. N.; Spiridonov, D. V.

    2010-12-01

    The work of the molds intended for casting copper and copper alloys in semicontinuous casters for producing flat billets is considered. It is shown that, to increase the resistance of mold plates, the inner space of the mold should have a taper shape toward the casting direction and take into account the shrinkage of the linear dimensions of the ingot during its motion in the mold. The taper shape increases the intensity and uniformity of heat removal due to close contact between the ingot and the mold inner surface. Testing of new design molds under industrial conditions demonstrates that their resistance increases by a factor of 4.0-4.5. The taper effect of the mold plates is much more pronounced in their narrow faces.

  8. Land-based turbine casting initiative

    SciTech Connect

    Mueller, B.A.; Spicer, R.A.

    1995-10-01

    The Advanced Turbine Systems (ATS) program has set goals which include a large-scale utility turbine efficiency that exceeds 60 percent (LHV) on natural gas and an industrial turbine system heat rate improvement of 15 percent. To meet these goals, technological advances developed for aircraft gas turbine engines need to be applied to land based gas turbines. These technological advances include: directionally solidified and single crystal castings, alloys tailored to exploit these microstructures, complex internal cooling schemes, and coatings. Equiaxed and directionally solidified castings are employed in current land based power generation equipment. These castings do not possess the ability to meet the efficiency targets as outlined above. The production use of premium single crystal components with complex internal cooling schemes in the latest generation of alloys is necessary to meet the ATS goals. However, at present, the use of single crystal components with complex internal cooling schemes is restricted to industrial sized or aeroderivative engines, and prototype utility sized components.

  9. Development of lead-free copper alloy graphite castings. Annual report for the period January through December 1996

    SciTech Connect

    Rohatgi, P.K.

    1997-03-01

    Centrifugal casting of Copper alloys containing graphite particles established the feasibility of making hollow cylindrical castings. In theses castings, the graphite particles are segregated to the inner periphery making them well suited for bearing applications because of the lubricity of the graphite particles. The recovery of graphite is found to be around 90%. Chemical analysis shows that the average concentration of graphite particles near the inner periphery is 13 vol.% (3.5 wt.%) and 16.3 vol.% (4.54 wt.%) for castings made from melts originally containing 7 vol.% (2 wt.%) and 13 vol.% (3.5 wt. %) graphite particles, respectively. Hardness tests show that as the volume fraction of graphite particles increases, the hardness values in the graphite rich zone is found to be widely scattered. The results indicate that it is feasible to centrifugally cast copper alloys containing dispersed graphite particles to produce cylindrical components with graphite rich inner periphery for bearing and plumbing applications.

  10. Ductile superconducting copper-base alloys.

    PubMed

    Tsuei, C C

    1973-04-06

    A new class of ductile superconductors has been prepared by casting and appropriate heat treatments. These alloys superconduct between 4 degrees and 18 degrees K and contain at least 90 atom percent copper and a superconducting phase such as Nb(3)Sn or niobium. They can be processed into wires by conventional metallurgical techniques.

  11. Corrosion of copper, nickel, and gold dental casting alloys: an in vitro and in vivo study.

    PubMed

    Johansson, B I; Lucas, L C; Lemons, J E

    1989-12-01

    The corrosion behavior of commercially available copper, nickel, and gold alloys for dental castings was investigated. The alloys investigated included: three copper alloys (76-87Cu, 6-11A1, 0-12Zn, 1-5Ni, 0-4Fe, 0.5-1.2Mn), two nickel alloys (68-78Ni, 12-16Cr, 4-14Mo, 0-1.7Be), and one gold alloy (77Au, 14Ag, 8Cu, 1Pd). Anodic and cathodic polarization curves, long-term immersion tests in saline and artificial saliva solutions, and dog crown studies were conducted to evaluate both the in vitro and in vivo corrosion characteristics of the alloys. All evaluations conducted demonstrated that the copper alloys were highly susceptible to corrosion attack. High corrosion currents were observed in the in vitro tests, and SEM of the alloys specimens showed significantly altered surfaces. The anodic polarization curves predicted that the beryllium-containing nickel alloy should be susceptible to localized corrosion and SEM revealed an etched surface with corrosion of certain microstructural features. No significant corrosion was predicted or observed for the non-beryllium nickel alloy and the gold alloy. The in vitro corrosion evaluations predicted the in vivo corrosion behavior for the alloys. Since the three copper alloys and the beryllium-containing nickel alloy demonstrated significant corrosion under the tested conditions, the use of these alloys for restorative procedures is questionable due to the release of significant levels of selected ions to the oral cavity.

  12. Use of Copper Cast Alloys To Control Escherichia coli O157 Cross-Contamination during Food Processing

    PubMed Central

    Noyce, J. O.; Michels, H.; Keevil, C. W.

    2006-01-01

    The most notable method of infection from Escherichia coli O157 (E. coli O157) is through contaminated food products, usually ground beef. The objective of this study was to evaluate seven cast copper alloys (61 to 95% Cu) for their ability to reduce the viability of E. coli O157, mixed with or without ground beef juice, and to compare these results to those for stainless steel. E. coli O157 (NCTC 12900) (2 × 107 CFU) mixed with extracted beef juice (25%) was inoculated onto coupons of each copper cast alloy or stainless steel and incubated at either 22°C or 4°C for up to 6 h. E. coli O157 viability was determined by plate counts in addition to staining in situ with the respiratory indicator fluorochrome 5-cyano-2,3-ditolyl tetrazolium. Without beef extract, three alloys completely killed the inoculum during the 6-h exposure at 22°C. At 4°C, only the high-copper alloys (>85%) significantly reduced the numbers of O157. With beef juice, only one alloy (95% Cu) completely killed the inoculum at 22°C. For stainless steel, no significant reduction in cell numbers occurred. At 4°C, only alloys C83300 (93% Cu) and C87300 (95% Cu) significantly reduced the numbers of E. coli O157, with 1.5- and 5-log kills, respectively. Reducing the inoculum to 103 CFU resulted in a complete kill for all seven cast copper alloys in 20 min or less at 22°C. These results clearly demonstrate the antimicrobial properties of cast copper alloys with regard to E. coli O157, and consequently these alloys have the potential to aid in food safety. PMID:16751537

  13. Ageing of Insensitive DNAN Based Melt-Cast Explosives

    DTIC Science & Technology

    2014-08-01

    Systems Division Defence Science and Technology Organisation DSTO-TN-1332 ABSTRACT DNAN or 2,4-dinitroanisole is a new melt- cast matrix that...replaces traditional TNT based melt- cast explosives. Aside from sensitiveness improvements, the use of DNAN allows for the continued operation of

  14. The role of manganese and copper in the eutectoid transformation of spheroidal graphite cast iron

    SciTech Connect

    Lacaze, J.; Boudot, A.; Gerval, V.; Oquab, D.; Santos, H.

    1997-10-01

    The decomposition of austenite to ferrite plus graphite or to pearlite in spheroidal graphite (SG) cast iron is known to depend on a number of factors among which are the nodule count, the cooling rate, and the alloying additions (Si, Mn, Cu, etc.). This study was undertaken in order to deepen the understanding of the effect of alloying with Mn and/or Cu on the eutectoid reaction. For this purpose, differential thermal analyses (DTAs) were carried out in which samples were subjected to a short homogenization treatment designed to smooth out the microsegregations originating from the solidification step. The effect of various additions of copper and manganese and of the cooling rate on the temperature of the onset of the stable and metastable eutectoid reactions was investigated. The experimental results can be explained if the appropriate reference temperature is used. The cooling rate affects the temperature of the onset of the ferrite plus graphite growth in the same way as for the eutectic reaction, with a measured undercooling that can be extrapolated to a zero value when the cooling rate is zero. The growth undercooling of pearlite had values that were in agreement with similar data obtained on silicon steels. The detrimental effect of Mn on the growth kinetics of ferrite during the decomposition of austenite in the stable system is explained in terms of the driving force for diffusion of carbon through the ferrite ring around the graphite nodules. Finally, it is found that copper can have a pearlite promoter role only when combined with a low addition of manganese.

  15. Cast Double Base Propellants: Process Mechanics

    DTIC Science & Technology

    1953-02-01

    thc rate of dilatation, of the casting powder and its .’ate of penetration by casting liquid, 2. 2. To measure the rate of dilatation of the...powders a)d fini.shed charges, 2.4. To dctcrminc the r,ate of solution of the casti)g owdcr in thc castino llquid, 2.5. To measturc the chrngo iu...O aad humidity cabiact ( sect a t 20OC. , 5 5 --c lat:v* hCum-’IitY) fo t ea,t 24 hours befo-re coiiencin-g the test. The gralcz L-u-o thc ):) mo,,sur

  16. 25. Detail of cast iron lamp post base with fluted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Detail of cast iron lamp post base with fluted wooded post at top, located at north end of bridge. VIEW NORTHEAST - Chelsea Street Bridge & Draw Tender's House, Spanning Chelsea River, Boston, Suffolk County, MA

  17. 56. DETAIL OF BASE OF STEEL WINDMILL TOWER WITH CAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. DETAIL OF BASE OF STEEL WINDMILL TOWER WITH CAST IRON HAND PUMP OVER WELL HEAD ON HIGHWAY L44 IN IOWA JUST EAST OF NEBRASKA CITY, NEBRASKA. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  18. 10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR STOREFRONT, SHOWING MANUFACTURER'S STAMP: IOWA IRON WOKS CO. DUBUQUE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA

  19. DETAIL VIEW OF BASE OF CAST IRON TOWER SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BASE OF CAST IRON TOWER SHOWING THE FABRICATING MARK OF STARBUCK IRON WORKS, TROY, NY - Bidwell Bar Suspension Bridge & Stone Toll House, Near Lake Oroville (moved from fork of Feather River), Oroville, Butte County, CA

  20. Awareness Programs and Change in Taste-Based Caste Prejudice

    PubMed Central

    Banerjee, Ritwik; Datta Gupta, Nabanita

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution - the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste. PMID:25902290

  1. Awareness programs and change in taste-based caste prejudice.

    PubMed

    Banerjee, Ritwik; Datta Gupta, Nabanita

    2015-01-01

    Becker's theory of taste-based discrimination predicts that relative employment of the discriminated social group will improve if there is a decrease in the level of prejudice for the marginally discriminating employer. In this paper we experimentally test this prediction offered by Garry Becker in his seminal work on taste based discrimination, in the context of caste in India, with management students (potential employers in the near future) as subjects. First, we measure caste prejudice and show that awareness through a TV social program reduces implicit prejudice against the lower caste and the reduction is sustained over time. Second, we find that the treatment reduces the prejudice levels of those in the left tail of the prejudice distribution--the group which can potentially affect real outcomes as predicted by the theory. And finally, a larger share of the treatment group subjects exhibit favorable opinion about reservation in jobs for the lower caste.

  2. Online Measurement for Transient Mold Friction Based on the Hydraulic Oscillators of Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Wang, Zhaofeng; Yao, Man

    2013-12-01

    The interaction of the strand shell surface and mold copper plates has significant effects on the slab surface quality and casting productivity. This article focuses on developing a reliable approach to measure the transient friction force between the slab and the mold for the purpose of the investigation of lubrication and friction behavior inside a mold. This method is presented to monitor transient mold frictions for the slab continuous caster equipped with hydraulic oscillators. A mathematical model is also developed to calculate the empty working force of the no casting state, and a new algorithm, based on the particle swarm optimization, is proposed to predict the dynamic characteristic parameters of mold oscillation. The results have shown that the method has a sufficient sensitivity to variation, especially to the periodical variation of the mold friction, and it has been identified that the transient mold friction can be used as an effective index with regard to detecting mold oscillation and optimizing the casting parameters for process control. It may lay the practical foundation for the online detection of powder lubrication and the visualization of the continuous-casting mold process.

  3. The cast aluminum denture base. Part I: Rationale.

    PubMed

    Halperin, A R

    1980-06-01

    Experiments with various casting techniques have been done, and aluminum base dentures have been made for many patients. The subjective clinical response from patients wearing aluminum dentures has not been different from patients wearing acrylic resin dentures. However, Brudvik and Holt have stated that they have had marked clinical success in using aluminum bases. A literature review on using aluminum as a denture base material has been presented, and the rationale for its use has been discussed. In part II, a technique will be described that can be used for casting aluminum denture bases.

  4. Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting

    NASA Astrophysics Data System (ADS)

    Su, Ya-Jun; Liu, Xin-Hua; Huang, Hai-You; Liu, Xue-Feng; Xie, Jian-Xin

    2011-12-01

    Copper cladding aluminum (CCA) rods with a diameter of 30 mm and a sheath thickness of 3 mm were fabricated by horizontal core-filling continuous casting (HCFC) technology. The microstructure and morphology, distribution of chemical components, and phase composition of the interface between Cu and Al were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS). The formation mechanism of the interface and the effects of key processing parameters, e.g., aluminum casting temperature, secondary cooling intensity, and mean withdrawing speed on the interfacial microstructure and bonding strength were investigated. The results show that the CCA rod has a multilayered interface, which is composed of three sublayers—sublayer I is Cu9Al4 layer, sublayer II is CuAl2 layer, and sublayer III is composed of α-Al/CuAl2 pseudo eutectic. The thickness of sublayer III, which occupies 92 to 99 pct of the total thickness of the interface, is much larger than the thicknesses of sublayers I and II. However, the interfacial bonding strength is dominated by the thicknesses of sublayers I and II; i.e., the bonding strength decreases with the rise of the thicknesses of sublayers I and II. When raising the aluminum casting temperature, the total thickness of the interface increases while the thicknesses of sublayers I and II decrease and the bonding strength increases. Either augmenting the secondary cooling intensity or increasing the mean withdrawing speed results in the decrease in both total thickness of the interface and the thicknesses of sublayers I and II, and an increase in the interfacial bonding strength. The CCA rod with the largest interfacial bonding strength of 67.9 ± 0.5 MPa was fabricated under such processing parameters as copper casting temperature 1503 K (1230 °C), aluminum casting temperature 1063 K (790 °C), primary cooling water flux 600 L/h, secondary cooling water flux 700 L/h, and

  5. Aluminum-Based Cast In Situ Composites: A Review

    NASA Astrophysics Data System (ADS)

    Pramod, S. L.; Bakshi, Srinivasa R.; Murty, B. S.

    2015-06-01

    In situ composites are a class of composite materials in which the reinforcement is formed within the matrix by reaction during the processing. In situ method of composite synthesis has been widely followed by researchers because of several advantages over conventional stir casting such as fine particle size, clean interface, and good wettability of the reinforcement with the matrix and homogeneous distribution of the reinforcement compared to other processes. Besides this, in situ processing of composites by casting route is also economical and amenable for large scale production as compared to other methods such as powder metallurgy and spray forming. Commonly used reinforcements for Al and its alloys which can be produced in situ are Al2O3, AlN, TiB2, TiC, ZrB2, and Mg2Si. The aim of this paper is to review the current research and development in aluminum-based in situ composites by casting route.

  6. Some properties of a stir-cast Ni-Cr based dental alloy.

    PubMed

    Boswell, P G; Stevens, L

    1980-06-01

    A Ni-Cr based crown and bridge alloy has been successfully stir-cast into small investment mould spaces using a modified induction melting and casting machine. Stir-casting produced substantial improvements to the mechanical properties of the cast alloy. A model for the development of the stir-cast microstructure is described and the clinical significance of the improvements in the alloy's properties is discussed.

  7. Changes in the composition of a nickel-base partial denture casting alloy upon fusion and casting.

    PubMed

    Lewis, A J

    1975-02-01

    Three series of tensile test pieces were produced using a nickel-base partial denture casting alloy. For the first series induction heating was employed for melting the alloy, for the second a resistance crucible, and for the third an oxy-acetylene torch. In each series the same metal was cast sequentially five times, following which samples of the alloy were subjected to a ten element quantitative analysis to ascertain compositional changes associated with the three methods of fusion.

  8. Cast iron-base alloy for cylinder/regenerator housing

    NASA Technical Reports Server (NTRS)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  9. Influence of heat treatment on the microstructure and wear behavior of end-chill cast Zn-27Al alloys with different copper content

    NASA Astrophysics Data System (ADS)

    Jeshvaghani, R. Arabi; Ghahvechian, H.; Pirnajmeddin, H.; Shahverdi, H. R.

    2016-04-01

    The aim of this paper was to study the effect of heat treatment on the microstructure and wear behavior of Zn-27Al alloys with different copper content. In order to study the relationship between microstructure features and wear behavior, the alloys prepared by an end-chill cast apparatus and then heat treated. Heat treatment procedure involved solutionizing at temperature of 350 °C for 72 h followed by cooling within the furnace to room temperature. Microstructural characteristics of as-cast and heat-treated alloys at different distances from the chill were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction. Wear tests were performed using a pin-on-disk test machine. To determine the wear mechanisms, the worn surfaces of the samples were also examined by SEM and EDS. Results showed that heat treatment led to the complete dissolution of as-cast dendritic microstructure and formation of a fine lamellar structure with well-distributed microconstituents. Moreover, addition of copper up to 1 wt% had no significant change in the microstructure, while addition of 2 and 4 wt% copper resulted in formation of ɛ (CuZn4) particle in the interdendritic regions. The influence of copper content on the wear behavior of the alloys was explained in terms of microstructural characteristics. Delamination was proposed as the dominant wear mechanism.

  10. The metallography of a nickel base casting alloy.

    PubMed

    Lewis, A J

    1975-10-01

    Three groups of tensile test pieces were produced using a nickel base partial denture casting alloy and employing induction fusion in each case. The first group was produced fro new metal, the second from metal which had been recast four times, and the third from new overheated metal. Samples of alloy were cut from each group, and together with a piece from an original ingot, were mounted, polished, etched, and examined under a metallurgical microscope.

  11. Effect of interactions between bubbles and graphite particles in copper alloy melts on microstructure formed during centrifugal casting. Part 2: Experiments

    SciTech Connect

    Kim, J.K.; Rohatgi, P.K.

    1999-06-01

    During centrifugal casting of copper alloys containing graphite particles, both particles and bubbles move under the influence of centrifugal forces and influence the final microstructure, including porosity and the distribution of graphite. The movement of graphite particles and bubbles in the melts of copper alloys, originally containing 7 and 13 vol pct graphite particles and centrifugally cast at 800 and 1900 rpm in horizontal rotating molds, has been examined. Microstructural observations of sections of these centrifugal castings show that the graphite particles are segregated near the inner periphery and the amount of porosity in the graphite-rich zone is higher than the porosity in the graphite-free and transition zones. The intimate association of porosity with graphite particles in the graphite-rich zone was explained on the basis of attachment of graphite particles to bubbles in the melt and the viscosity of the melt, which increases with increasing concentration of graphite particles near the inner periphery of the castings. It was found that the amount of the porosity in the graphite-rich zone increases with volume fraction of graphite particles used in this study; the size of the porosity in the graphite-rich zone also increases with increasing rotational speed of the mold. This suggests that the graphite particles and bubbles were attached to each other in the melt and they did not get separated during centrifugal casting conditions of the present study. The present experiments qualitatively confirm theoretical computations.

  12. Method of casting pitch based foam

    DOEpatents

    Klett, James W.

    2002-01-01

    A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.

  13. Casting Accuracy of Base-Metal Alloys,

    DTIC Science & Technology

    1981-06-22

    Journal of Prosthodontic Dentistry I.I. SUPPLEMENTARY NOTES ".KL... prosthodontics ; however, the inabilitv to fabricate consistently well fitting fixed prostheses from base-metal alloysS- 7 limit tihe routine use of these...q4- 0 A sm 0 cm CAb F -rr-- I............ 0< Loa,,.’..’ . .- . ... CI w~ cc~ 0 00 (0 Iq on 0 D 0M 0J 004 0 0a .~ .D ....... L .......... (%l) AovdlDov LDNIISV2D 0 Jic r,4wC 0JLL 0 0000 0 co to (%l) ADv /nflDDv cDNIiSVD

  14. Fluid casting of particle-based articles

    DOEpatents

    Menchhofer, Paul

    1995-01-01

    A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.

  15. Fluid casting of particle-based articles

    DOEpatents

    Menchhofer, P.

    1995-03-28

    A method is disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product. 1 figure.

  16. Casting of particle-based hollow shapes

    DOEpatents

    Menchhofer, P.

    1995-05-30

    A method is disclosed for the production of hollow articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is coated onto a prewarmed continuous surface in a relatively thin layer so that the slurry is substantially uniformly coated on the surface. The heat of the prewarmed surface conducts to the slurry to initiate a reaction which causes the slurry to set or harden in a shape conforming to the surface. The hardened configurations may then be sintered to consolidate the particles and provide a high density product. 9 figs.

  17. Development of copper based drugs, radiopharmaceuticals and medical materials.

    PubMed

    Szymański, Paweł; Frączek, Tomasz; Markowicz, Magdalena; Mikiciuk-Olasik, Elżbieta

    2012-12-01

    Copper is one of the most interesting elements for various biomedical applications. Copper compounds show vast array of biological actions, including anti-inflammatory, anti-proliferative, biocidal and other. It also offers a selection of radioisotopes, suitable for nuclear imaging and radiotherapy. Quick progress in nanotechnology opened new possibilities for design of copper based drugs and medical materials. To date, copper has not found many uses in medicine, but number of ongoing research, as well as preclinical and clinical studies, will most likely lead to many novel applications of copper in the near future.

  18. Cast Fe-base cylinder/regenerator housing alloy

    NASA Technical Reports Server (NTRS)

    Larson, F.; Kindlimann, L.

    1980-01-01

    The development of an iron-base alloy that can meet the requirements of automotive Stirling engine cylinders and regenerator housings is described. Alloy requirements are as follows: a cast alloy, stress for 5000-hr rupture life of 200 MPa (29 ksi) at 775 C (1427 F), oxidation/corrosion resistance comparable to that of N-155, compatibility with hydrogen, and an alloy cost less than or equal to that of 19-9DL. The preliminary screening and evaluation of ten alloys are described.

  19. Thermal stability of copper silicide passivation layers in copper-based multilevel interconnects

    NASA Astrophysics Data System (ADS)

    Hymes, S.; Kumar, K. S.; Murarka, S. P.; Ding, P. J.; Wang, W.; Lanford, W. A.

    1998-04-01

    Copper thin films were exposed to a dilute silane mixture at temperatures in the range of 190-363 °C. The resulting silicide surface layers were characterized by four-point probe, Rutherford backscattering spectrometry, and x-ray diffraction. A definitive stability regime is observed in which progressively higher copper content phases exist with increasing temperature. Cu3Si, formed in silane, on annealing converts to Cu5Si and eventually to no silicide layer by a silicon diffusion reaction that in an inert ambient drives silicon into underlying copper to form a solid solution. In oxidizing ambients, a similar phenomenon occurs but now silicon also diffuses to surfaces where it oxidizes to form a self-passivating SiO2 layer on surface. These results have important implications governing integration of copper silicide as a passivation layer and silicon hydride based dielectric deposition in copper-based multilevel interconnect in ultralarge scale integration.

  20. Caste-, work-, and descent-based discrimination as a determinant of health in social epidemiology.

    PubMed

    Patil, Rajan R

    2014-01-01

    Social epidemiology explores health in the context of broad social determinants of health, where the boundary lines between health and politics appear increasingly blurred. Social determinants of health such as caste, discrimination, and social exclusion are inherently political in nature, hence it becomes imperative to look at health through a broader perspective of political philosophy, ideology, and caste that imposes enormous obstacles to a person's full attainment of civil, political, economic, social, and cultural rights. Caste is descent based and hereditary in nature. It is a characteristic determined by one's birth into a particular caste, irrespective of the faith practiced by the individual. Caste denotes a system of rigid social stratification into ranked groups defined by descent and occupation. Under various caste systems throughout the world, caste divisions also dominate in housing, marriage, and general social interaction divisions that are reinforced through the practice and threat of social ostracism, economic boycotts, and even physical violence-all of which undermine health equality.

  1. High pressure die casting of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  2. High pressure die casting of Fe-based metallic glass.

    PubMed

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  3. High pressure die casting of Fe-based metallic glass

    PubMed Central

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  4. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Treesearch

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  5. Effect of interactions between bubbles and graphite particles in copper alloy melts on microstructure formed during centrifugal casting. Part 1: Theoretical analysis

    SciTech Connect

    Kim, J.K.; Rohatgi, P.K.

    1999-06-01

    Frequently, particles get associated with gas bubbles in a melt and their interaction influences the final distribution of particles and porosity in the casting. An analytical model for the separation of a particle from a bubble in melts containing dispersed particles and bubbles is proposed. During centrifugal casting of alloys containing dispersed particles, both the particles and gas bubbles present in the melt move with the centrifugal forces. Using the force balance between surface tension and net centrifugal forces (centrifugal force minus buoyancy force), the critical rotational speed of the mold for the separation of the particles and the bubbles during centrifugal casting is calculated. The critical rotational speed of the mold to separate the particle from the bubble is lower for a small particle attached to a larger bubble, as compared to the case when a large particle is attached to a smaller bubble. For a given bubble size, the critical rotational speed of the mold to separate the bubble from the particle decreases with increasing particle size. For the specific case of spherical 5-{micro}m radius graphite particles dispersed in copper alloy melt, it was found that even at a low semiapical angle of about 9 deg, the critical rotational speed needs to be around 5000 rpm for a bubble size of 500-{micro}m radius and 0.09-m-diameter mold. The rotational speed decreases to 1000 rpm when the graphite particle radius increases to 100 {micro}m for the same bubble size in copper alloy melt.

  6. Silicon- and tin-based cuprates: now catalytic in copper!

    PubMed

    Weickgenannt, Andreas; Oestreich, Martin

    2010-01-11

    Silicon- and tin-containing molecules are versatile building blocks in organic synthesis. A stalwart method for their preparation relies on the stoichiometric use of silicon- and tin-based cuprates, although a few copper(I)-catalyzed or even copper-free protocols have been known for decades. In this Concept, we describe our efforts towards copper(I)-catalyzed carbon--silicon and also carbon--tin bond formations using soft bis(triorganosilyl) and bis(triorganostannyl) zinc reagents as powerful sources of nucleophilic silicon and tin. Conjugate addition, allylic substitution, and carbon--carbon multiple bond functionalization is now catalytic in copper!

  7. Managing the Use of Copper-Based Antifouling Paints

    NASA Astrophysics Data System (ADS)

    Srinivasan, Mridula; Swain, Geoffrey W.

    2007-03-01

    Copper is the biocide of choice for present-day antifouling (AF) paints. It is also a major source of copper loading in to the marine environment and, as such, might cause local copper levels to exceed water quality criteria. The present study is multifaceted and looks into the overall impact of copper-based AF paints on copper concentrations along a 64-km stretch of the Indian River Lagoon and at Port Canaveral, Florida. This preliminary study is one of the first to outline issues and present background evidence on the current status of copper and copper-based AF usage in Florida and to address the need for management. Previous measurements of copper levels in these waters show a history of copper contamination close to marinas, boatyards, and at Port Canaveral that often exceed state and federal water quality standards. Further, we estimate that the total annual copper input into the Indian River Lagoon is between 1.7 tons/year (sailboats) and 2.1 tons/year (powerboats) from boats in 14 marinas. We estimate the copper input into Port Canaveral to be about 1.4 tons/year from seven cruise ships. A brief survey of marina operators and boat owners revealed attitudes and practices associated with AF paint usage that ranged from excellent to inferior. Management recommendations are made for a proactive approach to improving AF paint selection and application, assessing the environmental status of copper, and redefining existing management practices for sustainable AF paint usage and environmental health.

  8. Managing the use of copper-based antifouling paints.

    PubMed

    Srinivasan, Mridula; Swain, Geoffrey W

    2007-03-01

    Copper is the biocide of choice for present-day antifouling (AF) paints. It is also a major source of copper loading in to the marine environment and, as such, might cause local copper levels to exceed water quality criteria. The present study is multifaceted and looks into the overall impact of copper-based AF paints on copper concentrations along a 64-km stretch of the Indian River Lagoon and at Port Canaveral, Florida. This preliminary study is one of the first to outline issues and present background evidence on the current status of copper and copper-based AF usage in Florida and to address the need for management. Previous measurements of copper levels in these waters show a history of copper contamination close to marinas, boatyards, and at Port Canaveral that often exceed state and federal water quality standards. Further, we estimate that the total annual copper input into the Indian River Lagoon is between 1.7 tons/year (sailboats) and 2.1 tons/year (powerboats) from boats in 14 marinas. We estimate the copper input into Port Canaveral to be about 1.4 tons/year from seven cruise ships. A brief survey of marina operators and boat owners revealed attitudes and practices associated with AF paint usage that ranged from excellent to inferior. Management recommendations are made for a proactive approach to improving AF paint selection and application, assessing the environmental status of copper, and redefining existing management practices for sustainable AF paint usage and environmental health.

  9. Coordination geometry around copper in a Schiff-base trinuclear copper complex using EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaur, Abhijeet; Shrivastava, B. D.; Gaur, D. C.; Prasad, J.; Srivastava, K.; Jha, S. N.; Bhattacharyya, D.; Poswal, A.

    2012-05-01

    In the present investigation, we have studied extended X-ray absorption fine structure (EXAFS) spectra of a trinuclear Schiff-base copper complex tetraaqua-di-μ3-(N-salicylidene-DL-glutamato)-tricopper(II)heptahydrate, [Cu3(C12H10NO5)2 (H2O)4]. 7H2O, in which three metal sites are present. One metal site is square-pyramidal (4+1) and other two similar metal sites are tetragonally distorted octahedral (4+2). EXAFS has been recorded at the K-edge of copper in the complex at the dispersive EXAFS beamline at 2 GeV Indus-2 synchrotron source at RRCAT, Indore, India. The analysis of EXAFS spectra of multinuclear metal complexes pose some problems due to the presence of many absorbing atoms, even when the absorbing atoms may be of the same element. Hence, using the available crystal structure of the complex, theoretical models have been generated for the different copper sites separately, which are then fitted to the experimental EXAFS data. The two coordination geometries around the copper sites have been determined. The contributions of the different copper sites to the experimental spectrum have been estimated. The structural parameters, which include bond-lengths, coordination numbers and thermal disorders, for the two types of copper sites have been reported. Further, copper has been found to be in +2 oxidation state at these metal sites.

  10. Tolerance of Serpula lacrymans to copper-based wood preservatives

    Treesearch

    Anne Christine Steenkjaer Hastrup; Frederick Green; Carol A. Clausen; Bo Jensen

    2005-01-01

    Serpula lacrymans, the dry rot fungus, is considered the most economically important wood decay fungus in certain temperate regions of the world, namely northern Europe, Japan, and Australia. Previously, copper-based wood preservatives were commonly used for pressure treatment of wood for building construction, but some decay fungi are known to be copper tolerant. In...

  11. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    PubMed

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  12. The recovery of latent fingermarks and DNA using a silicone-based casting material.

    PubMed

    Shalhoub, Rita; Quinones, Ignacio; Ames, Carole; Multaney, Bryan; Curtis, Stuart; Seeboruth, Haj; Moore, Stephen; Daniel, Barbara

    2008-07-04

    There are many techniques available for the recovery of fingermarks at scenes of crime including the possibility of taking casts of the marks. Casts can be advantageous in cases where other destructive recovery techniques might not be suitable, such as when recovering finger marks deposited on valued or immobile items. In this research, Isomark (a silicone-based casting material) was used to recover casts of finger marks placed on a variety of substrates. Casts were enhanced using cyanoacrylate fuming. Good quality marks were successfully recovered from a range of smooth, non-porous surfaces. Recovery from semi-porous surfaces was shown to be inefficient. DNA was subsequently extracted from the casts using QIAamp Mini extraction kits, amplified and profiled. Full DNA profiles were obtained 34% of samples extracted.

  13. Direct Isosurface Ray Casting of NURBS-Based Isogeometric Analysis.

    PubMed

    Schollmeyer, Andre; Froehlich, Bernd

    2014-09-01

    In NURBS-based isogeometric analysis, the basis functions of a 3D model's geometric description also form the basis for the solution space of variational formulations of partial differential equations. In order to visualize the results of a NURBS-based isogeometric analysis, we developed a novel GPU-based multi-pass isosurface visualization technique which performs directly on an equivalent rational Bézier representation without the need for discretization or approximation. Our approach utilizes rasterization to generate a list of intervals along the ray that each potentially contain boundary or isosurface intersections. Depth-sorting this list for each ray allows us to proceed in front-to-back order and enables early ray termination. We detect multiple intersections of a ray with the higher-order surface of the model using a sampling-based root-isolation method. The model's surfaces and the isosurfaces always appear smooth, independent of the zoom level due to our pixel-precise processing scheme. Our adaptive sampling strategy minimizes costs for point evaluations and intersection computations. The implementation shows that the proposed approach interactively visualizes volume meshes containing hundreds of thousands of Bézier elements on current graphics hardware. A comparison to a GPU-based ray casting implementation using spatial data structures indicates that our approach generally performs significantly faster while being more accurate.

  14. The metallography of heat treatment effects in a nickel-base casting alloy. A preliminary report.

    PubMed

    Goodall, T G; Lewis, A J

    1979-08-01

    A series of standard tensile specimens produced from a nickel-base removable partial denture casting alloy were subjected to heat treatments at three temperatures and three periods at each temperature. The microstructures developed within the castings disclose changes in both the matrix and interdendritic zones.

  15. Biological and environmental transformations of copper-based nanomaterials.

    PubMed

    Wang, Zhongying; von dem Bussche, Annette; Kabadi, Pranita K; Kane, Agnes B; Hurt, Robert H

    2013-10-22

    Copper-based nanoparticles are an important class of materials with applications as catalysts, conductive inks, and antimicrobial agents. Environmental and safety issues are particularly important for copper-based nanomaterials because of their potential large-scale use and their high redox activity and toxicity reported from in vitro studies. Elemental nanocopper oxidizes readily upon atmospheric exposure during storage and use, so copper oxides are highly relevant phases to consider in studies of environmental and health impacts. Here we show that copper oxide nanoparticles undergo profound chemical transformations under conditions relevant to living systems and the natural environment. Copper oxide nanoparticle (CuO-NP) dissolution occurs at lysosomal pH (4-5), but not at neutral pH in pure water. Despite the near-neutral pH of cell culture medium, CuO-NPs undergo significant dissolution in media over time scales relevant to toxicity testing because of ligand-assisted ion release, in which amino acid complexation is an important contributor. Electron paramagnetic resonance (EPR) spectroscopy shows that dissolved copper in association with CuO-NPs are the primary redox-active species. CuO-NPs also undergo sulfidation by a dissolution-reprecipitation mechanism, and the new sulfide surfaces act as catalysts for sulfide oxidation. Copper sulfide NPs are found to be much less cytotoxic than CuO-NPs, which is consistent with the very low solubility of CuS. Despite this low solubility of CuS, EPR studies show that sulfidated CuO continues to generate some ROS activity due to the release of free copper by H2O2 oxidation during the Fenton-chemistry-based EPR assay. While sulfidation can serve as a natural detoxification process for nanosilver and other chalcophile metals, our results suggest that sulfidation may not fully and permanently detoxify copper in biological or environmental compartments that contain reactive oxygen species.

  16. Biological and Environmental Transformations of Copper-Based Nanomaterials

    PubMed Central

    Wang, Zhongying; Von Dem Bussche, Annette; Kabadi, Pranita K.; Kane, Agnes B.; Hurt, Robert H.

    2013-01-01

    Copper-based nanoparticles are an important class of materials with applications as catalysts, conductive inks, and antimicrobial agents. Environmental and safety issues are particularly important for copper-based nanomaterials because of their potential large-scale use and their high redox activity and toxicity reported from in vitro studies. Elemental nanocopper oxidizes readily upon atmospheric exposure during storage and use, so copper oxides are highly relevant phases to consider in studies of environmental and health impacts. Here we show that copper oxide nanoparticles undergo profound chemical transformations under conditions relevant to living systems and the natural environment. Copper oxide nanoparticle (CuO-NP) dissolution occurs at lysosomal pH (4-5), but not at neutral pH in pure water. Despite the near-neutral pH of cell culture medium, CuO-NPs undergo significant dissolution in media over time scales relevant to toxicity testing due to ligand-assisted ion release, in which amino acid complexation is an important contributor. Electron paramagnetic resonance (EPR) spectroscopy shows that dissolved copper in association with CuO-NPs are the primary redox-active species. CuO-NPs also undergo sulfidation by a dissolution-reprecipitation mechanism, and the new sulfide surfaces act as catalysts for sulfide oxidation. Copper sulfide NPs are found to be much less cytotoxic than CuO NPs, which is consistent with the very low solubility of CuS. Despite this low solubility of CuS, EPR studies show that sulfidated CuO continues to generate some ROS activity due to the release of free copper by H2O2 oxidation during the Fenton-chemistry-based EPR assay. While sulfidation can serve as a natural detoxification process for nanosilver and other chalcophile metals, our results suggest that sulfidation may not fully and permanently detoxify copper in biological or environmental compartments that contain reactive oxygen species. PMID:24032665

  17. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  18. Towards an all-copper redox flow battery based on a copper-containing ionic liquid.

    PubMed

    Schaltin, Stijn; Li, Yun; Brooks, Neil R; Sniekers, Jeroen; Vankelecom, Ivo F J; Binnemans, Koen; Fransaer, Jan

    2016-01-07

    The first redox flow battery (RFB), based on the all-copper liquid metal salt [Cu(MeCN)4][Tf2N], is presented. Liquid metal salts (LMS) are a new type of ionic liquid that functions both as solvent and electrolyte. Non-aqueous electrolytes have advantages over water-based solutions, such as a larger electrochemical window and large thermal stability. The proof-of-concept is given that LMSs can be used as the electrolyte in RFBs. The main advantage of [Cu(MeCN)4][Tf2N] is the high copper concentration, and thus high charge and energy densities of 300 kC l(-1) and 75 W h l(-1) respectively, since the copper(i) ions form an integral part of the electrolyte. A Coulombic efficiency up to 85% could be reached.

  19. Controlled release implants based on cast lipid blends.

    PubMed

    Kreye, F; Siepmann, F; Zimmer, A; Willart, J F; Descamps, M; Siepmann, J

    2011-05-18

    The aim of this study was to use lipid:lipid blends as matrix formers in controlled release implants. The systems were prepared by melting and casting and thoroughly characterized before and after exposure to the release medium. Based on the experimental results, a mechanistic realistic mathematical model was used to get further insight into the underlying drug release mechanisms. Importantly, broad spectra of drug release patterns could be obtained by simply varying the lipid:lipid blend ratio in implants based on Precirol ATO 5 (glyceryl palmitostearate):Dynasan 120 (hardened soybean oil) mixtures loaded with propranolol hydrochloride. Release periods ranging from a few days up to several months could be provided. Interestingly, the drug release rate monotonically decreased with increasing Dynasan 120 content, except for implants containing about 20-25% Precirol, which exhibited surprisingly high release rates. This could be attributed to the incomplete miscibility of the two lipids at these blend ratios: DSC thermograms showed phase separation in these systems. This is likely to cause differences in the implants' microstructure, which determines the mobility of water and dissolved drug as well as the mechanical stability of the systems. Purely diffusion controlled drug release was only observed at Precirol ATO 5 contents around 5-10%. In all other cases, limited drug solubility effects or matrix former erosion are also expected to play a major role. Thus, lipid:lipid blends are very interesting matrix formers in controlled release implants. However, care must be taken with respect to the mutual miscibility of the compounds: in case of phase separation, surprisingly high drug release rates might be observed. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Influence of S. mutans on base-metal dental casting alloy toxicity.

    PubMed

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p < 0.0001) and cell metabolic activity (p < 0.0001), and significantly increased cell toxicity (p < 0.0001) and inflammatory cytokine expression (p < 0.0001). S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  1. Mathematical Modeling of Surface Roughness of Castings Produced Using ZCast Direct Metal Casting

    NASA Astrophysics Data System (ADS)

    Chhabra, M.; Singh, R.

    2015-04-01

    Aim of this investigation is to develop a mathematical model for predicting surface roughness of castings produced using ZCast process by employing Buckingham's π-theorem. A relationship has been proposed between surface roughness of castings and shell wall thickness of the shell moulds fabricated using 3D printer. Based on model, experiments were performed to obtain the surface roughness of aluminium, brass and copper castings produced using ZCast process based on 3D printing technique. Based on experimental data, three best fitted third-degree polynomial equations have been established for predicting the surface roughness of castings. The predicted surface roughness values were then calculated using established best fitted equations. An error analysis was performed to compare the experimental and predicted data. The average prediction errors obtained for aluminium, brass and copper castings are 10.6, 2.43 and 3.12 % respectively. The obtained average surface roughness (experimental and predicted) values of castings produced are acceptable with the sand cast surface roughness values range (6.25-25 µm).

  2. Performance of copper-based wood preservatives in soil bed exposures

    Treesearch

    Stan T. Lebow; Thomas Nilsson; Jeffrey J. Morrell

    Copper-based biocides are widely used to protect wood from biological attack in a variety of environments. Chromated copper arsenate (CCA) is the dominant copper-based preservative for wood protection (J. T. MICKLEWRIGHT, 1989). First developed in India in the 1930s, CCA contains a very effective combination of materials. Copper provides protection against most...

  3. Production of planar copper-based anode supported intermediate temperature solid oxide fuel cells cosintered at 950 °C

    NASA Astrophysics Data System (ADS)

    De Marco, Vincenzo; Grazioli, Alberto; Sglavo, Vincenzo M.

    2016-10-01

    Copper-based anode supported planar Intermediate Temperature Solid Oxide Fuel Cells are produced and characterized in the present work. The most important advancement is related to the use of copper within the anodic layer, this giving promising results for feeding Intermediate Temperature Solid Oxide Fuel Cells with carbon and sulphur containing fuels. Both anode and Li2O containing-Gadolinia Doped Ceria based electrolyte are produced by water based tape casting process. The supporting anode is coupled to the electrolyte by thermopressing, the cathode being obtained by screen printing. A 3 h isotherm at 950 °C allows to obtain the cosintering of the three layers. The electrochemical test performed on such cells reveals a 0.8 V open circuit voltage and a power density higher than 26 mW cm-2 at 650 °C.

  4. Urinary casts

    MedlinePlus

    ... Waxy casts; Casts in the urine; Fatty casts; Red blood cell casts; White blood cell casts ... a sign of many types of kidney diseases. Red blood cell casts mean there is a microscopic amount of ...

  5. Comparative aspects about the studying methods of cast irons machinability, based on the tool wear

    NASA Astrophysics Data System (ADS)

    Carausu, C.; Pruteanu, O.

    2016-08-01

    The paper presents some considerations of the authors, regarding the studying methods of the cast irons machinability, based on the tools wear on drilling operations. Are described the conditions in which the experimental researches were conducted, intended to offer an overview on drilling machinability of some cast irons categories. It is presented a comparison between long-term methods and short-term methods, for determining the optimal speed chipping of a grey cast iron with lamellar graphite, with average values of tensile strength. Are described: the research methodology, obtained results and conclusions drawn after the results analysis.

  6. The effects of remelting on the mechanical properties of a nickel base partial denture casting alloy.

    PubMed

    Lewis, A J

    1975-04-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third, an oxy-acetylene torch. In each series the same metal was cast sequentially a number of times and all test pieces so produced were subjected to mechanical testing. The mechanical properties were found to vary according to both the number of times the alloy was cast and the method of heating used to render the alloy molten.

  7. Fiber laser cladding of nickel-based alloy on cast iron

    NASA Astrophysics Data System (ADS)

    Arias-González, F.; del Val, J.; Comesaña, R.; Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2016-06-01

    Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni-based coating obtained presents a significantly superior hardness than cast iron.

  8. Relative bioavailability of copper in tribasic copper chloride to copper in copper sulfate for laying hens based on egg yolk and feather copper concentrations.

    PubMed

    Kim, J W; Kim, J H; Shin, J E; Kil, D Y

    2016-07-01

    This experiment was conducted to determine the relative bioavailability (RBV) of Cu in tribasic copper chloride (TBCC) to Cu in copper sulfate (monohydrate form; CuSO4·H2O) for layer diets based on egg yolk and feather Cu concentrations. A total of 252, 72-wk-old Hy-Line Brown laying hens were allotted to 1 of 7 treatments with 6 replicates consisting of 6 hens per replicate in a completely randomized design. Hens were fed corn-soybean meal-based basal diets supplemented with 0 (basal), 100, 200, or 300 mg/kg Cu from CuSO4 or TBCC for 4 wk. Results indicated that egg production, egg weight, and egg mass were not affected by dietary treatments. However, increasing inclusion levels of Cu in diets from CuSO4 decreased (P < 0.05) feed conversion ratio (FCR), whereas increasing inclusion levels of Cu in diets from TBCC did not affect FCR, indicating significant interaction (P < 0.05). Increasing inclusion levels of Cu from TBCC or CuSO4 increased (P < 0.05) Cu concentrations of egg yolk and feathers. Feather Cu concentrations were greater (P < 0.01) for hens fed diets containing CuSO4 than for hens fed diets containing TBCC. The values for the RBV of Cu in TBCC to Cu in CuSO4 based on log10 transformed egg yolk and feather Cu concentrations were 107.4% and 69.5%, respectively. These values for the RBV of Cu in TBCC did not differ from Cu in CuSO4 (100%). The RBV measured in egg yolk did not differ from the RBV measured in feather. In conclusion, the RBV of Cu in TBCC to Cu in CuSO4 can be determined using Cu concentrations of egg yolk and feathers although the values depend largely on target tissues of laying hens. For a practical application, however, the RBV value of Cu in TBCC to Cu in CuSO4 could be 88.5% when the RBV values determined using egg yolk and feather Cu concentrations were averaged.

  9. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  10. Comparison of biomechanical behavior between a cast material torso jacket and a polyethylene based jacket.

    PubMed

    Rizza, Robert; Liu, XueCheng; Thometz, John; Tassone, Channing

    2015-01-01

    Numerous designs are used to the treatment of Early Onset Scoliosis. For example, a Thoraco-Lumbo-Sacral Orthosis (TLSO) is constructed using Polyethylene (PE). In addition, a series of castings has been implemented using cast material (3M, BSN Medical). The cast material has some significant advantages over the PE design including: growth preserving, improved compliance, decreased invasiveness, delaying or avoiding surgery, and the ability to allow the skin to breathe. However, the mechanical effectiveness of the cast material brace as compared to the TLSO is unknown, thus providing the objective of this study. A total of 23 standardized tensile tests were performed on the Delta-Cast Soft(®) and 3M(TM) Scotchcast(TM) Plus Casting Tape in order to obtain mechanical properties (Young's and shear moduli and Poisson ratios). Using a radiograph of a thoracic spine, the size of twelve vertebrae and eleven intervertebral discs were measured and used to create a finite element spine model. Simulations using this model were used to establish mechanical loads which were then applied to finite element models of the TLSO and cast jacket. The thicknesses and number of material layers was varied in these models. Multiple simulations were performed. It was found that a 6.6.mm thick cast jacket made of Delta-Cast Soft(®) had a maximum deformation of 4.7 mm, a maximum stress of 2.9 MPa and a structural factor of safety of 5.71. On the other hand, a 4 mm thick jacket made of PE had a maximum deformation of 2 mm, a maximum stress of 8.9 MPa and a structural factor of safety of 2.70. The cast jacket was 3.5 times lighter and had a material of cost 1/5 of the PE brace. Based on the results, either design will generate the proper constraint forces to maintain spinal correction. But, based on the design parameters (thickness, mechanical properties, structural factor of safety and cost) the brace made of cast material, though slightly thicker has superior structural and cost benefits

  11. Comparison of biomechanical behavior between a cast material torso jacket and a polyethylene based jacket

    PubMed Central

    2015-01-01

    Background Numerous designs are used to the treatment of Early Onset Scoliosis. For example, a Thoraco-Lumbo-Sacral Orthosis (TLSO) is constructed using Polyethylene (PE). In addition, a series of castings has been implemented using cast material (3M, BSN Medical). The cast material has some significant advantages over the PE design including: growth preserving, improved compliance, decreased invasiveness, delaying or avoiding surgery, and the ability to allow the skin to breathe. However, the mechanical effectiveness of the cast material brace as compared to the TLSO is unknown, thus providing the objective of this study. Methods A total of 23 standardized tensile tests were performed on the Delta-Cast Soft® and 3MTM ScotchcastTM Plus Casting Tape in order to obtain mechanical properties (Young’s and shear moduli and Poisson ratios). Using a radiograph of a thoracic spine, the size of twelve vertebrae and eleven intervertebral discs were measured and used to create a finite element spine model. Simulations using this model were used to establish mechanical loads which were then applied to finite element models of the TLSO and cast jacket. The thicknesses and number of material layers was varied in these models. Multiple simulations were performed. Results It was found that a 6.6.mm thick cast jacket made of Delta-Cast Soft® had a maximum deformation of 4.7 mm, a maximum stress of 2.9 MPa and a structural factor of safety of 5.71. On the other hand, a 4 mm thick jacket made of PE had a maximum deformation of 2 mm, a maximum stress of 8.9 MPa and a structural factor of safety of 2.70. The cast jacket was 3.5 times lighter and had a material of cost 1/5 of the PE brace. Conclusions Based on the results, either design will generate the proper constraint forces to maintain spinal correction. But, based on the design parameters (thickness, mechanical properties, structural factor of safety and cost) the brace made of cast material, though slightly thicker has

  12. Gibbs energy calculation of electrolytic plasma channel with inclusions of copper and copper oxide with Al-base

    NASA Astrophysics Data System (ADS)

    Posuvailo, V. M.; Klapkiv, M. D.; Student, M. M.; Sirak, Y. Y.; Pokhmurska, H. V.

    2017-03-01

    The oxide ceramic coating with copper inclusions was synthesized by the method of plasma electrolytic oxidation (PEO). Calculations of the Gibbs energies of reactions between the plasma channel elements with inclusions of copper and copper oxide were carried out. Two methods of forming the oxide-ceramic coatings on aluminum base in electrolytic plasma with copper inclusions were established. The first method – consist in the introduction of copper into the aluminum matrix, the second - copper oxide. During the synthesis of oxide ceramic coatings plasma channel does not react with copper and copper oxide-ceramic included in the coating. In the second case is reduction of copper oxide in interaction with elements of the plasma channel. The content of oxide-ceramic layer was investigated by X-ray and X-ray microelement analysis. The inclusions of copper, CuAl2, Cu9Al4 in the oxide-ceramic coatings were found. It was established that in the spark plasma channels alongside with the oxidation reaction occurs also the reaction aluminothermic reduction of the metal that allows us to dope the oxide-ceramic coating by metal the isobaric-isothermal potential oxidation of which is less negative than the potential of the aluminum oxide.

  13. High coercivity microcrystalline Nd-rich Nd-Fe-Co-Al-B bulk magnets prepared by direct copper mold casting

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Hong, Y.; Fang, X. G.; Qiu, Z. G.; Zhong, X. C.; Gao, X. S.; Liu, Z. W.

    2016-06-01

    High coercivity Nd25Fe40Co20Al15-xBx (x=7-15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd2(FeCoAl)14B, Nd-rich, and Nd1+ε(FeCo)4B4 phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity Hcj of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest Hcj of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties.

  14. Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data.

    PubMed

    Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2016-01-01

    ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.

  15. A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.

    2017-02-01

    Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.

  16. Thiol-based copper handling by the copper chaperone Atox1.

    PubMed

    Hatori, Yuta; Inouye, Sachiye; Akagi, Reiko

    2017-04-01

    Human antioxidant protein 1 (Atox1) plays a crucial role in cellular copper homeostasis. Atox1 captures cytosolic copper for subsequent transfer to copper pumps in trans Golgi network, thereby facilitating copper supply to various copper-dependent oxidereductases matured within the secretory vesicles. Atox1 and other copper chaperones handle cytosolic copper using Cys thiols which are ideal ligands for coordinating Cu(I). Recent studies demonstrated reversible oxidation of these Cys residues in copper chaperones, linking cellular redox state to copper homeostasis. Highlighted in this review are unique redox properties of Atox1 and other copper chaperones. Also, summarized are the redox nodes in the cytosol which potentially play dominant roles in the redox regulation of copper chaperones. © 2016 IUBMB Life, 69(4):246-254, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  17. Copper-based conductive composites with tailored thermal expansion.

    PubMed

    Della Gaspera, Enrico; Tucker, Ryan; Star, Kurt; Lan, Esther H; Ju, Yongho Sungtaek; Dunn, Bruce

    2013-11-13

    We have devised a moderate temperature hot-pressing route for preparing metal-matrix composites which possess tunable thermal expansion coefficients in combination with high electrical and thermal conductivities. The composites are based on incorporating ZrW2O8, a material with a negative coefficient of thermal expansion (CTE), within a continuous copper matrix. The ZrW2O8 enables us to tune the CTE in a predictable manner, while the copper phase is responsible for the electrical and thermal conductivity properties. An important consideration in the processing of these materials is to avoid the decomposition of the ZrW2O8 phase. This is accomplished by using relatively mild hot-pressing conditions of 500 °C for 1 h at 40 MPa. To ensure that these conditions enable sintering of the copper, we developed a synthesis route for the preparation of Cu nanoparticles (NPs) based on the reduction of a common copper salt in aqueous solution in the presence of a size control agent. Upon hot pressing these nanoparticles at 500 °C, we are able to achieve 92-93% of the theoretical density of copper. The resulting materials exhibit a CTE which can be tuned between the value of pure copper (16.5 ppm/°C) and less than 1 ppm/°C. Thus, by adjusting the relative amount of the two components, the properties of the composite can be designed so that a material with high electrical conductivity and a CTE that matches the relatively low CTE values of semiconductor or thermoelectric materials can be achieved. This unique combination of electrical and thermal properties enables these Cu-based metal-matrix composites to be used as electrical contacts to a variety of semiconductor and thermoelectric devices which offer stable operation under thermal cycling conditions.

  18. Laser cladding of nickel-based alloy coatings on copper substrates

    NASA Astrophysics Data System (ADS)

    Balu, Prabu; Rea, Edward; Deng, Justin

    2015-07-01

    The wear resistance of high-value copper components used in the metal casting, automotive, aerospace and electrical equipment industries can be improved by applying nickel (Ni)-based coatings through laser cladding. A high-power diode laser array providing continuous power levels up to 10 kilowatts with beam-shaping optics providing a rectangular focal region of various dimensions was used to deposit Ni-based alloy coatings with controlled thickness ranging from 0.3 mm to 1.6 mm in a single pass on copper (Cu) substrates. Slotted powder feeding plates with various discrete widths delivered uniform streams of powdered metal particles entrained in a carrier gas, matching the selected focal spot dimensions. To enhance laser beam coupling with the substrate and to avoid defects such as cracks, delamination and porosity, Cu substrates were preheated to a temperature of 300°C. The effect of heat input on microstructure of the cladding and extent of the heat-affected zone (HAZ) was evaluated using optical microscopy and scanning electron microscopy. Excessive heat input with longer interaction time increased dilution, porosity and expanded HAZ that significantly reduced the hardness of both the clad and the Cu substrates. Average microhardness of the Ni-C-B-Si-W alloy coating was 572 HV, which was almost 7 times greater than the hardness of the Cu substrate (84 HV).

  19. Mold filling and dimensional accuracy of titanium castings in a spinel-based investment.

    PubMed

    Fischer, Jens; Ebinger, Andreas; Hägi, Tobias; Stawarczyk, Bogna; Wenger, Andreas; Keller, Egbert

    2009-11-01

    Aim of the study was to analyze the mold filling capacity and the dimensional accuracy of a spinel-based investment for titanium castings. Expansion of the investment in dependence of the preheating temperature was measured in a dilatometer. The degree of transformation of MgO and Al2O3 to spinel (MgAl2O4) was evaluated by means of X-ray powder diffraction. Mold filling capacity was assessed by casting a grid and calculating the percentage of completed segments. Dimensional accuracy was analyzed by casting a hollow cylinder and measuring the difference between the inner diameter of the resin pattern and the resulting titanium casting. Spinel formation starts at 819 degrees C. Diffraction patterns prove the formation of spinel from MgO and Al2O3. The amount of spinel increases with increasing preheating temperature. The final expansion of the investment at the end of the preheating cycle at 450 degrees C shows a linear correlation to the maximum preheating temperature. The degree of mold filling is reciprocal to the preheating temperature. The dimensional accuracy shows a linear correlation to the amount of spinel. Best dimensional accuracy was obtained at about 900 degrees C. After a preheating temperature of 884 degrees C, as recommended by the manufacturer, the cast specimens showed a slightly lower inner diameter as compared to the resin patterns. The results suggest that with the spinel investment analyzed an excellent accuracy of titanium castings may be obtained.

  20. Silicon-based Porous Ceramics via Freeze Casting of Preceramic Polymers

    NASA Astrophysics Data System (ADS)

    Naviroj, Maninpat

    Freeze casting is a technique for processing porous materials that has drawn significant attention for its effectiveness in producing a variety of tailorable pore structures for ceramics, metals, and polymers. With freeze casting, pores are generated based on a solidification process where ice crystals act as a sacrificial template which can eventually be sublimated to create pores. While the majority of freeze-casting studies have been performed using conventional ceramic suspensions, this work explores an alternative processing route by freeze casting with preceramic polymer solutions. Significant differences exist between freeze casting of a particulate suspension and a polymeric solution. These changes affect the processing method, solidification behavior, and pore structure, thereby introducing new challenges and possibilities for the freeze-casting technique. The first part of this study explored the processing requirements involved with freeze casting of preceramic polymers, along with methods to control the resulting pore structure. Solvent choice, freezing front velocity, and polymer concentration were used as processing variables to manipulate the pore structures. A total of seven organic solvents were freeze cast with a polymethylsiloxane preceramic polymer to produce ceramics with isotropic, dendritic, prismatic, and lamellar pore morphologies. Changes in freezing front velocity and polymer concentration were shown to influence pore size, shape, and connectivity. Differences between suspension- and solution-based samples freeze cast under equivalent conditions were also investigated. Certain solidification microstructures were strongly affected by the presence of suspended particles, creating differences between pore structures generated from the same solvents. Additionally, processing of solution-based samples were found to be the more facile technique. Compressive strength and water permeability of dendritic and lamellar structures were analyzed to

  1. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  2. Fundamental studies on the removal of copper in hydroxylamine based chemistries of interest to copper chemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Huang, Wayne Hai-Wei

    2003-10-01

    The advancement of IC technology has led to an increasing demand for faster and cheaper microelectronic devices. One of the key processing steps in fabricating ultra-large scale integration devices is copper chemical-mechanical planarization (CMP). Traditional copper CMP slurries use hydrogen peroxide as an oxidant. A novel copper CMP slurry based on hydroxylamine chemistry is being considered as an alternative to hydrogen peroxide based slurries. The main goal of the research reported in this dissertation is to understand the removal of copper in hydroxylamine based chemistries. Copper removal experiments were performed on a regular CMP tool and a specially designed electrochemical abrasion cell (EC-AC). The effects of applied pressure and abrasion speed were investigated on both tools. The electrochemistry of copper in hydroxylamine based chemistry was investigated using electrochemical techniques on the EC-AC tool. The techniques include electrochemical polarization and voltammetry. The effects of solution pH and hydroxylamine concentration on the polarization of copper were systematically investigated. The fate of hydroxylamine and other nitrogen-based species were studied using capillary electrophoresis chromatography. The removal rates of copper obtained from a regular CMP tool were twice as much as the rates obtained from the EC-AC tool. However, the removal rates from both tools showed the same trend with respect to pH. Interestingly, a maximum peak in copper removal rates occurs at a pH value of 6, and a significant decrease in rates occur at pH values deviating from 6. The copper removal results obtained from the EC-AC tool with and without abrasion showed that the high removal rate at pH 6 is largely due to chemical attack. The reactions involved in the oxidation of copper are dependent on the decomposition and complexation behaviors of hydroxylamine. Electrochemical analysis showed the removal of copper may be dependent on the reduction of nitric oxide

  3. The future of copper in China--A perspective based on analysis of copper flows and stocks.

    PubMed

    Zhang, Ling; Cai, Zhijian; Yang, Jiameng; Yuan, Zengwei; Chen, Yan

    2015-12-01

    This study attempts to speculate on the future of copper metabolism in China based on dynamic substance flow analysis. Based on tremendous growth of copper consumption over the past 63 years, China will depict a substantially increasing trend of copper in-use stocks for the next 30 years. The highest peak will be possibly achieved in 2050, with the maximum ranging between 163 Mt and 171 Mt. After that, total stocks are expected to slowly decline 147-154 Mt by the year 2080. Owing to the increasing demand of in-use stocks, China will continue to have a profound impact on global copper consumption with its high import dependence until around 2020, and the peak demand for imported copper are expected to approach 5.5 Mt/year. Thereafter, old scrap generated by domestic society will occupy an increasingly important role in copper supply. In around 2060, approximately 80% of copper resources could come from domestic recycling of old scrap, implying a major shift from primary production to secondary production. With regard to the effect of lifetime distribution uncertainties in different end-use sectors of copper stocks on the predict results, uncertainty evaluation was performed and found the model was relatively robust to these changes.

  4. High-Throughput Physiologically Based Toxicokinetic Models for ToxCast Chemicals

    EPA Science Inventory

    Physiologically based toxicokinetic (PBTK) models aid in predicting exposure doses needed to create tissue concentrations equivalent to those identified as bioactive by ToxCast. We have implemented four empirical and physiologically-based toxicokinetic (TK) models within a new R ...

  5. High-Throughput Physiologically Based Toxicokinetic Models for ToxCast Chemicals

    EPA Science Inventory

    Physiologically based toxicokinetic (PBTK) models aid in predicting exposure doses needed to create tissue concentrations equivalent to those identified as bioactive by ToxCast. We have implemented four empirical and physiologically-based toxicokinetic (TK) models within a new R ...

  6. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  7. Effect of casting geometry on mechanical properties of two nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Johnston, J. R.; Dreshfield, R. L.; Collins, H. E.

    1976-01-01

    An investigation was performed to determine mechanical properties of two rhenium-free modifications of alloy TRW, and to evaluate the suitability of the alloy for use in a small integrally cast turbine rotor. The two alloys were initially developed using stress rupture properties of specimens machined from solid gas turbine blades. Properties in this investigation were determined from cast to size bars and bars cut from 3.8 by 7.6 by 17.8 cm blocks. Specimens machined from blocks had inferior tensile strength and always had markedly poorer rupture lives than cast to size bars. At 1,000 C the cast to size bars had shorter rupture lives than those machined from blades. Alloy R generally had better properties than alloy S in the conditions evaluated. The results show the importance of casting geometry on mechanical properties of nickel base superalloys and suggest that the geometry of a component can be simulated when developing alloys for that component.

  8. A GridPix-based X-ray detector for the CAST experiment

    NASA Astrophysics Data System (ADS)

    Krieger, C.; Kaminski, J.; Lupberger, M.; Desch, K.

    2017-09-01

    The CAST experiment has been searching for axions and axion-like particles for more than 10 years. The continuous improvements in the detector designs have increased the physics reach of the experiment far beyond what was originally conceived. As part of this development, a new detector based on a GridPix readout had been developed in 2014 and was mounted on the CAST experiment during the end of the data taking period of 2014 and the complete period in 2015. We report on the detector design, its advantages and the performance during both periods.

  9. RP-1 Thermal Stability and Copper Based Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Stiegemeier, B. R.; Meyer, M. L.; Driscoll, E.

    2005-01-01

    A series of electrically heated tube tests was performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the effect that sulfur content, test duration, and tube material play in the overall thermal stability and materials compatibility characteristics of RP-1. Scanning-electron microscopic (SEM) analysis in conjunction with energy dispersive spectroscopy (EDS) were used to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion formed during these runs. Results of the parametric study indicate that tests with standard RP-1 (total sulfur -23 ppm) and pure copper tubing are characterized by a depostion/deposit shedding process producing local wall temperature swings as high as 500 F. The effect of this shedding is to keep total carbon deposition levels relatively constant for run times from 20 minutes up to 5 hours, though increasing tube pressure drops were observed in all runs. Reduction in the total sulfur content of the fuel from 23 ppm to less than 0.1 ppm resulted in the elimination of deposit shedding, local wall temperature variation, and the tube pressure drop increases that were observed in standard sulfur level RP-1 tests. The copper alloy GRCop-84, a copper alloy developed specifically for high heat flux applications, was found to exhibit higher carbon deposition levels compared to identical tests performed in pure copper tubes. Results of the study are consistent with previously published heated tube data which indicates that small changes in fuel total sulfur content can lead to significant differences in the thermal stability of kerosene type fuels and their compatibility with copper based materials. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-1.

  10. U.S. Geological Survey's ShakeCast: A cloud-based future

    USGS Publications Warehouse

    Wald, David J.; Lin, Kuo-Wan; Turner, Loren; Bekiri, Nebi

    2014-01-01

    When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap portrays the extent of potentially damaging shaking. In turn, the ShakeCast system, a freely-available, post-earthquake situational awareness application, automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. ShakeCast is particularly suitable for earthquake planning and response purposes by Departments of Transportation (DOTs), critical facility and lifeline utilities, large businesses, engineering and financial services, and loss and risk modelers. Recent important developments to the ShakeCast system and its user base are described. The newly-released Version 3 of the ShakeCast system encompasses advancements in seismology, earthquake engineering, and information technology applicable to the legacy ShakeCast installation (Version 2). In particular, this upgrade includes a full statistical fragility analysis framework for general assessment of structures as part of the near real-time system, direct access to additional earthquake-specific USGS products besides ShakeMap (PAGER, DYFI?, tectonic summary, etc.), significant improvements in the graphical user interface, including a console view for operations centers, and custom, user-defined hazard and loss modules. The release also introduces a new adaption option to port ShakeCast to the "cloud". Employing Amazon Web Services (AWS), users now have a low-cost alternative to local hosting, by fully offloading hardware, software, and communication obligations to the cloud. Other advantages of the "ShakeCast Cloud" strategy include (1) Reliability and robustness of offsite operations, (2) Scalability naturally accommodated, (3), Serviceability, problems reduced due to software and hardware uniformity, (4

  11. Effect of Casting Material on the Cast Pressure After Sequential Cast Splitting.

    PubMed

    Roberts, Aaron; Shaw, K Aaron; Boomsma, Shawn E; Cameron, Craig D

    2017-01-01

    Circumferential casting is a vital component of nonoperative fracture management. These casts are commonly valved to release pressure and decrease the risk of complications from swelling. However, little information exists regarding the effect of different casting supplies on the pressure within the cast. Seventy-five long-arm casts were performed on human volunteers, divided between 5 experimental groups with 15 casts in each groups. Testing groups consisted of 2 groups with a plaster short-arm cast overwrapped with fiberglass to a long arm with either cotton or synthetic cast padding. The 3 remaining groups included fiberglass long-arm casts with cotton, synthetic, or waterproof cast padding. A pediatric blood pressure cuff bladder was placed within the cast and inflated to 100 mm Hg. After inflation, the cast was sequentially released with pressure reading preformed after each stage. Order of release consisted of cast bivalve, cast padding release, and cotton stockinet release. After release, the cast was overwrapped with a loose elastic bandage. Difference in pressure readings were compared based upon the cast material. Pressures within the cast were found to decrease with sequential release of cast. The cast type had no effect of change in pressure. Post hoc testing demonstrated that the type of cast padding significantly affected the cast pressures with waterproof padding demonstrating the highest pressure readings at all time-points in the study, followed by synthetic padding. Cotton padding had the lowest pressure readings at all time-points. Type of cast padding significantly influences the amount of pressure within a long-arm cast, even after bivalving the cast and cutting the cast padding. Cotton cast padding allows for the greatest change in pressure. Cotton padding demonstrates the greatest change in pressure within a long-arm cast after undergoing bivalve. Synthetic and waterproof cast padding should not be used in the setting of an acute fracture to

  12. The effect of aluminium on the metallography of a nickel base removable partial denture casting alloy.

    PubMed

    Lewis, A J

    1978-12-01

    Three special nickel-chromium alloys were prepared in which the aluminum levels were adjusted both above and below that of a commercial nickel base dental casting alloy. Tensile and metallographic evaluation of representative samples of the alloys were made and the changes in the properties of the alloys are reported.

  13. Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces

    PubMed Central

    Elguindi, Jutta; Wagner, Janine; Rensing, Christopher

    2013-01-01

    Aims To evaluate the killing of Pseudomonas aeruginosa PAO1 on copper cast alloys and the influence of genes on survival on copper containing medium and surfaces. Methods and Results Different strains of P. aeruginosa were inoculated on copper containing medium or different copper cast alloys and the survival rate determined. The survival rates were compared to rates on copper-free medium and stainless steel as control. In addition, the effect of temperature on survival was examined. Conclusions Copper cast alloys had previously shown to be bactericidal to various bacteria but the mechanism of copper-mediated killing is still not known. In this report we demonstrate that P. aeruginosa PAO1 is rapidly killed on different copper cast alloys and that genes involved in conferring copper resistance in copper-containing medium also influenced survival on copper cast alloys. We also show that the rate of killing is influenced by temperature. PMID:19239551

  14. Generation and evaluation of 3D digital casts of maxillary defects based on multisource data registration: A pilot clinical study.

    PubMed

    Ye, Hongqiang; Ma, Qijun; Hou, Yuezhong; Li, Man; Zhou, Yongsheng

    2017-04-25

    Digital techniques are not clinically applied for 1-piece maxillary prostheses containing an obturator and removable partial denture retained by the remaining teeth because of the difficulty in obtaining sufficiently accurate 3-dimensional (3D) images. The purpose of this pilot clinical study was to generate 3D digital casts of maxillary defects, including the defective region and the maxillary dentition, based on multisource data registration and to evaluate their effectiveness. Twelve participants with maxillary defects were selected. The maxillofacial region was scanned with spiral computer tomography (CT), and the maxillary arch and palate were scanned using an intraoral optical scanner. The 3D images from the CT and intraoral scanner were registered and merged to form a 3D digital cast of the maxillary defect containing the anatomic structures needed for the maxillary prosthesis. This included the defect cavity, maxillary dentition, and palate. Traditional silicone impressions were also made, and stone casts were poured. The accuracy of the digital cast in comparison with that of the stone cast was evaluated by measuring the distance between 4 anatomic landmarks. Differences and consistencies were assessed using paired Student t tests and the intraclass correlation coefficient (ICC). In 3 participants, physical resin casts were produced by rapid prototyping from digital casts. Based on the resin casts, maxillary prostheses were fabricated by using conventional methods and then evaluated in the participants to assess the clinical applicability of the digital casts. Digital casts of the maxillary defects were generated and contained all the anatomic details needed for the maxillary prosthesis. Comparing the digital and stone casts, a paired Student t test indicated that differences in the linear distances between landmarks were not statistically significant (P>.05). High ICC values (0.977 to 0.998) for the interlandmark distances further indicated the high

  15. Evaluation of an improved centrifugal casting machine.

    PubMed

    Donovan, T E; White, L E

    1985-05-01

    A Type III gold alloy, a silver-palladium alloy, and a base metal alloy were cast in two different centrifugal casting machines. With the number of complete cast mesh squares as an indicator of castability, the Airspin casting machine produced superior castings with all three alloys. The base metal alloy produced the greatest number of complete squares with both casting machines.

  16. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    PubMed Central

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-01-01

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting. PMID:28772519

  17. Determination of Lead with a Copper-Based Electrochemical Sensor.

    PubMed

    Kang, Wenjing; Pei, Xing; Rusinek, Cory A; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2017-03-21

    This work demonstrates determination of lead (Pb) in surface water samples using a low-cost copper (Cu)-based electrochemical sensor. Heavy metals require careful monitoring due to their toxicity, yet current methods are too complex or bulky for point-of-care (POC) use. Electrochemistry offers a convenient alternative for metal determination, but the traditional electrodes, such as carbon or gold/platinum, are costly and difficult to microfabricate. Our copper-based sensor features a low-cost electrode material-copper-that offers simple fabrication and competitive performance in electrochemical detection. For anodic stripping voltammetry (ASV) of Pb, our sensor shows 21 nM (4.4 ppb) limit of detection, resistance to interfering metals such as cadmium (Cd) and zinc (Zn), and stable response in natural water samples with minimum sample pretreatment. These results suggest this electrochemical sensor is suitable for environmental and potentially biological applications, where accurate and rapid, yet inexpensive, on-site monitoring is necessary.

  18. Disposable Copper-Based Electrochemical Sensor for Anodic Stripping Voltammetry

    PubMed Central

    2015-01-01

    In this work, we report the first copper-based point-of-care sensor for electrochemical measurements demonstrated by zinc determination in blood serum. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Electrochemistry offers a simple approach to metal detection on the microscale, but traditional carbon, gold (Au), or platinum (Pt) electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor features a new low-cost electrode material, copper, which offers simple fabrication and compatibility with microfabrication and PCB processing, while maintaining competitive performance in electrochemical detection. Anodic stripping voltammetry of zinc using our new copper-based sensors exhibited a 140 nM (9.0 ppb) limit of detection (calculated) and sensitivity greater than 1 μA/μM in the acetate buffer. The sensor was also able to determine zinc in a bovine serum extract, and the results were verified with independent sensor measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time, and high accuracy at low concentrations of analyte. PMID:24773513

  19. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The document outlines procedures for implementing Project CAST (Community and School Together), a community-based career education program for secondary special education students in Charles County, Maryland. Initial sections discuss the role of a learning coordinator, (including relevant travel reimbursement and mileage forms) and an overview of…

  20. Paper Casting.

    ERIC Educational Resources Information Center

    Arrasjid, Dorine A.

    1980-01-01

    Describes an art project, based on the work of artist Chew Teng Beng, in the molding of wet paper on a plaster cast to create embossed paper designs. The values of such a project are outlined, including a note that its tactile approach makes it suitable to visually handicapped students. (SJL)

  1. Paper Casting.

    ERIC Educational Resources Information Center

    Arrasjid, Dorine A.

    1980-01-01

    Describes an art project, based on the work of artist Chew Teng Beng, in the molding of wet paper on a plaster cast to create embossed paper designs. The values of such a project are outlined, including a note that its tactile approach makes it suitable to visually handicapped students. (SJL)

  2. Technology and experiments of 42CrMo bearing ring forming based on casting ring blank

    NASA Astrophysics Data System (ADS)

    Li, Yongtang; Ju, Li; Qi, Huiping; Zhang, Feng; Chen, Guozhen; Wang, Mingli

    2014-03-01

    Bearing ring is the crucial component of bearing. With regard to such problems as material waste, low efficiency and high energy consumption in current process of producing large bearing ring, a new process named "casting-rolling compound forming technology" is researched by taking the typical 42CrMo slew bearing as object. Through theoretical analysis, the design criteria of the main casting-rolling forming parameters are put forward at first. Then the constitutive relationship model of as-cast 42CrMo steel and its mathematical model of dynamic recrystallization are obtained according to the results of the hot compression experiment. By a coupled thermal-mechanical finite element model for radial-axial rolling of bearing ring, the fraction of dynamic recrystallization is calculated and recrystallized grains size are predicated. Meanwhile, the effects of the initial rolling temperature and feed rate of idle roll on material microstructure evolution are analyzed. Finally, the industrial rolling experiment is designed and performed, based on the simulation results. In addition, mechanical and metallographic tests are conducted on rolled bearing ring to get the mechanical parameters and metallographic structure. The experimental data and results show that the mechanical properties of bearing ring produced by casting-rolling compound forming technology are up to industrial standard, and a qualified bearing ring can be successfully formed by employing this new technology. Through the study, a process of forming large bearing ring directly by using casting ring blank is obtained, which could provide an effective theoretical guidance for manufacturing large ring parts. It also has an edge in saving material, lowering energy and improving efficiency.

  3. Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Shabbir, Muhammad; Akhter, Zareen; Ismail, Hammad; Mirza, Bushra

    2017-10-01

    Novel ether based Schiff bases (HL1- HL4) were synthesized from 5-chloro-2-hydroxy benzaldehyde and primary amines (1-amino-4-phenoxybenzene, 4-(4-aminophenyloxy) biphenyl, 1-(4-aminophenoxy) naphthalene and 2-(4-aminophenoxy) naphthalene). From these Schiff bases copper(II) complexes (Cu(L1)2-Cu(L4)2)) were synthesized and characterized by elemental analysis and spectroscopic (FTIR, NMR) techniques. The synthesized Schiff bases and copper(II) complexes were further assessed for various biological studies. In brine shrimp assay the copper(II) complexes revealed 4-fold higher activity (LD50 3.8 μg/ml) as compared with simple ligands (LD50 12.4 μg/ml). Similar findings were observed in potato disc antitumor assay with higher activities for copper(II) complexes (IC50 range 20.4-24.1 μg/ml) than ligands (IC50 range 40.5-48.3 μg/ml). DPPH assay was performed to determine the antioxidant potential of the compounds. Significant antioxidant activity was shown by the copper(II) complexes whereas simple ligands have shown no activity. In DNA protection assay significant protection behavior was exhibited by simple ligand molecules while copper(II) complexes showed neutral behavior (neither protective nor damaging).

  4. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    SciTech Connect

    Sabau, Adrian S; Mirmiran, Seyed; Glaspie, Christopher; Li, Shimin; Apelian, Diran; Shyam, Amit; Haynes, James A; Rodriguez, Andres

    2017-01-01

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during casting can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.

  5. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles.

    PubMed

    Civardi, Chiara; Schwarze, Francis W M R; Wick, Peter

    2015-05-01

    Copper (Cu) is an essential biocide for wood protection, but fails to protect wood against Cu-tolerant wood-destroying fungi. Recently Cu particles (size range: 1 nm-25 μm) were introduced to the wood preservation market. The new generation of preservatives with Cu-based nanoparticles (Cu-based NPs) is reputedly more efficient against wood-destroying fungi than conventional formulations. Therefore, it has the potential to become one of the largest end uses for wood products worldwide. However, during decomposition of treated wood Cu-based NPs and/or their derivate may accumulate in the mycelium of Cu-tolerant fungi and end up in their spores that are dispersed into the environment. Inhaled Cu-loaded spores can cause harm and could become a potential risk for human health. We collected evidence and discuss the implications of the release of Cu-based NPs by wood-destroying fungi and highlight the exposure pathways and subsequent magnitude of health impact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A radiographic evaluation of microporosity in a nickel base casting allow.

    PubMed

    Lewis, A J

    1975-08-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third an oxy-acetylene torch. All specimens were radiographed and a classification developed to indicate the radiographic soundness of each specimen. Radiographic soundness was subsequently related to the results obtained from mechanical testing.

  7. Cumulative Damage Studies of Conventional-Cast Composite-Modified Double-Base Propellant.

    DTIC Science & Technology

    This report describes results from a one-year study of cumulative damage mechanisms in conventional-cast, composite-modified, double-base ( CMDB ...propellant. Testing was performed on Hercules’ FKM propellant, which is a typical member of the CMDB propellant family. Test data were correlated to...provide usable design envelopes depicting CMDB propellant damage as a function of the number of loading cycles and the level of loading. Major emphasis in

  8. Assessment of high temperature performance of a cast nickel base superalloy in corrosive environment

    SciTech Connect

    Deb, D.; Iyer, S.R.; Radhakrishnan, V.M.

    1996-10-15

    Turbine blades are subjected to creep deformation through their continuous centrifugal loading during operation. In addition to this, hot corrosion in gas turbines limits the durability of even the best blade materials at present available. In this article, an attempt has been made to evaluate the effect of hot corrosion due to sodium sulphate, sodium chloride and sodium metavanadate salt mixture on creep rupture of a cast nickel base turbine blade superalloy.

  9. Influence of soluble copper on the electrokinetic properties and transport of copper oxychloride-based fungicide particles

    NASA Astrophysics Data System (ADS)

    Paradelo, Marcos; Letzner, Adrian; Arias-Estévez, Manuel; Garrido-Rodríguez, Beatriz; López-Periago, J. Eugenio

    2011-09-01

    This article describes the influence of dissolved copper on the electrokinetic properties and transport of a copper oxychloride-based fungicide (COF) in porous media. The Zeta potential (ζ) of COF particles increases (viz. becomes less negative) with increasing concentration of Cu 2+ in the bulk solution. ζ decreases for COF when the electrolyte (NaNO 3) concentration is raised from 1 to 10 mM. This can be ascribed to ion correlation of Cu 2+ in the electrical double layer (EDL). COF transport tests in quartz sand columns showed the addition of Cu 2+ to the bulk solution to result in increased retention of the metal. Modelling particle deposition dynamics provided results consistent with kinetic attachment. Based on the effect of soluble Cu on colloid mobility, the transport of particulate and soluble forms of copper is coupled via the chemistry of pore water and colloid interactions. Mutual effects between cations and colloids should thus be considered when determining the environmental fate of particulate and soluble forms of copper in soil and groundwater (especially at copper-contaminated sites).

  10. Copper extraction by fatty hydroxamic acids derivatives synthesized based on palm kernel oil.

    PubMed

    Haron, Jelas; Jahangirian, Hossein; Silong, Sidik; Yusof, Nor Azah; Kassim, Anuar; Moghaddam, Roshanak Rafiee; Peyda, Mazyar; Abdollahi, Yadollah; Amin, Jamileh; Gharayebi, Yadollah

    2012-01-01

    Fatty hydroxamic acids derivatives based on palm kernel oil which are phenyl fatty hydroxamic acids (PFHAs), methyl fatty hydroxamic acids (MFHAs), isopropyl fatty hydroxamic acids (IPFHAs) and benzyl fatty hydroxamic acids (BFHAs) were applied as chelating agent for copper liquid-liquid extraction. The extraction of copper from aqueous solution by MFHAs, PFHAs, BFHAs or IPFHAs were carried out in hexane as an organic phase through the formation of copper methyl fatty hydroxamate (Cu-MFHs), copper phenyl fatty hydroxamate (Cu-PFHs), copper benzyl fatty hydroxamate (Cu-BFHs) and copper isopropyl fatty hydroxamate (Cu-IPFHs). The results showed that the fatty hydroxamic acid derivatives could extract copper at pH 6.2 effectively with high percentage of extraction (the percentages of copper extraction by MFHAs, PFHAs, IPFHs and BFHAs were found to be 99.3, 87.5, 82.3 and 90.2%, respectively). The extracted copper could be quantitatively stripped back into sulphuric acid (3M) aqueous solution. The obtained results showed that the copper recovery percentages from Cu-MFHs, Cu-PFHs, Cu-BFHs and Cu-IPFHs are 99.1, 99.4, 99.6 and 99.9 respectively. The copper extraction was not affected by the presence of a large amount of Mg (II), Ni (II), Al (III), Mn (II) and Co (II) ions in the aqueous solution.

  11. Effect of copper-based fungicide (bordeaux mixture) spray on the total copper content of areca nut: Implications in increasing prevalence of oral submucous fibrosis

    PubMed Central

    Mathew, Philips; Austin, Ravi David; Varghese, Soma Susan; Manojkumar, A. D.

    2015-01-01

    Background: Potentially malignant disorders like oral submucous fibrosis (OSMF) often precede oral squamous cell carcinoma (OSCC). The rate of transformation of OSMF to OSCC ranges from 3 to 19%. OSMF is etiologically related to chewing of areca nut (betel nut), and the high copper content in areca nut plays an important role in the pathogenesis of the disorder. Even though many studies estimated and confirmed increased copper levels in areca nuts, studies tracing the source of the increased copper content are scarce. Interestingly, on review of agricultural literature, it was found that most of the areca nut plantations in South India commonly use a copper-based fungicide, bordeaux mixture (BM). Aim: The aim of the study was to estimate and compare the copper content in areca nuts from plantations with and without copper-based fungicide usage. Materials and Methods: Four areca nut plantations from Dakshina Kannada district, Karnataka (group A) and four plantations from Ernakulam district, Kerala (group B) were selected for the study. The plantations from Karnataka used copper-based fungicide regularly, whereas the latter were devoid of it. Areca nut samples of three different maturities (unripe, ripe, and exfoliated) obtained from all plantations were dehusked, ground, and subjected to atomic absorption spectrometry (AAS) for copper analysis. Results: There was statistically significant difference in the copper content of areca nuts from both groups. The areca nuts from plantations treated with copper-based fungicide showed significantly higher copper levels in all maturity levels compared to their counterparts in the other group (P < 0.05). Conclusions: The high copper content in areca nut may be related to the copper-based fungicide treatment on the palms. These areca nuts with high copper content used in quid or commercial products may be responsible for the increasing prevalence of OSMF. PMID:26312227

  12. Cast-in-place, ambiently-dried, silica-based, high-temperature insulation

    DOE PAGES

    Cheng, Eric Jianfeng; Thompson, Travis; Salvador, James R.; ...

    2017-02-03

    A novel sol-gel chemistry approach was developed to enable the simple integration of a cast-in-place, ambiently-dried insulation into high temperature applications. The insulation was silica based, synthesized using methyltrimethoxysilane (MTMS) as the precursor. MTMS created a unique silica microstructure that was mechanically robust, macroporous, and superhydrophobic. To allow for casting into and around small, orthogonal features, zirconia fibers were added to increase stiffness and minimize contraction that could otherwise cause cracking during drying. Radiative heat transport was reduced by adding titania powder as an opacifier. To assess relevance to high temperature thermoelectric generator technology, a comprehensive set of materials characterizationsmore » were conducted. The silica gel was thermally stable, retained superhydrophobicity with a water contact angle > 150° , and showed a high electrical resistance > 1 GΩ, regardless of heating temperature (up to 600 °C in Ar for 4 h). In addition, it exhibited a Young's modulus ~3.7 MPa in room temperature and a low thermal conductivity < 0.08 W/m.K before and after heat treatment. Thus, based on the simplicity of the manufacturing process and optimized material properties, we believe this technology can act as an effective cast-in-place thermal insulation (CTI) for thermoelectric generators and myriad other applications requiring improved thermal efficiency.« less

  13. Tape cast second generation orthorhombic-based titanium aluminide alloys for MMC applications. [Metal Matrix Composites

    SciTech Connect

    Smith, P.R.; Rosenberger, A.H. . Materials and Mfg. Directorate); Shepard, M.J. )

    1999-06-18

    Titanium metal matrix composites (TMCs) utilizing continuous SiC fiber reinforcement are considered important, if not, enabling materials for advanced Air Force propulsion systems, wherein combinations of high specific strength and elevated temperature capability are prerequisites to obtain desired increases in thrust-to-weight ratios and decreased specific fuel consumption. One such class of TMCs being assessed for use in rotating engine components are those based upon the orthorhombic titanium aluminide phase, Ti[sub 2]AlNb. These orthorhombic titanium matrix composites (O TMCs) are being examined for sustained use at temperatures up to 700 C. Previous studies have primarily focused on O TMCs made using the foil-fiber-foil fabrication process. More recently the Materials and Manufacturing Directorate of the Air Force Research Laboratory has been focusing attention on an alternative powder metallurgy approach for fabrication of O TMCs via tape casting. This latter approach has the potential to produce significant cost reduction (<$70/lb) for the matrix input material (powder). Unfortunately, little work has been done to understand the effects of powder microstructures and the tape casting process itself on the mechanical performance of O TMCs. Therefore, the first objective of this study is to examine the microstructural evolution and mechanical performance (with and without heat treatment) of three unreinforced heat orthorhombic-based titanium aluminide matrices made via tape casting. A second objective is to assess the viability of powder metallurgy processing for the fabrication of O TMCs.

  14. IR-based method for copper electrolysis short circuit detection

    NASA Astrophysics Data System (ADS)

    Makipaa, Esa; Tanttu, Juha T.; Virtanen, Henri

    1997-04-01

    In the copper electrorefining process short-circuits between the anodes and cathodes are harmful. They cause decreasing production rate and poor cathode copper quality. Short- circuits should be detected and eliminated as soon as possible. Manual inspection methods often take a lot of time and excessive walking on the electrodes can not be avoided. For these reasons there is a lot of interest to develop short-circuit detection and quality control. In this paper an IR based method for short circuit detection is presented. In the case of the short-circuited anode and cathode pair especially cathode bar becomes significantly warmer than bar in the normal condition. Using IR camera mounted on a moving crane these hot spots among the electrodes were easily detected. IR imaging was tested in the harsh conditions of the refinery hall with various crane speeds. Image processing is a tool to interpret the obtained IR images. In this paper an algorithm for searching the locations of the short-circuits in the electrolytic cell using imaging results as test material is proposed. The basic idea of the developed algorithm is first to search and calculate necessary edges and initial lines of the electrolytic cell. The second step is to determine the exact position of each cathode plate in the cell so that using thresholding the location of the short-circuited cathode can be determined. IR imaging combined with image processing has proven to be a superior method for predictive maintenance and process control compared to manual ones in the copper electrorefining process. It also makes it possible to collect valuable information for the quality control purposes.

  15. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  16. Polyglycerol-Based Copper Chelators for the Transport and Release of Copper Ions in Biological Environments.

    PubMed

    Albrecht, Ralf; Fehse, Susanne; Pant, Kritee; Nowag, Sabrina; Stephan, Holger; Haag, Rainer; Tzschucke, Carl Christoph

    2016-03-01

    Here, the synthesis and characterization of three improved nanosystems is presented based on amino functionalized hyperbranched polyglycerol (hPG; M(w) = 16.8 kDa) as potential copper(II) chelators. The ligands, N-methyl-N-picolylglycine amide, 2,6-pyridine dicarboxylic acid monoamide, and cyclam tetraacetic acid (TETA) monoamide, are covalently attached to the polymer with amide bonds. In this paper, the Cu(II) loading capacity, the stability of the Cu(II)-loaded carriers at different pHs, with competing ligands and in human serum, as well as the transport of Cu(II) in biological systems are investigated. For the first time, a different cytotoxicity of functionalized polymer nanoparticles with and without Cu(II) is observed. The cyclam-based carrier combines the highest loading capacity (29 Cu ions/nanoparticle), best stability with respect to pH and EDTA (45% remaining Cu after 24 h), lowest cytotoxicity (IC50 > 100 × 10(-6) M (unloaded), 1500 × 10(-6) M Cu(II); Cu:carrier 29:1), and the highest stability in human serum.

  17. LineCast: line-based distributed coding and transmission for broadcasting satellite images.

    PubMed

    Wu, Feng; Peng, Xiulian; Xu, Jizheng

    2014-03-01

    In this paper, we propose a novel coding and transmission scheme, called LineCast, for broadcasting satellite images to a large number of receivers. The proposed LineCast matches perfectly with the line scanning cameras that are widely adopted in orbit satellites to capture high-resolution images. On the sender side, each captured line is immediately compressed by a transform-domain scalar modulo quantization. Without syndrome coding, the transmission power is directly allocated to quantized coefficients by scaling the coefficients according to their distributions. Finally, the scaled coefficients are transmitted over a dense constellation. This line-based distributed scheme features low delay, low memory cost, and low complexity. On the receiver side, our proposed line-based prediction is used to generate side information from previously decoded lines, which fully utilizes the correlation among lines. The quantized coefficients are decoded by the linear least square estimator from the received data. The image line is then reconstructed by the scalar modulo dequantization using the generated side information. Since there is neither syndrome coding nor channel coding, the proposed LineCast can make a large number of receivers reach the qualities matching their channel conditions. Our theoretical analysis shows that the proposed LineCast can achieve Shannon's optimum performance by using a high-dimensional modulo-lattice quantization. Experiments on satellite images demonstrate that it achieves up to 1.9-dB gain over the state-of-the-art 2D broadcasting scheme and a gain of more than 5 dB over JPEG 2000 with forward error correction.

  18. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 1: Narloy Z

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for Narloy Z, a centrifugally cast, copper-base alloy. Tensile tests were performed at room temperature in air and in argon at 482, 538 and 593 C using an axial strain rate of .002/sec to the -1 power. In addition tensile tests were performed at 538 C in an evaluation of tensile properties at strain rates of .004 and .01/sec to the -1 power. Ultimate and yield strength values of about 315 and 200 MN/sq m respectively were recorded at room temperature and these decreased to about 120 and 105 respectively as the temperature was increased to 593 C. Reduction in area values were recorded in the range from 40 to 50% with some indication of a minimum ductility point at 538 C.

  19. Laboratory-Based Model of Microbiologically Induced Corrosion of Copper

    PubMed Central

    Bremer, Philip J.; Geesey, Gill G.

    1991-01-01

    The interactions of bacteria isolated from corroded copper coupons on thin films of copper evaporated onto germanium internal reflection elements were evaluated nondestructively in real time by attentuated total reflectance Fourier transform infrared spectroscopy. The films were stable in the presence of flowing or static sterile culture medium. When exposed to and colonized by the bacterium CCI 8, the copper thin film corroded. Corrosion was enhanced under quiescent conditions. In conjunction with corrosion of the copper thin film was an increase in the concentration of polysaccharide material at the copper-biofilm interface. A different bacterium (CCI 11) did not corrode the copper thin film, and the establishment of this bacterium on the copper surface prevented corrosion of the thin film by CCI 8. Images PMID:16348520

  20. Reduction and Oxidation of Copper Oxide Thin Films and Thermal Stability Issues in Copper-Based Metallization.

    NASA Astrophysics Data System (ADS)

    Li, Jian

    This thesis investigates the oxidation and reduction of Cu-oxides and thermal induced reactions of Cu with metals. The combination of ^{16}O( alpha,alpha)^{16}O oxygen resonance and transmission electron microscopy (TEM) provides an effective method of studying the oxidation and reduction of copper oxide thin films. A discontinuous morphology of grain growth of Cu_2O in found in the CuO matrix during reduction. The migration of the Cu_2O-CuO phase boundary is induced by oxygen diffusion along the moving boundary. Grain growth is the dominant process in the transformation from CuO to Cu_2O; nucleation is the dominant process in the reverse transformation, i.e. from Cu_2O to CuO. The reduction and oxidation of copper oxides are asymmetrical; the latter is significantly faster. The metastable phase Cu _4O_3 was formed by ion milling CuO. Carbon and refractory metals such as Ti or Zr can enhance the reduction rate of CuO. Three topics relating to thermal stability issues in Cu-based metallization were investigated: (1) texturing in electroless copper films on epitaxial copper seed layers; (2) predicting first phase formation in Cu/metal bilayer structures; and (3) encapsulation of Cu fine line structures with TiN. (100)- and (111)-textured copper layers were deposited by electroless plating on copper seed layers grown epitaxially on Si (100) and Si (111) substrates, respectively. (111) -textured copper films are more oxidation-resistant. Rutherford backscattering spectrometry (RBS) and in situ transmission electron microscopy (TEM) were used to determine phase formation in Cu-M (M = Ti, Zr, Mg, Sb, Pd and Pt) bilayer systems. An effective heat of formation rule was employed to predict first phase formation in these systems. A TiN-encapsulated copper structure was made by annealing a Cu-10at%Ti alloy film evaporated on a SiO _2/Si(100) substrate at 550^ circC in an NH_3 ambient. Fast heating rates (70^circC/min.) to 550^circC can effectively suppress the formation of Cu

  1. Surface investigation of naturally corroded gilded copper-based objects

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; Riccucci, C.; Lavorgna, M.; Salzano de Luna, M.; Pascucci, M.; Di Carlo, G.

    2016-11-01

    Gold and silver coated copper-based artefacts subjected to long-term natural corrosion phenomena were studied by means of the combined use of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM + EDS), and optical microscopy (OM). The results allowed the identification of the chemistry and structure of the Au or Ag layers deposited by fire-gilding or mercury-silvering and the determination of the corrosion products formed due to interaction with the surrounding environment. Different degradation phenomena of the noble metal layer and copper substrate are induced by the presence of chlorine, sulphur and phosphorous and they are boosted by the metal galvanic coupling which makes gilded-metal art works unstable from a chemico-physical point of view. The SEM + EDS and OM results also suggest that particular care must be used during the removal of the encrustations and of the external corrosion products to avoid the loss of the remains of the noble layer often floating or embedded in the corrosion products. Furthermore, in order to avoid the reaction between nantokite (CuCl) and moisture the use no or low toxic inhibitors is suggested to avoid further severe degradation phenomena enhancing the long-lasting chemico-physical stability of these precious artefacts and giving them a greater chance of survival.

  2. Effect of Cast Modification on Denture Base Adaptation Following Maxillary Complete Denture Processing.

    PubMed

    Sayed, Mohammed E; Porwal, Amit; Ehrenberg, David; Weiner, Saul

    2017-01-19

    To investigate the effect of cast modifications on denture base adaptation in coronal and sagittal projections following maxillary complete denture processing. A total of 60 edentulous maxillary casts (n = 10) were distributed among six groups. Group 1 was the control group with no modification, groups 2 through 6 included a butterfly postdam preparation, groups 3 and 4 also included a 10-mm wide/4-mm deep box with addition of four round holes in group 4, and groups 5 and 6 also included a 20-mm wide/4-mm deep box with addition of four round holes in group 6. The boxes were prepared at the mid-heel area of the casts. Two layers of baseplate wax (1 mm each) were used to standardize denture base thickness across the groups. A standard technique was used to replicate the denture tooth set-up, and standardized processing was done for all the groups. Following deflasking, casts with the dentures were sectioned in the coronal and sagittal directions. Microscopic pictures were taken at preselected points. Data were organized in tables, and statistical analyses were performed using repeated measure ANOVA, Tukey post hoc tests, and post hoc comparison tests set at 5% level of significance. Maximum gaps were measured at the mid-palatal area followed by nearby areas and the areas near ridge crests in both coronal and sagittal projections. The analyses revealed significant differences between the groups in coronal projection (1/2, 3/4, 5/6) and sagittal projection (1, 2, 3/4, 5/6) without significant differences within the pairs. The groups were ranked from the highest group 1 to the lowest group 6 relative to the gap means. Post hoc comparisons showed that points 1C and 2A had the highest gap means across the study groups. Within the limitations of this study, it can be extrapolated that the denture base adaptation can be effectively increased with the box preparation at the mid-heel aspect of the casts. Significant reduction of gaps was seen when the box size increased from

  3. An aqueous zinc-ion battery based on copper hexacyanoferrate.

    PubMed

    Trócoli, Rafael; La Mantia, Fabio

    2015-02-01

    A new zinc-ion battery based on copper hexacyanoferrate and zinc foil in a 20 mM solution of zinc sulfate, which is a nontoxic and noncorrosive electrolyte, at pH 6 is reported. The voltage of this novel battery system is as high as 1.73 V. The system shows cyclability, rate capability, and specific energy values near to those of lithium-ion organic batteries based on Li4 Ti5 O12 and LiFePO4 at 10 C. The effects of Zn(2+) intercalation and H2 evolution on the performance of the battery are discussed in detail. In particular, it has been observed that hydrogen evolution can cause a shift in pH near the surface of the zinc electrode, and favor the stabilization of zinc oxide, which decreases the performance of the battery. This mechanism is hindered when the surface of zinc becomes rougher.

  4. Copper-based reactions in analyte-responsive fluorescent probes for biological applications.

    PubMed

    Au-Yeung, Ho Yu; Chan, Chung Ying; Tong, Ka Yan; Yu, Zuo Hang

    2017-07-04

    Copper chemistry has been capitalized on in a wide spectrum of biological events. The central importance of copper in biology lies in the diverse chemical reactivity of the redox-active transition metal ranging from electron transfer, small molecule binding and activation, to catalysis. In addition to its many different roles in natural biological systems, the diverse chemical reactivity of copper also represents a rich opportunity and resource to develop synthetic bioanalytical tools for the study of biologically important species and molecules. In this mini-review, fluorescent probes featuring a specific copper-based chemical reaction to selectively detect a biologically relevant analyte will be discussed. In particular, fluorescent probes for sensing labile copper ions, amino acids and small reactive species will be highlighted. The chemical principles, advantages and limitations of the different types of copper-mediated chemical reactions in these fluorescent probes will be emphasized. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    NASA Astrophysics Data System (ADS)

    Shengli, Wang; Kangda, Yin; Xiang, Li; Hongwei, Yue; Yunling, Liu

    2013-08-01

    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics. Different from the international dominant acidic copper slurry, the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions, the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA), by which the problems caused by BTA can be avoided. Through the experiments and theories research, the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory, the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions, the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier. The kinetic energy at the concave position should be lower than the complexation reaction barrier, which is the key to achieve planarization.

  6. Development of a CCD-based pyrometer for surface temperature measurement of casting billets

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Lang, Xianli; Hu, Zhenwei; Shu, Shuangbao

    2017-06-01

    In order to achieve high accuracy and good stability of temperature measurement results, an online vision-based temperature field measurement system for continuous casting billets is developed instead of the conventional single-point radiation pyrometer in this paper. This system is a hybrid temperature measurement system which consists of a monochrome array CCD camera with high resolution and a single spot colorimetric thermometer simultaneously. In this system, a narrow-band spectrum radiation temperature measurement model is established for the optical CCD-based pyrometer system, and the non-uniformity of the temperature field measurement due to the inter-element sensitivity deviations of the CCD-array detector and photometric distortion caused by the vignetting in the optical system is analyzed in detail and compensated. Furthermore, in order to eliminate the temperature fluctuation caused by the stripped iron oxide scale on billets, a temperature field reconstruction approach, which took full advantage of the high resolution characteristic of CCD and the distribution character of the surface temperature field of billets, is introduced in this system. Meanwhile, based on the narrow band spectral thermometry theory, the spot temperature measured by the colorimetric thermometer is used to correct the temperature field measured by the CCD camera on-line so as to reduce the temperature measurement error caused by the inconclusive absolute emissivity of different grades of steel and the interference of industrial dust. Currently, the system has been successfully applied and verified in some continuous casting production lines. Industrial trials indicate that the system could effectively eliminate false temperature variation caused by striped iron oxide scale and provide information about changes of processing parameters in the continuous casting production line in real time.

  7. Material removal mechanism of copper chemical mechanical polishing in a periodate-based slurry

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Wang, Tongqing; He, Yongyong; Lu, Xinchun

    2015-05-01

    The material removal mechanism of copper in a periodate-based slurry during barrier layer chemical mechanical polishing (CMP) has not been intensively investigated. This paper presents a study of the copper surface film chemistry and mechanics in a periodate-based slurry. On this basis, the controlling factor of the copper CMP material removal mechanism is proposed. The results show that the chemical and electrochemical reaction products on the copper surface are complex and vary considerably as a function of the solution pH. Under acidic conditions (pH 4) the copper surface underwent strong chemical dissolution while the corrosion was mild and uniform under alkaline conditions (pH 11). The corrosion effect was the lowest in near neutral solutions because the surface was covered with non-uniform Cu(IO3)2·H2O/Cu-periodate/copper oxides films, which had better passivation effect. The surface film thickness and mechanical removal properties were studied by AES and AFM nano-scratch tests. Based on the combined surface film analysis and CMP experiment results, it can be concluded that the controlling factor during copper CMP in a periodate-based slurry is the chemical-enhanced mechanical removal of the surface films. The periodate-based slurry should be modified by the addition of corrosion inhibitors and complexing agents to achieve a good copper surface quality with moderate chemical dissolution.

  8. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  9. Moving cast shadow resistant for foreground segmentation based on shadow properties analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Gao, Yun; Yuan, Guowu; Ji, Rongbin

    2015-12-01

    Moving object detection is the fundamental task in machine vision applications. However, moving cast shadows detection is one of the major concerns for accurate video segmentation. Since detected moving object areas are often contain shadow points, errors in measurements, localization, segmentation, classification and tracking may arise from this. A novel shadow elimination algorithm is proposed in this paper. A set of suspected moving object area are detected by the adaptive Gaussian approach. A model is established based on shadow optical properties analysis. And shadow regions are discriminated from the set of moving pixels by using the properties of brightness, chromaticity and texture in sequence.

  10. Simple casting based fabrication of PEDOT:PSS-PVDF-ionic liquid soft actuators

    NASA Astrophysics Data System (ADS)

    Simaite, Aiva; Tondu, Bertrand; Mathieu, Fabrice; Souéres, Philippe; Bergaud, Christian

    2015-04-01

    Despite a growing interest in conducting polymer based actuators, a robust fabrication technique is still needed. We suggest a fabrication method that allows fast production of conducting polymer actuators from commercially available polyvinylidene flouride membranes (PVDF) and a PEDOT/PSS solution. In order to improve adhesion of those materials, Ar plasma induced grafting is used to create hydrophilic surfaces of up to 40 μm. Hydrophilic PVDF-graft-polyethylene glycol allows diffusion of PEDOT/PSS in the pores of the membranes, while hydrophobic middle layers prevent short circuits. In this way, soft actuators can be fabricated by consequent drop casting and drying of conducting polymer.

  11. Copper-decorated carbon nanotubes-based composite electrodes for nonenzymatic detection of glucose

    PubMed Central

    2012-01-01

    The aim of this study was to prepare three types of multiwall carbon nanotubes (CNT)-based composite electrodes and to modify their surface by copper electrodeposition for nonenzymatic oxidation and determination of glucose from aqueous solution. Copper-decorated multiwall carbon nanotubes composite electrode (Cu/CNT-epoxy) exhibited the highest sensitivity to glucose determination. PMID:22616801

  12. Antibacterial activity of copper-based particles synthesized using an electroless deposition technique

    NASA Astrophysics Data System (ADS)

    Biguerras, M. J. G.; Herrera, M. U.; Futalan, C. C.; Balela, M. D. L.

    2017-05-01

    Copper-based particles were synthesized using an electroless deposition technique. The said synthesis was done in an aqueous solution by reducing copper oxide powders using hydrazine. In this technique, gelatin was used as protective agent. X-ray Diffraction (XRD) measurement shows that the synthesized sample is composed of cuprous oxide (Cu2O) and copper (Cu) particles. Scanning Electron Microscopy (SEM) shows the morphology of the synthesized copper-based particles. Antimicrobial test shows that the number of Escherichia coli organisms reduced to 62.06% after 2 minutes of contact with the sample. Likewise, SEM micrographs of the Escherichia coli organisms show that the said organism underwent morphological changes in the presence of the synthesized copper-based particles.

  13. Synthesis of copper nanocolloids using a continuous flow based microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Srinivasakannan, C.; Chen, Guo; Shen, Amy Q.

    2015-11-01

    The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH4) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH4 molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet-visible spectroscopy (UV-vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH4 molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO4/NaBH4 molar concentration ratio of 1:2.

  14. Classification techniques based on AI application to defect classification in cast aluminum

    NASA Astrophysics Data System (ADS)

    Platero, Carlos; Fernandez, Carlos; Campoy, Pascual; Aracil, Rafael

    1994-11-01

    This paper describes the Artificial Intelligent techniques applied to the interpretation process of images from cast aluminum surface presenting different defects. The whole process includes on-line defect detection, feature extraction and defect classification. These topics are discussed in depth through the paper. Data preprocessing process, as well as segmentation and feature extraction are described. At this point, algorithms employed along with used descriptors are shown. Syntactic filter has been developed to modelate the information and to generate the input vector to the classification system. Classification of defects is achieved by means of rule-based systems, fuzzy models and neural nets. Different classification subsystems perform together for the resolution of a pattern recognition problem (hybrid systems). Firstly, syntactic methods are used to obtain the filter that reduces the dimension of the input vector to the classification process. Rule-based classification is achieved associating a grammar to each defect type; the knowledge-base will be formed by the information derived from the syntactic filter along with the inferred rules. The fuzzy classification sub-system uses production rules with fuzzy antecedent and their consequents are ownership rates to every defect type. Different architectures of neural nets have been implemented with different results, as shown along the paper. In the higher classification level, the information given by the heterogeneous systems as well as the history of the process is supplied to an Expert System in order to drive the casting process.

  15. Feasibility assessment of copper-base waste package container materials in a tuff repository

    SciTech Connect

    Acton, C.F.; McCright, R.D.

    1986-09-30

    This report discussed progress made during the second year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. Corrosion testing in potentially corrosive irradiated environments received emphasis during the feasibility study. Results of experiments to evaluate the effect of a radiation field on the uniform corrosion rate of the copper-base materials in repository-relevant aqueous environments are given as well as results of an electrochemical study of the copper-base materials in normal and concentrated J-13 water. Results of tests on the irradiation of J-13 water and on the subsequent formation of hydrogen peroxide are given. A theoretical study was initiated to predict the long-term corrosion behavior of copper in the repository. Tests were conducted to determine whether copper would adversely affect release rates of radionuclides to the environment because of degradation of the Zircaloy cladding. A manufacturing survey to determine the feasibility of producing copper containers utilizing existing equipment and processes was completed. The cost and availability of copper was also evaluated and predicted to the year 2000. Results of this feasibility assessment are summarized.

  16. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells.

    PubMed

    Vopálenská, Irena; Váchová, Libuše; Palková, Zdena

    2015-10-15

    Contamination of water by heavy metals represents a potential risk for both aquatic and terrestrial organisms, including humans. Heavy metals in water resources can come from various industrial activities, and drinking water can be ex-post contaminated by heavy metals such as Cu(2+) from house fittings (e.g., water reservoirs) and pipes. Here, we present a new copper biosensor capable of detecting copper ions at concentrations of 1-100 μM. This biosensor is based on cells of a specifically modified Saccharomyces cerevisiae strain immobilized in alginate beads. Depending on the concentration of copper, the biosensor beads change color from white, when copper is present in concentrations below the detection limit, to pink or red based on the increase in copper concentration. The biosensor was successfully tested in the determination of copper concentrations in real samples of water contaminated with copper ions. In contrast to analytical methods or other biosensors based on fluorescent proteins, the newly designed biosensor does not require specific equipment and allows the quick detection of copper in many parallel samples.

  17. Synthesis, structure and urease inhibition studies of Schiff base copper(II) complexes with planar four-coordinate copper(II) centers.

    PubMed

    Dong, Xiongwei; Guo, Taolian; Li, Yuguang; Cui, Yongming; Wang, Qiang

    2013-10-01

    Seven new Schiff base copper(II) complexes with planar four-coordinate copper(II) centers have been synthesized and structurally characterized. The solid state structures of complexes 1, 3, 4, 5, 6 and 7 present a square-planar coordination geometry at the metal centers while complex 2 shows a slightly distorted square-planar geometry. Density functional theory calculations have been performed to evaluate the electronic structure of copper(II) complex 7. Inhibition of jack bean urease by copper(II) complexes 1-7 have also been investigated, and potent inhibitory activities with IC50 range of 2.60-17.00μM have been observed for these mononuclear copper(II) complexes. A docking analysis using a DOCK program was conducted to explain the urease inhibitory activity of the copper(II) complexes and the structure-activity relationships were further discussed. © 2013.

  18. Copper-Silicon Bronzes

    DTIC Science & Technology

    1933-05-11

    copper alloys which have good static properties are disa:cinting in their endurance properties. The silicide allo~rs that are given high tensile strength...notched endurance tests and on cast alloys of this type, are lacking. uowever, preliminary reports state that a copper beryllium alloy of about 2 1/2...properties re- main almost the same. Grain size increases with sil- icon. III A study of hardening copper by heat treating its alloys with silicides

  19. Improved Safety and Cost Savings from Reductions in Cast-Saw Burns After Simulation-Based Education for Orthopaedic Surgery Residents.

    PubMed

    Bae, Donald S; Lynch, Hayley; Jamieson, Katherine; Yu-Moe, C Winnie; Roussin, Christopher

    2017-09-06

    The purpose of this investigation was to characterize the clinical efficacy and cost-effectiveness of simulation training aimed at reducing cast-saw injuries. Third-year orthopaedic residents underwent simulation-based instruction on distal radial fracture reduction, casting, and cast removal using an oscillating saw. The analysis compared incidences of cast-saw injuries and associated costs before and after the implementation of the simulation curriculum. Actual and potential costs associated with cast-saw injuries included wound care, extra clinical visits, and potential total payment (indemnity and expense payments). Curriculum costs were calculated through time-derived, activity-based accounting methods. The researchers compared the costs of cast-saw injuries and the simulation curriculum to determine overall savings and return on investment. In the 2.5 years prior to simulation, cast-saw injuries occurred in approximately 4.3 per 100 casts cut by orthopaedic residents. For the 2.5-year period post-simulation, the injury rate decreased significantly to approximately 0.7 per 100 casts cut (p = 0.002). The total cost to implement the casting simulation was $2,465.31 per 6-month resident rotation. On the basis of historical data related to cast-saw burns (n = 6), total payments ranged from $2,995 to $25,000 per claim. The anticipated savings from averted cast-saw injuries and associated medicolegal payments in the 2.5 years post-simulation was $27,131, representing an 11-to-1 return on investment. Simulation-based training for orthopaedic surgical residents was effective in reducing cast-saw injuries and had a high theoretical return on investment. These results support further investment in simulation-based training as cost-effective means of improving patient safety and clinical outcomes. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  20. The Effect of Temperature and Rotational Speed on Structure and Mechanical Properties of Cast Cu Base Alloy (Cu-Al-Si-Fe) Welded by Semisolid Stir Joining Method

    NASA Astrophysics Data System (ADS)

    Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak

    2015-12-01

    Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.

  1. Method of improving fatigue life of cast nickel based superalloys and composition

    DOEpatents

    Denzine, Allen F.; Kolakowski, Thomas A.; Wallace, John F.

    1978-03-14

    The invention consists of a method of producing a fine equiaxed grain structure (ASTM 2-4) in cast nickel-base superalloys which increases low cycle fatigue lives without detrimental effects on stress rupture properties to temperatures as high as 1800.degree. F. These superalloys are variations of the basic nickel-chromium matrix, hardened by gamma prime [Ni.sub.3 (Al, Ti)] but with optional additions of cobalt, tungsten, molybdenum, vanadium, columbium, tantalum, boron, zirconium, carbon and hafnium. The invention grain refines these alloys to ASTM 2 to 4 increasing low cycle fatigue life by a factor of 2 to 5 (i.e. life of 700 hours would be increased to 1400 to 3500 hours for a given stress) as a result of the addition of 0.01% to 0.2% of a member of the group consisting of boron, zirconium and mixtures thereof to aid heterogeneous nucleation. The alloy is vacuum melted and heated to 250.degree.-400.degree. F. above the melting temperature, cooled to partial solidification, thus resulting in said heterogeneous nucleation and fine grains, then reheated and cast at about 50.degree.-100.degree. F. of superheat. Additions of 0.1% boron and 0.1% zirconium (optional) are the preferred nucleating agents.

  2. Corrosion behavior of copper-base materials in a gamma-irradiated environment; Final report

    SciTech Connect

    Yunker, W.H.

    1990-09-01

    Specimens of three copper-base materials were corrosion tested with gamma radiation exposure dose rates in the range of 1.9 {times} 10{sup 3} R/h to 4.9 {times} 10{sup 5} R/h. Materials used were pure copper, 7% aluminum bronze and 30% copper-nickel. Exposures were performed in moist air at 95{degree}C and 150{degree}C and liquid Well J-13 water at 95{degree}C, for periods of up to 16 months. Specimens were monitored for uniform weight loss, stress-induced corrosion and crevice corrosion. Specimen surfaces were examined visually at 10X magnification as well as by Auger Electron Spectroscopy, x-ray diffraction and metallography. Corrosion was not severe in any of the cases. In general, the pure copper was corroded most uniformly while the copper-nickel was the least reproducibly corroded. 11 refs, 40 figs., 15 tabs.

  3. Direct-writing of copper-based micropatterns on polymer substrates using femtosecond laser reduction of copper (II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mizoshiri, Mizue; Ito, Yasuaki; Sakurai, Junpei; Hata, Seiichi

    2017-04-01

    Copper (Cu)-based micropatterns were fabricated on polymer substrates using femtosecond laser reduction of copper (II) oxide (CuO) nanoparticles. CuO nanoparticle solution, which consisted of CuO nanoparticles, ethylene glycol as a reductant agent, and polyvinylpyrrolidone as a dispersant, was spin-coated on poly(dimethylsiloxane) (PDMS) substrates and was irradiated by focused femtosecond laser pulses to fabricate Cu-based micropatterns. When the laser pulses were raster-scanned onto the solution, CuO nanoparticles were reduced and sintered. Cu-rich and copper (I)-oxide (Cu2O)-rich micropatterns were formed at laser scanning speeds of 15 mm/s and 0.5 mm/s, respectively, and at a pulse energy of 0.54 nJ. Cu-rich electrically conductive micropatterns were obtained without significant damages on the substrates. On the other hand, Cu2O-rich micropatterns exhibited no electrical conductivity, indicating that microcracks were generated on the micropatterns by thermal expansion and shrinking of the substrates. We demonstrated a direct-writing of Cu-rich micro-temperature sensors on PDMS substrates using the foregoing laser irradiation condition. The resistance of the fabricated sensors increased with increasing temperature, which is consistent with that of Cu. This direct-writing technique is useful for fabricating Cu-polymer composite microstructures.

  4. Electrochemical properties of copper-based compounds with polyanion frameworks

    SciTech Connect

    Mizuno, Yoshifumi; Hata, Shoma; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji

    2016-03-15

    The copper-based polyanion compounds Li{sub 6}CuB{sub 4}O{sub 10} and Li{sub 2}CuP{sub 2}O{sub 7} were synthesized using a conventional solid-state reaction, and their electrochemical properties were determined. Li{sub 6}CuB{sub 4}O{sub 10} showed reversible capacity of 340 mA g{sup −1} at the first discharge–charge process, while Li{sub 2}CuP{sub 2}O{sub 7} showed large irreversible capacity and thus low charge capacity. Ex situ X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) measurements revealed that the electrochemical Li{sup +} intercalation/deintercalation reaction in Li{sub 6}CuB{sub 4}O{sub 10} occurred via reversible Cu{sup 2+}/Cu{sup +} reduction/oxidation reaction. These differences in their discharge/charge mechanisms are discussed based on the strength of the Cu–O covalency via their inductive effects. - Graphical abstract: Electrochemical properties for Cu-based polyanion compounds were investigated. The electrochemical reaction mechanisms are strongly affected by their Cu–O covalentcy. - Highlights: • Electrochemical properties of Cu-based polyanion compounds were investigated. • The Li{sup +} intercalation/deintercalation reaction progressed in Li{sub 6}CuB{sub 4}O{sub 10}. • The electrochemical displacement reaction progressed in Li{sub 2}CuP{sub 2}O{sub 7}. • The strength of Cu–O covalency affects the reaction mechanism.

  5. Context-based user grouping for multi-casting in heterogeneous radio networks

    NASA Astrophysics Data System (ADS)

    Mannweiler, C.; Klein, A.; Schneider, J.; Schotten, H. D.

    2011-08-01

    Along with the rise of sophisticated smartphones and smart spaces, the availability of both static and dynamic context information has steadily been increasing in recent years. Due to the popularity of social networks, these data are complemented by profile information about individual users. Making use of this information by classifying users in wireless networks enables targeted content and advertisement delivery as well as optimizing network resources, in particular bandwidth utilization, by facilitating group-based multi-casting. In this paper, we present the design and implementation of a web service for advanced user classification based on user, network, and environmental context information. The service employs simple and advanced clustering algorithms for forming classes of users. Available service functionalities include group formation, context-aware adaptation, and deletion as well as the exposure of group characteristics. Moreover, the results of a performance evaluation, where the service has been integrated in a simulator modeling user behavior in heterogeneous wireless systems, are presented.

  6. Particulate Formation from a Copper Oxide-Based Oxygen ...

    EPA Pesticide Factsheets

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling duct, range between 2 and 5 μm. A notable number of submicron particulates are also identified. Oxygen carrier attrition was observed to lead to increased CuO loss resulting from the chemical looping reactions, i.e., Cu is enriched in small particles generated primarily from fragmentation in the size range of 10-75 μm. Cyclic reduction and oxidation reactions in CLC have been determined to weaken the oxygen carrier particles, resulting in increased particulate emission rates when compared to oxygen carriers without redox reactions. The generation rate for particulates < 10 μm was found to decrease with progressive cycles over as-prepared oxygen carrier particles and then reach a steady state. The surface of the oxygen carrier is also found to be coarsened due to a Kirkendall effect, which also explains the enrichment of Cu on particle surfaces and in small particles. As a result, it is important to collect and reprocess small particles generated from chemical looping processes to reduce oxygen carrier loss. The redox reactions associated with chemical looping combustion play an important role in particle attrition in the fluidized bed. Reaction-induced local stresses, due to the r

  7. Particulate Formation from a Copper Oxide-Based Oxygen ...

    EPA Pesticide Factsheets

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling duct, range between 2 and 5 μm. A notable number of submicron particulates are also identified. Oxygen carrier attrition was observed to lead to increased CuO loss resulting from the chemical looping reactions, i.e., Cu is enriched in small particles generated primarily from fragmentation in the size range of 10-75 μm. Cyclic reduction and oxidation reactions in CLC have been determined to weaken the oxygen carrier particles, resulting in increased particulate emission rates when compared to oxygen carriers without redox reactions. The generation rate for particulates < 10 μm was found to decrease with progressive cycles over as-prepared oxygen carrier particles and then reach a steady state. The surface of the oxygen carrier is also found to be coarsened due to a Kirkendall effect, which also explains the enrichment of Cu on particle surfaces and in small particles. As a result, it is important to collect and reprocess small particles generated from chemical looping processes to reduce oxygen carrier loss. The redox reactions associated with chemical looping combustion play an important role in particle attrition in the fluidized bed. Reaction-induced local stresses, due to the r

  8. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain.

    PubMed

    Akova, Tolga; Ucar, Yurdanur; Tukay, Alper; Balkaya, Mehmet Cudi; Brantley, William A

    2008-10-01

    The purpose of this study was to compare shear bond strengths of cast Ni-Cr and Co-Cr alloys and the laser-sintered Co-Cr alloy to dental porcelain. Dental porcelain was applied on two cast and one laser-sintered base metal alloy. Ten specimens were prepared for each group for bond strength comparison. ANOVA followed by Tukey HSD multiple comparison test (alpha=0.05) was used for statistical analysis. Fractured specimens were observed with a stereomicroscope to classify the type of failure after shear bond testing. While the mean shear bond strength was highest for the cast Ni-Cr metal-ceramic specimens (81.6+/-14.6 MPa), the bond strength was not significantly different (P>0.05) from that for the cast Co-Cr metal-ceramic specimens (72.9+/-14.3 MPa) and the laser-sintered Co-Cr metal-ceramic specimens (67.0+/-14.9 MPa). All metal-ceramic specimens prepared from cast Ni-Cr and Co-Cr alloys exhibit a mixed mode of cohesive and adhesive failure, whereas five of the metal-ceramic specimens prepared from the laser-sintered Co-Cr alloy exhibited the mixed failure mode and five specimens exhibited adhesive failure in the porcelain. The new laser-sintering technique for Co-Cr alloy appears promising for dental applications, but additional studies of properties of the laser-sintered alloy and fit of castings prepared by this new technique are needed before its acceptance into dental laboratory practice. Laser sintering of Co-Cr alloy seems to be an alternative technique to conventional casting of dental alloys for porcelain fused to metal restorations.

  9. Higher Education's Caste System

    ERIC Educational Resources Information Center

    Iannone, Ron

    2004-01-01

    In this article, the author discusses the history of the present caste system in higher education. He shows how the public's perception of this caste system is based on image and not usually on the quality of teaching and curriculum in colleges and universities. Finally, he discusses a model for accessibility to higher education and how higher…

  10. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    NASA Astrophysics Data System (ADS)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  11. Development of NZP ceramic based {open_quotes}cast-in-place{close_quotes} diesel engine port liners

    SciTech Connect

    Nagaswaran, R.; Limaye, S.Y.

    1996-02-01

    BSX (Ba{sub 1+x}Zr{sub 4}P{sub 6-2x}Si{sub 2x}O{sub 24}) and CSX (Ca{sub l-x}Sr{sub x}Zr{sub 4}P{sub 6}O{sub 24}) type NZP ceramics were fabricated and characterized for: (i) thermal properties viz., thermal conductivity, thermal expansion, thermal stability and thermal shock resistance; (ii) mechanical properties viz., flexure strength and elastic modulus; and (iii) microstructures. Results of these tests and analysis indicated that the BS-25 (x=0.25 in BSX) and CS-50 (x=0.50 in CSX) ceramics had the most desirable properties for casting metal with ceramic in place. Finite element analysis (FEA) of metal casting (with ceramic in place) was conducted to analyze thermomechanical stresses generated and determine material property requirements. Actual metal casting trials were also conducted to verify the results of finite element analysis. In initial trials, the ceramic cracked because of the large thermal expansion mismatch (hoop) stresses (predicted by FEA also). A process for introduction of a compliant layer between the metal and ceramic to alleviate such destructive stresses was developed. The compliant layer was successful in preventing cracking of either the ceramic or the metal. In addition to these achievements, pressure slip casting and gel-casting processes for fabrication of NZP components; and acoustic emission and ultrasonics-based NDE techniques for detection of microcracks and internal flaws, respectively, were successfully developed.

  12. [Cast structures and mechanical properties of Ir added to Ag-based alloys. (Part 1) (author's transl)].

    PubMed

    Honma, H; Iijima, K

    1981-04-01

    The effect of very small quantity of Ir added to pure Agb or Ab-based casting alloys on the mechanical properties were investigated by microstructure observation, tensile test, XMA (electron probe micro analysis) and electrical resistivity measurement. 1) An addition of 0.005% Ir to pure Ag caused grain refinement, increased elongation, yield point, tensile strength. However, the refinement effect did not proportionally increase to the amount of additional Ir. 2) An addition of Ir to Ag alloy containing 7% Cu caused to finely dispersed beta phase in the as cast alloy and degraded the dendrite structure. As a result, homogenization and aging were accelerated. Mechanical properties i. e. elongation, yield point and tensile strength increased in castings and homogeneous state and yield point increased in aging state. The addition of about 0.05% Ir appeared optimum. 3) An addition of Ir to an Ag alloy containing 15% Cu caused grain refinement of the alloy as cast but its effect on the mechanical properties of the alloy was not clarified owing to casting defects. 4) 0.05% Ir added to an Ag alloy containing 20% Pd and 7% Cu did not show an apparent refinement effect. The optimum quantity of Ir is assumed to differ depending on the amount of Pd content.

  13. Fluorescence-based determination of the copper concentration in drinking water

    NASA Astrophysics Data System (ADS)

    Hötzer, Benjamin; Scheu, Timo; Jung, Gregor; Castritius, Stefan

    2013-05-01

    Copper is a heavy metal, which is used in heat and electrical conductors and in a multitude of alloys in the technical context. Moreover, it is a trace element that is essential for the life of organisms but can cause toxic effects in elevated concentrations. Maximum limits in water and beverages exist. Here, the decrease of the fluorescence lifetime of green fluorescent protein (GFP) by Förster resonance energy transfer is used to measure the copper ion concentration in drinking water. Therefore, a system is developed that is based on a GFP sample in a predefined concentration. The GFP mutant can be excited with blue light. For binding of copper ions, a His-tag is included in the GFP. After measuring the fluorescence lifetime of pure GFP, the copper determination of the sample is performed by lifetime measurement. Therefore, the lifetime can be assigned to the copper concentration of the GFP-doped drinking water sample. In summary, a method for the quantification of copper ions based on changes of the fluorescence lifetime of GFP is developed, and the measurement of the copper concentration in water samples is performed.

  14. Water Quality Criteria for Copper Based on the BLM Approach in the Freshwater in China

    PubMed Central

    Zhang, Yahui; Zang, Wenchao; Qin, Lumei; Zheng, Lei; Cao, Ying; Yan, Zhenguang; Yi, Xianliang; Zeng, Honghu; Liu, Zhengtao

    2017-01-01

    The bioavailability and toxicity of metals to aquatic organisms are highly dependent on water quality parameters in freshwaters. The biotic ligand model (BLM) for copper is an approach to generate the water quality criteria (WQC) with water chemistry in the ambient environment. However, few studies were carried out on the WQCs for copper based on the BLM approach in China. In the present study, the toxicity for copper to native Chinese aquatic organisms was conducted and the published toxicity data with water quality parameters to Chinese aquatic species were collected to derive the WQCs for copper by the BLM approach. The BLM-based WQCs (the criterion maximum criteria (CMC) and the criterion continuous concentration (CCC)) for copper in the freshwater for the nation and in the Taihu Lake were obtained. The CMC and CCC values for copper in China were derived to be 1.391 μg/L and 0.495 μg/L, respectively, and the CMC and CCC in the Taihu Lake were 32.194 μg/L and 9.697 μg/L. The high concentration of dissolved organic carbon might be a main reason which resulted in the higher WQC values in the Taihu Lake. The WQC of copper in the freshwater would provide a scientific foundation for water quality standards and the environment risk assessment in China. PMID:28166229

  15. [Research on the method of copper converting process determination based on emission spectrum analysis].

    PubMed

    Li, Xian-xin; Liu, Wen-qing; Zhang, Yu-jun; Si, Fu-qi; Dou, Ke; Wang, Feng-ping; Huang, Shu-hua; Fang, Wu; Wang, Wei-qiang; Huang, Yong-feng

    2012-05-01

    A method of copper converting process determination based on PbO/PbS emission spectrum analysis was described. According to the known emission spectrum of gas molecules, the existence of PbO and PbS was confirmed in the measured spectrum. Through the field experiment it was determined that the main emission spectrum of the slag stage was from PbS, and the main emission spectrum of the copper stage was from PbO. The relative changes in PbO/PbS emission spectrum provide the method of copper converting process determination. Through using the relative intensity in PbO/PbS emission spectrum the copper smelting process can be divided into two different stages, i.e., the slag stage (S phase) and the copper stage (B phase). In a complete copper smelting cycle, a receiving telescope of appropriate view angle aiming at the converter flame, after noise filtering on the PbO/PbS emission spectrum, the process determination agrees with the actual production. Both the theory and experiment prove that the method of copper converting process determination based on emission spectrum analysis is feasible.

  16. Castings, Steel, Homogenization of Steel Castings

    DTIC Science & Technology

    1942-12-05

    diffraction pattern of quenched and tempered steel castings. 2. Calculations based upon known diffusion rates show: A. Practical homogenizing heat ...will be largely eliminated by either the usual heating for nuenching or a homo- genizing treatment. C. Interdendritic segregation of sulfur will...26 Appendix A - History of the Heat Treatment and Composition of Centrifugal Gun Castings at W-tertown Ar- sen-.l. ..... ..................... 2

  17. In vitro corrosion of dental Au-based casting alloys in polyvinylpyrrolidone-iodine solution.

    PubMed

    Takasusuki, Norio; Ida, Yusuke; Hirose, Yukito; Ochi, Morio; Endo, Kazuhiko

    2013-01-01

    The corrosion and tarnish behaviors of two Au-based casting alloys (ISO type 1 and type 4 Au alloys) and their constituent pure metals, Au, Ag, Cu, Pt, and Pd in a polyvinylpyrrolidone-iodine solution were examined. The two Au alloys actively corroded, and the main anodic reaction for both was dissolution of Au as AuI₂(-). The amount of Au released from the ISO type 1 Au alloy was significantly larger than that from the ISO type 4 Au alloy (P<0.05). Visible light spectrophotometry revealed that the type 1 alloy exhibited higher susceptibility to tarnishing than the type 4 alloy. The corrosion forms of the two Au alloys were found to be completely different, i.e., the type 1 alloy exhibited the corrosion attack over the entire exposed surface with a little irregularity whereas the type 4 alloy exhibited typical intergranular corrosion, which was caused by local cells produced by segregation of Pd and Pt.

  18. Scale-up of water-based spider silk film casting using a film applicator.

    PubMed

    Agostini, Elisa; Winter, Gerhard; Engert, Julia

    2017-08-24

    Spider silk proteins for applications in drug delivery have attracted an increased interest during the past years. Some possible future medical applications for this biocompatible and biodegradable material are scaffolds for tissue engineering, implantable drug delivery systems and coatings for implants. Recently, we reported on the preparation of water-based spider silk films for drug delivery applications. In the current study, we describe the development of a manufacturing technique for casting larger spider silk films from aqueous solution employing a film applicator. Films were characterized in terms of morphology, water solubility, protein secondary structure, thermal stability, and mechanical properties. Different post-treatments were evaluated (phosphate ions, ethanol, steam sterilization and water vapor) to increase the content of β-sheets thereby achieving water insolubility of the films. Finally, the mechanical properties of the spider silk films were improved by incorporating 2-pyrrolidone as plasticizer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Chang, Fang; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-12-01

    In order to improve the wear resistance of gray cast iron guide rail, the samples with different microhardness difference between bionic coupling units and base metal were manufactured by laser surface remelting. Wear behavior of gray cast iron with bionic coupling units has been studied under dry sliding condition at room temperature using a homemade liner reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that when the microhardness difference is 561 HV0.2, the wear resistance of sample is the best.

  20. Displaying structural property and inheritance of cast iron surfacing on steel base

    NASA Astrophysics Data System (ADS)

    Shveev, I. A.

    2016-06-01

    Graphite inclusions heredity in deposited layer from remelted special cast iron billets was established. The possibility of controlling the structural state and the quality of the deposited layer due to technological parameters of welding and heat treatment of parts is shown. Ways of improving cast iron wear resistance durability are proposed.

  1. Improvement of Castability and Surface Quality of Continuously Cast TWIP Slabs by Molten Mold Flux Feeding Technology

    NASA Astrophysics Data System (ADS)

    Cho, Jung-Wook; Yoo, Shin; Park, Min-Seok; Park, Joong-Kil; Moon, Ki-Hyeon

    2017-02-01

    An innovative continuous casting process named POCAST (POSCO's advanced CASting Technology) was developed based on molten mold flux feeding technology to improve both the productivity and the surface quality of cast slabs. In this process, molten mold flux is fed into the casting mold to enhance the thermal insulation of the meniscus and, hence, the lubrication between the solidifying steel shell and the copper mold. Enhancement of both the castability and the surface quality of high-aluminum advanced high-strength steel (AHSS) slabs is one of the most important advantages when the new process has been applied into the commercial continuous casting process. A trial cast of TWIP steel has been carried out using a 10-ton scale pilot caster and 100-ton scale and 250-ton scale commercial casters. The amount of mold flux consumption was more than 0.2 kg/m2 in the new process, which is much larger than that in the conventional powder casting. Trial TWIP castings at both the pilot and the plant caster showed stable mold performances such as mold heat transfer. Also, cast slabs showed periodic/sound oscillation marks and little defects. The successful casting of TWIP steel has been attributed to the following characteristics of POCAST: dilution of the reactant by increasing the slag pool depth, enlargement of channel for slag film infiltration at meniscus by elimination of the slag bear, and decrease of apparent viscosity of the mold slag at meniscus by increasing the slag temperature.

  2. Repair welding of cast iron coated electrodes

    NASA Astrophysics Data System (ADS)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  3. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids.

    PubMed

    Saterlie, Michael; Sahin, Huseyin; Kavlicoglu, Barkan; Liu, Yanming; Graeve, Olivia

    2011-03-14

    We present an analysis of the dispersion characteristics and thermal conductivity performance of copper-based nanofluids. The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB). Nanofluids were prepared using water as the base fluid with copper nanoparticle concentrations of 0.55 and 1.0 vol.%. A dispersing agent, sodium dodecylbenzene sulfonate (SDBS), and subsequent ultrasonication was used to ensure homogenous dispersion of the copper nanopowders in water. Particle size distribution of the copper nanoparticles in the base fluid was determined by dynamic light scattering. We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS. In addition, a dynamic thermal conductivity setup was developed and used to measure the thermal conductivity performance of the nanofluids. The 0.55 vol.% Cu nanofluids exhibited a thermal conductivity enhancement of approximately 22%. In the case of the nanofluids prepared from the powders synthesized in the presence of CTAB, the enhancement was approximately 48% over the base fluid for the 1.0 vol.% Cu nanofluids, which is higher than the enhancement values found in the literature. These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering.

  4. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids

    PubMed Central

    2011-01-01

    We present an analysis of the dispersion characteristics and thermal conductivity performance of copper-based nanofluids. The copper nanoparticles were prepared using a chemical reduction methodology in the presence of a stabilizing surfactant, oleic acid or cetyl trimethylammonium bromide (CTAB). Nanofluids were prepared using water as the base fluid with copper nanoparticle concentrations of 0.55 and 1.0 vol.%. A dispersing agent, sodium dodecylbenzene sulfonate (SDBS), and subsequent ultrasonication was used to ensure homogenous dispersion of the copper nanopowders in water. Particle size distribution of the copper nanoparticles in the base fluid was determined by dynamic light scattering. We found that the 0.55 vol.% Cu nanofluids exhibited excellent dispersion in the presence of SDBS. In addition, a dynamic thermal conductivity setup was developed and used to measure the thermal conductivity performance of the nanofluids. The 0.55 vol.% Cu nanofluids exhibited a thermal conductivity enhancement of approximately 22%. In the case of the nanofluids prepared from the powders synthesized in the presence of CTAB, the enhancement was approximately 48% over the base fluid for the 1.0 vol.% Cu nanofluids, which is higher than the enhancement values found in the literature. These results can be directly related to the particle/agglomerate size of the copper nanoparticles in water, as determined from dynamic light scattering. PMID:21711719

  5. Thermodynamics-Based Selection and Design of Creep-Resistant Cast Mg Alloys

    NASA Astrophysics Data System (ADS)

    Abaspour, Saeideh; Cáceres, Carlos H.

    2015-12-01

    Atomic level thermodynamics arguments that account for the generally weak age hardening response while suggesting that extending the athermal regime through short-range order (SRO) is a most feasible path to increasing the creep strength of many current alloys are presented. The tendency, or otherwise, of many solutes to develop SRO in dilute solid solutions rationalizes a number of observations in current multicomponent Mg alloys, and in particular the retention of linear strain hardening at high temperatures, while it disputes the viability of several micromechanisms often considered active, such as pinning of edge dislocations by mobile solute clouds, dynamic precipitation of thermally stable precipitates, or atomic size effects on the diffusivity. Potential solutes are sorted out and ranked based on the sign and value of the enthalpy of mixing of binary solid solutions using the Miedema phenomenological scheme. Due to their large negative energy of mixing and reasonable solubility (>1 at. pct) at ~473 K (~200 °C), Y and Gd appear as the best candidates to increase the creep strength through SRO, followed by Nd and Ca, in close agreement with data reported in the literature. The feasibility of enhancing the age hardening response through homogeneously nucleated, coherent precipitates, in some cases despite the negative energy of mixing of the alloy, or via internally ordered precipitates mimicking those present in Mg-Th alloys is considered by making parallels with the Al-Zn and the Al-Cu alloy systems. The possible optimization of the strengthening of high pressure die cast alloys combining SRO and intergranular eutectics or of heat-treatable cast alloys through internally ordered precipitates and SRO is discussed.

  6. Ray-casting based evaluation framework for haptic force feedback during percutaneous transhepatic catheter drainage punctures.

    PubMed

    Mastmeyer, Andre; Hecht, Tobias; Fortmeier, Dirk; Handels, Heinz

    2014-05-01

    Development of new needle insertion force feedback algorithms requires comparison with a gold standard method. A new evaluation framework was formulated and tested on needle punctures for percutaneous transhepatic catheter drainage (PTCD). Needle insertion is an established procedure for minimally invasive interventions in the liver. Up-to-date, needle insertions are precisely planned using 2D axial CT slices from 3D data sets. To provide a 3D virtual reality and haptic training and planning environment, the full segmentation of patient data is often a mandatory step. To lessen the time required for manual segmentation, we propose direct haptic volume-rendering based on CT gray values and partially segmented patient data. The core contribution is a new force output evaluation method driven by a ray-casting technique that defines paths from the skin to target structures, i.e., the right hepatic duct near the juncture with the common hepatic duct. A ray-casting method computes insertion trajectories from the skin to the duct considering no-go structures and plausibility criteria. A rating system scores each trajectory. Finally, the best insertion trajectories are selected that reach the target. Along the selected paths, force output comparison between a reference system and the new haptic force output algorithm is carried out, quantified and visualized. The evaluation framework is presented along with an exemplary study of the liver using the atlas data set from a reference patient. In a comparison of our reference method to a newer algorithm, force outputs are found to be similar in 99% of the paths. The proposed evaluation framework allows reliable detection of problematic PTCD trajectories and provides valuable hints to improve force feedback algorithm development.

  7. A general and Robust Ray-Casting-Based Algorithm for Triangulating Surfaces at the Nanoscale

    PubMed Central

    Decherchi, Sergio; Rocchia, Walter

    2013-01-01

    We present a general, robust, and efficient ray-casting-based approach to triangulating complex manifold surfaces arising in the nano-bioscience field. This feature is inserted in a more extended framework that: i) builds the molecular surface of nanometric systems according to several existing definitions, ii) can import external meshes, iii) performs accurate surface area estimation, iv) performs volume estimation, cavity detection, and conditional volume filling, and v) can color the points of a grid according to their locations with respect to the given surface. We implemented our methods in the publicly available NanoShaper software suite (www.electrostaticszone.eu). Robustness is achieved using the CGAL library and an ad hoc ray-casting technique. Our approach can deal with any manifold surface (including nonmolecular ones). Those explicitly treated here are the Connolly-Richards (SES), the Skin, and the Gaussian surfaces. Test results indicate that it is robust to rotation, scale, and atom displacement. This last aspect is evidenced by cavity detection of the highly symmetric structure of fullerene, which fails when attempted by MSMS and has problems in EDTSurf. In terms of timings, NanoShaper builds the Skin surface three times faster than the single threaded version in Lindow et al. on a 100,000 atoms protein and triangulates it at least ten times more rapidly than the Kruithof algorithm. NanoShaper was integrated with the DelPhi Poisson-Boltzmann equation solver. Its SES grid coloring outperformed the DelPhi counterpart. To test the viability of our method on large systems, we chose one of the biggest molecular structures in the Protein Data Bank, namely the 1VSZ entry, which corresponds to the human adenovirus (180,000 atoms after Hydrogen addition). We were able to triangulate the corresponding SES and Skin surfaces (6.2 and 7.0 million triangles, respectively, at a scale of 2 grids per Å) on a middle-range workstation. PMID:23577073

  8. Effect of copper addition at a rate of 4% weight on the machininability of ZA-21A1 cast alloy by CNC milling

    NASA Astrophysics Data System (ADS)

    Alqawabah, S. M. A.; Zaid, A. I. O.

    2014-06-01

    Little work is published on the effect of copper addition to zinc-aluminium ZA-21Al alloy on its surface quality machined by milling. In this paper, the effect of copper addition at a rate 4 % weight to the ZA-21Al alloy on its hardness and surface quality is investigated. It was found that the addition of 4% Cu resulted in 18.3% enhancement in microhardness whereas the mechanical characteristics were reduced (softening) about 14.5% at 0.2% strain. It was found that the best surface finish for this alloy before copper addition ZA21 was achieved at a feed rate of 100 mm/min and 1.25 mm depth of cut whereas the best surface finish for ZA21-4% Cu was achieved at feed rate 250 mm/min, 1600 rpm cutting velocity and 1.25 mm depth of cut.

  9. Changes in the interface structure and strength of diffusion brazed joints of Al-Si alloy castings

    SciTech Connect

    Osawa, T.

    1995-06-01

    The diffusion brazing process, which utilizes diffusion between the base metal and the filler metal, has been tried for joining Al-Si alloy castings. If a ternary eutectic Al-Cu-Si alloy system with a lower melting point than the Al-Si system base metal is produced at the braze interface by the diffusion reaction between the base metal and the cooper filler metal, it may be possible to join an Al-Si system alloy casting by the diffusion brazing process, using a ternary eutectic Al-Si-Cu alloy as a filler metal. In this experiment both copper and brass materials were used as preforms. It was clarified that the diffusion brazing process with a copper or brass preform could be used for all hypoeutectic, eutectic and hypereutectic alloys of Al-Si system castings, and that the minimum temperature where the braze interface, showed a liquid phase structure was 530 C for the copper preform and 510 C for the brass preform. The shear strength of the diffusion brazed joint was dependent on the chemical compositions of the base metal, the type of material for the preform, and brazing temperature and time. The maximum strength of the diffusion brazed joint under optimum conditions was 130 to 150 MPa for the base metal of both Al-7Si and Al-12Si alloy castings and 100 to 130 MPa for the base metal of Al-20Si alloy casting.

  10. Fabrication and Characterization of Copper-Based Nanoparticles for Transparent Solar Cell Applications.

    PubMed

    Yoon, Hoi Jin; Bang, Ki Su; Lee, Seung-Yun

    2015-10-01

    This paper reports on the fabrication of copper-based nanoparticles using microemulsions, and their optical properties for use in transparent solar cell applications. Microemulsions, containing pure copper nanoparticles, were prepared using the reaction process of CuCl2 with KBH4. We have confirmed that various sized copper nanoparticles, with a radius of up to 10 nm, form within an aqueous concentration of CuCl2 ≤ 2.0 M. Using microstructural observation, we found that parts of pure copper nanoparticles, synthesized in microemulsions, oxidize into cuprous oxide and agglomerate with one another in a normal atmosphere. The copper-based particles were then transferred to substrates by using a spin-coating process. Variations in spin speed led to significant changes in the transmittance and reflectance of the spin-coated particles. Transparent and anti-reflective properties of the particles were obtained at an optimum condition of spin speed. This suggests that the fabrication of the copper-based nanoparticles can be effectively applied to the manufacturing of transparent solar cells.

  11. A novel spectrophotometric determination of trace copper based on charge transfer complex

    NASA Astrophysics Data System (ADS)

    Di, Junwei; Wu, Ying; Ma, Yun

    2005-03-01

    A new type of colored complex, the charge transfer complex, was used to develop the spectrophotometric determination of copper. The method was based on the formation of a colored product, the charge transfer complex of copper substituted tungstophosphate with 3,3',5,5'-tetramethybenzidine (TMB), which was stabilized and sensitized by the addition of polyvinyl alcohol (PVA) in aqueous solution. The structure of copper substituted tungstophosphate was Keggin-type according to the results of infrared (IR) spectra. The optimum reaction conditions and other important analytic parameters had been investigated. Beer's law was obeyed in the copper(II) concentration range of 0.003-0.1 μg mL -1, and the molar absorptivity at 660 nm is 2.54×10 5 L mol -1 cm -1. The proposed method was simple, selective, and sensitive. It was applied to the analytic samples with satisfactory results.

  12. Glovebox Advanced Casting System Casting Optimization

    SciTech Connect

    Fielding, Randall Sidney

    2016-03-01

    Casting optimization in the GACS included three broad areas; casting of U-10Zr pins, incorporation of an integral FCCI barrier, and development of a permanent crucible coating. U-10Zr casting was improved over last year’s results by modifying the crucible design to minimize contact with the colder mold. Through these modifications casting of a three pin batch was successful. Incorporation of an integral FCCI barrier also was optimized through furnace chamber pressure changes during the casting cycle to reduce gas pressures in the mold cavities which led to three full length pins being cast which incorporated FCCI barriers of three different thicknesses. Permanent crucible coatings were tested against a base case; 1500°C for 10 minutes in a U-20Pu-10Zr molten alloy. None of the candidate coating materials showed evidence of failure upon initial visual examination. In all areas of work a large amount of characterization will be needed to fully determine the effects of the optimization activities. The characterization activities and future work will occur next year.

  13. A comparative study on microgap of premade abutments and abutments cast in base metal alloys.

    PubMed

    Lalithamma, Jaini Jaini; Mallan, Sreekanth Anantha; Murukan, Pazhani Appan; Zarina, Rita

    2014-06-01

    The study compared the marginal accuracy of premade and cast abutments. Premade titanium, stainless steel, and gold abutments formed the control groups. Plastic abutments were cast in nickel-chromium, cobalt-chromium and grade IV titanium. The abutment/implant interface was analyzed. Analysis of variance and Duncan's multiple range test revealed no significant difference in mean marginal microgap between premade gold and titanium abutments and between premade stainless steel and cast titanium abutments. Statistically significant differences (P < .001) were found among all other groups.

  14. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats.

    PubMed

    Gopal, Anu; Kant, Vinay; Gopalakrishnan, Anu; Tandan, Surendra K; Kumar, Dinesh

    2014-05-15

    Copper possesses efficacy in wound healing which is a complex phenomenon involving various cells, cytokines and growth factors. Copper nanoparticles modulate cells, cytokines and growth factors involved in wound healing in a better way than copper ions. Chitosan has been shown to be beneficial in healing because of its antibacterial, antifungal, biocompatible and biodegradable polymeric nature. In the present study, chitosan-based copper nanocomposite (CCNC) was prepared by mixing chitosan and copper nanoparticles. CCNC was applied topically to evaluate its wound healing potential and to study its effects on some important components of healing process in open excision wound model in adult Wistar rats. Significant increase in wound contraction was observed in the CCNC-treated rats. The up-regulation of vascular endothelial growth factor (VEGF) and transforming growth factor-beta1(TGF-β1) by CCNC-treatment revealed its role in facilitating angiogenesis, fibroblast proliferation and collagen deposition. The tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were significantly decreased and increased, respectively, in CCNC-treated rats. Histological evaluation showed more fibroblast proliferation, collagen deposition and intact re-epithelialization in CCNC-treated rats. Immunohistochemistry of CD31 revealed marked increase in angiogenesis. Thus, we concluded that chitosan-based copper nanocomposite efficiently enhanced cutaneous wound healing by modulation of various cells, cytokines and growth factors during different phases of healing process.

  15. -Based Mold Flux and Their Effects on In-Mold Performance during High-Aluminum TRIP Steels Continuous Casting

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Seo, Myung-Duk; Cho, Jung-Wook; Kim, Seon-Hyo

    2014-06-01

    Crystallization behaviors of the newly developed lime-alumina-based mold fluxes for high-aluminum transformation induced plasticity (TRIP) steels casting were experimentally studied, and compared with those of lime-silica-based mold fluxes. The effects of mold flux crystallization characteristics on heat transfer and lubrication performance in casting high-Al TRIP steels were also evaluated. The results show that the crystallization temperatures of lime-alumina-based mold fluxes are much lower than those of lime-silica-based mold fluxes. Increasing B2O3 addition suppresses the crystallization of lime-alumina-based mold fluxes, while Na2O exhibits an opposite effect. In continuous cooling of lime-alumina-based mold fluxes with high B2O3 contents and a CaO/Al2O3 ratio of 3.3, faceted cuspidine precipitates first, followed by needle-like CaO·B2O3 or 9CaO·3B2O3·CaF2. In lime-alumina-based mold flux with low B2O3 content (5.4 mass pct) and a CaO/Al2O3 ratio of 1.2, the formation of fine CaF2 takes place first, followed by blocky interconnected CaO·2Al2O3 as the dominant crystalline phase, and rod-like 2CaO·B2O3 precipitates at lower temperature during continuous cooling of the mold flux. In B2O3-free mold flux, blocky interconnected 3CaO·Al2O3 precipitates after CaF2 and 3CaO·2SiO2 formation, and takes up almost the whole crystalline fraction. The casting trials show that the mold heat transfer rate significantly decreases near the meniscus during the continuous casting using lime-alumina-mold fluxes with higher crystallinity, which brings a great reduction of surface depressions on cast slabs. However, excessive crystallinity of mold flux causes poor lubrication between mold and solidifying steel shell, which induces various defects such as drag marks on cast slab. Among the studied mold fluxes, lime-alumina-based mold fluxes with higher B2O3 contents and a CaO/Al2O3 ratio of 3.3 show comparatively improved performance.

  16. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    PubMed

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces.

  17. Application of alcohol based spraying coating on green sand mould for steel casting

    NASA Astrophysics Data System (ADS)

    Xu, Z. L.; Wang, J.; Yang, S. S.; He, Q. L.; Xiong, H. Sh

    2015-12-01

    A kind of coating suitable for green sand steel casting was developed. The practical application showed that the strength of the coating was high enough with no crack and no peeling under room temperature after drying the spraying coating, the performance of the coating for anti-cracking was good under high temperature, and the gas evolution of the coating was low. Using the coating, the casting surfaces finish appeared very good.

  18. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-06-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  19. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-05-01

    This report deals with the welding procedure development and weldment properties of an Fe-16 at. % Al alloy known as FAPY. The welding procedure development was carried out on 12-, 25-, and 51-mm (0.5-, 1-, and 2-in.) -thick plates of the alloy in the as-cast condition. The welds were prepared by using the gas tungsten arc process and filler wire of composition matching the base-metal composition. The preheat temperatures varied from room temperature to 350{degrees}C, and the postweld heat treatment (PWHT) was limited only for 1 h at 750{degrees}C. The welds were characterized by microstructural. analysis and microhardness data. The weldment specimens were machined for Charpy-impact, tensile, and creep properties. The tensile and creep properties of the weldment specimens were essentially the same as that of the base metal. The Charpy-impact properties of the weldment specimens improved with the PWHT and were somewhat lower than previously developed data on the wrought material. Additional work is required on welding of thicker sections, development of PWHT temperatures as a function of section thickness, and mechanical properties.

  20. Oral keratinocyte responses to nickel-based dental casting alloys in vitro.

    PubMed

    Wylie, C M; Davenport, A J; Cooper, P R; Shelton, R M

    2010-09-01

    Adverse reactions of oral mucosa to nickel-based dental casting alloys are probably due to corrosion metal ion release. We exposed H400 oral keratinocytes to two Ni-based dental alloys (Matchmate and Dsign10) as well as NiCl( 2) (1-40 microg/mL Ni(2+)). Alloy derived Ni(2+) media concentrations were determined. Direct culture on both alloys resulted in inhibited growth with a greater effect observed for Dsign10 (higher ion release). Indirect exposure of cells to conditioned media from Dsign10 negatively affected cell numbers (approximately 64% of control by 6 days) and morphology while Matchmate-derived media did not. Exposure to increasing NiCl(2) negatively affected cell growth and morphology, and the Granulocyte-macrophage colony-stimulating factor (GM-CSF) transcript was significantly up-regulated in cells following direct and indirect exposure to Dsign10. NiCl(2) exposure up-regulated all cytokine transcripts at 1 day. At day 6, IL-1beta and IL-8 transcripts were suppressed while GM-CSF and IL-11 increased with Ni(2+) dose. Accumulation of Ni(2+) ions from alloys in oral tissues may affect keratinocyte viability and chronic inflammation.

  1. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, David; McCall, S. K.; ...

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  2. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    SciTech Connect

    Sims, Zachary C.; Weiss, David; McCall, S. K.; McGuire, Michael A.; Ott, Ryan T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  3. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-09-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  4. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    NASA Astrophysics Data System (ADS)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  5. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    SciTech Connect

    Sims, Zachary C.; Weiss, David; McCall, S. K.; McGuire, Michael A.; Ott, Ryan T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  6. Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development

    DOE PAGES

    Sims, Zachary C.; Weiss, David; McCall, S. K.; ...

    2016-05-23

    Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less

  7. Laser ignition of elastomer-modified cast double-base (EMCDB) propellant using a diode laser

    NASA Astrophysics Data System (ADS)

    Herreros, Dulcie N.; Fang, Xiao

    2017-03-01

    An experimental study was conducted to investigate laser ignition using a diode laser for elastomer-modified cast double-base (EMCDB) propellant in order to develop more liable and greener laser ignitors for direct initiation of the propellant. Samples of the propellant were ignited using a 974 nm near-infrared diode laser. Laser beam parameters including laser power, beam width and pulse width were investigated to determine their effects on the ignition performance in terms of delay time, rise time and burn time of the propellant which was arranged in several different configurations. The results have shown that the smaller beam widths, longer pulse widths and higher laser powers resulted in shorter ignition delay times and overall burn times, however, there came a point at which increasing the amount of laser energy transferred to the material resulted in no significant reduction in either delay time or overall burn time. The propellant tested responded well to laser ignition, a discovery which supports continued research into the development of laser-based propellant ignitors.

  8. An OSSE for a Local Ensemble Transform Kalman Filter - Based Now-casting System of Biwa Lake, Japan

    NASA Astrophysics Data System (ADS)

    Auger, G.; Wells, J. C.

    2016-02-01

    Fresh water bodies provide drinking water for inhabitants living in their vicinity. However short-lived extreme events, geophysical or anthropological, can worsen the water quality. In the Kinki region of Japan fourteen million people receive drinking water from Biwa Lake, Japan. The fact that water treatment plants surround the lake, and tropical cyclones hit the region every year makes the mitigation of water-quality-worsening events an important matter. Having informations in real time about the three-dimensional circulation of the lake will facilitate the mitigation of the extreme events. To obtain such informations, we are developing a now-casting system for the tracking of Biwa lakes's flow, the first in a limnological environment in Japan. We based our system on the coastal ocean simulator SUNTANS, and we added the LETKF scheme to assimilate available and future data streams. The system generates the ensemble of state vectors using six bred vectors and one unperturbed state vector. We will present the assessment of performances of the now-casting during an extreme event. To analyse the performances, we first performed a fine-scale simulation of the typhoon Man-Yi (September 2013) on Biwa Lake's circulation. We chose this specific event due to the strong wind and biomaterial discharge associated with it. The consistency analysis of the simulation was performed based on in-situ temperature data at six depth levels for the vertical consistency, space borne SST for the horizontal consistency. We also used near-infrared satellite data to analyse the propagation of biomaterial after the typhoon. Because the original simulation was consistent with observations, artificial data streams from the simulation are assimilated into the now-casting system. We show the results of the hindcast of the typhoon ManYi using the now-casting system. We also talk about the presence of instabilities during and after the typhoon that are highlighted by the bred vectors, used in the

  9. Copper response of Proteus hauseri based on proteomic and genetic expression and cell morphology analyses.

    PubMed

    Ng, I-Son; Zheng, Xuesong; Wang, Nan; Chen, Bor-Yann; Zhang, Xia; Lu, Yinghua

    2014-07-01

    The copper response of Proteus hauseri ZMd44 was determined using one-dimensional (1D) gel electrophoresis coupled with MALDI-TOF-TOF mass spectrometry for a similarity analysis of proteins isolated from P. hauseri ZMd44 cultured in CuSO4-bearing LB medium. Candidate proteins identified as a copper-transporting P-type ATPase (CTPP), phosphoenolpyruvate carboxykinase (PEPCK), flagellin (Fla), and outer membrane proteins (Omps) were the major copper-associated proteins in P. hauseri. In a comparative analysis of subcellular (i.e., periplasmic, intracellular, and inner membranes) and cellular debris, proteomics analysis revealed a distinct differential expression of proteins in P. hauseri with and without copper ion exposure. These findings were consistent with the transcription level dynamics determined using quantitative real-time PCR. Based on a genetic cluster analysis of copper-associated proteins from P. hauseri, Fla and one of the Omps showed greater diversity in their protein sequences compared to those of other Proteus species. Transmission electron microscopy (TEM) and the observed growth on LB agar plates showed that the swarming motility of cells was significantly suppressed and inhibited upon Cu(II) exposure. Thus, copper stress could have important therapeutic significance due to the loss of swarming motility capacity in P. hauseri, which causes urinary tract infections.

  10. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    SciTech Connect

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  11. Grain Selection During Casting Ni-Base, Single-Crystal Superalloys with Spiral Grain Selector

    NASA Astrophysics Data System (ADS)

    Gao, S. F.; Liu, L.; Wang, N.; Zhao, X. B.; Zhang, J.; Fu, H. Z.

    2012-10-01

    The behavior of grain selection in a spiral grain selector during investment casting of a Ni-base, single-crystal (SX) superalloy, DD3, has been investigated by electron backscattered diffraction (EBSD) techniques and optical microscopy. The results indicated that the main function of starter block is to optimize the crystal orientation. During the process of grain selection in spiral passage, the grain near the inner wall of spiral passage was usually selected as the final single crystal. It was found that the dendrites near the inner wall could develop new tertiary dendritic arms that paralleled the primary dendrites from the secondary dendritic arms to overgrow the dendrites far away from the inner wall. The crystal orientation that was examined by X-ray diffraction revealed that (1) the crystal orientation did not change obviously with increasing spiral thickness or angle and (2) the crystal orientation could be optimized by increasing the withdrawal rate and ceramic mold temperature. The influence of pouring temperature on crystal orientation was also discussed.

  12. Real-Time, Model-Based Spray-Cooling Control System for Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Petrus, Bryan; Zheng, Kai; Zhou, X.; Thomas, Brian G.; Bentsman, Joseph

    2011-02-01

    This article presents a new system to control secondary cooling water sprays in continuous casting of thin steel slabs (CONONLINE). It uses real-time numerical simulation of heat transfer and solidification within the strand as a software sensor in place of unreliable temperature measurements. The one-dimensional finite-difference model, CON1D, is adapted to create the real-time predictor of the slab temperature and solidification state. During operation, the model is updated with data collected by the caster automation systems. A decentralized controller configuration based on a bank of proportional-integral controllers with antiwindup is developed to maintain the shell surface-temperature profile at a desired set point. A new method of set-point generation is proposed to account for measured mold heat flux variations. A user-friendly monitor visualizes the results and accepts set-point changes from the caster operator. Example simulations demonstrate how a significantly better shell surface-temperature control is achieved.

  13. Microstructure and stress rupture properties of polycrystal and directionally solidified castings of nickel-based superalloys

    NASA Astrophysics Data System (ADS)

    Wu, Bao-ping; Li, Lin-han; Wu, Jian-tao; Wang, Zhen; Wang, Yan-bin; Chen, Xing-fu; Dong, Jian-xin; Li, Jun-tao

    2014-01-01

    A new directionally solidified Ni-based superalloy DZ24, which is a modification of K24 alloy without rare and expensive elemental additions, such as Ta and Hf, was studied in this paper. The microstructure and stress rupture properties of conventionally cast and directionally solidified superalloys were comparatively analyzed. It is indicated that the microstructure of K24 alloy is composed of γ, γ', γ/γ' eutectics and MC carbides. Compared with the microstructure of K24 polycrystalline alloy, γ/γ' eutectic completely dissolves into the γ matrix, the fine and regular γ' phase reprecipitates, and MC carbides decompose to M6C/M23C6 carbides after heat treatment in DZ24 alloy. The rupture life of DZ24 alloy is two times longer than that of K24 alloy. The more homogeneous the size of γ' precipitate, the longer the rupture life. The coarsening and rafting behaviors of γ' precipitates are observed in DZ24 alloy after the stress-rupture test.

  14. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  15. Copper phthalocyanine-based CMPs with various internal structures and functionalities.

    PubMed

    Ding, Xuesong; Han, Bao-Hang

    2015-08-18

    Several kinds of copper phthalocyanine-based conjugated microporous polymers have been synthesized, which present enhanced long-wavelength photon absorption capability and high efficiency for singlet oxygen generation under low energy light irradiation. This strategy opens a facile avenue towards expanding the scope of phthalocyanine-based porous materials with various internal structures and functionalities.

  16. Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals.

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...

  17. Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals.

    EPA Science Inventory

    Utilizing ToxCast Data and Lifestage Physiologically-Based Pharmacokinetic (PBPK) models to Drive Adverse Outcome Pathways (AOPs)-Based Margin of Exposures (ABME) to Chemicals. Hisham A. El-Masri1, Nicole C. Klienstreur2, Linda Adams1, Tamara Tal1, Stephanie Padilla1, Kristin I...

  18. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  19. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.

    PubMed

    Mumm, Florian; van Helvoort, Antonius T J; Sikorski, Pawel

    2009-09-22

    Droplet-based microfluidic systems are an expansion of the lab on a chip concept toward flexible, reconfigurable setups based on the modification and analysis of individual droplets. Superhydrophobic surfaces are one suitable candidate for the realization of droplet-based microfluidic systems as the high mobility of aqueous liquids on such surfaces offers possibilities to use novel or more efficient approaches to droplet movement. Here, copper-based superhydrophobic surfaces were produced either by the etching of polycrystalline copper samples along the grain boundaries using etchants common in the microelectronics industry, by electrodeposition of copper films with subsequent nanowire decoration based on thermal oxidization, or by a combination of both. The surfaces could be easily hydrophobized with thiol-modified fluorocarbons, after which the produced surfaces showed a water contact angle as high as 171 degrees +/- 2 degrees . As copper was chosen as the base material, established patterning techniques adopted from printed circuit board fabrication could be used to fabricate macrostructures on the surfaces with the intention to confine the droplets and, thus, to reduce the system's sensitivity to tilting and vibrations. A simple droplet-based microfluidic chip with inlets, outlets, sample storage, and mixing areas was produced. Wire guidance, a relatively new actuation method applicable to aqueous liquids on superhydrophobic surfaces, was applied to move the droplets.

  20. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal-Organic Frameworks

    SciTech Connect

    Gao, Wen-Yang; Cai, Rong; Pham, Tony; Forrest, Katherine A.; Hogan, Adam; Nugent, Patrick; Williams, Kia; Wojtas, Lukasz; Luebke, Ryan; Weseliinski, Lukasz J.; Zaworotko, Michael J.; Space, Brian; Chen, Yu-Sheng; Eddaoudi, Mohamed; Shi, Xiaodong; Ma, Shengqian

    2015-08-21

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal–organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu₂(O₂C-)₄], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu₃O(N4–x(CH)xC-)₃] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1.

  1. Synthesis of copper nanostructures on silica-based particles for antimicrobial organic coatings

    NASA Astrophysics Data System (ADS)

    Palza, Humberto; Delgado, Katherine; Curotto, Nicolás

    2015-12-01

    Sol-gel based silica nanoparticles of 100 nm were used to interact with copper ions from the dissolution of CuCl2 allowing the synthesis of paratacamite (Cu2(OH)3Cl) nanocrystals of around 20 nm. The method produced well dispersed copper nanostructures directly supported on the surface of the SiO2 particles and was generalized by using a natural zeolite microparticle as support with similar results. These hybrid Cu based nanoparticles released copper ions when immersed in water explaining their antimicrobial behavior against Escherichia coli and Staphylococcus aureus as measured by the minimum inhibitory and minimum bactericidal concentrations (MIC and MBC). Noteworthy, when these nanostructured particles were mixed with an organic coating the resulting film eliminated until a 99% of both bacteria at concentrations as low as 0.01 wt%.

  2. Protective coating for copper in aluminum heat exchangers

    NASA Technical Reports Server (NTRS)

    Avazian, R.

    1978-01-01

    Application of ultrathin layer of molybdenum disulfied coating to copper tubing permits utilization of tubing in cast-aluminum heat exchangers. Coating prevents formation of copper/aluminum eutectic, but does not impede heat transfer.

  3. Electromigration study of copper lines on steps prepared by a plasma-based etch process

    SciTech Connect

    Lin, Chi-Chou; Kuo Yue

    2012-03-15

    The electromigration phenomenon of the copper line etched with a plasma-based process over the SiN{sub x} step has been investigated. Two important factors, i.e., the dielectric topography and the stress temperature, were examined using the accelerated isothermal electromigration method. The activation energy of 0.73 eV to 0.89 eV indicates two possible mass transport pathways: interfacial and copper surface diffusions. The copper line on the SiN{sub x} step has a shorter lifetime and a smaller activation energy than the copper line on the flat surface has. For the former, voids were formed at the cusp region and perpendicular to the current flow direction. For the latter, voids were formed in series and parallel to the current flow direction. The ''neck'' structure at the cusp region, which is a result of the inappropriate etching condition, further decreased the lifetime and the activation energy. The lifetime of the ''neck-free'' copper line over the SiN{sub x} step was estimated to be 7.1 x 10{sup 9} s under the high-speed IC operation condition. The thermal stress mismatch between the copper layer and TiW barrier layer as well as the underneath dielectric layer facilitated the void formation. The step effect on the lifetime was reduced when the test temperature was high because of the change of the local stress. In summary, the topography and the test temperature are critical factors for the copper line's lifetime.

  4. Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration

    SciTech Connect

    Azenha, Miguel; Magalhaes, Filipe; Faria, Rui; Cunha, Alvaro

    2010-07-15

    The use of ambient vibration tests to characterize the evolution of E-modulus of concrete right after casting is investigated in this paper. A new methodology is proposed, which starts by casting a concrete cylindrical beam inside a hollow acrylic formwork. This beam is then placed horizontally, simply supported at both extremities, and vertical accelerations resulting from ambient vibration are measured at mid-span. Processing these mid-span acceleration time series using power spectral density functions allows a continuous identification of the first flexural frequency of vibration of the composite beam, which in turn is correlated with the evolutive E-modulus of concrete since casting. Together with experiments conducted with the proposed methodology, a complementary validation campaign for concrete E-modulus determination was undertaken by static loading tests performed on the composite beam, as well as by standard compressive tests of concrete cylinders of the same batch loaded at different ages.

  5. [The collector system of the kidney. Applied anatomy based on the analysis of 3-dimensional casts].

    PubMed

    Sampaio, F J; Mandarim-De-Lacerda, C A; De Aragão, A H

    1987-01-01

    The kidney collector system were studied in 120 three-dimensional casts obtained by the injection-corrosion method. To the procurement of the first hundred casts, we made use of a polyester resin; however on the preparation of the last twenty we made use of a mixture containing latex and radiographic contrast as we intended to obtain, besides the casts, the roentgenograms. Two anatomic details, which have a great importance for endourology, were observed: a. the calices' cross draining the meso-renal region and the consequent inter-pelvis-calice (space (IPC) formation which is seen in the roentgenograms, b. a smaller calice which penetrates perpendicularly the surface of the renal pelvis or into the surface of a great calice. The urologists must appreciate these two anatomic structures, before the surgical procedures on the collector system.

  6. Bond strength of poly(methyl methacrylate) denture base material to cast titanium and cobalt-chromium alloy.

    PubMed

    Matsuda, Yasuhiro; Yanagida, Hiroaki; Ide, Takako; Matsumura, Hideo; Tanoue, Naomi

    2010-06-01

    The shear bond strength of an auto-polymerizing poly(methyl methacrylate) denture base resin material to cast titanium and cobalt-chromium alloy treated with six conditioning methods was investigated. Disk specimens (10 mm in diameter and 2.5 mm in thickness) were cast from pure titanium and cobalt-chromium alloy. The specimens were wet ground to a final surface finish of 600 grit, air dried, and treated with the following bonding systems: 1) air abraded with 50-70-microm-grain alumina (SAN); 2) air abraded with 50-70-microm-grain alumina + conditioned with Alloy Primer (ALP); 3) air abraded with 50-70-microm-grain alumina + conditioned with AZ Primer (AZP); 4) air abraded with 50-70-microm-grain alumina + conditioned with Estenia Opaque Primer (EOP); 5) air abraded with 50-70-microm-grain alumina + conditioned with Metal Link Primer (MLP), and 6) treated with ROCATEC system (ROC). A denture base material (Palapress Vario) was then applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. The strengths decreased after thermocycling in all combinations. Among the treatment methods assessed, groups 2 and 4 showed significantly (p < 0.05) enhanced shear bond strengths for both metals. In group 4, the strength in MPa (n = 7) after thermocycling for cobalt-chromium alloy was 38.3, which was statistically (p < 0.05) higher than that for cast titanium (34.7). Air abrasion followed by the application of two primers containing a hydrophobic phosphate monomer (MDP) effectively improved the strength of the bond of denture base material to cast titanium and cobalt-chromium alloy.

  7. 76 FR 44322 - Copper Mountain Solar 1, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Copper Mountain Solar 1, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Copper Mountain Solar 1, LLC's application for market-based...

  8. Synchrotron based x-ray fluorescence microscopy confirms copper in the corrosion products of metals in contact with treated wood

    Treesearch

    Samuel L. Zelinka; Joseph E. Jakes; Grant T. Kirker; David Vine; Stefan Vogt

    2017-01-01

    Copper based waterborne wood preservatives are frequently used to extend the service life of wood products when subjected to frequent moisture exposure. While these copper based treatments protect the wood from fungal decay and insect attack, they increase the corrosion of metals embedded or in contact with the treated wood. Previous research has shown the most...

  9. Distribution and oxidation state of copper in the cell walls of treated wood examined by synchrotron based XANES and XFM

    Treesearch

    Samuel L. Zelinka; Grant T. Kirker; Joseph E. Jakes; Leandro Passarini; Barry Lai

    2016-01-01

    Recently, synchrotron based X-ray fluorescence microscopy (XFM) and X-ray absorption near edge spectroscopy (XANES) were used to examine the metal fastener corrosion in copper-treated wood. XFM is able to map the copper concentration in the wood with a spatial resolution of 0.5 µm and is able to quantify the copper concentration to within 0.05 µg cm-3...

  10. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils.

    PubMed

    Li, Jing; Ma, Yi-Bing; Hu, Hang-Wei; Wang, Jun-Tao; Liu, Yu-Rong; He, Ji-Zheng

    2015-01-01

    Copper contamination on China's arable land could pose severe economic, ecological and healthy consequences in the coming decades. As the drivers in maintaining ecosystem functioning, the responses of soil microorganisms to long-term copper contamination in different soil ecosystems are still debated. This study investigated the impacts of copper gradients on soil bacterial communities in two agricultural fields with contrasting soil properties. Our results revealed consistent reduction in soil microbial biomass carbon (SMBC) with increasing copper levels in both soils, coupled by significant declines in bacterial abundance in most cases. Despite of contrasting bacterial community structures between the two soils, the bacterial diversity in the copper-contaminated soils showed considerably decreasing patterns when copper levels elevated. High-throughput sequencing revealed copper selection for major bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Chloroflexi were highly sensitive to copper. The thresholds that bacterial communities changed sharply were 800 and 200 added copper mg kg(-1) in the fluvo-aquic soil and red soil, respectively, which were similar to the toxicity thresholds (EC50 values) characterized by SMBC. Structural equation model (SEM) analysis ascertained that the shifts of bacterial community composition and diversity were closely related with the changes of SMBC in both soils. Our results provide field-based evidence that copper contamination exhibits consistently negative impacts on soil bacterial communities, and the shifts of bacterial communities could have largely determined the variations of the microbial biomass.

  11. Microstructure Based Modeling of β Phase Influence on Mechanical Response of Cast AM Series Mg Alloys

    SciTech Connect

    Barker, Erin I.; Choi, Kyoo Sil; Sun, Xin; Deda, Erin; Allison, John; Li, Mei; Forsmark, Joy; Zindel, Jacob; Godlewski, Larry

    2014-09-30

    Magnesium alloys have become popular alternatives to aluminums and steels for the purpose of vehicle light-weighting. However, Mg alloys are hindered from wider application due to limited ductility as well as poor creep and corrosion performance. Understanding the impact of microstructural features on bulk response is key to improving Mg alloys for more widespread use and for moving towards truly predicting modeling capabilities. This study focuses on modeling the intrinsic features, particularly volume fraction and morphology of beta phase present, of cast Mg alloy microstructure and quantifying their impact on bulk performance. Computational results are compared to experimental measurements of cast plates of Mg alloy with varying aluminum content.

  12. FY 1985 status report on feasibility assessment of copper-base waste package container materials in a tuff repository

    SciTech Connect

    McCright, R.D.

    1985-09-30

    This report discusses progress made during the first year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. The expected corrosion and oxidation performances of oxygen-free copper, aluminum bronze, and 70% copper-30% nickel are presented; a test plan for determining whether copper or one of the alloys can meet the containment requirements is outlined. Some preliminary corrosion test data are presented and discussed. Fabrication and joining techniques for forming waste package containers are descibed. Preliminary test data and analyses indicate that copper and copper-base alloys have several attractive features as waste package container materials, but additional work is needed before definitive conclusions can be made on the feasibility of using copper or a copper-base alloy for containers. Plans for work to be undertaken in the second year are indicated.

  13. Transport properties of copper phthalocyanine based organic electronic devices

    NASA Astrophysics Data System (ADS)

    Schuster, C.; Kraus, M.; Opitz, A.; Brütting, W.; Eckern, U.

    2009-12-01

    Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied experimentally in field-effect transistors and metal-insulator-semiconductor diodes at various temperatures. The electronic structure and the transport properties of CuPc attached to leads are calculated using density functional theory and scattering theory at the non-equilibrium Green’s function level. We discuss, in particular, the electronic structure of CuPc molecules attached to gold chains in different geometries to mimic the different experimental setups. The combined experimental and theoretical analysis explains the dependence of the mobility and the transmission coefficient on the charge carrier type (electrons or holes) and on the contact geometry. We demonstrate the correspondence between our experimental results on thick films and our theoretical studies of single molecule contacts. Preliminary results for fluorinated CuPc are discussed.

  14. A Caenorhabditis elegans Nutritional-status Based Copper Aversion Assay.

    PubMed

    Campbell, Jason C; Chin-Sang, Ian D; Bendena, William G

    2017-07-26

    To ensure survival, organisms must be capable of avoiding unfavorable habitats while ensuring a consistent food source. Caenorhabditis elegans alter their locomotory patterns upon detection of diverse environmental stimuli and can modulate their suite of behavioral responses in response to starvation conditions. Nematodes typically exhibit a decreased aversive response when removed from a food source for over 30 min. Observation of behavioral changes in response to a changing nutritional status can provide insight into the mechanisms that regulate the transition from a well-fed to starved state. We have developed an assay that measures a nematode's ability to cross an aversive barrier (i.e. copper) then reach a food source over a prolonged period of time. This protocol builds upon previous work by integrating multiple variables in a manner that allows for continued data collection as the organisms shift towards an increasingly starved condition. Moreover, this assay permits an increased sample size so that larger populations of nematodes can be simultaneously evaluated. Organisms defective for the ability to detect or respond to copper immediately cross the chemical barrier, while wild type nematodes are initially repelled. As wild type worms are increasingly starved, they begin to cross the barrier and reach the food source. We designed this assay to evaluate a mutant that is incapable of responding to diverse environmental cues, including food sensation or detection of aversive chemicals. When evaluated via this protocol, the defective organisms immediately crossed the barrier, but were also incapable of detecting a food source. Hence, these mutants repeatedly cross the chemical barrier despite temporarily reaching a food source. This assay can straightforwardly test populations of worms to evaluate potential pathway defects related to aversion and starvation.

  15. Tape cast bioactive metal-ceramic laminates for structural application

    NASA Astrophysics Data System (ADS)

    Clupper, Daniel Christopher

    Bioglass 45S5, is a silica based glass which is able to rapidly form strong bonds with bone and soft tissue in vivo. It is used clinically to replace damaged ear ossicles and in dental surgery to help maintain the structural integrity of the jaw bone. The goal of the research was to demonstrate that Bioglass can be toughened by lamination with metallic layers while maintaining bioactivity. Improvement of the mechanical properties of Bioglass 45SS would allow for additional clinical applications, such as fracture fixation plates, or vertebral spacers. Bioglass 45S5 was tape cast and laminated with clinically relevant metals (316L, stainless steel and titanium) as well as copper in an effort to demonstrate that the effective toughness, or area under the load-deflection diagram can be increased significantly through ductile layer lamination. The average strength of monolithic tape cast sintered Bioglass was as high as 150 MPa and the toughness measured approximately 1.0 MPa m1/2. Copper-Bioglass laminates clearly demonstrated the toughening effect of metal layers on tape cast sintered Bioglass 45S5. Steel-Bioglass laminates, although less tough than the copper-Bioglass laminates, showed higher strengths. In vitro bioactivity tests of both titanium and steel Bioglass laminates showed the formation of mature and thick hydroxyapatite layers after 24 hours in Tris buffer solution. Under the standard test conditions, the bioactivity of monolithic tape cast sintered Bioglass increased with increasing sintering temperature. For samples sintered at 1000°C, thick crystalline layers of hydroxyapatite formed within 24 hours in Tris buffer solution. The bioactivity of these samples approached that of amorphous bulk Bioglass. Samples processed at 800°C were able to form thick crystalline hydroxyapatite layer after 24 hours when the test solution volume was increased by eight times.

  16. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  17. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings.

    PubMed

    Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan

    2016-08-01

    A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.

  18. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation

    NASA Astrophysics Data System (ADS)

    Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming

    2016-10-01

    In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films.

  19. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation

    PubMed Central

    Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming

    2016-01-01

    In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films. PMID:27734900

  20. A new thio-Schiff base fluorophore with copper ion sensing, DNA binding and nuclease activity.

    PubMed

    Vikneswaran, R; Syafiq, Muhamad Syamir; Eltayeb, Naser Eltaher; Kamaruddin, Mohd Naqiuddin; Ramesh, S; Yahya, R

    2015-01-01

    Copper ion recognition and DNA interaction of a newly synthesized fluorescent Schiff base (HPyETSC) were investigated using UV-vis and fluorescent spectroscopy. Examination using these two techniques revealed that the detection of copper by HPyETSC is highly sensitive and selective, with a detection limit of 0.39 μm and the mode of interaction between HPyETSC and DNA is electrostatic, with a binding constant of 8.97×10(4) M(-1). Furthermore, gel electrophoresis studies showed that HPyETSC exhibited nuclease activity through oxidative pathway.

  1. Preparation and characterization of a copper based Indian traditional drug: tamra bhasma.

    PubMed

    Wadekar, M P; Rode, C V; Bendale, Y N; Patil, K R; Prabhune, A A

    2005-10-04

    The copper based Indian traditional drug 'tamra bhasma' is administered for various ailments since long. Its synthesis involves treating metallic copper with plant juices and then repeated calcination in presence of air so that the metallic state is transformed into the corresponding oxide form traditionally known as 'bhasma'. In this work, we present a systematic characterization of this traditional drug using various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM)-energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), thermogravimetry (TG) and surface area measurement. The results obtained were found to match very well with those of a standard copper oxide confirming the composition of the drug sample. In addition, some specific findings were also made which could help in interpreting the therapeutic properties of the traditional drug 'tamra bhasma'.

  2. Polymer nanocomposites based on polyamide 12 filled with nickel and copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Shapoval, E. S.; Zuev, V. V.

    2014-05-01

    The method for producing nanoscale nickel particles (particle diameter 20-30 nm) protected from oxidation thin carbon shell (1-2 nm) was developed. The polymer nanocomposites based on PA 12 matrix filled with filled with 0.1 to 1 wt. % nickel nanoparticles were synthesized by in situ polymerization. The tensile properties of polymer composites (Young's modulus, ultimate strength) were increased on 15-20% compared to the neat polymer. Also this article reports the findings of an investigation of a synthetic route for a synthesis a size-controllable molecularly capped copper nanoparticles. At using copper nanoparticles as filler the mechanical properties became worse by about 5-10% as compared PA12. Thus, needs the search of optimal way to modification of PA 12 matrix with copper nanoparticles.

  3. Color tunable light-emitting diodes based on copper doped semiconducting nanocrystals

    NASA Astrophysics Data System (ADS)

    Bhaumik, Saikat; Ghosh, Batu; Pal, Amlan J.

    2011-08-01

    We have introduced copper-doped semiconducting nanocrystals in light-emitting diodes (LEDs). Characteristics of the devices show that electroluminescence (EL) emission in these LEDs is color tunable. In copper-doped ZnS nanocrystals in the core and Zn1-xCdxS host as a shell-layer, photoluminescence (PL) arises from a transition from conduction band-edge of the host to 3d-levels of copper-ions. The PL of the nanocrystals and hence the EL of LEDs based on such nanostructures become tunable by varying the Cd-content in Zn-Cd-S alloys, that is, Zn1-xCdxS with different values of x, which changes the conduction band-edge of the host.

  4. In vivo detection of copper ions by magnetic resonance imaging using a prion-based contrast agent.

    PubMed

    Makino, Satoshi; Umemoto, Tomohiro; Yamada, Hiroshi; Yezdimer, Eric M; Tooyama, Ikuo

    2012-10-01

    Abnormal distributions of transition metals inside the body are potential diagnostic markers for several diseases, including Alzheimer's disease, Parkinson's disease, Wilson's disease, and cancer. In this article, we demonstrate that P57/Gd, a novel prion-based contrast agent, can selectively image tissues with excessive copper accumulation using magnetic resonance imaging (MRI). P57/Gd selectivity binds copper(II) over other physiologically relevant cations such as zinc, iron, manganese, and calcium. To simulate a metabolic copper disorder, we treated mice with an intraperitoneal injection of a CuSO(4) solution to induce a renal copper overload. The MRI signal intensities from the renal cortex and medulla of copper spiked animals that were administered P57/Gd were found to correlate with the ex vivo copper concentrations determined by inductively coupled plasma mass spectrometry.

  5. A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts

    NASA Astrophysics Data System (ADS)

    Rodríguez, Emilio; Vicente, Miguel Angel

    2002-04-01

    An integrated inorganic chemistry laboratory experiment for first-year students in Chemistry and Chemical Engineering is presented. It is based on copper sulfate and structured for a duration of about 10 hours, and has three steps: purification of a natural ore containing copper sulfate and insoluble basic copper sulfates, determination of the number of water molecules in hydrated copper sulfate, and recovery of metallic copper from copper sulfate. Many basic operations and concepts related to this experiment are studied: weighing; heating; filtration (simple and vacuum-assisted); purification; crystallization; pure compounds and mixtures; hydrated and anhydrous salts; solubility; unsaturated (dilute and concentrated), saturated, and supersaturated solutions; adsorbed and crystallization water; reversible dehydration; redox reaction; electrode potential; free energy; spontaneity; and catalysis.

  6. High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling

    EPA Science Inventory

    The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...

  7. The Simulation of Magnesium Wheel Low Pressure Die Casting Based on PAM-CAST™

    NASA Astrophysics Data System (ADS)

    Peng, Yinghong; Wang, Yingchun; Li, Dayong; Zeng, Xiaoqin

    2004-06-01

    Magnesium is the lightest metal commonly used in engineering, with various excellent characteristics such as high strength and electromagnetic interference shielding capability. Particularly, the usage of magnesium in automotive industry can meet better the need to reduce fuel consumption and CO2 emissions. Nowadays, most current magnesium components in automobiles are made by die casting. In this paper, commercial software for die casting, PAM-CAST™, was utilized to simulate the low pressure die casting process of magnesium wheel. Through calculating temperature field and velocity field during filling and solidification stages, the evolution of temperature distribution and liquid fraction was analyzed. Then, the potential defects including the gas entrapments in the middle of the spokes, shrinkages between the rim and the spokes were forecasted. The analytical results revealed that the mold geometry and die casting parameters should be improved in order to get the sound magnesium wheel. The reasons leading to these defects were also analyzed and the solutions to eliminate them were put forward. Furthermore, through reducing the pouring velocity, the air gas entrapments and partial shrinkages were eliminated effectively.

  8. High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling

    EPA Science Inventory

    The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...

  9. High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research pr...

  10. High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research pr...

  11. Dynamic shader generation for GPU-based multi-volume ray casting.

    PubMed

    Rössler, Friedemann; Botchen, Ralf P; Ertl, Thomas

    2008-01-01

    Real-time performance for rendering multiple intersecting volumetric objects requires the speed and flexibility of modern GPUs. This requirement has restricted programming of the necessary shaders to GPU experts only. A visualization system that dynamically generates GPU shaders for multi-volume ray casting from a user-definable abstract render graph overcomes this limitation.

  12. Serpula lacrymans, the dry rot fungus and tolerance towards copper-based wood preservatives

    Treesearch

    Anne Christine Steenkjaer Hastrup; Frederick Green; Carol Clausen; Bo Jensen

    2005-01-01

    Serpula lacrymans (Wulfen : Fries) Schröter, the dry rot fungus, is considered the most economically important wood decay fungus in temperate regions of the world i.e. northern Europe, Japan and Australia. Previously copper based wood preservatives were the most commonly used preservatives for pressure treatment of wood for building constructions. Because of a...

  13. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    SciTech Connect

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  14. A Winning Cast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.

  15. The use of fluidized sand bed as an innovative technique for heat treating aluminum based castings

    NASA Astrophysics Data System (ADS)

    Ragab, Khaled

    values of the 356 alloys are more responsive to the FB technique than 319 alloys through long aging times of up to 5 hours. The 319 alloys heat-treated in an FB, however, show better quality values after 0.5 hour of aging and for solution treatment times of up to 5 hours than those treated using a CF. With regard to the quality charts of 319 alloys, heat-treated samples show that increasing the aging time up to peak-strength, i.e. 8 and 12 hours in a CF and an FB, respectively, results in increasing in the alloy strength with a decrease in the quality values, for each of the solution heat treatment times used. The statistical analysis of the results reveals that modification and heating rate of the heat treatment technique have the greatest positive effects on the quality values of the 356 alloys. The use of a fluidized sand bed for the direct quenching-aging treatment of A356.2 and B319.2 casting alloys yields greater UTS and YS values compared to conventional furnace quenched alloys. The strength values of T6 tempered A356 and B319 alloys are greater when quenched in water compared to those quenched in an FB or CF. For the same aging conditions (170°C/4h), the fluidized bed quenched-aged 319 and 356 alloys show nearly the same or better strength values than those quenched in water and then aged in a CF or an FB. Based on the quality charts developed for alloys subjected to different quenching media, higher quality index values are obtained by water-quenched T6-tempered A356 alloys, and conventional furnace quenched-aged T6-tempered B319 alloys, respectively. The modification factor has the most significant effect on the quality results of the alloys investigated, for all heat treatment cycles, as compared to other metallurgical parameters. The results of alloys subjected to multi-temperature aging cycles reveal that the strength results obtained after the T6 continuous aging treatment of A356 alloys are not improved by means of multi-temperature aging cycles

  16. Wolfiporia cocos : a potential agent for composting of bioprocessing Douglas-fir wood treated with copper-based preservatives

    Treesearch

    Rodney. De Groot; Bessie. Woodward

    1998-01-01

    In laboratory experiments, Douglas-fir wood blocks that were treated with copper- based wood preservatives were challenged with two wood decay fungi known to be tolerant of copper. Factors influencing the amount of decay, as determined by loss of weight in the test blocks, were preservative, then fungus. Within those combinations, the relative importance of...

  17. Microemulsion-based synthesis of copper nanodisk superlattices

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Zhao, Yanbao; Guo, Wenjing; Tao, Xiaojun; Zhang, Zhijun

    2011-06-01

    Nanocrystal superlattices (NCSs) comprised of self-assembled copper nanodisks were successfully synthesized in quaternary W/O microemulsions containing Span 80-Tween 80, liquid paraffin and n-butanol. Morphologies, structure and thermal properties of the Cu nanocrystals were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, thermogravimetry (TG) and differential thermogravimetry (DTG). The reaction conditions which effect the growth of the Cu nanodisks were explored, and a mechanism for the formation of the Cu NCSs is proposed. XRD and TEM studies show that the as-synthesized Cu nanodisks exhibit a cubic crystal structure, and FT-IR and TG analysis show that the surfaces of the Cu nanodisks are covered with surfactants, which assist in the formation of the superlattice and prevent the oxidation of the Cu nanocrystals. Variation of the reaction parameters such as mass ratio of the surfactants and the presence of oleic acid is found to have a significant effect on the formation of the Cu nanodisks.

  18. Flow condensation on copper-based nanotextured superhydrophobic surfaces.

    PubMed

    Torresin, Daniele; Tiwari, Manish K; Del Col, Davide; Poulikakos, Dimos

    2013-01-15

    Superhydrophobic surfaces have shown excellent ability to promote dropwise condensation with high droplet mobility, leading to enhanced surface thermal transport. To date, however, it is unclear how superhydrophobic surfaces would perform under the stringent flow condensation conditions of saturated vapor at high temperature, which can affect superhydrophobicity. Here, we investigate this issue employing "all-copper" superhydrophobic surfaces with controlled nanostructuring for minimal thermal resistance. Flow condensation tests performed with saturated vapor at a high temperature (110 °C) showed the condensing drops penetrate the surface texture (i.e., attain the Wenzel state with lower droplet mobility). At the same time, the vapor shear helped ameliorate the mobility and enhanced the thermal transport. At the high end of the examined vapor velocity range, a heat flux of ~600 kW m(-2) was measured at 10 K subcooling and 18 m s(-1) vapor velocity. This clearly highlights the excellent potential of a nanostructured superhydrophobic surface in flow condensation applications. The surfaces sustained dropwise condensation and vapor shear for five days, following which mechanical degradation caused a transition to filmwise condensation. Overall, our results underscore the need to investigate superhydrophobic surfaces under stringent and realistic flow condensation conditions before drawing conclusions regarding their performance in practically relevant condensation applications.

  19. Casting behavior of titanium alloys in a centrifugal casting machine.

    PubMed

    Watanabe, K; Miyakawa, O; Takada, Y; Okuno, O; Okabe, T

    2003-05-01

    Since dental casting requires replication of complex shapes with great accuracy, this study examined how well some commercial titanium alloys and experimental titanium-copper alloys filled a mold cavity. The metals examined were three types of commercial dental titanium [commercially pure titanium (hereinafter noted as CP-Ti), Ti-6Al-4V (T64) and Ti-6Al-7Nb (T67)], and experimental titanium-copper alloys [3%, 5% and 10% Cu (mass %)]. The volume percentage filling the cavity was evaluated in castings prepared in a very thin perforated sheet pattern and cast in a centrifugal casting machine. The flow behavior of the molten metal was also examined using a so-called "tracer element technique." The amounts of CP-Ti and all the Ti-Cu alloys filling the cavity were similar; less T64 and T67 filled the cavity. However, the Ti-Cu alloys failed to reach the end of the cavities due to a lower fluidity compared to the other metals. A mold prepared with specially designed perforated sheets was effective at differentiating the flow behavior of the metals tested. The present technique also revealed that the more viscous Ti-Cu alloys with a wide freezing range failed to sequentially flow to the end of the cavity.

  20. Ultrastretchable and flexible copper interconnect-based smart patch for adaptive thermotherapy.

    PubMed

    Hussain, Aftab M; Lizardo, Ernesto Byas; Torres Sevilla, Galo A; Nassar, Joanna M; Hussain, Muhammad M

    2015-04-02

    Unprecedented 800% stretchable, non-polymeric, widely used, low-cost, naturally rigid, metallic thin-film copper (Cu)-based flexible and non-invasive, spatially tunable, mobile thermal patch with wireless controllability, adaptability (tunes the amount of heat based on the temperature of the swollen portion), reusability, and affordability due to low-cost complementary metal oxide semiconductor (CMOS) compatible integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cool Cast Facts

    MedlinePlus

    ... moving. The outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, ... color! These casts are lighter and stronger than plaster casts. Plaster casts are usually white and made ...

  2. The Effect of Copper Addition on the Activity and Stability of Iron-Based CO₂ Hydrogenation Catalysts.

    PubMed

    Bradley, Matthew J; Ananth, Ramagopal; Willauer, Heather D; Baldwin, Jeffrey W; Hardy, Dennis R; Williams, Frederick W

    2017-09-20

    Iron-based CO₂ catalysts have shown promise as a viable route to the production of olefins from CO₂ and H₂ gas. However, these catalysts can suffer from low conversion and high methane selectivity, as well as being particularly vulnerable to water produced during the reaction. In an effort to improve both the activity and durability of iron-based catalysts on an alumina support, copper (10-30%) has been added to the catalyst matrix. In this paper, the effects of copper addition on the catalyst activity and morphology are examined. The addition of 10% copper significantly increases the CO₂ conversion, and decreases methane and carbon monoxide selectivity, without significantly altering the crystallinity and structure of the catalyst itself. The FeCu/K catalysts form an inverse spinel crystal phase that is independent of copper content and a metallic phase that increases in abundance with copper loading (>10% Cu). At higher loadings, copper separates from the iron oxide phase and produces metallic copper as shown by SEM-EDS. An addition of copper appears to increase the rate of the Fischer-Tropsch reaction step, as shown by modeling of the chemical kinetics and the inter- and intra-particle transport of mass and energy.

  3. Chimerical categories: caste, race, and genetics.

    PubMed

    Sabir, Sharjeel

    2003-12-01

    Is discrimination based on caste equivalent to racism? This paper explores the complex relationship between genetic, race and caste. It also discusses the debate over the exclusion of a discussion of caste-based discrimination at the 2001 World Conference against Racism, Racial Discrimination, Xenophobia and Related Intolerance held in Durban, South Africa.

  4. Kaolin and copper-based products applications: ecotoxicology on four natural enemies.

    PubMed

    Bengochea, P; Amor, F; Saelices, R; Hernando, S; Budia, F; Adán, A; Medina, P

    2013-05-01

    Lethal and sublethal effects of kaolin clays and two copper-based products on four natural enemies found in olive orchards Anthocoris nemoralis (F.) (Hem. Anthocoridae), Chelonus inanitus (L.) (Hym. Braconidae), Chilocorus nigritus (F.) (Col. Coccinellidae) and Scutellysta cyanea Motschulsky (Hym. Pteromalidae) are described. Both kaolin and copper can be applied for controlling the olive fruit fly and the olive moth, two important pests of this crop. The products did not increase the mortality of any of the insects studied, with the exception of A. nemoralis. The sublethal effects, however, differed depending on the parameter evaluated and the insect studied. Both kaolin and coppers slightly, but significantly, reduced the life span of C. inanitus and S. cyanea. Number of eggs laid by A. nemoralis females were reduced, but not significantly compared to the controls. In the behavioural experiments, clear preference for remaining on kaolin-untreated surfaces when insects were able to choose was observed. Despite having some negative effects, the negative impact on natural enemies was lower than the impact caused by products commonly applied in this crop against the pests stated above. Therefore, both kaolin and copper can be considered as alternative products to be applied in olive orchards if an effective resistance management programme is to be developed. Furthermore, both of them are allowed in organic farming, in which the number of products that can be applied is more restricted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Thermal emittance enhancement of graphite-copper composites for high temperature space based radiators

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Forkapa, Mark J.; Cooper, Jill M.

    1991-01-01

    Graphite-copper composites are candidate materials for space based radiators. The thermal emittance of this material, however, is a factor of two lower than the desired emittance for these systems of greater than or equal to 0.85. Arc texturing was investigated as a surface modification technique for enhancing the emittance of the composite. Since the outer surface of the composite is copper, and samples of the composite could not be readily obtained for testing, copper was used for optimization testing. Samples were exposed to various frequencies and currents of arcs during texturing. Emittances near the desired goal were achieved at frequencies less than 500 Hz. Arc current did not appear to play a major role under 15 amps. Particulate carbon was observed on the surface, and was easily removed by vibration and handling. In order to determine morphology adherence, ultrasonic cleaning was used to remove the loosely adherent material. This reduced the emittance significantly. Emittance was found to increase with increasing frequency for the cleaned samples up to 500 Hz. The highest emittance achieved on these samples over the temperature range of interest was 0.5 to 0.6, which is approximately a factor of 25 increase over the untextured copper emittance.

  6. The erosion-corrosion of copper-based and nickel-based alloys in warm polluted Arabian Gulf seawater

    SciTech Connect

    Carew, J.A.; Islam, M.

    1994-12-31

    This paper presents the results of an investigation of the erosion-corrosion behavior of copper-nickel alloys (90:10 Cu/Ni and 7030 Cu/Ni), nickel-copper alloy UNS N04400 and nickel-based alloys (UNS N06022, N06030 and UNS S32550) used as heat exchanger tubes, in warm flowing Arabian Gulf seawater containing up to 5 ppm of sulphide ions. Visual and optical examinations of the internal surfaces of the tubes were carried out to compare the susceptibilities to erosion-corrosion attack of the different alloys, taking into consideration the nature of the product films formed.

  7. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800 deg C

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Scheuermann, Coulson M.

    1987-01-01

    A promising iron-base cast alloy is being developed as part of the DOE/NASA Stirling Engine Systems Project under contract DEN 3-282 with the United Technologies Research Center. This report presents the results of a study at the Lewis Research Center of the alloy's creep-rupture properties. The alloy was tested under a variety of conditions and was found to exhibit the normal 3-stage creep response. The alloy compared favorably with others being used or under consideration for the automotive Stirling engine cylinder/regenerator housing.

  8. Syntheses, crystal structure and biological evaluation of Schiff bases and copper complexes derived from 4-formylpyrazolone

    NASA Astrophysics Data System (ADS)

    Joseph, V. A.; Pandya, J. H.; Jadeja, R. N.

    2015-02-01

    Two new pyrazolone based Schiff base ligands 4-((2,4-dimethylphenylimino)methyl)-4,5-dihydro-3-methyl-1-p-tolyl-1H-pyrazol-5-ol [PTPMP-ME] and 4-((3,4-difluorophenylimino)methyl)-4,5-dihydro-3-methyl-1-p-tolyl-1H-pyrazol-5-ol [PTPMP-F] were synthesized. Using these Schiff base ligands two new Copper(II) complexes, [Cu(PTPMP-ME)2] (1) and [Cu(PTPMP-F)2] (2) were synthesized. The ligands and their copper complexes were characterized by IR, 1H NMR, mass, UV-Visible spectroscopy, molar conductivity and magnetic measurement. The molecular geometry of Schiff base ligand PTPMP-ME and copper complexes were determined by single-crystal X-ray analysis. On the basis of single crystal X-ray analysis and spectroscopic techniques, square planar geometry of the complexes was proposed. The Schiff base ligands and their metal complexes were tested for antimicrobial activity against Gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis and Gram-negative bacteria; Escherichia coli and Pseudomonas aeruginosa.

  9. Elucidating the mechanism and active site of the cyclohexanol dehydrogenation on copper-based catalysts: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Wang, Ziyun; Liu, Xinyi; Rooney, D. W.; Hu, P.

    2015-10-01

    The dehydrogenation of cyclohexanol to cyclohexanone is very important in the manufacture of nylon. Copper-based catalysts are the most popular catalysts for this reaction, and on these catalysts the reaction mechanism and active site are in debate. In order to elucidate the mechanism and active site of the cyclohexanol dehydrogenation on copper-based catalysts, density functional theory with dispersion corrections were performed on up to six facets of copper in two different oxidation states: monovalent copper and metallic copper. By calculating the surface energies of these facets, Cu(111) and Cu2O(111) were found to be the most stable facets for metallic copper and for monovalent copper, respectively. On these two facets, all the possible elementary steps in the dehydrogenation pathway of cyclohexanol were calculated, including the adsorption, dehydrogenation, hydrogen coupling and desorption. Two different reaction pathways for dehydrogenation were considered on both surfaces. It was revealed that the dehydrogenation mechanisms are different on these two surfaces: on Cu(111) the hydrogen belonging to the hydroxyl is removed first, then the hydrogen belonging to the carbon is subtracted, while on Cu2O(111) the hydrogen belonging to the carbon is removed followed by the subtraction of the hydrogen in the hydroxyl group. Furthermore, by comparing the energy profiles of these two surfaces, Cu2O(111) was found to be more active for cyclohexanol dehydrogenation than Cu(111). In addition, we found that the coordinatively unsaturated copper sites on Cu2O(111) are the reaction sites for all the steps. Therefore, the coordinatively unsaturated copper site on Cu2O(111) is likely to be the active site for cyclohexanol dehydrogenation on the copper-based catalysts.

  10. CASTING FURNACES

    DOEpatents

    Ruppel, R.H.; Winters, C.E.

    1961-01-01

    A device is described for casting uranium which comprises a crucible, a rotatable table holding a plurality of molds, and a shell around both the crucible and the table. The bottom of the crucible has an eccentrically arranged pouring hole aligned with one of the molds at a time. The shell can be connected with a vacuum.

  11. Effects of operational parameters and common ions on the reduction of 2,4-dinitrotoluene by scrap copper-modified cast iron.

    PubMed

    Fan, Jin-Hong; Wang, Hong-Wu

    2015-07-01

    Scrap Cu-modified cast iron (CMCI) is a potent material for the reduction of 2,4-dinitrotoluene (2,4-DNT) by a surface-mediated reaction. However, the effects of operational parameters and common ions on its reduction and final rate are unknown. Results show that the 2,4-DNT reduction was significantly affected by Cu:Fe mass ratio and the optimum m(Cu:Fe) was 0.25%. The slight pH-dependent trend of 2,4-DNT reduction by CMCI was observed at pH 3 to 11, and the maximum end product, 2,4-diaminotoluene (2,4-DAT), was generated at pH 7. Dissolved oxygen (DO) in the water reduced the 2,4-DNT degradation and the formation of 2,4-DAT. CMCI effectively treated high concentrations of 2,4-DNT (60 to 150 mg L(-1)). In addition, varying the concentration of (NH4)2SO4 from 0.001 to 0.1 mol L(-1) improved the efficiency of the reduction process. The green rust-like corrosion products (GR-SO4 (2-)) were also effective for 2,4-DNT reduction, in which Na2CO3 (0.01 to 0.2 mol L(-1)) significantly inhibited this reduction. The repeated-use efficiency of CMCI was also inhibited. Moreover, 2,4-DNT and its products, such as 4A2NT, 2A4NT, and 2,4-DAT, produced mass imbalance (<35%). Hydrolysis of Fe(3+) and CO3 (2-) leading to the generation of Fe(OH)3 and conversion to FeOOH that precipitated on the surface and strongly adsorbed the products of reduction caused the inhibition of CO3 (2-). The 2,4-DNT reduction by CMCI could be described by pseudo-first-order kinetics. The operational conditions and common ions affected the 2,4-DNT reduction and its products by enhancing the corrosion of iron or accumulating a passive oxide film on the reactivity sites.

  12. Education and Caste in India

    ERIC Educational Resources Information Center

    Chauhan, Chandra Pal Singh

    2008-01-01

    This paper analyses the policy of reservation for lower castes in India. This policy is similar to that of affirmative action in the United States. The paper provides a brief overview of the caste system and discusses the types of groups that are eligible for reservation, based on data from government reports. The stance of this paper is that…

  13. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    PubMed Central

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  14. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    NASA Astrophysics Data System (ADS)

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-08-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  15. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    PubMed

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-08-09

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  16. Chemical mechanical planarization of copper/polyimide damascene structure with glycerol-based slurry

    NASA Astrophysics Data System (ADS)

    Permana, David

    This thesis describes the results of an investigation of the Chemical Mechanical Planarization (CMP) of copper and polyimide films with glycerol-based (high viscosity) slurry. A physical planarization model of the polyimide CMP carried out with high viscosity slurry has been developed, with the removal mechanism was primarily being mechanical abrasion. The high viscosity slurry minimizes the impact between the abrasive and polyimide film, thus reducing scratching and damage. However, the scratch density is also strongly dependent on the pad, with soft pads leading to less scratching. The use of BTAH in forming a passivating film on copper surface during CMP was proven to be effective. The effect of glycerol on the passivation of copper was found to be insignificant. The addition of glycerol in the slurry results in a unique CMP removal rate behavior for both copper and polyimide. The removal rate increases with increasing glycerol concentration and reaches a maximum value at 30 vol% glycerol due to particle aggregation and decreases at higher glycerol concentrations due to reduction in the frictional forces between the abrasive particles and the film surface. The possibility of implementing the unique removal rate behavior on the planarization of copper/polyimide damascene structure was also investigated. Dual-step polish process was designed by utilizing the high removal rate with the slurry containing 30 vol% of glycerol, followed by the slurry containing 50 vol% glycerol for over-polish step process. The high viscosity slurry was to protect the soft polymer film as the metal film is abraded away. It was also found that high viscosity slurry induces lower dishing and erosion on the pattern structure.

  17. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils.

    PubMed

    Hu, Hang-Wei; Wang, Jun-Tao; Li, Jing; Li, Jun-Jian; Ma, Yi-Bing; Chen, Deli; He, Ji-Zheng

    2016-11-01

    Bacterial resistance to antibiotics and heavy metals are frequently linked, suggesting that exposure to heavy metals might select for bacterial assemblages conferring resistance to antibiotics. However, there is a lack of clear evidence for the heavy metal-induced changes of antibiotic resistance in a long-term basis. Here, we used high-capacity quantitative PCR array to investigate the responses of a broad spectrum of antibiotic resistance genes (ARGs) to 4-5 year copper contamination (0-800 mg kg(-1) ) in two contrasting agricultural soils. In total, 157 and 149 unique ARGs were detected in the red and fluvo-aquic soil, respectively, with multidrug and β-lactam as the most dominant ARG types. The highest diversity and abundance of ARGs were observed in medium copper concentrations (100-200 mg kg(-1) ) of the red soil and in high copper concentrations (400-800 mg kg(-1) ) of the fluvo-aquic soil. The abundances of total ARGs and several ARG types had significantly positive correlations with mobile genetic elements (MGEs), suggesting mobility potential of ARGs in copper-contaminated soils. Network analysis revealed significant co-occurrence patterns between ARGs and microbial taxa, indicating strong associations between ARGs and bacterial communities. Structural equation models showed that the significant impacts of copper contamination on ARG patterns were mainly driven by changes in bacterial community compositions and MGEs. Our results provide field-based evidence that long-term Cu contamination significantly changed the diversity, abundance and mobility potential of environmental antibiotic resistance, and caution the un-perceived risk of the ARG dissemination in heavy metal polluted environments. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative.

    PubMed

    Shao, Na; Zhang, Ying; Cheung, Sinman; Yang, Ronghua; Chan, Winghong; Mo, Tain; Li, Kean; Liu, Feng

    2005-11-15

    A highly selective copper(II) ion fluorescent sensor has been designed based on the UV-visible absorption of a spiropyran derivative coupled with the use of a metal porphyrin operative on the fluorescence inner filter effect. Spiropyrans, which combine the characteristics of metal binding and signal transduction, have been widely utilized in cationic ion recognition by UV-visible spectroscopy. In the present work, the viability of converting the absorption signal of the spiropyran molecule into a fluorescence signal was explored. On account of overlap of the absorption band of the spiropyran (lambda(abs) = 547 nm) in the presence of copper ion with the Q-band of an added fluorophore, zinc meso-tetraphenylporphyrin (lambda(abs) = 556 nm), the effective light absorbed by the porphyrin and concomitantly the emitted light intensity vary as a result of varying absorption of the spiropyran via fluorescence inner filter effect. The metal binding characteristic of the spiropyran presents an excellent selectivity for copper ion in comparison with several other heavy or transition metal ions. Since the changes in the absorbance of the absorber translate into exponential changes in fluorescence of the fluorophore, the novelty of the present device is that the analytical signal is more sensitive over that of the absorptiometry or that of the fluorometry using one single dye. To realize a practical fluorescent sensor, both the absorber and fluorophore were immobilized in a plasticized poly(vinyl chloride) membrane, and the sensing characteristics of the membrane for copper ion were investigated. The sensor is useful for measuring Cu2+ at concentrations ranging from 7.5 x 10(-7) to 3.6 x 10(-5) M with a detection limit of 1.5 x 10(-7) M. The sensor is chemically reversible, the fluorescence was switched off by immersing the membrane in copper ion solution and switched on by washing it with EDTA solution.

  19. Colorimetric assay of copper ions based on the inhibition of peroxidase-like activity of MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Li, Zhihong; Liu, Xueting; Zhong, Jianhai; Lin, Tianran; Guo, Liangqia; Fu, Fengfu

    2017-10-01

    The peroxidase-like catalytic activity of MoS2 nanomaterials has been utilized for colorimetric bioassays and medical diagnostics. However, the application of peroxidase-like catalytic activity of MoS2 nanomaterials in environmental analysis was seldom explored. Herein, copper ions were found to inhibit the peroxidase-like catalytic activity of MoS2 nanosheets, which can catalyze the oxidation of 3, 3‧, 5, 5‧-tetramethylbenzidine by H2O2 to produce a colorimetric product. Based on this finding, a simple sensitive colorimetric method for the detection of copper ions was developed. In the presence of copper ions, the absorbance and color of the solution decreased with the increasing concentration of copper ions. The color of the solution can be used to semi-quantitative on-site assay of copper ions by naked eyes. A linear relationship between the absorbance and the concentration of copper ions was observed in the range of 0.4-4.0 μmol L- 1 with a detection limit of 92 nmol L- 1, which was much lower than the maximum contaminant level of copper in drinking water legislated by the Environmental Protection Agency of USA and the World Health Organization. The method was applied to detect copper ions in environmental water samples with satisfactory results.

  20. Probability-based estimates of site-specific copper water quality criteria for the Chesapeake Bay, USA.

    PubMed

    Arnold, W Ray; Warren-Hicks, William J

    2007-01-01

    The object of this study was to estimate site- and region-specific dissolved copper criteria for a large embayment, the Chesapeake Bay, USA. The intent is to show the utility of 2 copper saltwater quality site-specific criteria estimation models and associated region-specific criteria selection methods. The criteria estimation models and selection methods are simple, efficient, and cost-effective tools for resource managers. The methods are proposed as potential substitutes for the US Environmental Protection Agency's water effect ratio methods. Dissolved organic carbon data and the copper criteria models were used to produce probability-based estimates of site-specific copper saltwater quality criteria. Site- and date-specific criteria estimations were made for 88 sites (n = 5,296) in the Chesapeake Bay. The average and range of estimated site-specific chronic dissolved copper criteria for the Chesapeake Bay were 7.5 and 5.3 to 16.9 microg Cu/L. The average and range of estimated site-specific acute dissolved copper criteria for the Chesapeake Bay were 11.7 and 8.3 to 26.4 microg Cu/L. The results suggest that applicable national and state copper criteria can increase in much of the Chesapeake Bay and remain protective. Virginia Department of Environmental Quality copper criteria near the mouth of the Chesapeake Bay, however, need to decrease to protect species of equal or greater sensitivity to that of the marine mussel, Mytilus sp.

  1. Mathematical Modeling of Liquid Slag Layer Fluctuation and Slag Droplets Entrainment in a Continuous Casting Mold Based on VOF-LES Method

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Li, Qiang; Kuang, Shi Bo; Zou, Zongshu

    2017-05-01

    The slag behaviors, directly relating with the qualities of the final cast products, are influenced by the transient surface flow of liquid steel in a continuous casting mold. A one-half scale model is used to investigate the slag behaviors and their droplets entrainment. The model based on Volume of Fluid (VOF) multiphase coupled with Large Eddy Simulation (LES) is established to further illuminate the phenomena of the liquid oil layer fluctuation, the slag "eye" regions, and the slag entrainment observed in water experiment. The effects of casting speeds on the slag behaviors and their entrained droplets are investigated. The results show that the fluctuation of the oil layer is influenced by the transient flow. The calculations for the oil layer profile, the accumulation, and protrusions of oil layer are consistent with the water experiment. The asymmetry of the slag "eye" regions is also influenced by the asymmetry of free surface and transient turbulent flow. The "eye" regions near the narrow wall show distinct asymmetric change at different casting speeds. At a lower casting speed, the slag "eye" regions change irregularly and display the alternate process of open and collapse at the two sides of the narrow walls of the model. While at a relative higher casting speed, the slag layer gathers toward the nozzle, and the slag "eye" regions gradually grow and always open. The simulation model can reveal that the mechanism of the slag entrainment includes two main modes: the cutting or dragging mode and shear layer instability. The average diameter and amount of the entrained droplets are calculated through the UDF codes of ANSYS FLUENT software, and the size distribution of the entrained droplets is also counted. When the casting speed is lower, the dominant diameters of the entrained droplets range between 2 and 3 mm. With casting speed increase, the distribution of the droplets becomes wider, and there is a gradually increase in the percentage of larger droplets

  2. A facile and simple high-performance polydimethylsiloxane casting based on self-polymerization dopamine

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Sun, Jian-hai; Li, Hui; Cui, Da-fu

    2014-09-01

    We present a new and facile method for polydimethylsiloxane (PDMS) casting by dip-coating the master molds in an aqueous solution of dopamine. A poly(dopamine) film formed by self-polymerization of dopamine is used as the surface anti-adhesion coating for PDMS de-molding. Different master molds, such as metal, silicon and PDMS replica, were used to verify the feasibility of this proposed PDMS casting method. The poly(dopamine) coatings at various fabrication conditions were studied by using surface plasmon resonance technology. We found that it is very easy to form repeated poly(dopamine) coatings with similar thicknesses and density at fairly flexible conditions of self-polymerization. The water contact angles of the PDMS master molds and the positive PDMS replicas were studied after the PDMS master molds were immersed in the dopamine coating solution for different times. The de-molding process was then measured by surface plasmon resonance technology. The surface morphology of the master molds and the PDMS replicas were characterized by using scanning electron microscopy and atomic force microscopy. Results demonstrate that the poly(dopamine) coating exhibits a strong release property in the PDMS de-molding process and has good stickiness after PDMS de-molding a dozen times. The package performances of the PDMS replicas were detected and compared by bonding experiments. PDMS replicas after a second round of de-molding present a little higher package performance than that of the PDMS replicas with an anti-sticking agent of silane. The biochemical properties of PDMS replicas were studied through fluorescence immunoassay experiments. The PDMS replicas present similar biochemical properties to the bare PDMS. This biomimetic surface modification method of dopamine for PDMS casting has a great potential for preparing microdevices for various biological and clinical applications.

  3. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    NASA Astrophysics Data System (ADS)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  4. Optical Properties of Composites Based on a Transparent Matrix and Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalenskii, A. V.; Zvekov, A. A.; Nikitin, A. P.; Gazenaur, N. V.

    2016-06-01

    Dependences of the transmittance, absorbance, and reflectance of the composite based on a transparent matrix and copper spherical nanoparticles on the sample thickness and the mass fraction of particles are calculated for radiation of the first and second harmonics of a neodymium laser using the Mie theory and the stationary radiation transfer equation. Distributions of the luminance gain are calculated at different distances from the sample surface. It is shown that the luminance gain increases with nanoparticle radius and radiation wavelength due to multiple scattering. In the limit of a small sample thickness, the luminance gain has a threshold value due to the effect of the total internal reflection. Results obtained are needed for optimization of an optical detonator capsule based on a transparent explosive material and copper nanoparticles.

  5. Spectroscopic, structural and theoretical studies of copper(II) complexes of tridentate NOS Schiff bases

    NASA Astrophysics Data System (ADS)

    Olalekan, Temitope E.; Ogunlaja, Adeniyi S.; VanBrecht, Bernardus; Watkins, Gareth M.

    2016-10-01

    Two newly synthesized Schiff bases (L4 and L5) were derived from the condensation reaction of 2-(methylthiomethyl)anilines and 4-methoxysalicylaldehyde. Coordination complexes of these and four previously reported NOS Schiff bases, Cu(L1)2-Cu(L6)2, were synthesized via the reflux reaction of the various Schiff base ligands with CuCl2·2H2O. The compounds were characterized by means of elemental analysis, FTIR and UV-Vis. The crystal structures of Cu(L1)2 and Cu(L2)2 were obtained by X-ray diffraction. The Schiff bases were coordinated to copper ion as monobasic tridentate ligands through the phenolic oxygen, azomethine nitrogen and thioether sulfur. The microanalyses of the coordination complexes were agreeable with bimolar binding of the ligands to the copper metal ion. The crystal structures of the copper complexes confirmed an octahedral geometry around the metal centre and showed they are mononuclear. The magnetic moment values indicated the presence of a lone electron in each copper(II) orbital and confirmed the mononuclearity of the complexes. The electronic spectra of the coordination compounds consist of the intraligand, charge transfer and d→d bands. Molecular modeling studies on the complexes (Cu(L1)2-Cu(L6)2) by employing DFT revealed that complex Cu(L5)2 possessed the smallest optimization energy as well as a small HOMO-LUMO energy gap which may best explain its higher polarizability as well as reactivity in comparison to the other complexes.

  6. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George

    2012-01-01

    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  7. Experimental Investigation on Laser Impact Welding of Fe-Based Amorphous Alloys to Crystalline Copper.

    PubMed

    Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia

    2017-05-12

    Recently, amorphous alloys have attracted many researchers' attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil.

  8. Experimental Investigation on Laser Impact Welding of Fe-Based Amorphous Alloys to Crystalline Copper

    PubMed Central

    Wang, Xiao; Luo, Yapeng; Huang, Tao; Liu, Huixia

    2017-01-01

    Recently, amorphous alloys have attracted many researchers’ attention for amorphous structures and excellent properties. However, the welding of amorphous alloys to traditional metals in the microscale is not easy to realize in the process with amorphous structures unchanged, which restrains the application in industry. In this paper, a new method of welding Fe-based amorphous alloys (GB1K101) to crystalline copper by laser impact welding (LIW) is investigated. A series of experiments was conducted under different laser energies, during which Fe-based amorphous alloys and crystalline copper were welded successfully by LIW. In addition, the microstructure and mechanical properties of welding joints were observed and measured, respectively. The results showed that the surface wave and springback were observed on the flyer plate after LIW. The welding interface was straight or wavy due to different plastic deformation under different laser energies. The welding interface was directly bonded tightly without visible defects. No visible element diffusion and intermetallic phases were found in the welding interface. The Fe-based amorphous alloys retained amorphous structures after LIW under the laser energy of 835 mJ. The nanoindentation hardness across the welding interface showed an increase on both sides of the welding interface. The results of the lap shearing test showed that the fracture position was on the side of copper coil. PMID:28772886

  9. Laser direct micromilling of copper-based bioelectrode with surface microstructure array

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Ling, Wei-song; Liu, Wei; Peng, Youjian; Peng, Juehao

    2015-10-01

    The laser direct micromilling is proposed to fabricate the microstructure arrays on the surface of dry bioelectrodes using red copper material. Based on the principle of laser machining and SEM results, the forming process of microstructure arrays on the surface of copper-based bioelectrodes is discussed. When the process parameters are varied, the effect of process spacing, laser output power, scanning speed and number of scan on the morphology and geometrical dimension of microstructure array of bioelectrode is investigated. The results show that the cone surface microstructure can be fabricated when process spacing is set to 0.1 mm. Surface roughness of microstructure is greatly changed with different scanning speeds. The height of surface microstructure and recast layer is greatly increased with increasing laser output power. When smaller laser output power or less number of scan are selected, surface microstructure array is difficult to be fabricated. However, it is easy to generate the damage of surface microstructure when the larger output power or excessive scanning times are selected. Moreover, our developed copper-based bioelectrode shows a hydrophobic property when the spacings are selected in the range of 0.1-0.3 mm. Eventually, the optimized process parameters are obtained to fabricate the bioelectrode with cone microstructure array.

  10. Digital data base application to porphyry copper mineralization in Alaska; case study summary

    USGS Publications Warehouse

    Trautwein, Charles M.; Greenlee, David D.; Orr, Donald G.

    1982-01-01

    The purpose of this report is to summarize the progress in use of digital image analysis techniques in developing a conceptual model for assessing porphyry copper mineral potential. The study area consists of approximately the southern one-half of the 1? by 3? Nabesna quadrangle in east-central Alaska. The digital geologic data base consists of data compiled under the Alaskan Mineral Resource Assessment Program (AMRAP) as well as digital elevation data and Landsat spectral reflectance data from the Multispectral Scanner System. The digital data base used to develop and implement a conceptual model for porphyry-type copper mineralization consisted of 16 original data types and 18 derived data sets formatted in a grid-cell (raster) structure and registered to a map base in the Universal Transverse Mercator (UTM) projection. Minimum curvature and inverse distance squared interpolation techniques were used to generate continuous surfaces from sets of irregularly spaced data points. Processing requirements included: (1) merging or overlaying of data sets, (2) display and color coding of maps and images, (3) univariate and multivariate statistical analyses, and (4) compound overlaying operations. Data sets were merged and processed to create stereoscopic displays of continuous surfaces. The ratio of several data sets were calculated to evaluate relative variations and to enhance the display of surface alteration (gossans). Factor analysis and principal components analysis techniques were used to determine complex relationships and correlations between data sets. The resultant model consists of 10 parameters that identify three areas most likely to contain porphyry copper mineralization; two of these areas are known occurrences of mineralization and the third is not well known. Field studies confirmed that the three areas identified by the model have significant copper potential.

  11. Influence of tooth dimension on the initial mobility based on plaster casts and X-ray images : A numerical study.

    PubMed

    Hartmann, Martin; Dirk, Cornelius; Reimann, Susanne; Keilig, Ludger; Konermann, Anna; Jäger, Andreas; Bourauel, Christoph

    2017-07-01

    The goal was to determine the influence of different geometric parameters of the tooth on the initial tooth mobility and the position of the center of resistance employing numerical models based on scaled X-ray images and plaster casts. The dimensions of tooth 21 were measured in 21 patients, using radiographs and dental casts. Length and mesiodistal width of the tooth were obtained from the X-ray image and the orovestibular diameter from the plaster cast. Finite element models were generated. Cortical and cancellous bone and the periodontal ligament were simulated to create realistic models. Root length (11-17 mm), mesiodistal width (6-10 mm) and orovestibular thickness (7-9 mm) were varied in 1-mm steps to generate 105 models. In the simulation, each model was loaded with a force of 10 N in vestibulopalatinal direction and with a torque of 10 Nmm to determine tooth displacements and center of resistance. Initial tooth displacement and thus mobility increased with decreasing total root surface. The shortest, slimmest and thinnest tooth showed a total deflection of 0.14 mm at the incisal edge, while the longest, widest and thickest tooth showed a total deflection of 0.10 mm. Changes in mesiodistal width had the greatest influence on initial tooth mobility and changes in orovestibular thickness the least. The teeth's center of resistance was positioned between 37 and 43% of the root length measured from the cervical margin of the alveolar bone. The center of resistance of the longest dental root investigated was located around 6% more cervically compared to the one of the shortest dental root. The influence of root width and thickness on the position of the center of resistance was significantly lower than root length. Geometric parameters significantly impact initial tooth mobility and position of the center of resistance. Thus, tooth dimensions should be considered in orthodontic treatment planning. Dental radiographs represent a sufficient validation tool

  12. On the performance of low pressure die-cast Al-Cu based automotive alloys: Role of additives

    NASA Astrophysics Data System (ADS)

    Zaki, Gergis Adel

    The present study focuses on the effect of alloying elements, namely, strontium (Sr), titanium (Ti), zirconium (Zr), scandium (Sc) and silver(Ag) individually or in combination, on the performance of a newly developed Al-2%Cu based alloy. A total of thirteen alloy compositions were used in the study. Tensile test bar castings were prepared employing the low pressure die casting (LPDC) technique. The test bars were solution heat treated at 495°C for 8 hours, followed by quenching in warm water, and then subjected to different isochronal aging treatments using an aging time of 5 hours and aging temperatures of 155°C, 180°C, 200°C, 240°C and 300°C. Tensile testing of as-cast and heat-treated test bars was carried out at room temperature using a strain rate of 4 x 10-4s-1. Five test bars were used per alloy composition/condition. Hardness measurements were also carried out on these alloys using a Brinell hardness tester. The microstructures of selected samples were examined using optical microscopy and electron probe microanalysis (EPMA). The results showed that adding Ti in the amount of 0.15 wt% in the form of Al-5%Ti-1%B master alloy is sufficient to refine the grains in the cast structure in the presence of 200 ppm Sr (0.02 wt%). Addition of Zr and Sc did not contribute further to the grain refining effect. The main role of addition of these two elements appeared in the formation of complex compounds with Al and Ti. Their presence resulted in extending the aging temperature range before the onset of softening. Mathematical analysis of the hardness and tensile data was carried out using the Minitab statistical software program. It was determined that the alloy containing (0.5wt% Zr + 0.15wt% Ti) is the most effective in maximizing the alloy tensile strength over the range of aging temperatures, from 155°C to 300°C. Addition of Ag is beneficial at high aging temperatures, in the range of 240°C-300°C. However, it is less effective compared to the (Zr + Ti

  13. Inner surface roughness of complete cast crowns made by centrifugal casting machines.

    PubMed

    Ogura, H; Raptis, C N; Asgar, K

    1981-05-01

    Six variables that could affect the surface roughness of a casting were investigated. The variables were (1) type of alloy, (2) mold temperature, (3) metal casting temperature, (4) casting machine, (5) sandblasting, and (6) location of each section. It was determined that the training portion of a complete cast crown had rougher surfaces than the leading portion. Higher mold and casting temperatures produced rougher castings, and this effect was more pronounced in the case of the base metal alloy. Sandblasting reduced the roughness, but produced scratched surfaces. Sandblasting had a more pronounced affect on the surface roughness of the base metal alloy cast either at a higher mold temperature or metal casting temperature. The morphology and the roughness profile of the original cast surface differed considerably with the type of alloy used.

  14. Microporosity in casting alloys.

    PubMed

    Lewis, A J

    1975-06-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third an oxy-acetylene torch. Samples from each series were sectioned longitudinally, mounted, polished and examined microscopically for evidence of microporosity.

  15. ShakeCast Manual

    USGS Publications Warehouse

    Lin, Kuo-Wan; Wald, David J.

    2008-01-01

    ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users? facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  16. A Copper Porphyrin-Based Conjugated Mesoporous Polymer-Derived Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution.

    PubMed

    Cui, Shengsheng; Qian, Manman; Liu, Xiang; Sun, Zijun; Du, Pingwu

    2016-09-08

    Scalable and robust catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are required for the implementation of water splitting technologies as a globally applicable method of producing renewable hydrogen. Herein, we report nitrogen-enriched porous carbon materials containing copper/copper oxide, derived from copper porphyrin-based conjugated mesoporous polymers (CMPs), as a bifunctional catalyst for both HER and OER. These catalysts have a high surface area, unique tubular structure, and strong synergistic effect of copper/copper oxide and porous carbons, resulting in excellent performance for water splitting. Under optimal conditions, the catalyst exhibits a quite low overpotential for OER (350 mV to reach 1.0 mA cm(-2) and 450 mV to reach 10 mA cm(-2) ) in alkaline media, which places it among the best copper-based water oxidation catalysts reported in the literature. Furthermore, the catalyst shows good catalytic activity for HER at a low overpotential (190 mV to reach 1.0 mA cm(-2) ) as well as a high current density (470 mV to reach 50 mA cm(-2) ). The results suggest that hybridized copper/carbon materials are attractive noble-metal-free catalysts for water splitting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Decrease in cytotoxicity of copper-based intrauterine devices (IUD) pretreated with 6-mercaptopurine and pterin as biocompatible corrosion inhibitors.

    PubMed

    Alvarez, Florencia; Grillo, Claudiaa; Schilardi, Patricial; Rubert, Aldo; Benítez, Guillermo; Lorente, Carolina; de Mele, Mónica Fernández Lorenzo

    2013-01-23

    The copper intrauterine device (IUD) based its contraceptive action on the release of cupric ions from a copper wire. Immediately after the insertion, a burst release of copper ions occurs, which may be associated to a variety of side effects. 6-Mercaptopurine (6-MP) and pterin (PT) have been proposed as corrosion inhibitors to reduce this harmful release. Pretreatments with 1 × 10(-4) M 6-MP and 1 × 10(-4) M PT solutions with 1h and 3h immersion times were tested. Conventional electrochemical techniques, EDX and XPS analysis, and cytotoxicity assays with HeLa cell line were employed to investigate the corrosion behavior and biocompatibility of copper with and without treatments. Results showed that copper samples treated with PT and 6-MP solutions for 3 and 1 h, respectively, are more biocompatible than those without treatment. Besides, the treatment reduces the burst release effect of copper in simulated uterine solutions during the first week after the insertion. It was concluded that PT and 6-MP treatments are promising strategies able to reduce the side effects related to the "burst release" of copper-based IUD without altering the contraceptive action.

  18. Casting methods

    DOEpatents

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  19. Energy Consumption of Die Casting Operations

    SciTech Connect

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  20. Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Egorova, L. Yu.; Suaridze, T. R.

    2015-03-01

    A sharp cubic texture is formed in a number of copper alloys subjected to cold deformation by rolling by 98.6-99% followed by recrystallization annealing, which opens up fresh opportunities for long thin ribbons made of these alloys to be used as substrates in the production of second-generation high- T c superconductor (2G HTSC) cables. The possibility of creating ternary alloys based on a binary Cu-30 at % Ni alloy with additional elements that harden its fcc matrix (iron, chromium) is shown. The measurements of the mechanical properties of textured ribbons made of these alloys demonstrate that their yield strength is higher than that of a textured ribbon made of pure copper by a factor of 2.5-4.5.

  1. An ammonium soal solution based method for the preparation of ceramic/copper metal microcomposites

    SciTech Connect

    Walker, R.J.; Robinson, D.A.

    1995-12-01

    Robinson and Maginnis have developed a process for the preparation of metal ceramic composites using an ammonium soap solution based route. This current work is an extension of their patent application. Their work focused on preparing silver/YBa{sub 2}Cu{sub 3}O{sub 7-x}. We have extended their work to prepare copper ceramic microcomposites. In this method, an ammonium soap of 2-ethylhexanoate is used to prepare a metallorganic in solution that is rapidly jelled or precipitated around a suspended and dispersed ceramic. This step is followed by a low temperature heat treatment in hydrogen to produce the desired composite. Depending on the heat treatment, the composite can be varied from metal coated ceramic grains to finely dispersed metal in a ceramic matrix. System specific schemes for the preparation of copper metal/ceramics will be presented along with X-ray Diffraction data, SEM and Optical micrographs.

  2. Development of strength and conductivity in deformation processed copper base alloys

    SciTech Connect

    Insoo, M.

    1992-07-20

    Deformation processed copper based composite alloys have been recently investigated. In these composite alloys, copper, a matrix material, contributes to a high thermal and electrical conductivity, and a second phase material such as Fe, Nb, Cr, Mo, Ta and W acts as a reinforcement of the strength of the composites. Tungsten was chosen as the bcc phase in the first experiment because W has a high melting temperature which is expected to reduce the decrease in high temperature strength resulting from coarsening of fibers. However, brittleness of tungsten may bring crack problems. Because the matrix is ductile but the second phase is hard enough to resist the external forces, cracks may occur at the interfaces between deformed matrix and undeformed second phase. The purpose of the first experiment is to investigate the possibility of deformation of Cu-W compacts.

  3. Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys.

    PubMed

    Abdullayev, Elshad; Abbasov, Vagif; Tursunbayeva, Asel; Portnov, Vasiliy; Ibrahimov, Hikmat; Mukhtarova, Gulbaniz; Lvov, Yuri

    2013-05-22

    Halloysite clay nanotubes loaded with corrosion inhibitors benzotriazole (BTA), 2-mercaptobenzimidazole (MBI), and 2-mercaptobenzothiazole (MBT) were used as additives in self-healing composite paint coating of copper. These inhibitors form protective films on the metal surface and mitigate corrosion. Mechanisms involved in the film formation have been studied with optical and electron microscopy, UV-vis spectrometry, and adhesivity tests. Efficiency of the halloysite lumen loading ascended in the order of BTA < MBT < MBI; consequently, MBI and MBT halloysite formulations have shown the best protection. Inhibitors were kept in the tubes buried in polymeric paint layer for a long time and release was enhanced in the coating defects exposed to humid media with 20-50 h, sufficient for formation of protective layer. Anticorrosive performance of the halloysite-based composite acrylic and polyurethane coatings have been demonstrated for 110-copper alloy strips exposed to 0.5 M aqueous NaCl for 6 months.

  4. CASTING APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  5. Copper chromogenic reaction based colorimetric immunoassay for rapid and sensitive detection of a tumor biomarker.

    PubMed

    Li, Bo; Lai, Guosong; Zhang, Haili; Hu, Shengli; Yu, Aimin

    2017-04-22

    A new colorimetric immunoassay method was developed for the rapid and sensitive detection of a tumor biomarker of carcinoembryonic antigen (CEA) by combination of a magnetic bead (MB)-based sandwich immunoassay and a copper chromogenic reaction. The magnetic immunoassay platform was constructed through the covalent immobilization of the capture antibody on the surface of carboxylated magnetic beads. After immuno-recognition of CEA, signal antibody-functionalized copper oxide nanoparticle (CuO NP) probes were applied for sandwich immunoreaction to form an immunocomplex. The CuO NP labels quantitatively captured onto the immunocomplex were then dissolved in acid solution to release high-content copper ions. Based on the coordination of these ions with the newly synthesized chromogenic agent of 1,2-diphenyl-2-(2-(pyridin-2-yl)hydrazono)ethanone, a red complex was produced for the colorimetric signal readout, resulting in the successful construction of a sensitive immunoassay method for CEA detection. Under the optimum conditions, this method showed a wide linear range over three orders of magnitude and a low detection limit of 26 pg/mL. Besides, this method showed excellent performance with low cost, rapid and convenient operation as well as satisfactory reproducibility, stability and accuracy, thus providing great potentials for practical applications.

  6. Clinical parameters and biomarkers of oxidative stress in agricultural workers who applied copper-based pesticides.

    PubMed

    Arnal, Nathalie; Astiz, Mariana; de Alaniz, María J T; Marra, Carlos A

    2011-09-01

    Copper based-pesticides are widely used in agricultural practice throughout the world. We studied the (i) concentration of Cu and proteins involved in Cu homeostasis, (ii) plasma redox status, and (iii) biomarkers of exposure in Cu-based pesticide applicators in order to compare them with clinical biochemical tests. Thirty-one professional applicators and 32 control subjects were recruited. Oxidative stress biomarkers, ceruloplasmin (CRP), metallothioneins (MTs), copper, hematological parameters, and biochemical markers for pancreatic, hepatic and renal function were measured in plasma. Copper was increased in the exposed group compared to the control group concomitantly with TBARS, protein carbonyls, and nitrate+nitrite levels. In the exposed group, α-tocopherol and the FRAP assay were lower and LDH, transaminases, GGT, ALP, urea, creatinine, CRP and MTs were higher than in the control group. The relative leukocyte subclasses were also different between the two groups. Clinical chemistry tests did not surpass the upper reference limit. Our results suggest that the incorporation of oxidative stress biomarkers to biochemical/clinical tests should be considered for validation and included in the human health surveillance protocols. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effect of kaolin and copper based products and of starter cultures on green table olive fermentation.

    PubMed

    Randazzo, Cinzia L; Fava, Giovanni; Tomaselli, Filippo; Romeo, Flora V; Pennino, Giuseppe; Vitello, Euplio; Caggia, Cinzia

    2011-08-01

    In the present study table olives treated in field with kaolin and copper based products against "olive-fruit fly" were fermented using two selected strains of lactic acid bacteria (LAB). The fermentation process was monitored up to 260 days from brining through physico-chemical, microbiological and sensorial analyses. Results showed a dominance of LAB and yeasts and low level of Enterobacteriaceae counts throughout the whole process both in un-treated and treated samples. When investigating the effect of the single treatments on microbial dynamics, ANOVA results highlighted that copper based products affected significantly the control sample, while the sample inoculated with LAB starters maintained high level throughout the process, guaranteeing the fermentation process. Different behavior was revealed by yeasts population, which was partially influenced by copper treatment at the beginning of the fermentation. The polyphasic approach used in the present study, which combined sensory evaluation to microbial counts and physico-chemical characteristics, let to the conclusion on the importance of starter cultures in fermentation of table olives especially those treated with "non-conventional" pesticide, which could be used to prevent olive fly damage.

  8. Preparation and properties of copper-oil-based nanofluids.

    PubMed

    Li, Dan; Xie, Wenjie; Fang, Wenjun

    2011-05-05

    In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability.

  9. Preparation and properties of copper-oil-based nanofluids

    PubMed Central

    2011-01-01

    In this study, the lipophilic Cu nanoparticles were synthesized by surface modification method to improve their dispersion stability in hydrophobic organic media. The oil-based nanofluids were prepared with the lipophilic Cu nanoparticles. The transport properties, viscosity, and thermal conductivity of the nanofluids have been measured. The viscosities and thermal conductivities of the nanofluids with the surface-modified nanoparticles have higher values than the base fluids do. The composition has more significant effects on the thermal conductivity than on the viscosity. It is valuable to prepare an appropriate oil-based nanofluid for enhancing the heat-transfer capacity of a hydrophobic system. The effects of adding Cu nanoparticles on the thermal oxidation stability of the fluids were investigated by measuring the hydroperoxide concentration in the Cu/kerosene nanofluids. The hydroperoxide concentrations are observed to be clearly lower in the Cu nanofluids than in their base fluids. Appropriate amounts of metal nanoparticles added in a hydrocarbon fuel can enhance the thermal oxidation stability. PMID:21711900

  10. Calculation of the Combined Heat Transfer Coefficient of Hot-face on Cast Iron Cooling Stave Based on Thermal Test

    NASA Astrophysics Data System (ADS)

    Li, Feng-guang; Zhang, Jian-liang; Zuo, Hai-bin; Qin, Xuan; Qi, Cheng-lin

    2017-03-01

    Cooling effects of the cast iron cooling stave were tested with a specially designed experimental furnace under the conditions of different temperatures of 800 °C, 900 °C, 1,000 °C and 1,100 °C as well as different cooling water velocities of 0.5 m·s-1, 1.0 m·s-1, 1.5 m·s-1 and 2.0 m·s-1. Furthermore, the combined heat transfer coefficient of hot-face on cast iron cooling stave (αh-i) was calculated by heat transfer theory based on the thermal test. The calculated αh-i was then applied in temperature field simulation of cooling stave and the simulation results were compared with the experimental data. The calculation of αh-i indicates that αh-i increases rapidly as the furnace temperature increases while it increases a little as the water velocity increases. The comparison of the simulation results with the experimental data shows that the simulation results fit well with the experiment data under different furnace temperatures.

  11. Effects of tribasic copper chloride versus copper sulfate provided in corn-and molasses-based supplements on forage intake and copper status of beef heifers.

    PubMed

    Arthington, J D; Spears, J W

    2007-03-01

    The objective of this study was to investigate the effect of supplemental tribasic copper chloride (Cu(2)(OH(3))Cl; TBCC) vs. Cu sulfate (CuSO(4)) on Cu status and voluntary forage DMI in growing heifers. Two 90-d experiments were conducted using 48 non-pregnant, crossbred heifers (24 heifers/experiment; 355 +/- 10.7 and 309 +/- 9.9 kg for Exp. 1 and 2, respectively). In each experiment, 3 supplemental Cu treatments were randomly allocated to heifers in individual pens consisting of (1) 100 mg of Cu/d from CuSO(4), (2) 100 mg of Cu/d from TBCC, or (3) 0 mg of Cu/d. The 2 experiments differed by the form of supplement used to deliver the Cu treatments (corn- vs. molasses-based supplements for Exp. 1 and 2, respectively). Supplements were formulated and fed to provide equivalent amounts of CP and TDN daily but differed in their concentration of the Cu antagonists, Mo (0.70 vs. 1.44 mg/kg), Fe (113 vs. 189 mg/kg), and S (0.18 vs. 0.37%) for corn- and molasses-based supplements, respectively. All heifers were provided free-choice access to ground stargrass (Cynodon spp.) hay. Jugular blood and liver biopsy samples were collected on d 0, 30, 60, and 90 of each experiment. Heifer BW was collected on d 0 and 90. Heifer ADG was not affected by Cu treatment (average = 0.22 +/- 0.11 and 0.44 +/- 0.05 kg for Exp. 1 and 2, respectively; P > 0.20). In Exp. 1, heifers provided supplemental Cu, independent of source, had greater (P < 0.05) liver Cu concentrations on d 60 and 90 compared with heifers provided no supplemental Cu. In Exp. 2, average liver Cu concentrations were greater (P = 0.04) for heifers receiving supplemental Cu compared with heifers receiving no Cu; however, all treatments experienced a decrease in liver Cu concentration over the 90-d treatment period. Plasma ceruloplasmin concentrations did not differ in Exp. 1 (P = 0.83) but were greater (P = 0.04) in Exp. 2 for heifers receiving supplemental Cu compared with heifers receiving no Cu. In Exp. 1, voluntary

  12. Properties and ATRP activity of copper complexes with substituted tris(2-pyridylmethyl)amine-based ligands.

    PubMed

    Kaur, Aman; Ribelli, Thomas G; Schröder, Kristin; Matyjaszewski, Krzysztof; Pintauer, Tomislav

    2015-02-16

    Synthesis, characterization, electrochemical studies, and ATRP activity of a series of novel copper(I and II) complexes with TPMA-based ligands containing 4-methoxy-3,5-dimethyl-substituted pyridine arms were reported. In the solid state, Cu(I)(TPMA*(1))Br, Cu(I)(TPMA*(2))Br, and Cu(I)(TPMA*(3))Br complexes were found to be distorted tetrahedral in geometry and contained coordinated bromide anions. Pseudo-coordination of the aliphatic nitrogen atom to the copper(I) center was observed in Cu(I)(TPMA*(2))Br and Cu(I)(TPMA*(3))Br complexes, whereas pyridine arm dissociation occurred in Cu(I)(TPMA*(1))Br. All copper(I) complexes with substituted TPMA ligands exhibited a high degree of fluxionality in solution. At low temperature, Cu(I)(TPMA*(1))Br was found to be symmetrical and monomeric, while dissociation of either unsubstituted pyridine and/or 4-methoxy-3,5-dimethyl-substituted pyridine arms was observed in Cu(I)(TPMA*(2))Br and Cu(I)(TPMA*(3))Br. On the other hand, the geometry of the copper(II) complexes in the solid state deviated from ideal trigonal bipyramidal, as confirmed by a decrease in τ values ([Cu(II)(TPMA*(1))Br][Br] (τ = 0.92) > [Cu(II)(TPMA*(3))Br][Br] (τ = 0.77) > [Cu(II)(TPMA*(2))Br][Br] (τ = 0.72)). Furthermore, cyclic voltammetry studies indicated a nearly stepwise decrease (ΔE ≈ 60 mV) of E1/2 values relative to SCE (TPMA (-240 mV) > TPMA*(1) (-310 mV) > TPMA*(2) (-360 mV) > TPMA*(3) (-420 mV)) on going from [Cu(II)(TPMA)Br][Br] to [Cu(II)(TPMA*(3))Br][Br], confirming that the presence of electron-donating groups in the 4 (-OMe) and 3,5 (-Me) positions of the pyridine rings in TPMA increases the reducing ability of the corresponding copper(I) complexes. This increase was mostly the result of a stronger influence of substituted TPMA ligands toward stabilization of the copper(II) oxidation state (log β(I) = 13.4 ± 0.2, log β(II) = 19.3 (TPMA*(1)), 20.5 (TPMA*(2)), and 21.5 (TPMA*(3))). Lastly, ARGET ATRP kinetic studies show that with

  13. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  14. A self-reducible and alcohol-soluble copper-based metal-organic decomposition ink for printed electronics.

    PubMed

    Shin, Dong-Hun; Woo, Seunghee; Yem, Hyesuk; Cha, Minjeong; Cho, Sanghun; Kang, Mingyu; Jeong, Sooncheol; Kim, Yoonhyun; Kang, Kyungtae; Piao, Yuanzhe

    2014-03-12

    We report a novel method for the synthesis of a self-reducible (thermally reducible without a reducing atmosphere) and alcohol-soluble copper-based metal-organic decomposition (MOD) ink for printed electronics. Alcohol-solvent-based conductive inks are necessary for commercial printing processes such as reverse offset printing. We selected copper(II) formate as a precursor and alkanolamine (2-amino-2-methyl-1-propanol) as a ligand to make an alcohol-solvent-based conductive ink and to assist in the reduction reaction of copper(II) formate. In addition, a co-complexing agent (octylamine) and a sintering helper (hexanoic acid) were introduced to improve the metallic copper film. The specific resistivity of copper-based MOD ink (Cuf-AMP-OH ink) after heat treatment at 350 °C is 9.46 μΩ·cm, which is 5.5 times higher than the specific resistivity of bulk copper. A simple stamping transfer was conducted to demonstrate the potential of our ink for commercial printing processes.

  15. Copper and zinc status of infants fed either cow's milk or milk based formula

    SciTech Connect

    Frey, D.; Anderson, K.; Acosta, P.B.

    1986-03-01

    Infant formula is recommended for the first year for those infants not receiving breast milk. Except for effects on iron, biochemical consequences of feeding cow's milk or infant formula to older infants are unknown. This study compared copper and zinc status in healthy infants between 11 and 13 months of age, who had received either milk based infant formula (n = 17) or cow's milk (n = 13) as their primary beverage for a minimum of 3 months. Diet diaries were requested. Blood was drawn by venipuncture into trace mineral free heparinized tubes and analyzed by atomic absorption spectrophotometer. Mean plasma zinc levels were similar in both feeding groups: 117 +/- 22 ..mu..g/dl for formula fed infants (FFI) and 119 +/- 39 ..mu..g/dl for cow's milk fed infants (CMI). Intakes for zinc were also similar; 6.0 +/- 2.0 mg/day (FFI) and 5.7 +/- 1.5 mg/day (CMI). Mean plasma copper levels were higher in FFI compared to CMI; 118 +/- 30 ..mu..g/dl and 97 +/- 33 ..mu..g/dl respectively; however, the difference was not statistically was not significant. Intakes for copper did not differ; 0.8 +/- 0.3 mg/day for FFI and 0.7 +/- 0.1 mg/day for CMI. Total energy intakes did not differ.

  16. Development of novel copper-based sorbents for hot gas cleanup

    SciTech Connect

    Hill, A.H.; Abbasian, J. ); Flytzani-Stephanopoulos, M.; Bo, L.; Li, Li. ); Honea, F.I. )

    1993-01-01

    The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650[degree] to 850[degree]C. New sorbent compositions from the selected Cu-Cr-O and Cu-Ce-O binary oxides were prepared and characterized by BET N[sub 2]-desorption surface area measurement following various calcination/time-temperature exposures. The general trends reported last quarter (on 11 different compositions) were validated this quarter in that both binary oxides lose surface area as the amount of CuO is increased. Time-resolved sulfidation tests were conducted at 850[degree]C using the equimolar CuO.Cr[sub 2]O[sub 3] composition. The two selected binary oxides prepared in larger qauntities (for testing in a two-inch reactor) have physical properties typical of the sorbents prepared in past programs. Two multicycle desulfurization tests, conducted this quarter on the Cu-Ce-O sorbent at 850[degree]C, using a feed gas containing 5000 ppm H[sub 2]S, 10 vol % H[sub 2] and 10 vol % H[sub 2]O at a space velocity (STP) of 2000 h[sup [minus]1], demonstrated high sulfur removal efficiency for the first one or two cycles, and a significant reduction in efficiency in the following cycles.

  17. Preparation and biodistribution of copper-67 complexes with tetradentate Schiff-base ligands.

    PubMed

    John, E K; Bott, A J; Green, M A

    1994-04-01

    Uncharged, lipophilic, low molecular weight copper complexes labeled with generator-produced copper-62 are of interest as potential radiopharmaceutials for imaging the brain with positron emission tomography (PET). We report here the synthesis and biodistribution of a series of [67Cu]copper(II) complexes with tetradentate N2O2(2-)Schiff-base ligands. The compounds studied varied in lipophilicity from log P = 1.7 to log P = 3.6, where P is the octanol/water partition coefficient. In rat biodistribution studies the tracers were generally found to penetrate the blood-brain barrier following intravenous injection, but some far better than others. For closely related compounds brain uptake at 1 min postinjection increased with increasing lipophilicity, although log P was clearly not the sole determinant of high brain uptake. Substantial variations were also observed in the rate at which these various compounds are cleared from brain, with a few exhibiting the prolonged cerebral retention of tracer that would be desired for imaging with 62Cu and PET.

  18. Spin-state-correlated optical properties of copper(ii)-nitroxide based molecular magnets.

    PubMed

    Barskaya, Irina Yu; Veber, Sergey L; Suturina, Elizaveta A; Sherin, Peter S; Maryunina, Kseniya Yu; Artiukhova, Natalia A; Tretyakov, Evgeny V; Sagdeev, Renad Z; Ovcharenko, Victor I; Gritsan, Nina P; Fedin, Matvey V

    2017-10-03

    Molecular magnets based on copper(ii) ions and stable nitroxide radicals exhibit promising switchable behavior triggered by a number of external stimuli; however, their spin-state-correlated optical properties vital for photoinduced switching have not been profoundly investigated to date. Herein, the electronic absorption spectra of single crystals of three representatives of this unique family are studied experimentally and theoretically in the visible and near-IR regions. We established that the color of the complexes is mainly determined by optical properties of the nitroxide radicals, whereas the Cu(hfac)2 fragment contributes to the near-IR range with the intensity smaller by an order of magnitude. The thermochromism of these complexes evident upon thermal spin state switching is mainly caused by a spectral shift of the absorption bands of the nitroxides. The vibrational progression observed in the visible range for single crystals as well as for solutions of pure nitroxides is well reproduced by DFT calculations, where the C-C stretching mode governs the observed progression. The analysis of the spectra of single crystals in the near-IR region reveals changes in the energy and in the intensity of the copper(ii) d-d transitions, which are well reproduced by SOC-NEVPT2 calculations and owe to the flip of the Jahn-Teller axis in the coordination environment of copper. Further strategies for designing bidirectional magnetic photoswitches using these appealing compounds are discussed.

  19. Indirect potentiometric titration of ascorbic acid in pharmaceutical preparations using copper based mercury film electrode.

    PubMed

    Abdul Kamal Nazer, Meeran Mohideen; Hameed, Abdul Rahman Shahul; Riyazuddin, Patel

    2004-01-01

    A simple and rapid potentiometric method for the estimation of ascorbic acid in pharmaceutical dosage forms has been developed. The method is based on treating ascorbic acid with iodine and titration of the iodide produced equivalent to ascorbic acid with silver nitrate using Copper Based Mercury Film Electrode (CBMFE) as an indicator electrode. Interference study was carried to check possible interference of usual excipients and other vitamins. The precision and accuracy of the method was assessed by the application of lack-of-fit test and other statistical methods. The results of the proposed method and British Pharmacopoeia method were compared using F and t-statistical tests of significance.

  20. Fabrication of polyaniline-coated Kapok (Ceiba pentandra) fibers embedded with copper-based particles

    NASA Astrophysics Data System (ADS)

    Arguelles, K. E.; Herrera, M. U.; Futalan, C. C. M.; Balela, M. D. L.

    2017-05-01

    Polyaniline-coated kapok (Ceiba pentandra) fibers that were embedded with Cu-based particles were fabricated for antimicrobial application. Kapok fibers were coated with polyaniline molecules using oxidative polymerization. The coated fibers were embedded with copper-based particles using soaking method in prepared CuO suspension. X-ray diffraction (XRD) pattern shows presence of Cu and Cu2O particles on the modified fibers. Scanning electron microscopy (SEM) supports the presence of embedded particles on the modified fibers. The samples showed antimicrobial activity against Escherichia coli and Staphylococcus aureus.

  1. A fast learning-based super-resolution method for copper strip defect image

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuo; Fan, Xinnan; Zhang, Xuewu

    2017-07-01

    In this paper, a fast pre-classified-based super-resolution model has been proposed to overcome the problems of degraded imaging in weak-target real-time detection system, specialized to copper defect detection. To accurately characterize the defected image, textural features based on the statistical function of gray-gradient are presented. Furthermore, to improve the effectiveness and practicality of the online detection, a concept of pre-classified learning is introduced and an edge smoothness rule is designed. Some experiments are carried out on defect images in different environments and the experimental results show the efficiency and effectiveness of the algorithm.

  2. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    SciTech Connect

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired

  3. The influence of copper-based fungicide use in soils and aquatic sediments. Case study: Aetoliko lagoon, Western Greece

    NASA Astrophysics Data System (ADS)

    Avramidis, Pavlos; Barouchas, Pantelis; Dünwald, Thomas; Unkel, Ingmar

    2017-04-01

    In the study area, in order farmers to keep their olive trees healthy, the first measure is to keep their olive trees well-fed that is the best initial defense against diseases. Copper-based fungicides are the most common fungicides to protect olive plantations against diseases such as the olive leaf spot. Pathogens are controlled by farmers with strategically timed disease control programs rely on copper sprays to protect the foliage and fruit from infection Successful disease control depends on even distribution and good retention of the copper over all of the plant surfaces before the disease develops. Artificially added copper has the ability to accumulate in soils and aquatic sediments and can cause adverse effects on flora and fauna in its environment. For the present study soil and aquatic sediments field campaign was carried out in the Aetoliko Lagoon ecosystem which is exclusively dominated by olive orchards. It is for the first time in Greece that soil as well as aquatic sediments samples of one coherent protected aquatic ecosystem were taken and compared. To determine the influence that the usage of copper-based fungicides have on the lagoon and surrounding areas, ten (10) sediment samples from the bottom of the lagoon and twenty five (25) soil samples at the different olive orchards that are bordering the water body were taken. The samples were analyzed for total copper content (total digestion) and extractable copper (DTPA and NH4NO3). Furthermore, soil / sedimentological and geochemical analyses such as pH, grain size, total organic carbon, total nitrogen and calcium carbonate content were carried out. The results show in over 80 % of the orchard soils a critical accumulation of the total amount of copper. In some of the examined soils the value of 140 mg/kg(as set by the European Union as a limit for total copper in farmland) is exceeded by the factors of 2 to 4.5. Copper content in the aquatic sediments is generally lower and varies between 43.85 mg

  4. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    NASA Astrophysics Data System (ADS)

    Kenik, E. A.; Busby, J. T.; Gussev, M. N.; Maziasz, P. J.; Hoelzer, D. T.; Rowcliffe, A. F.; Vitek, J. M.

    2017-01-01

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14-0.36%) and Mn (2-5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  5. Properties and cyclic fatigue of glass infiltrated tape cast alumina cores produced using a water-based solvent.

    PubMed

    Oh, Nam-Sik; Kim, Dae-Joon; Ong, Joo L; Lee, Ho-Young; Lee, Keun-Woo

    2007-04-01

    The purpose of this study was to investigate the properties of tape cast alumina composite produced using a water-based solvent and its possible clinical use as an all ceramic crown system in a fixed partial denture. Durability of the system will be measured by fatigue test to simulate the masticating conditions of the oral cavity. The optimal weight ratio of water-based alumina tape was determined by tensile strength, shrinkage ratio and durability. The coefficient of thermal expansion, fracture toughness, biaxial flexural strength and flexural strength after fatigue test of a composite produced from alumina tape at optimal weight ratios were determined and compared to In-Ceram alumina core (control). The weight ratio of alumina/(alumina+binder+plasticizer) of 0.84 and binder/(binder+plasticizer) of 0.5 was observed to be the optimal composition for achieving excellent composite properties. Coefficient of thermal expansion of the sintered alumina tape was observed to be 7.3x10(-6)/degrees C, and this value was increased to 7.5x10(-6)/degrees C after infiltrating the sintered tape with glass. The fracture toughness and biaxial flexural strength of glass infiltrated alumina tape was observed to be 4.6 MPa m(1/2) and 498 MPa, respectively. After cyclic loading for 10(2)-10(6) cycles, no significant change in the biaxial flexural strength was observed between the glass infiltrated alumina core and the In-Ceram alumina core (p>0.05). The observed properties provide evidence that the water-based tape cast alumina-glass composite is suitable for clinical use as an all ceramic crown system in a fixed partial denture.

  6. Coupled molecular dynamics-stochastic model for thermal conductivity of ethylene glycol based copper nanofluid.

    PubMed

    Ghosh, M M; Rai, R K

    2014-04-01

    A coupled molecular dynamics (MD)-stochastic simulation based model has been proposed here for the thermal conductivity of ethylene glycol (EG) based copper nanofluid. The model is based on the thermal evolution of the nanoparticles dispersed in the nanofluid which is in contact with a heat source. It is natural that the nanoparticles dispersed in the nanofluid would move randomly by Brownian motion and repeatedly collide with the heat source. During each collision the nanoparticles would extract some heat by conduction mode from the heat source and this heat would be dissipated to the base fluid during Brownian motion by a combination of conduction and microconvection mode. Thus, in addition to normal conductive heat transfer through the base fluid (EG) itself (without nanoparticles) some amount of heat is transferred by the collision of the nanoparticles with the heat source. The extent of this additional heat transfer has been estimated in the present model to estimate the enhancement in thermal conductivity of EG based copper nanofluid, as a function of volume fraction loading of nanoparticles. The prediction of the present model has been compared with the experimental data available in literature, and it has shown a reasonable agreement between the theoretical prediction and the experimental data.

  7. Casting materials

    DOEpatents

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  8. Synthesis and structural characterization of two copper(II) complexes constructed from copper(II) thenoyltrifluoroacetonate and the rigid imidazolyl-based ligands

    NASA Astrophysics Data System (ADS)

    Wang, G.-F.; Sun, S.-W.; Han, Q.-P.; Zhang, W.-C.; Sun, H.; Song, S.-F.; Cui, G.-H.

    2014-12-01

    Two copper(II) complexes, Cu( tta)2( L 1 )2 ( 1), Cu( tta)2( L 2 ) ( 2) (where L 1 = 4-imidazolylbenzaldehyde, L 2 = ( E)-3-(4-(1 H-imidazol-1-yl)phenyl)-1-(4-methoxyphenyl)prop-2-en-1-one) have been synthesized from the reaction of Cu( tta)2 with L 1 and L 2 in the methanol medium, respectively. Their structures have been characterized by IR, elemental analyses and single-crystal X-ray diffraction. The copper (II) ion of 1 is in a distorted octahedral environment, in which the donor atoms are provided by two oxygen atoms of the two tta ligands and two nitrogen atoms of L 1 ligands, while that of 2 is in a distorted square-pyramidal environment with three O atoms of the two tta ligands and one N atom of imidazole ligand L 2 lying at the base.

  9. Initial solidification phenomena: Factors affecting heat transfer in strip casting

    NASA Astrophysics Data System (ADS)

    Nolli, Paolo

    In the last few years a few companies have announced the final stage of the commercial development of strip casting of steels. In strip casting heat extraction and productivity are limited by the thermal resistance at the interface between processed material and moving mold (rolls for twin-roll strip casters). Among many factors influencing interfacial heat transfer, films of various composition, either formed during casting or deposited before casting on the surface of the rolls, melt superheat and gas atmosphere composition can have a significantly positive or negative effect on the achieved heat transfer rate. From an industrial point view, methods to improve interfacial heat transfer rates must be found, in order to increase productivity. The objective of this research project is to assess if it is feasible to improve heat transfer rates during solidification of steel in direct contact with a copper mold: (1) by the application of thin coatings on the mold surface; (2) by adding a reactive gas species containing sulfur in the gas shrouding where casting is performed. To address the former, solidification experiments were performed with the mold surface either kept uncoated or coated with coatings of different compositions. To address the latter, the experiments were performed in gas shrouding atmospheres with or without sulphydric acid. It was observed that the resulting heat extraction rates were improved by the application of certain coatings and by the addition of H2S to the gas atmosphere. These findings prove that the application of coatings and the use of small amounts of reactive gaseous species containing sulfur may be methods to increase productivity in strip casting. The effect of superheat and the effect of naturally deposited oxides (Mn-oxide) were also evaluated experimentally. A numerical study of the effect of the critical undercooling on the productivity of a twin-roll strip caster showed that the maximum allowable casting speed can be increased

  10. Venous Thrombosis Risk after Cast Immobilization of the Lower Extremity: Derivation and Validation of a Clinical Prediction Score, L-TRiP(cast), in Three Population-Based Case-Control Studies.

    PubMed

    Nemeth, Banne; van Adrichem, Raymond A; van Hylckama Vlieg, Astrid; Bucciarelli, Paolo; Martinelli, Ida; Baglin, Trevor; Rosendaal, Frits R; le Cessie, Saskia; Cannegieter, Suzanne C

    2015-11-01

    Guidelines and clinical practice vary considerably with respect to thrombosis prophylaxis during plaster cast immobilization of the lower extremity. Identifying patients at high risk for the development of venous thromboembolism (VTE) would provide a basis for considering individual thromboprophylaxis use and planning treatment studies. The aims of this study were (1) to investigate the predictive value of genetic and environmental risk factors, levels of coagulation factors, and other biomarkers for the occurrence of VTE after cast immobilization of the lower extremity and (2) to develop a clinical prediction tool for the prediction of VTE in plaster cast patients. We used data from a large population-based case-control study (MEGA study, 4,446 cases with VTE, 6,118 controls without) designed to identify risk factors for a first VTE. Cases were recruited from six anticoagulation clinics in the Netherlands between 1999 and 2004; controls were their partners or individuals identified via random digit dialing. Identification of predictor variables to be included in the model was based on reported associations in the literature or on a relative risk (odds ratio) > 1.2 and p ≤ 0.25 in the univariate analysis of all participants. Using multivariate logistic regression, a full prediction model was created. In addition to the full model (all variables), a restricted model (minimum number of predictors with a maximum predictive value) and a clinical model (environmental risk factors only, no blood draw or assays required) were created. To determine the discriminatory power in patients with cast immobilization (n = 230), the area under the curve (AUC) was calculated by means of a receiver operating characteristic. Validation was performed in two other case-control studies of the etiology of VTE: (1) the THE-VTE study, a two-center, population-based case-control study (conducted in Leiden, the Netherlands, and Cambridge, United Kingdom) with 784 cases and 523 controls

  11. Venous Thrombosis Risk after Cast Immobilization of the Lower Extremity: Derivation and Validation of a Clinical Prediction Score, L-TRiP(cast), in Three Population-Based Case–Control Studies

    PubMed Central

    Nemeth, Banne; van Adrichem, Raymond A.; van Hylckama Vlieg, Astrid; Bucciarelli, Paolo; Martinelli, Ida; Baglin, Trevor; Rosendaal, Frits R.; le Cessie, Saskia; Cannegieter, Suzanne C.

    2015-01-01

    Background Guidelines and clinical practice vary considerably with respect to thrombosis prophylaxis during plaster cast immobilization of the lower extremity. Identifying patients at high risk for the development of venous thromboembolism (VTE) would provide a basis for considering individual thromboprophylaxis use and planning treatment studies. The aims of this study were (1) to investigate the predictive value of genetic and environmental risk factors, levels of coagulation factors, and other biomarkers for the occurrence of VTE after cast immobilization of the lower extremity and (2) to develop a clinical prediction tool for the prediction of VTE in plaster cast patients. Methods and Findings We used data from a large population-based case–control study (MEGA study, 4,446 cases with VTE, 6,118 controls without) designed to identify risk factors for a first VTE. Cases were recruited from six anticoagulation clinics in the Netherlands between 1999 and 2004; controls were their partners or individuals identified via random digit dialing. Identification of predictor variables to be included in the model was based on reported associations in the literature or on a relative risk (odds ratio) > 1.2 and p ≤ 0.25 in the univariate analysis of all participants. Using multivariate logistic regression, a full prediction model was created. In addition to the full model (all variables), a restricted model (minimum number of predictors with a maximum predictive value) and a clinical model (environmental risk factors only, no blood draw or assays required) were created. To determine the discriminatory power in patients with cast immobilization (n = 230), the area under the curve (AUC) was calculated by means of a receiver operating characteristic. Validation was performed in two other case–control studies of the etiology of VTE: (1) the THE-VTE study, a two-center, population-based case–control study (conducted in Leiden, the Netherlands, and Cambridge, United Kingdom

  12. Effects of silicon on the oxidation, hot-corrosion, and mechanical behavior of two cast nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1977-01-01

    Cast specimens of nickel-base superalloys 713C and Mar-M200 with nominal additions of 0, 0.5, and 1 wt% Si were evaluated for oxidation and corrosion resistance, tensile and stress-rupture properties, microstructure, and phase relations. Results are compared with those of an earlier study of the effects of Si in B-1900. Si had similar effects on all three superalloys. It improves oxidation resistance but the improvement in 713C and Mar-M200 was considerably less than in B-1900. Hot-corrosion resistance is also improved somewhat. Si is, however, detrimental to mechanical properties, in particular, rupture strength and tensile ductility. Si has two obvious microstructural effects. It increases the amount of gamma-prime precipitated in eutectic nodules and promotes a Mo(Ni,Si)2 Laves phase in the alloys containing Mo. These microstructural effects do not appear responsible for the degradation of mechanical properties, however.

  13. Effects of silicon on the oxidation, hot-corrosion, and mechanical behavior of two cast nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1977-01-01

    Cast specimens of nickel-base superalloys 713C and Mar-M200 with nominal additions of 0, 0.5, and 1 wt% Si were evaluated for oxidation and corrosion resistance, tensile and stress-rupture properties, microstructure, and phase relations. Results are compared with those of an earlier study of the effects of Si in B-1900. Si had similar effects on all three superalloys. It improves oxidation resistance but the improvement in 713C and Mar-M200 was considerably less than in B-1900. Hot-corrosion resistance is also improved somewhat. Si is, however, detrimental to mechanical properties, in particular, rupture strength and tensile ductility. Si has two obvious microstructural effects. It increases the amount of gamma-prime precipitated in eutectic nodules and promotes a Mo(Ni,Si)2 Laves phase in the alloys containing Mo. These microstructural effects do not appear responsible for the degradation of mechanical properties, however.

  14. Numerical Simulation and Experimental Casting of Nickel-Based Single-Crystal Superalloys by HRS and LMC Directional Solidification Processes

    NASA Astrophysics Data System (ADS)

    Yan, Xuewei; Wang, Run'nan; Xu, Qingyan; Liu, Baicheng

    2017-04-01

    Mathematical models for dynamic heat radiation and convection boundary in directional solidification processes are established to simulate the temperature fields. Cellular automaton (CA) method and Kurz-Giovanola-Trivedi (KGT) growth model are used to describe nucleation and growth. Primary dendritic arm spacing (PDAS) and secondary dendritic arm spacing (SDAS) are calculated by the Ma-Sham (MS) and Furer-Wunderlin (FW) models respectively. The mushy zone shape is investigated based on the temperature fields, for both high-rate solidification (HRS) and liquid metal cooling (LMC) processes. The evolution of the microstructure and crystallographic orientation are analyzed by simulation and electron back-scattered diffraction (EBSD) technique, respectively. Comparison of the simulation results from PDAS and SDAS with experimental results reveals a good agreement with each other. The results show that LMC process can provide both dendritic refinement and superior performance for castings due to the increased cooling rate and thermal gradient.

  15. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots.

    PubMed

    Koleilat, Ghada I; Levina, Larissa; Shukla, Harnik; Myrskog, Stefan H; Hinds, Sean; Pattantyus-Abraham, Andras G; Sargent, Edward H

    2008-05-01

    Half of the sun's power lies in the infrared. As a result, the optimal bandgaps for solar cells in both the single-junction and even the tandem architectures lie beyond 850 nm. However, progress in low-cost, large-area, physically flexible solar cells has instead been made in organic and polymer materials possessing absorption onsets in the visible. Recent advances have been achieved in solution-cast infrared photovoltaics through the use of colloidal quantum dots. Here we report stable solution-processed photovoltaic devices having 3.6% power conversion efficiency in the infrared. The use of a strongly bound bidentate linker, benzenedithiol, ensures device stability over weeks. The devices reach external quantum efficiencies of 46% in the infrared and 70% across the visible. We investigate in detail the physical mechanisms underlying the operation of this class of device. In contrast with drift-dominated behavior in recent reports of PbS quantum dot photovoltaics, we find that diffusion of electrons and holes over hundreds of nanometers through our PbSe colloidal quantum dot solid is chiefly responsible for the high external quantum efficiencies obtained in this new class of devices.

  16. Flexible supercapacitors based on low-cost tape casting of high dense carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Daraghmeh, Allan; Hussain, Shahzad; Servera, Llorenç; Xuriguera, Elena; Blanes, Mireia; Ramos, Francisco; Cornet, Albert; Cirera, Albert

    2017-02-01

    This experimental study, reports the use of flexible tape casting of dense carbon nanofiber (CNFs) alone and in hybrid structure with MnO2 for supercapacitor applications. Different electrolyte concentrations of potassium hydroxide (KOH) were tested and it was founded that mild concentrated electrolyte, like 9 M KOH, provides higher specific capacitance 38 F g-1 at a scan rate of 5 mV s-1. Electrochemical impedance spectroscopy (EIS) measurements explain that the solution resistance and the charge transfer resistance is higher for 3 M KOH concentrations and lower for 6 M KOH concentrations. Afterwards a novel, fast and simple method is adopted to achieve a hybrid nanostructure of CNFs/MnO2 with various KMnO4 ratios. The hybrid supercapacitor, having loaded a mass of 0.0003 g MnO2 as a thin film, delivers a highest specific capacitance of 812 F g-1 at a scan rate 5 mV s-1. Charge/discharge cycling stability at current density of 7.9 A g-1 demonstrates larger specific capacitance 303 F g-1 and stability. Furthermore, the hybrid supercapacitor can deliver specific energy (72.4 Wh kg-1) at specific power (3.44 kW kg-1). Specific surface area increase from 68 m2 g-1 for CNFs to 240 m2 g-1 for CNFs/MnO2.

  17. Fabrication of wrist-like SMA-based actuator by double smart soft composite casting

    NASA Astrophysics Data System (ADS)

    Rodrigue, Hugo; Wei, Wang; Bhandari, Binayak; Ahn, Sung-Hoon

    2015-12-01

    A new manufacturing method for smart soft composite (SSC) actuators that consists of double casting a SSC actuator to produce an actuator with non-linear shape memory alloy (SMA) wire positioning is proposed. This method is used to manufacture a tube-shaped SSC actuator in which the SMA wires follow the curvature of the tube and is capable of pure-twisting deformations while sustaining a cantilever load. The concept is tested by measuring the maximum twisting angle and a simple control method is proposed to control the twisting angle of the actuator. Then, a soft robotic wrist with a length of 18 cm is built, its load-carrying capability is tested by measuring the cantilever force required for deforming the actuator, and its load-carrying capability during actuation is tested by loading one end with different objects and actuating the actuator. This wrist actuator shows good repeatability, is capable of twisting deformations up to 25° while holding objects weighing 100 g, and can sustain loads above 2 N without undergoing buckling.

  18. Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.

    EPA Science Inventory

    Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.Evans, M.V., Sawyer, M.E., Isaacs, K.K, and Wambaugh, J.With the development of efficient high-throughput (HT) in ...

  19. Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.

    EPA Science Inventory

    Predicting dermal penetration for ToxCast chemicals using in silico estimates for diffusion in combination with physiologically based pharmacokinetic (PBPK) modeling.Evans, M.V., Sawyer, M.E., Isaacs, K.K, and Wambaugh, J.With the development of efficient high-throughput (HT) in ...

  20. Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal.

    PubMed

    Janin, Amélie; Coudert, Lucie; Riche, Pauline; Mercier, Guy; Cooper, Paul; Blais, Jean-François

    2011-02-28

    Chromated copper arsenate (CCA)-treated wood was widely used until 2004 for residential and industrial applications. Since 2004, CCA was replaced by alternative copper preservatives such as alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ), for residential applications due to health concerns. Treated wood waste disposal is becoming an issue. Previous studies identified a chemical process for decontaminating CCA-treated wood waste based on sulfuric acid leaching. The potential application of this process to wood treated with the copper-based preservatives (alkaline copper quaternary (ACQ), copper azole (CA) and micronized copper quaternary (MCQ)) is investigated here. Three consecutive leaching steps with 0.1 M sulfuric acid at 75°C for 2 h were successful for all the types of treated wood and achieved more than 98% copper solubilisation. The different acidic leachates produced were successively treated by coagulation using ferric chloride and precipitation (pH=7) using sodium hydroxide. Between 94 and 99% of copper in leachates could be recovered by electrodeposition after 90 min using 2 A electrical current. Thus, the process previously developed for CCA-treated wood waste decontamination could be efficiently applied for CA-, ACQ- or MCQ-treated wood.

  1. Choice of copper-based alloys for ribbon substrates with a sharp cube texture

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Suaridze, T. R.; Akshentsev, Yu. N.; Kazantsev, V. A.

    2014-12-01

    It has been shown that, in some copper-based alloys subjected to cold deformation by rolling to 98.6-99% followed by recrystallization annealing, a sharp cube texture can be produced. Optimum conditions of annealing have been determined, which make it possible to produce a sharp biaxial texture in Cu-Ni, Cu-Fe, and Cu-Cr alloys with the fraction of cube grains of more than 95%; this opens a possibility of using thin ribbons made of these alloys as substrates for multilayer film compositions, in particular when developing second-generation high-temperature superconductors.

  2. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques

    DOEpatents

    Lu, Chun [Monroeville, PA

    2012-04-24

    A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

  3. Third-generation solar cells based on quaternary copper compounds with the kesterite-type structure

    NASA Astrophysics Data System (ADS)

    Rakitin, V. V.; Novikov, G. F.

    2017-02-01

    The state of the art in the studies aimed at improving the efficiency and reducing the cost of solar energy cells is analyzed. A possible way to achieve these goals is to use absorber layers made of semiconductor materials based on a new, poorly studied class of quaternary copper compounds Cu2ZnSnX4 (X=S, Se) with the kesterite-type structure. Methods of synthesis and the chemical composition of the kesterite absorber layers are discussed. Various types and operating principles of thin-film solar cells as well as main factors influencing parameters of these devices are considered. The bibliography includes 173 references.

  4. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

    SciTech Connect

    Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.

    2001-02-05

    It is shown that a ''nanofluid'' consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol% Cu nanoparticles of mean diameter <10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity.

  5. Plastic Deformation of Copper-Based Alloy Reinforced with Incoherent Nanoparticles

    NASA Astrophysics Data System (ADS)

    Matvienko, O. V.; Daneiko, O. I.; Kovalevskaya, T. A.

    2017-06-01

    The paper deals with research carried out into plastic deformation of a heavy-wall pipe made of nanoparticle reinforced copper-based alloy. We present an original approach which combines methods of crystal plasticity and deformable solid mechanics, thereby allowing to study the stress-strain state of the heavy-wall pipe strengthened with incoherent nanoparticles using a homogeneous internal pressure. Dependences are constructed for the yielding area and the pressure, the limit of elasto-plastic resistance is obtained for the heavy-wall pipe and its deformation degree is described. It is shown that the particle size has an effect on strength properties of the material.

  6. Slip-Cast Superconductive Parts

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Vasquez, Peter; Buck, Gregory M.; Hicks, Lana P.; Hooker, Matthew W.; Taylor, Theodore D.

    1993-01-01

    Complex shapes fabricated without machining. Nonaqueous slip-casting technique used to form complexly shaped parts from high-temperature superconductive materials like YBa(2)Cu(3)O(7-delta). Such parts useful in motors, vibration dampers, and bearings. In process, organic solvent used as liquid medium. Ceramic molds made by lost-wax process used instead of plaster-of-paris molds, used in aqueous slip-casting but impervious to organic solvents and cannot drain away liquid medium. Organic-solvent-based castings do not stick to ceramic molds as they do to plaster molds.

  7. Slip-Cast Superconductive Parts

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Vasquez, Peter; Buck, Gregory M.; Hicks, Lana P.; Hooker, Matthew W.; Taylor, Theodore D.

    1993-01-01

    Complex shapes fabricated without machining. Nonaqueous slip-casting technique used to form complexly shaped parts from high-temperature superconductive materials like YBa(2)Cu(3)O(7-delta). Such parts useful in motors, vibration dampers, and bearings. In process, organic solvent used as liquid medium. Ceramic molds made by lost-wax process used instead of plaster-of-paris molds, used in aqueous slip-casting but impervious to organic solvents and cannot drain away liquid medium. Organic-solvent-based castings do not stick to ceramic molds as they do to plaster molds.

  8. Theoretical investigation on DNA/RNA base pairs mediated by copper, silver, and gold cations.

    PubMed

    Marino, Tiziana; Russo, Nino; Toscano, Marirosa; Pavelka, Matej

    2012-02-14

    B3LYP density functional based computations were performed in order to characterize the interactions present in some Cu(+), Ag(+), and Au(+) metal ion-mediated DNA and RNA base pairs from both structural and electronic points of view. Examined systems involve as ligands canonical Watson-Crick, Hoogsteen and Wobble base pairs. Two artificial Hoogsteen base pairs were also taken into account. Binding energy values indicate that complexes involving silver cations are less stable than those in which copper or gold are present, and propose a similar behaviour for these two latter ions. The nature of the bond linking metal ions and bases was described by the NBO analysis that suggests metal coordinative interactions to be covalent. An evaluation of the dispersion contributions for the investigated systems was performed with the B3LYP-D3 functional.

  9. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.

    PubMed

    Alnewaini, Zaid; Langer, Eric; Schaber, Philipp; David, Matthias; Kretz, Dominik; Steil, Volker; Hesser, Jürgen

    2017-03-01

    Dosimetric control of staff exposure during interventional procedures under fluoroscopy is of high relevance. In this paper, a novel ray casting approximation of radiation transport is presented and the potential and limitation vs. a full Monte Carlo transport and dose measurements are discussed. The x-ray source of a Siemens Axiom Artix C-arm is modeled by a virtual source model using single Gaussian-shaped source. A Geant4-based Monte Carlo simulation determines the radiation transport from the source to compute scatter from the patient, the table, the ceiling and the floor. A phase space around these scatterers stores all photon information. Only those photons are traced that hit a surface of phantom that represents medical staff in the treatment room, no indirect scattering is considered; and a complete dose deposition on the surface is calculated. To evaluate the accuracy of the approximation, both experimental measurements using Thermoluminescent dosimeters (TLDs) and a Geant4-based Monte Carlo simulation of dose depositing for different tube angulations of the C-arm from cranial-caudal angle 0° and from LAO (Left Anterior Oblique) 0°-90° are realized. Since the measurements were performed on both sides of the table, using the symmetry of the setup, RAO (Right Anterior Oblique) measurements were not necessary. The Geant4-Monte Carlo simulation agreed within 3% with the measured data, which is within the accuracy of measurement and simulation. The ray casting approximation has been compared to TLD measurements and the achieved percentage difference was -7% for data from tube angulations 45°-90° and -29% from tube angulations 0°-45° on the side of the x-ray source, whereas on the opposite side of the x-ray source, the difference was -83.8% and -75%, respectively. Ray casting approximation for only LAO 90° was compared to a Monte Carlo simulation, where the percentage differences were between 0.5-3% on the side of the x-ray source where the highest dose

  10. Microdefects in cast multicrystalline silicon

    SciTech Connect

    Wolf, E.; Klinger, D.; Bergmann, S.

    1995-08-01

    The microdefect etching behavior of cast multicrystalline BAYSIX and SILSO samples is mainly the same as that of EFG silicon, in spite of the very different growth parameters applied to these two techniques and the different carbon contents of the investigated materials. Intentional decorating of mc silicon with copper, iron and gold did not influence the results of etching and with help of infrared transmission microscopy no metal precipitates at the assumed microdefects could be established. There are many open questions concerning the origin of the assumed, not yet doubtless proved microdefects.

  11. Rainfall-induced removal of copper-based spray residues from vines.

    PubMed

    Pérez-Rodríguez, P; Soto-Gómez, D; De La Calle, I; López-Periago, J E; Paradelo, M

    2016-10-01

    The continuous use of copper against fungal diseases and off-target effects causes major environmental and agronomic problems. However, the rain-induced removal of Cu-based residues is known only for a limited number of crops. We present the results of rain-induced removal of fungicides from two monitored vineyard plots which were sprayed with two widely used Cu-based formulations: copper-oxychloride (CO) and Bordeaux mixture (BM), respectively. Cu removal per growing season was 0.60±0.12kgha(-1) (30% of the applied fungicide) for CO and 0.80±0.10kgha(-1) for BM (70% of the applied fungicide). Fractioning the Cu in soluble (CuS) and particulate fractions (CuP) showed that most of the Cu was removed as CuP, but CuS concentrations found in throughfall collectors exceeded the regulatory threshold for toxicity in surface waters. The first few millimeters of rain caused most of the Cu removal. Our findings agreed with the data reported in the scientific literature, in which a significant fraction of the Cu-based formulation is loosely attached to the plant surfaces. In addition, we found that rainfall energy had a minor influence on the removal.

  12. Copper-based ternary and quaternary semiconductor nanoplates: templated synthesis, characterization, and photoelectrochemical properties.

    PubMed

    Wu, Xue-Jun; Huang, Xiao; Qi, Xiaoying; Li, Hai; Li, Bing; Zhang, Hua

    2014-08-18

    Two-dimensional (2D) copper-based ternary and quaternary semiconductors are promising building blocks for the construction of efficient solution-processed photovoltaic devices at low cost. However, the facile synthesis of such 2D nanoplates with well-defined shape and uniform size remains a challenge. Reported herein is a universal template-mediated method for preparing copper-based ternary and quaternary chalcogenide nanoplates, that is, CuInS2, CuIn(x)Ga(1-x)S2, and Cu2ZnSnS4, by using a pre-synthesized CuS nanoplate as the starting template. The various synthesized nanoplates are monophasic with uniform thickness and lateral size. As a proof of concept, the Cu2ZnSnS4 nanoplates were immobilized on a Mo/glass substrate and used as semiconductor photoelectrode, thus showing stable photoelectrochemical response. The method is general and provides future opportunities for fabrication of cost-effective photovoltaic devices based on 2D semiconductors.

  13. Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese

    PubMed Central

    2015-01-01

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  14. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    PubMed

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  15. Decomposition of 2-chloroethylethylsulfide on copper oxides to detoxify polymer-based spherical activated carbons from chemical warfare agents.

    PubMed

    Fichtner, S; Hofmann, J; Möller, A; Schrage, C; Giebelhausen, J M; Böhringer, B; Gläser, R

    2013-11-15

    For the decomposition of chemical warfare agents, a hybrid material concept was applied. This consists of a copper oxide-containing phase as a component with reactive functionality supported on polymer-based spherical activated carbon (PBSAC) as a component with adsorptive functionality. A corresponding hybrid material was prepared by impregnation of PBSAC with copper(II)nitrate and subsequent calcination at 673K. The copper phase exists predominantly as copper(I)oxide which is homogeneously distributed over the PBSAC particles. The hybrid material containing 16 wt.% copper on PBSAC is capable of self-detoxifying the mustard gas surrogate 2-chloroethylethylsulfide (CEES) at room temperature. The decomposition is related to the breakthrough behavior of the reactant CEES, which displaces the reaction product ethylvinylsulfide (EVS). This leads to a combined breakthrough of CEES and EVS. The decomposition of CEES is shown to occur catalytically over the copper-containing PBSAC material. Thus, the hybrid material can even be considered to be self-cleaning. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. 1H NMR-Based Metabolomics Investigation of Copper-Laden Rat: A Model of Wilson’s Disease

    PubMed Central

    Xu, Jingjing; Jiang, Huaizhou; Li, Jinquan; Cheng, Kian-Kai; Dong, Jiyang; Chen, Zhong

    2015-01-01

    Background and Purpose Wilson’s disease (WD), also known as hepatoleticular degeneration (HLD), is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of ‘decoppering’ process, penicillamine (PA) was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established. Materials and Methods A combination of 1HNMR spectroscopy and multivariate statistical analysis was applied to examine the metabolic profiles of the urine and blood serum samples collected from the copper-laden rat model of WD with PA treatment. Results Copper accumulation in the copper-laden rats is associated with increased lactate, creatinine, valine and leucine, as well as decreased levels of glucose and taurine in the blood serum. There were also significant changes in p-hydroxyphenylacetate (p-HPA), creatinine, alpha-ketoglutarate (α-KG), dimethylamine, N-acetylglutamate (NAG), N-acetylglycoprotein (NAC) in the urine of these rats. Notably, the changes in p-HPA, glucose, lactate, taurine, valine, leucine, and NAG were found reversed following PA treatment. Nevertheless, there were no changes for dimethylamine, α-KG, and NAC as a result of the treatment. Compared with the controls, the concentrations of hippurate, formate, alanine, and lactate were changed when PA was applied and this is probably due to its side effect. A tool named SMPDB (Small Molecule Pathway Database) is introduced to identify the metabolic pathway influenced by the copper-laden diet. Conclusion The study has shown the potential application of NMR-based metabolomic

  17. Directional solidification of large cross-section nickel-base superalloy castings via liquid-metal cooling

    NASA Astrophysics Data System (ADS)

    Elliott, Andrew J.

    The drive for higher efficiency in very large industrial gas turbines (IGTs) used in power generation applications has led to the need for directional solidification of large cross-section components, such as turbine blades, used in the hot gas path sections of the IGTs. The Bridgman directional solidification technique, which is currently used to produce these components, has been optimized for much smaller aero-engine components. The scale-up of this technique to produce large parts has resulted in numerous problems, and consequently low casting yield, which can all be related to the limited cooling capability of the Bridgman process. In this dissertation, a higher cooling efficiency process, liquid-metal cooling (LMC) using Sn as the cooling medium, has been evaluated for improved capability to cast large cross-section components. A series of castings were made for direct comparison using both the conventional Bridgman and the high thermal gradient LMC processes. Casting conditions were selected to simulate the state of the art for the Bridgman method and to assess the limits of casting with the less familiar LMC method. The experiments were evaluated through thermocouple analyses of casting conditions and post-casting analyses of grain defects, microstructural features, and mechanical behavior. Additionally, a finite element model of the solidification process was developed to further elucidate casting conditions. The casting parameters and elements of the LMC process that had the greatest influence on casting conditions were determined. Results indicated that the LMC process is capable of significantly enhancing cooling efficiency during directional solidification of large cross-section components. The enhanced cooling allowed much faster solidification withdrawal rates and resulted in substantially refined cast microstructure. The LMC process eliminated freckle-type defects in all cases and considerably reduced other casting defects under optimal conditions

  18. Selective determination of trace copper(II) by cathodic adsorptive stripping voltammetry with a naphthol-derivative Schiff's base.

    PubMed

    Shamsipur, Mojtaba; Saeidi, Mahboubeh; Sharghi, Hashem; Naeimi, Hossein

    2003-01-01

    A selective and sensitive stripping voltammetric method for the determination of trace amounts of copper(II) with a recently synthesized naphthol-derivative Schiff's base (2,2'-[1,2-ethanediylbis(nitriloethylidyne)]bis(1-naphthalene)) is presented. The method is based on adsorptive accumulation of the resulting copper-Schiff's base complex on a hanging mercury drop electrode, followed by the stripping voltammetric measurement at the reduction current of adsorbed complex at -0.15 V (vs. Ag/AgCl). The optimal conditions for the stripping analysis of copper include pH 5.5 to 6.5, 8 microM Schiff's base and an accumulation potential of -0.05 V (vs. Ag/AgCI). The peak current is linearly proportional to the copper concentration over a range 2.3-50.8 ng ml(-1) with a limit of detection of 1.9 ng ml(-1). The accumulation time and RSD are 90 s and (3.2-3.5)%, respectively. The method was applied to the determination of copper in some analytical grade salts, tap water, human serum and sheep's liver.

  19. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  20. O on the Crystallization Behavior of Lime-Alumina-Based Mold Flux for Casting High-Al Steels

    NASA Astrophysics Data System (ADS)

    Lu, Boxun; Chen, Kun; Wang, Wanlin; Jiang, Binbin

    2014-08-01

    With the development of advanced high strength steel (AHSS), a large amount of aluminum was added into steels. The reaction between aluminum in the molten steel and silica based mold flux in the continuous-casting process would tend to cause a series of problems and influence the quality of slabs. To solve the above problems caused by the slag-steel reaction, nonreactive lime-alumina-based mold flux system has been proposed. In this article, the effect of Li2O and Na2O on the crystallization behavior of the lime-alumina-silica-based mold flux has been studied by using the single hot thermocouple technology (SHTT) and double hot thermocouple technology (DHTT). The results indicated that Li2O and Na2O in the above mold flux system play different roles as they behaved in traditional lime-silica based mold flux, which would tend to inhibit general mold flux crystallization by lowering the initial crystallization temperature and increasing incubation time, especially in the high-temperature region. However, when their content exceeds a critical value, the crystallization process of mold fluxes in low temperature zone would be greatly accelerated by the new phase formation of LiAlO2 and Na x Al y Si z O4 crystals, respectively. The crystalline phases precipitated in all samples during the experiments are discussed in the article.

  1. Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array

    NASA Astrophysics Data System (ADS)

    Li, Fenfang; Lei, Chunyang; Shen, Qinpeng; Li, Lijun; Wang, Ming; Guo, Manli; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2012-12-01

    The rapid development in nanoparticle production and application during the past decade requires an easy, rapid, and predictive screening method for nanoparticles toxicity assay. In this study, the toxicological effects and the source of toxicity of copper nanoparticles (CuNPs) are investigated based on a stress-responsive bacterial biosensor array. According to the responses of the biosensing strains, it is found that CuNPs induce not only oxidative stress in E. coli, but also protein damage, DNA damage, and cell membrane damage, and ultimately cause cell growth inhibition. Through enzyme detoxification analysis, the toxicological effects of CuNPs are traced to H2O2 generation from CuNPs. Rapid copper release from CuNPs and Cu(i) production are observed. The oxidation of the released Cu(i) has a close relation to H2O2 production, as tris-(hydroxypropyltriazolylmethyl) amine, the specific Cu(i) chelator, can largely protect the cells from the toxicity of CuNPs. In addition, the TEM study shows that CuNPs can be adsorbed and incepted fast by the cells. Comparatively, copper microparticles are relatively stable in the system and practically non-toxic, which indicates the importance of toxic estimation of materials at the nanoscale. In addition, the Cu(ii) ion can induce protein damage, membrane damage, and slight DNA damage only at a relatively high concentration. The current study reveals the preliminary mechanism of toxicity of CuNPs, and suggests that the stress-responsive bacterial biosensor array can be used as a simple and promising tool for rapid screening in vitro toxicity of nanoparticles and studying the primary mechanism of the toxicity.The rapid development in nanoparticle production and application during the past decade requires an easy, rapid, and predictive screening method for nanoparticles toxicity assay. In this study, the toxicological effects and the source of toxicity of copper nanoparticles (CuNPs) are investigated based on a stress

  2. Sixty Years of Casting Research

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  3. USGS ShakeCast

    USGS Publications Warehouse

    Wald, David; Lin, Kuo-Wan

    2007-01-01

    Automating, Simplifying, and Improving the Use of ShakeMap for Post-Earthquake Decisionmaking and Response. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  4. Fabrication of Copper(I) Bipyridyl Complex Based Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Vuong, Son; Nguyen-Dang, Ha-My; Tran, Quang Thinh; Luong, Thi Thu Thuy; Pham, Trang T. T.; Nguyen-Tran, Thuat; Mai, Anh Tuan

    2017-01-01

    This study investigates the performance of dye-sensitized solar cells (DSSC) based on a copper(I) complex. A simple form of copper(I) complex dye was synthesized with a structure of [Cu(L)(CH3CN)], where L is the 6,6'-dimethyl-4,4'-bis(phenylethynyl)-2,2'-bipyridine ligand. The full structure of DSSC investigated in this study is as follows: FTO/TiO2/dye Cu(I) bipyridyl/3I-/I3 - electrolyte/graphite/FTO. The TiO2 photoanodes were deposited from apoly(vinylpyrrolidone)-based paste using a spin coating technique. Different conditions of fabrication, such as paste dispersion time and total TiO2 thickness, were systematically studied in order to optimize the performance of the DSSC. The trigonal planar complex [Cu(L)CH3CN] was revealed to be suitable for applications in DSSC. The highest exhibited short circuit current density was found to be 0.48 mA/cm2, with an open voltage of 477 mV, a form factor of 34% and a power conversion efficiency of 0.08% for the cell with photoanodes thickness of about 2.2 μm. It was shown that the dye and the paste formulation had great potential for applications in DSSC.

  5. Fabrication of Copper(I) Bipyridyl Complex Based Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Vuong, Son; Nguyen-Dang, Ha-My; Tran, Quang Thinh; Luong, Thi Thu Thuy; Pham, Trang T. T.; Nguyen-Tran, Thuat; Mai, Anh Tuan

    2017-06-01

    This study investigates the performance of dye-sensitized solar cells (DSSC) based on a copper(I) complex. A simple form of copper(I) complex dye was synthesized with a structure of [Cu(L)(CH3CN)], where L is the 6,6'-dimethyl-4,4'-bis(phenylethynyl)-2,2'-bipyridine ligand. The full structure of DSSC investigated in this study is as follows: FTO/TiO2/dye Cu(I) bipyridyl/3I-/I3 - electrolyte/graphite/FTO. The TiO2 photoanodes were deposited from apoly(vinylpyrrolidone)-based paste using a spin coating technique. Different conditions of fabrication, such as paste dispersion time and total TiO2 thickness, were systematically studied in order to optimize the performance of the DSSC. The trigonal planar complex [Cu(L)CH3CN] was revealed to be suitable for applications in DSSC. The highest exhibited short circuit current density was found to be 0.48 mA/cm2, with an open voltage of 477 mV, a form factor of 34% and a power conversion efficiency of 0.08% for the cell with photoanodes thickness of about 2.2 μm. It was shown that the dye and the paste formulation had great potential for applications in DSSC.

  6. All‐Copper Nanocluster Based Down‐Conversion White Light‐Emitting Devices

    PubMed Central

    Wang, Zhenguang; Chen, Bingkun; Susha, Andrei S.; Wang, Weihua; Reckmeier, Claas J.; Chen, Rui; Zhong, Haizheng

    2016-01-01

    Most of the present‐day down‐conversion white light‐emitting devices (WLEDs) utilize rare‐earth elements, which are expensive and facing the problem of shortage in supply. WLEDs based on the combination of orange and blue emitting copper nanoclusters are introduced, which are easy to produce and low in cost. Orange emitting Cu nanoclusters (NCs) are synthesized using glutathione as both the reduction agent and stabilizer, followed by solvent induced aggregation leading to the emission enhancement. Photoluminescence quantum yields (PL QY) of 24% and 43% in solution and solid state are achieved, respectively. Blue emitting Cu nanoclusters are synthesized by reduction of polyvinylpyrrolidone supported Cu(II) ions using ascorbic acid, followed by surface treatment with sodium citrate which improves both the emission intensity and stability of the clusters, resulting in the PL QY of 14% both in solution and solid state. All‐copper nanocluster based down‐conversion WLEDs are fabricated by integrating powdered orange and blue emitting Cu NC samples on a commercial GaN LED chip providing 370 nm excitation. They show favorable white light characteristics with Commission Internationale de l'Eclairage color coordinates, color rendering index, and correlated color temperature of (0.36, 0.31), 92, and 4163 K, respectively. PMID:27980993

  7. Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array.

    PubMed

    Li, Fenfang; Lei, Chunyang; Shen, Qinpeng; Li, Lijun; Wang, Ming; Guo, Manli; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2013-01-21

    The rapid development in nanoparticle production and application during the past decade requires an easy, rapid, and predictive screening method for nanoparticles toxicity assay. In this study, the toxicological effects and the source of toxicity of copper nanoparticles (CuNPs) are investigated based on a stress-responsive bacterial biosensor array. According to the responses of the biosensing strains, it is found that CuNPs induce not only oxidative stress in E. coli, but also protein damage, DNA damage, and cell membrane damage, and ultimately cause cell growth inhibition. Through enzyme detoxification analysis, the toxicological effects of CuNPs are traced to H(2)O(2) generation from CuNPs. Rapid copper release from CuNPs and Cu(I) production are observed. The oxidation of the released Cu(I) has a close relation to H(2)O(2) production, as tris-(hydroxypropyltriazolylmethyl) amine, the specific Cu(I) chelator, can largely protect the cells from the toxicity of CuNPs. In addition, the TEM study shows that CuNPs can be adsorbed and incepted fast by the cells. Comparatively, copper microparticles are relatively stable in the system and practically non-toxic, which indicates the importance of toxic estimation of materials at the nanoscale. In addition, the Cu(II) ion can induce protein damage, membrane damage, and slight DNA damage only at a relatively high concentration. The current study reveals the preliminary mechanism of toxicity of CuNPs, and suggests that the stress-responsive bacterial biosensor array can be used as a simple and promising tool for rapid screening in vitro toxicity of nanoparticles and studying the primary mechanism of the toxicity.

  8. Prediction of Part Distortion in Die Casting

    SciTech Connect

    R. Allen Miller

    2005-03-30

    The die casting process is one of the net shape manufacturing techniques and is widely used to produce high production castings with tight tolerances for many industries. An understanding of the stress distribution and the deformation pattern of parts produced by die casting will result in less deviation from the part design specification, a better die design and eventually more productivity and cost savings. This report presents methods that can be used to simulate the die casting process in order to predict the deformation and stresses in the produced part and assesses the degree to which distortion modeling is practical for die casting at the current time. A coupled thermal-mechanical finite elements model was used to simulate the die casting process. The simulation models the effect of thermal and mechanical interaction between the casting and the die. It also includes the temperature dependant material properties of the casting. Based on a designed experiment, a sensitivity analysis was conducted on the model to investigate the effect of key factors. These factors include the casting material model, material properties and thermal interaction between casting and dies. To verify the casting distortion predictions, it was compared against the measured dimensions of produced parts. The comparison included dimensions along and across the parting plane and the flatness of one surface.

  9. Study on Nano Copper-Based Catalysts for the Hydrogenation of Methyl 3-HYDROXYPROPIONATE to 1, 3-PROPANEDIOL

    NASA Astrophysics Data System (ADS)

    Ying, Yuzhou; Feng, Kanka; Lv, Zhiguo; Guo, Zhenmei; Gao, Jinsheng

    Nano copper-based catalysts were prepared by co-precipitation method and the performance of catalytic hydrogenation for methyl 3-hydroxypropionate (MHP) to 1, 3-propanediol (1, 3-PDO) on the nano catalysts were studied under a high-pressure microcontinuum fixed-bed reactor. The effects of structure, texture, and composition of the catalysts on the catalytic performance were investigated by characterizing the catalysts with XRD, TG-DTG, SEM, and N2 adsorption/desorption analysis technique. The results showed that addition of promoters enhanced the activity and selectivity of copper-based catalysts, which promoted the dispersion of the active components effectively and stabilized the active center of the catalysts. Especially, the copper-based catalyst of loaded P could restrain side-reaction effectively and improve selectivity obviously, the conversion of MHP and the selectivity of 1, 3-PDO could be 91.30% and reach 90.15%, respectively.

  10. The effect of grain refinement on the room-temperature ductility of as-cast Fe{sub 3}Al-based alloys

    SciTech Connect

    Viswanathan, S.; Andleigh, V.K.; McKamey, C.G.

    1995-08-01

    Fe{sub 3}Al-based alloys exhibit poor room-temperature ductility in the as-cast condition. In this study, the effect of grain refinement of the as-cast alloy on room-temperature ductility was investigated. Small melts of Fe-28 at. % Al-5 at. % Cr were inoculated with various alloying additions and cast into a 50- x 30- x 30-mm graphite mold. The resulting ingots were examined metallographically for evidence of grain refinement, and three-point bend tests were conducted on samples to assess the effect on room-temperature ductility. Ductility was assumed to correlate with the strain corresponding to the maximum stress obtained in the bend test. The results showed that titanium was extremely effective in grain refinement, although it severely embrittled the alloy in contents exceeding 1%. Boron additions strengthened the alloy significantly, while carbon additions reduced both the strength and ductility. The best ductility was found in an alloy containing titanium, boron, and carbon. In order to verify the results of the grain refinement study, vacuum-induction melts of selected compositions were prepared and cast into a larger 25- x 150- x 100-mm graphite mold. Tensile specimens were machined from the ingots, and specimens were tested at room temperature. The results of the tensile tests agreed with the results of the grain refinement study; in addition, the addition of molybdenum was found to significantly increase room-temperature tensile ductility over that of the base alloy.

  11. As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition

    NASA Astrophysics Data System (ADS)

    Blackwood, Van Stephen

    The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.

  12. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing

    PubMed Central

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-01-01

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed—the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range. PMID:28793667

  13. Mono-nuclear copper complexes mimicking the intermediates for the binuclear copper center of the subunit II of cytochrome oxidase: a peptide based approach.

    PubMed

    Dutta Gupta, Dwaipayan; Usharani, Dandamudi; Mazumdar, Shyamalava

    2016-11-28

    Three stable copper complexes of peptides derived from the copper ion binding loop of the subunit II of cytochrome c oxidase have been prepared and characterized by various spectroscopic techniques. These stable copper complexes of peptides were found to exhibit cysteine, histidine and/or methionine ligation, which has predominant σ-contribution in the Cys-Cu charge transfer. The copper(ii) peptide complexes showed type-2 EPR spectra, which is uncommon in copper-cysteinate complexes. UV-visible spectra, Raman and EPR results support a tetragonal structure of the coordination geometry around the copper ion. The copper complex of the 9-amino acid peptide suggested the formation of a 'red' copper center while the copper complexes of the 12- and 11-amino acid peptides showed the formation of a 'green' copper center. The results provide insights on the first stable models of the copper complexes formed in the peptide scaffold that mimic the mono-nuclear copper bound protein intermediates proposed during the formation of the binuclear Cu2S2 core of the enzyme. These three copper complexes of peptides derived from the metal ion binding loop of the CuA center of the subunit II of cytochrome c oxidase showed novel spectroscopic properties which have not so far been reported in any stable small complex.

  14. Light-Induced Spin State Switching and Relaxation in Spin Pairs of Copper(II)-Nitroxide Based Molecular Magnets.

    PubMed

    Tumanov, Sergey V; Veber, Sergey L; Tolstikov, Svyatoslav E; Artiukhova, Natalia A; Romanenko, Galina V; Ovcharenko, Victor I; Fedin, Matvey V

    2017-10-02

    Similar to spin-crossover (SCO) compounds, spin states of copper(II)-nitroxide based molecular magnets can be switched by various external stimuli including temperature and light. Although photoswitching and reverse relaxation of nitroxide-copper(II)-nitroxide triads were investigated in some detail, similar study for copper(II)-nitroxide spin pairs was still missing. In this work we address photoswitching and relaxation phenomena in exchange-coupled spin pairs of this family of molecular magnets. Using electron paramagnetic resonance (EPR) spectroscopy with photoexcitation, we demonstrate that compared to triad-containing compounds the photoinduced weakly coupled spin (WS) states of copper(II)-nitroxide pairs are remarkably more stable at cryogenic temperatures and relax to the ground strongly coupled spin (SS) states on the scale of days. The structural changes between SS and WS states, e.g., differences in Cu-Onitroxide distances, are much more pronounced for spin pairs than for spin triads in most of the studied copper(II)-nitroxide based molecular magnets. This results in higher energy barrier between WS and SS states of spin pairs and governs higher stability of their photoinduced WS states. Therefore, the longer-lived photoinduced states in copper(II)-nitroxide molecular magnets should be searched within the compounds experiencing largest structural changes upon thermal spin transition. This advancement in understanding of LIESST-like phenomena in copper(II)-nitroxide molecular magnets allows us to propose them as interesting playgrounds for benchmarking the basic factors governing the stability of photoinduced states in other SCO and SCO-like photoswitchable systems.

  15. Coprecipitated, copper-based, alumina-stabilized materials for carbon dioxide capture by chemical looping combustion.

    PubMed

    Imtiaz, Qasim; Kierzkowska, Agnieszka Marta; Müller, Christoph Rüdiger

    2012-08-01

    Chemical looping combustion (CLC) has emerged as a carbon dioxide capture and storage (CCS) process to produce a pure stream of CO(2) at very low costs when compared with alternative CCS technologies, such as scrubbing with amines. From a thermodynamic point of view, copper oxide is arguably the most promising candidate for the oxygen carrier owing to its exothermic reduction and oxidation reactions and high oxygen-carrying capacity. However, the low melting point of pure copper of only 1085 °C has so far prohibited the synthesis of copper-rich oxygen carriers. This paper is concerned with the development of copper-based and Al(2)O(3)-stabilized oxygen carriers that contain a high mass fraction of CuO, namely, 82.4 wt %. The oxygen carriers were synthesized by using a coprecipitation technique. The synthesized oxygen carriers were characterized in detail with regards to their morphological properties, chemical composition, and surface topography. It was found that both the precipitating agent and the pH at which the precipitation was performed strongly influenced the structure and chemical composition of the oxygen carriers. In addition, XRD analysis confirmed that, for the majority of the precipitation conditions investigated, CuO reacted with Al(2)O(3) to form fully reducible CuAl(2)O(4). The redox characteristics of the synthesized materials were evaluated at 800 °C by using methane as the fuel and air for reoxidation. It was found that the oxygen-carrying capacity of the synthesized oxygen carriers was strongly influenced by both the precipitating agent and the pH at which the precipitation was performed; however, all oxygen carriers tested showed a stable cyclic oxygen-carrying capacity. The oxygen carriers synthesized at pH 5.5 using NaOH or Na(2)CO(3) as the precipitating agents were the best oxygen carriers synthesized owing to their high and stable oxygen transfer and uncoupling capacities. The excellent redox characteristics of the best oxygen carrier

  16. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  17. Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff

    SciTech Connect

    Van Konynenburg, R.A.; Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S.

    1990-06-01

    This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

  18. Eddy-Current-Based Nondestructive Inspection System Using Superconducting Quantum Interference Device for Thin Copper Tubes

    NASA Astrophysics Data System (ADS)

    Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo

    2004-11-01

    An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.

  19. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    SciTech Connect

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-07-15

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  20. Chiral copper(II) complex based on natural product rosin derivative as promising antitumour agent.

    PubMed

    Fei, Bao-Li; Huang, Zhi-Xiang; Xu, Wu-Shuang; Li, Dong-Dong; Lu, Yang; Gao, Wei-Lin; Zhao, Yue; Zhang, Yu; Liu, Qing-Bo

    2016-07-01

    To evaluate the biological preference of chiral drug candidates for molecular target DNA, the synthesis and characterization of a chiral copper(II) complex (2) of a chiral ligand N,N'-(pyridin-2-ylmethylene) dehydroabietylamine (1) was carried out. The interactions of 1 and 2 with salmon sperm DNA were investigated by viscosity measurements, UV, fluorescence and circular dichroism (CD) spectroscopic techniques. Absorption spectral, emission spectral and viscosity analysis reveal that 1 and 2 interacted with DNA through intercalation and 2 exhibited a higher DNA binding ability. In the absence/presence of ascorbic acid, 1 and 2 cleaved supercoiled pBR322 DNA by single-strand and 2 displayed stronger DNA cleavage ability. In addition, in vitro cytotoxicity of 1 and 2 against HeLa, SiHa, HepG-2 and A431 cancer cell lines study show that they exhibited effective cytotoxicity against the tested cell lines, notably, 2 showed a superior cytotoxicity than the widely used drug cisplatin under identical conditions, indicating it has the potential to act as effective anticancer drug. Flow cytometry analysis indicates 2 produced death of HeLa cancer cells through an apoptotic pathway. Cell cycle analysis demonstrates that 2 mainly arrested HeLa cells at the S phase. The study represents the first step towards understanding the mode of the promising chiral rosin-derivative based copper complexes as chemotherapeutics.

  1. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling.

    PubMed

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-07-01

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the "cold" cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  2. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    NASA Astrophysics Data System (ADS)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-07-01

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the "cold" cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  3. [Investigation of influencing variables on the computer-aided simulation of contacts in dynamic occlusion based on optically digitized plaster casts].

    PubMed

    Böröcz, Z; Dirksen, D; Thomas, C; Runte, C; Bollmann, F; von Bally, G

    2004-05-01

    In dentistry, mechanical articulators with which mandibular movements can be reproduced in dentals casts play a major role. Commonly used semiadjustable articulators, however, have major limitations: On the one hand, the movement of the mandible is not reproduced exactly, on the other, they do not provide time-related information on jaw movement. Both problems can be solved by replacing the mechanical articulator by a digital simulation ("virtual articulator") based on digitized plaster casts and electronically recorded masticatory movements. We present a system for the 3D measurement of plaster casts in a skull-related, anatomical coordinate system using the fringe projection technique, and electronically recorded condylar movements. Using numerical algorithms, the contacts between upper and low jaw, and the angle of rotation of the temporomandibular joint can be computed for each movement in dynamic occlusion. Taking the data recorded from a patient as an example, the influence of the accuracy of the digitization of plaster casts on the computation of the rotation of the temporomandibular joint is discussed in relation to the anatomy of the masticatory apparatus.

  4. High Performance Photodiode Based on p-Si/Copper Phthalocyanine Heterojunction.

    PubMed

    Zhong, Junkang; Peng, Yingquan; Zheng, Tingcai; Lv, Wenli; Ren, Qiang; Fobao, Huang; Ying, Wang; Chen, Zhen; Tang, Ying

    2016-06-01

    Hybrid organic-inorganic (HOI) photodiodes have both advantages of organic and inorganic materials, including compatibility of traditional Si-based semiconductor technology, low cost, high photosensitivity and high reliability, showing tremendous value in application. Red light sensitive HOI photodiodes based on the p-Si/copper phthalocyanine (CuPc) hetrojunction were fabricated and characterized. The effects of CuPc layer thickness on the performance were investigated, and an optimal layer thickness of around 30 nm was determined. An analytical expression is derived to describe the measured thickness dependence of the saturation photocurrent. For the device with optimal CuPc layer thickness, a photoresponsivity of 0.35 A/W and external quantum efficiency of 70% were obtained at 9 V reverse voltage bias and 655 nm light illumination of 0.451 mW. Furthermore, optical power dependent performances were investigated.

  5. Coordination chemistry, thermodynamics and DFT calculations of copper(II) NNOS Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Esmaielzadeh, Sheida; Azimian, Leila; Shekoohi, Khadijeh; Mohammadi, Khosro

    2014-12-01

    Synthesis, magnetic and spectroscopy techniques are described for five copper(II) containing tetradentate Schiff bases are synthesized from methyl-2-(N-2";-aminoethane), (1-methyl-2";-aminoethane), (3-aminopropylamino)cyclopentenedithiocarboxylate. Molar conductance and infrared spectral evidences indicate that the complexes are four-coordinate in which the Schiff bases are coordinated as NNOS ligands. Room temperature μeff values for the complexes are 1.71-1.80 B.M. corresponding to one unpaired electron respectively. The formation constants and free energies were measured spectrophotometrically, at constant ionic strength 0.1 M (NaClO4), at 25˚C in DMF solvent. Also, the DFT calculations were carried out to determine the structural and the geometrical properties of the complexes. The DFT results are further supported by the experimental formation constants of these complexes.

  6. Coordination chemistry, thermodynamics and DFT calculations of copper(II) NNOS Schiff base complexes.

    PubMed

    Esmaielzadeh, Sheida; Azimian, Leila; Shekoohi, Khadijeh; Mohammadi, Khosro

    2014-12-10

    Synthesis, magnetic and spectroscopy techniques are described for five copper(II) containing tetradentate Schiff bases are synthesized from methyl-2-(N-2'-aminoethane), (1-methyl-2'-aminoethane), (3-aminopropylamino)cyclopentenedithiocarboxylate. Molar conductance and infrared spectral evidences indicate that the complexes are four-coordinate in which the Schiff bases are coordinated as NNOS ligands. Room temperature μeff values for the complexes are 1.71-1.80B.M. corresponding to one unpaired electron respectively. The formation constants and free energies were measured spectrophotometrically, at constant ionic strength 0.1M (NaClO4), at 25˚C in DMF solvent. Also, the DFT calculations were carried out to determine the structural and the geometrical properties of the complexes. The DFT results are further supported by the experimental formation constants of these complexes.

  7. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles

    NASA Astrophysics Data System (ADS)

    Li, Xiangming; Hu, Yingmo; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-04-01

    Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high-performance dual-functional copper-based composite particles that catalyze reactions and simultaneously serve as a SERS (surface enhanced Raman spectra) active, label-free reporting agent. Polyelectrolyte-modified reduced graphene oxide particles are used as the reactive precursors in the fabrication method. Upon adding Cu(NO3)2 solutions into the precursor dispersions, composite particles comprised by copper/copper oxide core and polyelectrolyte-graphene shell were facilely obtained under sonication. The as-prepared composite particles efficiently catalyzed the conversion of 4-nitrophenol to 4-aminophenol and simultaneously acted as the SERS-active substrate to give enhanced Raman spectra of the produced 4-aminophenol. Taking advantage of the assembling capabilities of polyelectrolyte shells, the composite particles could be further assembled onto a planar substrate to catalyze organic reactions, facilitating their application in various conditions. We expect this report to promote the fabrication and application of copper-based multifunctional particles.Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high

  8. A comparison of the marginal adaptation of cathode-arc vapor-deposited titanium and cast base metal copings

    PubMed Central

    Wu, JC; Lai, LC; Sheets, CG; Earthman, J; Newcomb, R

    2011-01-01

    Statement of problem A new fabrication process has been developed where a titanium coping, which has a gold colored titanium nitride outer layer can be reliably fused to porcelain, but the marginal adaptation characteristics are still undetermined. Purpose The primary purpose of this study is to compare the rate of Clinically Acceptable Marginal Adaptation (CAMA-defined as a marginal gap mean ≤60 μm) of cathode-arc vapor-deposited titanium with the CAMA rate for the cast base metal copings. In addition, the study will evaluate the marginal gap scores themselves to assess their mean difference between the two study groups. Finally, the study will present two analyses of group differences in variability to support the contention that the titanium copings perform more consistently than their base metal counterparts. Material and methods Thirty-seven cathode-arc vapor-deposited titanium copings and 40 cast base metal copings were evaluated by computer-based image analysis using an optical microscope. The conventional lost wax technique was used to fabricate the 40 cast base metal copings that were 0.3 mm thick. The titanium copings were 0.3 mm thick and were formed by a collection of atomic titanium vapor onto a refractory die duplicate in a high vacuum chamber. Fifty vertical marginal gap measurements were collected from each of the 77 copings and the mean of these measurements was computed to form a gap score for each coping. Next, the gap score was compared to the 60 μm criterion to classify each coping as to whether it did or did not achieve Clinically Acceptable Marginal Adaption (CAMA). A comparison of the CAMA rates for each type of coping was used to address the primary purpose of this study. In addition, the gap scores themselves were used to test the (one-sided) hypothesis that the mean of the titanium gap scores is smaller than the mean of the base metal gap scores. Finally, the assertion that the titanium copings provide more consistency in their

  9. A simple calibration approach based on film-casting for confocal Raman microscopy to support the development of a hot-melt extrusion process.

    PubMed

    Netchacovitch, L; Thiry, J; De Bleye, C; Dumont, E; Dispas, A; Hubert, C; Krier, F; Sacré, P-Y; Evrard, B; Hubert, Ph; Ziemons, E

    2016-07-01

    When developing a new formulation, the development, calibration and validation steps of analytical methods based on vibrational spectroscopy are time-consuming. For each new formulation, real samples must be produced and a "reference method" must be used in order to determine the Active Pharmaceutical Ingredient (API) content of each sample. To circumvent this issue, the paper presents a simple approach based on the film-casting technique used as a calibration tool in the framework of hot-melt extrusion process. Confocal Raman microscopic method was successfully validated for the determination of itraconazole content in film-casting samples. Then, hot-melt extrusion was carried out to produce real samples in order to confront the results obtained with confocal Raman microscopy and Ultra High Performance Liquid Chromatography (UHPLC). The agreement between both methods was demonstrated using a comparison study based on the Bland and Altman's plot.

  10. Targeting copper in cancer therapy: 'Copper That Cancer'.

    PubMed

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.

  11. A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts.

    ERIC Educational Resources Information Center

    Rodriguez, Emilio; Vicente, Miguel Angel

    2002-01-01

    Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)

  12. A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts.

    ERIC Educational Resources Information Center

    Rodriguez, Emilio; Vicente, Miguel Angel

    2002-01-01

    Presents a 10-hour chemistry experiment using copper sulfate that has three steps: (1) purification of an ore containing copper sulfate and insoluble basic copper sulfates; (2) determination of the number of water molecules in hydrated copper sulfate; and (3) recovery of metallic copper from copper sulfate. (Author/YDS)

  13. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  14. Theoretical studies on binding modes of copper-based nucleases with DNA.

    PubMed

    Liu, Chunmei; Zhu, Yanyan; Tang, Mingsheng

    2016-03-01

    In the present work, molecular simulations were performed for the purpose of predicting the binding modes of four types of copper nucleases (a total 33 compounds) with DNA. Our docking results accurately predicted the groove binding and electrostatic interaction for some copper nucleases with B-DNA. The intercalation modes were also reproduced by "gap DNA". The obtained results demonstrated that the ligand size, length, functional groups and chelate ring size bound to the copper center could influence the binding affinities of copper nucleases. The binding affinities obtained from the docking calculations herein also replicated results found using MM-PBSA approach. The predicted DNA binding modes of copper nucleases with DNA will ultimately help us to better understand the interaction of copper compounds with DNA.

  15. Monitoring losses of copper based wood preservatives in the Thames estuary.

    PubMed

    Hingston, J A; Murphy, R J; Lester, J N

    2006-09-01

    Field trials were conducted at two sites in the Thames estuary to monitor losses of copper, chromium and arsenic from wood preservative treated timbers of varying sizes and treatment regimes. Results indicated that leaching tests conducted under standard laboratory conditions might overestimate losses compared to losses resulting from real environmental exposures. Amine copper treated wood was noted to leach higher levels of copper compared to chromated copper arsenate treated wood, and was therefore considered an inappropriate replacement biocide for fresh and marine construction purposes on this basis. Increases in copper concentrations in the outer sections of amine copper treated posts may have represented re-distribution of this component in this timber. No accumulation of metals was found in sediments surrounding field trial posts.

  16. Rapid determination of trace copper in animal feed based on micro-plate colorimetric reaction and statistical partitioning correction.

    PubMed

    Niu, Yiming; Wang, Jiayi; Zhang, Chi; Chen, Yiqiang

    2017-04-15

    The objective of this study was to develop a micro-plate based colorimetric assay for rapid and high-throughput detection of copper in animal feed. Copper ion in animal feed was extracted by trichloroacetic acid solution and reduced to cuprous ion by hydroxylamine. The cuprous ion can chelate with 2,2'-bicinchoninic acid to form a Cu-BCA complex which was detected with high sensitivity by micro-plate reader at 354nm. The whole assay procedure can be completed within 20min. To eliminate matrix interference, a statistical partitioning correction approach was proposed, which makes the detection of copper in complex samples possible. The limit of detection was 0.035μg/mL and the detection range was 0.1-10μg/mL of copper in buffer solution. Actual sample analysis indicated that this colorimetric assay produced results consistent with atomic absorption spectrometry analysis. These results demonstrated that the developed assay can be used for rapid determination of copper in animal feed.

  17. Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses

    PubMed Central

    Lewis, Ceri; Ellis, Robert P.; Vernon, Emily; Elliot, Katie; Newbatt, Sam; Wilson, Rod W.

    2016-01-01

    Ocean acidification (OA) is expected to indirectly impact biota living in contaminated coastal environments by altering the bioavailability and potentially toxicity of many pH-sensitive metals. Here, we show that OA (pH 7.71; pCO2 1480 μatm) significantly increases the toxicity responses to a global coastal contaminant (copper ~0.1 μM) in two keystone benthic species; mussels (Mytilus edulis) and purple sea urchins (Paracentrotus lividus). Mussels showed an extracellular acidosis in response to OA and copper individually which was enhanced during combined exposure. In contrast, urchins maintained extracellular fluid pH under OA by accumulating bicarbonate but exhibited a slight alkalosis in response to copper either alone or with OA. Importantly, copper-induced damage to DNA and lipids was significantly greater under OA compared to control conditions (pH 8.14; pCO2 470 μatm) for both species. However, this increase in DNA-damage was four times lower in urchins than mussels, suggesting that internal acid-base regulation in urchins may substantially moderate the magnitude of this OA-induced copper toxicity effect. Thus, changes in metal toxicity under OA may not purely be driven by metal speciation in seawater and may be far more diverse than either single-stressor or single-species studies indicate. This has important implications for future environmental management strategies. PMID:26899803

  18. Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses.

    PubMed

    Lewis, Ceri; Ellis, Robert P; Vernon, Emily; Elliot, Katie; Newbatt, Sam; Wilson, Rod W

    2016-02-22

    Ocean acidification (OA) is expected to indirectly impact biota living in contaminated coastal environments by altering the bioavailability and potentially toxicity of many pH-sensitive metals. Here, we show that OA (pH 7.71; pCO2 1480 μatm) significantly increases the toxicity responses to a global coastal contaminant (copper ~0.1 μM) in two keystone benthic species; mussels (Mytilus edulis) and purple sea urchins (Paracentrotus lividus). Mussels showed an extracellular acidosis in response to OA and copper individually which was enhanced during combined exposure. In contrast, urchins maintained extracellular fluid pH under OA by accumulating bicarbonate but exhibited a slight alkalosis in response to copper either alone or with OA. Importantly, copper-induced damage to DNA and lipids was significantly greater under OA compared to control conditions (pH 8.14; pCO2 470 μatm) for both species. However, this increase in DNA-damage was four times lower in urchins than mussels, suggesting that internal acid-base regulation in urchins may substantially moderate the magnitude of this OA-induced copper toxicity effect. Thus, changes in metal toxicity under OA may not purely be driven by metal speciation in seawater and may be far more diverse than either single-stressor or single-species studies indicate. This has important implications for future environmental management strategies.

  19. Dissolution and Persistence of Copper-Based Nanomaterials in Undersaturated Solutions with Respect to Cupric Solid Phases.

    PubMed

    Kent, Ronald D; Vikesland, Peter J

    2016-07-05

    Dissolution of copper-based nanoparticles (NPs) can control their environmental persistence and toxicity. Previous research has generally reported limited dissolution of Cu-based NPs at circumneutral pH, but the environmentally important case of dissolution in solutions that are undersaturated with respect to copper mineral phases has not been investigated thoroughly. In this study, immobilized Cu-based NPs were fabricated on solid supports. Metallic copper (Cu), cupric oxide/hydroxide (Cuox), and copper sulfide (CuxS) NPs were investigated. Dissolution rate constants were measured in situ by an atomic force microscope equipped with a flow-through cell. A mass-balance model indicated that the flowing solution was consistently undersaturated with respect to cupric solid phases. Based on the measured rate constants, Cuox NPs are expected to dissolve completely in these undersaturated conditions within a matter of hours, even at neutral to basic pH. The expected persistence of metallic Cu NPs ranges from a few hours to days, whereas CuxS NPs showed no significant dissolution over the time scales studied. Field deployment of Cu-based NP samples in a freshwater stream confirmed these conclusions for a natural aquatic system. These results suggest that Cu and Cuox NPs will be short-lived in the environment unless dissolution is hindered by a competing process, such as sulfidation.

  20. Selecting optimum base wavelet for extracting spectral alteration features associated with porphyry copper mineralization using hyperspectral images

    NASA Astrophysics Data System (ADS)

    Abdolmaleki, Mehdi; Tabaei, Morteza; Fathianpour, Nader; Gorte, Ben G. H.

    2017-06-01

    Extracting a set of meaningful spectral features could enhance the classification performance. This is particularly important in hyperspectral images where the dataset are very large and time consuming to process. Wavelet transform as a powerful decomposition tool in both low and high frequency components could play an essential role in extracting spectral features of target minerals. Selecting the optimum base wavelet is an important step in wavelet transform. In this research, two criteria to select optimum base wavelet were implemented on three wavelet series including Daubechie (db), symlet (sym) and coiflet (coif). Energy criterion involves entropy factor and energy-to-Shannon entropy ratio while matching shape criterion operates according to correlation coefficients. High ranking base wavelets in both energy and shape criteria, coif1, db3 and db7, are recommended to be utilized in hyperspectral image classification. Neural Network technique was used for classification and trained by means of mineral spectral features related to typical porphyry copper deposits. Non-Linear wavelet feature extraction was employed to select the efficient features as input data. The study area covered by Hyperion data contains two well-known porphyry copper deposits, Darrehzar and Sarcheshmeh, located in the Iranian copper belt. Based on classification error matrix, it is concluded that db7 through 12 selected features exhibits the maximum consistency with the field measured data and can be recommended as an appropriate base wavelet for detecting porphyry copper deposits.

  1. Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA.

    PubMed

    Giannousi, K; Lafazanis, K; Arvanitidis, J; Pantazaki, A; Dendrinou-Samara, C

    2014-04-01

    Copper based nanoparticles (Cu-based NPs) of different compositions and sizes have been hydrothermally synthesized by varying the reaction time in the presence of the biocompatible surfactants polyoxyethylene (20) sorbitan laurate (Tween 20) and polyethylene glycol 8000 (PEG 8000). Effective control of the above synthetic parameters gave rise to Cu, Cu2O and Cu/Cu2O NPs of 10-44 nm. The antibacterial activity of the NPs was screened against Gram-positive (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus) and Gram-negative (Xanthomonas campestris, Escherichia coli) bacteria. The Cu-based NPs induce pDNA degradation in a dose-dependent manner as well as extensive ds CT-DNA degradation. Cu2O NPs of 16 nm and 12 nm exhibit the lowest IC50 values (2.13 μg/mL and 3.7 μg/mL) against B. cereus and B. subtilis, respectively. The agarose gel electrophoresis of ds CT-DNA treated with Cu2O NPs demonstrated degradation at high concentration. In lower concentrations, viscosity measurements indicated groove binding. In regard to the enhanced antibacterial effect and specificity of Cu2O NPs against the Gram-positive strains, the activity pathway was further explored and ROS production and lipid peroxidation verified. The released copper ions 5.15 mg/L in distilled water and 16.32 mg/L in nutrient medium, found below the critical value to inhibit bacterial growth and thus nanosized composition effect is predominant.

  2. Effects of composition and testing conditions on oxidation behavior of four cast commercial nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Probst, H. B.

    1974-01-01

    Four cast nickel-base superalloys were oxidized at 1000 and 1100 C for times up to 100 hr in static air and a Mach 1 gas stream. The oxidation resistance was judged by weight change, metal thickness loss, depletion-zone formation, and oxide formation and morphology. The alloys which formed mostly nickel aluminate (NiAl2O4) and aluminum oxide (Al2O3) (B-1900, VIA, and to a lesser extent 713C) were more oxidation resistant. Poorer oxidation resistance was associated with the appearance of chromium sesquioxide (Cr2O3) and chromite spinel (738X). Refractory metal content had little effect on oxidation resistance. Refractory metals appeared in the scale as tapiolite (NiM2O6, where M represents the refractory metal). Thermal cycling in static air appeared to supply sufficient data for the evaluation of oxidation resistance, especially for alloys which form oxides of low volatility. For alloys of higher chromium levels with high propensities toward forming a chromium-bearing scale of higher volatility, testing under conditions of high gas velocity is necessary to assess fully the behavior of the alloy.

  3. Modeling of ultrasonic propagation in heavy-walled centrifugally cast austenitic stainless steel based on EBSD analysis.

    PubMed

    Chen, Yao; Luo, Zhongbing; Zhou, Quan; Zou, Longjiang; Lin, Li

    2015-05-01

    The ultrasonic inspection of heavy-walled centrifugally cast austenitic stainless steel (CCASS) is challenging due to the complex metallurgical structure. Numerical modeling could provide quantitative information on ultrasonic propagation and plays an important role in developing advanced and reliable ultrasonic inspection techniques. But the fundamental obstacle is the accurate description of the complex metallurgical structure. To overcome this difficulty, a crystal orientation map of a CCASS specimen in the 96 mm × 12 mm radial-axial cross section was acquired based on the electron backscattered diffraction (EBSD) technique and it was used to describe the coarse-grained structure and grain orientation. A model of ultrasonic propagation for CCASS was built according to the EBSD map. The ultrasonic responses of the CCASS sample were also tested. Some experimental phenomena such as structural noise and signal distortion were reproduced. The simulated results showed a good consistence with the experiments. The modeling method is expected to be effective for the precise interpretation of ultrasonic propagation in the polycrystalline structures of CCASS. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Micro-structure evolution of wall based crystals after casting of model suspensions as obtained from Bragg microscopy.

    PubMed

    Palberg, Thomas; Maaroufi, Martin R; Stipp, Andreas; Schöpe, Hans Joachim

    2012-09-07

    Growth of heterogeneously nucleated, wall based crystals plays a major role in determining the micro-structure during melt casting. This issue is here addressed using a model system of charged colloidal spheres in deionized aqueous suspension observed by Bragg microscopy which is a combination of light scattering and microscopy. We examine the evolution of the three-dimensional size, shape, and orientation of twin domains in monolithic crystals growing from two opposing planar walls into a meta-stable (shear-) melt. At each wall crystal orientation and twinning emerges during nucleation with small domains. During growth these widen and merge. From image analysis we observe the lateral coarsening velocities to follow a power law behaviour L(XY) ∝ t(1/2) as long as the vertical growth continues at constant speed. Lateral coarsening terminates upon intersection of the two solids and hardly any further ripening is seen. Initial lateral coarsening velocities show a Wilson Frenkel type dependence on the melt meta-stability.

  5. Tolerance and bioaccumulation of copper by the entomopathogen Beauveria bassiana (Bals.-Criv.) Vuill. exposed to various copper-based fungicides.

    PubMed

    Martins, Fátima; Soares, Maria Elisa; Oliveira, Ivo; Pereira, José Alberto; de Lourdes Bastos, Maria; Baptista, Paula

    2012-07-01

    This work evaluates for the first time the relationships between copper-tolerance, -solubilization and -bioaccumulation in the entomopathogen Beauveria bassiana exposed to Bordeaux mixture, copper oxychloride or copper hydroxide. Bordeaux mixture was highly detrimental to fungus, by inhibiting the growth totally at the recommended dose (RD) and 2×RD. Copper hydroxide and copper oxychloride were found to be less toxic, reducing fungus growth, sporulation and conidial germination in an average of 29  %, 30 % and 58 %, respectively. These two copper forms were the easiest to solubilize, to precipitate and the most accumulated by B. bassiana, suggesting the involvement of all these processes on fungus copper-tolerance.

  6. Production of copper-based rare earth composite metal materials by coprecipitation and applications for gaseous ammonia removal.

    PubMed

    Hung, Chang-Mao

    2011-04-01

    This study addresses the oxidation of ammonia (NH3) at temperatures between 423 and 673 K by selective catalytic oxidation (SCO) over a copper-based, rare earth composite metal material that was prepared by coprecipitating copper nitrate, lanthanum nitrate, and cerium nitrate at various molar ratios. The catalysts were characterized using Brunner, Emmett, and Teller spectroscopy, Fourier-transform infrared spectroscopy, Xray diffraction, ultraviolet-visible spectroscopy, cyclic voltammetric spectroscopy, and scanning electron microscopy. At a temperature of 673 K and an oxygen content of 4%, approximately 99.5% of the NH3 was reduced by catalytic oxidation over the 6:1:3 copper-lanthanum-cerium (molar ratio) catalyst. Nitrogen (N2) was the main product of this NH3-SCO process. Results from the activity and selectivity tests revealed that the optimal catalyst for catalytic performance had the highest possible cerium content and specific surface area (43 m2/g).

  7. Soil microbial toxicity assessment of a copper-based fungicide in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Dober, Melanie; Deltedesco, Evi; Jöchlinger, Lisa; Schneider, Martin; Gorfer, Markus; Bruckner, Alexander; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz; Keiblinger, Katharina Maria

    2016-04-01

    The infestation with the fungus downy mildew (Plasmopara viticola) causes dramatic losses in wine production. Copper (Cu) based fungicides have been used in viticulture since the end of the 19th century, and until today both conventional and organic viticulture strongly rely on Cu to prevent and reduce fungal diseases. Consequently, Cu has built up in many vineyard soils and it is still unclear how this affects soil functioning. The aim of the present study is the evaluation of the soil microbial toxicity of Cu contamination. Two contrasting agricultural soils, an acidic sandy soil and a calcareous loamy soil, were sampled to conduct an eco-toxicological greenhouse pot experiment. The soils were spiked with a commonly used fungicide based on copper hydroxid in seven concentrations (0, 50, 100, 200, 500, 1500 and 5000 mg Cu kg-1 soil) and Lucerne (Medicago sativa L. cultivar. Plato) was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test copper's soil microbial toxicity in total microbial biomass and basal respiration, as well as enzyme activities, such as exoglucanase, β-glucosidase, exochitinase, phosphatase, protease, phenol-, peroxidase and urease. Additionally, DOC, TN, Cmic, Nmic, NO3 and NH4 were determined to provide further insight into the carbon and nitrogen cycle. Microbial community structure was analysed by phospholipid fatty acids (PLFAs), and ergosterol as a fungal biomarker. In addition, molecular tools were applied by extracting soil DNA and performing real time quantitative polymerase chain reaction (qPCR) and a metagenomic approach using 16S and ITS amplification and sequencing with MiSeq platform for the second sampling. Hydrolytic extracellular enzymes were not clearly affected by rising Cu concentrations, while a trend of increasing activity of oxidative enzymes (phenol- and peroxidase) was observed. Microbial respiration rate as well as the amount of Cmic and Nmic decreased with

  8. Fiberglass cast application.

    PubMed

    Smith, Gillian D; Hart, Raymond G; Tsai, Tsu-Min

    2005-05-01

    Plaster of Paris has been largely superceded for casting in orthopedic departments by synthetic cast materials. Despite its weight, its relative brittleness, its unpopularity with patients, and its messiness in application, plaster of Paris remains the mainstay of casting in the emergency department. This is due to a combination of economic reasons, the belief that synthetic casts leave less room for swelling and its relative ease of application compared to synthetic materials. We present a technique for synthetic cast application that avoids the problems of the rapidly setting cast and therefore allows the time for less experienced hands to produce a well-fitting cast or splint. We believe that this option, which allows the patient to have a lighter synthetic cast, rather than the traditional plaster of Paris cast, will be welcomed by both the patient and physician.

  9. Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base

    SciTech Connect

    Alia, Shaun M.; Yan, Yushan

    2015-05-09

    The palladium (Pd) nanotubes we synthesized by the spontaneous galvanic displacement of copper (Cu) nanowires, are forming extended surface nanostructures highly active for the hydrogen oxidation reaction (HOR) in base. The synthesized catalysts produce specific activities in rotating disk electrode half-cells 20 times greater than Pd nanoparticles and about 80% higher than polycrystalline Pd. Although the surface area of the Pd nanotubes was low compared to conventional catalysts, partial galvanic displacement thrifted the noble metal layer and increased the Pd surface area. Moreover, the use of Pd coated Cu nanowires resulted in a HOR mass exchange current density 7 times greater than the Pd nanoparticles. The activity of the Pd coated Cu nanowires further nears Pt/C, producing 95% of the mass activity.

  10. Palladium Coated Copper Nanowires as a Hydrogen Oxidation Electrocatalyst in Base

    DOE PAGES

    Alia, Shaun M.; Yan, Yushan

    2015-05-09

    The palladium (Pd) nanotubes we synthesized by the spontaneous galvanic displacement of copper (Cu) nanowires, are forming extended surface nanostructures highly active for the hydrogen oxidation reaction (HOR) in base. The synthesized catalysts produce specific activities in rotating disk electrode half-cells 20 times greater than Pd nanoparticles and about 80% higher than polycrystalline Pd. Although the surface area of the Pd nanotubes was low compared to conventional catalysts, partial galvanic displacement thrifted the noble metal layer and increased the Pd surface area. Moreover, the use of Pd coated Cu nanowires resulted in a HOR mass exchange current density 7 timesmore » greater than the Pd nanoparticles. The activity of the Pd coated Cu nanowires further nears Pt/C, producing 95% of the mass activity.« less

  11. Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots.

    PubMed

    Salinas-Castillo, Alfonso; Morales, Diego P; Lapresta-Fernández, Alejandro; Ariza-Avidad, María; Castillo, Encarnación; Martínez-Olmos, Antonio; Palma, Alberto J; Capitan-Vallvey, Luis Fermin

    2016-04-01

    A portable reconfigurable platform for copper (Cu(II)) determination based on luminescent carbon dot (Cdots) quenching is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. Moreover, the overall analog conditioning is simply performed with one integrated solution, a field-programmable analog array (FPAA), which makes it possible to reconfigure the filter and gain stages in real time. This feature provides adaptability to use the platform as an analytical probe for carbon dots coming from different batches with some variations in luminescence characteristics. The calibration functions obtained that fit a modified Stern-Volmer equation were obtained using luminescence signals from Cdots quenching by Cu(II). The analytical applicability of the reconfigurable portable instrument for Cu(II) using Cdots has been successfully demonstrated in tap water analysis.

  12. Transparent conducting electrodes based on thin, ultra-long copper nanowires and graphene nano-composites

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent S.; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2014-10-01

    High aspect-ratio ultra-long (> 70 μm) and thin (< 50 nm) copper nanowires (Cu-NW) were synthesized in large quantities using a solution-based approach. The nanowires, along with reduced graphene-oxide sheets, were coated onto glass as well as plastic substrates, thus producing transparent conducting electrodes. Our fabricated transparent electrodes achieved high optical transmittance and low sheet resistance, comparable to those of existing Indium Tin Oxide (ITO) electrodes. Furthermore, our electrodes show no notable loss of performance under high temperature and high humidity conditions. Adaptations of such nano-materials into smooth and ultrathin films lead to potential alternatives for the conventional tin-doped indium oxide, with applications in a wide range of solar cells, flexible displays, and other opto-electronic devices.

  13. SILAC-Based Quantitative Proteomic Analysis of Human Lung Cell Response to Copper Oxide Nanoparticles

    PubMed Central

    Edelmann, Mariola J.; Shack, Leslie A.; Naske, Caitlin D.; Walters, Keisha B.; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level. PMID:25470785

  14. Topology of exchange interactions in copper-nitroxide based molecular magnets studied by EPR

    NASA Astrophysics Data System (ADS)

    Drozdyuk, Irina Yu.; Maryunina, Ksenia Yu.; Sagdeev, Renad Z.; Ovcharenko, Victor I.; Bagryanskaya, Elena G.; Fedin, Matvey V.

    2013-10-01

    Switchable copper-nitroxide based molecular magnets Cu(hfac)2LR ('breathing crystals') have one-dimensional (1D) polymer-chain structure and 1D magnetic motif; however, the directions of polymer and magnetic chains in the crystal do not coincide. In this work we report the detailed electron paramagnetic resonance (EPR) study of the topology of intercluster exchange interactions forming the magnetic chains in a series of breathing crystals. The obtained results provide unambiguous manifestation of 1D magnetic behaviour, which degree correlates with the magnitude of intercluster exchange interaction. Analysis of experimental angular-dependent EPR data allowed us to determine relative orientations of magnetic chains with respect to polymer chains. The obtained angle between them is ≈40-46° for three studied compounds. The comparison of EPR and x-ray diffraction data confirms that 1D magnetic chains are formed by interacting adjacent spin triads of neighbouring polymer chains.

  15. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    PubMed

    Edelmann, Mariola J; Shack, Leslie A; Naske, Caitlin D; Walters, Keisha B; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  16. Transient thermal analysis of solidification in a centrifugal casting for composite materials containing particle segregation

    SciTech Connect

    Kang, C.G.; Rohatgi, P.K.

    1996-04-01

    One-dimensional heat-transfer analysis during centrifugal casting of aluminum alloy and copper base metal matrix composites containing Al{sub 2}O{sub 3}, SiC{sub p}, and graphite particles has been studied. The model of the particle segregation is calculated by varying the volume fraction during centrifugal casting, and a finite difference technique has been adopted. The results indicate that the thickness of the region in which dispersed particles are segregated due to the centrifugal force is strongly influenced by the speed of rotation of the mold, the solidification time, and the density difference between the base alloy and the reinforcement. In the case where the base alloy density is larger than that of the particles, the thickness of the particle-rich region near the inner periphery decreases with an increase in speed, thereby increasing the volume fraction of dispersion. The solidification time of the casting is also dependent upon the speed of rotation of the mold, and it decreases with an increase in speed. This study also indicates that the presence of particles increases the solidification time of the casting.

  17. Optical snake-based segmentation processor with a shadow-casting incoherent correlator

    NASA Astrophysics Data System (ADS)

    Hueber, E.; Bigué, L.; Réfrégier, P.; Ambs, P.

    2001-12-01

    What is believed to be the first incoherent snake-based optoelectronic processor that is able to segment an object in a real image is described. The process, based on active contours (snakes), consists of correlating adaptive binary references with the scene image. The proposed optical implementation of algorithms that are already operational numerically opens attractive possibilities for faster processing. Furthermore, this experiment has yielded a new, versatile application for optical processors.

  18. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    EPA Science Inventory

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  19. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    EPA Science Inventory

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  20. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Yubin; Feng, Xiaoyang; Liu, Maochang; Su, Jinzhan; Shen, Shaohua

    2016-09-01

    Photoelectrochemical (PEC) water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, Ga)Se2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

  1. Quantitative prediction of nuclear-spin-diffusion-limited coherence times of molecular quantum bits based on copper(ii).

    PubMed

    Lenz, S; Bader, K; Bamberger, H; van Slageren, J

    2017-04-06

    We have investigated the electron spin dynamics in a series of copper(ii) β-diketonate complexes both in frozen solutions and doped solids. Double digit microsecond coherence times were found at low temperatures. We report quantitative simulations of the coherence decays solely based on the crystal structure of the doped solids.

  2. Visualization of the laser treatment processes of materials by a brightness amplifier based on a copper laser

    NASA Astrophysics Data System (ADS)

    Prokoshev, Valerii G.; Klimovskii, Ivan I.; Galkin, Arkadii F.; Abramov, Dmitrii V.; Arakelian, Sergei M.

    1997-04-01

    Reported is the observation of laser treatment processes of materials by the brightness amplifier based upon the copper laser. Provided is an experimental investigation of melting stainless steel under the laser radiation. Real time monitored is the process of surface heating, melting, spreading a melting boundary and the progress of turbulent movement in the melting container.

  3. Performance of Northeastern United States wood species treated with copper based preservatives: 10 year above-ground decking evaluation

    Treesearch

    S. T. Lebow; S. A. Halverson

    2015-01-01

    Research was conducted to evaluate the decking performance of northeastern United States wood species treated with copper based preservatives. Decking specimens were treated with one of four wood preservatives and exposed near Madison, Wisconsin. Specimens were evaluated for biological attack and dimensional stability. After 10 years, none of the preservative treated...

  4. Repairing sealing surfaces on aluminum castings

    NASA Technical Reports Server (NTRS)

    Hanna, T. L.

    1980-01-01

    Approach using stylus nickel plating instead of copper and cadmium plating has simplified repair procedure. Damaged sealing surfaces are stylus nickelplated in one step. Superficial scratches and porous areas are removed more easily from repaired surface by simply lapping sealing areas to required finish. Although method is aimed for aerospace components, it may be easily incorporated into conventional aluminumcasting technology. One-step repair can be considered for cast-aluminum automobile and aircraft engines to reduce time and costs.

  5. INTERIOR VIEW WITH CASTING MACHINE AND CASTING FOREMAN OBSERVING OPERATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND CASTING FOREMAN OBSERVING OPERATION TO ENSURE MAXIMUM PRODUCTION AND QUALITY. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  6. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    SciTech Connect

    Kenik, Edward A.; Busby, Jeremy T.; Gussev, Maxim N.; Maziasz, Philip J.; Hoelzer, David T.; Rowcliffe, Arthur F.; Vitek, John M.

    2016-10-27

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. Here, a series of modified high-nitrogen cast steels has been developed and characterized. The steels, based on the cast equivalent of 316 composition, have increased N (0.14-0.36%) and Mn (2-5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and neutron irradiated specimens at 0.7 dpa. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress, but increased radiation hardening. Furthermore, the role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. We show that the modified steels, compared to reference material, exhibit significantly reduced elemental inhomogeneity and second phase formation.

  7. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    DOE PAGES

    Kenik, Edward A.; Busby, Jeremy T.; Gussev, Maxim N.; ...

    2016-10-27

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. Here, a series of modified high-nitrogen cast steels has been developed and characterized. The steels, based on the cast equivalent of 316 composition, have increased N (0.14-0.36%) and Mn (2-5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and neutron irradiated specimens at 0.7 dpa. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganesemore » tended to decrease yield stress, but increased radiation hardening. Furthermore, the role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. We show that the modified steels, compared to reference material, exhibit significantly reduced elemental inhomogeneity and second phase formation.« less

  8. Polarization-corrosion behavior of commercial gold- and silver-base casting alloys in Fusayama solution.

    PubMed

    Johnson, D L; Rinne, V W; Bleich, L L

    1983-12-01

    Based on polarization measurements, high Au alloys are highly corrosion-resistant and exhibit the lowest corrosion rates; intermediate Au, Ag, and Pd alloys with Cu are passive but exhibit higher corrosion rates. Twenty weight percent (w/o) In-Ag alloys exhibit active corrosion behavior at potentials only 100 mV noble to the corrosion potential.

  9. Novel copper-based therapeutic agent for anti-inflammatory: synthesis, characterization, and biochemical activities of copper(II) complexes of hydroxyflavone Schiff bases.

    PubMed

    Joseph, J; Nagashri, K

    2012-07-01

    Four hydroxyflavone derivatives have been synthesized with the aim of obtaining a good model of superoxide dismutase. Better to mimic the natural metalloenzyme, copper complexes have been designed. The Cu(II) complexes of general formulae, [CuL] where L = 5-hydroxyflavone-o-phenylenediamine (L¹H₂)/m-phenylenediamine (L²H₂) and 3-hydroxyflavone-o-phenylenediamine (L³H₂)/m-phenylenediamine (L⁴H₂) have been synthesized. The structural features have been determined from their analytical and spectral data. All the Cu(II) complexes exhibit square planar geometry. Redox behavior of copper complexes was studied and the present ligand systems stabilize the unusual oxidation state of the copper ion during electrolysis. The in vitro antimicrobial activities of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola, and Candida albicans. Superoxide dismutase and anti-inflammatory activities of the copper complexes have also been measured and discussed.

  10. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults.

    PubMed

    Egli, Ines; Davidsson, Lena; Zeder, Christophe; Walczyk, Thomas; Hurrell, Richard

    2004-05-01

    Complementary foods based on cereals may contain high amounts of phytic acid, which binds strongly to minerals and trace elements. The objective of the study was to evaluate the effect of dephytinization of a cereal-based complementary food on zinc and copper apparent absorption in adults. A dephytinized complementary food (<0.03 mg phytic acid/g) and one containing the native phytic acid concentration (4 mg/g) were labeled extrinsically with stable isotopes ((70)Zn and (65)Cu). Apparent zinc and copper absorption was based on fecal excretion of nonabsorbed labels in 9 adults, using a crossover design. Stable isotopes were quantified by thermal ionization MS. Apparent fractional zinc absorption was significantly higher (P = 0.005; Student's paired t test) from the dephytinized complementary food (34.6 +/- 8.0%; mean +/- SD) than from the complementary food with native phytic acid concentration (22.8 +/- 8.8%). Apparent fractional copper absorption did not differ (P = 0.167; 19.7 +/- 5.1% dephytinized vs. 23.7 +/- 8.1% native phytic acid). These results clearly demonstrate the beneficial effect of dephytinization of a complementary food on fractional absorption of zinc but not of copper in adults. The long-term nutritional benefits of dephytinization of complementary foods should be evaluated in young children.

  11. Low Cycle Fatigue Behavior and Life Prediction of a Cast Cobalt-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Young; Kim, Jae-Hoon; Yoo, Keun-Bong

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

  12. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications.

    PubMed

    Rubilar, Olga; Rai, Mahendra; Tortella, Gonzalo; Diez, Maria Cristina; Seabra, Amedea B; Durán, Nelson

    2013-09-01

    Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.

  13. Quantification of creatinine in biological samples based on the pseudoenzyme activity of copper-creatinine complex

    NASA Astrophysics Data System (ADS)

    Nagaraja, Padmarajaiah; Avinash, Krishnegowda; Shivakumar, Anantharaman; Krishna, Honnur

    Glomerular filtration rate (GFR), the marker of chronic kidney disease can be analyzed by the concentration of cystatin C or creatinine and its clearance in human urine and serum samples. The determination of cystatin C alone as an indicator of GFR does not provide high accuracy, and is more expensive, thus measurement of creatinine has an important role in estimating GFR. We have made an attempt to quantify creatinine based on its pseudoenzyme activity of creatinine in the presence of copper. Creatinine in the presence of copper oxidizes paraphenylenediamine dihydrochloride (PPDD) which couples with dimethylamino benzoicacid (DMAB) giving green colored chromogenic product with maximum absorbance at 710 nm. Kinetic parameters relating this reaction were evaluated. Analytical curves of creatinine by fixed time and rate methods were linear at 8.8-530 μmol L-1 and 0.221-2.65 mmol L-1, respectively. Recovery of creatinine varied from 97.8 to 107.8%. Limit of detection and limit of quantification were 2.55 and 8.52 μmol L-1 respectively whereas Sandell's sensitivity and molar absorption coefficient values were 0.0407 μg cm-2 and 0.1427 × 104 L mol-1 cm-1 respectively. Precision studies showed that within day imprecision was 0.745-1.26% and day-to-day imprecision was 1.55-3.65%. The proposed method was applied to human urine and serum samples and results were validated in accordance with modified Jaffe's procedure. Wide linearity ranges with good recovery, less tolerance from excipients and application of the method to serum and urine samples are the claims which ascertain much advantage to this method.

  14. Role of alloying elements in adhesive transfer and friction of copper-base alloys

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.

  15. Laser-Assisted Reduction of Highly Conductive Circuits Based on Copper Nitrate for Flexible Printed Sensors

    NASA Astrophysics Data System (ADS)

    Bai, Shi; Zhang, Shigang; Zhou, Weiping; Ma, Delong; Ma, Ying; Joshi, Pooran; Hu, Anming

    2017-10-01

    Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment, health monitoring, and medical care sectors. In this work, conducting copper electrodes were fabricated on polydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 μΩ cm was achieved on 40-μm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness. This in situ fabrication method leads to a path toward electronic devices on flexible substrates.[Figure not available: see fulltext.

  16. Fabrication of a superhydrophobic surface on copper foil based on ammonium bicarbonate and paraffin wax coating

    NASA Astrophysics Data System (ADS)

    Zeng, Ou; Wang, Xian; Yuan, Zhiqing; Wang, Menglei; Huang, Juan

    2015-09-01

    A simple and low cost approach was developed to fabricate a superhydrophobic surface on copper foil. The oxidation and etching of the copper foil surface were promoted in NH4HCO3 solution using a water and ethanol admixture as a component solvent. After 28 h in this solution, a hydrophilic rough surface structure was obtained on the copper foil surface. With modification using a paraffin wax coating, the hydrophilic rough copper surface changed to become hydrophobic or superhydrophobic. The surface morphology and wettability were characterized by scanning electron microscopy (SEM) and contact angle measurements, respectively. When the optimum concentration of paraffin wax was about 2 g L-1, its water contact angle could reach about 152 ± 1.5° and its sliding angle was around 7°. The formation mechanism of the rough copper surface was also explored in detail. Both the experimental process and the material are environmentally friendly.

  17. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  18. Cool Cast Facts

    MedlinePlus

    ... outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, which is a plastic that can be shaped. Fiberglass casts come in many different colors — if you' ...

  19. Effect of casting methods on accuracy of peridental restorations.

    PubMed

    Finger, W; Kota, K

    1982-06-01

    The present study has shown that the accuracy of peridental gold alloy castings depends 1) on the type of casting machine used, 2) on the diameter of the casting sprue, and 3) on the strength properties of the investment material. The dependence between the accuracy and the three factors mentioned is based on erosion of the investment mold by the inflow of the liquid casting alloy. The vacuum casting technique proved to be a more gentle casting method than centrifugal and vacuum/pressure techniques.

  20. The effect of coating patterns with spinel-based investment on the castability and porosity of titanium cast into three phosphate-bonded investments.

    PubMed

    Pieralini, Anelise R F; Benjamin, Camila M; Ribeiro, Ricardo Faria; Scaf, Gulnara; Adabo, Gelson Luis

    2010-10-01

    This study evaluated the effect of pattern coating with spinel-based investment Rematitan Ultra (RU) on the castability and internal porosity of commercially pure (CP) titanium invested into phosphate-bonded investments. The apparent porosity of the investment was also measured. Square patterns (15 × 15 × 0.3 mm(3)) were either coated with RU, or not and invested into the phosphate-bonded investments: Rematitan Plus (RP), Rema Exakt (RE), Castorit Super C (CA), and RU (control group). The castings were made in an Ar-arc vacuum-pressure machine. The castability area (mm(2) ) was measured by an image-analysis system (n = 10). For internal porosity, the casting (12 × 12 × 2 mm(3) ) was studied by the X-ray method, and the projected porous area percentage was measured by an image-analysis system (n = 10). The apparent porosity of the investment (n = 10) was measured in accordance with the ASTM C373-88 standard. Analysis of variance (One-way ANOVA) of castability was significant, and the Tukey test indicated that RU had the highest mean but the investing technique with coating increased the castability for all phosphate-bonded investments. The analysis of the internal porosity of the cast by the nonparametric test demonstrated that the RP, RE, and CA with coating and RP without coating did not differ from the control group (RU), while the CA and RE casts without coating were more porous. The one-way ANOVA of apparent porosity of the investment was significant, and the Tukey test showed that the means of RU (36.10%) and CA (37.22%) were higher than those of RP (25.91%) and RE (26.02%). Pattern coating with spinel-based material prior to phosphate-bonded investments can influence the castability and the internal porosity of CP Ti. © 2010 by The American College of Prosthodontists.

  1. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  2. LLNL casting technology

    SciTech Connect

    Shapiro, A.B.; Comfort, W.J. III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US compentiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective, experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  3. Cast articulation accuracy using rigid cast stabilization.

    PubMed

    Gunderson, Ronald Bruce; Siegel, Sharon Crane

    2002-06-01

    This study evaluated the positional accuracy of casts articulated on a semi-adjustable articulator, with and without rigid cast stabilization using either laboratory plaster or mounting plaster. A reference articulation of melamine casts in maximum articulation was established and recorded in the horizontal and vertical dimensions using a verification device. The same casts were subsequently remounted 24 times using either laboratory plaster or mounting plaster. Half of the articulations from each group were stabilized using detachable mounting rods and sticky wax, and half were hand-articulated without stabilization, for a total of 6 articulations in each of 4 test groups. The resulting spatial positions established on the articulator were compared to the initial reference position on the verification device grid. Means and standard deviations of the absolute values of the horizontal and vertical displacement for each group were determined separately and compared using a one-way anaylsis of variance. Significant differences (p <0.05) were identified using Tukey's honestly significant difference multiple comparison test. Mean vertical mandibular cast displacement ranged from 0.26 +/-0.21mm for stabilized casts mounted with laboratory plaster to 1.58 +/-0.32 mm for unstabilized casts mounted with mounting plaster. For each mounting material, significantly less vertical displacement (p <0.001) was observed with the mandibular cast stabilized before mounting. The cast mounted with laboratory plaster exhibited horizontal displacement (0.87 +/-0.29 mm) that was significantly greater than the remaining groups (p <0.001), which did not differ from each other. Rigid stabilization of the mandibular to maxillary cast during mounting with laboratory and mounting plaster improved articulation accuracy. Copyright 2002 by The American College of Prosthodontists.

  4. Contamination of apple orchard soils and fruit trees with copper-based fungicides: sampling aspects.

    PubMed

    Wang, Quanying; Liu, Jingshuang; Liu, Qiang

    2015-01-01

    Accumulations of copper in orchard soils and fruit trees due to the application of Cu-based fungicides have become research hotspots. However, information about the sampling strategies, which can affect the accuracy of the following research results, is lacking. This study aimed to determine some sampling considerations when Cu accumulations in the soils and fruit trees of apple orchards are studied. The study was conducted in three apple orchards from different sites. Each orchard included two different histories of Cu-based fungicides usage, varying from 3 to 28 years. Soil samples were collected from different locations varying with the distances from tree trunk to the canopy drip line. Fruits and leaves from the middle heights of tree canopy at two locations (outer canopy and inner canopy) were collected. The variation in total soil Cu concentrations between orchards was much greater than the variation within orchards. Total soil Cu concentrations had a tendency to increase with the increasing history of Cu-based fungicides usage. Moreover, total soil Cu concentrations had the lowest values at the canopy drip line, while the highest values were found at the half distances between the trunk and the canopy drip line. Additionally, Cu concentrations of leaves and fruits from the outer parts of the canopy were significantly higher than from the inner parts. Depending on the findings of this study, not only the between-orchard variation but also the within-orchard variation should be taken into consideration when conducting future soil and tree samplings in apple orchards.

  5. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor.

    PubMed

    Xu, Xiaojuan; Wang, Ranran; Nie, Pu; Cheng, Yin; Lu, Xiaoyu; Shi, Liangjing; Sun, Jing

    2017-04-26

    Aerogel is a kind of material with high porosity and low density. However, the research on metal-based aerogel with good conductivity is quite limited, which hinders its usage in electronic devices, such as flexible pressure sensors. In this work, we successfully fabricate copper nanowire (CuNW) based aerogel through a one-pot method, and the dynamics for the assembly of CuNWs into hydrogel is intensively investigated. The "bubble controlled assembly" mechanism is put forward for the first time, according to which tunable pore structures and densities (4.3-7.5 mg cm(-3)) of the nanowire aerogel is achieved. Subsequently, ultralight flexible pressure sensors with tunable sensitivities (0.02 kPa(-1) to 0.7 kPa(-1)) are fabricated from the Cu NWs aerogels, and the negative correlation behavior of the sensitivity to the density of the aerogel sensors is disclosed systematically. This work provides a versatile strategy for the fabrication of nanowire-based aerogels, which greatly broadens their application potential.

  6. Chemical-Gene Interactions from ToxCast Bioactivity Data Expands Universe of Literature Network-Based Associations (SOT)

    EPA Science Inventory

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets....

  7. Copper hypersensitivity.

    PubMed

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  8. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  9. Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes

    PubMed Central

    Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen

    2016-01-01

    Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro. The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold.

  10. Synthesis, characterization and toxicity studies of pyridinecarboxaldehydes and L-tryptophan derived Schiff bases and corresponding copper (II) complexes.

    PubMed

    Malakyan, Margarita; Babayan, Nelly; Grigoryan, Ruzanna; Sarkisyan, Natalya; Tonoyan, Vahan; Tadevosyan, Davit; Matosyan, Vladimir; Aroutiounian, Rouben; Arakelyan, Arsen

    2016-01-01

    Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro. The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold.

  11. Infiltration of Slag Film into the Grooves on a Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Cho, Jung-Wook; Jeong, Hee-Tae

    2013-02-01

    An analytical model is developed to clarify the slag film infiltration into grooves on a copper mold during the continuous casting of steel slabs. A grooved-type casting mold was applied to investigate the infiltration of slag film into the grooves of a pitch of 0.8 mm, width of 0.7 mm, and depth of 0.6 mm at the vicinity of a meniscus. The plant trial tests were carried out at a casting speed of 5.5 m min-1. The slag film captured at a commercial thin slab casting plant showed that both the overall and the liquid film thickness were decreased exponentially as the distance from the meniscus increases. In contrast, the infiltration of slag film into the grooves had been increased with increasing distance from the meniscus. A theoretic model has been derived based on the measured profile of slag film thickness to calculate the infiltration of slag film into the grooves. It successfully reproduces the empirical observation that infiltration ratio increased sharply along casting direction, about 80 pct at 50 mm and 95 pct at 150 mm below the meniscus. In the model calculation, the infiltration of slag film increases with increasing groove width and/or surface tension of the slag. The effect of groove depth is negligible when the width to depth ratio of the groove is larger than unity. It is expected that the developed model for slag film infiltration in this study will be widely utilized to optimize the design of groove dimensions in continuous casting molds.

  12. Effects of the Exposure to Corrosive Salts on the Frictional Behavior of Gray Cast Iron and a Titanium-Based Metal Matrix Composite

    SciTech Connect

    Blau, Peter Julian; Truhan, Jr., John J; Kenik, Edward A

    2007-01-01

    The introduction of increasingly aggressive road-deicing chemicals has created significant and costly corrosion problems for the trucking industry. From a tribological perspective, corrosion of the sliding surfaces of brakes after exposure to road salts can create oxide scales on the surfaces that affect friction. This paper describes experiments on the effects of exposure to sodium chloride and magnesium chloride sprays on the transient frictional behavior of cast iron and a titanium-based composite sliding against a commercial brake lining material. Corrosion scales on cast iron initially act as abrasive third-bodies, then they become crushed, spread out, and behave as a solid lubricant. The composition and subsurface microstructures of the corrosion products on the cast iron were analyzed. Owing to its greater corrosion resistance, the titanium composite remained scale-free and its frictional response was markedly different. No corrosion scales were formed on the titanium composite after aggressive exposure to salts; however, a reduction in friction was still observed. Unlike the crystalline sodium chloride deposits that tended to remain dry, hygroscopic magnesium chloride deposits absorbed ambient moisture from the air, liquefied, and retained a persistent lubricating effect on the titanium surfaces.

  13. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering.

    PubMed

    Erol, M M; Mouriňo, V; Newby, P; Chatzistavrou, X; Roether, J A; Hupa, L; Boccaccini, Aldo R

    2012-02-01

    The aim of this study was to synthesize and characterize new boron-containing bioactive glass-based scaffolds coated with alginate cross-linked with copper ions. A recently developed bioactive glass powder with nominal composition (wt.%) 65 SiO2, 15 CaO, 18.4 Na2O, 0.1 MgO and 1.5 B2O3 was fabricated as porous scaffolds by the foam replica method. Scaffolds were alginate coated by dipping them in alginate solution. Scanning electron microscopy investigations indicated that the alginate effectively attached on the surface of the three-dimensional scaffolds leading to a homogeneous coating. It was confirmed that the scaffold structure remained amorphous after the sintering process and that the alginate coating improved the scaffold bioactivity and mechanical properties. Copper release studies showed that the alginate-coated scaffolds allowed controlled release of copper ions. The novel copper-releasing composite scaffolds represent promising candidates for bone regeneration. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. An optical fiber-based sensor array for the monitoring of zinc and copper ions in aqueous environments.

    PubMed

    Kopitzke, Steven; Geissinger, Peter

    2014-02-17

    Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments.

  15. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    PubMed Central

    Kopitzke, Steven; Geissinger, Peter

    2014-01-01

    Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments. PMID:24549250

  16. Investigation on effects of surface morphologies on response of LPG sensor based on nanostructured copper ferrite system

    SciTech Connect

    Singh, Satyendra; Yadav, B.C.; Gupta, V.D.; Dwivedi, Prabhat K.

    2012-11-15

    Graphical abstract: Figure shows the variations in resistance with time for copper ferrite system synthesized in various molar ratio. A maximum variation in resistance was observed for copper ferrite prepared in 1:1 molar ratio. Highlights: ► Evaluation of structural, optical and surface morphologies. ► Significant variation in LPG sensing properties. ► Surface modification of ferric oxide pellet by copper ferrite. ► CuFe{sub 2}O{sub 4} pellets for LPG sensing at room temperature. -- Abstract: Synthesis of a copper ferrite system (CuFe{sub 2}O{sub 4}) via chemical co-precipitation method is characterized by X-ray diffraction, surface morphology (scanning electron microscope) and optical absorption spectroscopy. These characteristics show their dependence on the relative compositions of the two subsystems. They are further confirmed by the variation in the band gap. A study of gas sensing properties shows the spinel CuFe{sub 2}O{sub 4} synthesized in 1:1 molar ratio exhibit best response to LPG adsorption/resistance measurement. Thus resistance based LPG sensor is found robust, cheap and may be applied for kitchens and industrial applications.

  17. Usefulness of gel-casting method in the fabrication of nonstoichiometric CaZrO{sub 3}-based electrolytes for high temperature application

    SciTech Connect

    Dudek, Magdalena

    2009-09-15

    Hydrogels obtained from lower toxicity monomers of N-(hydroxymethyl)acrylamide and N,N'-methylenebisacrylamide were applied to form nonstoichiometric CaZrO{sub 3}-based electrolytes. A coprecipitation-calcination method with ((NH{sub 4}){sub 2}C{sub 2}O{sub 4}) in concentrated NH{sub 3} aqueous solution was used to synthesise CaZrO{sub 3} involving 51 mol.% CaO (CZ-51) powder. The gas-tight CaZrO{sub 3}-based rods were prepared by the gel-casting method with 45 vol.% suspension and then sintered at 1500 deg. C-2 h. It was found that in low oxygen partial pressure, the nonstoichiometric CaZrO{sub 3} obtained by gel-casting method were pure oxide ion conductors. These samples exhibited comparable electrical conductivity values to isostatically compressed pellets starting from the same powder. The results of experiments on thermochemical stability of CZ-51 gel-cast shapes at high temperatures in air or gas mixtures involving 2-50 vol.% H{sub 2}, as well as the corrosion resistance in exhaust gases from a self-ignition engine were also presented and discussed. The thermal resistance of CaZrO{sub 3} obtained rods against molten nickel or iron was also examined. Based upon these investigations, it is evident that only in hydrogen-rich gas atmospheres can the stability of CaZrO{sub 3} shapes be limited due to the presence of CaO precipitation as a second phase. The nonstoichiometric CaZrO{sub 3} (CZ-51) gel-cast materials were also tested in solid galvanic cells, designed to study thermodynamic properties of oxide materials, important for SOFC and energy technology devices. In this way, the Gibbs energy of NiM{sub 2}O{sub 4}, M = Cr, Fe, at 650-1000 deg. C was determined. The CaZrO{sub 3} involving 51 mol.% CaO gel-cast sintered shapes seems to be promising solid electrolytes for electrochemical oxygen probes in control of metal processing and thermodynamic studies of materials important for the development of the energy industry.

  18. Hydrothermally Treated Chitosan Hydrogel Loaded with Copper and Zinc Particles as a Potential Micronutrient-Based Antimicrobial Feed Additive

    PubMed Central

    Rajasekaran, Parthiban; Santra, Swadeshmukul

    2015-01-01

    Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect) to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient-based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that rearranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml) and zinc (800 μg/ml) reduced the load of model gut bacteria (target organisms of growth promoting antibiotics), such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof-of-concept study, we show that by using

  19. Comparative Evaluation of Marginal Accuracy of a Cast Fixed Partial Denture Compared to Soldered Fixed Partial Denture Made of Two Different Base Metal Alloys and Casting Techniques: An In vitro Study.

    PubMed

    Jei, J Brintha; Mohan, Jayashree

    2014-03-01

    The periodontal health of abutment teeth and the durability of fixed partial denture depends on the marginal adaptation of the prosthesis. Any discrepancy in the marginal area leads to dissolution of luting agent and plaque accumulation. This study was done with the aim of evaluating the accuracy of marginal fit of four unit crown and bridge made up of Ni-Cr and Cr-Co alloys under induction and centrifugal casting. They were compared to cast fixed partial denture (FPD) and soldered FPD. For the purpose of this study a metal model was fabricated. A total of 40 samples (4-unit crown and bridge) were prepared in which 20 Cr-Co samples and 20 Ni-Cr samples were fabricated. Within these 20 samples of each group 10 samples were prepared by induction casting technique and other 10 samples with centrifugal casting technique. The cast FPD samples obtained were seated on the model and the samples were then measured with travelling microscope having precision of 0.001 cm. Sectioning of samples was done between the two pontics and measurements were made, then the soldering was made with torch soldering unit. The marginal discrepancy of soldered samples was measured and all findings were statistically analysed. The results revealed minimal marginal discrepancy with Cr-Co samples when compared to Ni-Cr samples done under induction casting technique. When compared to cast FPD samples, the soldered group showed reduced marginal discrepancy.

  20. Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin J.

    2008-01-01

    Carbon dioxide (CO2) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO2 sensing materials exist due to the high chemical stability of CO2. In this work, a novel CO2 microsensor based on nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO2 based CO2 microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO2 = 1:8 (molar ratio), the resistance of the sensor has a linear response to CO2 concentrations for the range of 1 to 4 percent CO2 in air at 450 C. This approach has demonstrated the use of SnO2, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

  1. Rapid detection of copper chlorophyll in vegetable oils based on surface-enhanced Raman spectroscopy.

    PubMed

    Lian, Wei-Nan; Shiue, Jessie; Wang, Huai-Hsien; Hong, Wei-Chen; Shih, Po-Han; Hsu, Chao-Kai; Huang, Ching-Yi; Hsing, Cheng-Rong; Wei, Ching-Ming; Wang, Juen-Kai; Wang, Yuh-Lin

    2015-01-01

    The addition of copper chlorophyll and its derivatives (Cu-Chl) to vegetable oils to disguise them as more expensive oils, such as virgin olive oils, would not only create public confusion, but also disturb the olive oil market. Given that existing detection methods of Ch-Chl in oils, such as LC-MS are costly and time consuming, it is imperative to develop economical and fast analytical techniques to provide information quickly. This paper demonstrates a rapid analytical method based on surface-enhanced Raman spectroscopy (SERS) to detect Cu-Chl in vegetable oils; the spectroscopic markers of Cu-Chl are presented and a detection limit of 5 mg kg(-1) is demonstrated. The analysis of a series of commercial vegetable oils is undertaken with this method and the results verified by a government agency. This study shows that a SERS-based assessment method holds high potential for quickly pinpointing the addition of minute amounts of Cu-Chl in vegetable oils.

  2. Network Analysis Shows Novel Molecular Mechanisms of Action for Copper-Based Chemotherapy.

    PubMed

    Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique; Mejía, Carmen; Ruiz-Azuara, Lena

    2015-01-01

    The understanding of the mechanisms associated with the action of chemotherapeutic agents is fundamental to assess and account for possible side-effects of such treatments. Casiopeínas have demonstrated a cytotoxic effect by activation of pro-apoptotic processes in malignant cells. Such processes have been proved to activate the apoptotic intrinsic route, as well as cell cycle arrest. Despite this knowledge, the whole mechanism of action of Casiopeínas is yet to be completely understood. In this work we implement a systems biology approach based on two pathway analysis tools (Over-Representation Analysis and Causal Network Analysis) to observe changes in some hallmarks of cancer, induced by this copper-based chemotherapeutic agent in HeLa cell lines. We find that the metabolism of metal ions is exacerbated, as well as cell division processes being globally diminished. We also show that cellular migration and proliferation events are decreased. Moreover, the molecular mechanisms of liver protection are increased in the cell cultures under the actions of Casiopeínas, unlike the case in many other cytotoxic drugs. We argue that this chemotherapeutic agent may be promising, given its protective hepatic function, concomitant with its cytotoxic participation in the onset of apoptotic processes in malignant cells.

  3. Inverse Calibration Free fs-LIBS of Copper-Based Alloys

    NASA Astrophysics Data System (ADS)

    Smaldone, Antonella; De Bonis, Angela; Galasso, Agostino; Guarnaccio, Ambra; Santagata, Antonio; Teghil, Roberto

    2016-09-01

    In this work the analysis by Laser Induced Breakdown Spectroscopy (LIBS) technique of copper-based alloys having different composition and performed with fs laser pulses is presented. A Nd:Glass laser (Twinkle Light Conversion, λ = 527 nm at 250 fs) and a set of bronze and brass certified standards were used. The inverse Calibration-Free method (inverse CF-LIBS) was applied for estimating the temperature of the fs laser induced plasma in order to achieve quantitative elemental analysis of such materials. This approach strengthens the hypothesis that, through the assessment of the plasma temperature occurring in fs-LIBS, straightforward and reliable analytical data can be provided. With this aim the capability of the here adopted inverse CF-LIBS method, which is based on the fulfilment of the Local Thermodynamic Equilibrium (LTE) condition, for an indirect determination of the species excitation temperature, is shown. It is reported that the estimated temperatures occurring during the process provide a good figure of merit between the certified and the experimentally determined composition of the bronze and brass materials, here employed, although further correction procedure, like the use of calibration curves, can be demanded. The reported results demonstrate that the inverse CF-LIBS method can be applied when fs laser pulses are used even though the plasma properties could be affected by the matrix effects restricting its full employment to unknown samples provided that a certified standard having similar composition is available.

  4. Position-dependent performance of copper phthalocyanine based field-effect transistors by gold nanoparticles modification.

    PubMed

    Luo, Xiao; Li, Yao; Lv, Wenli; Zhao, Feiyu; Sun, Lei; Peng, Yingquan; Wen, Zhanwei; Zhong, Junkang; Zhang, Jianping

    2015-01-21

    A facile fabrication and characteristics of copper phthalocyanine (CuPc)-based organic field-effect transistor (OFET) using the gold nanoparticles (Au NPs) modification is reported, thereby achieving highly improved performance. The effect of Au NPs located at three different positions, that is, at the SiO2/CuPc interface (device B), embedding in the middle of CuPc layer (device C), and on the top of CuPc layer (device D), is investigated, and the results show that device D has the best performance. Compared with the device without Au NPs (reference device A), device D displays an improvement of field-effect mobility (μ(sat)) from 1.65 × 10(-3) to 5.51 × 10(-3) cm(2) V(-1) s(-1), and threshold voltage decreases from -23.24 to -16.12 V. Therefore, a strategy for the performance improvement of the CuPc-based OFET with large field-effect mobility and saturation drain current is developed, on the basis of the concept of nanoscale Au modification. The model of an additional electron transport channel formation by FET operation at the Au NPs/CuPc interface is therefore proposed to explain the observed performance improvement. Optimum CuPc thickness is confirmed to be about 50 nm in the present study. The device-to-device uniformity and time stability are discussed for future application.

  5. Copper(II) nanosensor based on a gold cysteamine self-assembled monolayer functionalized with salicylaldehyde.

    PubMed

    Shervedani, Reza Karimi; Mozaffari, Seyed Ahmad

    2006-07-15

    Fabrication and electrochemical characterization of a novel nanosensor for determination of Cu2+ in subnanomolar concentrations is described. The sensor is based on gold cysteamine self-assembled monolayer functionalized with salicylaldehyde by means of Schiff's base formation. Cyclic voltammetry, Electrochemical impedance spectroscopy (EIS), and electrochemical quartz crystal microbalance were used to probe the fabrication and characterization of the modified electrode. The sensor was used for quantitative determination of Cu2+ by the EIS in the presence of parabenzoquinone in comparison with stripping Osteryoung square wave voltammetry (OSWV). The attractive ability of the sensor to efficiently preconcentrate trace amounts of Cu2+ allowed a simple and reproducible method for copper determination. A wide range linear calibration curve was observed, 5.0 x 10(-11)-5.0 x 10(-6) and 5.0 x 10(-10)-5.0 x 10(-6) M Cu2+, by using the EIS and OSWV, respectively. Moreover, the sensor presented excellent stability with lower than 10% change in the response, as tested for more than three months daily experiments, and a high repeatability with relative standard deviations of 6.1 and 4.6% obtained for a series of eight successive measurements in 5.0 x 10(-7) M Cu2+ solution, by the EIS and OSWV, respectively.

  6. Nanostructured electrochemical sensors based on functionalized nanoporous silica for voltammetric analysis of lead, mercury, and copper.

    PubMed

    Yantasee, Wassana; Fryxell, Glen E; Conner, Marianne M; Lin, Yuehe

    2005-09-01

    We have successfully developed electrochemical sensors based on functionalized nanostructured materials for voltammetric analysis of toxic metal ions. Glycinylurea self-assembled monolayers on mesoporous silica (Gly-UR SAMMS) were incorporated in carbon paste electrodes for the detection of toxic metal ions such as lead, copper, and mercury based on adsorptive stripping voltammetry (AdSV). The electrochemical sensor yields a linear response at a low ppb level of Pb2+ (i.e., 2.5-50 ppb) after a 2-min preconcentration period, with reproducible measurements (%RSD = 3.5, N = 6) and an excellent detection limit (1 ppb). By exploiting the interfacial functionality of Gly-UR SAMMS, the sensor is selective for the target species, does not require the use of a mercury film, and can be easily regenerated in dilute acid solution. The rigid, open, parallel pore structure, combined with suitable interfacial chemistry of SAMMS, also results in fast analysis times (2-3 min). The nanostructured SAMMS materials enable the development of miniature sensing devices that are compact and low cost, have low energy consumption, and are easily integrated into field-deployable units.

  7. Network Analysis Shows Novel Molecular Mechanisms of Action for Copper-Based Chemotherapy

    PubMed Central

    Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique; Mejía, Carmen; Ruiz-Azuara, Lena

    2016-01-01

    The understanding of the mechanisms associated with the action of chemotherapeutic agents is fundamental to assess and account for possible side-effects of such treatments. Casiopeínas have demonstrated a cytotoxic effect by activation of pro-apoptotic processes in malignant cells. Such processes have been proved to activate the apoptotic intrinsic route, as well as cell cycle arrest. Despite this knowledge, the whole mechanism of action of Casiopeínas is yet to be completely understood. In this work we implement a systems biology approach based on two pathway analysis tools (Over-Representation Analysis and Causal Network Analysis) to observe changes in some hallmarks of cancer, induced by this copper-based chemotherapeutic agent in HeLa cell lines. We find that the metabolism of metal ions is exacerbated, as well as cell division processes being globally diminished. We also show that cellular migration and proliferation events are decreased. Moreover, the molecular mechanisms of liver protection are increased in the cell cultures under the actions of Casiopeínas, unlike the case in many other cytotoxic drugs. We argue that this chemotherapeutic agent may be promising, given its protective hepatic function, concomitant with its cytotoxic participation in the onset of apoptotic processes in malignant cells. PMID:26793116

  8. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    NASA Astrophysics Data System (ADS)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases

  9. Copper staves in the blast furnace

    SciTech Connect

    Helenbrook, R.G.; Kowalski, W.; Grosspietsch, K.H.; Hille, H.

    1996-08-01

    Operational data for stave cooling systems for two German blast furnaces show good correlation with predicted thermal results. Copper staves have been installed in blast furnaces in the zones exposed to the highest thermal loads. The good operational results achieved confirm the choice of copper staves in the areas of maximum heat load. Both temperature measurements and predictions establish that the MAN GHH copper staves do not experience large temperature fluctuations and that the hot face temperatures will be below 250 F. This suggests that the copper staves maintain a more stable accretion layer than the cast iron staves. Contrary to initial expectations, heat flux to the copper staves is 50% lower than that to cast iron staves. The more stable accretion layer acts as an excellent insulator for the stave and greatly reduces the number of times the hot face of the stave is exposed to the blast furnace process and should result in a more stable furnace operation. In the future, it may be unnecessary to use high quality, expensive refractories in front of copper staves because of the highly stable accretion layer that appears to rapidly form due to the lower operating temperature of the staves. There is a balance of application regions for cast iron and copper staves that minimizes the capital cost of a blast furnace reline and provides an integrated cooling system with multiple campaign life potential. Cast iron staves are proven cooling elements that are capable of multiple campaign life in areas of the blast furnace which do not experience extreme heat loads. Copper staves are proving to be an effective and reliable blast furnace cooling element that are subject to virtually no wear and are projected to have a longer campaign service life in the areas of highest thermal load in the blast furnace.

  10. Copper transport.

    PubMed

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  11. Equilibrium characteristics of tartrate and EDTA-based electroless copper deposition baths

    SciTech Connect

    Ramasubramanian, M.; Popov, B.N.; White, R.E.; Chen, K.S.

    1997-08-01

    Electroless deposition of copper is being used for a variety of applications, one of them being the development of seed metallic layers on non-metals, which are widely used in electronic circuitry. Solution equilibrium characteristics of two electroless copper baths containing EDTA and tartrate as the complexing agents were studied as functions of pH, chelating agent and metal ion concentrations. Equilibrium diagrams were constructed for both cu-tartrate and Cu-EDTA systems. It was determined that copper is chiefly complexed as Cu(OH){sub 2}L{sub 2}{sup {minus}4} in the tartrate bath, and as CuA{sup {minus}2} in the EDTA bath, where L and A are the complexing tartrate and EDTA ligands, respectively. The operating ranges for electroless copper deposition were identified for both baths. Dependence of Cu(OH){sub 2} precipitation on the pH and species concentrations was also studied for these systems.

  12. Zinc Base Die Castings

    DTIC Science & Technology

    1935-01-31

    183 B86- 33T SAE N.J .zn Co. B86-33T 1934 SAE N.J.Zn Cc,. Zamak 3N AllO;E Cl C2 Allo~ XXI 221 Zarnak 2 .A.llo;z XXIII .Allol XXIII 202 Zamak 2 O...2 includ.es Pb ,Fe, Cd, C:’. 3 special high gra1e ?:inc. • t • • ; -J TABLE II Chemical Composition for Zinc Alloy Nuuber Zam.ak 2 Zamak 3...was alco given regarding the aging of the alloys. The a1loy3 Aupplied were: Zamak 2, Zamak 3, Zamak 3-S (Stabilized to hasten contraction which

  13. Advances in aluminum casting technology

    SciTech Connect

    Tiryakioglu, M.; Campbell, J.

    1998-01-01

    This symposium focuses on the improvements of aluminum casting quality and reliability through a better understanding of processes and process variables, and explores the latest innovations in casting-process design that allow increasing use of the castings to replace complex assemblies and heavy steel and cast-iron components in aerospace and automotive applications. Presented are 35 papers by international experts in the various aspects of the subject. The contents include: Semisolid casting; Computer-aided designing of molds and castings; Casting-process modeling; Aluminum-matrix composite castings; HIPing of castings; Progress in the US car project; Die casting and die design; and Solidification and properties.

  14. Turns with multiple and single head cast mediate Drosophila larval light avoidance.

    PubMed

    Zhao, Weiqiao; Gong, Caixia; Ouyang, Zhenhuan; Wang, Pengfei; Wang, Jie; Zhou, Peipei; Zheng, Nenggan; Gong, Zhefeng

    2017-01-01

    Drosophila larvae exhibit klinotaxis when placed in a gradient of temperature, chemicals, or light. The larva samples environmental stimuli by casting its head from side to side. By comparing the results of two consecutive samples, it decides the direction of movement, appearing as a turn proceeded by one or more head casts. Here by analyzing larval behavior in a light-spot-based phototaxis assay, we showed that, in addition to turns with a single cast (1-cast), turns with multiple head casts (n-cast) helped to improve the success of light avoidance. Upon entering the light spot, the probability of escape from light after the first head cast was only ~30%. As the number of head casts increased, the chance of successful light avoidance increased and the overall chance of escaping from light increased to >70%. The amplitudes of first head casts that failed in light avoidance were significantly smaller in n-cast turns than those in 1-cast events, indicating that n-cast turns might be planned before completion of the first head cast. In n-casts, the amplitude of the second head cast was generally larger than that of the first head cast, suggesting that larvae tried harder in later attempts to improve the efficacy of light avoidance. We propose that both 1-cast turns and n-cast turns contribute to successful larval light avoidance, and both can be initiated at the first head cast.

  15. Synthesis of copper/nickel nanoparticles using newly synthesized Schiff-base metals complexes and their cytotoxicity/catalytic activities.

    PubMed

    Aazam, Elham S; El-Said, Waleed Ahmed

    2014-12-01

    Transition metal complexes compounds with Schiff bases ligand representing an important class of compounds that could be used to develop new metal-based anticancer agents and as precursors of metal NPs. Herein, 2,3-bis-[(3-ethoxy-2-hydroxybenzylidene)amino]but-2-enedinitrile Schiff base ligand and its corresponding copper/nickel complexes were synthesized. Also, we reported a facile and rapid method for synthesis nickel/copper nanoparticles based on thermal reduction of their complexes. Free ligand, its metal complexes and metals nanoparticles have been characterized based on elemental analysis, transmission electron microscopy, powder X-ray diffraction, magnetic measurements and by various spectroscopic (UV-vis, FT-IR, (1)H NMR, GC-MS) techniques. Additionally, the in vitro cytotoxic activity of free ligand and its complexes compounds were assessed against two cancer cell lines (HeLa and MCF-7 cells)and one healthy cell line (HEK293 cell). The copper complex was found to be active against these cancer cell lines at very low LD50 than the free ligand, while nickel complex did not show any anticancer activity against these cell lines. Also, the antibacterial activity of as-prepared copper nanoparticles were screened against Escherichia coli, which demonstrated minimum inhibitory concentration and minimum bactericidal concentration values lower than those values of the commercial Cu NPs as well as the previous reported values. Moreover, the synthesized nickel nanoparticles demonstrated remarkable catalytic performance toward hydrogenation of nitrobenzene that producing clean aniline with high selectivity (98%). This reactivity could be attributed to the high degree of dispersion of Ni nanoparticles.

  16. Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko

    2017-04-01

    Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.

  17. Dimensional accuracy of small gold alloy castings. Part 4. The casting ring and ring liners.

    PubMed

    Morey, E F

    1992-04-01

    The role of the casting ring and its asbestos liner is discussed. Asbestos as a liner has now largely been replaced by two alternative materials, one based on cellulose and the other on ceramic fibres. The limited literature on the effect of these newer materials on casting accuracy is also reviewed as their introduction may require significant changes in the traditional technology of dental casting.

  18. Temporal trends of copper-bearing intrauterine device discontinuation: a population-based birth-cohort study of contraceptive use among rural married women in China.

    PubMed

    Zhou, Jie; Tan, Xiaodong; Song, Xiangjing; Zhang, Kaining; Fang, Jing; Peng, Lin; Qi, Wencai; Nie, Zonghui; Li, Ming; Deng, Rui; Yan, Chaofang

    2015-03-01

    Copper-bearing intrauterine device (IUD) insertion for long-term contraceptive use is high in China, but there has been evidence that first-year discontinuation rate of copper-bearing IUD has also increased rapidly in recent years especially among rural married women. To investigate long-term use of copper-bearing IUD, the authors examined the 7-year temporal trends of copper-bearing IUD discontinuation in a population-based birth-cohort study among 720 rural married women in China, from 2004 to 2012. Women requesting contraception were followed-up twice per year after the insertion of IUD. The gross cumulative life table discontinuation rates were calculated for each of the main reasons for discontinuation as well as for all reasons combined. By the end of 7 years, 384 discontinuations were observed. With a stepped-up trend, the gross cumulative life table rate for discontinuation increased from 10.06 (95% confidence interval = 7.86-12.27) per 100 women by the first year to 52.69 (95% confidence interval = 48.94-56.44) per 100 women by the end of 7 years, which increased rapidly in the first 2 years after copper-bearing IUD insertion, flattened out gradually in the following 2 years, then increased again in the last 3 years. Among reported method failure, expulsion and side effects were the main reasons for discontinuation of the copper-bearing IUD but not pregnancy. Personal reasons, such as renewal by personal will had influenced copper-bearing IUD use since the second year and should not be neglected. Based on this study, the temporal trends of copper-bearing IUD discontinuation was in a stepped-up trend in 7 years after insertion. Both reported method failure (expulsion and side effect) and personal reason had effect on the discontinuation of copper-bearing IUD, but pregnancy was no more the most important reason affecting the use of copper-bearing IUD.

  19. The Structure and Properties of Rapid Cooled Iron Based Alloy

    NASA Astrophysics Data System (ADS)

    Jeż, B.; Nabialek, M.; Pietrusiewicz, P.; Gruszka, K.; Błoch, K.; Gondro, J.; Rzącki, J.; Abdullah, M. M. A. B.; Sandu, A. V.; Szota, M.; Jeż, K.; Sałagacki, A.

    2017-06-01

    In this paper we studied the structure of rapidly cooled alloy which composition was based on iron. Samples were prepared using arc melting under protective atmosphere of argon and then casted in the process of rapid cooling into water cooled copper mold. Samples of the same composition were also made using the liquid melt casting method on a spinning copper roll. The high purity samples in the form of rods and ribbons were obtained. As expected, the obtained samples were characterized by an amorphous structure as confirmed by Mössbauer spectroscopy and X-ray diffraction studies.

  20. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect

    Pankiw, Roman I; Muralidharan, G.; Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  1. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals.

    PubMed

    Yarema, Olesya; Bozyigit, Deniz; Rousseau, Ian; Nowack, Lea; Yarema, Maksym; Heiss, Wolfgang; Wood, Vanessa

    2013-09-24

    We report a simple, high-yield colloidal synthesis of copper indium selenide nanocrystals (CISe NCs) based on a silylamide-promoted approach. The silylamide anions increase the nucleation rate, which results in small-sized NCs exhibiting high luminescence and constant NC stoichiometry and crystal structure regardless of the NC size and shape. In particular, by systematically varying synthesis time and temperature, we show that the size of the CISe NCs can be precisely controlled to be between 2.7 and 7.9 nm with size distributions down to 9-10%. By introducing a specific concentration of silylamide-anions in the reaction mixture, the shape of CISe NCs can be preselected to be either spherical or tetrahedral. Optical properties of these CISe NCs span from the visible to near-infrared region with peak luminescence wavelengths of 700 to 1200 nm. The luminescence efficiency improves from 10 to 15% to record values of 50-60% by overcoating as-prepared CISe NCs with ZnSe or ZnS shells, highlighting their potential for applications such as biolabeling and solid state lighting.

  2. Laccase Biosensor Based on Electrospun Copper/Carbon Composite Nanofibers for Catechol Detection

    PubMed Central

    Fu, Jiapeng; Qiao, Hui; Li, Dawei; Luo, Lei; Chen, Ke; Wei, Qufu

    2014-01-01

    The study compared the biosensing properties of laccase biosensors based on carbon nanofibers (CNFs) and copper/carbon composite nanofibers (Cu/CNFs). The two kinds of nanofibers were prepared by electrospinning and carbonization under the same conditions. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to investigate the morphologies and structures of CNFs and Cu/CNFs. The amperometric results indicated that the Cu/CNFs/laccase(Lac)/Nafion/glass carbon electrode (GCE) possessed reliable analytical performance for the detection of catechol. The sensitivity of the Cu/CNFs/Lac/Nafion/GCE reached 33.1 μA/mM, larger than that of CNFs/Lac/Nafion/GCE. Meanwhile, Cu/CNFs/Lac/Nafion/GCE had a wider linear range from 9.95 × 10−6 to 9.76 × 10−3 M and a lower detection limit of 1.18 μM than CNFs/Lac/Nafion/GCE. Moreover, it exhibited a good repeatability, reproducibility, selectivity and long-term stability, revealing that electrospun Cu/CNFs have great potential in biosensing. PMID:24561403

  3. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    PubMed

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  4. Laccase biosensor based on electrospun copper/carbon composite nanofibers for catechol detection.

    PubMed

    Fu, Jiapeng; Qiao, Hui; Li, Dawei; Luo, Lei; Chen, Ke; Wei, Qufu

    2014-02-20

    The study compared the biosensing properties of laccase biosensors based on carbon nanofibers (CNFs) and copper/carbon composite nanofibers (Cu/CNFs). The two kinds of nanofibers were prepared by electrospinning and carbonization under the same conditions. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to investigate the morphologies and structures of CNFs and Cu/CNFs. The amperometric results indicated that the Cu/CNFs/laccase(Lac)/Nafion/glass carbon electrode (GCE) possessed reliable analytical performance for the detection of catechol. The sensitivity of the Cu/CNFs/Lac/Nafion/GCE reached 33.1 μA/mM, larger than that of CNFs/Lac/Nafion/GCE. Meanwhile, Cu/CNFs/Lac/Nafion/GCE had a wider linear range from 9.95 × 10(-6) to 9.76 × 10(-3) M and a lower detection limit of 1.18 μM than CNFs/Lac/Nafion/GCE. Moreover, it exhibited a good repeatability, reproducibility, selectivity and long-term stability, revealing that electrospun Cu/CNFs have great potential in biosensing.

  5. PDMS-based flexible energy harvester with Parylene electret and copper mesh electrodes

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Lee, M. H.; Wu, S.-H.

    2015-10-01

    Currently, most vibrational energy harvesters have rigid and resonant structures to scavenge kinetic energy from periodic motion in specific directions. However, in some situations the motion is random in amplitude, frequency, and direction; or the targeted energy sources apply direct deformation or displacement to the harvesters. In these applications, flexible energy harvesters that are light, flat, and conformable to arbitrary 3D surfaces of the sources are desired to scavenge the energy from device deformation, rather than the motion of a moving mass. Therefore we propose and demonstrate a PDMS-based flexible energy harvester with Parylene-C electret that can be attached to deformable surfaces. Furthermore, copper mesh is embedded in the flexible electrodes for robust electrode metallization as compared with traditional sputtered metal thin films. The fabricated harvesters achieved net output power of 2.2 μW, area power density of 2.2 μW cm-2, and volume power density of 22 μW cm-3 at the maximum test frequency of 20 Hz. Power generation by finger tapping and bending was demonstrated. Such harvesters have the potential for wearable and implantable electronic applications.

  6. Light-induced cation exchange for copper sulfide based CO2 reduction.

    PubMed

    Manzi, Aurora; Simon, Thomas; Sonnleitner, Clemens; Döblinger, Markus; Wyrwich, Regina; Stern, Omar; Stolarczyk, Jacek K; Feldmann, Jochen

    2015-11-11

    Copper(I)-based catalysts, such as Cu2S, are considered to be very promising materials for photocatalytic CO2 reduction. A common synthesis route for Cu2S via cation exchange from CdS nanocrystals requires Cu(I) precursors, organic solvents, and neutral atmosphere, but these conditions are not compatible with in situ applications in photocatalysis. Here we propose a novel cation exchange reaction that takes advantage of the reducing potential of photoexcited electrons in the conduction band of CdS and proceeds with Cu(II) precursors in an aqueous environment and under aerobic conditions. We show that the synthesized Cu2S photocatalyst can be efficiently used for the reduction of CO2 to carbon monoxide and methane, achieving formation rates of 3.02 and 0.13 μmol h(-1) g(-1), respectively, and suppressing competing water reduction. The process opens new pathways for the preparation of new efficient photocatalysts from readily available nanostructured templates.

  7. Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism

    SciTech Connect

    Hernandez-Esquivel, Luz; Marin-Hernandez, Alvaro; Pavon, Natalia; Carvajal, Karla; Moreno-Sanchez, Rafael . E-mail: rafael.moreno@cardiologia.org.mx

    2006-04-01

    Isolated rat hearts were perfused with glucose, octanoate or glucose + octanoate and different concentrations of the copper-based antineoplastic drugs casiopeina II-gly (CSII) or casiopeina III-i-a (CSIII). In isolated perfused hearts with glucose + octanoate, both casiopeinas induced diminution in cardiac work and O{sub 2} consumption with half-maximal inhibitory concentrations (IC{sub 5}) of 4 (CSII) and 4.6 (CSIII) {mu}M, after 1 h of perfusion. Strong inhibition of the pyruvate and 2-oxoglutarate dehydrogenases as well as total creatine kinase by casiopeinas suggested that ATP generation by oxidative phosphorylation and its transfer towards myofibrils were targets for these drugs. In consequence, the cellular contents of ATP and phosphocreatine were also lowered by casiopeinas. Remarkably, casiopeinas were less toxic than adriamycin (IC{sub 5} = 2.6 {mu}M), a well-known potent cardiotoxic and antineoplastic drug, which has a wide clinical use. In an open-chest animal, which is a more physiological model than the isolated heart, femoral administration of 1 {mu}M drug revealed that CSII was innocuous very likely due to strong binding to serum albumin, whereas adriamycin induced again a potent cardiotoxic effect (diminution in heart rate and severe depression of systolic blood pressure). Thus, it seems that casiopeinas are a group of new antineoplastic drugs with milder secondary toxic effects than proven drugs such as adriamycin.

  8. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals

    PubMed Central

    2013-01-01

    We report a simple, high-yield colloidal synthesis of copper indium selenide nanocrystals (CISe NCs) based on a silylamide-promoted approach. The silylamide anions increase the nucleation rate, which results in small-sized NCs exhibiting high luminescence and constant NC stoichiometry and crystal structure regardless of the NC size and shape. In particular, by systematically varying synthesis time and temperature, we show that the size of the CISe NCs can be precisely controlled to be between 2.7 and 7.9 nm with size distributions down to 9–10%. By introducing a specific concentration of silylamide-anions in the reaction mixture, the shape of CISe NCs can be preselected to be either spherical or tetrahedral. Optical properties of these CISe NCs span from the visible to near-infrared region with peak luminescence wavelengths of 700 to 1200 nm. The luminescence efficiency improves from 10 to 15% to record values of 50–60% by overcoating as-prepared CISe NCs with ZnSe or ZnS shells, highlighting their potential for applications such as biolabeling and solid state lighting. PMID:24748721

  9. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles

    PubMed Central

    MAGAYE, RUTH; ZHAO, JINSHUN; BOWMAN, LINDA; DING, MIN

    2012-01-01

    The nanotechnology industry has matured and expanded at a rapid pace in the last decade, leading to the research and development of nanomaterials with enormous potential. The largest source of these nanomaterials is the transitional metals. It has been revealed that numerous properties of these nano-sized elements are not present in their bulk states. The nano size of these particles means they are easily transported into biological systems, thus, raising the question of their effects on the susceptible systems. Although advances have been made and insights have been gained on the effect of transitional metals on susceptible biological systems, there still is much ground to be covered, particularly with respect to our knowledge on the genotoxic and carcinogenic effects. Therefore, this review intends to summarize the current knowledge on the genotoxic and carcinogenic potential of cobalt-, nickel- and copper-based nanoparticles indicated in in vitro and in vivo mammalian studies. In the present review, we briefly state the sources, use and exposure routes of these nanoparticles and summarize the current literature findings on their in vivo and in vitro genotoxic and carcinogenic effects. Due to the increasing evidence of their role in carcinogenicity, we have also included studies that have reported epigenetic factors, such as abnormal apoptosis, enhanced oxidative stress and pro-inflammatory effects involving these nanoparticles. PMID:23170105

  10. Copper-phthalocyanine based metal-organic interfaces: the effect of fluorination, the substrate, and its symmetry.

    PubMed

    de Oteyza, D G; El-Sayed, A; Garcia-Lastra, J M; Goiri, E; Krauss, T N; Turak, A; Barrena, E; Dosch, H; Zegenhagen, J; Rubio, A; Wakayama, Y; Ortega, J E

    2010-12-07

    Metal-organic interfaces based on copper-phthalocyanine monolayers are studied in dependence of the metal substrate (Au versus Cu), of its symmetry [hexagonal (111) surfaces versus fourfold (100) surfaces], as well as of the donor or acceptor semiconducting character associated with the nonfluorinated or perfluorinated molecules, respectively. Comparison of the properties of these systematically varied metal-organic interfaces provides new insight into the effect of each of the previously mentioned parameters on the molecule-substrate interactions.

  11. Ultralow flexural properties of copper microhelices fabricated via electrodeposition-based three-dimensional direct-writing technology.

    PubMed

    Yi, Zhiran; Lei, Yu; Zhang, Xianyun; Chen, Yining; Guo, Jianjun; Xu, Gaojie; Yu, Min-Feng; Cui, Ping

    2017-08-31

    Helical metallic micro/nanostructures as functional components have considerable potential for future miniaturized devices, based on their unique mechanical and electrical properties. Thus, understanding and controlling the mechanical properties of metallic helices is desirable for their practical application. Herein, we implemented a direct-writing technique based on the electrodeposition method to grow copper microhelices with well-defined and programmable three-dimensional (3D) features. The mechanical properties of the 3D helical structures were studied by the electrically induced quasistatic and dynamic electromechanical resonance technique. These methods mainly explored the static pull-in process and the dynamic electromechanical response, respectively. It was found that the center-symmetric and vertical double copper microhelix structure with 1.2 μm wire diameter has a flexural rigidity of 0.9 × 10(-14) N m(2) and the single vertical copper microhelix structure with 1.1 μm wire diameter has a flexural rigidity of 0.5989 × 10(-14) N m(2). By comparing with microwires and other reported micro/nanohelices, we found that the copper microhelices reported here had an ultralow stiffness (about 0.13 ± 0.01 N m(-1)). It is found that the experimental results agree well with the finite element calculations. The proposed method can be used to fabricate and measure the flexural properties of three-dimensional complex micro/nanowire structures, and may have a profound effect on the application of microhelices in various useful microdevices such as helix-based microelectromechanical switches, sensors and actuators based on their unique mechanical properties.

  12. A new copper(II) Schiff base complex containing asymmetrical tetradentate N2O2 Schiff base ligand: Synthesis, characterization, crystal structure and DFT study

    NASA Astrophysics Data System (ADS)

    Grivani, Gholamhossein; Baghan, Sara Husseinzadeh; Vakili, Mohammad; Khalaji, Aliakbar Dehno; Tahmasebi, Vida; Eigner, Václav; Dušek, Michal

    2015-02-01

    A new copper (II) Schiff base complex, CuL1, was prepared from the reaction of asymmetrical Schiff base ligand of L1 and Cu(OAC)2 (L1 = salicylidene imino-ethylimino-pentan-2-one). The Schiff base ligand, L1, and its copper (II) complex, CuL1, have been characterized by elemental analysis (CHN) and FT-IR and UV-vis spectroscopy. In addition, 1H NMR was employed for characterization of the ligand. Thermogrametric analysis of the CuL1 reveals its thermal stability and its decomposition pattern shows that it is finally decomposed to the copper oxide (CuO). The crystal structure of CuL1 was determined by the single crystal X-ray analysis. The CuL1 complex crystallizes in the monoclinic system, with space group P21/n and distorted square planar coordination around the metal ion. The Schiff base ligand of L1 acts as a chelating ligand and coordinates via two nitrogen and two oxygen atoms to the copper (II) ion with C1 symmetry. The structure of the CuL1 complex was also studied theoretically at different levels of DFT and basis sets. According to calculated results the Csbnd O bond length of the salicylate fragment is slightly higher than that in the acetylacetonate fragment of ligand, which could be interpreted by resonance increasing between phenyl and chelated rings in ligand in relative to the acetylacetonate fragment.

  13. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    SciTech Connect

    Porobova, Svetlana Loskutov, Oleg; Markova, Tat’jana; Klopotov, Vladimir; Klopotov, Anatoliy; Vlasov, Viktor

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  14. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    NASA Astrophysics Data System (ADS)

    Porobova, Svetlana; Markova, Tat'jana; Klopotov, Vladimir; Klopotov, Anatoliy; Loskutov, Oleg; Vlasov, Viktor

    2016-01-01

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen's law.

  15. Acid-base interactions and complex formation while recovering copper(II) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Nikiforova, T. E.; Kozlov, V. A.; Islyaikin, M. K.

    2012-12-01

    The sorption properties of nontreated cotton cellulose and cellulose modified with polyvinylpyrrolidone with respect to copper(II) ions are investigated. It is established that modified cellulose adsorbents have high sorption capability associated with the formation of new sorption centers during treatment with nitrogen-containing polymer. A mechanism is proposed for acid-base interactions in aqueous solutions of acids, bases, and salts during copper(II) cation recovery using cellulose adsorbent with the participation of polyvinylpyrrolidone.

  16. Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound.

    PubMed

    Gupta, Harsh; Gogate, Parag R

    2016-05-01

    Copper is one of the most toxic heavy metals having significant effects on the living organisms and hence effective removal of copper from waste water is crucial. The current work investigates the application of activated watermelon shell based biosorbent for the removal of copper from aqueous solution. The effect of activation using calcium hydroxide and citric acid as well as the effect of operating parameters like contact time, adsorbent dosage, temperature, pH, initial concentration and ultrasonic power on the extent of removal has been investigated. Experiments performed in the presence of ultrasound to investigate the degree of intensification as compared to the conventional agitation based treatment revealed that the adsorption rate significantly increases in the presence of ultrasound and also the time required for reaching the equilibrium reduces from 60 min in conventional approach to only 20 min in the presence of ultrasound. The extent of adsorption of Cu(II) on adsorbents was found to increase with an increase in the operating pH till an optimum value of 5. The extent of adsorption also increased with a decrease in the initial concentration and particle size as well as with an increase in ultrasonic power till an optimum. Kinetics and isotherm study revealed that all the experimental data was found to best fit the pseudo second order kinetics and Langmuir adsorption isotherm model respectively. Maximum adsorption capacity was found to be 31.25mg/g for watermelon treated with calcium hydroxide and 27.027 mg/g for watermelon treated with citric acid. Overall present study established that activated watermelon is an environmentally friendly, low cost and highly efficient biosorbent that can be successfully applied for the removal of copper from aqueous solution with intensification benefits based on the ultrasound assisted approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Melt Conditioned Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Scamans, Geoff; Li, Hu-Tian; Fan, Zhongyun

    High shear melt conditioning of aluminum alloy melts disperses oxide films and provides potent nuclei to promote non-dendritic solidification leading to refined as cast microstructures for shape castings, semis or continuously cast product forms. A new generation of high shear melt conditioning equipment has been developed based on a dispersive mixer that can condition either a batch melt or can provide a continuous melt feed. Most significantly the melt conditioner can be used directly in the sump of a DC caster where it has a dramatic effect on the cast microstructure. The present goals are to expand the castable alloy range and to increase the tolerance of alloys used in transport applications to impurities to increase the use of recycled metal. The paper will review the current status of the melt conditioning technology across the range of casting options and will highlight development opportunities.

  18. The present status of dental titanium casting

    NASA Astrophysics Data System (ADS)

    Okabe, Toru; Ohkubo, Chikahiro; Watanabe, Ikuya; Okuno, Osamu; Takada, Yukyo

    1998-09-01

    Experimentation in all aspects of titanium casting at universities and industries throughout the world for the last 20 years has made titanium and titanium-alloy casting nearly feasible for fabricating sound cast dental prostheses, including crowns, inlays, and partial and complete dentures. Titanium casting in dentistry has now almost reached the stage where it can seriously be considered as a new method to compete with dental casting using conventional noble and base-metal alloys. More than anything else, the strength of titanium’s appeal lies in its excellent biocompatibility, coupled with its comparatively low price and abundant supply. Research efforts to overcome some problems associated with this method, including studies on the development of new titanium alloys suitable for dental use, will continue at many research sites internationally.

  19. Grain Refinement of Deoxidized Copper

    NASA Astrophysics Data System (ADS)

    Balart, María José; Patel, Jayesh B.; Gao, Feng; Fan, Zhongyun

    2016-10-01

    This study reports the current status of grain refinement of copper accompanied in particular by a critical appraisal of grain refinement of phosphorus-deoxidized, high residual P (DHP) copper microalloyed with 150 ppm Ag. Some deviations exist in terms of the growth restriction factor ( Q) framework, on the basis of empirical evidence reported in the literature for grain size measurements of copper with individual additions of 0.05, 0.1, and 0.5 wt pct of Mo, In, Sn, Bi, Sb, Pb, and Se, cast under a protective atmosphere of pure Ar and water quenching. The columnar-to-equiaxed transition (CET) has been observed in copper, with an individual addition of 0.4B and with combined additions of 0.4Zr-0.04P and 0.4Zr-0.04P-0.015Ag and, in a previous study, with combined additions of 0.1Ag-0.069P (in wt pct). CETs in these B- and Zr-treated casts have been ascribed to changes in the morphology and chemistry of particles, concurrently in association with free solute type and availability. No further grain-refining action was observed due to microalloying additions of B, Mg, Ca, Zr, Ti, Mn, In, Fe, and Zn (~0.1 wt pct) with respect to DHP-Cu microalloyed with Ag, and therefore are no longer relevant for the casting conditions studied. The critical microalloying element for grain size control in deoxidized copper and in particular DHP-Cu is Ag.

  20. Processing of IN-718 Lattice Block Castings

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2002-01-01

    Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.