Science.gov

Sample records for cast duplex stainless

  1. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Kim, Yoon-Jun

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  2. Use of duplex stainless steel castings in control valves

    SciTech Connect

    Gossett, J.L.

    1996-07-01

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  3. Aging of cast duplex stainless steels in LWR systems

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1984-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 400/sup 0/C reveals the formation of four different types of precipitates that are not ..cap alpha..'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 300/sup 0/C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables.

  4. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  5. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-28

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr–rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  6. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  7. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGES

    Byun, T. S.; Yang, Y.; Overman, N. R.; ...

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  8. Cavitation corrosion behavior of cast duplex stainless steel in seawater

    SciTech Connect

    Shalaby, H.M.; Al-Hashem, A.

    1996-10-01

    The cavitation corrosion behavior of a commercial cast duplex stainless steel was studied in seawater using an ultrasonically induced cavitation facility at a frequency of 20 kHz and an amplitude of 25 {micro}m. The work included measurements of the free corrosion potential and mass loss in addition to microscopic examinations. Cavitation caused an active shift in the free corrosion potential. The rate of mass loss was negligible in quiescent seawater, while it significantly increased in the presence of cavitation. The application of cathodic protection reduced the rate of mass loss by 19%. Microscopic examinations revealed that the first signs of cavitation damage were in the form of slip bands and small cavities in the austenite islands and at the ferrite/austenite boundaries. With the progress of cavitation, material loss became mainly at the austenite phase and spread to the ferrite phase at a later stage. Cathodic protection decreased slightly the number of cavities. Cross-sectional examinations revealed the presence of microcracks in the bulk of the material. The microcracks initiated at the surface in the ferrite matrix. Crack propagation was impeded by the austenite islands and branched along parallel slip systems.

  9. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  10. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  11. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    Volume 3 is comprised of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope®, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  12. Ferrite Measurement in Austenitic and Duplex Stainless Steel Castings - Final Report

    SciTech Connect

    Lundin, C.D.; Zhou, G.; Ruprecht, W.

    1999-08-01

    The ability to determine ferrite rapidly, accurately and directly on a finished casting, in the solution annealed condition, can enhance the acceptance, save on manufacturing costs and ultimately improve service performance of duplex stainless steel cast products. If the suitability of a non-destructive ferrite determination methodology can be demonstrated for standard industrial measurement instruments, the production of cast secondary standards for calibration of these instruments is a necessity. With these concepts in mind, a series of experiments were carried out to demonstrate, in a non-destructive manner, the proper methodology for determining ferrite content. The literature was reviewed, with regard to measurement techniques and vagaries, an industrial ferrite measurement round-robin was conducted, the effects of casting surface finish, preparation of the casting surface for accurate measurement and the evaluation of suitable means for the production of cast secondary standards for calibration were systematically investigated. The data obtained from this research program provide recommendations to ensure accurate, repeatable, and reproducible ferrite measurement and qualifies the Feritscope for field use on production castings.

  13. Ferrite Measurement in Austenitic and Duplex Stainless Steel Castings - Literature Review

    SciTech Connect

    Lundin, C.D.; Zhou, G.; Ruprecht, W.

    1999-08-01

    The ability to determine ferrite rapidly, accurately and directly on a finished casting, in the solution annealed condition, can enhance the acceptance, save on manufacturing costs and ultimately improve service performance of duplex stainless steel cast products. If the suitability of a non-destructive ferrite determination methodology can be demonstrated for standard industrial measurement instruments, the production of cast secondary standards for calibration of these instruments is a necessity. With these concepts in mind, a series of experiments were carried out to demonstrate, in a non-destructive manner, the proper methodology for determining ferrite content. The literature was reviewed, with regard to measurement techniques and vagaries, an industrial ferrite measurement round-robin was conducted, the effects of casting surface finish, preparation of the casting surface for accurate measurement and the evaluation of suitable means for the production of cast secondary standards for calibration were systematically investigated. The data obtained from this research program provides recommendations to insure accurate, repeatable and reproducible ferrite measurement and qualifies the Feritscope for field use on production castings.

  14. Effect of thermal aging on the fatigue crack growth behavior of cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Lü, Xu-ming; Li, Shi-lei; Zhang, Hai-long; Wang, Yan-li; Wang, Xi-tao

    2015-11-01

    The effect of thermal aging on the fatigue crack growth (FCG) behavior of Z3CN20?09M cast duplex stainless steel with low ferrite content was investigated in this study. The crack surfaces and crack growth paths were analyzed to clarify the FCG mechanisms. The microstructure and micromechanical properties before and after thermal aging were also studied. Spinodal decomposition in the aged ferrite phase led to an increase in the hardness and a decrease in the plastic deformation capacity, whereas the hardness and plastic deformation capacity of the austenite phase were almost unchanged after thermal aging. The aged material exhibited a better FCG resistance than the unaged material in the near-threshold regime because of the increased roughness-induced crack closure associated with the tortuous crack path and rougher fracture surface; however, the tendency was reversed in the Paris regime because of the cleavage fracture in the aged ferrite phases.

  15. Clean cast steel technology. Determination of transformation diagrams for duplex stainless steel

    SciTech Connect

    Chumbley, S. L.

    2005-09-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma ( can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling- transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe 22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ( formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations, The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, was stabilized with increasing Cr addition and by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local

  16. Microstructural characteristics and corrosion behavior of a super duplex stainless steel casting

    SciTech Connect

    Martins, Marcelo Casteletti, Luiz Carlos

    2009-02-15

    The machining of super duplex stainless steel castings is usually complicated by the difficulty involved in maintaining the dimensional tolerances required for given applications. Internal stresses originating from the solidification process and from subsequent heat treatments reach levels that exceed the material's yield strength, promoting plastic strain. Stress relief heat treatments at 520 deg. C for 2 h are an interesting option to solve this problem, but because these materials present a thermodynamically metastable condition, a few precautions should be taken. The main objective of this work was to demonstrate that, after solution annealing at 1130 deg. C and water quenching, stress relief at 520 deg. C for 2 h did not alter the duplex microstructure or impair the pitting corrosion resistance of ASTM A890/A890M Grade 6A steel. This finding was confirmed by microstructural characterization techniques, including light optical and scanning electron microscopy, and X-ray diffraction. Corrosion potential measurements in synthetic sea water containing 20,000 ppm of chloride ions were also conducted at three temperatures: 5 deg. C, 25 deg. C and 60 deg. C.

  17. Erosive Wear Behavior of High-Alloy Cast Iron and Duplex Stainless Steel under Mining Conditions

    NASA Astrophysics Data System (ADS)

    Yoganandh, J.; Natarajan, S.; Kumaresh Babu, S. P.

    2015-09-01

    Centrifugal pumps used in the lignite mines encounter erosive wear problems, leading to a disastrous failure of the pump casings. This paper attempts to evaluate the erosive wear resistance of Ni-Hard 4, high-chromium iron, and Cast CD4MCu duplex stainless steel (DSS), for mining conditions. The prepared test coupons were subjected to an erosion test by varying the impingement velocity and the angle of impingement, under two different pH conditions of 3 and 7, which pertained to the mining conditions. XRD analysis was carried out to confirm the phases present in the alloy. The eroded surface was subjected to SEM analysis to identify the erosion mechanisms. The surface degradation of Ni-Hard 4 and high-chromium iron came from a low-angle abrasion with a grooving and plowing mechanism at a low angle of impingement. At normal impingement, deep indentations resulted in lips and crater formations, leading to degradation of the surface in a brittle manner. A combined extrusion-forging mechanism is observed in the CD4MCu DSS surface at all the impingement angles.

  18. Effect of aging temperature on phase decomposition and mechanical properties in cast duplex stainless steels

    DOE PAGES

    Mburu, Sarah; Kolli, R. Prakash; Perea, Daniel E.; ...

    2017-03-06

    The microstructure and mechanical properties in unaged and thermally aged (at 280 °C, 320 °C, 360 °C, and 400 °C to 4300 h) CF–3 and CF–8 cast duplex stainless steels (CDSS) are investigated. The unaged CF–8 steel has Cr-rich M23C6 carbides located at the δ–ferrite/γ–austenite heterophase interfaces that were not observed in the CF–3 steel and this corresponds to a difference in mechanical properties. Both unaged steels exhibit incipient spinodal decomposition into Fe-rich α–domains and Cr-rich α’–domains. During aging, spinodal decomposition progresses and the mean wavelength (MW) and mean amplitude (MA) of the compositional fluctuations increase as a function ofmore » aging temperature. Additionally, G–phase precipitates form between the spinodal decomposition domains in CF–3 at 360 °C and 400 °C and in CF–8 at 400 °C. Finally, the microstructural evolution is correlated to changes in mechanical properties.« less

  19. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    SciTech Connect

    Russell, Steven, W.; Lundin, Carl, D.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the

  20. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    SciTech Connect

    Russell, Steven, W.; Lundin, Carl, W.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought

  1. Sigma phase morphologies in cast and aged super duplex stainless steel

    SciTech Connect

    Martins, Marcelo; Casteletti, Luiz Carlos

    2009-08-15

    Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material's impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 deg. C and 980 deg. C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 deg. C and block-shaped when heat treated at 980 deg. C.

  2. Effect of N addition on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Son, Jinil; Kim, Sangshik; Lee, Jehyun; Choi, Byunghak

    2003-08-01

    The effect of N addition on the microstructure, tensile, and corrosion behaviors of CD4MCU (Fe-25Cr-5Ni-2.8Cu-2Mo) cast duplex stainless steel was examined in the present study. The slow strain rate tests were also conducted at a nominal strain rate of 1 × 10-6/s in air and 3.5 pct NaCl+5 pct H2SO4 solution for studying the stress corrosion cracking (SCC) behavior. It was observed that the volume fraction of austenitic phase in CD4MCU alloy varied from 38 to 59 pct with increasing nitrogen content from 0 to 0.27 wt. pct. The tensile behavior of CD4MCU cast duplex stainless steels, which tended to vary significantly with different N contents, appeared to be strongly related to the volume changes in ferritic and austenitic phases, rather than the intrinsic N effect. The improvement in the resistance to general corrosion in 3.5 pct NaCl+5 pct H2SO4 aqueous solution was notable with 0.13 pct N addition. The further improvement was not significant with further N addition. The resistance to SCC of CD4MCU cast duplex stainless steels in 3.5 pct NaCl+5 pct H2SO4 aqueous solution, however, increased continuously with increasing N content. The enhancement in the SCC resistance was believed to be related to the volume fraction of globular austenitic colonies, which tended to act as barriers for the development of initial pitting cracks in the ferritic phase into the sharp ones.

  3. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  4. Characterization of thermal aging of duplex stainless steel by SQUID

    SciTech Connect

    Isobe, Y.; Kamimura, A.; Aoki, K.; Nakayasu, F.

    1995-08-01

    Thermal aging is a growing concern for long-term-aged duplex stainless steel piping in nuclear power plants. Superconducting QUantum Interference Device (SQUID) was used for the detection of thermal aging of SUS329 rolled duplex stainless steel and SCS16 cast duplex stainless steel. It was found that the SQUID output signal pattern in the presence of AC magnetic field applied to the specimen was sensitive to the changes in electromagnetic properties due to thermal aging.

  5. Final Report, Volume 4, The Development of Qualification Standards for Cast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope® and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation was

  6. Final Report, Volume 4, The Develpoment of Qualification Standards forCast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope{reg_sign} and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation

  7. Aging degradation of cast stainless steel

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the ..cap alpha..' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450/sup 0/C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450/sup 0/C. 18 refs., 13 figs.

  8. Cavitation erosion of duplex and super duplex stainless steels

    SciTech Connect

    Kwok, C.T.; Man, H.C.; Cheng, F.T.

    1998-10-05

    Owing to their excellent corrosion resistance, stainless steels are widely used both in the marine, urban water, chemical and food industries. In addition to the corrosive environment, high fluid flow speeds are always encountered for components used in these industries. The cavitation characteristics of S30400 and S31600 austenitic stainless steels and duplex stainless steels were studied in detail by a number of authors. It was generally agreed that S30400 has higher cavitation erosion resistance than that of S31600 due to higher tendency of strain induced martensitic transformation under high impulse of stress. A considerable number of results on stress corrosion cracking characteristics of SDSS and duplex stainless steels have been published but data concerning their cavitation erosion property are extremely rare.

  9. Dislocation substructure in fatigued duplex stainless steel

    SciTech Connect

    Polak, J. . Lab. de Mecanique de Lille Inst. of Physical Metallurgy, Brno . Academy of Sciences); Degallaix, S. . Lab. de Mecanique de Lille); Kruml, T. . Academy of Sciences)

    1993-12-15

    Cyclic plastic straining of crystalline materials results in the formation of specific dislocation structures. Considerable progress in mapping and understanding internal dislocation structures has been achieved by studying single crystal behavior: however, most structural materials have a polycrystalline structure and investigations of polycrystals in comparison to single crystal behavior of simple metals prove to be very useful in understanding more complex materials. There are some classes of materials, however, with complicated structure which do not have a direct equivalent in single crystalline form. Moreover, the specific dimensions and shapes of individual crystallites play an important role both in the cyclic stress-strain response of these materials and in the formation of their interior structure in cyclic straining. Austenitic-ferritic duplex stainless steel, which is a kind of a natural composite, is a material of this type. The widespread interest in the application of duplex steels is caused by approximately doubled mechanical properties and equal corrosion properties, when compared with classical austenitic stainless steels. Fatigue resistance of these steels as well as the surface damage evolution in cyclic straining have been studied; however, much less is known about the internal substructure development in cyclic straining. In this study the dislocation arrangement in ferritic and austenitic grains of the austenitic-ferritic duplex steel alloyed with nitrogen and cyclically strained with two strain amplitudes, is reported and compared to the dislocation arrangement found in single and polycrystals of austenitic and ferritic materials of a similar composition and with the surface relief produced in cyclic plastic straining.

  10. Moessbauer measurements of microstructural change in aged duplex stainless steel

    SciTech Connect

    Kirihigashi, A.; Sakamoto, N.; Yamaoka, T.; Nasu, S.

    1995-08-01

    A duplex stainless steel (ASME SA351 CF8M) has usually been manufactured by a continuous casting technique. It consists of a paramagnetic austenite phase and a ferromagnetic ferrite phase. It has been known that the ferrite phase decomposition occurs in this steel after aging between 300 and 450 C. As a result of phase decomposition, a Fe-rich phase and a Cr-rich phase are produced in the ferrite phase. It is difficult to detect the phase decomposition even by not only optical microscopy but also transmission electron microscopy, since the decomposed structure is very fine. However, Moessbauer measurements that can detect the magnetic hyperfine field of magnetic substance may detect the microstructural change. An averaged magnetic hyperfine field increases in the ferrite phase, due to the production of the Fe-rich phase which has high magnetic hyperfine field. Therefore, the authors investigated the phase decomposition of the duplex stainless steel caused by aging, utilization Moessbauer spectroscopy which has capability of detecting this structural change in the atomic level quantitatively. The authors also investigated the potential of backscattering Moessbauer method for NDE technique.

  11. Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture

    NASA Astrophysics Data System (ADS)

    Patra, Sudipta; Ghosh, Abhijit; Singhal, Lokesh Kumar; Podder, Arijit Saha; Sood, Jagmohan; Kumar, Vinod; Chakrabarti, Debalay

    2017-01-01

    The hot deformation behavior of 2101 grade lean duplex stainless steel (DSS, containing 5 wt pct Mn, 0.2 wt pct N, and 1.4 wt pct Ni) and associated microstructural changes within δ-ferrite and austenite ( γ) phases were investigated by hot-compression testing in a GLEEBLE 3500 simulator over a range of deformation temperatures, T def [1073 K to 1373 K (800 °C to 1100 °C)], and applied strains, ɛ (0.25 to 0.80), at a constant true strain rate of 1/s. The microstructural softening inside γ was dictated by discontinuous dynamic recrystallization (DDRX) at a higher T def [1273 K to 1373 K (1000 °C to 1100 °C)], while the same was dictated by continuous dynamic recrystallization (CDRX) at a lower T def (1173 K (900 °C)]. Dynamic recovery (DRV) and CDRX dominated the softening inside δ-ferrite at T def ≥ 1173 K (900 °C). The dynamic recrystallization (DRX) inside δ and γ could not take place upon deformation at 1073 K (800 °C). The average flow stress level increased 2 to 3 times as the T def dropped from 1273 to 1173 K (1000 °C to 900 °C) and finally to 1073 K (800 °C). The average microhardness values taken from δ-ferrite and γ regions of the deformed samples showed a different trend. At T def of 1373 K (1100 °C), microhardness decreased with the increase in strain, while at T def of 1173 K (900 °C), microhardness increased with the increase in strain. The microstructural changes and hardness variation within individual phases of hot-deformed samples are explained in view of the chemical composition of the steel and deformation parameters ( T def and ɛ).

  12. Aging degradation of cast stainless steel

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1986-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich ..cap alpha..' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by ..cap alpha..' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 450/sup 0/C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed.

  13. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    SciTech Connect

    Martins, Marcelo; E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos

    2005-09-15

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl{sup -}). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure.

  14. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-05-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  15. Microstructure, Properties and Weldability of Duplex Stainless Steel 2101

    NASA Astrophysics Data System (ADS)

    Ma, Li; Hu, Shengsun; Shen, Junqi

    2017-01-01

    The continuous development of duplex stainless steels (DSSs) is due to their excellent corrosion resistance in aggressive environments and their mechanical strength, which is usually twice of conventional austenitic stainless steels (ASSs). In this paper, a designed lean duplex stainless steel 2101, with the alloy design of reduced nickel content and increased additions of manganese and nitrogen, is studied by being partly compared with typical ASS 304L steels. The microstructure, mechanical properties, impact toughness, corrosion resistance and weldability of the designed DSS 2101 were conducted. The results demonstrated that both 2101 steel and its weldment show excellent mechanical properties, impact toughness and corrosion resistance, so DSS 2101 exhibits good comprehensive properties and can be used to replace 304L in numerous applications.

  16. Effect of ferrite on cast stainless steels

    SciTech Connect

    Nadezhdin, A.; Cooper, K. ); Timbers, G. . Kraft Pulp Division)

    1994-09-01

    Premature failure of stainless steel castings in bleach washing service is attributed to poor casting quality high porosity and to a high ferrite content, which makes the castings susceptible to corrosion by hot acid chloride solutions. A survey of the chemical compositions and ferrite contents of corrosion-resistant castings in bleach plants at three pulp mills found high [delta]-ferrite levels in the austenitic matrix due to the improper balance between austenite and ferrite stabilizers.

  17. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  18. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    SciTech Connect

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019 n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  19. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    DOE PAGES

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; ...

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 1019more » n/cm2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less

  20. Hydrogen embrittlement of duplex stainless steel and maraging steel in sea water: Effect of pressure

    SciTech Connect

    Pohjanne, P.; Festy, D.

    1994-12-31

    Hydrogen embrittlement behavior of cast super duplex stainless steel and cast maraging steel was examined as a function of electrode potential and hydrostatic pressure, i.e, the water depth, in synthetic sea water using fracture mechanics bolt-loaded wedge-opening (WOL) specimens. The experimental variables investigated included: (1) Electrode potential: free corrosion potential and cathodic protection; (2) Hydrostatic pressure: ambient and 10 MPa corresponding depth of 1,000 meters. The duplex stainless-,steel was not susceptible to hydrogen embrittlement with initial stress intensity values of 30 MPa{radical}m < K{sub i} < 45 MPa{radical}m at ambient pressure. However, at pressure of 10 MPa slight crack growth was observed at open circuit potential and the crack growth was enhanced by the cathodic protection. The maraging steel was susceptible to hydrogen embrittlement in all tests, with all examined initial stress intensity values, K{sub i} < 36 MPa{radical}m. At the open circuit potential the crack growth rate was almost independent of the pressure. Cathodic protection enhanced crack growth and lowered the threshold stress intensity value at ambient as well as at 10 MPa pressure and the crack growth rate increased clearly as pressure increased from 0.1 MPa to 10 MPa. According to these experimental results the combined effect of cathodic protection and hydrostatic pressure must be taken into consideration when designing new offshore structures and equipment especially for deep sea application.

  1. Stress corrosion cracking of duplex stainless steels in caustic solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  2. Cast Stainless Steel Ferrite and Grain Structure

    SciTech Connect

    Ruud, Clayton O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Mathews, Royce; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    In-service inspection requirements dictate that piping welds in the primary pressure boundary of light-water reactors be subject to a volumetric examination based on the rules contained within the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section XI. The purpose of the inspection is the reliable detection and accurate sizing of service-induced degradation and/or material flaws introduced during fabrication. The volumetric inspection is usually carried out using ultrasonic testing (UT) methods. However, the varied metallurgical macrostructures and microstructures of cast austenitic stainless steel piping and fittings, including statically cast stainless steel and centrifugally cast stainless steel (CCSS), introduce significant variations in the propagation and attenuation of ultrasonic energy. These variations complicate interpretation of the UT responses and may compromise the reliability of UT inspection. A review of the literature indicated that a correlation may exist between the microstructure and the delta ferrite content of the casting alloy. This paper discusses the results of a recent study where the goal was to determine if a correlation existed between measured and/or calculated ferrite content and grain structure in CCSS pipe.

  3. Aging degradation of cast stainless steels: Effects on mechanical properties

    SciTech Connect

    Chopra, O.K.; Chung, H.M.

    1987-06-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water operating conditions. Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 290/sup 0/C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, J/sub IC/, and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The fracture toughness results are consistent with the Charpy-impact data, i.e., the relative reduction in J/sub IC/ is similar to the relative decrease in impact energy. The ferrite content and concentration of C in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and Mo-containing CF-8M steels are most susceptible to embrittlement. Weakening of the ferrite/austenite phase boundaries by carbide precipitates has a significant effect on the kinetics and extent of embrittlement of the high-carbon CF-8 and CF-8M steels, particularly after aging at temperatures greater than or equal to400/sup 0/C. The influence of N content and distribution of ferrite on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 450/sup 0/C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel.

  4. Aging degradation of cast stainless steel: status and program

    SciTech Connect

    Chopra, O.K.; Ayrault, G.

    1983-10-01

    A program has been initiated to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are reviewed to determine the critical parameters that control the aging behavior and to define the objectives and scope of the investigation. The test matrices for microstructural studies and mechanical property measurements are presented. The initial experimental effort is focussed on characterizing the microstructure of long-term, low-temperature aged material. Specimens from three heats of cast CF-8 and CF-8M stainless steel aged for up to 70,000 h at 300, 350, and 400/sup 0/C were obtained from George Fisher Ltd., of Switzerland. Initial analyses reveal the formation of three different types of precipitates which are not ..cap alpha..'. An FCC phase, similar to the M/sub 23/C/sub 6/ precipitates, was present in all the long-term aged material. 15 references, 10 figures, 2 tables.

  5. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-01

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  6. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    SciTech Connect

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-22

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 deg. C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  7. Phase Separation in Lean Grade Duplex Stainless Steel 2101

    SciTech Connect

    Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; Young, Jr., George A.; Tucker, Julie

    2015-08-19

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ separation found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.

  8. Carburizing of Duplex Stainless Steel (DSS) Under Compression Superplastic Deformation

    NASA Astrophysics Data System (ADS)

    Ahamad, Nor Wahida; Jauhari, Iswadi

    2012-12-01

    A new surface carburizing technique which combines superplastic deformation with superplastic carburizing (SPC) is introduced. SPC was conducted on duplex stainless steel under compression mode at a fixed 0.5 height reduction strain rates ranging from 6.25 × 10-5 to 1 × 10-3 s-1 and temperature ranging from 1173 K to 1248 K (900 °C to 975 °C). The results are compared with those from conventional and non-superplastic carburizing. The results show that thick hard carburized layers are formed at a much faster rate compared with the other two processes. A more gradual hardness transition from the surface to the substrate is also obtained. The highest carburized layer thickness and surface hardness are attained under SPC process at 1248 K (975 °C) and 6.25 × 10-5 s-1 with a value of (218.3 ± 0.5) μm and (1581.0 ± 5.0) HV respectively. Other than that, SPC also has the highest scratch resistance.

  9. Eddy current techniques for super duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  10. Phase Separation in Lean Grade Duplex Stainless Steel 2101

    DOE PAGES

    Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; ...

    2015-08-19

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 weremore » used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ separation found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.« less

  11. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  12. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    SciTech Connect

    R, Shashanka Chaira, D.

    2015-01-15

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argon atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.

  13. Assessment of thermal embrittlement of cast stainless steels

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1994-05-01

    A procedure and correlations are presented for assessing thermal embrittlement and predicting Charpy-impact energy and fracture toughness J-R curve of cast stainless steel components under Light Water Reactor operating conditions from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Fracture properties as a function of time and temperature of reactor service are estimated from the kinetics of embrittlement, which are also determined from chemical composition. A common ``predicted lower-bound`` J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature. Examples of estimating fracture toughness of cast stainless steel components during reactor service are presented.

  14. Procedure for flaw detection in cast stainless steel

    DOEpatents

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  15. Effect of aging on impact properties of ASTM A890 Grade 1C super duplex stainless steel

    SciTech Connect

    Martins, Marcelo Forti, Leonardo Rodrigues Nogueira

    2008-02-15

    Super duplex stainless steels in the solution annealed condition are thermodynamically metastable systems which, when exposed to heat, present a strong tendency to 'seek' the most favorable thermodynamic condition. The main purpose of this study was to characterize the microstructure of a super duplex stainless steel in the as cast and solution annealed conditions, and to determine the influence of aging heat treatments on its impact strength, based on Charpy impact tests applied to V-notched test specimens. The sigma phase was found to begin precipitating at heat treatment temperatures above 760 deg. C and to dissolve completely only above 1040 deg. C, with the highest peak concentration of this phase appearing at close to 850 deg. C. Heat treatments conducted at temperatures of 580 deg. C to 740 deg. C led to a reduction of the energy absorbed in the Charpy impact test in response to the precipitation of a particulate phase with particle sizes ranging from 0.5 {mu}m to 1.0 {mu}m, with a chromium and iron-rich chemical composition.

  16. Kinetics and mechanism of thermal aging embrittlement of duplex stainless steels

    SciTech Connect

    Chung, H.M.; Chopra, O.K.

    1987-06-01

    Microstructural characteristics of long-term-aged cast duplex stainless steel specimens from eight laboratory heats and an actual component from a commercial boiling water reactor have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle neutron scattering (SANS), and atom probe field ion microscopy (APFIM) techniques. Three precipitate phases, i.e., Cr-rich ..cap alpha..' and the Ni- and Si-rich G phase, and ..gamma../sub 2/ austenite, have been identified in the ferrite matrix of the aged specimens. For CF-8 grade materials, M/sub 23/C/sub 6/ carbides were identified on the austenite-ferrite boundaries as well as in the ferrite matrix for aging at greater than or equal to 450/sup 0/C. It has been shown that Si, C, and Mo contents are important factors that influence the kinetics of the G-phase precipitation. However, TEM and APFIM analyses indicate that the embrittlement for less than or equal to400/sup 0/C aging is primarily associated with Fe and Cr segregation in ferrite by spinodal decomposition. For extended aging, e.g., 6 to 8 years at 350 to 400/sup 0/C, large platelike ..cap alpha..' formed by nucleation and growth from the structure produced by the spinodal decomposition. The Cr content appears to play an important role either to promote the platelike ..cap alpha..' (high Cr content) or to suppress the ..cap alpha..' in favor of ..gamma../sub 2/ precipitation (low Cr). Approximate TTT diagrams for the spinodal, ..cap alpha..', G, ..gamma../sub 2/, and the in-ferrite M/sub 23/C/sub 6/ have been constructed for 250 to 450/sup 0/C aging. Microstructural modifications associated with a 550/sup 0/C reannealing and a subsequent toughness restoration are also discussed. It is shown that the toughness restoration is associated primarily with the dissolution of the Cr-rich region in ferrite.

  17. Influence of the Martensitic Transformation on the Microscale Plastic Strain Heterogeneities in a Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lechartier, Audrey; Martin, Guilhem; Comby, Solène; Roussel-Dherbey, Francine; Deschamps, Alexis; Mantel, Marc; Meyer, Nicolas; Verdier, Marc; Veron, Muriel

    2017-01-01

    The influence of the martensitic transformation on microscale plastic strain heterogeneity of a duplex stainless steel has been investigated. Microscale strain heterogeneities were measured by digital image correlation during an in situ tensile test within the SEM. The martensitic transformation was monitored in situ during tensile testing by high-energy synchrotron X-ray diffraction. A clear correlation is shown between the plasticity-induced transformation of austenite to martensite and the development of plastic strain heterogeneities at the phase level.

  18. Phase Transformations During the Low-Temperature Nitriding of AISI 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Gu, Tan; Qiu, Shaoyu; Wang, Jun; Xiong, Ji; Fan, Hongyuan

    2015-02-01

    Liquid nitriding of type AISI 2205 duplex stainless steel was conducted at 723 K (450 °C), using one type of novel low-temperature liquid chemical thermo-treatment. The transformation of the nitrided surface microstructure was systematically studied. Experimental results revealed that a nitrided layer formed on the sample surface with the thickness ranging from 3 to 28 μm, depending on nitriding time. After the 2205 duplex stainless steel was subjected to liquid nitriding 723 K (450 °C) for less than 8 hours, the pre-existing ferrite region on the surface transformed into the expanded austenite (S phase) by the infusion of nitrogen atoms, most of which stay in the interstitial sites. Generally, the dominant phase of the nitrided layer was the expanded austenite. When the nitriding time prolonged up to 16 hours, some pre-existing ferrite in expanded austenite was decomposed and ɛ-nitride precipitated subsequently. When the treatment time went up to 40 hours, large amount of ɛ-nitride and CrN precipitates were observed in the pre-existing ferritic region in the expanded austenite. Furthermore, many nitrides precipitated from the pre-austenite region. Acicular nitride was identified by transmission electron microscopy. The thickness of the nitrided layer increased with increasing nitriding time. The growth of the nitrided layer is mainly due to nitrogen diffusion in accordance with the expected parabolic rate law. Liquid nitriding effectively increased the surface hardness of 2205 duplex stainless steel by a factor of 3.

  19. Qualification of large diameter duplex stainless steel girth welds intended for low temperature service

    SciTech Connect

    Prosser, K.; Robinson, A.G.; Rogers, P.F.

    1996-12-31

    British Gas recently had a requirement to fabricate some UNS31803 duplex stainless steel pipework for an offshore topsides process plant. The pipework had a maximum diameter of 600mm, with a corresponding wall thickness of 18mm, and it was designed to operate at a minimum temperature of {minus}40 C. There is a lack of published toughness data for girth welds in duplex stainless steel at this thickness and minimum design temperature. Additionally, toughness requirements for girth welds in current pipework and pressure vessel codes are based on experience with carbon steels. As a result, a program of work has been carried out to study the Charpy, CTOD and wide plate toughness of girth welds in 22%Cr duplex stainless steel pipework. The welds were produced using a typical gas tungsten arc/gas metal arc pipework fabrication procedure. In addition, non-destructive evaluation trials have been carried out on a deliberately defective weld using radiography and ultrasonics. It was demonstrated that double wall single image {gamma}-radiography, single wall single image and panoramic X-radiography, and conventional shear wave ultrasonics were all able to detect planar root defects varying from 3 to 7mm in depth. There was good agreement between the sizes recorded by ultrasonics and those measured from macrosections. Small scale mechanical tests demonstrated that welds with overmatching tensile properties, and low temperature toughness properties which were acceptable to specification, could be produced. Wide plate tests demonstrated that defect size calculations from BS PD7493 were conservative.

  20. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  1. Development of Cast Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-11-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  2. Microstructure and mechanical properties of duplex stainless steel subjected to hydrostatic extrusion

    SciTech Connect

    Maj, P.; Adamczyk-Cieślak, B.; Mizera, J.; Pachla, W.; Kurzydłowski, K.J.

    2014-07-01

    The nanostructure and mechanical properties of ferritic-austenitic duplex stainless steel subjected to hydrostatic extrusion were examined. The refinement of the structure in the initial state and in the two deformation states (ε = 1.4 and ε = 3.8) was observed in an optical microscope (OM) and a transmission electron microscope (TEM). The results indicate that the structure evolved from microcrystalline with a grain size of about 4 μm to nanocrystalline with a grain size of about 150 nm in ferrite and 70 nm in austenite. The material was characterized mechanically by tensile tests performed in the two deformation states. The ultimate strength appeared to increase significantly compared to that in the initial deformation stages, which can be attributed to the grain refinement and plastic deformation. The heterogeneity observed in microregions results from the dual-phase structure of the steel. The results indicate that hydrostatic extrusion is a highly potential technology suitable for improving the properties of duplex steels. - Highlights: • Duplex stainless steel was hydro extruded to a total strain of 3.8 • After the last stage of deformation heterogeneous structure was obtained in the material • As a result of stresses non-diffusive transformation γ→α’ occurred in the material • Nanometric (sub)grains were obtained in the austenite regions.

  3. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  4. Process for stabilizing dimensions of duplex stainless steels for service at elevated temperatures

    DOEpatents

    Hull, Frederick C.; Tobin, John C.

    1981-01-01

    Duplex stainless steel materials containing austenite plus delta ferrite, are dimensionally stabilized by heating the material to a reaction temperature between about 1050.degree.-1450.degree. F. (566.degree.-788.degree. C.), holding it at this temperature during transformation of delta ferrite to austenite plus sigma phase, and subsequently heating to a reversion temperature between about 1625.degree.-1750.degree. F. (885.degree.-954.degree. C.), whereby the sigma phase transforms back to ferrite, but the austenite remains dispersed in the ferrite phase. Final controlled cooling permits transformation of ferrite to austenite plus sigma and, later, precipitation of carbides.

  5. The Formation of Martensitic Austenite During Nitridation of Martensitic and Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Zangiabadi, Amirali; Dalton, John C.; Wang, Danqi; Ernst, Frank; Heuer, Arthur H.

    2017-01-01

    Isothermal martensite/ferrite-to-austenite phase transformations have been observed after low-temperature nitridation in the martensite and δ-ferrite phases in 15-5 PH (precipitation hardening), 17-7 PH, and 2205 (duplex) stainless steels. These transformations, in the region with nitrogen concentrations of 8 to 16 at. pct, are consistent with the notion that nitrogen is a strong austenite stabilizer and substitutional diffusion is effectively frozen at the paraequilibrium temperatures of our experiments. Our microstructural and diffraction analyses provide conclusive evidence for the martensitic nature of these phase transformations.

  6. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa.

  7. On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mishra, M. K.; Balasundar, I.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    High temperature deformation behaviour of 2507 super duplex stainless steel was investigated by conducting isothermal hot compression tests. The dominant restoration processes in ferrite and austenite phases present in the material were found to be distinct. The possible causes for these differences are discussed. Based on the dynamic materials model, processing map was developed to identify the optimum processing parameters. The microstructural mechanisms operating in the material were identified. A unified strain-compensated constitutive equation was established to describe the high temperature deformation behaviour of the material under the identified processing conditions. Standard statistical parameter such as correlation coefficient has been used to validate the established equation.

  8. Role of structural orientation on the susceptibility of 2205 duplex stainless steel to hydrogen embrittlement

    NASA Astrophysics Data System (ADS)

    Sharrfeddin, A.; Musa, S. M.; Elshawesh, F. M.

    2012-09-01

    Relationship between the microstructure directionality of delta ferrite and austenite islands and the crack morphology, crack velocity and time to failure of the mechanically notched duplex stainless samples tested in hydrogen bearing environment was assessed in aqueous solution of 3.5% seawater. A number of UNS S32205 duplex stainless steel samples were mechanically notched in perpendicular and transverse directions with respect to the austenite and ferrite rolling direction were subjected to slow tensile strain at 21.2 nm/s while undergoing cathodic charging in aqueous solution of 3.5% seawater. In order to assess the role of hydrogen content on embrittlement the hydrogen charging was conducted at various cathodic potentials of -800 mV/SCE to -1300 mV/SCE at two different pH (6.7 and 3.5). Generally, the longitudinal samples showed lower susceptibility to hydrogen embrittlement compared with the transverse samples. The results also confirm that long austenite island can act as an obstacle for propagated crack owing to its low diffusivity and high solubility to the hydrogen.

  9. In-Situ Observations of Phase Transformations in the HAZ of 2205 Duplex Stainless Steel Weldments

    SciTech Connect

    Palmer, T A; Elmer, J W; Wong, J

    2001-08-15

    Ferrite ({delta})/austenite ({gamma}) transformations in the heat affected zone (HAZ) of a gas tungsten arc (GTA) weld in 2205 duplex stainless steel are observed in real-time using spatially resolved X-ray diffraction (SRXRD) with high intensity synchrotron radiation. A map showing the locations of the {delta} and {gamma} phases with respect to the calculated weld pool dimensions has been constructed from a series of SRXRD scans. Regions of liquid, completely transformed {gamma}, a combination of partially transformed {gamma} with untransformed {delta}, and untransformed {delta}+{gamma} are identified. Analysis of each SRXRD pattern provides a semi-quantitative definition of both the {delta}/{gamma} phase balance and the extent of annealing which are mapped for the first time with respect to the calculated weld pool size and shape. A combination of these analyses provides a unique real-time description of the progression of phase transformations in the HAZ. Using these real-time observations, important kinetic information about the transformations occurring in duplex stainless steels during heating and cooling cycles typical of welding can be determined.

  10. Stainless steel porous substrates produced by tape casting

    NASA Astrophysics Data System (ADS)

    Mercadelli, Elisa; Gondolini, Angela; Pinasco, Paola; Sanson, Alessandra

    2017-01-01

    In this work the technological issues related to the production of tape cast large-area porous stainless steel supports for Solid Oxide Fuel Cells (SOFC) applications were carefully investigated. The slurry formulation was optimized in terms of amount and nature of the organic components needed: rice starch and polymethyl metacrylate were found to be, respectively, the most suitable pore former and binder because easily eliminated during the thermal treatment in reducing atmosphere. The compatibility of the binder system chosen with the most widely used solvents for screen printing inks was also evaluated. Finally the influence of the sintering temperature and of the refractory supports to be used during the thermal treatments onto the production of porous stainless steel supports was discussed. The whole process optimization allows to produce flat, crack-free metallic substrate 900-1000 μm thick, dimensions up to 5×5 cm and with a tailored porosity of 40% suitable for SOFCs application.

  11. Evaluation of Oxidation and Hydrogen Permeation of Al Containing Duplex Stainless Steels

    SciTech Connect

    Adams, Thad M.; Korinko, Paul; Duncan, Andrew

    2005-06-17

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings are typically applied to these steel to retard hydrogen ingress. The focal point of the reported work was to evaluate the potential for intentional alloying of commercial 300-series stainless steels to promote hydrogen permeation resistant oxide scales. Previous research on the Cr- and Fe-oxide scales inherent to 300-series stainless steels has proven to be inconsistent in effecting permeation resistance. The approach undertaken in this research was to add aluminum to the 300-series stainless steels in an attempt to promote a pure Al-oxide or and Al-rich oxide scale. Aloxide had been previously demonstrated to be an effective hydrogen permeation barrier. Results for 304L and 347H alloys doped with Al in concentration from 0.5-3.0 wt% with respect to oxidation kinetic studies, cyclic oxidation and characterization of the oxide scale chemistry are reported herein. Gaseous hydrogen permeation testing of the Al-doped alloys in both the unoxidized and oxidized (600 C, 30 mins) conditions are reported. A critical finding from this work is that at concentration as low as 0.5 wt% Al, the Al stabilizes the ferrite phase in these steels thus producing duplex austenitic-ferritic microstructures. As the Al-content increases the amount of measured ferrite increases thus resulting in hydrogen permeabilities more closely resembling ferritic steels.

  12. Microhardness and Surface Integrity in Turning Process of Duplex Stainless Steel (DSS) for Different Cutting Conditions

    NASA Astrophysics Data System (ADS)

    Krolczyk, G.; Nieslony, P.; Legutko, S.

    2014-03-01

    The objective of the investigation was to identify microhardness of surface integrity (SI) after turning with wedges of coated sintered carbide. SI is important in determining corrosion resistance, and also in fatigue crack initiation. The investigation included microhardness analyses in dry and wet machining of duplex stainless steel. The microhardness of SI for various cutting speeds was compared. It has been shown that wet cutting leads to the decrease of SI hardening depth, while increasing the rounded cutting edge radius of the wedge increases the maximum microhardness values and the hardening depth. An infinite focus measurement machine has been used for the rounded cutting edge radius analysis. The study has been performed within a production facility during the production of electric motor parts and deep-well pumps as well as explosively cladded sheets.

  13. Effect of temperature and strain rate on cavitation in a superplastic duplex stainless steel

    SciTech Connect

    Pulino-Sagradi, D.; Nazar, A.M.M.; Ammann, J.J.; Medrano, R.E.

    1997-11-01

    The effect of temperature and strain rate on cavitation during superplastic deformation of a duplex stainless steel has been studied at 1,223 K and 1,253 K for initial strain rates ranging from 2 {times} 10{sup {minus}4} s{sup {minus}1} to 2 {times} 10{sup {minus}3} s{sup {minus}1}. The cavitation was analyzed quantitatively for a specifically developed image processing technique that allows an accurate determination of the volume fraction and size distribution of the voids. The results show that increasing temperature and/or decreasing strain rate cause a more homogeneous deformation of the specimen characterized by a uniform size and distribution of the cavities. The increase of the strain rate results in an increase in cavity volume fraction related to more cavity nucleation and interlinkage. This reflects the lack of accommodation process during the mechanism of grain boundary sliding.

  14. Direct Observations of Sigma Phase Growth and Dissolution in 2205 Duplex Stainless Steel

    SciTech Connect

    Palmer, T; Elmer, J; Babu, S; Specht, E

    2005-06-14

    The formation and growth of sigma ({sigma}) phase in a 2205 duplex stainless steel is monitored during an 850 C isothermal heat treatment using an in situ synchrotron x-ray diffraction technique. At this temperature, {sigma} phase is first observed within approximately 40 seconds of the start of the isothermal heat treatment and grows rapidly over the course of the 3600 second heat treatment to a volume fraction of approximately 13%. A simultaneous increase in the austenite ({gamma}) volume fraction and a decrease in the ferrite ({delta}) volume fraction are observed. The {sigma} phase formed at this temperature is rapidly dissolved within approximately 200 seconds when the temperature is increased to 1000 C. Accompanying this rapid dissolution of the {sigma} phase, the {delta} and {gamma} volume fractions both approach the balanced (50/50) level observed in the as-received material.

  15. Magnetic Characterization of Selective Laser-Melted Saf 2507 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Davidson, Karl P.; Singamneni, Sarat

    2017-03-01

    Selective laser melting (SLM) is disruptive in terms of the sensitive balance between constituent phases of the biphasic duplex stainless steel material options. While adversely affecting the mechanical and corrosion properties, the predominantly ferritic structures resulting from the high thermal gradients were also noted to impart significant magnetic responses. Scientific attention is essential for ascertaining the material-process-magnetic response relationships to establish the underlying principles and critical responses. This is attempted here through magnetic characterization based on results from saturation hysteresis loops and evaluation of austenite-ferrite ratios allowing for identification of the structure-magnetic property relationships. Overall, the experimental results indicated strong process-property relationships, whereas the magnetic saturation levels of SLM samples are much higher compared with the wrought counterparts.

  16. Effect of QPQ nitriding time on microstructure and wear resistance of SAF2906 duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Liu, D.; Wu, G. X.; Shen, L. X.

    2017-01-01

    QPQ salt bath treatment of SAF2906 duplex stainless steel was conducted at 570 °C for 60 min, 90 min,120 min,150 min and 180 min, followed by post-oxidation process with heating temperature of 400°C and holding duration of 30 min. The effect of QPQ nitriding time on microstructure and wear resistance of SAF2906 duplex stainless steel was investigated by means of OM, SEM, XRD, microhardness test, adhesion strength test and wear resistance test. Microstructure observation showed outer layer was composed of Fe3O4. The main phase of the intermediate layer was CrN, αN and Fe2-3N. The main phase of the inner layer was CrN and S. The adhesion strength test of the surface layer-substrate showed the QPQ treated samples have favorable adhesion strength of HF-1 level. With the increase of nitriding time, the growth rate of the compound layer gradually slowed down and the surface hardness first increased and then decreased, and the maximum hardness was 1283 HV0.2 at 150 min. The dry siliding results showed that the wear resistance of the QPQ treated samples was at least 20 times than that of the substrate, and the optimum nitriding time to obtain the best wear resistance is 150 min. The worn surface morphology observation showed the main wear mechanism of the substrate was plough wear, while micro-cutting is the main wear mechanism that causes the damage of the QPQ treated samples.

  17. Mechanism of hot-rolling crack formation in lean duplex stainless steel 2101

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-hui; Li, Jing-yuan; Wang, Yi-de

    2016-04-01

    The thermoplasticity of duplex stainless steel 2205 (DSS2205) is better than that of lean duplex steel 2101 (LDX2101), which undergoes severe cracking during hot rolling. The microstructure, microhardness, phase ratio, and recrystallization dependence of the deformation compatibility of LDX2101 and DSS2205 were investigated using optical microscopy (OM), electron backscatter diffraction (EBSD), Thermo-Calc software, and transmission electron microscopy (TEM). The results showed that the phase-ratio transformations of LDX2101 and DSS2205 were almost equal under the condition of increasing solution temperature. Thus, the phase transformation was not the main cause for the hot plasticity difference of these two steels. The grain size of LDX2101 was substantially greater than that of DSS2205, and the microhardness difference of LDX2101 was larger than that of DSS2205. This difference hinders the transfer of strain from ferrite to austenite. In the rolling process, the ferrite grains of LDX2101 underwent continuous softening and were substantially refined. However, although little recrystallization occurred at the boundaries of austenite, serious deformation accumulated in the interior of austenite, leading to a substantial increase in hardness. The main cause of crack formation is the microhardness difference between ferrite and austenite.

  18. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal.

  19. Sigma phase detection in duplex stainless steel by induced magnetic field

    NASA Astrophysics Data System (ADS)

    Silva, E. M.; Fialho, W. M. L.; Silva, H. F. B. M.; Leite, J. P.; Leite, J. P.; Oliveira, A. V. G.

    2016-07-01

    Duplex stainless steels when subjected to temperatures above 600 ° C have its tenacity decreased by the formation of sigma phase. This phase has high hardness and is rich in chromium and reduces the matrix of this element. In this study, field line density measurements, obtained in the reversibility region of magnetic domains, and application of artificial neural networks are used to monitor the formation of this undesirable phase. Samples of a stainless steel SAF 2205 were subjected to aging at temperatures of 800 ° C and 900 ° C, in order to obtain different amounts of sigma phase. The amount of this phase was obtained by image processing and the density of field lines through a Hall Effect sensor. Charpy impact tests were performed. The field lines densities were used for training of an artificial neural network and correlated with the presence of sigma phase and embrittlement of the material. The results showed that the method was able to correlate the parameters studied with the presence of the sigma phase and toughness of the material studied in both temperatures.

  20. Challenges and Capabilities for Inspection of Cast Stainless Steel Piping

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2007-12-31

    Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the reliability of nondestructive examination (NDE) approaches for inspecting coarse-grained, cast stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effec¬tiveness and limitations of NDE techniques as related to the inservice inspec¬tion of primary system piping components in pressurized water reactors (PWRs). This paper describes results from recent assessments built upon early work with low frequency ultrasonic testing (UT) coupled with synthetic aperture focusing technique (SAFT) signal processing, and has subsequently evolved into an approach using low frequency phased array technology as applied from the outer diameter surface of the piping. In addition, eddy current examination as performed from the inner diameter surface of these piping welds is also reported. Cast stainless steel (CSS) pipe specimens were examined that contain thermal and mechanical fatigue cracks located close to the weld roots and have inside/outside surface geometrical conditions that simulate several PWR primary piping weldments and configurations. In addition, segments of vintage centrifugally cast piping were also examined to understand inherent acoustic noise and scattering due to grain structures and determine consistency of UT responses from different locations. The advanced UT methods were applied from the outside surface of these specimens using automated scanning devices and water coupling. The phased array approach was implemented with a modified instrument operating at low frequencies and composite volumetric images of the samples were generated with 500 kHz, 750 kHz, and 1.0 MHz arrays. Eddy current studies were conducted on the inner diameter surface of these piping welds using a commercially available instrument and a

  1. The Effect of Surface Preparation on the Precipitation of Sigma During High Temperature Exposure of S32205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jepson, Mark A. E.; Rowlett, Matthew; Higginson, Rebecca L.

    2017-01-01

    Although the formation of sigma phase in duplex stainless steels is reasonably well documented, the effect of surface finish on its formation rate in surface regions has not been previously noted. The growth of the sigma phase precipitated in the subsurface region (to a maximum depth of 120 μm) has been quantified after heat treatment of S32205 duplex stainless steel at 1073 K (800 °C) and 1173 K (900 °C) after preparation to two surface finishes. Here, results are presented that show that there is a change in the rate of sigma phase formation in the surface region of the material, with a coarser surface finish leading to a greater depth of precipitation at a given time and temperature of heat treatment. The growth rate and morphology of the precipitated sigma has been examined and explored in conjunction with thermodynamic equilibrium phase calculations.

  2. Effect of Multipass Friction Stir Processing on Mechanical and Corrosion Behavior of 2507 Super Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mishra, M. K.; Gunasekaran, G.; Rao, A. G.; Kashyap, B. P.; Prabhu, N.

    2017-02-01

    The microstructure, mechanical properties, and corrosion behavior of 2507 super duplex stainless steel after multipass friction stir processing (FSP) were examined. A significant refinement in grain size of both ferrite and austenite was observed in stir zone resulting in improved yield and tensile strength. Electrochemical impedance spectroscopy and anodic polarization studies in 3.5 wt.% NaCl solution showed nobler corrosion characteristics with increasing number of FSP passes. This was evident from the decrease in corrosion current density, decrease in passive current density, and increase in polarization resistance. Also, the decrease in density of defects, based on Mott-Schottky analysis, further confirms the improvement in corrosion resistance of 2507 super duplex stainless steel after multipass FSP.

  3. The Effect of Surface Preparation on the Precipitation of Sigma During High Temperature Exposure of S32205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jepson, Mark A. E.; Rowlett, Matthew; Higginson, Rebecca L.

    2017-03-01

    Although the formation of sigma phase in duplex stainless steels is reasonably well documented, the effect of surface finish on its formation rate in surface regions has not been previously noted. The growth of the sigma phase precipitated in the subsurface region (to a maximum depth of 120 μm) has been quantified after heat treatment of S32205 duplex stainless steel at 1073 K (800 °C) and 1173 K (900 °C) after preparation to two surface finishes. Here, results are presented that show that there is a change in the rate of sigma phase formation in the surface region of the material, with a coarser surface finish leading to a greater depth of precipitation at a given time and temperature of heat treatment. The growth rate and morphology of the precipitated sigma has been examined and explored in conjunction with thermodynamic equilibrium phase calculations.

  4. NDE Assessments of Cast Stainless Steel Reactor Piping Components

    SciTech Connect

    Diaz, Aaron A.; Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.; Mathews, Royce

    2006-02-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the effectiveness and reliability of novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effectiveness and reliability of ultrasonic testing (UT) and eddy current testing (ET) inspection techniques as related to the in-service inspection of primary piping components in pressurized water reactors (PWRs). This paper describes recent developments and results from assessments of three different NDE approaches including an ultrasonic phased array inspection methodology, an eddy current testing technique and a low-frequency ultrasonic inspection methodology coupled with a synthetic aperture focusing technique (SAFT). Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks located close to the weld roots, were used for assessing the inspection methods. ET studies were conducted on the inner diameter (ID) surface of piping specimens while the ultrasonic inspection methods were performed from the outer diameter (OD) surface of the specimens. The ET technique employed a ZETEC MIZ-27SI Eddy Current instrument and a ZETEC Z0000857-1 cross point spot probe with an operating frequency of 250 kHz. On some samples where noise levels were high, degaussing of the sample resulted in significant improvements. The phased array approach was implemented using an RD Tech Tomoscan III system operating at 1 MHz and composite volumetric images of the samples were generated. The low-frequency ultrasonic method employs a zone-focused, multi-incident angle; inspection protocol (operating at 250-450 kHz) coupled with a synthetic aperture focusing technique (SAFT) for improved signal-to-noise and advanced imaging

  5. Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications

    DOE PAGES

    Tucker, J. D.; Miller, M. K.; Young, G. A.

    2015-04-01

    Duplex stainless steels are desirable for use in power generation systems due to their attractive combination of strength, corrosion resistance, and cost. However, thermal embrittlement at intermediate homologous temperatures of ~887°F (475°C) and below, via spinodal decomposition, limits upper service temperatures for many applications. New lean grade duplex alloys have improved thermal stability over standard grades and potentially increase the upper service temperature or the lifetime at a given temperature for this class of material. The present work compares the thermal stability of lean grade, alloy 2003 to standard grade, alloy 2205, through a series of isothermal agings between 500°Fmore » (260°C) and 900°F (482°C) for times between 1 and 10,000 hours. Aged samples were characterized by changes in microhardness and impact toughness. Additionally, atom probe tomography was performed to illustrate the evolution of the α-α' phase separation in both alloys at select conditions. Atom probe tomography confirmed that phase separation occurs via spinodal decomposition for both alloys and identified the formation of Ni-Cu-Si-Mn-P clusters in alloy 2205 that may contribute to embrittlement of this alloy. The impact toughness model predictions for upper service temperature show that alloy 2003 can be considered for use in 550°F applications for 80 year service lifetimes based on a Charpy V-notch criteria of 35 ft-lbs at 70°F. Alloy 2205 should be limited to 500°F applications.« less

  6. Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications

    SciTech Connect

    Tucker, J. D.; Miller, M. K.; Young, G. A.

    2015-04-01

    Duplex stainless steels are desirable for use in power generation systems due to their attractive combination of strength, corrosion resistance, and cost. However, thermal embrittlement at intermediate homologous temperatures of ~887°F (475°C) and below, via spinodal decomposition, limits upper service temperatures for many applications. New lean grade duplex alloys have improved thermal stability over standard grades and potentially increase the upper service temperature or the lifetime at a given temperature for this class of material. The present work compares the thermal stability of lean grade, alloy 2003 to standard grade, alloy 2205, through a series of isothermal agings between 500°F (260°C) and 900°F (482°C) for times between 1 and 10,000 hours. Aged samples were characterized by changes in microhardness and impact toughness. Additionally, atom probe tomography was performed to illustrate the evolution of the α-α' phase separation in both alloys at select conditions. Atom probe tomography confirmed that phase separation occurs via spinodal decomposition for both alloys and identified the formation of Ni-Cu-Si-Mn-P clusters in alloy 2205 that may contribute to embrittlement of this alloy. The impact toughness model predictions for upper service temperature show that alloy 2003 can be considered for use in 550°F applications for 80 year service lifetimes based on a Charpy V-notch criteria of 35 ft-lbs at 70°F. Alloy 2205 should be limited to 500°F applications.

  7. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  8. Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel

    SciTech Connect

    Kashiwar, A.; Vennela, N. Phani; Kamath, S.L.; Khatirkar, R.K.

    2012-12-15

    In the present study, effect of solution annealing temperature (1050 Degree-Sign C and 1100 Degree-Sign C) and isothermal ageing (700 Degree-Sign C: 15 min to 6 h) on the microstructural changes in 2205 duplex stainless steel has been investigated systematically. Scanning electron microscopy and X-ray diffraction were adopted to follow the microstructural evolution, while an energy dispersive spectrometer attached to scanning electron microscope was used to obtain localised chemical information of various phases. The ferritic matrix of the two phase 2205 duplex stainless steel ({approx} 45% ferrite and {approx} 55% austenite) undergoes a series of metallurgical transformations during ageing-formation of secondary austenite ({gamma}{sub 2}) and precipitation of Cr and Mo rich intermetallic (chi-{chi} and sigma-{sigma}) phases. For solution annealing at 1050 Degree-Sign C, significant amount of carbides were observed in the ferrite grains after 1 h of ageing at 700 Degree-Sign C. {chi} Phase precipitated after the precipitation of carbides-preferentially at the ferrite-ferrite and also at the ferrite-austenite boundaries. {sigma} Phase was not observed in significant quantity even after 6 h of ageing. The sequence of precipitation in samples solution annealed at 1050 Degree-Sign C was found to be carbides {yields} {chi} {yields} {sigma}. On the contrary, for samples solution annealed at 1100 Degree-Sign C, the precipitation of {chi} phase was negligible. {chi} Phase precipitated before {sigma} phase, preferentially along the ferrite-ferrite grain boundaries and was later consumed in the {sigma} phase precipitation. The {sigma} phase precipitated via the eutectoid transformation of ferrite to yield secondary austenite {gamma}{sub 2} and {sigma} phase in the ferrite and along the ferrite-austenite grain boundaries. An increase in the volume fraction of {gamma}{sub 2} and {sigma} phase with simultaneous decrease in the ferrite was evidenced with ageing. - Highlights

  9. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  10. Hardness analysis of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  11. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm.

    PubMed

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-02-05

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm.

  12. Synchrotron Based Observations of Sigma Phase Formation and Dissolution in Duplex Stainless Steel

    SciTech Connect

    Elmer, J; Palmer, T; Specht, E

    2006-08-22

    The formation and growth of sigma ({sigma}) phase in 2205 duplex stainless steel was observed and measured in real time using synchrotron radiation during isothermal heat treating at temperatures between 700 C and 850 C. Synchrotron experiments were performed on this material at the Advanced Photon Source (APS) while isothermally holding the samples for times of up to 10 hr. During the isothermal hold, sigma formed in quantities up to 22% as the ferrite transformed to a mixture of sigma and austenite phases. In addition, sigma formed at 850 C was heated to 1000 C to observe its dissolution. The amounts of sigma that formed, and the dissolution temperature of sigma were compared to the results predicted by Thermocalc, showing differences between the calculated and measured values. The synchrotron data was further modeled using a modified Johnson-Mehl-Avrami analysis to determine kinetic parameters for sigma formation. The initial JMA exponent, n, at low fractions of sigma was found to be approximately 7.0, however, towards the end of the transformation, n decreased to values of approximately 0.75. Because of the variable value of n, it was not possible to determine reliable values for the activation energy and pre-exponential terms for the JMA equation. During cooling to room temperature, the high temperature austenite partially transformed to ferrite, substantially increasing the ferrite content while the sigma phase kept its high temperature value.

  13. Characterization of a cold-rolled 2101 lean duplex stainless steel.

    PubMed

    Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene

    2013-08-01

    Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.

  14. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel.

    PubMed

    Yang, Sheng-Min; Chen, Yi-Chun; Pan, Yeong-Tsuen; Lin, Dong-Yih

    2016-06-01

    In this study, 2205 duplex stainless steel (DSS) was employed to enhance the antibacterial properties of material through silver doping. The results demonstrated that silver-doped 2205 DSS produces an excellent bacteria-inhibiting effect against Escherichia coli and Staphylococcus aureus. The antibacterial rates were 100% and 99.5%, respectively. Because the mutual solubility of silver and iron is very low in both the solid and liquid states, a silver-rich compound solidified and dispersed at the ferrite/austenite interface and the ferrite, austenite, and secondary austenite phases in silver-doped 2205 DSS. Doping 2205 DSS with silver caused the Creq/Nieq ratio of ferrite to decrease; however, the lower Creq/Nieq ratio promoted the rapid nucleation of γ2-austenite from primary α-ferrite. After 12h of homogenisation treatment at 1200 °C, the solubility of silver in the γ-austenite and α-ferrite phases can be increased by 0.10% and 0.09%, respectively. Moreover, silver doping was found to accelerate the dissolution of secondary austenite in a ferrite matrix during homogenisation.

  15. Evolutions of Microstructure and Properties During Cold Rolling of 19Cr Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ran, Qingxuan; Xu, Wanjian; Wu, Zhaoyu; Li, Jun; Xu, Yulai; Xiao, Xueshan; Hu, Jincheng; Jiang, Laizhu

    2016-10-01

    Evolutions of microstructure, mechanical, and corrosion properties of 19Cr (Fe-18.9Cr-10.1Mn-0.3Ni-0.261N-0.030C-0.5Si) duplex stainless steel have been investigated during cold rolling at room temperature. Dislocation slip dominated deformation mode of ferrite phase. However, deformation mechanism of austenite phase was different with the increasing cold-rolling reductions. Dislocation slip and strengthening effect of twin boundaries caused pile-up phenomenon at the initial deformation stage. When the amount of cold-rolling reduction attained greater than 50 pct, induced α'-martensite appeared in deformed austenite phase. Hardness of austenite phase was higher than that of the deformed ferrite because of its higher strengthening effect during cold-rolling process. Cold-rolling deformation caused deterioration of the pitting corrosion resistance in 3.5 wt pct NaCl aqueous solution. Pitting corrosion always initiated in the ferrite phase and the phase boundary in the solution-treated alloy. Additional pitting holes appeared in deformed austenite phase because of the decrease in corrosion resistance caused by dislocation accumulation and induced α'-martensite.

  16. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-01-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  17. Development of Cutting Tool Through Superplastic Boronizing of Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jauhari, Iswadi; Harun, Sunita; Jamlus, Siti Aida; Sabri, Mohd Faizul Mohd

    2017-03-01

    In this study, a cutting tool is developed from duplex stainless steel (DSS) using the superplastic boronizing technique. The feasibility of the development process is studied, and the cutting performances of the cutting tool are evaluated and compared with commercially available carbide and high-speed steel (HSS) tools. The superplastically boronized (SPB) cutting tool yielded a dense boronized layer of 50.5 µm with a surface hardness of 3956 HV. A coefficient of friction value of 0.62 is obtained, which is lower than 1.02 and 0.8 of the carbide and HSS tools. When tested on an aluminum 6061 surface under dry condition, the SPB cutting tool is also able to produce turning finishing below 0.4 µm, beyond the travel distance of 3000 m, which is comparable to the carbide tool, but produces much better results than HSS tool. Through superplastic boronizing of DSS, it is possible to produce a high-quality metal-based cutting tool that is comparable to the conventional carbide tool.

  18. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    PubMed Central

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm. PMID:26846970

  19. Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507

    NASA Astrophysics Data System (ADS)

    Kingklang, Saranya; Uthaisangsuk, Vitoon

    2017-01-01

    Recently, duplex stainless steels (DSSs) are being increasingly employed in chemical, petro-chemical, nuclear, and energy industries due to the excellent combination of high strength and corrosion resistance. Better understanding of deformation behavior and microstructure evolution of the material under hot working process is significant for achieving desired mechanical properties. In this work, plastic flow curves and microstructure development of the DSS grade 2507 were investigated. Cylindrical specimens were subjected to hot compression tests for different elevated temperatures and strain rates by a deformation dilatometer. It was found that stress-strain responses of the examined steel strongly depended on the forming rate and temperature. The flow stresses increased with higher strain rates and lower temperatures. Subsequently, predictions of the obtained stress-strain curves were done according to the Zener-Hollomon equation. Determination of material parameters for the constitutive model was presented. It was shown that the calculated flow curves agreed well with the experimental results. Additionally, metallographic examinations of hot compressed samples were performed by optical microscope using color tint etching. Area based phase fractions of the existing phases were determined for each forming condition. Hardness of the specimens was measured and discussed with the resulted microstructures. The proposed flow stress model can be used to design and optimize manufacturing process at elevated temperatures for the DSS.

  20. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    SciTech Connect

    Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.; De, P.K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.

  1. In-situ Characterization of Cast Stainless Steel Microstructures

    SciTech Connect

    Anderson, Michael T.; Bond, Leonard J.; Diaz, Aaron A.; Good, Morris S.; Harris, Robert V.; Mathews, Royce; Ramuhalli, Pradeep; Roberts, Kamandi C.

    2010-12-01

    Cast austenitic stainless steel (CASS) that was commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. The engineering properties of CASS made it a material of choice for selected designs of nuclear power reactor systems. However, the fabrication processes result in a variety of coarse-grain microstructures that are difficult to inspect ultrasonically, largely due to detrimental effects of wave interactions with the microstructure. To address the inspection needs, new approaches that are robust to these phenomena are being sought. However, overcoming the deleterious effects of the coarse-grained microstructure on the interrogating ultrasonic beam will require knowledge of the microstructure and the corresponding acoustic properties of the material, for potential optimization of inspection parameters to enhance the probability of detecting flaws. The goal of improving the reliability and effectiveness of ultrasonic inspection of CASS specimens can therefore potentially be achieved by first characterizing the microstructure of the component. The characterization of CASS microstructure must be done in-situ, to enable dynamic selection and optimization of the ultrasonic inspection technique. This paper discusses the application of ultrasonic measurement methods for classifying the microstructure of CASS components, when making measurements from the outside surface of the pipe or component. Results to date demonstrate the potential of ultrasonic and electromagnetic measurements to classify the material type of CASS for two consistent microstructures-equiaxed-grain material and columnar-grain material.

  2. Evaluation of aging of cast stainless steel components

    SciTech Connect

    Chung, H.M.

    1991-02-01

    Cast stainless steel is used extensively in nuclear reactors for primary-pressure-boundary components such as primary coolant pipes, elbows, valves, pumps, and safe ends. These components are, however, susceptible to thermal aging embrittlement in light water reactors because of the segregation of Cr atoms from Fe and Ni by spinodal decomposition in ferrite and the precipitation of Cr-rich carbides on ferrite/austenite boundaries. A recent advance in understanding the aging kinetics is presented. Aging kinetics are strongly influenced by the synergistic effects of other metallurgical reactions that occur in parallel with spinodal decomposition, i.e., clustering of Ni, Mo, and Si solute atoms and the nucleation and growth of G-phase precipitates in the ferrite phase. A number of methods are outlined for estimating aging embrittlement under end-of-life of life-extension conditions, depending on several factors such as degree of permissible conservatism, availability of component archive material, and methods of estimating and verifying the activation energy of aging. 33 refs., 6 figs., 3 tabs.

  3. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli

    2017-02-01

    The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared

  4. TEM microscopical examination of the magnetic domain boundaries in a super duplex austenitic-ferritic stainless steel

    SciTech Connect

    Fourlaris, G.; Gladman, T.; Maylin, M.

    1996-12-31

    It has been demonstrated in an earlier publication that significant improvements in the coercivity, maximum induction and remanence values can be achieved, by using a 2205 type Duplex austenitic-ferritic stainless steel (DSS) instead of the low alloy medium carbon steels currently being used. These improvements are achieved in the as received 2205 material, and after small amounts of cold rolling have been applied, to increase the strength. In addition, the modification of the duplex austenitic-ferritic microstructure, via a heat treatment route, results in a finer austenite `island` dispersion in a ferritic matrix and provides an attractive option for further modification of the magnetic characteristics of the material. However, the 2205 type DSS exhibits {open_quotes}marginal{close_quotes} corrosion protection in a marine environment, so that a study has been undertaken to examine whether the beneficial effects exhibited by the 2205 DSS, are also present in a 2507 type super-DSS.

  5. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  6. In-Situ Observations of Sigma Phase Dissolution in 2205 Duplex Stainless Steel using Synchrotron X-Ray Diffraction

    SciTech Connect

    Elmer, J; Palmer, T; Specht, E

    2006-08-08

    Synchrotron radiation was used to directly observe the transformation of ferrite, austenite and sigma phases during heating and cooling of 2205 duplex stainless steel. Sigma formed during the initial stages of heating, dissolved as the temperature was increased, and reformed on cooling. The dissolution temperature of sigma was measured to be 985 C {+-} 2.8 C at a heating rate of 0.25 C/s, and the kinetics of sigma formation at 850 C was determined to be slower after dissolving at 1000 C than before.

  7. Monte Carlo simulation of spinodal decomposition in a ternary alloy within a three-phases field: comparison to phase transformation of ferrite in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Emo, Jonathan; Pareige, Cristelle; Saillet, Sébastien; Domain, Christophe; Pareige, Philippe

    2014-06-01

    This work proposes to model phase transformations occurring in duplex stainless steels using atomistic kinetic Monte Carlo in a ternary model alloy. Kinetics are simulated in the three-phase field of a ternary system. Influence of the precipitation of the third phase on the kinetic of spinodal decomposition between the two other phases is studied in order to understand the synergy between spinodal decomposition and G-phase precipitation which exists in duplex stainless steels. Simulation results are compared to experimental data obtained with atom probe tomography.

  8. Cyclic stress effect on stress corrosion cracking of duplex stainless steel in chloride and caustic solutions

    NASA Astrophysics Data System (ADS)

    Yang, Di

    Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain

  9. High-Temperature Phase Equilibria of Duplex Stainless Steels Assessed with a Novel In-Situ Neutron Scattering Approach

    NASA Astrophysics Data System (ADS)

    Pettersson, Niklas; Wessman, Sten; Hertzman, Staffan; Studer, Andrew

    2017-04-01

    Duplex stainless steels are designed to solidify with ferrite as the parent phase, with subsequent austenite formation occurring in the solid state, implying that, thermodynamically, a fully ferritic range should exist at high temperatures. However, computational thermodynamic tools appear currently to overestimate the austenite stability of these systems, and contradictory data exist in the literature. In the present work, the high-temperature phase equilibria of four commercial duplex stainless steel grades, denoted 2304, 2101, 2507, and 3207, with varying alloying levels were assessed by measurements of the austenite-to-ferrite transformation at temperatures approaching 1673 K (1400 °C) using a novel in-situ neutron scattering approach. All grades became fully ferritic at some point during progressive heating. Higher austenite dissolution temperatures were measured for the higher alloyed grades, and for 3207, the temperature range for a single-phase ferritic structure approached zero. The influence of temperatures in the region of austenite dissolution was further evaluated by microstructural characterization using electron backscattered diffraction of isothermally heat-treated and quenched samples. The new experimental data are compared to thermodynamic calculations, and the precision of databases is discussed.

  10. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    SciTech Connect

    Ramírez-Salgado, J.; Domínguez-Aguilar, M.A.; Castro-Domínguez, B.; Hernández-Hernández, P.; Newman, R.C.

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  11. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance

    NASA Astrophysics Data System (ADS)

    García-Rentería, M. A.; López-Morelos, V. H.; González-Sánchez, J.; García-Hernández, R.; Dzib-Pérez, L.; Curiel-López, F. F.

    2017-02-01

    The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.

  12. High-Temperature Phase Equilibria of Duplex Stainless Steels Assessed with a Novel In-Situ Neutron Scattering Approach

    NASA Astrophysics Data System (ADS)

    Pettersson, Niklas; Wessman, Sten; Hertzman, Staffan; Studer, Andrew

    2017-01-01

    Duplex stainless steels are designed to solidify with ferrite as the parent phase, with subsequent austenite formation occurring in the solid state, implying that, thermodynamically, a fully ferritic range should exist at high temperatures. However, computational thermodynamic tools appear currently to overestimate the austenite stability of these systems, and contradictory data exist in the literature. In the present work, the high-temperature phase equilibria of four commercial duplex stainless steel grades, denoted 2304, 2101, 2507, and 3207, with varying alloying levels were assessed by measurements of the austenite-to-ferrite transformation at temperatures approaching 1673 K (1400 °C) using a novel in-situ neutron scattering approach. All grades became fully ferritic at some point during progressive heating. Higher austenite dissolution temperatures were measured for the higher alloyed grades, and for 3207, the temperature range for a single-phase ferritic structure approached zero. The influence of temperatures in the region of austenite dissolution was further evaluated by microstructural characterization using electron backscattered diffraction of isothermally heat-treated and quenched samples. The new experimental data are compared to thermodynamic calculations, and the precision of databases is discussed.

  13. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    SciTech Connect

    Maziasz, P.J.; Shyam, A.; Evans, N.D.; Pattabiraman, K. (Honeywell Turbo Technologies

    2010-06-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  14. Detailed Microstructural Characterization and Restoration Mechanisms of Duplex and Superduplex Stainless Steel Friction-Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Santos, T. F. A.; Torres, E. A.; Lippold, J. C.; Ramirez, A. J.

    2016-12-01

    Duplex stainless steels are successfully used in a wide variety of applications in areas such as the food industry, petrochemical installations, and sea water desalination plants, where high corrosion resistance and high mechanical strength are required. However, during fusion welding operations, there can be changes to the favorable microstructure of these materials that compromise their performance. Friction stir welding with a non-consumable pin enables welded joints to be obtained in the solid state, which avoids typical problems associated with solidification of the molten pool, such as segregation of alloying elements and the formation of solidification and liquefaction cracks. In the case of superduplex stainless steels, use of the technique can avoid unbalanced proportions of ferrite and austenite, formation of deleterious second phases, or growth of ferritic grains in the heat-affected zone. Consolidated joints with full penetration were obtained for 6-mm-thick plates of UNS S32101 and S32205 duplex stainless steels, and S32750 and S32760 superduplex steels. The welding heat cycles employed avoided the conditions required for formation of deleterious phases, except in the case of the welded joint of the S32760 steel, where SEM images indicated the formation of secondary phases, as corroborated by decreased mechanical performance. Analysis using EBSD and transmission electron microscopy revealed continuous dynamic recrystallization by the formation of cellular arrays of dislocations in the ferrite and discontinuous dynamic recrystallization in the austenite. Microtexture evaluation indicated the presence of fibers typical of shear in the thermomechanically affected zone. These fibers were not obviously present in the stir zone, probably due to the intensity of microstructural reformulation to which this region was subjected.

  15. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    NASA Astrophysics Data System (ADS)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  16. Estimation of mechanical properties of cast stainless steels during thermal aging in LWR systems

    SciTech Connect

    Chopra, O.K.

    1991-10-01

    A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of aged cast stainless steels from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common predicted lower-bound J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  17. Thermal aging of cast stainless steels in LWR systems: Estimation of mechanical properties

    SciTech Connect

    Chopra, O.K.

    1991-11-01

    A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of aged cast stainless steels from known material information. The ``saturation`` impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common ``lower-bound`` J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  18. Thermal aging of cast stainless steels in LWR systems: Estimation of mechanical properties

    SciTech Connect

    Chopra, O.K.

    1991-11-01

    A procedure and correlations are presented for predicting Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of aged cast stainless steels from known material information. The saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Mechanical properties as a function of time and temperature of reactor service are estimated from impact energy and flow stress of the unaged material and the kinetics of embrittlement, which are also determined from chemical composition. The J{sub IC} values are determined from the estimated J-R curve and flow stress. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented. A common lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature.

  19. ACPD detection and evaluation of 475 °C embrittlement of aged 2507 super duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Vargas, Gildardo; López, Víctor H.; Carreón, Héctor; Kim, Jin-Yeon; Ruiz, Alberto

    2017-02-01

    An investigation to evaluate embrittlement of thermally aged 2507 super duplex stainless steel (SDSS) by means of an accurate measurement of the electric conductivity using an alternating current potential drop (ACPD) probe is conducted. Samples were aged for different periods up to 300 h at 475 °C. Results obtained from the ACPD measurements show appreciable increases in electric conductivity of samples with prolonged exposure to this temperature. In addition, the hardness of the samples increases significantly for long holding times, resulting in an embrittlement of the SDSS. These results are also supported by other data from sample-based laboratory techniques, i.e. microhardness and microscopy results which provide more direct evidences of the sensitization. This paper, therefore, demonstrates the feasibility of using the ACPD probe in field applications.

  20. Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications - A recent review.

    PubMed

    Vinoth Jebaraj, A; Ajaykumar, L; Deepak, C R; Aditya, K V V

    2017-05-01

    In the present review, attempts have been made to analyze the metallurgical, mechanical, and corrosion properties of commercial marine alloy duplex stainless steel AISI 2205 with special reference to its weldability, machinability, and surfacing. In the first part, effects of various fusion and solid-state welding processes on joining DSS 2205 with similar and dissimilar metals are addressed. Microstructural changes during the weld cooling cycle such as austenite reformation, partitioning of alloying elements, HAZ transformations, and the intermetallic precipitations are analyzed and compared with the different welding techniques. In the second part, machinability of DSS 2205 is compared with the commercial ASS grades in order to justify the quality of machining. In the third part, the importance of surface quality in a marine exposure is emphasized and the enhancement of surface properties through peening techniques is highlighted. The research gaps and inferences highlighted in this review will be more useful for the fabrications involved in the marine applications.

  1. Effect of W on stress corrosion cracking susceptibility of newly developed Ni-saving duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Ha, Heon-Young; Lee, Tae-Ho; Kim, Sangshik

    2017-01-01

    Effect of W on stress corrosion cracking behavior (SCC) of Ni-saving duplex stainless steels (Fe18Cr6Mn3Mo0.4N (2.13, 5.27)W, in wt%) was investigated in 4 M NaCl solution using a slow strain rate test method. The change in the W content from 2.13 to 5.27 wt% marginally affected the tensile properties of the investigated DSSs. Alloying W clearly improved the pitting initiation resistance and repassivation tendency of the investigated alloys, but the SCC susceptibility was not remarkably decreased by addition of W. The slight enhancement in the SCC resistance of the alloy containing 5.27 wt% W was revealed to be correlated with the accelerated galvanic corrosion between the ferrite and austenite phases as a result of the W partitioning preferentially into the ferrite phase which could encourage the propagation of pitting.

  2. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750

    SciTech Connect

    Tan Hua; Jiang Yiming; Deng Bo; Sun Tao; Xu Juliang; Li Jin

    2009-09-15

    The pitting corrosion resistance of commercial super duplex stainless steels SAF2507 (UNS S32750) annealed at seven different temperatures ranging from 1030 deg. C to 1200 deg. C for 2 h has been investigated by means of potentiostatic critical pitting temperature. The microstructural evolution and pit morphologies of the specimens were studied through optical/scanning electron microscope. Increasing annealing temperature from 1030 deg. C to 1080 deg. C elevates the critical pitting temperature, whereas continuing to increase the annealing temperature to 1200 deg. C decreases the critical pitting temperature. The specimens annealed at 1080 deg. C for 2 h exhibit the best pitting corrosion resistance with the highest critical pitting temperature. The pit morphologies show that the pit initiation sites transfer from austenite phase to ferrite phase as the annealing temperature increases. The aforementioned results can be explained by the variation of pitting resistance equivalent number of ferrite and austenite phase as the annealing temperature changes.

  3. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    NASA Astrophysics Data System (ADS)

    Kenik, E. A.; Busby, J. T.; Gussev, M. N.; Maziasz, P. J.; Hoelzer, D. T.; Rowcliffe, A. F.; Vitek, J. M.

    2017-01-01

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14-0.36%) and Mn (2-5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  4. NDE evaluation of the intergranular corrosion susceptibility of a 2205 duplex stainless steel using thermoelectric power and double loop electrochemical potentiokinetic reactivation methods

    NASA Astrophysics Data System (ADS)

    Ortiz, N.; Carreón, H.; Ruiz, A.

    2013-01-01

    There is a need for a nondestructive technique to assess rapidly and with confidence the degree of sensitization (DOS) in duplex stainless steel (DSS). In this investigation, we present the use of thermoelectric power (TEP) measurements as nondestructive method for the determination of DOS in isothermally aged 2205 DSS at 700°C for different aging times. The DOS of the aged samples was first established by performing the double loop electrochemical potentiokinetic reactivation (DL-EPR) test. The microstructural evolution was evaluated by scanning electron microscopy (SEM). Experimental results indicate that TEP coefficient is sensitive to gradual microstructural changes produced by thermal aging and can be used to monitor IGC sensitization of 2205 duplex stainless steel.

  5. Electron work functions of ferrite and austenite phases in a duplex stainless steel and their adhesive forces with AFM silicon probe.

    PubMed

    Guo, Liqiu; Hua, Guomin; Yang, Binjie; Lu, Hao; Qiao, Lijie; Yan, Xianguo; Li, Dongyang

    2016-02-12

    Local electron work function, adhesive force, modulus and deformation of ferrite and austenite phases in a duplex stainless steel were analyzed by scanning force microscopy. It is demonstrated that the austenite has a higher electron work function than the ferrite, corresponding to higher modulus, smaller deformation and larger adhesive force. Relevant first-principles calculations were conducted to elucidate the mechanism behind. It is demonstrated that the difference in the properties between austenite and ferrite is intrinsically related to their electron work functions.

  6. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOEpatents

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  7. Effect of Etching Methods in Metallographic Studies of Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Kisasoz, A.; Karaaslan, A.; Bayrak, Y.

    2017-03-01

    Three different etching methods are used to uncover the ferrite-austenite structure and precipitates of secondary phases in stainless steel 22.5% Cr - 5.4% Ni - 3% Mo - 1.3% Mn. The structure is studied under a light microscope. The chemical etching is conducted in a glycerol solution of HNO3, HCl and HF; the electrochemical etching is conducted in solutions of KOH and NaOH.

  8. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

    PubMed

    Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue

    2016-11-01

    The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

  9. Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441

    NASA Astrophysics Data System (ADS)

    Brytan, Z.; Niagaj, J.; Reiman, Ł.

    2016-12-01

    The corrosion characterisation of lean duplex stainless steel (1.4662) UNS S82441 welded joints using the potentiodynamic test and electrochemical impedance spectroscopy in 1 M NaCl solution are discussed. The influence of autogenous TIG welding parameters (amount of heat input and composition of shielding gases like Ar and Ar-N2 and an Ar-He mixture), as well as A-TIG welding was studied. The influence of welding parameters on phase balance, microstructural changes and the protective properties of passive oxide films formed at the open circuit potential or during the anodic polarisation were studied. From the results of the potentiodynamic test and electrochemical impedance spectroscopy of TIG and A-TiG, welded joints show a lower corrosion resistance compared to non-welded parent metal, but introducing heat input properly during welding and applying shielding gases rich in nitrogen or helium can increase austenitic phase content, which is beneficial for corrosion resistance, and improves surface oxide layer resistance in 1 M NaCl solution.

  10. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    NASA Astrophysics Data System (ADS)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  11. Microstructure and Texture Development during Cold Rolling in UNS S32205 and UNS S32760 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khatirkar, Rajesh Kisni; Chalapathi, Darshan; Kumar, Gulshan; Suwas, Satyam

    2017-03-01

    In the present study, microstructure and texture evolution during cold rolling in UNS S32205 and UNS S32760 duplex stainless steel was investigated. Both steels were unidirectionally cold rolled up to 80 pct thickness reduction. Scanning electron microscopy and electron backscattered diffraction (EBSD) were used for microstructural characterization, while X-ray diffraction (XRD) was used for the measurement of bulk texture. Strain-induced martensite (SIM) was identified and quantified with the help of magnetic measurements (B-H curve and magnetization saturation). With the increase in plastic strain, the grains became morphologically elongated along the rolling direction with the reduction in average band thickness and band spacing. SIM increased with the increase in deformation and was found to be a function of strain and the SFE of austenite. The increase in SIM was much more pronounced in UNS S32205 steel as compared to UNS S32760 steel. After cold rolling, strong α-fiber (RD//<110>) texture was developed in ferrite, while brass texture was dominant in austenite for both steels. The strength of texture components and fibers was stronger in UNS S32760 steel. Another significant feature was the development of weak γ-fiber (ND//<111>) in UNS S32760 steel at intermediate deformation.

  12. Direct Observations of Sigma Phase Formation in Duplex Stainless Steels using In Situ Synchrotron X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Specht, E D

    2006-07-03

    The formation and growth of sigma phase in 2205 duplex stainless steel was observed and measured in real time using synchrotron radiation during 10 hr isothermal heat treatments at temperatures between 700 C and 850 C. Sigma formed in near-equilibrium quantities during the isothermal holds, starting from a microstructure which contained a balanced mixture of metastable ferrite and austenite. In situ synchrotron diffraction continuously monitored the transformation, and these results were compared to those predicted by thermodynamic calculations. Differences between the calculated and measured amounts of sigma, ferrite and austenite suggest that the thermodynamic calculations underpredict the sigma dissolution temperature by approximately 50 C. The data were further analyzed using a modified Johnson-Mehl-Avrami (JMA) approach to determine kinetic parameters for sigma formation over this temperature range. The initial JMA exponent, n, at low fractions of sigma was found to be approximately 7.0, however, towards the end of the transformation, n decreased to values of approximately 0.75. The change in the JMA exponent was attributed to a change in the transformation mechanism from discontinuous precipitation with increasing nucleation rate, to growth of the existing sigma phase after nucleation site saturation occurred. Because of this change in mechanism, it was not possible to determine reliable values for the activation energy and pre-exponential terms for the JMA equation. While cooling back to room temperature, the partial transformation of austenite resulted in a substantial increase in the ferrite content, but sigma retained its high temperature value to room temperature.

  13. 748 K (475 °C) Embrittlement of Duplex Stainless Steel: Effect on Microstructure and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Örnek, Cem; Burke, M. G.; Hashimoto, T.; Engelberg, D. L.

    2017-04-01

    22Cr-5Ni duplex stainless steel (DSS) was aged at 748 K (475 °C) and the microstructure development correlated to changes in mechanical properties and fracture behavior. Tensile testing of aged microstructures confirmed the occurrence of 748 K (475 °C) embrittlement, which was accompanied by an increase of strength and hardness and loss of toughness. Aging caused spinodal decomposition of the ferrite phase, consisting of Cr-enriched α″ and Fe-rich α' and the formation of a large number of R-phase precipitates, with sizes between 50 and 400 nm. Fracture surface analyses revealed a gradual change of the fracture mode from ductile to brittle delamination fracture, associated with slip incompatibility between ferrite and austenite. Ferrite became highly brittle after 255 hours of aging, mainly due to the presence of precipitates, while austenite was ductile and accommodated most plastic strain. The fracture mechanism as a function of 748 K (475 °C) embrittlement is discussed in light of microstructure development.

  14. Physical Simulation of a Duplex Stainless Steel Friction Stir Welding by the Numerical and Experimental Analysis of Hot Torsion Tests

    NASA Astrophysics Data System (ADS)

    da Fonseca, Eduardo Bertoni; Santos, Tiago Felipe Abreu; Button, Sergio Tonini; Ramirez, Antonio Jose

    2016-09-01

    Physical simulation of friction stir welding (FSW) by means of hot torsion tests was performed on UNS S32205 duplex stainless steel. A thermomechanical simulator Gleeble 3800® with a custom-built liquid nitrogen cooling system was employed to reproduce the thermal cycle measured during FSW and carry out the torsion tests. Microstructures were compared by means of light optical microscopy and electron backscatter diffraction. True strain and strain rate were calculated by numerical simulation of the torsion tests. Thermomechanically affected zone (TMAZ) was reproduced at peak temperature of 1303 K (1030 °C), rotational speeds of 52.4 rad s-1 (500 rpm) and 74.5 rad s-1 (750 rpm), and 0.5 to 0.75 revolutions, which represent strain rate between 10 and 16 s-1 and true strain between 0.5 and 0.8. Strong grain refinement, similar to the one observed in the stir zone (SZ), was attained at peak temperature of 1403 K (1130 °C), rotational speed of 74.5 rad s-1 (750 rpm), and 1.2 revolution, which represent strain rate of 19 s-1 and true strain of 1.3. Continuous dynamic recrystallization in ferrite and dynamic recrystallization in austenite were observed in the TMAZ simulation. At higher temperature, dynamic recovery of austenite was also observed.

  15. 748 K (475 °C) Embrittlement of Duplex Stainless Steel: Effect on Microstructure and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Örnek, Cem; Burke, M. G.; Hashimoto, T.; Engelberg, D. L.

    2017-01-01

    22Cr-5Ni duplex stainless steel (DSS) was aged at 748 K (475 °C) and the microstructure development correlated to changes in mechanical properties and fracture behavior. Tensile testing of aged microstructures confirmed the occurrence of 748 K (475 °C) embrittlement, which was accompanied by an increase of strength and hardness and loss of toughness. Aging caused spinodal decomposition of the ferrite phase, consisting of Cr-enriched α″ and Fe-rich α' and the formation of a large number of R-phase precipitates, with sizes between 50 and 400 nm. Fracture surface analyses revealed a gradual change of the fracture mode from ductile to brittle delamination fracture, associated with slip incompatibility between ferrite and austenite. Ferrite became highly brittle after 255 hours of aging, mainly due to the presence of precipitates, while austenite was ductile and accommodated most plastic strain. The fracture mechanism as a function of 748 K (475 °C) embrittlement is discussed in light of microstructure development.

  16. Real Time Imaging of Deuterium in a Duplex Stainless Steel Microstructure by Time-of-Flight SIMS

    PubMed Central

    Sobol, O.; Straub, F.; Wirth, Th.; Holzlechner, G.; Boellinghaus, Th.; Unger, W. E. S.

    2016-01-01

    For more than one century, hydrogen assisted degradation of metallic microstructures has been identified as origin for severe technical component failures but the mechanisms behind have not yet been completely understood so far. Any in-situ observation of hydrogen transport phenomena in microstructures will provide more details for further elucidation of these degradation mechanisms. A novel experiment is presented which is designed to elucidate the permeation behaviour of deuterium in a microstructure of duplex stainless steel (DSS). A hydrogen permeation cell within a TOF-SIMS instrument enables electrochemical charging with deuterium through the inner surface of the cell made from DSS. The outer surface of the DSS permeation cell exposed to the vacuum has been imaged by TOF-SIMS vs. increasing time of charging with subsequent chemometric treatment of image data. This in-situ experiment showed evidently that deuterium is permeating much faster through the ferrite phase than through the austenite phase. Moreover, a direct proof for deuterium enrichment at the austenite-ferrite interface has been found. PMID:26832311

  17. The use of X-ray diffraction, microscopy, and magnetic measurements for analysing microstructural features of a duplex stainless steel

    SciTech Connect

    Ribeiro Miranda, M.A.; Neto, J.M.

    2005-05-15

    X-ray diffraction, light optical microscopy, and magnetization saturation measurements were employed to analyse the microstructural features of a UNS S31803 duplex stainless steel modified by high-temperature treatments. The samples were heated to 1300 deg. C and cooled by different ways to produce five different microstructures. Solution treatments at 1000 deg. C were also employed to produce another five conditions. Three methods were employed to determine the austenite/ferrite proportions. X-ray diffraction gave higher austenite values than the other methods, due to the influence of texture, but can be successfully used to determine the microstrain level in each phase. Magnetic saturation measurement is a very simple and precise method for quantification of austenite and ferrite volume fractions in samples that were fast-cooled and slow-cooled. Light microscopy can give a fast and precise measurement of the phase proportions and reveals important features related to the morphology of the phases, but in the samples where the austenite content is low, quantification becomes difficult and imprecise.

  18. How to control hydrogen level in (super) duplex stainless steel weldments using the GTAW or GMAW process

    SciTech Connect

    Mee, V.V.D.; Meelker, H.; Schelde, R.V.D.

    1999-01-01

    In this investigation, an attempt is made to further the understanding of factors influencing the hydrogen content in duplex stainless steel gas tungsten arc (GTA) and gas metal arc (GMA) welds as well as to what extent it affects hydrogen-induced cracking susceptibility. The results indicated that susceptibility to hydrogen cracking using the GTA or GMA process appears to be limited. In practice, maintaining a moisture level below 10 ppm in the shielding gas is of less importance than the choice of welding parameters. Even a moisture level of 1000 ppm in the shielding gas, in combination with the correct welding parameters, will result in a sufficient low hydrogen content in the weld. Similarly, a moisture level in the shielding gas below 10 ppm does not necessarily result in low hydrogen content in the weld metal. Although very high ferrite levels were combined with high restrain and high hydrogen content, none of the GMA and GTA welds cracked. Susceptibility to hydrogen cracking is concluded to be limited.

  19. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  20. 77 K Fatigue Crack Growth Rate of Modified CF8M Stainless Steel Castings

    SciTech Connect

    Walsh, R. P.; Toplosky, V. J.; Han, K.; Heitzenroeder, P. J.; Nelson, B. E.

    2006-03-31

    The National Compact Stellerator Experiment (NCSX) is the first of a new class of stellarators. The modular superconducting coils in the NCSX have complex geometry that are manufactured on cast stainless steel (modified CF8M) winding forms. Although CF8M castings have been used before at cryogenic temperature there is limited data available for their mechanical properties at low temperatures. The fatigue life behavior of the cast material is vital thus a test program to generate data on representative material has been conducted. Fatigue test specimens have been obtained from key locations within prototype winding forms to determine the 77 K fatigue crack growth rate. The testing has successfully developed a representative database that ensures confident design. The measured crack growth rates are analyzed in terms of the Paris law parameters and the crack growth properties are related to the materials microstructure.

  1. Mechanical properties of thermally aged cast stainless steels from Shippingport reactor components

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1995-04-01

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approximately}13 y at {approximately}281 C (538 F) for the hot-leg components and {approximately}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot and crossover-leg elbows (CF-8M steel) after service of {approximately} 15 y and the KRB reactor pump cover plate (CF-8) after {approximately} 8 y of service.

  2. Mechanical properties of thermally aged cast stainless steels from shippingport reactor components.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.; Energy Technology

    1995-06-07

    Thermal embrittlement of static-cast CF-8 stainless steel components from the decommissioned Shippingport reactor has been characterized. Cast stainless steel materials were obtained from four cold-leg check valves, three hot-leg main shutoff valves, and two pump volutes. The actual time-at-temperature for the materials was {approx}13 y at {approx}281 C (538 F) for the hot-leg components and {approx}264 C (507 F) for the cold-leg components. Baseline mechanical properties for as-cast material were determined from tests on either recovery-annealed material, i.e., annealed for 1 h at 550 C and then water quenched, or material from the cooler region of the component. The Shippingport materials show modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength because of relatively low service temperatures and ferrite content of the steel. The procedure and correlations developed at Argonne National Laboratory for estimating mechanical properties of cast stainless steels predict accurate or slightly lower values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and JIC of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predicted the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y and the KRB reactor pump cover plate (CF-8) after {approx}8 y of service.

  3. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  4. Ultrasonic Sound Field Mapping Through Coarse Grained Cast Austenitic Stainless Steel Components

    SciTech Connect

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) has been involved with nondestructive examination (NDE) of coarse-grained cast austenitic stainless steel (CASS) components for over 30 years. More recent work has focused on mapping the ultrasonic sound fields generated by low-frequency phased array probes that are typically used for the evaluation of CASS materials for flaw detection and characterization. The casting process results in the formation of large grained material microstructures that are nonhomogeneous and anisotropic. The propagation of ultrasonic energy for examination of these materials results in scattering, partitioning and redirection of these sound fields. The work reported here provides an assessment of sound field formation in these materials and provides recommendations on ultrasonic inspection parameters for flaw detection in CASS components.

  5. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    NASA Astrophysics Data System (ADS)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  6. Elastic-plastic characterization of a cast stainless steep pipe elbow material

    SciTech Connect

    Joyce, J.A.; Hackett, E.M.; Roe, C.

    1992-01-01

    Tests conducted in Japan as part of the High Level Vibration Test (HLVT) program for reactor piping systems revealed fatigue crack growth in a cast stainless steel pipe elbow. The material tested was equivalent to ASME SA-351CF8M. The David Taylor Research Center (DTRC) was tasked to developed the appropriate material property data to characterize cyclic deformation, cyclic elastic-plastic crack growth and ductile tearing resistance in the pipe elbow material. It was found that the cast stainless steel was very resistant to ductile crack extension. J-R curves essentially followed a blunting behavior to very high J levels. Low cycle fatigue crack growth rate data obtained on this material using a cyclic J integral approach was consistent with the high cycle fatigue crack growth rate and with a standard textbook correlation equation typical for this type of material. Evaluation of crack closure effects was essential to accurately determine the crack driving force for cyclic elastic- plastic crack growth in this material. SEM examination of several of the cyclic J test fracture surfaces indicated that fatigue was the primary mode of fracture with ductile crack extension intervening only during the last few cycles of loading.

  7. [Mineral migration from stainless steel, cast iron and soapstone (steatite) Brazilian pans to food preparations].

    PubMed

    Quintaes, Késia Diego; Farfan, Jaime Amaya; Tomazini, Fernanda Mariana; Morgano, Marcelo Antônio

    2006-09-01

    Culinary utensils may release some inorganic elements during food preparation. Mineral migration can be beneficial for as long as it occurs in amounts adequate to the needs of the consumer or no toxicological implications are involved. In this study, the migrations of Fe, Mg, Mn, Cr, Ni and Ca, along seven cooking cycles were evaluated for two food preparations (polished rice and commercial tomato sauce, the latter as an acid food), performed in unused stainless steel, cast iron and soapstone pans, taking refractory glass as a blank. Minerals were determined by inductively coupled plasma optical emission spectrometry (ICP OES). The utensils studied exhibited different rates, patterns and variability of migration depending on the type of food. Regression analysis of the data revealed that, as a function of the number of cycles, the iron pans released increasing amounts of iron when tomato sauce was cooked (y = 70.76x + 276.75; R2 = 0.77). The soapstone pans released calcium (35 and 26 mg/kg), magnesium (25 and 15 mg/kg) into the tomato sauce and rice preparations, respectively. Additionally, the commercial tomato sauce drew manganese (3.9 and 0.6 mg/kg) and some undesirable nickel (1.0 mg/kg) from the soapstone material, whereas the stainless steel pans released nickel at a lower rate than steatite and in a diminishing fashion with the number o cooking cycles, while still transferring some iron and chromium to the food. We conclude that while cast iron and glass could be best for the consumer's nutritional health, stainless steel and steatite can be used with relatively low risk, provided acid foods are not routinely prepared in those materials.

  8. Structure characteristics in industrially centrifugally cast 25Cr20Ni stainless steel tubes solidified under different electromagnetic field intensity

    SciTech Connect

    Wu, X.Q.; Yang, Y.S.; Zhang, J.S.; Jia, G.L.; Hu, Z.Q.

    1999-10-01

    The influences of different electromagnetic field intensities on the solidification structures of industrially centrifugally cast 25Cr20Ni stainless steel tubes have been investigated in detail. The results reveal that the electromagnetic field exerted during the centrifugal solidification causes a marked variation in the structures of the cast tubes. With an increase of the electromagnetic field intensity, the area fraction of the equiaxed structures in transverse sections of the cast tubes increases, and the macrostructures are gradually refined. The distribution of the eutectic carbides changes from the dendrite boundaries to the grain boundaries. However, an excessive electromagnetic field intensity gives rise to many intergranular cast defects formed along the inner walls of the centrifugally cast tubes. The effects of fluid flow induced by the electromagnetic field on the solidification process of the centrifugally cast tubes are the primary reason for the previously mentioned structure variations.

  9. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    SciTech Connect

    1994-01-01

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Caster for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.

  10. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  11. Microstructural evolution during aging at 800 °C and its effect on the magnetic behavior of UNS S32304 lean duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Dille, J.; Areiza, M. C. L.; Tavares, S. S. M.; Pereira, G. R.; De Almeida, L. H.; Rebello, J. M. A.

    2017-03-01

    Duplex stainless steels are high strength and corrosion resistant alloys extensively used in chemical and petrochemical industries. However, exposition to temperatures in the range 300-1000 °C leads to precipitation of different phases having a detrimental effect on the mechanical properties and on the corrosion resistance of the alloy. In this work, the microstructural evolution during aging of a UNS S32304 lean duplex stainless steel was investigated by scanning electron microscopy, transmission electron microscopy and magnetic force microscopy. Formation of secondary austenite as well as Cr2N and Cr23C6 precipitation and, consequently, a decrease of ferrite volume fraction were observed. EDX analysis indicated that secondary austenite is depleted in chromium which is detrimental to the corrosion resistance of the alloy. A variation of magnetic properties and Eddy current measurement parameters during aging was simultaneously detected and can be explained by the decrease of ferrite volume content. Therefore, Eddy current non-destructive testing can be successfully applied to detect the formation of deleterious phases during aging.

  12. Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts

    SciTech Connect

    Sabau, Adrian S; Porter, Wallace D

    2008-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties were accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.

  13. Flexural Strength and Toughness of Austenitic Stainless Steel Reinforced High-Cr White Cast Iron Composite

    NASA Astrophysics Data System (ADS)

    Sallam, H. E. M.; Abd El-Aziz, Kh.; Abd El-Raouf, H.; Elbanna, E. M.

    2013-12-01

    Flexural behavior of high-Cr white cast iron (WCI) reinforced with different shapes, i.e., I- and T-sections, and volume fractions of austenitic stainless steel (310 SS) were examined under three-point bending test. The dimensions of casted beams used for bending test were (50 × 100 × 500 mm3). Carbon and alloying elements diffusion enhanced the metallurgical bond across the interface of casted beams. Carbon diffusion from high-Cr WCI into 310 SS resulted in the formation of Cr-carbides in 310 SS near the interface and Ni diffusion from 310 SS into high-Cr WCI led to the formation of austenite within a network of M7C3 eutectic carbides in high-Cr WCI near the interface. Inserting 310 SS plates into high-Cr WCI beams resulted in a significant improvement in their toughness. All specimens of this metal matrix composite failed in a ductile mode with higher plastic deformation prior to failure. The high-Cr WCI specimen reinforced with I-section of 310 SS revealed higher toughness compared to that with T-section at the same volume fraction. The presence of the upper flange increased the reinforcement efficiency for delaying the crack growth.

  14. Automated Flaw Detection Scheme For Cast Austenitic Stainless Steel Weld Specimens Using Hilbert Huang Transform Of Ultrasonic Phased Array Data

    SciTech Connect

    Khan, T.; Majumdar, Shantanu; Udpa, L.; Ramuhalli, Pradeep; Crawford, Susan L.; Diaz, Aaron A.; Anderson, Michael T.

    2012-01-01

    The objective of this work is to develop processing algorithms to detect and localize the flaws using NDE ultrasonic data. Data was collected using cast austenitic stainless steel (CASS) weld specimens on-loan from the U.S. nuclear power industry’s Pressurized Water Reactor Owners Group (PWROG) specimen set. Each specimen consists of a centrifugally cast stainless steel (CCSS) pipe section welded to a statically cast (SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection signals in the weld and heat affected zone of the base materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  15. AN ULTRASONIC PHASED ARRAY EVALUATION OF CAST AUSTENITIC STAINLESS STEEL PRESSURIZER SURGE LINE PIPING WELDS

    SciTech Connect

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Moran, Traci L.; Anderson, Michael T.

    2010-07-22

    A set of circumferentially oriented thermal fatigue cracks (TFCs) were implanted into three cast austenitic stainless steel (CASS) pressurizer (PZR) surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing performance of the phased-array (PA) ultrasonic testing (UT) methods applied. Four different custom-made PA probes were employed in this study, operating nominally at 800 kHz, 1.0 MHz, 1.5 MHz, and 2.0 MHz center frequencies. The CASS PZR surge-line specimens were polished and chemically etched to bring out the microstructures of both pipe and elbow segments. Additional studies were conducted and documented to address baseline CASS material noise and observe possible ultrasonic beam redirection phenomena.

  16. Systematic Microstructural and Corrosion Performance Evaluation of CK-3MCuN and CN-3MN High Molybdenum Stainless Steel Castings

    SciTech Connect

    C.D. Lundin; S. Wen; W. Liu; G. Zhou

    2001-10-01

    High molybdenum austenitic stainless steel castings are widely accepted for their high strength, excellent weldability, and good corrosion resistance over a wide range of temperatures in highly oxidizing aqueous and gaseous media in chemical processing and other environments. With their desirable performance, high molybdenum austenitic stainless steel castings are increasingly applied in industry in a similar manner as wrought materials. In general, cast and wrought stainless and high alloy steels are anticipated to possess equivalent resistance to corrosive media, and they are frequently used in conjunction with each other. However, alloying element segregation usually is more evident in castings than in wrought counterparts. Segregation of alloying elements can lead to the formation of secondary phases, such as sigma. Mechanical properties and especially the corrosion resistance of castings may be affected by the secondary phases. In addition, improper heat treatment procedures c an also lead to the formation of carbides and secondary phases in high alloy and austenitic stainless steels.

  17. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    NASA Astrophysics Data System (ADS)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-01-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  18. Dislocation structures in the bands of localized cyclic plastic strain in austenitic 316L and austenitic-ferritic duplex stainless steels

    SciTech Connect

    Kruml, T.; Polak, J.; Obrtlik, K.; Degallaix, S.

    1997-12-01

    Dislocation structures in bands corresponding to cyclic strain localization have been studied in two types of stainless steels, single phase austenitic 316L steel and two-phase austenitic-ferritic duplex steel. Dislocation structures are documented in thin foils oriented approximately perpendicular to the active slip plane of individual grains and parallel to the primary Burgers vector. Persistent slip bands, with the structure more or less reminiscent of the well-known ladder structure, were found in austenitic grains of both steels. These bands can be correlated with the distinct surface relief consisting of extrusions, intrusions and shallow surface cracks in austenitic grains were found. The distribution of the wall and labyrinth structure embedded in the matrix structure in ferritic grains, which was proposed to be responsible for the localization of the cyclic strain, however, does not correspond to the distribution of the distinct surface slip lines on the surface.

  19. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    SciTech Connect

    Pankiw, Roman I; Muralidharan, G.; Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  20. Progress in the Reliable Inspection of Cast Stainless Steel Reactor Piping Components

    SciTech Connect

    Doctor, Steven R.; Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.

    2005-12-31

    Studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing the effectiveness and reliability of novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effec¬tiveness and reliability of ultrasonic testing (UT) and eddy current testing (ET) inspection techniques as related to the inservice ultrasonic inspec¬tion of primary piping components in pressurized water reactors (PWRs). This paper describes progress, recent developments and results from assessments of three different NDE approaches including ultrasonic phased array inspection techniques, eddy current testing for surface-breaking flaws, and a low-frequency ultrasonic inspection methodology coupled with a synthetic aperture focusing technique (SAFT). Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank spool pieces were used for assessing the inspection methods. Eddy current studies were conducted on the inner diameter (ID) surface of piping specimens while the ultrasonic inspection methods were applied from the outer diameter (OD) surface of the specimens. The eddy current technique employed a Zetec MIZ-27SI Eddy Current instrument and a Zetec Z0000857-1 cross point spot probe with an operating frequency of 250 kHz. In order to reduce noise effects, degaussing of a subset of the samples resulted in noticeable improvements. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1 MHz, providing composite volumetric images of the samples. The low-frequency ultrasonic method employs a zone-focused, multi-incident angle inspection protocol (operating at 250-500 kHz) coupled with SAFT for improved signal

  1. Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Alexandreanu, B.; Chen, W.-Y.; Natesan, K.; Li, Z.; Yang, Y.; Rao, A. S.

    2015-11-01

    To assess the combined effect of thermal aging and neutron irradiation on the cracking behavior of CF-8 cast austenitic stainless steel, crack growth rate (CGR) and fracture toughness J-R curve tests were carried out on compact-tension specimens in high-purity water with low dissolved oxygen. Both unaged and thermally aged specimens were irradiated at ∼320 °C to 0.08 dpa. Thermal aging at 400 °C for 10,000 h apparently had no effect on the corrosion fatigue and stress corrosion cracking behavior in the test environment. The cracking susceptibility of CF-8 was not elevated significantly by neutron irradiation at 0.08 dpa. Transgranular cleavage-like cracking was the main fracture mode during the CGR tests, and a brittle morphology of delta ferrite was often seen on the fracture surfaces at the end of CGR tests. The fracture toughness J-R curve tests showed that both thermal aging and neutron irradiation can induce significant embrittlement. The loss of fracture toughness due to neutron irradiation was more pronounced in the unaged than aged specimens. After neutron irradiation, the fracture toughness values of the unaged and aged specimens were reduced to a similar level. G-phase precipitates were observed in the aged and irradiated specimens with or without prior aging. The similar microstructural changes resulting from thermal aging and irradiation suggest a common microstructural mechanism of inducing embrittlement in CF-8.

  2. Fabrication of low-cost, cementless femoral stem 316L stainless steel using investment casting technique.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Suhasril, Andril Arafat; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Omar, Mohd Afian; Abd Kader, Ab Saman; Mohd Noor, Alias; A Harris, Arief Ruhullah; Abdul Majid, Norazman

    2014-07-01

    Total hip arthroplasty is a flourishing orthopedic surgery, generating billions of dollars of revenue. The cost associated with the fabrication of implants has been increasing year by year, and this phenomenon has burdened the patient with extra charges. Consequently, this study will focus on designing an accurate implant via implementing the reverse engineering of three-dimensional morphological study based on a particular population. By using finite element analysis, this study will assist to predict the outcome and could become a useful tool for preclinical testing of newly designed implants. A prototype is then fabricated using 316L stainless steel by applying investment casting techniques that reduce manufacturing cost without jeopardizing implant quality. The finite element analysis showed that the maximum von Mises stress was 66.88 MPa proximally with a safety factor of 2.39 against endosteal fracture, and micromotion was 4.73 μm, which promotes osseointegration. This method offers a fabrication process of cementless femoral stems with lower cost, subsequently helping patients, particularly those from nondeveloped countries.

  3. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    DOE PAGES

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; ...

    2015-08-21

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 1015 ions/cm2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structure as linemore » segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.« less

  4. Mechanical-property degradation of cast stainless steel components from the Shippingport reactor

    SciTech Connect

    Chopra, O.K.

    1991-10-01

    The mechanical properties of cast stainless steels from the Shippingport reactor have been characterized. Baseline properties for unaged materials were obtained from tests on either recovery-annealed material or material from a cooler region of the component. The materials exhibited modest decrease in impact energy and fracture toughness and a small increase in tensile strength. The fracture toughness J-R curve, J{sub IC} value, tensile flow stress, and Charpy-impact energy of the materials showed very good agreement with estimations based on accelerated laboratory aging studies. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy that would be achieved after long-term aging, were established from materials that were aged further in the laboratory at temperatures between 320 and 400{degrees}C. The results showed very good agreement with estimates; the activation energies ranged from 125 to 250 kJ/mole and the minimum room temperature impact energy was <75 J/cm{sup 2}. The estimated impact energy and fracture toughness J-R curve for materials from the Ringhals reactor hot and crossover-leg elbows are also presented.

  5. Methods for the In-Situ Characterization of Cast Austenitic Stainless Steel Microstructures

    NASA Astrophysics Data System (ADS)

    Ramuhalli, P.; Good, M. S.; Harris, R. J.; Bond, L. J.; Ruud, C. O.; Diaz, A. A.; Anderson, M. T.

    2011-06-01

    Cast austenitic stainless steel (CASS) that was commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. Its engineering properties made it a material of choice for selected designs of nuclear power reactor systems. However, the material manufacturing and fabrication processes result in a variety of coarse-grain microstructures that make current ultrasonic in-service inspection of components quite challenging. To address inspection needs, new ultrasonic inspection approaches are being sought. However, overcoming the deleterious and variable effects of the microstructure on the interrogating ultrasonic beam may require knowledge of the microstructure, for potential optimization of inspection parameters to enhance the probability of detection (POD). The ability to classify microstructure type (e.g. polycrystalline or columnar) has the potential to guide selection of optimal NDE approaches. This paper discusses the application of ultrasonic and electromagnetic methods for classifying CASS microstructures, when making measurements from the outside surface of the component. Results to date demonstrate the potential of these measurements to discriminate between two consistent microstructures—equiaxed-grain material versus columnar-grain material. The potential for fusion of ultrasonic and electromagnetic measurements for in-situ microstructure characterization in CASS materials will be explored.

  6. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    SciTech Connect

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2015-08-21

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 1015 ions/cm2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structure as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.

  7. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    SciTech Connect

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  8. Response of duplex Cr(N)/S and Cr(C)/S coatings on 316L stainless steel to tribocorrosion in 0.89% NaCl solution under plastic contact conditions.

    PubMed

    Sun, Y; Dearnley, P A; Mallia, Bertram

    2016-04-27

    Two duplex coatings, Cr(N)/S and Cr(C)/S, were deposited on 316 L stainless steel by magnetron sputtering. The effectiveness of these duplex coatings in improving the tribocorrosion behavior of medical alloys under elastic contact conditions has been demonstrated in a recent publication. The present work focused on the response of these duplex coatings to tribocorrosion under plastic contact conditions. Tribocorrosion tests were conducted in 0.89% NaCl solution at 37°C at an initial contact pressure of 740 MPa and under unidirectional sliding conditions for sliding duration up to 24 h. The results showed that during sliding in the corrosive solution, the duplex coatings were plastically deformed into the substrate to a depth about 1 μm. The Cr(C)/S duplex coating had sufficient ductility to accommodate the deformation without cracking, such that it was worn through gradually, leading to the gradual increase in open circuit potential (OCP) and coefficient of friction (COF). On the other hand, the Cr(N)/S duplex coating suffered from cracking at all tested potentials, leading to coating blistering after prolonged sliding at OCP and stable pit formation in the substrate beneath the coating at applied anodic potentials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  9. Analysis of cracking phenomena in continuous casting of 1Cr13 stainless steel billets with final electromagnetic stirring

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Xu, Rong-jun; Fan, Zheng-jie; Li, Cheng-bin; Deng, An-yuan; Wang, En-gang

    2016-05-01

    Solidification cracking that occurs during continuous casting of 1Cr13 stainless steel was investigated with and without final electromagnetic stirring (F-EMS). The results show that cracks initiates and propagates along the grain boundaries where the elements of carbon and sulfur are enriched. The final stirrer should be appropriately placed at a location that is 7.5 m away from the meniscus, and the appropriate thickness of the liquid core in the stirring zone is 50 mm. As a stirring current of 250 A is imposed, it can promote columnar-equiaxed transition, decrease the secondary dendrite arm spacing, and reduce the segregation of both carbon and sulfur. F-EMS can effectively decrease the amount of cracks in 1Cr13 stainless steel.

  10. Microstructural Evolution and Bonding Behavior during Transient Liquid-Phase Bonding of a Duplex Stainless Steel using two Different Ni-B-Based Filler Materials

    NASA Astrophysics Data System (ADS)

    Yuan, Xinjian; Kim, Myung Bok; Kang, Chung Yun

    2011-05-01

    Microstructural evolution and bonding behavior of transient liquid-phase (TLP) bonded joint for a duplex stainless steel using MBF-30 (Ni -4.5Si -3.2B [wt pct]) and MBF-50 (Ni -7.5Si -1.4B -18.5Cr [wt pct]) were investigated. Using MBF-30, the microstructure of the athermally solidified zone was dependent on B diffusion at 1333.15 K (1060 °C). Ni3B and a supersaturated γ-Ni phase were observed in this zone. BN appeared in the bonding-affected zone. However, using MBF-50, the influences of base metal alloying elements, particularly N and Cr as well as Si in the filler material, on the bond microstructure development were more pronounced at 1448.15 K (1175 °C). BN and (Cr, Ni)3Si phase were present in the bond centerline. The formation of BN precipitates in the bonding-affected zone was suppressed. A significant deviation in the isothermal solidification rate from the conventional TLP bonding diffusion models was observed in the joints prepared at 1448.15 K (1175 °C) using MBF-50.

  11. Investigation of the Kinetics of the Ferrite/Austenite Phase Transformation in the HAZ of a 2205 Duplex Stainless Steel Weldment

    SciTech Connect

    Palmer, T A; Elmer, J W; Wong, J; Babu, S S; Vitek, J M

    2002-03-14

    A semi-quantitative map based on a series of spatially resolved X-ray diffraction (SRXRD) scans shows the progression of the ferrite ({delta})/austenite ({gamma}) phase balance throughout the HAZ during GTA welding of a 2205 duplex stainless steel (DSS). This map shows an unexpected decrease in the ferrite fraction on heating, followed by a recovery to the original ferrite fraction on cooling at locations within the HAZ. Even though such behavior is supported by thermodynamic calculations, it has not been confirmed by either experimental methods or have the kinetics been evaluated. Both Gleeble thermal simulations and time resolved x-ray diffraction measurements on spot welds in the 2205 DSS provide further evidence for this rather low-temperature transformation. On the other hand, calculations of the diffusion of alloying elements across the 6/y interface under a variety of conditions shed no further light on the driving force for this transformation. Further work on the mechanisms and driving forces for this transformation is on-going.

  12. Surface modification of 2205 duplex stainless steel by low temperature salt bath nitrocarburizing at 430 °C

    NASA Astrophysics Data System (ADS)

    Huang, Runbo; Wang, Jun; Zhong, Si; Li, Mingxing; Xiong, Ji; Fan, Hongyuan

    2013-04-01

    2205 stainless steel was modified by salt bath nitrocarburizing at 430 °C in this study. The microstructure, surface hardness and erosion-corrosion resistance were systematically evaluated. Salt bath nitrocarburizing at 430 °C can form a nitrocarburized layer, and with the treated time prolong, the thickness of the layer increased. By nitrocarburizing within 8 h, only expanded austenite (S phase) formed. With treated time increased, CrN gradually diffused from the places where there were ferrite grains in the layer before nitrocarburizing. Besides, the depth increased with the nitrocarburized time and the layer grew approximately conforms to the parabolic rate law. Salt bath nitrocarburizing can effectively improve the surface hardness of 2205 DSS. The erosion-corrosion resistance was improved by salt bath nitrocarburizing and the 16 h treated sample had the best erosion-corrosion behavior.

  13. Sensitization phenomena on aged SAF 2205 duplex stainless steel and their control using the electrochemical potentiokinetic reactivation test

    SciTech Connect

    Angelini, E.; Benedetti, B. de; Maizza, G.; Rosalbino, F. . Dept. of Materials Science and Chemical Engineering)

    1999-06-01

    Microstructural changes and resulting properties were studied for SAF 2205 (UNS S31803) austeno-ferritic stainless steel (SS) aged between 700 C and 900 C for up to 2 weeks and then water-quenched. Quantitative metallography coupled with x-ray diffraction techniques were adopted to follow ferrite ([alpha]) transformation with subsequent formation of secondary austenite ([gamma][sub 2]) and sigma ([sigma]) phase. The kinetic model of a transformation was interpreted in the form of an Avrami-type expression. The electrochemical potentiokinetic reactivation (EPR) test was used to evaluate the degree of sensitization of the aged specimens. Results were compared with results from the corrosion test in boiling nitric acid (HNO[sub 3]). Influences of the transformation of ferrite into austenite, sigma phase, and of other microstructural variations such as chromium nitride (Cr[sub 2]N) precipitation on stability of the passive film were shown. The susceptibility to intergranular corrosion phenomena was caused by chromium depletion caused by sigma phase precipitation, while chromium nitrides appeared less harmful. Results were expressed as an isocharge line diagram that allowed concise identification of sensitization and desensitization ranges.

  14. Microstructural Evolution of an Al-Alloyed Duplex Stainless Steel During Tensile Deformation Between 77 K and 473 K (-196 °C and 200 °C)

    NASA Astrophysics Data System (ADS)

    Rahimi, Reza; Ullrich, Christiane; Rafaja, David; Biermann, Horst; Mola, Javad

    2016-06-01

    Tensile deformation behavior of an Al-alloyed Fe-17Cr-6Mn-4Al-3Ni-0.45C (mass pct) duplex stainless steel containing approximately 20 vol pct ferrite was studied in the temperature range from 77 K to 473 K (-196 °C to 200 °C). While the elongation exhibited a maximum near room temperature, the yield strength continuously increased at lower tensile test temperatures. According to the microstructural examinations, the twinning-induced plasticity and the dislocation cell formation were the dominant deformation mechanisms in the austenite and ferrite, respectively. Reduction of the tensile ductility at T < 273 K (0 °C) was attributed to the ready material decohesion at the ferrite/austenite boundaries. Tensile testing at 473 K (200 °C) was associated with the serrated flow which was ascribed to the Portevin-Le Chatelier effect. Due to a rise in the stacking fault energy of austenite, the occurrence of mechanical twinning was impeded at higher tensile test temperatures. Furthermore, the evolution of microstructural constituents at room temperature was studied by interrupted tensile tests. The deformation in the austenite phase started with the formation of Taylor lattices followed by mechanical twinning at higher strains/stresses. In the ferrite phase, on the other hand, the formation of dislocation cells, cell refinement, and microbands formation occurred in sequence during deformation. Microhardness evolution of ferrite and austenite in the interrupted tensile test specimens implied a higher strain-hardening rate for the austenite as it clearly became the harder phase at higher tensile strain levels.

  15. High strain rate superplasticity of a 25 Wt Pct Cr-7 Wt Pct Ni-3 Wt Pct Mo-0.14 Wt Pct N duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Maehara, Yasuhiro

    1991-05-01

    Effects of prior thermomechanical treatments on the superplasticity of a 25 wt pct Cr-7 wt pct Ni-3 wt pct Mo-0.14 wt pct N δ/γ duplex stainless steel have been studied by means of hot tensile testing with constant crosshead speeds. The objective is to increase the strain rate suitable for superplasticity. The strain rate is found to be markedly increased by a special prior treatment, i.e., solution treatment at temperatures in the δ single-phase region with subsequent heavy cold-rolling. In hot tensile tests at 1273 K, elongations greater than 1000 and 300 pct were observed at initial strain rates (έ) of 10-3 to 10-1 s-1 and 1 x 100 s-1, respectively. The results for strain rates <10-1 s-1 can be explained in terms of a structural superplastic effect due to grain refinement. In the case of έ > 10-1 s-1, transformation superplastic effects due to γ-phase precipitation from the σ-ferrite matrix are also important, especially in the early stages of deformation. In the equiaxed δ/γ microduplex structures during stable superplastic deformation, there exists a mixture of two different structures, i.e., dislocated and recovered/ recrystallized δ grains with a homogeneous dispersion of dislocation-free γ particles. This result shows that dynamic recrystallization of δ grains occurs locally and intermittently due to the dispersion of relatively hard γ particles. The apparent average grain growth rate during deformation is small compared to static grain growth, because grain refinement due to dynamic recrystallization reduces the superplasticity-enhanced grain growth.

  16. Effect of oxygen on weld shape and crystallographic orientation of duplex stainless steel weld using advanced A-TIG (AA-TIG) welding method

    SciTech Connect

    Zou, Ying Ueji, Rintaro; Fujii, Hidetoshi

    2014-05-01

    The double-shielded advanced A-TIG (AA-TIG) welding method was adopted in this study for the welding of the SUS329J4L duplex stainless steel with the shielding gases of different oxygen content levels. The oxygen content in the shielding gas was controlled by altering the oxygen content in the outer layer gas, while the inner layer remained pure argon to suppress oxidation on the tungsten electrode. As a result, a deep weld penetration was obtained due to the dissolution of oxygen into the weld metals. Additionally, the microstructure of the weld metal was changed by the dissolution of oxygen. The austenite phase at the ferrite grain boundary followed a Kurdjumov–Sachs (K–S) orientation relationship with the ferrite matrix phase at any oxide content. On the other hand, the orientation relationship between the intragranular austenite phase and the ferrite matrix phase exhibited different patterns under different oxygen content levels. When there was little oxide in the fusion zone, only a limited part of the intragranular austenite phase and the ferrite matrix phase followed the K–S orientation relationship. With the increase of the oxide, the correspondence of the K–S relationship increased and fit very well in the 2.5% O{sub 2} shielded sample. The investigation of this phenomenon was carried out along with the nucleation mechanisms of the intragranular austenite phases. - Highlights: • Weld penetration increased with the increase of the oxygen content. • Average diameter and number density of oxide were changed by the oxygen content. • K-S relationship of Widmanstätten austenite/ferrite wasn’t varied by oxide. • Orientation relationship of intragranular austenite/ferrite was varied by oxide.

  17. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment.

    SciTech Connect

    Chopra, O. K.; Gruber, E. E.; Shack, W. J.

    2007-01-01

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. Exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). We look at the results of a study of simulated light-water reactor coolants, material chemistry, and irradiation damage and their effects on the susceptibility to stress-corrosion cracking of various commercially available and laboratory-melted stainless steels.

  18. Energy Saving Melting and Revert Reduction (E-SMARRT): Optimization of Heat Treatments on Stainless Steel Castings for Improved Corrosion Resistance and Mechanical Properties

    SciTech Connect

    John N. DuPont; Jeffrey D. Farren; Andrew W. Stockdale; Brett M. Leister

    2012-06-30

    It is commonly believed that high alloy steel castings have inferior corrosion resistance to their wrought counterparts as a result of the increased amount of microsegregation remaining in the as-cast structure. Homogenization and dissolution heat treatments are often utilized to reduce or eliminate the residual microsegregation and dissolve the secondary phases. Detailed electron probe microanalysis (EPMA) and light optical microscopy (LOM) were utilized to correlate the amount of homogenization and dissolution present after various thermal treatments with calculated values and with the resultant corrosion resistance of the alloys.The influence of heat treatment time and temperature on the homogenization and dissolution kinetics were investigated using stainless steel alloys CN3MN and CK3MCuN. The influence of heat treatment time and temperature on the impact toughness and corrosion reistance of cast stainless steel alloys CF-3, CF-3M, CF-8, and CF-8M was also investigated.

  19. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    SciTech Connect

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  20. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    SciTech Connect

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired

  1. Temperature effects on the static and dynamic fracture behaviors of low-silicon CA-15 tempered stainless steel castings

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsun; Teng, Hwei-Yuan

    2005-04-01

    In this research we studied the effect of testing temperature on both static and dynamic fracturing behaviors of low-silicon CA-15 martensitic stainless steel (MSS) castings after austenitizing and tempering treatments. The results showed that the material's microstructure was influenced by heat treatment and various testing temperatures would cause different fracturing mechanisms. In static tensile tests, the 573-673 K tempered specimens occurred secondary strengthening at 423 K and 298 K testing temperatures. However, there is a contrast of weakening occurred at 123 K for the same type of tempered samples. The phenomenon was mainly triggered by local cracking at the ferrite/martensitic interface and incoherent precipitate site in the materials because of the existence of shrinkage stress under subzero temperature. In the dynamic strain-rate tests, impact embrittlement occurred in the 573-673 K tempered samples as a result of the tempered martensite embrittlement (TME) phenomenon. The ductile-to-brittle transition temperature (DBTT) of the tempered material was obviously lower than that of the as-cast material. Also, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed to correlate the properties attained to the microstructural observation.

  2. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    DOEpatents

    Mazias, Philip J.; McGreevy, Tim; Pollard,Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  3. Manufacture of Alumina-Forming Austenitic Stainless Steel Alloys by Conventional Casting and Hot-Working Methods

    SciTech Connect

    Brady, M.P.; Yamamoto, Y.; Magee, J.H.

    2009-03-23

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (CarTech) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation program to explore the feasibility for scale up of developmental ORNL alumina-forming austenitic (AFA) stainless steels by conventional casting and rolling techniques. CarTech successfully vacuum melted 30lb heats of four AFA alloy compositions in the range of Fe-(20-25)Ni-(12-14)Cr-(3-4)Al-(1-2.5)Nb wt.% base. Conventional hot/cold rolling was used to produce 0.5-inch thick plate and 0.1-inch thick sheet product. ORNL subsequently successfully rolled the 0.1-inch sheet to 4 mil thick foil. Long-term oxidation studies of the plate form material were initiated at 650, 700, and 800 C in air with 10 volume percent water vapor. Preliminary results indicated that the alloys exhibit comparable (good) oxidation resistance to ORNL laboratory scale AFA alloy arc casting previously evaluated. The sheet and foil material will be used in ongoing evaluation efforts for oxidation and creep resistance under related CRADAs with two gas turbine engine manufacturers. This work will be directed to evaluation of AFA alloys for use in gas turbine recuperators to permit higher-temperature operating conditions for improved efficiencies and reduced environmental emissions.

  4. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    SciTech Connect

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.

  5. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    DOE PAGES

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; ...

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remainedmore » adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  6. 3D stress simulation and parameter design during twin-roll casting of 304 stainless steel based on the Anand model

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Yuan-yuan; Liu, Li-gang; Zhang, Yue; Yang, Qing-xiang

    2014-07-01

    This study first investigated cracks on the surface of an actual steel strip. Formulating the Anand model in ANSYS software, we then simulated the stress field in the molten pool of type 304 stainless steel during the twin-roll casting process. Parameters affecting the stress distribution in the molten pool were analyzed in detail and optimized. After twin-roll casting, a large number of transgranular and intergranular cracks resided on the surface of the thin steel strip, and followed a tortuous path. In the molten pool, stress was enhanced at the exit and at the roller contact positions. The stress at the exit decreased with increasing casting speed and pouring temperature. To ensure high quality of the fabricated strips, the casting speed and pouring temperature should be controlled above 0.7 m/s and 1520°C, respectively.

  7. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    SciTech Connect

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-05-17

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  8. Automated flaw detection scheme for cast austenitic stainless stell weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    NASA Astrophysics Data System (ADS)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-05-01

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  9. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  10. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    NASA Astrophysics Data System (ADS)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  11. Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed- and Columnar-Grain Material – An Interim Study

    SciTech Connect

    Ramuhalli, Pradeep; Good, Morris S.; Diaz, Aaron A.; Anderson, Michael T.; Watson, Bruce E.; Peters, Timothy J.; Dixit, Mukul; Bond, Leonard J.

    2009-10-27

    Ultrasonic nondestructive evaluation (NDE) and inspection of cast austenitic stainless steel (CASS) components used in the nuclear power industry is neither as effective nor reliable as is needed due to detrimental effects upon the interrogating ultrasonic beam and interference from ultrasonic backscatter. The root cause is the coarse-grain microstructure inherent to this class of materials. Some ultrasonic techniques perform better for particular microstructural classifications and this has led to the hypothesis that an ultrasonic inspection can be optimized for a particular microstructural class, if a technique exists to reliably classify the microstructure for feedback to the inspection. This document summarizes scoping experiments of in-situ ultrasonic methods for classification and/or characterization of the material microstructures in CASS components from the outside surface of a pipe. The focus of this study was to evaluate ultrasonic methods and provide an interim report that documents results and technical progress. An initial set of experiments were performed to test the hypothesis that in-service characterization of cast austenitic stainless steel (CASS) is feasible, and that, if reliably performed, such data would provide real-time feedback to optimize in-service inspections in the field. With this objective in mind, measurements for the experiment were restricted to techniques that should be robust if carried forward to eventual field implementation. Two parameters were investigated for their ability to discriminate between different microstructures in CASS components. The first parameter was a time-of-flight ratio of a normal incidence shear wave to that of a normal incidence longitudinal wave (TOFRSL). The ratio removed dependency on component thickness which may not be accurately reported in the field. The second parameter was longitudinal wave attenuation. The selected CASS specimens provided five equiaxed-grain material samples and five columnar

  12. Heat treatment of investment cast PH 13-8 Mo stainless steel; Part 2: Isothermal aging kinetics

    SciTech Connect

    Robino, C.V.; Cieslak, M.J. . Physical and Joining Metallurgy Dept.); Hochanadel, P.W.; Edwards, G.R. . Dept. of Metallurgical and Materials Engineering)

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 C to 593 C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 C, 538 C, 566 C, and 593 C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that [beta]-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the [beta]-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels.

  13. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure

    NASA Astrophysics Data System (ADS)

    Hochanadel, P. W.; Edwards, G. R.; Robino, C. V.; Cieslak, M. J.

    1994-04-01

    The microstructure of investment cast PH 13-8 Mo stainless steel heat-treated to various conditions was studied using light and electron microscopy, electron probe microanalysis, and Mössbauer spectroscopy. The mechanical properties were investigated by using uniaxial tensile testing, hardness testing, and Charpy impact testing. The Β-NiAl strengthening precipitates, though detectable by electron diffraction, were difficult to resolve by transmission electron microscopy (TEM) in specimens aged at low temperatures (566 °C and below). A high dislocation density was observed in the lath martensitic structure. The higher strength and lower ductility observed at low aging temperatures was attributed to both the high dislocation density and the precipitation of Β-NiAl. When samples were aged at high temperatures (> 566 °C), a lower dislocation density and a reverted austenite fraction on the order of 15 pct were observed. Spherical Β-NiAl precipitates were observed in the overaged condition. The decrease in strength and corresponding increase in ductility observed in samples aged at temperatures above 566 °C were attributed to the reverted austenite and recovery. Mechanical properties were improved when the homogenizing temperature and time were increased. Electron probe microanalysis quantified the increased homogeneity realized by increasing homogenizing temperature and time. Elimination of the refrigeration step, which normally follows the solution treatment, did not degrade the mechanical properties. Mössbauer spectroscopy showed only minor decreases in the fraction of retained austenite when refrigeration followed the solution treatment.

  14. Phased Array Ultrasonic Sound Field Mapping through Large-Bore Coarse Grained Cast Austenitic Stainless Steel (CASS) Components

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Prowant, Matthew S.; Coble, Jamie B.; Diaz, Aaron A.; Anderson, Michael T.

    2012-09-01

    A sound field beam mapping exercise was conducted to assist in understanding the effects of coarse-grained microstructures found in cast austenitic stainless steel (CASS) materials on acoustic longitudinal wave propagation. Ultrasonic laboratory measurements were made on three specimens representing four different grain structures. Phased array (PA) probes were fixed on each specimen surface and excited in the longitudinal mode at specific angles while a point receiver was scanned in a raster pattern over the end of the specimen, generating a transmitted sound field image. Three probes operating at nominal frequencies of 0.5, 0.8, and 1.0 MHz were used. A 6.4 mm (0.25-in.) thick slice was removed from the specimen end and beam mapping was repeated three times, yielding four full sets of beam images. Data were collected both with a constant part path for each configuration (probe, specimen and slice, angle, etc.) and with a variable part path (fixed position on the surface). The base specimens and slices were then polished and etched to reveal measureable grain microstructures that were compared to the sound field interactions and scattering effects seen in the collected data.

  15. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOEpatents

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2010-08-17

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  16. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOEpatents

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2006-12-26

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  17. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2010-07-06

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  18. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2011-08-23

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  19. Practical handbook of stainless steels and nickel alloys

    SciTech Connect

    Lamb, S.

    1999-07-01

    This new handbook is an up-to-date technical guide to the grades, properties, fabrication characteristics, and applications of stainless steels and nickel alloys. The individual chapters were written by industry experts and focus on the key properties and alloy characteristics important in material selection and specification as well as the practical factors that influence the development and application of these materials. The contents include: alloy grades and their welding and fabrication characteristics and their application; monel metal; iron-based and nickel-based alloys; ferritic, austenitic, superaustenitic, and martensitic stainless steels; hastelloys; alloys 20, G, and 825; AOD and new refining technology; duplex stainless steels; 6-Mo alloys; corrosion-resistant castings; specification cross-reference tables; trade names; hardness conversions; list of common abbreviations.

  20. Improvements in Low-Frequency, Ultrasonic Phased-Array Evaluation for Thick Section Cast Austenitic Stainless Steel Piping Components

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

    2010-12-01

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor (LWR) components. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This particular study focused on the evaluation of custom-designed, low-frequency (500 kHz) phased-array (PA) probes for examining welds in thick-section cast austenitic stainless steel (CASS) piping. In addition, research was conducted to observe ultrasonic sound field propagation effects from known coarse-grained microstructures found in parent CASS material. The study was conducted on a variety of thick-wall, coarse-grained CASS specimens that were previously inspected by an older generation 500-kHz PA-UT probe and acquisition instrument configuration. This comparative study describes the impact of the new PA probe design on flaw detection and sizing in a low signal-to-noise environment. The set of Pressurized Water Reactor Owners Group (PWROG) CASS specimens examined in this study are greater than 50.8-mm (2.0-in.) thick with documented flaws and microstructures. These specimens are on loan to PNNL from the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina. The flaws contained within these specimens are thermal fatigue cracks (TFC) or mechanical fatigue cracks (MFC) and range from 13% to 42% in through-wall extent. In addition, ultrasonic signal continuity was evaluated on two CASS parent material ring sections by examining the edge-of-pipe response (corner geometry) for regions of signal loss.

  1. Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system.

    PubMed

    Lin, Wenfang; Yu, Zhisheng; Chen, Xi; Liu, Ruyin; Zhang, Hongxun

    2013-09-01

    Microorganism in drinking water distribution system may colonize in biofilms. Bacterial 16S rRNA gene diversities were analyzed in both water and biofilms grown on taps with three different materials (polyvinyl chloride (PVC), stainless steel, and cast iron) from a local drinking water distribution system. In total, five clone libraries (440 sequences) were obtained. The taxonomic composition of the microbial communities was found to be dominated by members of Proteobacteria (65.9-98.9 %), broadly distributed among the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Other bacterial groups included Firmicutes, Acidobacteria, Bacteroidetes, Cyanobacteria, and Deinococcus-Thermus. Moreover, a small proportion of unclassified bacteria (3.5-10.6 %) were also found. This investigation revealed that the bacterial communities in biofilms appeared much more diversified than expected and more care should be taken to the taps with high bacterial diversity. Also, regular monitor of outflow water would be useful as potentially pathogenic bacteria were detected. In addition, microbial richness and diversity in taps ranked in the order as: PVC < stainless steel < cast iron. All the results interpreted that PVC would be a potentially suitable material for use as tap component in drinking water distribution system.

  2. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm.

    PubMed

    Xia, Jin; Yang, Chunguang; Xu, Dake; Sun, Da; Nan, Li; Sun, Ziqing; Li, Qi; Gu, Tingyue; Yang, Ke

    2015-01-01

    The microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel (2205 Cu-DSS) against an aerobic marine Pseudomonas aeruginosa biofilm was investigated. The electrochemical test results showed that Rp increased and icorr decreased sharply after long-term immersion in the inoculation medium, suggesting that 2205 Cu-DSS possessed excellent MIC resistance to the P. aeruginosa biofilm. Fluorescence microscope images showed that 2205 Cu-DSS possessed a strong antibacterial ability, and its antibacterial efficiency after one and seven days was 7.75% and 96.92%, respectively. The pit morphology comparison after 14 days between 2205 DSS and 2205 Cu-DSS demonstrated that the latter showed a considerably reduced maximum MIC pit depth compared with the former (1.44 μm vs 9.50 μm). The experimental results suggest that inhibition of the biofilm was caused by the copper ions released from the 2205 Cu-DSS, leading to its effective mitigation of MIC by P. aeruginosa.

  3. TEM (transmission electron microscopy), APFIM (atom-probe field ion microscopy), and SANS (small-angle neutron scattering) examination of aged duplex stainless steel components from some decommissioned reactors

    SciTech Connect

    Chung, H.M.; Chopra, O.K.

    1987-12-01

    The present investigation indicates that the primary embrittlement processes of the CF-8 grade cast stainless steel components during extended reactor service are spinodal decomposition of the ferrite phase and M/sub 23/C/sub 6/ carbide precipitation on the austenite-ferrite boundaries. The ferrite hardness measured for the Shippingport reactor valves appears to reflect the different extent of spinodal decomposition among the different valves which contain slightly different Cr contents. G-phase precipitation was minimal compared to that during accelerated aging of CF-8 steel in the laboratory (i.e., near 400/degree/C). This indicates that the activation energy may be strongly influenced by the synergism among the G-phase precipitation, carbide formation, and spinodal decomposition. 13 refs., 2 figs.

  4. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  5. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    SciTech Connect

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P; Pint, Bruce A; Pankiw, Roman; Voke, Don

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  6. Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Wang, Yanli; Wang, Hui; Xin, Changsheng; Wang, Xitao

    2016-02-01

    The stress corrosion cracking (SCC) behavior of cast austenitic stainless steels of unaged and thermally aged at 400 °C for as long as 20,000 h were studied by using a slow strain rate testing (SSRT) system. Spinodal decomposition in ferrite during thermal aging leads to hardening in ferrite and embrittlement of the SSRT specimen. Plastic deformation and thermal aging degree have a great influence on the oxidation rate of the studied material in simulated PWR primary water environments. In the SCC regions of the aged SSRT specimen, the surface cracks, formed by the brittle fracture of ferrite phases, are the possible locations for SCC. In the non-SCC regions, brittle fracture of ferrite phases also occurs because of the effect of thermal aging embrittlement.

  7. Effect of the Solution Annealing and Chemical Passivation Followed by Aging on the Corrosion of Shell Mold Cast CF8 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kim, Kuk-Jin; Ju, Heongkyu; Moon, Young-Dae; Hong, Jun Ho; Pak, Sung Joon

    2016-10-01

    The effects of solution annealing and passivation of shell mold cast CF8 stainless steels on Elbow pipe fittings with 2-month room temperature aging have been studied using a corrosion technique. The resistance of corrosion increased with 2-month room temperature aging combined with solid solution annealing and chemical passivation. The mode of corrosion was deeply related to the δ-ferrite content, permeability, and passivation. The corrosion probability decreased as both the δ-ferrite content and the permeability decreased. Therefore, it is considered that δ-ferrite content and passive film of Cr2O3 play an important role in corrosion resistance of CF8 Elbow pipe fittings due to the long-term aging with solid solution annealing and chemical passivation. This result shows that the corrosion resistance of CF8 fittings can be enhanced by the solid solution annealing and chemical passivation. Decreased ferrite phases and permeability improve IGC resistance in CF8 steel.

  8. Technical Letter Report Assessment of Ultrasonic Phased Array Testing for Cast Austenitic Stainless Steel Pressurizer Surge Line Piping Welds and Thick Section Primary System Cast Piping Welds JCN N6398, Task 2A

    SciTech Connect

    Diaz, Aaron A.; Denslow, Kayte M.; Cinson, Anthony D.; Morra, Marino; Crawford, Susan L.; Prowant, Matthew S.; Cumblidge, Stephen E.; Anderson, Michael T.

    2008-07-21

    Research is being conducted for the NRC at PNNL to assess the effectiveness and reliability of advanced NDE methods for the inspection of LWR components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS), dissimilar metal welds (DMWs), piping with corrosion-resistant cladding, weld overlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This interim technical letter report (TLR) provides a synopsis of recent investigations at PNNL aimed at evaluating the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of CASS welds in nuclear reactor piping. A description of progress, recent developments and interim results are provided.

  9. Oxidation of Slurry Aluminide Coatings on Cast Stainless Steel Alloy CF8C-Plus at 800oC in Water Vapor

    SciTech Connect

    Haynes, James A; Armstrong, Beth L; Dryepondt, Sebastien N; Kumar, Deepak; Zhang, Ying

    2013-01-01

    A new, cast austenitic stainless steel, CF8C-Plus, has been developed for a wide range of high temperature applications, including diesel exhaust components, turbine casings and turbocharger housings. CF8C-Plus offers significant improvements in creep rupture life and creep rupture strength over standard CF8C steel. However, at higher temperatures and in more aggressive environments, such as those containing significant water vapor, an oxidation-resistant protective coating will be necessary. The oxidation behavior of alloys CF8C and CF8C-Plus with various aluminide coatings were compared at 800oC in air plus 10 vol% water vapor. Due to their affordability, slurry aluminides were the primary coating system of interest, although chemical vapor deposition (CVD) and pack cementation coatings were also compared. Additionally, a preliminary study of the low cycle fatigue behavior of aluminized CF8C-Plus was conducted at 800oC. Each type of coating provided substantial improvements in oxidation behavior, with simple slurry aluminides showing very good oxidation resistance after 4,000 h testing in water vapor. Preliminary low cycle fatigue results indicated that thicker aluminide coatings degraded high temperature fatigue properties of CF8C-Plus, whereas thinner coatings did not. Results suggest that appropriately designed slurry aluminide coatings are a viable option for economical, long-term oxidation protection of austenitic stainless steels in water vapor.

  10. Ultrasonic Phased Array Evaluations Of Implanted And In-Situ Grown Flaws In Cast Austenitic Stainless Steel Pressurizer Surge Line Piping

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Prowant, Matthew S.; Diaz, Aaron A.; Anderson, Michael T.

    2011-07-31

    A set of circumferentially oriented thermal fatigue cracks (TFCs) were implanted into three cast austenitic stainless steel (CASS) pressurizer (PZR) surge-line specimen welds (pipe-to-elbow configuration) that were salvaged from a U.S. commercial nuclear power plant that had not been operated. Thus, these welds were fabricated using vintage CASS materials that were formed in the 1970s. Additionally, in-situ grown TFCs were placed in the adjacent CASS base material of one of these specimens. Ultrasonic phased-array responses from both types of flaws (implanted and in-situ grown) were analyzed for detection and characterization based on sizing and signal-to-noise determination. Multiple probes were employed covering the 0.8 to 2.0 MHz frequency range. To further validate the Pacific Northwest National Laboratory (PNNL) findings, an independent in-service inspection (ISI) supplier evaluated the flaws with their American Society of Mechanical Engineers (ASME) Code, Section XI, Appendix VIII-qualified procedure. The results obtained by PNNL personnel compared favorably to the ISI supplier results. All examined flaws were detected and sized within the ASME Code-allowable limits.

  11. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  12. Microstructural Evolution and Mechanical Properties of Simulated Heat-Affected Zones in Cast Precipitation-Hardened Stainless Steels 17-4 and 13-8+Mo

    NASA Astrophysics Data System (ADS)

    Hamlin, Robert J.; DuPont, John N.

    2017-01-01

    Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates

  13. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    PubMed

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  14. Technical Letter Report Assessment of Ultrasonic Phased Array Inspection Method for Welds in Cast Austenitic Stainless Steel Pressurizer Surge Line Piping JCN N6398, Task 1B

    SciTech Connect

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Mathews, Royce; Moran, Traci L.; Anderson, Michael T.

    2009-07-28

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS); dissimilar metal welds; piping with corrosion-resistant cladding; weld overlays, inlays and onlays; and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. In this effort, PNNL supports cooperation with Commissariat à l’Energie Atomique (CEA) to assess reliable inspection of CASS materials. The NRC Project Manager has established a cooperative effort with the Institut de Radioprotection et de Surete Nucleaire (IRSN). CEA, under funding from IRSN, are supporting collaborative efforts with the NRC and PNNL. Regarding its work on the NDE of materials, CEA is providing its modeling software (CIVA) in exchange for PNNL offering expertise and data related to phased-array detection and sizing, acoustic attenuation, and back scattering on CASS materials. This collaboration benefits the NRC because CEA performs research and development on CASS for Électricité de France (EdF). This technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of welds in CASS pressurizer (PZR) surge line nuclear reactor piping. A set of thermal fatigue cracks (TFCs) was implanted into three CASS PZR surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing

  15. Formation of Widmanstätten Austenite in Strip Cast Grain-Oriented Silicon Steel

    NASA Astrophysics Data System (ADS)

    Song, Hong-Yu; Liu, Hai-Tao; Wang, Guo-Dong; Jonas, John J.

    2017-02-01

    The formation of Widmanstätten austenite was studied in strip cast grain-oriented silicon steel. The microstructure was investigated by optical microscopy and scanning electron microscopy. The orientations of the ferrite, Widmanstätten austenite, and martensite were determined using electron backscatter diffraction. The Widmanstätten austenite exhibits a lath-like shape and nucleates directly on the ferrite grain boundaries. This differs significantly from earlier work on duplex stainless steels. The orientation relationship between the Widmanstätten austenite and the parent ferrite is closer to Kurdjumov-Sachs than to Nishiyama-Wassermann. The ferrite boundaries migrate so as to accommodate the habit planes of the laths, leading to the presence of zigzag boundaries in the as-cast strip. Carbon partitioning into the Widmanstätten austenite and silicon partitioning into the parent ferrite were observed.

  16. Formation of Widmanstätten Austenite in Strip Cast Grain-Oriented Silicon Steel

    NASA Astrophysics Data System (ADS)

    Song, Hong-Yu; Liu, Hai-Tao; Wang, Guo-Dong; Jonas, John J.

    2017-04-01

    The formation of Widmanstätten austenite was studied in strip cast grain-oriented silicon steel. The microstructure was investigated by optical microscopy and scanning electron microscopy. The orientations of the ferrite, Widmanstätten austenite, and martensite were determined using electron backscatter diffraction. The Widmanstätten austenite exhibits a lath-like shape and nucleates directly on the ferrite grain boundaries. This differs significantly from earlier work on duplex stainless steels. The orientation relationship between the Widmanstätten austenite and the parent ferrite is closer to Kurdjumov-Sachs than to Nishiyama-Wassermann. The ferrite boundaries migrate so as to accommodate the habit planes of the laths, leading to the presence of zigzag boundaries in the as-cast strip. Carbon partitioning into the Widmanstätten austenite and silicon partitioning into the parent ferrite were observed.

  17. [Renal duplex: clinical usefulness].

    PubMed

    Miralles, M; Giménez, A; Cairols, M A; Riambau, V; Sáez, A

    1993-01-01

    It is the purpose of this report to focus attention on the clinical usefulness of Renal Duplex for the diagnosis of patients with vasculo-renal diseases in terms of: 1. Accuracy of Duplex/Angiography in the measurement of the renal stenosis degree. 2. Correlationship between Duplex ans Isotopic Renogram with respect to the study of the parenchyma's perfusion. 3. The effect of the inhibitors of the conversor enzyme (Captopril) on the Doppler signal of the parenchyma, comparing it with the results from the captopril test about the peripheral plasmatic renin activity and the isotopic renogram, in patients with vasculo-renal HTA. Results obtains by Duplex and Angiography were compared in 92 renal arteries from 46 patients. For both technics, three degrees of stenosis were established: 0-59%, 60-99% and occlusion. The Duplex technique identified 49/54 stenosis < 60%, 28/33 stenosis > 60% and 5/5 occlusions (Kappa 0.8). Sensibility and specificity of Duplex for the diagnosis of stenosis > 60% were, respectively, 89.5% and 90.7%; with an exactness of 90.2%. The angiographies showed stenosis > 60% in 23 patients with HTA (diastolic pressures > 100 mmHg). In all of the patients, a measurement of the plasmatic renin activity, an isotopic renogram and a Doppler of the interlobar arteries basal and post-captopril, were performed. The correlationship between Duplex and isotopic renogram with respect to the measurement of the relative renal perfusion was statistically significant (r = 0.91; p < 0.0001). The captopril test for renin and isotopic renogram were positives for 5 patients (4 with unilateral stenosis an 1 with bilateral stenosis). All of them showed severe stenosis (> 80%).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Corrosion of stainless steel, 2. edition

    SciTech Connect

    Sedriks, A.J.

    1996-10-01

    The book describes corrosion characteristics in all the major and minor groups of stainless steels, namely, in austenitic, ferritic, martensitic, duplex, and precipitation hardenable steels. Several chapters are spent on those special forms of corrosion that are investigated in the great detail in stainless steels, namely, pitting corrosion, crevice corrosion, and stress corrosion cracking. The influences of thermal treatment (heat affected zone cases), composition, and microstructure on corrosion are given good coverage. Corrosive environments include high temperature oxidation, sulfidation as well as acids, alkalis, various different petroleum plant environments, and even human body fluids (stainless steels are commonly used prosthetic materials).

  19. 1. VIEW OF DUPLEX (FEATURE 7). CORNER OF DUPLEX (FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF DUPLEX (FEATURE 7). CORNER OF DUPLEX (FEATURE 6) IS VISIBLE AT LEFT. MILL SITE IS VISIBLE IN THE BACKGROUND. FACING EAST. - Copper Canyon Camp of the International Smelting & Refining Company, Duplex, Copper Canyon, Battle Mountain, Lander County, NV

  20. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  1. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  2. Post-weld Tempered Microstructure and Mechanical Properties of Hybrid Laser-Arc Welded Cast Martensitic Stainless Steel CA6NM

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-12-01

    Manufacturing of hydroelectric turbine components involves the assembly of thick-walled stainless steels using conventional multi-pass arc welding processes. By contrast, hybrid laser-arc welding may be an attractive process for assembly of such materials to realize deeper penetration depths, higher production rates, narrower fusion, and heat-affected zones, and lower distortion. In the present work, single-pass hybrid laser-arc welding of 10-mm thick CA6NM, a low carbon martensitic stainless steel, was carried out in the butt joint configuration using a continuous wave fiber laser at its maximum power of 5.2 kW over welding speeds ranging from 0.75 to 1.2 m/minute. The microstructures across the weldment were characterized after post-weld tempering at 873 K (600 °C) for 1 hour. From microscopic examinations, the fusion zone was observed to mainly consist of tempered lath martensite and some residual delta-ferrite. The mechanical properties were evaluated in the post-weld tempered condition and correlated to the microstructures and defects. The ultimate tensile strength and Charpy impact energy values of the fully penetrated welds in the tempered condition were acceptable according to ASTM, ASME, and industrial specifications, which bodes well for the introduction of hybrid laser-arc welding technology for the manufacturing of next generation hydroelectric turbine components.

  3. Combined atom-probe and electron microscopy characterization of fine scale structures in aged primary coolant pipe stainless steel

    SciTech Connect

    Bentley, J.; Miller, M.K.

    1986-01-01

    The capabilities and complementary nature of atom probe field-ion microscopy (APFIM) and analytical electron microscopy (AEM) for the characterization of fine-scale microstructures are illustrated by examination of the changes that occur after long term thermal aging of cast CF 8 and CF 8M duplex stainless steels. In material aged at 300 or 400/sup 0/C for up to 70,000 h, the ferrite had spinodally decomposed into a modulated fine-scaled interconnected network consisting of an iron-rich ..cap alpha.. phase and a chromium-enriched ..cap alpha..' phase with periodicities of between 2 and 9 nm. G-phase precipitates 2 to 10 nm in diameter were also observed in the ferrite at concentrations of more than 10/sup 21/ m/sup -3/. The reported degradation in mechanical properties is most likely a consequence of the spinodal decomposition in the ferrite.

  4. On the thermomechanical deformation behavior of duplex-type materials

    NASA Astrophysics Data System (ADS)

    Siegmund, T.; Werner, E.; Fischer, F. D.

    1995-04-01

    Two-phase duplex-type materials possess microstructures containing roughly the same amounts of the constituent phases whose grains form interwoven networks. Duplex stainless steels are typical representatives of this material group. In these steels the constituent phases austenite and ferrite have different coefficients of thermal expansion. On pure thermal loading or thermomechanical loading the yield strength of the phases can be exceeded. Specimens of a forged duplex steel with a uniaxially anisotropic micro-structure deform irreversibly even under pure thermal cycling conditions with a monotonic accumulation of strain. The results of a systematic finite element based micromechanical analysis of the thermomechanical deformation behavior of duplex steels are presented and discussed. The analysis is based on a quantitative characterization of both the real and model microstructures. Additionally, an extended constitutive material law for the thermomechanical loading of the duplex steel is proposed. For dual-phase materials this description incorporates an additional thermomechanical strain increment as a very important contribution to the total strain increment. Both the micromechanical model and the analytical model are used to analyse the experimental findings from dilatometer tests. The micromechanical approach allows the evolution of the irreversible strains in the two phases generated in a thermal cycle to be modeled. It is shown that the matrix-phase is always more deformed than the inclusion-phase, irrespective of which of the two phases (austenite or ferrite) forms the matrix. This prediction is confirmed by electron microscopic observations of a thermally cycled duplex steel. Based on these results a mechanism driving the ratchet effect is proposed.

  5. Urinary casts

    MedlinePlus

    ... blood cell (WBC) casts are more common with acute kidney infections. Your provider will tell you more about your results. Risks There are no risks with this test. Alternative Names Hyaline casts; Granular casts; Renal tubular epithelial casts; Waxy casts; Casts in the ...

  6. Improvements in 500-kHz Ultrasonic Phased-Array Probe Designs for Evaluation of Thick Section Cast Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Anderson, Michael T.; Diaz, Aaron A.

    2011-02-01

    PNNL has been studying and performing confirmatory research on the inspection of piping welds in coarse-grained steels for over 30 years. More recent efforts have been the application of low frequency phased array technology to this difficult to inspect material. The evolution of 500 kHz PA probes and the associated electronics and scanning protocol are documented in this report. The basis for the probe comparisons are responses from one mechanical fatigue crack and two thermal fatigue cracks in large-bore cast mockup specimens on loan from the Electric Power Research Institution. One of the most significant improvements was seen in the use of piezo-composite elements in the later two probes instead of the piezo-ceramic material used in the prototype array. This allowed a reduction in system gain of 30 dB and greatly reduced electronic noise. The latest probe had as much as a 5 dB increase in signal to noise, adding to its flaw discrimination capability. The system electronics for the latest probe were fully optimized for a 500 kHz center frequency, however significant improvements were not observed in the center frequency of the flaw responses. With improved scanner capabilities, smaller step sizes were used, allowing both line and raster data improvements to be made with the latest probe. The small step sizes produce high resolution images that improve flaw discrimination and, along with the increased signal-to-noise ratio inherent in the latest probe design, enhanced detection of the upper regions of the flaw make depth sizing more plausible. Finally, the physical sizes of the probes were progressively decreased allowing better access to the area of interest on specimens with weld crowns, and the latest probe was designed with non-integral wedges providing flexibility in focusing on different specimen geometries.

  7. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  8. [Carotid duplex ultrasonography for neurosurgeons].

    PubMed

    Sadahiro, Hirokazu; Ishihara, Hideyuki; Oka, Fumiaki; Suzuki, Michiyasu

    2011-12-01

    Carotid duplex ultrasonography (CDU) is one of the most well-known imaging methods for arteriosclerosis and ischemic stroke. For neurosurgeons, it is very important for the details of carotid plaque to be thoroughly investigated by CDU. Symptomatic carotid plaque is very fragile and easily changes morphologically, and so requires frequent CDU examination. Furthermore, after carotid endarterectomy (CEA) and carotid artery stenting (CAS), restenosis is evaluated with CDU. CDU facilitates not only morphological imaging in the B mode, but also allows a flow study with color Doppler and duplex imaging. So, CDU can help assess the presence of proximal and intracranial artery lesions in spite of only having a cervical view, and the patency of the extracranial artery to intracranial artery bypass is revealed with CDU, which shows a rich velocity and low pulsatility index (PI) in duplex imaging. For the examiner, it is necessary to ponder on what duplex imaging means in examinations, and to summarize all imaging finding.

  9. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  10. Superplastic forming of stainless steel automotive components

    SciTech Connect

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  11. Duplex evaluation of venous insufficiency.

    PubMed

    Labropoulos, Nicos; Leon, Luis R

    2005-03-01

    Duplex ultrasound is the most useful examination for the evaluation of venous valvular incompetence. Multi-frequency 4 to 7-MHz linear array transducers are typically used for this assessment of superficial and deep reflux. The examination is done with the patient standing and manual compression maneuvers are used to initiate reflux. Automatic rapid inflation and deflation cuffs may be used when a standard stimulus is needed. Cutoff values for reflux have been defined. Perforating veins must be identified and flow direction during compression recorded. When ulcers are present, duplex ultrasound is used to investigate veins of the ulcerated legs. Venous outflow obstruction is also studied by duplex ultrasound and chronic changes in deep and superficial veins following deep venous thrombosis noted. The main drawback in evaluation of chronic obstruction is inability to quantify hemodynamic significance. Anatomic variations in superficial and deep veins are common and their identification is necessary. Reporting results of duplex ultrasound studies must take into consideration the proper classification of venous disease as well as the new anatomic terms that have been accepted.

  12. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1977-06-01

    During this year the basic Rheocasting system, which was fully operational at the beginning of the year, was improved in various ways to increase...graphite inserts at the bottom of the Rheocaster to eliminate ’hot spots’. Large quantities of 304 and 440C stainless steel alloys were cast during this...period (approximately 800 pounds of 304 and 2000 pounds of 440C) and smaller quantities of other materials were also Rheocast including M2 tool steel, and

  13. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  14. Structural Performance of Aluminum and Stainless Steel Pyramidal Truss Core Sandwich Panels

    DTIC Science & Technology

    2009-07-01

    condition. The stainless steel core and facesheet components were vacuum brazed after the facesheets were sprayed with braze alloy Nicrobraz* 51 (Ni-25Cr...including brazing and laser spot welding. Typically, austenitic stainless steel (10–11) and age-hardenable aluminum alloys (12) have been used to...periodic cores have been described (3, 4). Initial efforts utilized investment casting of high-fluidity, nonferrous casting alloys (5–9). However

  15. Duplex Direct Data Distribution System

    NASA Technical Reports Server (NTRS)

    Greenfield, Israel (Technical Monitor)

    2001-01-01

    The NASA Glenn Research Center (GRC) is developing and demonstrating communications and network technologies that are helping to enable the near-Earth space Internet. GRC envisions several service categories. The first of these categories is direct data distribution or D3 (pronounced "D-cubed"). Commercially provided D3 will make it possible to download a data set from a spacecraft, like the International Space Station. as easily as one can extract a file from a remote server today, using a file transfer protocol. In a second category, NASA spacecraft will make use of commercial satellite communication (SATCOM) systems. Some of those services will come from purchasing time on unused transponders that cover landmasses. While it is likely there will be gaps in service coverage, Internet services should be available using these systems. This report addresses alternative methods of implementing a full duplex enhancement of the GRC developed experimental Ka-Band Direct Data Distribution (D3) space-to-ground communication link. The resulting duplex version is called the Duplex Direct Data Distribution (D4) system. The D4 system is intended to provide high-data-rate commercial direct or internet-based communications service between the NASA spacecraft in low earth orbit (LEO) and the respective principal investigators associated with these spacecraft. Candidate commercial services were assessed regarding their near-term potential to meet NASA requirements. Candidates included Ka-band and V-band geostationary orbit and non-geostationary orbit satellite relay services and direct downlink ("LEO teleport") services. End-to-end systems concepts were examined and characterized in terms of alternative link layer architectures. Alternatives included a Direct Link, a Relay Link, a Hybrid Link, and a Dual Mode Link. The direct link assessment examined sample ground terminal placements and antenna angle issues. The SATCOM-based alternatives examined existing or proposed commercial

  16. Salt Bath Oxinitriding of Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Teimouri, M.; Aliofkhazraee, M.; Mousavi Khoee, S. M.

    Salt bath oxinitriding is a duplex surface treatment developed to improve tribological and corrosion properties of ferrous materials. In this research, gray cast iron samples were nitrided at the temperature range of 480°C-580°C, and then oxidized in an oxidative salt bath. The phase composition of surface layer was identified by X-ray diffraction. Using a microhardness tester, hardness of nitrided gray cast iron was measured. Corrosion behavior of treated (nitrided and oxinitrided) samples was evaluated using potentiodynamic polarization technique in 3.5% NaCl solution. XRD analyses indicate that the surface layer in nitrided and oxinitrided samples is composed of ɛ-iron nitride (Fe2-3N) and magnetite (Fe3O4), respectively. Results show that the corrosion resistance of gray cast iron can be improved up to 170%.

  17. PCR hot-start using duplex primers.

    PubMed

    Kong, Deming; Shen, Hanxi; Huang, Yanping; Mi, Huaifeng

    2004-02-01

    A new technique of PCR hot-start using duplex primers has been developed which can decrease the undesirable products arising throughout PCR amplification thereby giving better results than a manual hot-start method.

  18. Processing of IN-718 Lattice Block Castings

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2002-01-01

    Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.

  19. Cool Cast Facts

    MedlinePlus

    ... moving. The outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, ... color! These casts are lighter and stronger than plaster casts. Plaster casts are usually white and made ...

  20. Duplex sampling apparatus and method

    DOEpatents

    Brown, Paul E.; Lloyd, Robert

    1992-01-01

    An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a duplex sampling apparatus. The apparatus is adapted to independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved in the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

  1. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The document outlines procedures for implementing Project CAST (Community and School Together), a community-based career education program for secondary special education students in Charles County, Maryland. Initial sections discuss the role of a learning coordinator, (including relevant travel reimbursement and mileage forms) and an overview of…

  2. Paper Casting.

    ERIC Educational Resources Information Center

    Arrasjid, Dorine A.

    1980-01-01

    Describes an art project, based on the work of artist Chew Teng Beng, in the molding of wet paper on a plaster cast to create embossed paper designs. The values of such a project are outlined, including a note that its tactile approach makes it suitable to visually handicapped students. (SJL)

  3. CASTING FURNACES

    DOEpatents

    Ruppel, R.H.; Winters, C.E.

    1961-01-01

    A device is described for casting uranium which comprises a crucible, a rotatable table holding a plurality of molds, and a shell around both the crucible and the table. The bottom of the crucible has an eccentrically arranged pouring hole aligned with one of the molds at a time. The shell can be connected with a vacuum.

  4. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  5. FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE VIEW FACING EAST. - Schofield Barracks Military Reservation, Duplex Housing Type with Corner Entries, Between Hamilton & Tidball Streets near Williston Avenue, Wahiawa, Honolulu County, HI

  6. 3. VIEW OF DUPLEX (FEATURE 7), FACING NORTH. OFFICE (FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DUPLEX (FEATURE 7), FACING NORTH. OFFICE (FEATURE 11) VISIBLE IN BACKGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Duplex, Copper Canyon, Battle Mountain, Lander County, NV

  7. 1. VIEW OF DUPLEX (FEATURE 9), FACING NORTHEAST. MILL SITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF DUPLEX (FEATURE 9), FACING NORTHEAST. MILL SITE IS SHOWN IN UPPER RIGHT CORNER OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Duplex, Copper Canyon, Battle Mountain, Lander County, NV

  8. Comparison of Stress Corrosion Cracking Susceptibility of Laser Machined and Milled 304 L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Kumar, Aniruddha; Nagpure, D. C.; Rai, S. K.; Singh, M. K.; Khooha, Ajay; Singh, A. K.; Singh, Amrendra; Tiwari, M. K.; Ganesh, P.; Kaul, R.; Singh, B.

    2016-12-01

    Machining of austenitic stainless steel components is known to introduce significant enhancement in their susceptibility to stress corrosion cracking. The paper compares stress corrosion cracking susceptibility of laser machined 304 L stainless steel specimens with conventionally milled counterpart in chloride environment. With respect to conventionally milled specimens, laser machined specimens displayed more than 12 times longer crack initiation time in accelerated stress corrosion cracking test in boiling magnesium chloride as per ASTM G36. Reduced stress corrosion cracking susceptibility of laser machined surface is attributed to its predominantly ferritic duplex microstructure in which anodic ferrite phase was under compressive stress with respect to cathodic austenite.

  9. Casting methods

    SciTech Connect

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  10. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  11. CASTING APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  12. Extensional duplex in the Purcell Mountains of southeastern British Columbia

    SciTech Connect

    Root, K.G. )

    1990-05-01

    An extensional duplex consisting of fault-bounded blocks (horses) located between how-angle normal faults is exposed in Proterozoic strata in the Purcell Mountains of British Columbia, Canada. This is one of the first documented extensional duplexes, and it is geometrically and kinematically analogous to duplexes developed in contractional and strike-slip fault systems. The duplex formed within an extensional fault with a ramp and flat geometry when horses were sliced from the ramp and transported within the fault system.

  13. Full-duplex optical communication system

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  14. Corrosion of Stainless-Steel Tubing in a Spacecraft Launch Environment

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; MacDowell, Louis G.; Curran, Joe; Calle, Luz Maria; Hodge, Timothy

    2001-01-01

    This is a report of exposure of various metal tubing to oceanfront launch environments. The objective is to examine various types of corrosion-resistant tubing for Space Shuttle launch sites. The metals were stainless steels (austenitic, low-carbon, Mo-alloy, superaustenitic, duplex, and superferritic), Ni-Cr-Mo alloy, Ni-Mo-Cr-Fe-W alloy, and austenitic Ni-base superalloy.

  15. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  16. Welding irradiated stainless steel

    SciTech Connect

    Kanne, W.R. Jr.; Chandler, G.T.; Nelson, D.Z.; Franco-Ferreira, E.A.

    1993-12-31

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials.

  17. Moldless casting by laser

    NASA Astrophysics Data System (ADS)

    McLean, Marc A.; Shannon, G. J.; Steen, William M.

    1997-09-01

    The principle of laser cladding involves the use of high power carbon-dioxide lasers and powder deposition technology to provide wear and corrosion resistant surface coatings to engineering components. By injecting metal powder into a laser generated melt pool on a moving substrate a solidified metal track can be produced. Deposition of successive tracks produces a multi-layer build. Laser direct casting (LDC) utilizes a coaxial nozzle enabling consistent omnidirectional deposition to produce 3D components from a selection of metal powders. The influence of the principal process parameters over the process features namely, powder catchment efficiency, beam shape and build rates are presented with several successfully generated 3D components. Nickel, stainless steel and satellite powders were deposited at laser powders of 0.4 to 1.4 kW and speeds of 500 to 1000 mm/min achieving build rates of 3 to 9 mm3/s. Fully dense metallurgical structures have been produced with no cracking or porosity and powder catchment efficiencies up to 85% have been achieved.

  18. Casting materials

    DOEpatents

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  19. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  20. The success and limitations of high alloy stainless steels in seawater service

    SciTech Connect

    Gallagher, P.; Malpas, R.E. )

    1989-01-01

    The performance of high alloy stainless steels has been determined in chlorinated natural seawater in large scale and prototype seawater handling systems consisting of pumps, pipework and valves at ambient North Sea temperatures. In addition the influence of temperature on the corrosion characteristics of these alloys has been investigated. The results show that austenitic stainless steels with minimum molybdenum and nitrogen contents of 6% and 0.2% respectively and high alloy duplex stainless steels with minimum compositions of 25% Cr, 3% Mo and 0.15% N can be successfully used for the fabrication of seawater systems handling North Sea ambient or heated seawater. These alloys have some limitations, however, in areas of heat transfer, particularly where air spaces are present in a system; where dissimilar metal crevices are present and at positions where fretting can occur.

  1. Articles comprising ferritic stainless steels

    SciTech Connect

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  2. Stainless steel tanks

    SciTech Connect

    Hagen, T.

    1995-12-31

    There is currently no recognized code or standard for the design, fabrication and construction of atmospheric and low pressure stainless steel tanks. At the present time these tanks are being designed to individual specifications, manufacturers standards or utilizing other codes and standards that may not be entirely applicable. Recognizing the need, the American Petroleum Institute will be publishing a new appendix to the API STD 650 Standard which will cover stainless steel tanks. The new Appendix was put together by a Task Group of selected individuals from the API Subcommittee of Pressure Vessels and Tanks from the Committee on Refinery Equipment. This paper deals with the development and basis of the new appendix. The new appendix will provide a much needed standard to cover the material, design, fabrication, erection and testing requirements for vertical, cylindrical, austenitic stainless steel aboveground tanks in nonrefrigerated service.

  3. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  4. Ab initio study of the phase stability in paramagnetic duplex steel alloys

    NASA Astrophysics Data System (ADS)

    Pitkänen, H.; Alatalo, M.; Puisto, A.; Ropo, M.; Kokko, K.; Punkkinen, M. P. J.; Olsson, P.; Johansson, B.; Hertzman, S.; Vitos, L.

    2009-01-01

    Duplex stainless steels have many superior properties compared to conventional steels, this being mainly due to their microstructure containing approximately equal amount of ferrite and austenite phases formed by iron, chromium (or Cr equivalent), and nickel (or Ni equivalent). Using computational methods based on first-principles theories, the phase stability of paramagnetic Fe1-c-nCrcNin alloys ( 0.12≤c≤0.32 and 0.04≤n≤0.32 ) at high temperatures (≳1000K) is addressed. It is shown that the stabilization of the ferrite-austenite two-phase field in duplex steels is a result of complex interplay of several competing phenomena. Taking into account only the formation energies yields a complete phase separation, strongly overestimating the two-phase region. The formation energies are calculated to be lower for the austenite than for the ferrite, meaning that the configurational entropy has a more significant impact on the stability field of the austenitic phase. The magnetic and vibrational free energies have opposite effects on the phase stability. Namely, the magnetic entropy favors the ferrite phase, whereas the vibrational free energy stabilizes the austenite phase. Combining the formation energies with the magnetic, vibrational, and configurational free energies, a region of coexistence between the two phases is obtained, in line with former thermodynamic assessments as well as with experimental observations.

  5. Welding of Stainless Materials

    NASA Technical Reports Server (NTRS)

    Bull, H; Johnson, Lawrence

    1929-01-01

    It would appear that welds in some stainless steels, heat-treated in some practicable way, will probably be found to have all the resistance to corrosion that is required for aircraft. Certainly these structures are not subjected to the severe conditions that are found in chemical plants.

  6. Mechanical properties and microstructure of centrifugally cast alloy 718

    NASA Astrophysics Data System (ADS)

    Michel, D. J.; Smith, H. H.

    1985-07-01

    The relationship between the microstructure and mechanical properties of alloy 718 was investigated for two discs centrifugally cast at 50 and 200 rpm and given a duplex age heat treatment. The results of mechanical property tests at temperatures from 426 to 649 °C showed that the tensile yield and ultimate strength levels of both castings were similar. However, the creep-rupture properties were considerably enhanced for the casting produced at 200 rpm. Comparison of the radial and transverse creep properties of each disc indicated that creep life was generally independent of orientation, but ductility was greatest for specimens oriented transverse to the radial direction of the casting. Fatigue crack propagation performance was not greatly influenced by orientation or mold speed parameters and was comparable to wrought alloy 718 when compared on the basis of stress intensity factor range. The centrifugal casting process was found to produce a homogeneous microstructure free of porosity but with the expected segregation of solute alloying elements to Laves and carbide phases. The effect of the as-cast microstructure on the mechanical behavior and the potential influence of hot isostatic pressing to improve the microstructure are discussed.

  7. INTERIOR VIEW WITH CASTING MACHINE AND CASTING FOREMAN OBSERVING OPERATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND CASTING FOREMAN OBSERVING OPERATION TO ENSURE MAXIMUM PRODUCTION AND QUALITY. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  8. Full Duplex, Spread Spectrum Radio System

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce A.

    2000-01-01

    The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.

  9. Duplex unwinding with DEAD-box proteins.

    PubMed

    Jankowsky, Eckhard; Putnam, Andrea

    2010-01-01

    DEAD-box proteins, which comprise the largest helicase family, are involved in virtually all aspects of RNA metabolism. DEAD-box proteins catalyze diverse ATP-driven functions including the unwinding of RNA secondary structures. In contrast to many well-studied DNA and viral RNA helicases, DEAD-box proteins do not rely on translocation on one of the nucleic acid strands for duplex unwinding, but directly load onto helical regions and then locally pry the strands apart in an ATP-dependent fashion. In this chapter, we outline substrate design and unwinding protocols for DEAD-box proteins and focus on the quantitative evaluation of their unwinding activity.

  10. Criteria for the Segmentation of Vowels on Duplex Oscillograms.

    ERIC Educational Resources Information Center

    Naeser, Margaret A.

    This paper develops criteria for the segmentation of vowels on duplex oscillograms. Previous vowel duration studies have primarily used sound spectrograms. The use of duplex oscillograms, rather than sound spectrograms, permits faster production (real time) at less expense (adding machine paper may be used). The speech signal can be more spread…

  11. 52. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of copy of original Officers' Duplex Quarters drawing by Copeland, 7 April 1932 (Original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Heating - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  12. 53. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of copy of original Officers' Duplex Quarters drawing by A.G.D., 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Electrical - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  13. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  14. Predicting Pattern Tooling and Casting Dimensions for Investment Casting, Phase III

    SciTech Connect

    Sabau, Adrian S

    2008-04-01

    Efforts during Phase III focused mainly on the shell-alloy systems. A high melting point alloy, 17-4PH stainless steel, was considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. Shell molds made of fused-silica and alumino-silicates were considered. A literature review was conducted on thermophysical and thermomechanical properties alumino-silicates. Material property data, which were not available from material suppliers, was obtained. For all the properties of 17-4PH stainless steel, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. Thus, some material properties were evaluated using ProCAST, based on CompuTherm database. A comparison between the predicted material property data and measured property data was made. It was found that most material properties were accurately predicted only over several temperature ranges. No experimental data for plastic modulus were found. Thus, several assumptions were made and ProCAST recommendations were followed in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution on heating and cooling. Numerical simulations were performed using ProCAST for the investment casting of 17-4PH stainless steel parts in fused silica molds using the thermal expansion obtained on heating and another one with thermal expansion obtained on cooling. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The shell mold was considered to be a pure elastic material. The alloy dimensions were

  15. Cool Cast Facts

    MedlinePlus

    ... outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, which is a plastic that can be shaped. Fiberglass casts come in many different colors — if you' ...

  16. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  17. Helix-Dependent Spin Filtering through the DNA Duplex.

    PubMed

    Zwang, Theodore J; Hürlimann, Sylvia; Hill, Michael G; Barton, Jacqueline K

    2016-12-07

    Recent work suggests that electrons can travel through DNA and other chiral molecules in a spin-selective manner, but little is known about the origin of this spin selectivity. Here we describe experiments on magnetized DNA-modified electrodes to explore spin-selective electron transport through hydrated duplex DNA. Our results show that the two spins migrate through duplex DNA with a different yield and that spin selectivity requires charge transport through the DNA duplex. Significantly, shifting the same duplex DNA between right-handed B- and left-handed Z-forms leads to a diode-like switch in spin selectivity; which spin moves more efficiently through the duplex depends upon the DNA helicity. With DNA, the supramolecular organization of chiral moieties, rather than the chirality of the individual monomers, determines the selectivity in spin, and thus a conformational change can switch the spin selectivity.

  18. LLNL casting technology

    SciTech Connect

    Shapiro, A.B.; Comfort, W.J. III

    1994-01-01

    Competition to produce cast parts of higher quality, lower rejection rate, and lower cost is a fundamental factor in the global economy. To gain an edge on foreign competitors, the US casting industry must cut manufacturing costs and reduce the time from design to market. Casting research and development (R&D) are the key to increasing US compentiveness in the casting arena. Lawrence Livermore National Laboratory (LLNL) is the home of a wide range of R&D projects that push the boundaries of state-of-the art casting. LLNL casting expertise and technology include: casting modeling research and development, including numerical simulation of fluid flow, heat transfer, reaction/solidification kinetics, and part distortion with residual stresses; special facilities to cast toxic material; extensive experience casting metals and nonmetals; advanced measurement and instrumentation systems. Department of Energy (DOE) funding provides the leverage for LLNL to collaborate with industrial partners to share this advanced casting expertise and technology. At the same time, collaboration with industrial partners provides LLNL technologists with broader insights into casting industry issues, casting process data, and the collective, experience of industry experts. Casting R&D is also an excellent example of dual-use technology; it is the cornerstone for increasing US industrial competitiveness and minimizing waste nuclear material in weapon component production. Annual funding for casting projects at LLNL is $10M, which represents 1% of the total LLNL budget. Metal casting accounts for about 80% of the funding. Funding is nearly equally divided between development directed toward US industrial competitiveness and weapon component casting.

  19. Energy Saving Melting andRevert Reduction Technology (E0SMARRT): Predicting Pattern Tooling and Casting Dimension for Investment Casting

    SciTech Connect

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla; Sam Scott

    2008-11-21

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkage of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results

  20. DNA Duplex Engineering for Enantioselective Fluorescent Sensor.

    PubMed

    Hu, Yuehua; Lin, Fan; Wu, Tao; Zhou, Yufeng; Li, Qiusha; Shao, Yong; Xu, Zhiai

    2017-02-21

    The rapid identification of biomacromolecule structure that has a specific association with chiral enantiomers especially from natural sources will be helpful in developing enantioselective sensor and in speeding up drug exploitation. Herein, owing to its existence also in living cells, apurinic/apyrimidinic site (AP site) was first engineered into ds-DNA duplex to explore its competence in enantiomer selectivity. An AP site-specific fluorophore was utilized as an enantioselective discrimination probe to develop a straightforward chiral sensor using natural tetrahydropalmatine (L- and D-THP) as enantiomer representatives. We found that only L-THP can efficiently replace the prebound fluorophore to cause a significant fluorescence increase due to its specific binding with the AP site (two orders magnitude higher in affinity than binding with D-THP). The AP site binding specificity of L-THP over D-THP was assessed via intrinsic fluorescence, isothermal titration calorimetry, and DNA stability. The enantioselective performance can be easily tuned by the sequences near the AP site and the number of AP sites. A single AP site provides a perfect binding pocket to differentiate the chiral atom-induced structure discrepancy. We expect that our work will inspire interest in engineering local structures into a ds-DNA duplex for developing novel enantioselective sensors.

  1. Eddy Current Assessment of Duplex Metallic Coatings

    NASA Astrophysics Data System (ADS)

    Krzywosz, K. J.

    2004-02-01

    EPRI is involved in a multi-year program with the Department of Energy to test, evaluate, and develop a field-deployable eddy current NDE system for life assessment of blade coatings for advanced gas turbines. The coatings evaluated from these advanced GE engines include CoCrAlY (GT 29) and NiCoCrAlY (GT 33) bond coats followed by top aluminide overlay coatings. These duplex metallic coatings commonly referred to as GT 29+ and GT 33+ coatings, respectively. In general, during cycling and continuous operation at higher operating temperature, coatings fail due to spallation of protective oxide layers, leading to consumption of protective coating by oxidation and to eventual failure of blades. To extend service life of these critical rotating components, an inspection-based condition assessment program has been initiated to help establish more optimum inspection intervals that are not dependent on time-in-service maintenance approach. This paper summarizes the latest results obtained to date using the state-of-the-art frequency-scanning eddy current tester with a built-in three-layer inversion analysis algorithm. Significant progress has been made in assessing and discriminating the duplex metallic coatings as normal, degraded, and/or cracked. In addition, quantitative assessment was conducted by estimating various coating and substrate conductivity values.

  2. Spermine Condenses DNA, but Not RNA Duplexes

    SciTech Connect

    Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.; Baker, Nathan; Onufriev, Alexey V.; Pollack, Lois

    2017-01-01

    Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 base pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.

  3. Kinetic Study to Predict Sigma Phase Formation in Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    dos Santos, Daniella Caluscio; Magnabosco, Rodrigo

    2016-04-01

    This work presents an improved kinetic study of sigma phase formation during isothermal aging between 973 K and 1223 K (700 °C and 950 °C), based on Kolmogorov-Johnson-Mehl-Avrami (K-J-M-A) model, established from volume fraction of sigma phase determined in backscattered electron images over polished surfaces of aged samples. The kinetic study shows a change in the main mechanism of sigma formation between 973 K and 1173 K (700 °C and 900 °C), from a nucleation-governed stage to a diffusion-controlled growth-coarsening stage, confirmed by a double inclination in K-J-M-A plots and microstructural observations. A single inclination in K-J-M-A plots was observed for the 1223 K (950 °C) aging temperature, showing that kinetic behavior in this temperature is only related to diffusion-controlled growth of sigma phase. The estimated activation energies for the nucleation of sigma phase are close to the molybdenum diffusion in ferrite, probably the controlling mechanism of sigma phase nucleation. The proposed time-temperature-transformation (TTT) diagram shows a "double c curve" configuration, probably associated to the presence of chi-phase formed between 973 K and 1073 K (700 °C and 800 °C), which acts as heterogeneous nuclei for sigma phase formation in low aging temperatures.

  4. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    DOE PAGES

    Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel A.; ...

    2016-05-16

    Here, three-dimensional chemical imaging of Fe–Cr alloys showing Fe-rich (α)/Cr-rich (α') phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe–Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100–10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni–Mn–Si–Cu-rich G-phase precipitates form at the α/α' interfaces in both alloys. For the 2101more » alloy, Cu clusters act to form a nucleus, around which a Ni–Mn–Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core–shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby–Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30–36).« less

  5. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    SciTech Connect

    Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel A.; Young, George A.; Guo, Wei; Poplawsky, Jonathan D.

    2016-05-16

    Here, three-dimensional chemical imaging of Fe–Cr alloys showing Fe-rich (α)/Cr-rich (α') phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe–Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100–10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni–Mn–Si–Cu-rich G-phase precipitates form at the α/α' interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni–Mn–Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core–shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby–Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30–36).

  6. Welding duplex stainless steels for maximum corrosion resistance in chemical process industry applications

    SciTech Connect

    Gooch, T.G.; Gunn, R.N.

    1994-12-31

    Fabrication of process plant, pipework etc in ferritic-austenitic steels commonly entails fusion welding. The weld thermal cycle can significantly influence material corrosion behavior and hence service performance. The paper reviews the situation, with emphasis on arc welding as most commonly employed by industry. An outline is given of the major metallurgical changes due to welding which take place in the heat affected zone in base steel and in the fused weld metal. The weld thermal cycle experienced alters the ferrite/austenite structure from that in the parent material, and can induce intermetallic precipitation. Nitrogen may also be lost from the weld metal. These changes affect corrosion resistance, and must be controlled to achieve optimum service properties. The consequences of surface oxidation in the weld area and of local residual stresses are also considered, and it is pointed out that resistance to stress corrosion cracking in chloride or sour, H{sub 2}S media is dependent on ferrite/austenite balance. The main factors in formulating a welding procedure are described. Depending on the material composition and joint heat sink, arc energy should be held between minimum and maximum levels to promote adequate austenite formation in the weld area without inducing intermetallic formation. Nitrogen loss should be minimized, and adequate filler should be added: slight overalloying of the consumable is preferred, provided that intermetallic precipitation is avoided.

  7. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel; Young, George A.; Poplawsky, Jonathan D.

    2016-06-01

    Three-dimensional chemical imaging of Fe-Cr alloys showing Fe-rich (α)/Cr-rich (α‧) phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe-Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100-10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni-Mn-Si-Cu-rich G-phase precipitates form at the α/α‧ interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni-Mn-Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core-shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby-Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30-36). ).

  8. Collapse of geometrically imperfect stainless steel tubes under external hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Ross, C. T. F.; Bowler, T.; Little, A. P. F.

    2009-08-01

    This paper reports on an investigation into the buckling behaviour of 5 geometrically imperfect duplex stainless steel tube models, subjected to external hydrostatic pressure. The research was partly experimental and partly theoretical, where in the latter case; both analytical & numerical theoretical analyses were carried out. The experiments were carried out on five stainless steel tube models of different lengths, using two mild steel end bungs to seal the models. The experimental results showed that the Duplex stainless steel specimens behaved similarly to other isotropic materials tested by other researchers. The theoretical calculations and analyses were made by MisesNP, a DOS-based computer program, together with the ANSYS finite element structural analysis software. Combining the results of the present series of models, together with the results of other experimenters, a design chart was produced, which can be used for designing full-scale vessels. It should be emphasised that this design chart has been extended to those from previous studies, so that shorter and thicker vessels can now be designed.

  9. Chemical composition of passive films on AISI 304 stainless steel

    SciTech Connect

    Lorang, G.; Da Cunha Belo, M. ); Simoes, A.M.P.; Ferreira, M.G.S. . Dept. de Engenharia Quimica)

    1994-12-01

    Chemical characterization of passive films formed on AISI 304 austenitic stainless steel, in a borate/boric acid solution at pH 9.2, under various conditions of potential, temperature, and polarizations time, was made by Auger electron spectroscopy combined with ion sputtering, and x-ray photoelectron spectroscopy (XPS). The depth chemical composition, thickness, and duplex character of the passive layers were determined after processing AES sputter profiles by their quantitative approach based on the sequential layer sputtering model. Moreover, separated contributions of elements in their oxidized and unoxidized state could be disclosed from part to part of the oxide-alloy interface. The XPS study specified the chemical bondings which take placed inside the film, between Fe and oxygen (and water).

  10. Ultrasound treatment of centrifugally atomized 316 stainless steel powders

    NASA Astrophysics Data System (ADS)

    Rawers, James C.; McCune, Robert A.; Dunning, John S.

    1991-12-01

    The Bureau of Mines is studying the surface characteristics of rapidly solidified powders and the potential for surface modification of fine powders prior to consolidation. The surface modification and work hardening of fine powders were accomplished by applying high-energy ultrasound to centrifugally atomized austenitic 316 stainless steel powders suspended in liquid media. Cavitation implosion changed the surface morphology, hammering the surface and occasionally fretting off microchips of work-hardened metal. Ultrasound-cavitation work-hardened metal powder surfaces producing a strained, duplex austenite face-centered cubic (fcc)-martensite body-centered tetragonal (bct) phase structure. The amount of work hardening depended upon the quantity of ultrasound energy used, considering both power level and experimental time. Work hardening was relatively independent of the liquid media used.

  11. Reliability analysis of a repairable duplex system

    NASA Astrophysics Data System (ADS)

    Vanderperre, E. J.; Makhanov, S. S.

    2014-09-01

    We analyse the survival time of a repairable duplex system characterised by cold standby and by a pre-emptive priority rule. We allow general probability distributions for failure and repair. Moreover, an important realistic feature of the system is the general assumption that the non-priority unit has a memory. This combination of features has not been analysed in the previous literature. Our (new) methodology is based on a concatenation of a Cauchy-type integral representation of the modified Heaviside unit-step function and a two-sided stochastic inequality. Finally, we introduce a security interval related to a security level and a suitable risk-criterion based on the survival function of the system. As a practical application, we analyse some particular cases of the survival function jointly with the security interval corresponding to a security level of 90.

  12. Glovebox Advanced Casting System Casting Optimization

    SciTech Connect

    Fielding, Randall Sidney

    2016-03-01

    Casting optimization in the GACS included three broad areas; casting of U-10Zr pins, incorporation of an integral FCCI barrier, and development of a permanent crucible coating. U-10Zr casting was improved over last year’s results by modifying the crucible design to minimize contact with the colder mold. Through these modifications casting of a three pin batch was successful. Incorporation of an integral FCCI barrier also was optimized through furnace chamber pressure changes during the casting cycle to reduce gas pressures in the mold cavities which led to three full length pins being cast which incorporated FCCI barriers of three different thicknesses. Permanent crucible coatings were tested against a base case; 1500°C for 10 minutes in a U-20Pu-10Zr molten alloy. None of the candidate coating materials showed evidence of failure upon initial visual examination. In all areas of work a large amount of characterization will be needed to fully determine the effects of the optimization activities. The characterization activities and future work will occur next year.

  13. Improving Metal Casting Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  14. Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander

    NASA Astrophysics Data System (ADS)

    Walker, A. R.; Haberbusch, M. S.; Sasson, J.

    2015-04-01

    A Thermoacoustic Stirling Heat Engine (TASHE) is directly coupled to a Pulse Tube Refrigerator (PTR) in a duplex configuration, providing simultaneous cooling and electrical power, thereby suiting the needs of a long-lived Venus lander.

  15. 43. View of station from southwest side with duplex keepers' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. View of station from southwest side with duplex keepers' dwelling to the left. USLHB photo by Herbert Bamber, June 9, 1893. - Bodie Island Light Station, Off Highway 12, Nags Head, Dare County, NC

  16. 1. VIEW OF STAFF HOUSE (FEATURE 10), FACING SOUTHWEST. DUPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF STAFF HOUSE (FEATURE 10), FACING SOUTHWEST. DUPLEX (FEATURE 7) IS VISIBLE IN THE BACKGROUND AT RIGHT. - Copper Canyon Camp of the International Smelting & Refining Company, Staff House, Copper Canyon, Battle Mountain, Lander County, NV

  17. 1. VIEW OF RESIDENCE (FEATURE 12), FACING SOUTHWEST. DUPLEX (FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF RESIDENCE (FEATURE 12), FACING SOUTHWEST. DUPLEX (FEATURE 9) IS VISIBLE IN THE BACKGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Residence, Copper Canyon, Battle Mountain, Lander County, NV

  18. Duplex ultrasound assessment of femorodistal grafts: correlation with angiography.

    PubMed

    McShane, M D; Gazzard, V M; Clifford, P C; Hacking, C N; Fairhurst, J J; Humphries, K N; Birch, S J; Webster, J H; Chant, A D

    1987-12-01

    Fifty-eight grafts have been assessed using duplex scanning and ankle brachial pressure indices. This assessment is compared with the findings by angiography. Eighteen grafts were occluded and 40 patent. Duplex scanning defined graft status with a greater accuracy than pressure indices. Pressure indices alone would not differentiate "satisfactory" grafts from those with localised, haemodynamically significant disease. Only 55% of those grafts with localised stenoses demonstrated a fall of greater than 0.2 in ankle brachial pressure index after exercise. When the information obtained using pressure indices and duplex scanning was combined non-invasive assessment had a sensitivity of 86% and specificity of 94% for detection of localised, haemodynamically significant disease in patent grafts. Haemodynamically significant disease, as defined by angiography, can be detected and localised with duplex scanning complementing the use of pressure indices in graft assessment.

  19. SLIP CASTING METHOD

    DOEpatents

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  20. The Origins of Microtexture in Duplex Ti Alloys (Preprint)

    DTIC Science & Technology

    2008-06-01

    To) June 2008 Journal Article Preprint 4 . TITLE AND SUBTITLE THE ORIGINS OF MICROTEXTURE IN DUPLEX Ti ALLOYS (PREPRINT) 5a. CONTRACT NUMBER In...house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) M.G. Glavic (UES, Inc.) B.B. Bartha (United Technologies Corporation...applicable to duplex alpha/beta titanium microstructures. The crystallographic coherency of the primary and secondary alpha phase with the prior beta

  1. Evolution of halictine castes

    NASA Astrophysics Data System (ADS)

    Knerer, Gerd

    1980-03-01

    Social halictine bees have female castes that range from species with no size differences to those with a discrete bimodality. Female caste differences are inversely correlated with the number of males produced in the first brood. It is proposed that the sexual dimorphism of solitary forms is being usurped by the female caste system of species in the process of turning social. Thus, caste differences and summer male suppression are greatest in the social species originating from solitary precursors with distinct sexual dimorphism, and are least in species evolving from solitary ancestors with a continuous sexual polymorphism.

  2. Cast Aluminum Bonding Study

    DTIC Science & Technology

    1988-05-01

    fabricated using P?-’r;est11 bur)ld II19 te(hnll I Oly with 6 cIsL nqs. The cast a lumi num alloy used was A357 . The sur- face preparation was phosphoric acid...from a cast aluminum alloy designated A357 . The bonding surfaces of the adherends were prepared using PAA. One primer and two adhesives considered...System, Cast Aluminum Lap Shear 18 11 Bond Area of 350°F Adhesive System, Cast Aluminum Lap Shear 19 vi LIST OF TABLES TABLE PAGE 1 A357 Chemical

  3. The structural significance of HAZ sigma phase formation in welded 25%Cr super duplex pipework

    SciTech Connect

    Wiesner, C.S.; Garwood, S.J.; Bowden, P.L.

    1993-12-31

    The welding of 25%Cr duplex stainless steel can lead to the formation of sigma phase in both weld metal and heat affected zone (HAZ) regions. It has generally been accepted that this can be avoided by the adoption of appropriate welding procedure controls, generally aimed at reducing heat input and promoting rapid cooling rates. However, experience during pipe spool fabrication for the Marathon East Brae Project has shown that it is extremely difficult to satisfy a welding specification requiring sigma free HAZs. This has proved a particular problem with thin wall pipe welds made in the 2G/5G or 6G fixed positions, where the joint geometry reduces heat flow away from the weld and welding conditions tend to result in the use of higher heat inputs. This paper examines the effect of sigma phase on the fracture toughness of 25%Cr super duplex steel (UNS S32760). It is shown that the CTOD toughness at {minus}20 C decreases as soon as any sigma phase is present and continues to decrease with increasing sigma levels. The toughness of the sigmatized specimens produced by heat treatment was shown to be conservative compared to the toughness measured in the HAZ of 14.2mm and 7.1mm thick pipe weldments, made with welding parameters chosen to enhance HAZ sigma phase formation. Based on the CTOD versus percent sigma level relationship derived from the laboratory specimens, fracture assessment calculations of tolerable flaw sizes were performed. These demonstrated that under the severest design conditions, assuming the maximum flaw sizes which could remain undetected in the pipework, sigma levels up to 2.5% can be tolerated safely. The conservatism of the fracture assessments for predicting the performance of weldments was demonstrated by full scale tensile testing of 2 inch nominal bore x 2.77 mm wall thickness pipe butt welds containing through-thickness circumferential fatigue cracks located in the sigmatized HAZ.

  4. Terahertz absorption of DNA decamer duplex.

    PubMed

    Li, Xiaowei; Globus, Tatiana; Gelmont, Boris; Salay, Luiz C; Bykhovski, Alexei

    2008-11-27

    This work combines experimental and theoretical approaches to investigate terahertz absorption spectra of the DNA formed by the sequence oligomer 5'-CCGGCGCCGG-3'. The three-dimensional structure of this self-complimentary DNA decamer has been well-studied, permitting us to perform direct identification of the low-frequency phonon modes associated with specific conformation and to conduct comprehensive computer simulations. Two modeling techniques, normal-mode analysis and nanosecond molecular dynamics with explicit solvent molecules, were employed to extract the low-frequency vibrational modes based on which the absorption spectra were calculated. The absorption spectra of the DNA decamer in aqueous solution were measured in the frequency range 10-25 cm(-1) using the terahertz Fourier transform infrared spectroscopy. Multiple well-resolved and reproducible resonance modes were observed. When calculated and experimental spectra were compared, the spectrum based on molecular dynamics simulations showed a better correlation with the experimental spectra than the one based on normal-mode analysis. These results demonstrate that there exist a considerable number of active low-frequency phonon modes in this short DNA duplex.

  5. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  6. Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.; Browning, P.F.; Frary, M.E.; Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

    2004-06-01

    In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused

  7. Cast segment evaluation

    NASA Technical Reports Server (NTRS)

    Diem, H. G.; Studhalter, W. R.

    1971-01-01

    Evaluation program to determine feasibility of fabricating segmented rocket engine thrust chambers using low cost, lightweight castings extends state of the art in areas of casting size and complexity, and in ability to provide thin sections and narrow, deep, cooling channels. Related developments are discussed.

  8. Higher Education's Caste System

    ERIC Educational Resources Information Center

    Iannone, Ron

    2004-01-01

    In this article, the author discusses the history of the present caste system in higher education. He shows how the public's perception of this caste system is based on image and not usually on the quality of teaching and curriculum in colleges and universities. Finally, he discusses a model for accessibility to higher education and how higher…

  9. A cast orientation index.

    PubMed

    Ivanhoe, J R; Mahanna, G K

    1994-12-01

    This article describes a technique that allows multiple master casts to be precisely oriented to the same path of insertion and withdrawal. This technique is useful in situations where multiple fixed prosthodontic preparations require surveyed restorations and a single master cast is not available.

  10. ES and H-compatible lubrication for duplex bearings

    SciTech Connect

    Steinhoff, R.G.

    1997-10-01

    Two ES and H-compatible lubricants (environment, safety, and health) for duplex bearing applications and one hybrid material duplex bearing were evaluated and compared against duplex bearings with trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon), which is an ozone-depleting solvent. Vydax has been used as a bearing lubricant in strong link mechanisms since 1974. Hybrid duplex bearings with silicon nitride balls and molded glass-nylon-Teflon retainers, duplex bearings lubricated with sputtered MoS{sub 2} on races and retainers, and duplex bearings lubricated with electrophoretic deposited MoS{sub 2} were evaluated. Bearings with electrophoretic deposited MoS{sub 2} performed as well as bearings with Freon deposition of PTFE from Freon-based Vydax. Hybrid bearings with silicon nitride balls performed worse than bearings lubricated with Vydax, but their performance would still be acceptable for most applications. Bearings lubricated with sputtered MoS{sub 2} on the races and retainers had varying amounts of film on the bearings. This affected the performance of the bearings. Bearings with a uniform coating performed to acceptable levels, but bearings with no visible MoS{sub 2} on the races and retainers did not perform as well as bearings with the other coatings. Unless process controls are incorporated in the sputtering process or the bearings are screened, they do not appear to be acceptable for duplex bearing applications.

  11. Plastic accommodation at homophase interfaces between nanotwinned and recrystallized grains in an austenitic duplex-microstructured steel

    PubMed Central

    Gutierrez-Urrutia, Iván; Archie, Fady; Raabe, Dierk; Yan, Feng-Kai; Tao, Nai-Rong; Lu, Ke

    2016-01-01

    Abstract The plastic co-deformation behavior at the homophase interfaces between the hard nanotwinned grain inclusions and the soft recrystallized matrix grains in a duplex-microstructured AISI 316L austenitic stainless steel is examined through the analysis of long-range orientation gradients within the matrix grains by electron backscatter diffraction and transmission electron microcopy. Our analysis reveals that the mechanical accommodation of homophase interfaces until a macroscopic strain of 22% is realized within a small area of soft grains (about four grains) adjacent to the homophase interface. The activation of deformation twinning in the first two grain layers results in the occurrence of a ‘hump’ in the orientation gradient profile. We ascribe this effect to the role of deformation twinning on the generation of geometrically necessary dislocations. The smooth profile of the orientation gradient amplitude within the first 10 grain layers indicates a gradual plastic accommodation of the homophase interfaces upon straining. As a consequence, damage nucleation at such interfaces is impeded, resulting in an enhanced ductility of the single phase duplex-microstructured steel. PMID:27877855

  12. INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH LARGE PIPE CASTING MACHINE CASTING A 48' PIPE OPERATOR SPRAYING A POWDER TO HELP SOLIDIFY THE PIPE BEING CENTRIFUGALLY CAST. - United States Pipe & Foundry Company Plant, Pipe Casting & Testing Area, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  13. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  14. Symptomatic stent cast.

    PubMed

    Keohane, John; Moore, Michael; O'Mahony, Seamus; Crosbie, Orla

    2008-02-01

    Biliary stent occlusion is a major complication of endoscopic stent insertion and results in repeat procedures. Various theories as to the etiology have been proposed, the most frequently studied is the attachment of gram negative bacteria within the stent. Several studies have shown prolongation of stent patency with antibiotic prophylaxis. We report the case of stent occlusion from a cast of a previously inserted straight biliary stent; a "stent cast" in an 86-year-old woman with obstructive jaundice. This was retrieved with the lithotrypter and she made an uneventful recovery. This is the first reported case of a biliary stent cast.

  15. CASTING METHOD AND APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  16. Aspects of testing and selecting stainless steels for sea water applications

    SciTech Connect

    Steinsmo, U.; Rogne, T.; Drugli, J.M.

    1994-12-31

    In the period from 1980, highly alloyed stainless steels (i.e. Pitting Resistance Equivalent (PRE{sub N}) > 40) have been widely selected for chlorinated sea water systems in the Norwegian offshore industry. Recently failures have been reported -- severe crevice corrosion on flanges in a cooling water system and crevice corrosion at the threaded cast and forged joints in a fire water system. The failures highlights the question of corrosion testing and safe use limits for high alloyed stainless steels in sea water systems. This paper discusses three aspects regarding testing and selection of highly alloyed stainless steels for sea water application -- the relevancy of the electrochemical test methods used, the quality control system and the importance of repassivation.

  17. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  18. Metal Penetration in Sand Molds for Steel Castings: Annual Report

    SciTech Connect

    Barlow, J.O.; Stefanescu, D.M.; Lane, A.M.; Schreiber, W.C.; Owens, M.; Piwonka, T.S.

    1996-04-01

    Case studies of samples of penetration provided by consortium members showed examples of mechanical-type penetration defects and of what appeared to be chemical penetration. Sessile drop experiments of various mold substrate materials using carbon, stainless, and Mn steels showed that Mn steel wets silica strongly, indicating that silica is not a suitable mod material for this family of alloys. Contact angles were lower for steels than for cast irons. Magnesite appeared to be the best overall mold material, although zircon flour also performed well. A simplified 1-D model was developed which predicts the diffusion rates which could cause chemical penetration. It shows that, contrary to the case in cast iron, chemical penetration is a possibility in medium and low carbon steels, as diffusion of C to the casting surface may not always occur quickly enough to protect the surface from an oxidizing reaction. The mass spectrometer gas chromatograph train was modified for accurately determining the water content of gas at the mold/metal interface. Initial gas measurements indicated that the gas generated at the interface in steel castings is 80% H2-20% CO, instead of the 50% H2- 50% CO mixture found in cast iron.

  19. Defined presentation of carbohydrates on a duplex DNA scaffold.

    PubMed

    Schlegel, Mark K; Hütter, Julia; Eriksson, Magdalena; Lepenies, Bernd; Seeberger, Peter H

    2011-12-16

    A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors.

  20. CMOS serial link for fully duplexed data communication

    NASA Astrophysics Data System (ADS)

    Lee, Kyeongho; Kim, Sungjoon; Ahn, Gijung; Jeong, Deog-Kyoon

    1995-04-01

    This paper describes a CMOS serial link allowing fully duplexed 500 Mbaud serial data communication. The CMOS serial link is a robust and low-cost solution to high data rate requirements. A central charge pump PLL for generating multiphase clocks for oversampling is shared by several serial link channels. Fully duplexed serial data communication is realized in the bidirectional bridge by separating incoming data from the mixed signal on the cable end. The digital PLL accomplishes process-independent data recovery by using a low-ratio oversampling, a majority voting, and a parallel data recovery scheme. Mostly, digital approach could extend its bandwidth further with scaled CMOS technology. A single channel serial link and a charge pump PLL are integrated in a test chip using 1.2 micron CMOS process technology. The test chip confirms upto 500 Mbaud unidirectional mode operation and 320 Mbaud fully duplexed mode operation with pseudo random data patterns.

  1. Hydrogen-induced defects in austenite and ferrite of a duplex steel.

    PubMed

    Głowacka, A; Swiatnicki, W A; Jezierska, E

    2006-09-01

    The influence of hydrogen on the microstructure of two types of austeno-ferritic duplex stainless steel (Cr26-Ni6 model steel and Cr22-Ni5-Mo3 commercial steel), each of them after two thermo-mechanical treatments, was investigated. The aim of this study was to reveal microstructural changes appearing during the hydrogen charging and particularly to clarify the occurrence of phase transformations induced by hydrogen. The specific microstructural changes in the ferrite (alpha) and austenite (gamma) of both types of steel were observed. A strong increase of dislocation density was noticed in the alpha phase. In the case of model steel, longer hydrogen charging times led to significant ferrite grain refinement. In the commercial steel, the strips and twin plates appeared in the ferrite after hydrogenation. The appearance of stacking faults was revealed in the gamma phase. The martensite laths appeared in austenite after longer hydrogenation times. It seems that the microstructural changes gave rise to the formation of microcracks in the alpha and gamma phases as well as on the alpha/gamma interphase boundaries.

  2. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  3. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting.

    PubMed

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš

    2016-12-01

    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.

  4. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.

    PubMed

    Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-07

    Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.

  5. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  6. Method of casting aerogels

    DOEpatents

    Poco, J.F.

    1993-09-07

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.

  7. Method of casting aerogels

    DOEpatents

    Poco, John F.

    1993-01-01

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.

  8. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  9. A Winning Cast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.

  10. Effects of processing variables on the creep behavior of investment cast Ti-48Al-2Nb-2Cr

    SciTech Connect

    Keller, M.M.; Jones, P.E.; Porter, W.J. III; Eylon, D.

    1995-12-31

    Intermetallics based on ordered {gamma}-TiAl are being considered for the replacement of steels and nickel-based superalloys for high temperature aerospace and automotive applications. This study investigates the creep behavior of investment cast Ti-48Al-2Nb-2Cr with microstructures ranging from duplex to nearly lamellar. Constant load creep tests were conducted in air at temperatures of 650 C and 760 C and at stress levels of 104MPa, 155MPa, and 207MPa. The effects of cooling rates during casting, aluminum content, oxygen level, and microstructure on creep properties are discussed. The activation energy for creep and stress exponent are also reported.

  11. Evaluation of cast carbon steel and aluminum for rack insert in MCO Mark 1A fuel basket

    SciTech Connect

    Graves, C.E., Fluor Daniel Hanford

    1997-03-21

    This document evaluates the effects ofusing a cast carbon steel or aluminum instead of 3O4L stainless steel in the construction ofthe fuel rack insert for the Spent Nuclear Fuel MCO Mark IA fuel baskets. The corrosion, structural, and cost effects are examined.

  12. Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170174 computers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170-174 computers - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  13. FRONT VIEW OF FACILITY 561, WHICH WAS ORIGINALLY A DUPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT VIEW OF FACILITY 561, WHICH WAS ORIGINALLY A DUPLEX. PHOTO SHOWS THE ONLY UNIT REMAINING, UNIT B (UNIT A WAS DEMOLISHED AFTER A FIRE). VIEW FACING NORTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  14. Nickel release from stainless steels.

    PubMed

    Haudrechy, P; Mantout, B; Frappaz, A; Rousseau, D; Chabeau, G; Faure, M; Claudy, A

    1997-09-01

    In 1994, a study of nickel release and allergic contact dermatitis from nickel-plated metals and stainless steels was published in this journal. It was shown that low-sulfur stainless steel grades like AISI 304, 316L or 430 (S < or = 0.007%) release less than 0.03 microgram/cm2/week of nickel in acid artificial sweat and elicit no reactions in patients already sensitized to nickel. In contrast, nickel-plated samples release around 100 micrograms/cm2/week of Ni and high-sulfur stainless steel (AISI 303-S approximately 0.3%) releases about 1.5 micrograms/cm2/week in this acid artificial sweat. Applied on patients sensitized to nickel, these metals elicit positive reactions in 96% and 14%, respectively, of the patients. The main conclusion was that low-sulfur stainless steels like AISI 304, 316L or 430, even when containing Ni, should not elicit nickel contact dermatitis, while metals having a mean corrosion resistance like a high-sulfur stainless steel (AISI 303) or nickel-plated steel should be avoided. The determining characteristic was in fact the corrosion resistance in chloride media, which, for stainless steels, is connected, among other factors, to the sulfur content. Thus, a question remained concerning the grades with an intermediate sulfur content, around 0.03%, which were not studied. They are the object of the study presented in this paper. 3 tests were performed: leaching experiments, dimethylglyoxime and HNO3 spot tests, and clinical patch tests; however, only stainless steels were tested: a low-sulfur AISI 304 and AISI 303 as references and 3 grades with a sulfur content around 0.03%: AISI 304L, AISI 304L added with Ca, AISI 304L+Cu. Leaching experiments showed that the 4 non-resulfurised grades released less than 0.5 microgram/cm2/week in acid sweat while the reulfurized AISI 303 released around or more than 0.5 microgram/cm2/week. This is explained by the poorer corrosion resistance of the resulfurized grade. Yet all these grades had the same

  15. Deformability Calculation for Estimation of the Relative Stability of Chemically Modified RNA Duplexes.

    PubMed

    Masaki, Yoshiaki; Sekine, Mitsuo; Seio, Kohji

    2017-03-02

    Chemical modification of RNA duplexes alters their stability. We have attempted to develop a computational approach to estimate the thermal stability of chemically modified duplexes. These studies revealed that the deformability of chemically modified RNA duplexes, calculated from molecular dynamics simulations, could be used as a good indicator for estimating the effect of chemical modification on duplex thermal stability. This unit describes how deformability calculation can be applied to estimate the relative stability of chemically modified RNA duplexes. © 2017 by John Wiley & Sons, Inc.

  16. Surface modification of investment cast-316L implants: microstructure effects.

    PubMed

    El-Hadad, Shimaa; Khalifa, Waleed; Nofal, Adel

    2015-03-01

    Artificial femur stem of 316L stainless steel was fabricated by investment casting using vacuum induction melting. Different surface treatments: mechanical polishing, thermal oxidation and immersion in alkaline solution were applied. Thicker hydroxyapatite (HAP) layer was formed in the furnace-oxidized samples as compared to the mechanically polished ones. The alkaline treatment enhanced the precipitation of HAP on the samples. It was also observed that the HAP precipitation responded differently to the different phases of the microstructure. The austenite phase was observed to have more homogeneous and smoother layer of HAP. In addition, the growth of HAP was sometimes favored on the austenite phase rather than on ferrite phase.

  17. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release.

    PubMed

    Hedberg, Y; Wang, X; Hedberg, J; Lundin, M; Blomberg, E; Wallinder, I Odnevall

    2013-04-01

    Implantation using stainless steels (SS) is an example where an understanding of protein-induced metal release from SS is important when assessing potential toxicological risks. Here, the protein-induced metal release was investigated for austenitic (AISI 304, 310, and 316L), ferritic (AISI 430), and duplex (AISI 2205) grades in a phosphate buffered saline (PBS, pH 7.4) solution containing either bovine serum albumin (BSA) or lysozyme (LSZ). The results show that both BSA and LSZ induce a significant enrichment of chromium in the surface oxide of all stainless steel grades. Both proteins induced an enhanced extent of released iron, chromium, nickel and manganese, very significant in the case of BSA (up to 40-fold increase), whereas both proteins reduced the corrosion resistance of SS, with the reverse situation for iron metal (reduced corrosion rates and reduced metal release in the presence of proteins). A full monolayer coverage is necessary to induce the effects observed.

  18. Free energy estimation of short DNA duplex hybridizations

    PubMed Central

    2010-01-01

    Background Estimation of DNA duplex hybridization free energy is widely used for predicting cross-hybridizations in DNA computing and microarray experiments. A number of software programs based on different methods and parametrizations are available for the theoretical estimation of duplex free energies. However, significant differences in free energy values are sometimes observed among estimations obtained with various methods, thus being difficult to decide what value is the accurate one. Results We present in this study a quantitative comparison of the similarities and differences among four published DNA/DNA duplex free energy calculation methods and an extended Nearest-Neighbour Model for perfect matches based on triplet interactions. The comparison was performed on a benchmark data set with 695 pairs of short oligos that we collected and manually curated from 29 publications. Sequence lengths range from 4 to 30 nucleotides and span a large GC-content percentage range. For perfect matches, we propose an extension of the Nearest-Neighbour Model that matches or exceeds the performance of the existing ones, both in terms of correlations and root mean squared errors. The proposed model was trained on experimental data with temperature, sodium and sequence concentration characteristics that span a wide range of values, thus conferring the model a higher power of generalization when used for free energy estimations of DNA duplexes under non-standard experimental conditions. Conclusions Based on our preliminary results, we conclude that no statistically significant differences exist among free energy approximations obtained with 4 publicly available and widely used programs, when benchmarked against a collection of 695 pairs of short oligos collected and curated by the authors of this work based on 29 publications. The extended Nearest-Neighbour Model based on triplet interactions presented in this work is capable of performing accurate estimations of free energies

  19. Improving by postoxidation of corrosion resistance of plasma nitrocarburized AISI 316 stainless steels

    NASA Astrophysics Data System (ADS)

    Yenilmez, A.; Karakan, M.; Çelik, İ.

    2017-01-01

    Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.

  20. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  1. Sealing micropores in thin castings

    NASA Technical Reports Server (NTRS)

    Mersereau, G. A.; Nitzschke, G. O.; Ochs, H. L.; Sutch, F. S.

    1981-01-01

    Microscopic pores in thin-walled aluminum castings are sealed by impregnation pretreatment. Technique was developed for investment castings used in hermetically sealed chassic for electronic circuitry. Excessively high leakage rates were previously measured in some chassis.

  2. Accuracy of Multiple Pour Cast from Various Elastomer Impression Methods.

    PubMed

    Haralur, Satheesh B; Saad Toman, Majed; Ali Al-Shahrani, Abdullah; Ali Al-Qarni, Abdullah

    2016-01-01

    The accurate duplicate cast obtained from a single impression reduces the profession clinical time, patient inconvenience, and extra material cost. The stainless steel working cast model assembly consisting of two abutments and one pontic area was fabricated. Two sets of six each custom aluminum trays were fabricated, with five mm spacer and two mm spacer. The impression methods evaluated during the study were additional silicone putty reline (two steps), heavy-light body (one step), monophase (one step), and polyether (one step). Type IV gypsum casts were poured at the interval of one hour, 12 hours, 24 hours, and 48 hours. The resultant cast was measured with traveling microscope for the comparative dimensional accuracy. The data obtained were subjected to Analysis of Variance test at significance level <0.05. The die obtained from two-step putty reline impression techniques had the percentage of variation for the height -0.36 to -0.97%, while diameter was increased by 0.40-0.90%. The values for one-step heavy-light body impression dies, additional silicone monophase impressions, and polyether were -0.73 to -1.21%, -1.34%, and -1.46% for the height and 0.50-0.80%, 1.20%, and -1.30% for the width, respectively.

  3. Accuracy of Multiple Pour Cast from Various Elastomer Impression Methods

    PubMed Central

    Saad Toman, Majed; Ali Al-Shahrani, Abdullah; Ali Al-Qarni, Abdullah

    2016-01-01

    The accurate duplicate cast obtained from a single impression reduces the profession clinical time, patient inconvenience, and extra material cost. The stainless steel working cast model assembly consisting of two abutments and one pontic area was fabricated. Two sets of six each custom aluminum trays were fabricated, with five mm spacer and two mm spacer. The impression methods evaluated during the study were additional silicone putty reline (two steps), heavy-light body (one step), monophase (one step), and polyether (one step). Type IV gypsum casts were poured at the interval of one hour, 12 hours, 24 hours, and 48 hours. The resultant cast was measured with traveling microscope for the comparative dimensional accuracy. The data obtained were subjected to Analysis of Variance test at significance level <0.05. The die obtained from two-step putty reline impression techniques had the percentage of variation for the height −0.36 to −0.97%, while diameter was increased by 0.40–0.90%. The values for one-step heavy-light body impression dies, additional silicone monophase impressions, and polyether were −0.73 to −1.21%, −1.34%, and −1.46% for the height and 0.50–0.80%, 1.20%, and −1.30% for the width, respectively. PMID:28096815

  4. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1974-05-01

    castings. Liquid-solid slurries were cast Rheocasting ) to evaluate cast- ing properties and opportunities for enhanced mold life with a reduced temperature...pouring temperature, 600 0C mold temperature, all-metal mold. Figure 29 Schem.atic of rheocasting attachment for vacuum melting furnace. Motor and gear...33 Alumina paddle and rheocasting . Paddle cracked during itirring. Casting did not fill, probably due to poor stirring of melt. Figure 34 ZrO 2

  5. Casting Of Multilayer Ceramic Tapes

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.

  6. Agile Manufacturing Development of Castings

    DTIC Science & Technology

    2007-11-02

    Consortium was tasked by GE Transportation Systems (GETS) with development of the IFE, a complex ductile iron casting for a commercial loco- motive that... ductile iron foundry with this tooling, it was clear that castings with acceptable quality could not be made. These castings were on the GE...requirements. Therefore, the design specifies a thin - walled casting with complex structures and the requirements demand tight dimensional tolerances and

  7. Thermal Linear Expansion of Nine Selected AISI Stainless Steels

    DTIC Science & Technology

    1978-04-01

    stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recoended values Include the...point of the stainless steels. The nine selected stainless steels are AISI 303, 304, 304L, 316, 317, 321, 347, 410 , and 430. The recommended values...Stainless Steel..................................26 8. AISI 410 Stainless Steel..................................29 9. AISI 430 Stainless Steel

  8. Evaluation of an improved centrifugal casting machine.

    PubMed

    Donovan, T E; White, L E

    1985-05-01

    A Type III gold alloy, a silver-palladium alloy, and a base metal alloy were cast in two different centrifugal casting machines. With the number of complete cast mesh squares as an indicator of castability, the Airspin casting machine produced superior castings with all three alloys. The base metal alloy produced the greatest number of complete squares with both casting machines.

  9. ToxCast Dashboard

    EPA Pesticide Factsheets

    The ToxCast Dashboard helps users examine high-throughput assay data to inform chemical safety decisions. To date, it has data on over 9,000 chemicals and information from more than 1,000 high-throughput assay endpoint components.

  10. Casting and Angling.

    ERIC Educational Resources Information Center

    Smith, Julian W.

    As part of a series of books and pamphlets on outdoor education, this manual consists of easy-to-follow instructions for fishing activities dealing with casting and angling. The manual may be used as a part of the regular physical education program in schools and colleges or as a club activity for the accomplished weekend fisherman or the…

  11. Microporosity in casting alloys.

    PubMed

    Lewis, A J

    1975-06-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third an oxy-acetylene torch. Samples from each series were sectioned longitudinally, mounted, polished and examined microscopically for evidence of microporosity.

  12. ShakeCast Manual

    USGS Publications Warehouse

    Lin, Kuo-Wan; Wald, David J.

    2008-01-01

    ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users? facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  13. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  14. Casting and Angling.

    ERIC Educational Resources Information Center

    Little, Mildred J.; Bunting, Camille

    The self-contained packet contains background information, lesson plans, 15 transparency and student handout masters, drills and games, 2 objective examinations, and references for teaching a 15-day unit on casting and angling to junior high and senior high school students, either as part of a regular physical education program or as a club…

  15. Computer cast blast modelling

    SciTech Connect

    Chung, S.; McGill, M.; Preece, D.S.

    1994-07-01

    Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. The more overburden removed by explosives, the less blasted material there is left to be transported with mechanical equipment, such as draglines and trucks. In order to optimize the percentage of rock that is cast, a higher powder factor than normal is required plus an initiation technique designed to produce a much greater degree of horizontal muck movement. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC, applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the DMC can perform a blast simulation in 0.5 hours on the SUN SPARCstation 10--41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC computer. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

  16. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1976-11-01

    ii TABLE OF CONTENTS ABSTRACT .......................... Introduction ........................ Continuous Rheocasting ...ferrous alloys is fully and reliably operational. The Continuous Rheocaster works dependably in production runs in which typically up to 500 pounds... Rheocast stainless steel and the initiation of large scale Thixocasting runs to test actual die life. More than 3000 pounds of Rheocast stainless

  17. Precision cast vs. wrought superalloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Borofka, J. C.; Casey, M. E.

    1986-01-01

    While cast polycrystalline superalloys recommend themselves in virtue of better 'buy-to-fly' ratios and higher strengthening gamma-prime volume fractions than those of wrought superalloys, the expansion of their use into such critical superalloy applications as gas turbine hot section components has been slowed by insufficient casting process opportunities for microstructural control. Attention is presently drawn, however, to casting process developments facilitating the production of defect-tolerant superalloy castings having improved fracture reliability. Integrally bladed turbine wheel and thin-walled turbine exhaust case near-net-shape castings have been produced by these means.

  18. Cast Aluminum Primary Aircraft Structure

    DTIC Science & Technology

    1979-12-01

    ABSTRAC R A A A357 cast aluminum alloy forward fuselage pressure bulkhead has been developed and manufactured for the AMST-YC-14 aircraft. This work...urring in castings. Test coupons were! removed from castings containing defU-ts and subjected to repeated loads. The shift of the S-N curve for A357 ...selected for the casting is A357 . The cast bulkhead (Fig 2) measures approximately 2.29 m (7.5 ft) by 1.37 m (4.5 ft). It is designed to replace the

  19. NMR spectroscopy of RNA duplexes containing pseudouridine in supercooled water.

    PubMed

    Schroeder, Kersten T; Skalicky, Jack J; Greenbaum, Nancy L

    2005-07-01

    We have performed NMR experiments in supercooled water in order to decrease the temperature-dependent exchange of protons in RNA duplexes. NMR spectra of aqueous samples of RNA in bundles of narrow capillaries that were acquired at temperatures as low as -18 degrees C reveal resonances of exchangeable protons not seen at higher temperatures. In particular, we detected the imino protons of terminal base pairs and the imino proton of a non-base-paired pseudouridine in a duplex representing the eukaryotic pre-mRNA branch site helix. Analysis of the temperature dependence of chemical shift changes (thermal coefficients) for imino protons corroborated hydrogen bonding patterns observed in the NMR-derived structural model of the branch site helix. The ability to observe non-base-paired imino protons of RNA is of significant value in structure determination of RNA motifs containing loop and bulge regions.

  20. Investigation of plastic deformation heterogeneities in duplex steel by EBSD

    SciTech Connect

    Wronski, S.; Tarasiuk, J.; Bacroix, B.; Baczmanski, A.; Braham, C.

    2012-11-15

    An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distribution and misorientation characteristics are examined using EBSD.

  1. Direct surface-enhanced Raman scattering analysis of DNA duplexes.

    PubMed

    Guerrini, Luca; Krpetić, Željka; van Lierop, Danny; Alvarez-Puebla, Ramon A; Graham, Duncan

    2015-01-19

    The exploration of the genetic information carried by DNA has become a major scientific challenge. Routine DNA analysis, such as PCR, still suffers from important intrinsic limitations. Surface-enhanced Raman spectroscopy (SERS) has emerged as an outstanding opportunity for the development of DNA analysis, but its application to duplexes (dsDNA) has been largely hampered by reproducibility and/or sensitivity issues. A simple strategy is presented to perform ultrasensitive direct label-free analysis of unmodified dsDNA with the means of SERS by using positively charged silver colloids. Electrostatic adhesion of DNA promotes nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at nanogram level. As potential applications, we report the quantitative recognition of hybridization events as well as the first examples of SERS recognition of single base mismatches and base methylations (5-methylated cytosine and N6-methylated Adenine) in duplexes.

  2. Laser Safety Method For Duplex Open Loop Parallel Optical Link

    DOEpatents

    Baumgartner, Steven John; Hedin, Daniel Scott; Paschal, Matthew James

    2003-12-02

    A method and apparatus are provided to ensure that laser optical power does not exceed a "safe" level in an open loop parallel optical link in the event that a fiber optic ribbon cable is broken or otherwise severed. A duplex parallel optical link includes a transmitter and receiver pair and a fiber optic ribbon that includes a designated number of channels that cannot be split. The duplex transceiver includes a corresponding transmitter and receiver that are physically attached to each other and cannot be detached therefrom, so as to ensure safe, laser optical power in the event that the fiber optic ribbon cable is broken or severed. Safe optical power is ensured by redundant current and voltage safety checks.

  3. Herpes Zoster Duplex Unilateralis: Two Cases and Brief Literature Review

    PubMed Central

    Son, Jee Hee; Chung, Bo Young; Kim, Hye One; Cho, Hee Jin

    2016-01-01

    Cases involving dermatomal herpes zoster in two or more locations are rare, especially in immunocompetent patients. When two noncontiguous dermatomes are involved, if affected unilaterally, it is called herpes zoster duplex unilateralis; if bilaterally, bilateralis. Here, we report two cases of herpes zoster duplex unilateralis. A 66-year-old man presented with painful erythematous grouped vesicles on his left scalp, forehead, trunk, and back (left [Lt.] V1, Lt. T8). Histologic findings were consistent with herpetic infection. A 33-year-old woman presented with painful erythematous grouped vesicles and crust on her left forehead and neck (Lt. V1, Lt. C5). Both patients were treated with oral administration of famcyclovir 750 mg/day for seven days. PMID:27904277

  4. Smectic phase in suspensions of gapped DNA duplexes

    NASA Astrophysics Data System (ADS)

    Salamonczyk, Miroslaw; Zhang, Jing; Portale, Giuseppe; Zhu, Chenhui; Kentzinger, Emmanuel; Gleeson, James T.; Jakli, Antal; de Michele, Cristiano; Dhont, Jan K. G.; Sprunt, Samuel; Stiakakis, Emmanuel

    2016-11-01

    Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, despite the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue that this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. Our results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals.

  5. Smectic phase in suspensions of gapped DNA duplexes

    PubMed Central

    Salamonczyk, Miroslaw; Zhang, Jing; Portale, Giuseppe; Zhu, Chenhui; Kentzinger, Emmanuel; Gleeson, James T.; Jakli, Antal; De Michele, Cristiano; Dhont, Jan K. G.; Sprunt, Samuel; Stiakakis, Emmanuel

    2016-01-01

    Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, despite the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue that this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. Our results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals. PMID:27845332

  6. INTERNAL ADAPTATION OF CAST TITANIUM CROWNS

    PubMed Central

    da Rocha, Sicknan Soares; Adabo, Gelson Luis; Ribeiro, Ricardo Faria; Fonseca, Renata Garcia

    2007-01-01

    As the adaptation of titanium crowns obtained by Rematitan Plus investment, specific for titanium, is not recognized to be suitable, this study evaluated the effect of the concentration of the specific liquid and the temperature of the mold of investments on the internal misfit of crowns cast on commercially pure titanium. Individual dies of epoxy resin were obtained, representing teeth prepared for full-crown restoration with a 6-degree axial surface convergence angle and shoulder (1.0 mm). For the waxing of each crown, a ring-shaped stainless steel matrix (8.0mm internal diameter; 7.5 mm height) was adapted above the individual dies of epoxy resin. The Rematian Plus investment was mixed according to the manufacturer's instructions using two different concentrations of the specific liquid: 100%, 75%. Casting was performed in a Discovery Plasma Ar-arc vacuum-pressure casting machine with molds at temperatures of 430°C, 515°C and 600°C. The crowns were cleaned individually in a solution (1% HF + 13% HNO3) for 10 min using a ultrasonic cleaner, with no internal adaptations, and luted with zinc phosphate cement under a 5 kg static load. The crown and die assemblies were embedded in resin and sectioned longitudinally. The area occupied by cement was observed using stereoscopic lens (10X) and measured by the Leica Qwin image analysis system (mm2). The data for each experimental condition (n=8) were analyzed by Kruskal-Wallis non-parametric test (á=0.05). The results showed that liquid dilution and the increase in mold temperature did not significantly influence the levels of internal fit of the cast titanium crowns. The lowest means (±SD) of internal misfit were obtained for the 430°C/100%: (7.25 mm2 ±1.59) and 600°C/100% (8.8 mm2 ±2.25) groups, which presented statistically similar levels of internal misfit. PMID:19089139

  7. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  8. Compact, precision duplex bearing mount for high vibration environments

    NASA Technical Reports Server (NTRS)

    Bouzakis, George Elias (Inventor); Bowman, James Edward (Inventor); Devine, Edward J. (Inventor); Joffe, Benjamin (Inventor); Segal, Kenneth Neal (Inventor); Webb, Merritt J. (Inventor)

    2002-01-01

    A duplex bearing mount including at least one duplex bearing having an inner race and an outer race, the inner race disposed within the outer race and being rotatable relative to the outer race about an axis, the inner race having substantially no relative movement relative to the outer race in at least one direction along the axis, the inner and outer races each having first and second axial faces which are respectively located at the same axial end of the duplex bearing. The duplex bearing is radially supported by a housing, and a shaft extends through the inner race, the shaft radially and axially supported by the inner race. A first retainer is connected to the housing and engages the first axial surface of a bearing race, the movement of which race in a first direction along the axis being constrained by the first retainer. A second, resilient retainer is connected to the housing or the shaft and is deflected through engagement with the second axial face of a bearing race, the movement of which race in a second direction along the axis, opposite to the first direction, being constrained by the deflected second retainer. The bearing is preloaded by its being clamped between the first and second retainers, and the second retainer forms at least a portion of a spring having the characteristic of a substantially constant force value correlating to a range of various deflection values, whereby the preload of the bearing is substantially unaffected by variations in the deflection of the second retainer.

  9. View from east to west of family housing unit (duplex; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from east to west of family housing unit (duplex; either #27 or #87, as only the 7 is visible). Unit #27 was three-bedroom and located on 9th Street south. Unit #87 was a two-bedroom located on 4th Street north. These housing units have been removed - Stanley R. Mickelsen Safeguard Complex, Family Housing Units, In area bounded by Tenth Street North, Avenue A, & Avenue J, Nekoma, Cavalier County, ND

  10. Integrated optic broadband duplexer made by ion exchange

    NASA Astrophysics Data System (ADS)

    Ghibaudo, E.; Broquin, J.-E.; Benech, P.

    2003-02-01

    The development of optical amplification and bidirectional traffic in local and wide area networks requires broadband multiplexers which are able to treat the signal of an entire telecommunication window. A device made by ion exchange and answering to these needs is proposed in this letter. Its working principle, based on a leaky structure is first explained. An experimental result confirming a good broadband spectral behavior is then presented. Its spectral response displays two duplexing bands of at least 100 nm.

  11. Investigation of hot cracking resistance of 2205 duplex steel

    NASA Astrophysics Data System (ADS)

    Adamiec, J.; Ścibisz, B.

    2010-02-01

    Austenitic duplex steel of the brand 2205 according to Avesta Sheffield is used for welded constructions (pipelines, tanks) in the petrol industry, chemical industry and food industry. It is important to know the range of high-temperature brittleness in designing welding technology for constructions made of this steel type. There is no data in literature concerning this issue. High-temperature brittleness tests using the simulator of heat flow device Gleeble 3800 were performed. The tests results allowed the evaluation of the characteristic temperatures in the brittleness temperature range during the joining of duplex steels, specifically the nil-strength temperature (NST) and nil-ductility temperatures (NDT) during heating, the strength and ductility recovery temperatures (DRT) during cooling, the Rfparameter (Rf = (Tliquidus - NDT)/NDT) describing the duplex steel inclination for hot cracking, and the brittleness temperature range (BTR). It has been stated that, for the examined steel, this range is wide and amounts to ca. 90 °C. The joining of duplex steels with the help of welding techniques creates a significant risk of hot cracks. After analysis of the DTA curves a liquidus temperature of TL = 1465 °C and a solidus temperature of TS = 1454 °C were observed. For NST a mean value was assumed, in which the cracks appeared for six samples; the temperature was 1381 °C. As the value of the NDT temperature 1367 °C was applied while for DRT the assumed temperature was 1375 °C. The microstructure of the fractures was observed using a Hitachi S-3400N scanning electron microscope (SEM). The analyses of the chemical composition were performed using an energy-dispersive X-ray spectrometer (EDS), Noran System Six of Thermo Fisher Scientific. Essential differences of fracture morphology type over the brittle temperature range were observed and described.

  12. All-atom crystal simulations of DNA and RNA duplexes

    PubMed Central

    Liu, Chunmei; Janowski, Pawel A.; Case, David A.

    2014-01-01

    Background Molecular dynamics simulations can complement experimental measures of structure and dynamics of biomolecules. The quality of such simulations can be tested by comparisons to models refined against experimental crystallographic data. Methods We report simulations of a DNA and RNA duplex in their crystalline environment. The calculations mimic the conditions for PDB entries 1D23 [d(CGATCGATCG)2] and 1RNA [(UUAUAUAUAUAUAA)2], and contain 8 unit cells, each with 4 copies of the Watson-Crick duplex; this yields in aggregate 64 µs of duplex sampling for DNA and 16 µs for RNA. Results The duplex structures conform much more closely to the average structure seen in the crystal than do structures extracted from a solution simulation with the same force field. Sequence-dependent variations in helical parameters, and in groove widths, are largely maintained in the crystal structure, but are smoothed out in solution. However, the integrity of the crystal lattice is slowly degraded in both simulations, with the result that the interfaces between chains become heterogeneous. This problem is more severe for the DNA crystal, which has fewer inter-chain hydrogen bond contacts than does the RNA crystal. Conclusions Crystal simulations using current force fields reproduce many features of observed crystal structures, but suffer from a gradual degradation of the integrity of the crystal lattice. General significance The results offer insights into force-field simulations that tests their ability to preserve weak interactions between chains, which will be of importance also in non-crystalline applications that involve binding and recognition. PMID:25255706

  13. AMCC casting development, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    PCC successfully cast and performed nondestructive testing, FPI and x-ray, on seventeen AMCC castings. Destructive testing, lab analysis and chemical milling, was performed on eleven of the castings and the remaining six castings were shipped to NASA or Aerojet. Two of the six castings shipped, lots 015 and 016, were fully processed per blueprint requirements. PCC has fully developed the gating and processing parameters of this part and feels the part could be implemented into production, after four more castings have been completed to ensure the repeatability of the process. The AMCC casting has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or thermal gradient control. This method of setting up thermal gradients in the casting during solidification represents a significant process improvement for PCC and has been successfully implemented on other programs. The alloy, JBK75, is a relatively new alloy in the investment casting arena and required our engineering staff to learn the gating, processing, and dimensional characteristics of the material.

  14. Binding of tobamovirus replication protein with small RNA duplexes.

    PubMed

    Kurihara, Yukio; Inaba, Naoko; Kutsuna, Natsumaro; Takeda, Atsushi; Tagami, Yuko; Watanabe, Yuichiro

    2007-08-01

    The sequence profiles of small interfering RNAs (siRNAs) in Arabidopsis infected with the crucifer tobamovirus tobacco mosaic virus (TMV)-Cg were determined by using a small RNA cloning technique. The majority of TMV-derived siRNAs were 21 nt in length. The size of the most abundant endogenous small RNAs in TMV-infected plants was 21 nt, whilst in mock-inoculated plants, it was 24 nt. Northern blot analysis revealed that some microRNAs (miRNAs) accumulated more in TMV-infected plants than in mock-inoculated plants. The question of whether the TMV-Cg-encoded 126K replication protein, an RNA-silencing suppressor, caused small RNA enrichment was examined. Transient expression of the replication protein did not change the pattern of miRNA processing. However, miRNA, miRNA* (the opposite strand of the miRNA duplex) and hairpin-derived siRNA all co-immunoprecipitated with the replication protein. Gel mobility-shift assays indicated that the replication protein binds small RNA duplexes. These results suggest that the tobamovirus replication protein functions as a silencing suppressor by binding small RNA duplexes, changing the small RNA profile in infected plants.

  15. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  16. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    NASA Astrophysics Data System (ADS)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  17. Low Frequency Phased Array Techniques for Crack Detection in Cast Austenitic Piping Welds: A Feasibility Study

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2007-01-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington have focused on developing and evaluating the reliability of nondestructive testing (NDT) approaches for coarse-grained stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (NRC) on the utility, effectiveness and limitation of NDT techniques as related to inservice testing of primary system piping components in pressurized water reactors. We examined cast stainless steel pipe specimens containing thermal and mechanical fatigue cracks located close to the weld roots and having inner and outer diameter surface geometrical conditions that simulate several water reactor primary piping configurations. In addition, segments of vintage centrifugally cast piping were examined to characterize the inherent acoustic noise and scattering caused by grain structures and to determine the consistency of ultrasonic responses when propagating through differing microstructures. Advanced ultrasonic phased array techniques were applied from the outside surface of these specimens using automated scanning devices and water coupling. The phased array approach was implemented with a modified instrument operating at low frequencies, and composite volumetric images of the specimens were generated. Results from laboratory studies for assessing crack detection effectiveness in cast stainless steel as a function of frequency are discussed in this paper.

  18. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  19. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  20. Adsorption and protein-induced metal release from chromium metal and stainless steel.

    PubMed

    Lundin, M; Hedberg, Y; Jiang, T; Herting, G; Wang, X; Thormann, E; Blomberg, E; Wallinder, I Odnevall

    2012-01-15

    A research effort is undertaken to understand the mechanism of metal release from, e.g., inhaled metal particles or metal implants in the presence of proteins. The effect of protein adsorption on the metal release process from oxidized chromium metal surfaces and stainless steel surfaces was therefore examined by quartz crystal microbalance with energy dissipation monitoring (QCM-D) and graphite furnace atomic absorption spectroscopy (GFAAS). Differently charged and sized proteins, relevant for the inhalation and dermal exposure route were chosen including human and bovine serum albumin (HSA, BSA), mucin (BSM), and lysozyme (LYS). The results show that all proteins have high affinities for chromium and stainless steel (AISI 316) when deposited from solutions at pH 4 and at pH 7.4 where the protein adsorbed amount was very similar. Adsorption of albumin and mucin was substantially higher at pH 4 compared to pH 7.4 with approximately monolayer coverage at pH 7.4, whereas lysozyme adsorbed in multilayers at both investigated pH. The protein-surface interaction was strong since proteins were irreversibly adsorbed with respect to rinsing. Due to the passive nature of chromium and stainless steel (AISI 316) surfaces, very low metal release concentrations from the QCM metal surfaces in the presence of proteins were obtained on the time scale of the adsorption experiment. Therefore, metal release studies from massive metal sheets in contact with protein solutions were carried out in parallel. The presence of proteins increased the extent of metals released for chromium metal and stainless steel grades of different microstructure and alloy content, all with passive chromium(III)-rich surface oxides, such as QCM (AISI 316), ferritic (AISI 430), austentic (AISI 304, 316L), and duplex (LDX 2205).

  1. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  2. The N domain of Argonaute drives duplex unwinding during RISC assembly.

    PubMed

    Kwak, Pieter Bas; Tomari, Yukihide

    2012-01-10

    Small RNAs, such as microRNAs and small interfering RNAs, act through Argonaute (Ago) proteins as a part of RNA-induced silencing complexes (RISCs). To make RISCs, Ago proteins bind and subsequently unwind small RNA duplexes, finally leaving one strand stably incorporated. Here we identified the N domain of human AGO2 as the initiator of duplex unwinding during RISC assembly. We discovered that a functional N domain is strictly required for small RNA duplex unwinding but not for precedent duplex loading or subsequent target cleavage. We postulate that RISC assembly is tripartite, comprising (i) RISC loading, whereby Ago undergoes conformational opening and loads a small RNA duplex, forming pre-RISC; (ii) wedging, whereby the end of the duplex is pried open through active wedging by the N domain, in preparation for unwinding; and (iii) unwinding, whereby the passenger strand is removed through slicer-dependent or slicer-independent unwinding, forming mature RISC.

  3. Corrosivity of paper mill effluent and corrosion performance of stainless steel.

    PubMed

    Ram, Chhotu; Sharma, Chhaya; Singh, A K

    2015-01-01

    Present study relates to the corrosivity of paper mill effluent and corrosion performance of stainless steel (SS) as a construction material for the effluent treatment plant (ETP). Accordingly, immersion test and electrochemical polarization tests were performed on SS 304 L, 316 L and duplex 2205 in paper mill effluent and synthetic effluent. This paper presents electrochemical polarization measurements, performed for the first time to the best of the authors' information, to see the influence of chlorophenols on the corrosivity of effluents. The corrosivity of the effluent was observed to increase with the decrease in pH and increase in Cl- content while the addition of SO4- tends to inhibit corrosion. Mill effluent was found to be more corrosive as compared to synthetic effluent and has been attributed to the presence of various chlorophenols. Corrosion performance of SS was observed to govern by the presence of Cr, Mo and N contents.

  4. Oxidation Characteristics of Fe–18Cr–18Mn-Stainless Steel Alloys

    SciTech Connect

    Rawers, James

    2010-10-01

    Air oxidation studies of Fe-18Cr-18Mn stainless steels were conducted at 525°C, 625°C, and 725°C. Alloys were evaluated with respect to changes in oxidation properties as a result of interstitial additions of nitrogen and carbon and of minor solute additions of silicon, molybdenum, and nickel. Interstitial concentrations possibly had a small, positive effect on oxidation resistance. Minor solute additions significantly improved oxidation resistance but could also reduce interstitial solubility resulting in formation of chromium carbides. Loss of solute chromium resulted in a slight reduction in oxidation protection. Oxidation lasting over 500 hours produced a manganese rich, duplex oxide structure: an outer sesquioxide and an inner spinel oxide.

  5. Crystallizaion and surface morphology of poly(vinylidene fluoride)/poly(methylmethacrylate) films by solution casting on different substrates

    NASA Astrophysics Data System (ADS)

    Ma, Wenzhong; Zhang, Jun; Wang, Xiaolin

    2008-03-01

    The dependence of surface structure of the poly(vinylidene fluoride) (PVDF)/poly(methylmethacrylate) (PMMA) films by solution casting on properties of seven substrates was investigated by wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and differential scanning calorimetry (DSC). It was revealed that the polyblend films obtained by casting onto each substrate contained exclusively β phase PVDF. Higher crystallinity of the film was obtained by casting onto ceramic, polytetrafluoroethylene (PTFE), copper (Cu), stainless steel and glass substrates than that by casting onto aluminium (Al) and polypropylene (PP) substrates, depending on the degree of close lattice matching. The surface crystalline structure of PVDF was strongly affected by the wettability of substrate. The largest size of PVDF spherulitic crystal structure with about 6 μm presented in the casting film grown at the air/solution interface on glass substrate, while the smallest spherulite size with about 3 μm was generated by casting onto PTFE, stainless steel and PP substrates. It implied that the higher surface tension the substrate had, the larger PVDF spherulite grew at the air/solution interface.

  6. [Casting faults and structural studies on bonded alloys comparing centrifugal castings and vacuum pressure castings].

    PubMed

    Fuchs, P; Küfmann, W

    1978-07-01

    The casting processes in use today such as centrifugal casting and vacuum pressure casting were compared with one another. An effort was made to answer the question whether the occurrence of shrink cavities and the mean diameter of the grain of the alloy is dependent on the method of casting. 80 crowns were made by both processes from the baked alloys Degudent Universal, Degudent N and the trial alloy 4437 of the firm Degusa. Slice sections were examined for macro and micro-porosity and the structural appearance was evaluated by linear analysis. Statistical analysis showed that casting faults and casting structure is independent of the method used and their causes must be found in the conditions of casting and the composition of the alloy.

  7. Advanced Casting Technology

    DTIC Science & Technology

    1982-08-01

    water , aged 5 hrs on 155 C. Fig. 15 Time required for 19 mm thick test slab casting, poured in sand, to cool...fraction rare earth could be solution treated, quenched and artificially aged to give high tensile properties at room temperature, which were well...Strength. MagnesiumrZincrRare. Earth . Alloys In parallel with the development of silver containing alloy systems, further improvements were obtained

  8. USGS ShakeCast

    USGS Publications Warehouse

    Wald, David; Lin, Kuo-Wan

    2007-01-01

    Automating, Simplifying, and Improving the Use of ShakeMap for Post-Earthquake Decisionmaking and Response. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  9. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  10. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  11. Casting larger polycrystalline silicon ingots

    SciTech Connect

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  12. 77 FR 28568 - Grant of Authority for Subzone Status; North American Stainless, (Stainless Steel), Ghent, KY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... Steel), Ghent, KY Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as... authority to establish a special-purpose subzone at the stainless steel mill of North American Stainless... subzone status for activity related to the manufacturing and distribution of stainless steel at...

  13. Cast Aluminum Structures Technology (CAST) Phase VI. Technology Transfer.

    DTIC Science & Technology

    1980-04-01

    system and ultimately fill the mold cavity to produce a casting. The fluidity of a given metal is measured with standard fluidity test molds. One...showed that the pouring temperature for large, thin-wall aluminum castings must be (1) high enough to provide sufficient fluidity for complete filling of...castings should have the following specific characteristics: good flowability , permeability, tensile strength, and compressive strength; high hot

  14. Cast Aluminum Structures Technology (CAST). Phase I. Preliminary Design

    DTIC Science & Technology

    1977-05-01

    49 26 Assumed Crack Growth Rate -- A357 . . . . . . . . . .. 50 27 Flaw Growth at Hole of Gear Attachment Point .... .... 52 28 A357 S-N...wo TABLES Number ?Ile 1 Statistics on.16 Classes of A357 Aluminum Casting Data .. 14 2 "CAST" Preliminary Design Allowables .. .. .. ....... 20 3...damage tolerance criteria; development of preliminary design allowables data for A357 aluminum casting alloy to be used for design until completion

  15. High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2014-06-01

    The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.

  16. High density tape casting system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A system is provided for casting thin sheets (or tapes) of particles bound together, that are used for oxygen membranes and other applications, which enables the particles to be cast at a high packing density in a tape of uniform thickness. A slurry contains the particles, a binder, and a solvent, and is cast against the inside walls of a rotating chamber. Prior to spraying the slurry against the chamber walls, a solvent is applied to a container. The solvent evaporates to saturate the chamber with solvent vapor. Only then is the slurry cast. As a result, the slurry remains fluid long enough to spread evenly over the casting surface formed by the chamber, and for the slurry particles to become densely packed. Only then is the chamber vented to remove solvent, so the slurry can dry. The major novel feature is applying solvent vapor to a rotating chamber before casting slurry against the chamber walls.

  17. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  18. Machine Casting of Ferrous Alloys.

    DTIC Science & Technology

    possible today. Extensive work was conducted on casting of semi-solid alloys when highly fluid (’ Rheocasting ’) and when thixotropically gelled...Thixocasting’). In initial phases of the program, copper base alloys and cast iron alloys were prepared with special non-dendritic Rheocast structure by batch...processing. Compatibility studies were carried out to select materials suitable for preparing cast iron with the Rheocast structure. Design

  19. A comparison of the accuracy of two removable die systems with intact working casts.

    PubMed

    Aramouni, P; Millstein, P

    1993-01-01

    This study evaluated the reproducibility of die position using two removable die systems and two die stones. Poly(vinyl siloxane) impressions were made of a stainless steel, U-shaped arch with four evenly spaced abutments. Six groups were evaluated: Zeiser system/Fuji Rock; Zeiser system/Die Keen; solid cast/Fuji Rock; solid cast/Die Keen; Fuji Rock/Pindex; and Die Keen/Pindex. An optical comparator was used to measure the height of each abutment, the distance between the anterior abutments, and the distance between the posterior abutments. The Zeiser system with either Fuji Rock or Die Keen yielded the greatest accuracy. Die Keen exhibited more linear expansion than Fuji Rock, and solid casts had less distortion than the Pindex system.

  20. Structural destabilization of DNA duplexes containing single-base lesions investigated by nanopore measurements.

    PubMed

    Jin, Qian; Fleming, Aaron M; Ding, Yun; Burrows, Cynthia J; White, Henry S

    2013-11-12

    The influence of DNA duplex structural destabilization introduced by a single base-pair modification was investigated by nanopore measurements. A series of 11 modified base pairs were introduced into the context of an otherwise complementary DNA duplex formed by a 17-mer and a 65-mer such that the overhanging ends comprised poly(dT)23 tails, generating a representative set of duplexes that display a range of unzipping mechanistic behaviors and kinetic stabilities. The guanine oxidation products 8-oxo-7,8-dihydroguanine (OG), guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp) were paired with either cytosine (C), adenine (A), or 2,6-diaminopurine (D) to form modified base pairs. The mechanism and kinetic rate constants of duplex dissociation were determined by threading either the 3' or 5' overhangs into an α-hemolysin (α-HL) channel under an electrical field and measuring the distributions of unzipping times at constant force. In order of decreasing thermodynamic stability (as measured by duplex melting points), the rate of duplex dissociation increases, and the mechanism evolves from a first-order reaction to two sequential first-order reactions. These measurements allow us to rank the kinetic stability of lesion-containing duplexes relative to the canonical G:C base pair in which the OG:C, Gh:C, and Sp:C base pairs are, respectively, 3-200 times less stable. The rate constants also depend on whether unzipping was initiated from the 3' versus 5' side of the duplex. The kinetic stability of these duplexes was interpreted in terms of the structural destabilization introduced by the single base-pair modification. Specifically, a large distortion of the duplex backbone introduced by the presence of the highly oxidized guanine products Sp and Gh leads to a rapid two-step unzipping. The number of hydrogen bonds in the modified base pair plays a lesser role in determining the kinetics of duplex dissociation.

  1. Fastcast: Integration and application of rapid prototyping and computational simulation to investment casting

    SciTech Connect

    Maguire, M.C.; Baldwin, M.D.; Atwood, C.L.

    1996-09-01

    The emergence of several rapid prototyping and manufacturing (RP and M) technologies is having a dramatic impact on investment casting. While the most successful of the rapid prototyping technologies are almost a decade old, relatively recent process advances in their application have produced some remarkable success in utilizing their products as patterns for investment castings. Sandia National Laboratories has been developed highly coupled experimental and computational capabilities to examine the investment casting process with the intention of reducing the amount of time required to manufacture castings, and to increase the quality of the finished product. This presentation will begin with process aspects of RP and M pattern production and handling, shell fabrication, burnout, and casting. The emphasis will be on how the use of Stereolithography (SL) or Selective Laser Sintered (SLS) patterns differs from more traditional wax pattern processes. Aspects of computational simulation to couple design, thermal analysis, and mold filling will be discussed. Integration of these topics is probably the greatest challenge to the use of concurrent engineering principles with investment casting. Sandia has conducted several experiments aimed at calibrating computer codes and providing data for input into these simulations. Studies involving materials as diverse as stainless steel and gold have been conducted to determine liquid metal behavior in molds via real time radiography. The application of these experiments to predictive simulations will be described.

  2. Aromatic oligomers that form hetero duplexes in aqueous solution.

    PubMed

    Gabriel, Gregory J; Iverson, Brent L

    2002-12-25

    The electron-deficient 1,4,5,8-naphthalenetetracarboxylic diimide (Ndi) and electron-rich 1,5-dialkoxynaphthalene (Dan) have been shown to complex strongly with each other in water due to the hydrophobic effect as modulated through the electrostatic complementarity of the stacked dimer. Previously, oligomers of alternating Ndi and Dan units, termed aedamers, were the first foldamers to employ intramolecular aromatic stacking to effect the formation of secondary structure of nonnatural chains in aqueous solution. Described here is the use of this aromatic-aromatic (or pi-pi) interaction, this time in an intermolecular format, to demonstrate the self-assembly of stable hetero duplexes from a set of molecular strands (1a-4a) and (1b-4b) incorporating Ndi and Dan units, respectively. A 1-to-1 binding stoichiometry was determined from NMR and isothermal titration calorimetry (ITC) investigations, and these experiments indicated that association is enthalpically favored with the tetra-Ndi (4a) and tetra-Dan (4b) strands forming hetero duplexes (4a:4b) with a stability constant of 350 000 M-1 at T = 318 K. Polyacrylamide gel electrophoresis (PAGE) also illustrated the strong interaction between 4a and 4b and support a 1-to-1 binding mode even when one component is in slight excess. Overall, this system is the first to utilize complementary aromatic units to drive discrete self-assembly in aqueous solution. This new approach for designing assemblies is encouraging for future development of duplex systems with highly programmable modes of binding in solution or on surfaces.

  3. Diagnostic value of three-dimensional transcranial contrast duplex sonography.

    PubMed

    Delcker, A; Turowski, B

    1997-07-01

    This study evaluated intracranial cerebral arteries using a new data acquisition system for transcranial three-dimensional (3D) ultrasonography with and without an echo contrast agent, with confirmation by cerebral angiography. Ten patients, studied with diagnostic cerebral angiography, were examined without knowledge of the angiographic results. Data acquisition through the transtemporal acoustic window was performed using a magnetic sensor system to track the spatial orientation of the ultrasound probe while scanning the volume of interest. A color transcranial duplex system with a power Doppler mode was used, and 3D data sets were acquired before and after the injection of transpulmonary-stable ultrasound contrast medium. Ipsilateral to the transducer, the anterior cerebral artery (ACA) in 90%, middle cerebral artery (MCA) in 60%, all three or more branches of the MCA in 60%, posterior cerebral artery (PCA) in 60%, and posterior communicating artery (PCoA) in 60% were successfully imaged without the echo contrast agent. With the contrast agent, the ACA, MCA, three or more branches of the MCA, PCA, and PCoA were visible in 100%. The anterior communicating artery was visualized in 40% without contrast enhancement and in 90% with contrast enhancement. Contralateral to the transducer, the ACA (60%), MCA (30%), all three or more branches of the MCA (10%), PCA (20%), and PCoA (20%) were successfully imaged without contrast. Contrast enhancement improved the imaging success rate for the ACA (90%), MCA (80%), three or more branches of the MCA (80%), PCA (100%), and PCoA (100%). A transpulmonary-stable ultrasound contrast agent used in combination with 3D transcranial duplex ultrasonography can significantly improve the success rate for transcranial color duplex imaging of intracranial arteries.

  4. Diffusion brazing nickel-plated stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  5. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  6. Experience with duplex bearings in narrow angle oscillating applications

    NASA Technical Reports Server (NTRS)

    Phinney, D. D.; Pollard, C. L.; Hinricks, J. T.

    1988-01-01

    Duplex ball bearings are matched pairs on which the abutting faces of the rings have been accurately ground so that when the rings are clamped together, a controlled amount of interference (preload) exists across the balls. These bearings are vulnerable to radial temperature gradients, blocking in oscillation and increased sensitivity to contamination. These conditions decrease the service life of these bearings. It was decided that an accelerated thermal vacuum life test should be conducted. The test apparatus and results are described and the rationale is presented for reducing a multiyear life test on oil lubricated bearings to less than a year.

  7. Sequence Recognition in the Pairing of DNA Duplexes

    NASA Astrophysics Data System (ADS)

    Kornyshev, A. A.; Leikin, S.

    2001-04-01

    Pairing of DNA fragments with homologous sequences occurs in gene shuffling, DNA repair, and other vital processes. While chemical individuality of base pairs is hidden inside the double helix, x ray and NMR revealed sequence-dependent modulation of the structure of DNA backbone. Here we show that the resulting modulation of the DNA surface charge pattern enables duplexes longer than ~50 base pairs to recognize sequence homology electrostatically at a distance of up to several water layers. This may explain the local recognition observed in pairing of homologous chromosomes and the observed length dependence of homologous recombination.

  8. When Your Child Needs a Cast

    MedlinePlus

    ... hard bandage that's usually made of material like fiberglass or plaster. Casts keep bones in place while ... water. Plaster of Paris casts are heavier than fiberglass casts and don't hold up as well ...

  9. Cast Care: Do's and Don'ts

    MedlinePlus

    ... typically lighter and more durable than are traditional plaster casts. Air circulates more freely inside a fiberglass ... Also, X-rays penetrate fiberglass casts better than plaster casts. This is helpful if your child's doctor ...

  10. When Your Child Needs a Cast

    MedlinePlus

    ... that's usually made of material like fiberglass or plaster. Casts keep bones in place while they heal. ... Types of Casts Casts usually are made of: Plaster of Paris: This heavy white powder forms a ...

  11. Laser surface modification of stainless steels for cavitation erosion resistance

    NASA Astrophysics Data System (ADS)

    Kwok, Chi Tat

    1999-12-01

    Austenitic stainless steel UNS S31603 (Fe -17.6Cr -11.2Ni -2.5Mo -1.4Mn -0.4Si -0.03C) has higher pitting corrosion resistance but lower cavitation erosion resistance than that of UNS S30400. This is because of its lower tendency for strain induced martensitic transformation and higher stacking fault energy as compared with those of UNS S30400. In order to improve its cavitation erosion resistance, surface modification of S31603 was performed by laser surface melting and laser surface alloying using a 2-kW CW Nd-YAG laser and a 3-kW CW CO2 laser. For laser surface melting, austenitic stainless steel UNS S30400, super duplex stainless steel UNS S32760 and martensitic stainless steel UNS S42000 were also investigated for comparison purpose. For laser surface alloying, alloying materials including various elements (Co, Cr, Ni, Mo, Mn, Si & C), alloys (AlSiFe & NiCrSiB), ceramics (Si3N 4, SiC, Cr3C2, TiC, CrB & Cr2O 3) and alloys-ceramics (Co-WC, Ni-WC, Ni-Al2O3, Ni-Cr2C3) were used to modify the surface of S31603. The alloyed surface was achieved first by flame spraying or pre-placing of the alloy powder on the S31603 surface and then followed by laser surface remelting. The cavitation erosion characteristics of laser surface modified specimens in 3.5% NaCl solution at 23°C were studied by means of a 20-kHz ultrasonic vibrator at a peak-to-peak amplitude of 30 mum. In addition, their pitting corrosion behaviour was evaluated by electrochemical techniques. The microstructures, compositions, phase changes and damage mechanisms under cavitation erosion were investigated by optical microscopy, SEM, EDAX and X-ray diffractometry. Mechanical properties such as microhardness profile were also examined. The cavitation erosion resistance Re (reciprocal of the mean depth of penetration rate) of laser surface melted S31603 was found to be improved by 22% and was attributed to the existence of tensile residual stress. Improvement on the Re of S42000 was found to be 8.5 times

  12. Comparison of duplex ultrasonography and venography in the diagnosis of deep venous thrombosis.

    PubMed

    Mitchell, D C; Grasty, M S; Stebbings, W S; Nockler, I B; Lewars, M D; Levison, R A; Wood, R F

    1991-05-01

    Sixty-five patients with suspected deep venous thrombosis (DVT) in 68 limbs were entered consecutively into a study to compare venography with duplex ultrasonography scanning. Both tests were performed on 64 limbs, venography being contraindicated in four. Overall, duplex scanning correctly identified 86 per cent of DVTs diagnosed on venography and correctly excluded 80 per cent with negative venograms. Nearly all errors arose in the diagnosis of calf DVT. In the femoral vein duplex scanning had a specificity of 100 per cent and a sensitivity of 95 per cent. In addition, duplex scanning provided data on the limb not undergoing venography. Of 55 limbs that underwent bilateral duplex scanning, five had thrombus in the femoropopliteal segment and a negative contralateral venogram. In addition, three Baker's cysts were diagnosed. Duplex scanning can be used in patients in whom venography is contraindicated and may also provide information about the contralateral limb. We regard femoropopliteal duplex scanning as sufficiently accurate that treatment can be initiated on the basis of the scan. Duplex scanning should replace venography as the standard method of diagnosing femoropopliteal DVT; radiographic studies should now be required only when the scan result is in doubt.

  13. Development of New Stainless Steel

    SciTech Connect

    Robert F. Buck

    2005-08-30

    A new family of innovative martensitic stainless steels, 521-A, 521-B, and 521-C has been developed by Advanced Steel Technology, LLC (Trafford, PA) as high strength fastener (bolt) materials for use at moderate temperatures in turbine engines, including steam turbines, gas turbines, and aircraft engines. The primary objective of the development program was to create a martensitic stainless steel with high strength at moderate temperatures, and which could replace the expensive nickel-based superalloy IN 718 in some fasteners applications. A secondary objective was to replace conventional 12Cr steels such as AISI 422 used as blades, buckets and shafts that operate at intermediate temperatures in turbine engines with stronger steel. The composition of the new alloys was specifically designed to produce excellent mechanical properties while integrating heat treatment steps into production to reduce energy consumption during manufacturing. As a result, production costs and energy consumption during production of rolled bar products is significantly lower than conventional materials. Successful commercialization of the new alloys would permit the installed cost of certain turbine engines to be reduced without sacrificing high availability or operational flexibility, thereby enhancing the global competitiveness of U.S. turbine engine manufacturers. Moreover, the domestic specialty steel industry would also benefit through increased productivity and reduced operating costs, while increasing their share of the international market for turbine engine fasteners, blades, buckets and shafts.

  14. Biomaterials by freeze casting.

    PubMed

    Wegst, Ulrike G K; Schecter, Matthew; Donius, Amalie E; Hunger, Philipp M

    2010-04-28

    The functional requirements for synthetic tissue substitutes appear deceptively simple: they should provide a porous matrix with interconnecting porosity and surface properties that promote rapid tissue ingrowth; at the same time, they should possess sufficient stiffness, strength and toughness to prevent crushing under physiological loads until full integration and healing are reached. Despite extensive efforts and first encouraging results, current biomaterials for tissue regeneration tend to suffer common limitations: insufficient tissue-material interaction and an inherent lack of strength and toughness associated with porosity. The challenge persists to synthesize materials that mimic both structure and mechanical performance of the natural tissue and permit strong tissue-implant interfaces to be formed. In the case of bone substitute materials, for example, the goal is to engineer high-performance composites with effective properties that, similar to natural mineralized tissue, exceed by orders of magnitude the properties of its constituents. It is still difficult with current technology to emulate in synthetic biomaterials multi-level hierarchical composite structures that are thought to be the origin of the observed mechanical property amplification in biological materials. Freeze casting permits to manufacture such complex, hybrid materials through excellent control of structural and mechanical properties. As a processing technique for the manufacture of biomaterials, freeze casting therefore has great promise.

  15. Electrochemical study of resistance to localized corrosion of stainless steels for biomaterial applications

    SciTech Connect

    Pan, J.; Karlen, C.; Ulfvin, C.

    2000-03-01

    Sandvik Bioline High-N and 316 LVM are two austenitic stainless steels especially developed for biomaterial applications. Their resistance to localized corrosion was investigated by electrochemical methods including cyclic potentiodynamic polarization and potentiostatic polarization measurements in a phosphate-buffered saline solution and in a simulated crevice solution, i.e., designed for crevice corrosion testing. Sandvik SAF 2507 (a high-performance super duplex stainless steel) was included in the tests as a reference material High-N, higher alloyed than 316 LVM, demonstrated excellent resistance to pitting initiation and a strong tendency to repassivation. High-N proved to have an equivalent or even higher resistance to localized corrosion than SAF 2507. The latter is known for its impressive corrosion properties, particularly in chloride containing environments. While 316 LVM may run the risk of crevice corrosion in implant applications, the risk seems negligible for High-N. In view of the fact that also the mechanical properties are superior to those of 316 LVM, High-N is a very attractive implant material.

  16. Education and Caste in India

    ERIC Educational Resources Information Center

    Chauhan, Chandra Pal Singh

    2008-01-01

    This paper analyses the policy of reservation for lower castes in India. This policy is similar to that of affirmative action in the United States. The paper provides a brief overview of the caste system and discusses the types of groups that are eligible for reservation, based on data from government reports. The stance of this paper is that…

  17. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  18. Synthesis of native-like crosslinked duplex RNA and study of its properties.

    PubMed

    Onizuka, Kazumitsu; Hazemi, Madoka E; Thomas, Justin M; Monteleone, Leanna R; Yamada, Ken; Imoto, Shuhei; Beal, Peter A; Nagatsugi, Fumi

    2017-04-01

    A variety of enzymes have been found to interact with double-stranded RNA (dsRNA) in order to carry out its functions. We have endeavored to prepare the covalently crosslinked native-like duplex RNA, which could be useful for biochemical studies and RNA nanotechnology. In this study, the interstrand covalently linked duplex RNA was formed by a crosslinking reaction between vinylpurine (VP) and the target cytosine or uracil in RNA. We measured melting temperatures and CD spectra to identify the properties of the VP crosslinked duplex RNA. The crosslinking formation increased the thermodynamic stability without disturbing the natural conformation of dsRNA. In addition, a competitive binding experiment with the duplex RNA binding enzyme, ADAR2, showed the crosslinked dsRNA bound the protein with nearly the same binding affinity as the natural dsRNA, confirming that it has finely preserved the natural traits of duplex RNA.

  19. Hole Transport in A-form DNA/RNA Hybrid Duplexes

    PubMed Central

    Wong, Jiun Ru; Shao, Fangwei

    2017-01-01

    DNA/RNA hybrid duplexes are prevalent in many cellular functions and are an attractive target form for electrochemical biosensing and electric nanodevice. However the electronic conductivities of DNA/RNA hybrid duplex remain relatively unexplored and limited further technological applications. Here cyclopropyl-modified deoxyribose- and ribose-adenosines were developed to explore hole transport (HT) in both DNA duplex and DNA/RNA hybrids by probing the transient hole occupancies on adenine tracts. HT yields through both B-form and A-form double helixes displayed similar shallow distance dependence, although the HT yields of DNA/RNA hybrid duplexes were lower than those of DNA duplexes. The lack of oscillatory periods and direction dependence in HT through both helixes implied efficient hole propagation can be achieved via the hole delocalization and coherent HT over adenine tracts, regardless of the structural variations. PMID:28084308

  20. Hole Transport in A-form DNA/RNA Hybrid Duplexes

    NASA Astrophysics Data System (ADS)

    Wong, Jiun Ru; Shao, Fangwei

    2017-01-01

    DNA/RNA hybrid duplexes are prevalent in many cellular functions and are an attractive target form for electrochemical biosensing and electric nanodevice. However the electronic conductivities of DNA/RNA hybrid duplex remain relatively unexplored and limited further technological applications. Here cyclopropyl-modified deoxyribose- and ribose-adenosines were developed to explore hole transport (HT) in both DNA duplex and DNA/RNA hybrids by probing the transient hole occupancies on adenine tracts. HT yields through both B-form and A-form double helixes displayed similar shallow distance dependence, although the HT yields of DNA/RNA hybrid duplexes were lower than those of DNA duplexes. The lack of oscillatory periods and direction dependence in HT through both helixes implied efficient hole propagation can be achieved via the hole delocalization and coherent HT over adenine tracts, regardless of the structural variations.

  1. Unusual Presentation of Duplex Kidneys: Ureteropelvic Junction Obstruction

    PubMed Central

    Başdaş, Cemile; Özaydın, Seyithan; Karaaslan, Birgül; Alim, Elmas Reyhan; Güvenç, Ünal; Sander, Serdar

    2016-01-01

    Aim. Ureteropelvic junction obstruction (UPJO) is rarely associated with a duplex collecting system. We review this unusual anomaly in terms of presentation, diagnostic evaluation, and surgical management. Method. We retrospectively reviewed the medical records of patients diagnosed with a duplex system with UPJO. Result. Sixteen patients (6 girls, 10 boys) with 18 moieties were treated surgically and four patients were treated conservatively. The median age at surgery was two years (range, 2 months to 7 years). The lower pole and upper moiety were affected in 12 and two kidneys, respectively, and both were affected in two patients. The anomaly was right-sided in 12 moieties and left-sided in six. The duplication was incomplete in seven patients and complete in nine. The mean renal pelvis diameter at the time of surgery was 25.6 (range 11–48 mm) mm by USG. The mean renal function of the involved moiety was 28.3% before surgery. Management included pyelopyelostomy or ureteropyelostomy in six moieties, dismembered pyeloplasty in eight moieties, heminephrectomy in four cases, and simultaneous upper heminephrectomy and lower pole ureteropyelostomy in one patient. Conclusion. There is no standard approach for these patients and treatment should be individualized according to physical presentation, detailed anatomy, and severity of obstruction. PMID:27829833

  2. Sex determination in 6 bovid species by duplex PCR.

    PubMed

    Prashant; Gour, Digpal S; Dubey, Prem P; Jain, Anubhav; Gupta, Subhash C; Joshi, Balwinder K; Kumar, Dinesh

    2008-01-01

    Sex determination in domestic animals is of potential value to livestock breeding programs. The aim of this study was to develop a simple and accurate PCR-based sex determination protocol, which can be applicable to 6 major domesticated species of the family Bovidae, viz. Bos frontalis, B. grunniens, B. indicus, Bubalus bubalis, Capra hircus, and Ovis aries. In silico analysis was done to identify conserved DNA sequence in the HMG box region of the sex-determining region of the Y-chromosome (SRY gene) across the bovids. Duplex PCR assay, including the SRY gene and the GAPDH housekeeping gene, was optimized by using genomic DNA extracted from blood samples of known sex. It was possible to identify the sex of animals by amplifying both gender-specific (SRY) and autosomal (GAPDH) genes simultaneously in the duplex reaction, with the male yielding two bands and the female one band. The protocol was subjected to a blind test that showed a 100 percent specificity and accuracy, thus it can be used in sex determination in livestock breeding programs.

  3. Using Low-Frequency Phased Arrays to Detect Cracks in Cast Austenitic Piping Components

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2005-12-30

    As part of a multi-year program funded by the United States Nuclear Regulatory Commission (US NRC) to address NDE reliability of inservice inspection (ISI) programs, recent studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the US NRC on the utility, effec¬tiveness and reliability of ultrasonic testing (UT) and eddy current testing (ET) inspection techniques as related to the ISI of primary piping components in pressurized water reactors (PWRs). This paper describes progress, recent developments and early results from an assessment of a portion of this work relating to the ultrasonic low frequency phased array inspection technique. Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank vintage specimens having very coarse grains that are representative of early centrifugally cast piping installed in PWRs, are being used for assessing the inspection method. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1.0 MHz and 500 kHz, providing composite volumetric images of the samples. Several dual, transmit-receive, custom designed low-frequency arrays are employed in laboratory trials. Results from laboratory studies for assessing detection of thermal and mechanical fatigue cracks in cast stainless steel piping welds are discussed. This work was sponsored by the U.S. Nuclear Regulatory Commission under Contract DE-AC06-76RLO 1830; NRC JCN Y6604; Mr. Wallace Norris, Program Monitor.

  4. Water-evaporation reduction by duplex films: application to the human tear film.

    PubMed

    Cerretani, Colin F; Ho, Nghia H; Radke, C J

    2013-09-01

    Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized.

  5. Tape cast bioactive metal-ceramic laminates for structural application

    NASA Astrophysics Data System (ADS)

    Clupper, Daniel Christopher

    Bioglass 45S5, is a silica based glass which is able to rapidly form strong bonds with bone and soft tissue in vivo. It is used clinically to replace damaged ear ossicles and in dental surgery to help maintain the structural integrity of the jaw bone. The goal of the research was to demonstrate that Bioglass can be toughened by lamination with metallic layers while maintaining bioactivity. Improvement of the mechanical properties of Bioglass 45SS would allow for additional clinical applications, such as fracture fixation plates, or vertebral spacers. Bioglass 45S5 was tape cast and laminated with clinically relevant metals (316L, stainless steel and titanium) as well as copper in an effort to demonstrate that the effective toughness, or area under the load-deflection diagram can be increased significantly through ductile layer lamination. The average strength of monolithic tape cast sintered Bioglass was as high as 150 MPa and the toughness measured approximately 1.0 MPa m1/2. Copper-Bioglass laminates clearly demonstrated the toughening effect of metal layers on tape cast sintered Bioglass 45S5. Steel-Bioglass laminates, although less tough than the copper-Bioglass laminates, showed higher strengths. In vitro bioactivity tests of both titanium and steel Bioglass laminates showed the formation of mature and thick hydroxyapatite layers after 24 hours in Tris buffer solution. Under the standard test conditions, the bioactivity of monolithic tape cast sintered Bioglass increased with increasing sintering temperature. For samples sintered at 1000°C, thick crystalline layers of hydroxyapatite formed within 24 hours in Tris buffer solution. The bioactivity of these samples approached that of amorphous bulk Bioglass. Samples processed at 800°C were able to form thick crystalline hydroxyapatite layer after 24 hours when the test solution volume was increased by eight times.

  6. Saturated Fractional Design of Experiments: Toughness and Graphite Phase Optimizing in Nihard Cast Irons

    NASA Astrophysics Data System (ADS)

    Asensio-Lozano, J.; Álvarez-Antolín, J. F.

    2008-04-01

    The aim of the present research is to identify the manufacturing factors that exert an active influence on the graphite phase formation in mottled Nihard cast irons constituting the roll shells of duplex work rolls processed by the double pour method during centrifugal casting. The studied rolls, referred to as alloy indefinite chill, were processed at industrial scale and had a core consisting of spheroidal graphite cast iron with a matrix of ferrite and pearlite. An additional aim of this study was to evaluate the effect and extent of these factors on the dynamic toughness response of the roll shell material. The research methodology employed consisted of the application of a saturated design of experiments with seven factors, eight experiments, and resolution III. The measured responses for graphite were: the volume fraction, count number per unit area, and morphology, determined by quantitative metallography. Impact testing was characterized by Charpy tests on U-notched specimens at 350 °C. The manufacturing factors studied were: the final weight percent of silicon, sulfur, and manganese; the liquidus and the casting temperatures; and, finally, inoculation with SiCaMn and A-type FeSi (with Zr). The statistical experimental method conducted allowed us to confirm the significance of factors such as the %Si, the liquidus temperature and inoculation with SiCaMn on the precipitation of graphite in a white cast iron such as the Nihard irons used in the roll shell, in agreement with the precipitation of graphite in gray cast irons widely reported in the literature. It was also shown that the development of lamellar graphite shapes were favored by an increase in the total equivalent carbon and also by the increase in the amount of A-type FeSi added. Furthermore, the impact toughness was shown to improve with the increase in both the %Si and the liquidus temperature.

  7. Tritiated Water Interaction with Stainless Steel

    SciTech Connect

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  8. Active wear and failure mechanisms of TiN-coated high speed steel and TiN-coated cemented carbide tools when machining powder metallurgically made stainless steels

    SciTech Connect

    Jiang, L.; Haenninen, H.; Paro, J.; Kauppinen, V.

    1996-09-01

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  9. Active wear and failure mechanisms of TiN-Coated high speed steel and tin-coated cemented carbide tools when machining powder metallurgically made stainless steels

    NASA Astrophysics Data System (ADS)

    Jiang, Laizhu; Hänninen, Hannu; Paro, Jukka; Kauppinen, Veijo

    1996-09-01

    In this study, active wear and failure mechanisms of both TiN-coated high speed steel and TiN-coated cemented carbide tools when machining stainless steels made by powder metallurgy in low and high cutting speed ranges, respectively, have been investigated. Abrasive wear mechanisms, fatigue-induced failure, and adhesive and diffusion wear mechanisms mainly affected the tool life of TiN-coated high speed steel tools at cutting speeds below 35 m/min, between 35 and 45 m/min, and over 45 m/min, respectively. Additionally, fatigue-induced failure was active at cutting speeds over 45 m/min in the low cutting speed range when machining powder metallurgically made duplex stainless steel 2205 and austenitic stainless steel 316L. In the high cutting speed range, from 100 to 250 m/min, fatigue-induced failure together with diffusion wear mechanism, affected the tool life of TiN-coated cemented carbide tools when machining both 316L and 2205 stainless steels. It was noticed that the tool life of TiN-coated high speed steel tools used in the low cutting speed range when machining 2205 steel was longer than that when machining 316L steel, whereas the tool life of TiN-coated cemented carbide tools used in the high cutting speed range when machining 316L steel was longer than that when machining 2205 steel.

  10. Hoogsteen-paired homopurine [RP-PS]-DNA and homopyrimidine RNA strands form a thermally stable parallel duplex.

    PubMed

    Guga, Piotr; Janicka, Magdalena; Maciaszek, Anna; Rebowska, Beata; Nowak, Genowefa

    2007-11-15

    Homopurine deoxyribonucleoside phosphorothioates possessing all internucleotide linkages of R(P) configuration form a duplex with an RNA or 2'-OMe-RNA strand with Hoogsteen complementarity. The duplexes formed with RNA templates are thermally stable at pH 5.3, while those formed with a 2'-OMe-RNA are stable at neutrality. Melting temperature and fluorescence quenching experiments indicate that the strands are parallel. Remarkably, these duplexes are thermally more stable than parallel Hoogsteen duplexes and antiparallel Watson-Crick duplexes formed by unmodified homopurine DNA molecules of the same sequence with corresponding RNA templates.

  11. Sixty Years of Casting Research

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  12. Strip casting with fluxing agent applied to casting roll

    SciTech Connect

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  13. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  14. Biomimetic Materials by Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.

    2013-06-01

    Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.

  15. Rapid Cycle Casting of Steel

    DTIC Science & Technology

    1981-07-01

    Figs. 10 and 11 show carbon segregation as a function of a N at casting temperatures of 1185 0 C and 1360°C. 5.7.5 Macrosegregation for non-ideal...casting temperature. Run# T a N Carbon Segregation , % 0 C L 7.5mm L 35mn L =65nm L =90nm R53 1185 .3900 11 -2 -2 -2 R52 1185 .0860 17 -3 -3 -3 R51 1185...superheated shot and melt; superheat = 66cc and casting temperature = 1198 C. Run# tI Carbon segregation , % sL = 29mm L = 43mm L = 80mm L =98mm Rl 0.35

  16. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  17. Slip-Cast Superconductive Parts

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Vasquez, Peter; Buck, Gregory M.; Hicks, Lana P.; Hooker, Matthew W.; Taylor, Theodore D.

    1993-01-01

    Complex shapes fabricated without machining. Nonaqueous slip-casting technique used to form complexly shaped parts from high-temperature superconductive materials like YBa(2)Cu(3)O(7-delta). Such parts useful in motors, vibration dampers, and bearings. In process, organic solvent used as liquid medium. Ceramic molds made by lost-wax process used instead of plaster-of-paris molds, used in aqueous slip-casting but impervious to organic solvents and cannot drain away liquid medium. Organic-solvent-based castings do not stick to ceramic molds as they do to plaster molds.

  18. NMR studies of DNA duplexes singly cross-linked by different synthetic linkers.

    PubMed Central

    Altmann, S; Labhardt, A M; Bur, D; Lehmann, C; Bannwarth, W; Billeter, M; Wüthrich, K; Leupin, W

    1995-01-01

    Molecular modelling studies resulted in the design of a variety of non-nucleotidic covalent linkers to bridge the 3'-end of the (+)-strand and the 5'-end of the (-)-strand in DNA duplexes. Three of these linkers were synthesized and used to prepare singly cross-linked duplexes d(GTGGAATTC)-linker-d(GAATTCCAC). Linker I is an assembly of a propylene-, a phosphate- and a second propylene-group and is thought to mimic the backbone of two nucleotides. Linkers II and III consist of five and six ethyleneglycol units, respectively. The melting temperatures of the cross-linked duplexes are 65 degrees C for I and 73 degrees C for II and III, as compared with 36 degrees C for the corresponding non-linked nonadeoxynucleotide duplex. The three cross-linked duplexes were structurally characterized by nuclear magnetic resonance spectroscopy. The 1H and 31P resonance assignments in the DNA stem were obtained using standard methods. For the resonance assignment of the linker protons, two-dimensional 1H-31P heteronuclear COSY and two-quantum-experiments were used. Distance geometry calculations with NOE-derived distance constraints were performed and the resulting structures were energy-minimized. In duplex I, the nucleotides flanking the propylene-phosphate-propylene-linker do not form a Watson-Crick base pair, whereas in duplexes II and III the entire DNA stem is in a B-type double helix conformation. Images PMID:8532525

  19. Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13.

    PubMed

    Lee, Na-Ra; Kwon, Hyun-Mi; Park, Kkothanahreum; Oh, Sangtaek; Jeong, Yong-Joo; Kim, Dong-Eun

    2010-11-01

    SARS coronavirus encodes non-structural protein 13 (nsP13), a nucleic acid helicase/NTPase belonging to superfamily 1 helicase, which efficiently unwinds both partial-duplex RNA and DNA. In this study, unwinding of DNA substrates that had different duplex lengths and 5'-overhangs was examined under single-turnover reaction conditions in the presence of excess enzyme. The amount of DNA unwound decreased significantly as the length of the duplex increased, indicating a poor in vitro processivity. However, the quantity of duplex DNA unwound increased as the length of the single-stranded 5'-tail increased for the 50-bp duplex. This enhanced processivity was also observed for duplex DNA that had a longer single-stranded gap in between. These results demonstrate that nsP13 requires the presence of a long 5'-overhang to unwind longer DNA duplexes. In addition, enhanced DNA unwinding was observed for gapped DNA substrates that had a 5'-overhang, indicating that the translocated nsP13 molecules pile up and the preceding helicase facilitate DNA unwinding. Together with the propensity of oligomer formation of nsP13 molecules, we propose that the cooperative translocation by the functionally interacting oligomers of the helicase molecules loaded onto the 5'-overhang account for the observed enhanced processivity of DNA unwinding.

  20. Preparation and property of duplex Ni-B-TiO2/Ni nano-composite coatings

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Jen; Wang, Yuxin; Shu, Xin; Tay, Seeleng; Gao, Wei; Shakoor, R. A.; Kahraman, Ramazan

    2015-03-01

    The duplex Nickel-Boron-Titania/Nickel (Ni-B-TiO2/Ni) coatings were deposited on mild steel by using two baths with Ni as the inner layer. TiO2 nanoparticles were incorporated into the Ni-B coatings as the outer layer by using solid particle mixing method. The microstructure, morphology and corrosion resistance of the duplex Ni-B-TiO2/Ni nanocomposite coatings were systemically investigated. The results show that the duplex interface was uniform and the adhesion between two layers was very good. The microhardness of duplex Ni-B-TiO2/Ni coating was much higher than the Ni coating due to the outer layer of Ni-B-TiO2 coating. The corrosion resistance of the duplex Ni-B-TiO2/Ni coating was also significantly improved comparing with single Ni-B coating. The Ni-B-10 g/L TiO2/Ni coating was found to have the best corrosion resistance among these duplex coatings. This type of duplex Ni-B-TiO2/Ni coating, with high hardness and good corrosion resistance properties, should be able to find broad applications under adverse environmental conditions.

  1. Influence of two bulge loops on the stability of RNA duplexes.

    PubMed

    Crowther, Claire V; Jones, Laura E; Morelli, Jessica N; Mastrogiacomo, Eric M; Porterfield, Claire; Kent, Jessica L; Serra, Martin J

    2017-02-01

    Fifty-three RNA duplexes containing two single nucleotide bulge loops were optically melted in 1 M NaCl in order to determine the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each duplex. Because of the large number of possible combinations and lack of sequence effects observed previously, we limited our initial investigation to adenosine bulges, the most common naturally occurring bulge. For example, the following duplexes were investigated: 5'GGCAXYAGGC/3'CCG YX CCG, 5'GGCAXY GCC/3'CCG YXACGG, and 5'GGC XYAGCC/3'CCGAYX CGG. The identity of XY (where XY are Watson-Crick base pairs) and the total number of base pairs in the terminal and central stems were varied. As observed for duplexes with a single bulge loop, the effect of the two bulge loops on duplex stability is primarily influenced by non-nearest neighbor interactions. In particular, the stability of the stems influences the destabilization of the duplex by the inserted bulge loops. The model proposed to predict the influence of multiple bulge loops on duplex stability suggests that the destabilization of each bulge is related to the stability of the adjacent stems. A database of RNA secondary structures was examined to determine the naturally occurring abundance of duplexes containing multiple bulge loops. Of the 2000 examples found in the database, over 65% of the two bulge loops occur within 3 base pairs of each other. A database of RNA three-dimensional structures was examined to determine the structure of duplexes containing two single nucleotide bulge loops. The structures of the bulge loops are described.

  2. Interfacial Phenomena in Fe/Stainless Steel-TiC Systems and the Effect of Mo

    NASA Astrophysics Data System (ADS)

    Kiviö, Miia; Holappa, Lauri; Yoshikawa, Takeshi; Tanaka, Toshihiro

    2014-12-01

    Titanium carbide is used as reinforcement particles in composites due to its hardness, wear resistance and stability. This work is a part of the study in which titanium carbides are formed in stainless steel castings in the mold to improve the wear resistance of a certain surface of the casting. Such local reinforcement is a very potential method but it is a quite demanding task requiring profound knowledge of interfacial phenomena in the system, wettability, stability, dissolution and precipitation of new phases in production of these materials. Good wetting between different constituents in the material is a key factor to attain maximal positive effects. Mo is used with TiC or Ti(C,N) reinforcement in composites to improve wettability. In this work the effect of Mo on the phenomena in Fe/stainless steel-TiC systems was examined by wetting experiments between the substrate and the alloy. Wetting was not significantly improved by adding Mo to the systems. Core-rim type carbides as well as more homogenous carbide particles were observed. Overall the carbide particles are very complex regarding to their chemistry, size and shape which aspects have to be taken into account in the development of these materials and manufacturing processes.

  3. Precise carbon control of fabricated stainless steel

    DOEpatents

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  4. Stainless Steel to Titanium Bimetallic Transitions

    SciTech Connect

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  5. Hydrogen compatibility handbook for stainless steels

    SciTech Connect

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  6. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  7. Nucleic Acid Duplexes Incorporating a Dissociable Covalent Base Pair

    NASA Astrophysics Data System (ADS)

    Gao, Kui; Orgel, Leslie E.

    1999-12-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  8. Efficiency of coaxial stacking depends on the DNA duplex structure.

    PubMed

    Pyshnyi, Dmitrii V; Goldberg, Eugenii L; Ivanova, Eugenia M

    2003-12-01

    Thermodynamic parameters of coaxial stacking at complementary helix-helix interfaces GX*pYG/CZVC (X,Y=A,C,T,G;*-nick) created by contiguous oligonucleotide hybridization were determined. The data obtained were compared to the thermodynamic parameters of coaxial stacking at the interfaces CX*pYC/GZVG. Multiple linear regression analysis has revealed that the free-energy increments of interaction for the contacts GX*pYG/CZVC and CX*pYC/GZVG can be described by a set of uniform Delta G degrees(X*pY/ZV) values. The difference in the observed free-energy of the coaxial stacking between the two sets is defined by the contribution from the factors reflecting structural differences between compared DNA duplexes.

  9. Reduced-stringency DNA reassociation: sequence specific duplex formation.

    PubMed Central

    Burr, H E; Schimke, R T

    1982-01-01

    Reduced-stringency DNA reassociation conditions allow low stability duplexes to be detected in prokaryotic, plant, fish, avian, mammalian, and primate genomes. Highly diverged families of sequences can be detected in avian, mouse, and human unique sequence dNAs. Such a family has been described among twelve species of birds; based on species specific melting profiles and fractionation of sequences belonging to this family, it was concluded that permissive reassociation conditions did not artifactually produce low stability structures (1). We report S1 nuclease and optical melting experiments, and further fractionation of the diverged family to confirm sequence specific DNA reassociation at 50 degrees in 0.5 M phosphate buffer. PMID:6278429

  10. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  11. High Density Die Casting (HDDC): new frontiers in the manufacturing of heat sinks

    NASA Astrophysics Data System (ADS)

    Sce, Andrea; Caporale, Lorenzo

    2014-07-01

    Finding a good solution for thermal management problems is every day more complex. due to the power density and the required performances. When a solution suitable for high volumes is needed. die-casting and extrusion are the most convenient technologies. However designers have to face the well-known limitations for those processes. High Density Die Casting (HDDC) is a process under advanced development. in order to overcome the extrusion and traditional die casting limits by working with alloys having much better thermal performances than the traditional die-casting process. while keeping the advantages of a flexible 3D design and a low cost for high volumes. HDDC offers the opportunity to design combining different materials (aluminium and copper. aluminium and stainless steel) obtaining a structure with zero porosity and overcoming some of die-casting limits. as shown in this paper. A dedicated process involving embedded heat pipes is currently under development in order to offer the possibility to dramatically improve the heat spreading.

  12. An extremely stable, self-complementary hydrogen-bonded duplex

    SciTech Connect

    Zeng, Huang; Yang, Xiaowu; Brown, A L.; Martinovic, Suzana; Smith, Richard D.; Gong, Bing

    2003-07-30

    This paper describes the design, synthesis and characterization of a self-complementary six-H-bonded duplex with an association constant greater than 10{sup 9}/M in CHCl3. Numerous unnatural self-assembly systems have been developed in recent years. Most of these previously described systems are case-dependent, i.e., the individual components carry the information that defines only the formation of the specific assembly. An alternative approach involves the design of highly specific and highly stable recognition units (modules)that are compatible with a variety of structural components. Such recognition modules or ''molecular glues'' then direct the assembly of these structural components. In this regard,hydrogen-bonded complexes based on rigid heterocycles with multiple H-bonding donor (D) and acceptor (A) sites have received the most attention in recent years. Other complexes, most based on H-bonding interactions, have also been reported. Highly stable, self-complementary H-bonded complexes are particularly attractive for developing supramolecular homopolymers of very high molecular weights. In spite of the intriguing perspective, only a very small number of self-complementary H-bonded complexes with high stabilities are known. The best known examples involve two pairs of quadruply H-bonded, self-complementary complexes, both based on the AADD-DDAA array, and with association constants greater than 10{sup 7}/M. We report here the design and characterization of our first six-H-bonded, self-complementary duplex that contains the AADADD-DDADAA array.

  13. Duplex Doppler ultrasound study of the temporomandibular joint.

    PubMed

    Stagnitti, A; Marini, A; Impara, L; Drudi, F M; Lo Mele, L; Lillo Odoardi, G

    2012-06-01

    Sommario INTRODUZIONE: La fisiologia articolare dell’articolazione temporo-mandibolare (ATM) può essere esaminata sia dal punto di vista clinico che strumentale. La diagnostica per immagini ha da tempo contribuito con la risonanza magnetica (RM) e anche con la radiografia (Rx) e la tomografia computerizzata (TC) all’analisi della morfologia dei capi articolari e della cinetica condilare. L’esame duplex-ecodoppler è una metodica di largo impiego nello studio delle strutture in movimento in particolar modo a livello delle strutture del sistema vascolare. MATERIALI E METODI: È stata utilizzata un’apparecchiatura Toshiba APLIO SSA-770A, con l’uso di tecnica duplex-ecodoppler multi display, che consente la visualizzazione contemporanea dell’immagine ecografica e dei segnali Doppler utilizzando una sonda lineare del tipo phased array con cristalli trasduttori funzionanti ad una frequenza fondamentale di 6 MHz per gli spettri Doppler pulsati e 7.5 MHz per l’imaging ecografico. Sono stati esaminati nel Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo-patologiche dell’Università “Sapienza” di Roma, 30 pazienti del reparto di Ortognatodonzia dell’Istituto di Odontoiatria della stessa Università. RISULTATI: Nei pazienti normali si è ottenuta un’alternanza regolare degli spettri Doppler, mentre nei soggetti con disfunzioni del complesso condilo-meniscale, si è persa la regolarità della sommatoria degli spettri di Fourier, con altezze incostanti in relazione a spostamenti irregolari del complesso condilo-meniscale. CONCLUSIONI: L’esame ecodoppler si è dimostrato, in tutti i pazienti, capace di discriminare quelli normali dai patologici e tra questi ultimi ha permesso di identificare gli aspetti più significativi delle patologie disfunzionali.

  14. Copper-Nickel Cladding on Stainless Steel

    DTIC Science & Technology

    2005-07-01

    steel,. Monel (65Ni/35Cu) alloy consumables should be used as they can tolerate more iron dilution from the steel than the 70-30 copper-nickel alloy ...Cooper Alloys , 400 , K-500 Stainless Steel - Tyles 302, 304, 321, 347 N ickel 200 Silver Braze Alloys Nickel-Chromium Alloy 600 Nickel-Aluminum Bronze 70...cladding of austenitic stainless steels may also offer some ballistic, non-magnetic, and electromagnetic signature advantages over current hull alloys and

  15. Stainless Steels’ Resistance to Hydroerosion,

    DTIC Science & Technology

    1980-07-30

    Omel’chenko, engineer, S. L. Millichenko, A. G. Aleksandrov, Candidates of Technical Sciences Thanks to a high corrosion resistance stainless steels have...has great significance. The resistance to hydroerosion of several of the most common types of stainless steels which have roughly the same corrosion ...the failure is first localized in the ferrite phase and occurs by means of plastic deformation and the development of fatigue micro- cracks both

  16. Geometry of an outcrop-scale duplex in Devonian flysch, Maine

    USGS Publications Warehouse

    Bradley, D.C.; Bradley, L.M.

    1994-01-01

    We describe an outcrop-scale duplex consisting of 211 exposed repetitions of a single bed. The duplex marks an early Acadian (Middle Devonian) oblique thrust zone in the Lower Devonian flysch of northern Maine. Detailed mapping at a scale of 1:8 has enabled us to measure accurately parameters such as horse length and thickness, ramp angles and displacements; we compare these and derivative values with those of published descriptions of duplexes, and with theoretical models. Shortening estimates based on line balancing are consistently smaller than two methods of area balancing, suggesting that layer-parallel shortening preceded thrusting. ?? 1994.

  17. Low Frequency Phased Array Application for Crack Detection in Cast Austenitic Piping

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-10-01

    As part of a multi-year program funded by the United States Nuclear Regulatory Commission (US NRC) to address nondestructive examination (NDE) reliability of inservice inspection (ISI) programs, studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the US NRC on the utility, effec¬tiveness and reliability of ultrasonic testing (UT) as related to the ISI of primary piping components in US commercial nuclear power plants. This paper describes progress, recent developments and results from an assessment of a portion of the work relating to the ultrasonic low frequency phased array inspection technique. Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank vintage specimens having very coarse grains that are representative of early centrifugally cast piping installed in PWRs, were used for assessing the inspection method. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1.0 MHz and 500 kHz, providing composite volumetric images of the samples. Several dual, transmit-receive, custom designed low-frequency arrays were employed in laboratory trials. Results from laboratory studies for assessing detection, localization and length sizing effectiveness are discussed.

  18. The Effect of Casting Ring Liner Length and Prewetting on the Marginal Adaptation and Dimensional Accuracy of Full Crown Castings

    PubMed Central

    Haralur, Satheesh B.; Hamdi, Osama A.; Al-Shahrani, Abdulaziz A.; Alhasaniah, Sultan

    2017-01-01

    Aim: To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. Materials and Methods: The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups (n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. Results: The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. Conclusion: The dry cellulose ring liners provided better marginal

  19. Casting Using A Polystyrene Pattern

    NASA Technical Reports Server (NTRS)

    Vasquez, Peter; Guenther, Bengamin; Vranas, Thomas; Veneris, Peter; Joyner, Michael

    1993-01-01

    New technique for making metal aircraft models saves significant amount of time and effort in comparison with conventional lost-wax method. Produces inexpensive, effective wind-tunnel models. Metal wind-tunnel model cast by use of polystyrene pattern.

  20. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    SciTech Connect

    Zaid, Md; Bhattacharjee, P.P.

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. The microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the (001

  1. Natural clinoptilolite composite membranes on tubular stainless steel supports for water softening.

    PubMed

    Adamaref, Solmaz; An, Weizhu; Jarligo, Maria Ophelia; Kuznicki, Tetyana; Kuznicki, Steven M

    2014-01-01

    Disk membranes generated from high-purity natural clinoptilolite mineral rock have shown promising water desalination and de-oiling performance. In order to scale up production of these types of membranes for industrial wastewater treatment applications, a coating strategy was devised. A composite mixture of natural clinoptilolite from St. Cloud (Winston, NM, USA) and aluminum phosphate was deposited on the inner surface of porous stainless steel tubes by the slip casting technique. The commercial porous stainless steel tubes were pre-coated with a TiO2 layer of about 10 μm. Phase composition and morphology of the coating materials were investigated using X-ray diffraction and scanning electron microscopy. Water softening performance of the fabricated membranes was evaluated using Edmonton (Alberta, Canada) municipal tap water as feed source. Preliminary experimental results show a high water flux of 7.7 kg/(m(2) h) and 75% reduction of hardness and conductivity in a once-through membrane process at 95 °C and feed pressure of 780 kPa. These results show that natural zeolite coated, stainless steel tubular membranes have high potential for large-scale purification of oil sands steam-assisted gravity drainage water at high temperature and pressure requirements.

  2. Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: synthesis, characterization, and properties.

    PubMed

    Ignatova, Milena; Voccia, Samule; Gabriel, Sabine; Gilbert, Bernard; Cossement, Damien; Jerome, Robert; Jerome, Christine

    2009-01-20

    Two strategies were used for the preparation of hyperbranched polymer brushes with a high density of functional groups: (a) the cathodic electrografting of stainless steel by poly[2-(2-chloropropionate)ethyl acrylate] [poly(cPEA)], which was used as a macroinitiator for the atom transfer radical polymerization of an inimer, 2-(2-bromopropionate)ethyl acrylate in the presence or absence of heptadecafluorodecyl acrylate, (b) the grafting of preformed hyperbranched poly(ethyleneimine) onto poly(N-succinimidyl acrylate) previously electrografted onto stainless steel. The hyperbranched polymer, which contained either bromides or amines, was quaternized because the accordingly formed quaternary ammonium or pyridinium groups are known for antibacterial properties. The structure, chemical composition, and morphology of the quaternized and nonquaternized hyperbranched polymer brushes were characterized by ATR-FTIR reflectance, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The peeling test confirmed that the grafted hyperbranched polymer films adhered much more strongly to stainless steel than the nongrafted solvent-cast films. The quaternized hyperbranched polymer brushes were more effective in preventing both protein adsorption and bacterial adhesion than quaternary ammonium containing poly(cPEA) primary films, more likely because of the higher hydrophilicity and density of cationic groups.

  3. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1974-09-01

    t^ ~cMnrc.pVbU of evaluating rheocasting as tell as more conventional casting techniques has been designed and is presently under construction...construction. The immediate objective of this machine is to study rheocasting and conventional casting with respect to .processing and properties. The...used in small, bottom-pour ladles. The stirring required by the Rheocasting proce- dures is to be accomplished by the paddle assembly shown in Figure

  4. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1976-08-01

    high- lights of the earlier reports and much detail about Rheocast - ing and the casting of aluminum containing superalloys by Hitchiner’s patented...Augmented Hipo-v Procer-s EVALUATION OF RHEOCASTING WITH TFT: CTA PROCESS fU.S. Pat. 3,863,706) . Introduction to Rheocasting ... Rheocasting ...Drawing of suspension Bomb Lug. 13 Apparatus used to CLA pour Rheocast aluminum. 14 collection of parts cast by CLA process in semi- solid 35 5 aluminum

  5. Evaluation of pitting corrosion resistance of high-alloyed stainless steels welds for FGD plants in Korea

    SciTech Connect

    Baek, K.K.; Sung, H.J.; Im, C.S.; Hong, I.P.; Kim, D.K.

    1998-12-31

    For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively. For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.

  6. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    SciTech Connect

    Kuyucak, Selcuk; Li, Delin

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using

  7. Machine Casting of Ferrous Alloys

    DTIC Science & Technology

    1974-02-01

    Austenitic stainless steel weld fabri- cation. Conventional induction melting coils with special support construction for mounting and bottom pour...mmmmmmmmmmmm 1 . ^ I ^ L ■41- (3) contd. There are several companies that manufacture Al^O-j mixed graphite. We examined one sample from Vesuvius

  8. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  9. Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints.

    PubMed

    Mazauric, Serge; Hébert, Mathieu; Simonot, Lionel; Fournel, Thierry

    2014-12-01

    We introduce a model allowing convenient calculation of the spectral reflectance and transmittance of duplex prints. It is based on flux transfer matrices and enables retrieving classical Kubelka-Munk formulas, as well as extended formulas for nonsymmetric layers. By making different assumptions on the flux transfers, we obtain two predictive models for the duplex halftone prints: the "duplex Clapper-Yule model," which is an extension of the classical Clapper-Yule model, and the "duplex primary reflectance-transmittance model." The two models can be calibrated from either reflectance or transmittance measurements; only the second model can be calibrated from both measurements, thus giving optimal accuracy for both reflectance and transmittance predictions. The conceptual differences between the two models are deeply analyzed, as well as their advantages and drawbacks in terms of calibration. According to the test carried out in this study with paper printed in inkjet, their predictive performances are good provided appropriate calibration options are selected.

  10. Rapid method to detect duplex formation in sequencing by hybridization methods

    DOEpatents

    Mirzabekov, A.D.; Timofeev, E.N.; Florentiev, V.L.; Kirillov, E.V.

    1999-01-19

    A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided. A plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex. Each duplex facilitates intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface and exposing the light-sensitive fluid to a light pattern. This causes the fluid exposed to the light to coalesce into discrete units and adhere to the surface. This places each of the units in contact with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units. 13 figs.

  11. Effects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex

    PubMed Central

    Ueda, Yu-mi; Zouzumi, Yu-ki; Maruyama, Atsushi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke

    2016-01-01

    Abstract We systematically investigated effects of molecular crowding with trimethylamine N-oxide (TMAO) as a zwitterionic and protective osmolyte and urea as a nonionic denaturing osmolyte on conformation and thermodynamics of the canonical DNA duplex and the non-canonical DNA G-quadruplex. It was found that TMAO and urea stabilized and destabilized, respectively, the G-quadruplex. On the other hand, these osmolytes generally destabilize the duplex; however, it was observed that osmolytes having the trimethylamine group stabilized the duplex at the lower concentrations because of a direct binding to a groove of the duplex. These results are useful not only to predict DNA structures and their thermodynamics under physiological environments in living cells, but also design of polymers and materials to regulate structure and stability of DNA sequences. PMID:27933115

  12. Structural basis for duplex RNA recognition and cleavage by Archaeoglobus fulgidus C3PO

    PubMed Central

    Parizotto, Eneida A; Lowe, Edward D; Parker, James S

    2013-01-01

    Oligomeric complexes of Trax and Translin proteins, known as C3POs, participate in a variety of eukaryotic nucleic acid metabolism pathways including RNAi and tRNA processing. In RNAi in humans and Drosophila, C3PO activates pre-RISC by removing the passenger strand of the siRNA precursor duplex using nuclease activity present in Trax. It is not known how C3POs engage with nucleic acid substrates. Here we identify a single protein from Archaeoglobus fulgidus that assembles into an octamer with striking similarity to human C3PO. The structure in complex with duplex RNA reveals that the octamer entirely encapsulates a single thirteen base-pair RNA duplex inside a large inner cavity. Trax-like subunit catalytic sites target opposite strands of the duplex for cleavage, separated by seven base pairs. The structure provides insight into the mechanism of RNA recognition and cleavage by an archaeal C3PO-like complex. PMID:23353787

  13. View of 501 8th St., a sidegable duplex bungalow with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of 501 8th St., a side-gable duplex bungalow with engaged porch and paired and clustered columns. Built as worker housing for Lanett Cotton Mill - 501 Eighth Street (House), 501 Eighth Street, Lanett, Chambers County, AL

  14. Microstructure and Properties of SAE 2205 Stainless Steel After Salt Bath Nitrocarburizing at 450 °C

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Wang, Jun; Lin, Yuanhua; Gu, Tan; Zeng, Dezhi; Huang, Runbo; Ji, Xiong; Fan, Hongyuan

    2014-04-01

    Nitrocarburizing of the type SAE 2205 duplex stainless steel was conducted at 450 °C, using a type of salt bath chemical surface treatment, and the microstructure and properties of the nitrided surface were systematically researched. Experimental results revealed that a modified layer transformed on the surface of samples with the thickness ranging from 3 to 28 μm changed with the treatment time. After 2205 duplex stainless steel was subjected to salt bath nitriding at 450 °C for time less than 8 h, the preexisting ferrite zone in the surface transformed into austenite by active nitrogen diffusion. The main phase of the nitrided layer was the expanded austenite. When the treatment time was extended to 16 h, the preexisting ferrite zone in the expanded austenite was decomposed and transformed partially into ɛ-nitride precipitate. When the treatment time extended to 40 h, the preexisting ferrite zone in the expanded austenite was transformed into ɛ-nitride and CrN precipitate. Further, a large amount of nitride precipitated from preexisting austenite zone. The nitrided layer depth thickness changed intensively with the increasing nitriding time. The growth of the nitride layer takes place mainly by nitrogen diffusion according to the expected parabolic rate law. The salt bath nitriding can effectively improve the surface hardness. The maximum values measured from the treated surface are observed to be approximately 1400 HV0.1 after 8 h, which is about 3.5 times as hard as the untreated material (396 HV0.1). Low-temperature nitriding can improve the erosion/corrosion resistance. After nitriding for 4 h, the sample has the best corrosion resistance.

  15. Solidification and solid state transformations of austenitic stainless steel welds

    SciTech Connect

    Brooks, J A; Williams, J C; Thompson, A W

    1982-05-01

    The microstructure of austenitic stainless steel welds can contain a large variety of ferrite morphologies. It was originally thought that many of these morphologies were direct products of solidification. Subsequently, detailed work on castings suggested the structures can solidify either as ferrite or austenite. However, when solidification occurs by ferrite, a large fraction of the ferrite transforms to austenite during cooling via a diffusion controlled transformation. It was also shown by Arata et al that welds in a 304L alloy solidified 70-80% as primary ferrite, a large fraction of which also transformed to austenite upon cooling. More recently it was suggested that the cooling rates in welds were sufficiently high that diffusionless transformations were responsible for several commonly observed ferrite morphologies. However, other workers have suggested that even in welds, delta ..-->.. ..gamma.. transformations are diffusion controlled. A variety of ferrite morphologies have more recently been characterized by Moisio and coworkers and by David. The purpose of this paper is to provide further understanding of the evaluation of the various weld microstructures which are related to both the solidification behavior and the subsequent solid state transformations. To accomplish this, both TEM and STEM (Scanning Transmission Electron Microscopy) techniques were employed.

  16. Low Temperature Surface Carburization of Stainless Steels

    SciTech Connect

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  17. High-strength stainless steels for corrosion mitigation in prestressed concrete: Development and evaluation

    NASA Astrophysics Data System (ADS)

    Moser, Robert D.

    Corrosion of prestressing reinforcement in concrete structures exposed to marine environments and/or deicing chemicals is a problem of critical concern. While many corrosion mitigation technologies are available for reinforced concrete (RC), those available for use in prestressed concrete (PSC) are limited and in many cases cannot provide the 100+ year service life needed in new construction, particularly when exposed to severe marine environments. The use of stainless steel alloys in RC structures has shown great success in mitigating corrosion in even the most severe of exposures. However, the use of high-strength stainless steels (HSSSs) for corrosion mitigation in PSC structures has received limited attention. To address these deficiencies in knowledge, an experimental study was conducted to investigate the feasibility of using HSSSs for corrosion mitigation in PSC. The study examined mechanical behavior, corrosion resistance, and techniques for the production of HSSS prestressing strands. Stainless steel grades 304, 316, 2101, 2205, 2304, and 17-7 were produced as cold drawn wires with diameters of approximately 4 mm (0.16 in). A 1080 prestressing steel was also included to serve as a control. Tensile strengths of 1250 to 1550 MPa (181 to 225 ksi) were achieved in the cold-drawn candidate HSSSs. Non-ductile failure modes with no post-yield strain hardening were observed in all candidate HSSSs. 1000 hr stress relaxation of all candidate HSSSs was predicted to be between 6 and 8 % based on the results of 200 hr tests conducted at 70 % of the ultimate tensile strength. Residual stresses due to the cold drawing had a significant influence on stress vs. strain behavior and stress relaxation. Electrochemical corrosion testing found that in solutions simulating alkaline concrete, all candidate HSSSs showed exceptional corrosion resistance at chloride (Cl-) concentrations from zero to 0.25 M. However, when exposed to solutions simulating carbonated concrete, corrosion

  18. Titan Casts Revealing Shadow

    NASA Astrophysics Data System (ADS)

    2004-05-01

    A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in

  19. Fillability of Thin-Wall Steel Castings

    SciTech Connect

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  20. Heat Capacity Changes Associated with DNA Duplex Formation: Salt- and Sequence-Dependent Effects†

    PubMed Central

    Mikulecky, Peter J.; Feig, Andrew L.

    2008-01-01

    Duplexes are the most fundamental elements of nucleic acid folding. Although it has become increasingly clear that duplex formation can be associated with a significant change in heat capacity (ΔCp), this parameter is typically overlooked in thermodynamic studies of nucleic acid folding. Analogy to protein folding suggests that base stacking events coupled to duplex formation should give rise to a ΔCp due to the release of waters solvating aromatic surfaces of nucleotide bases. In previous work, we showed that the ΔCp observed by isothermal titration calorimetry (ITC) for RNA duplex formation depended on salt and sequence. In the present work, we apply calorimetric and spectroscopic techniques to a series of designed DNA duplexes to demonstrate that both the salt dependence and sequence dependence of ΔCps observed by ITC reflect perturbations to the same fundamental phenomenon: stacking in the single-stranded state. By measuring the thermodynamics of single strand melting, one can accurately predict the ΔCps observed for duplex formation by ITC at high and low ionic strength. We discuss our results in light of the larger issue of contributions to ΔCp from coupled equilibria and conclude that observed ΔCps can be useful indicators of intermediate states in nucleic acid folding phenomena. PMID:16401089

  1. Thermal stability and energetics of 15-mer DNA duplex interstrand crosslinked by trans-diamminedichloroplatinum(II).

    PubMed

    Hofr, Ctirad; Brabec, Viktor

    2005-03-01

    The effect of the location of the interstrand cross-link formed by trans-diamminedichloroplatinum(II) (transplatin) on the thermal stability and energetics of 15-mer DNA duplex has been investigated. The duplex containing single, site-specific cross-link, thermodynamically equivalent model structures (hairpins) and nonmodified duplexes were characterized by differential scanning calorimetry, temperature-dependent uv absorption, and circular dichroism. The results demonstrate that the formation of the interstrand cross-link of transplatin does not affect pronouncedly thermodynamic stability of DNA: the cross-link induces no marked changes not only in enthalpy, but also in "reduced" (concentration independent) monomolecular transition entropy. These results are consistent with the previous observations that interstrand cross-links of transplatin structurally perturb DNA only to a relatively small extent. On the other hand, constraining the duplex with the interstrand cross-link of transplatin results in a significant increase in thermal stability that is primarily due to entropic effects: the cross-link reduces the molecularity of the oligomer system from bimolecular to monomolecular. Importantly, the position of the interstrand cross-link within the duplex modulates cooperativity of the melting transition of the duplex and consequently its thermal stability.

  2. Thermodynamic Consequences of the Hyperoxidized Guanine Lesion Guanidinohydantoin in Duplex DNA

    PubMed Central

    Yennie, Craig J.; Delaney, Sarah

    2012-01-01

    Guanidinohydantoin (Gh) is a hyperoxidized DNA lesion produced by oxidation of 8-oxo-7,8-dihydroguanine (8-oxoG). Previous work has shown that Gh is potently mutagenic both in vitro and in vivo coding for G → T and G → C transversion mutations. In this work, analysis by circular dichroism shows that the Gh lesion does not significantly alter the global structure of a 15-mer duplex, and that the DNA remains in the B-form. However, we find that Gh causes a large decrease in the thermal stability, decreasing the duplex melting temperature by ~ 17 °C relative to an unmodified duplex control. Using optical melting analysis and differential scanning calorimetry the thermodynamic parameters describing duplex melting were also determined. We find that the Gh lesion causes a dramatic decrease in the enthalpic stability of the duplex. This enthalpic destabilization is somewhat tempered by entropic stabilization yet Gh results in an overall decrease in thermodynamic stability of the duplex relative to a control which lacks DNA damage, with a ΔΔG° of −7 kcal/mol. These results contribute to our understanding of the consequences of hyperoxidation of G and provide insight into how the thermal and thermodynamic destabilization caused by Gh may influence replication and/or repair of the lesion. PMID:22780843

  3. Duplex ultrasound in the assessment of peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Aly, Sayed A. A. F.

    Arteriography plays a central role in the assessment of peripheral arterial disease. Arteriography is associated with the risk of damage to the artery, peripheral embolisation, hazards of intra-arterial injection and exposure to ionising radiation. Arteriography provides an anatomical assessment of arterial stenosis but does not measure the functional results of the stenosis. Modern high resolution ultrasound imaging technology enables non-invasive assessment of vascular diseases and allows functional assessment of blood flow. This investigation is of proven value in studying carotid disease. The aim of the study was to determine the accuracy of duplex ultrasonography (DUS) in assessment of lower limb arterial disease in comparison with arteriography (IA DSA). A technical comparison has been made between the description of arterial lesion as indicated by DUS and IA DSA. In addition, the sensitivity of DUS in assessing multisegmental arterial disease has been determined. The clinical decision has been investigated in a further study in which five surgeons were asked to determine patient management based on IA DSA and DUS data in the same patient group. Concordance between management strategies was assessed. DUS was used as the primary method of investigation in further series of patients. Criteria were established to determine which patients would require angiography. The computer-assisted image analysis was used to study the ultrasound images of arterial stenosis and a method of analysing such images objectively was established. Two studies have been included in this section. These assess the technical accuracy of ultrasound image analysis compared with histological examination of plaque. The reproducibility of the image analysis has also been tested. I have developed a classification for peripheral arterial disease to be used to facilitate the communication between vascular laboratory staff who perform the duplex ultrasonography and surgeons who use this

  4. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique

    SciTech Connect

    Das, N. Sengupta, P.; Abraham, G.; Arya, A.; Kain, V.; Dey, G.K.

    2016-08-15

    Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloy optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.

  5. Ion-nitriding of austenitic stainless steels

    SciTech Connect

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-12-31

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors.

  6. Effect of superheat on the solidification structures of AISI 310S austenitic stainless steel

    SciTech Connect

    Ozbayraktar, S.; Koursaris, A.

    1996-04-01

    An experimental study was carried out to investigate the evolution of macrostructure and microstructure in AISI 310S stainless steel during solidification. Experimental findings suggested that the macrostructure a/nd the microstructure of the cast material responded differently to variations in casting temperature. As the casting temperature decreased, the macrostructure was refined, as expected, but the microstructure coarsened. A relationship was established between the proportion of equiaxed zone and superheat as follows: pct equiaxed zone = a + b ln (1/{Delta}T), where a and b are constants. The relationship between grain width and superheat could be expressed by the equation: gw = e(c+d/{Delta}T), where c and d are constants determined by the distance from the edge of the ingot. The relationship between primary arm spacing and superheat could be expressed by the equation: {lambda}{sub 1} = p + q ln (1/{Delta}T), where p and q are constants determined by the distance from the edge of the ingot. The parameter grain width ratio has been introduced to describe the relationship between the shape and the nucleation and growth kinetics of the columnar grains.

  7. Power-Aware Asynchronous Peer-to-Peer Duplex Communication System Based on Multiple-Valued One-Phase Signaling

    NASA Astrophysics Data System (ADS)

    Mizusawa, Kazuyasu; Onizawa, Naoya; Hanyu, Takahiro

    This paper presents a design of an asynchronous peer-to-peer half-duplex/full-duplex-selectable data-transfer system on-chip interconnected. The data-transfer method between channels is based on a 1-phase signaling scheme realized by using multiple-valued current-mode (MVCM) circuits and encoding, which performs high-speed communication. A data transmission is selectable by adding a mode-detection circuit that observes data-transmission modes; full-duplex, half duplex and standby modes. Especially, since current sources are completely cut off during the standby mode, the power dissipation can be greatly reduced. Moreover, both half-duplex and full-duplex communication can be realized by sharing a common circuit except a signal-level conversion circuit. The proposed interface is implemented using 0.18-μm CMOS, and its performance improvement is discussed in comparison with those of the other ordinary asynchronous methods.

  8. Energy Consumption of Die Casting Operations

    SciTech Connect

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  9. Morphological castes in a vertebrate

    PubMed Central

    O'Riain, M. J.; Jarvis, J. U. M.; Alexander, R.; Buffenstein, R.; Peeters, C.

    2000-01-01

    Morphological specialization for a specific role has, until now, been assumed to be restricted to social invertebrates. Herein we show that complete physical dimorphism has evolved between reproductives and helpers in the eusocial naked mole-rat. Dimorphism is a consequence of the lumbar vertebrae lengthening after the onset of reproduction in females. This is the only known example of morphological castes in a vertebrate and is distinct from continuous size variation between breeders and helpers in other species of cooperatively breeding vertebrates. The evolution of castes in a mammal and insects represents a striking example of convergent evolution for enhanced fecundity in societies characterized by high reproductive skew. Similarities in the selective environment between naked mole-rats and eusocial insect species highlight the selective conditions under which queen/worker castes are predicted to evolve in animal societies. PMID:11087866

  10. Centrifugal slip casting of components

    SciTech Connect

    Steinlage, G.A.; Roeder, R.K.; Trumble, K.P.; Bowman, K.J.

    1996-05-01

    Research in layered and functionally gradient materials has emerged because of the increasing demand for high-performance engineering materials. Many techniques have been used to produce layered and functionally gradient components. Common examples include thermal spray processing, powder processing, chemical and physical vapor deposition, high-temperature or combustion synthesis, diffusion treatments, microwave processing and infiltration. Of these techniques, powder processing routes offer excellent microstructural control and product quality, and they are capable of producing large components. Centrifugal slip casting is a powder-processing technique combining the effects of slip casting and centrifugation. In slip casting, consolidation takes place as fluid is removed by the porous mold. Particles within the slip move with the suspending fluid until reaching the mold wall, at which point they are consolidated. In centrifugation, particles within the slip move through the fluid at a rate dependent upon the gravitational force and particle drag.

  11. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    PubMed

    Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  12. Reaction-diffusion processes and metapopulation models on duplex networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong

    2013-03-01

    Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.

  13. Diagnosing erectile dysfunction: the penile dynamic colour duplex ultrasound revisited.

    PubMed

    Aversa, A; Bruzziches, R; Spera, G

    2005-12-01

    A number of disease processes of the penis including Peyronie's disease, priapism, penile fractures and tumors are clearly visualized with ultrasound. Diagnostic evaluation of erectile dysfunction (ED) by penile dynamic colour-duplex Doppler ultrasonography (D-CDDU) is actually considered a second level approach to ED patients because of the fact that intracavernous injections test IV with prostaglandin-E(1) may provide important information about the patients' erectile capacity. However, no direct vascular imaging and a high percentage of false negative diagnoses of vasculogenic ED are its major pitfalls and subsequent treatment decisions remain quite limited. The occurrence of ED and its sentinel relationship to cardiovascular disease has prompted more accurate vascular screening in all patients even in the absence of cardiovascular risk factors. The sonographic evaluation of the intima-media thickness of the carotid arteries may sometimes represent an early manifestation of diffuse atherosclerotic disease and endothelial damage. This latter finding is often the cause of failure to oral agents, i.e. phosphodiesterase inhibitors, because of inability of the dysfunctional endothelium to release nitric oxide. D-CDDU represents an accurate tool to investigate cavernous artery inflow and venous leakage when compared with more invasive diagnostic techniques i.e. selective arteriography and dynamic infusion cavernosometry along with cavernosography.

  14. Beamforming Based Full-Duplex for Millimeter-Wave Communication.

    PubMed

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-07-21

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors.

  15. Beamforming Based Full-Duplex for Millimeter-Wave Communication

    PubMed Central

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  16. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  17. INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON PIPE BEING CENTRIFUGALLY CAST, AS OPERATOR WATCHES TO ENSURE QUALITY. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  18. Casting propellant in rocket engine

    NASA Technical Reports Server (NTRS)

    Roach, J. E.; Froehling, S. C. (Inventor)

    1976-01-01

    A method is described for casting a solid propellant in the casing of a rocket engine having a continuous wall with a single opening which is formed by leaves of a material which melt at a temperature of the propellant and with curved edges concentric to the curvature of the spherical casing. The leaves are inserted into the spherical casing through the opening forming a core having a greater width than the width of the single opening and with curved peripheral edges. The cast propellant forms a solid mass and then heated to melt the leaves and provide a central opening with radial projecting flutes.

  19. Phased Array Ultrasonic Sound Field Mapping in Cast Austenitic Stainless Steel

    SciTech Connect

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.; Anderson, Michael T.

    2014-05-31

    This study maps the phased array-generated acoustic sound fields through three types of CASS microstructure in four specimens to quantitatively assess the beam formation effectiveness in these materials.

  20. Casting behavior of titanium alloys in a centrifugal casting machine.

    PubMed

    Watanabe, K; Miyakawa, O; Takada, Y; Okuno, O; Okabe, T

    2003-05-01

    Since dental casting requires replication of complex shapes with great accuracy, this study examined how well some commercial titanium alloys and experimental titanium-copper alloys filled a mold cavity. The metals examined were three types of commercial dental titanium [commercially pure titanium (hereinafter noted as CP-Ti), Ti-6Al-4V (T64) and Ti-6Al-7Nb (T67)], and experimental titanium-copper alloys [3%, 5% and 10% Cu (mass %)]. The volume percentage filling the cavity was evaluated in castings prepared in a very thin perforated sheet pattern and cast in a centrifugal casting machine. The flow behavior of the molten metal was also examined using a so-called "tracer element technique." The amounts of CP-Ti and all the Ti-Cu alloys filling the cavity were similar; less T64 and T67 filled the cavity. However, the Ti-Cu alloys failed to reach the end of the cavities due to a lower fluidity compared to the other metals. A mold prepared with specially designed perforated sheets was effective at differentiating the flow behavior of the metals tested. The present technique also revealed that the more viscous Ti-Cu alloys with a wide freezing range failed to sequentially flow to the end of the cavity.