Science.gov

Sample records for cast iron cylinder

  1. Cast iron-base alloy for cylinder/regenerator housing

    NASA Technical Reports Server (NTRS)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  2. Induction hardening treatment and simulation for a grey cast iron used in engine cylinder liners

    NASA Astrophysics Data System (ADS)

    Castellanos-Leal, E. L.; Miranda, D. A.; Coy, A. E.; Barrero, J. G.; González, J. A.; Vesga Rueda, O. P.

    2017-01-01

    In this research, a technical study of induction hardening in a grey cast iron used in engine cylinder liners manufactured by LAVCO Ltda., a Colombian foundry company, was carried out. Metallurgical parameters such as austenitization temperature, cooling rate, and quenching severity were determined. These factors are exclusively dependent on chemical composition and initial microstructure of grey cast iron. Simulations of induction heating through finite elements method were performed and, the most appropriate experimental conditions to achieve the critical transformation temperature was evaluated to reach a proper surface hardening on the piece. Preliminary results revealed an excellent approximation between simulation and heating test performed with a full bridge inverter voltage adapted with local technology.

  3. Short-duration gas nitriding of cast-iron cylinder block liners

    NASA Astrophysics Data System (ADS)

    Goryushin, V. V.; Glushchenko, V. N.; Duka, N. E.; Kondrashova, G. A.

    1984-07-01

    After gas nitriding of cylinder block liners for the ZIL-130 engine made of cast iron SCh24-44 at 750-570°C for 4-6 h in a mixture of 50% ammonia +50% natural gas the thickness of the nitrided layer is 0.2-0.25 mm with a carbonitride phase thickness of 15-25 μm with a microhardness of H 850-920.

  4. Low Cycle Fatigue Behavior of HT250 Gray Cast Iron for Engine Cylinder Blocks

    NASA Astrophysics Data System (ADS)

    Fan, K. L.; He, G. Q.; She, M.; Liu, X. S.; Yang, Y.; Lu, Q.; shen, Y.; Tian, D. D.

    2014-08-01

    The strain-controlled low cycle fatigue properties were evaluated on specimens of HT250 gray cast iron (GCI) at room temperature. The material exhibited cyclic stabilization at a low strain amplitude of 0.1% and cyclic softening characteristic at higher strain amplitudes (0.15-0.30%). At a representative total strain amplitude (0.30%), the hysteresis loops of HT250 GCI were asymmetric with a large amount of plastic deformation in the compressive phases. Furthermore, the hysteresis loop became larger in both width and height with increasing total strain amplitude (from 0.10 to 0.30%), and tended to exhibit a clockwise rotation. The fatigue crack propagation mechanisms were different at various total strain amplitudes, where high stress concentration due to dislocation pile-up favored fatigue crack initiation in the examined HT250. Finally, the roughness-induced crack closure was a key to determine the crack growth rate as well as fatigue life.

  5. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  6. Cast Fe-base cylinder/regenerator housing alloy

    NASA Technical Reports Server (NTRS)

    Larson, F.; Kindlimann, L.

    1980-01-01

    The development of an iron-base alloy that can meet the requirements of automotive Stirling engine cylinders and regenerator housings is described. Alloy requirements are as follows: a cast alloy, stress for 5000-hr rupture life of 200 MPa (29 ksi) at 775 C (1427 F), oxidation/corrosion resistance comparable to that of N-155, compatibility with hydrogen, and an alloy cost less than or equal to that of 19-9DL. The preliminary screening and evaluation of ten alloys are described.

  7. Ceramic port shields cast in an iron engine head

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.; Groeneweg, Mark A.

    1989-01-01

    Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.

  8. Corrosive wear of cast iron under reciprocating lubrication

    SciTech Connect

    Yahagi, Y.; Nagasawa, Y.; Hotta, S.; Mizutani, Y.

    1986-01-01

    In order to study the wear of cylinder bore fundamentally, a reciprocating friction tester was produced and utilized. The friction between a cast iron and a piston-ring and the wear of the cast iron were examined under the corrosive oil with sulphuric acid. The findings indicate that the friction and wear around TDC and BDC was confirmed to be greater than between these reversal points and the friction and wear around the reversal points increased with the sulphuric acid which has caused the deficiency of oil film and the corrosion of the cast iron.

  9. Graphite Formation in Cast Iron

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  10. Directional Solidification of Nodular Cast Iron

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1987-01-01

    Cerium enhances formation of graphite nodules. Preliminary experiments in directional solidification of cast iron shows quantitative correlation of graphite microstructure with growth rate and thermal gradient, with sufficient spheroidizing element to form spheroidal graphite under proper thermal conditions. Experimental approach enables use of directional solidification to study solidification of spheriodal-graphite cast iron in low gravity. Possible to form new structural materials from nodular cast iron.

  11. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    SciTech Connect

    Lombardi, A.; D'Elia, F.; Ravindran, C.; MacKay, R.

    2014-01-15

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy casting retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.

  12. INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND A 4' DUCTILE IRON PIPE BEING CENTRIFUGALLY CAST, AS OPERATOR WATCHES TO ENSURE QUALITY. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  13. INTERIOR VIEW WITH CASTING MACHINE COOLING A 20' IRON PIPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE COOLING A 20' IRON PIPE PRIOR TO EXTRACTION FROM CASTING MACHINE. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  14. Restoring Functional Areas of Continuously Casted Cylinders

    NASA Astrophysics Data System (ADS)

    Brezinová, Janette; Balog, Peter; Viňáš, Ján

    2012-12-01

    the paper proposes the fourth restoration of a roller in continuous casting production lines which can enhance production efficiency and lowers costs. The roller was forged from the material 24CrMoV55 - DIN 17240. The roller has been restored three times and is chosen for further restoration. The roller was restored by submerged arc welding (SAW) where the first layer was made from UP-5-200-CZ wire and the covering layers made from UP-5-45-CZ wire. Quality of the weld deposits were evaluated by measuring the hardness, mixing the weld with basic material and by setting the basic mechanical properties in the critical under-weld deposit area. Structures of the weld deposits were evaluated by light microscopy and their chemical composition was determined by EDX analysis. Based on experiments it can be concluded that rollers can be restored for the fourth time, but the limiting factor is the extent of damage.

  15. Complexometric determination of magnesium in nodular cast iron and alloyed cast iron roll samples.

    PubMed

    Banerjee, S; Dutta, R K

    1980-02-01

    A complexometric method for the determination of magnesium in nodular cast iron, alloyed cast iron and roll samples has been developed. The bulk of the iron is removed by ether extraction and the phosphate as zirconium phosphate. The other elements are removed by extraction with dithiocarbamate into chloroform. Magnesium is then titrated with EDTA at pH 10, with Eriochrome Black T as indicator. Calcium interferes, but is very rarely present in such cast iron samples.

  16. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  17. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  18. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  19. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  20. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  1. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  2. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  3. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  4. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  5. 49 CFR 192.275 - Cast iron pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  6. 35. South entrance house portal, caretaker's house cupola, cast iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. South entrance house portal, caretaker's house cupola, cast iron balustrade, cast iron fence (Graff Memorial), wrought iron fence - Fairmount Waterworks, East bank of Schuylkill River, Aquarium Drive, Philadelphia, Philadelphia County, PA

  7. Carburizer Effect on Cast Iron Solidification

    NASA Astrophysics Data System (ADS)

    Janerka, Krzysztof; Kondracki, Marcin; Jezierski, Jan; Szajnar, Jan; Stawarz, Marcin

    2014-06-01

    This paper presents the effect of carburizing materials on cast iron solidification and crystallization. The studies consisted of cast iron preparation from steel scrap and different carburizers. For a comparison, pig iron was exclusively used in a solid charge. Crystallization analysis revealed the influence of the carburizer material on the crystallization curves as well as differences in the solidification paths of cast iron prepared with the use of different charge materials. The carburizers' influence on undercooling during the eutectic crystallization process was analyzed. The lowest undercooling rate was recorded for the melt with pig iron, then for synthetic graphite, natural graphite, anthracite, and petroleum coke (the highest undercooling rate). So a hypothesis was formulated that eutectic cells are created most effectively with the presence of carbon from pig iron (the highest nucleation potential), and then for the graphite materials (crystallographic similarity with the carbon precipitation in the cast iron). The most difficult eutectic crystallization is for anthracite and petroleum coke (higher undercooling is necessary). This knowledge can be crucial when the foundry plant is going to change the solid charge composition replacing the pig iron by steel scrap and the recarburization process.

  8. Superplasticity in Rapidly Solidified White Cast Irons

    NASA Astrophysics Data System (ADS)

    Ruano, Oscar A.; Eiselstein, Lawrence E.; Sherby, Oleg D.

    1982-10-01

    Superplastic properties of three different composition white cast irons were investigated in the temperature range of 630 to 725 °C. Fine structures consisting of 1 to 2 μm ferrite grains were developed in these materials by consolidation of rapidly solidified powders at intermediate temperatures below the A1 critical temperature. Tensile elongations of 1410 pct were found for a 3.0 pct C + 1.5 pct Cr white cast iron, 940 pct for a 3.0 pct C white cast iron, and 480 pct for a 2.4 pct C white cast iron when tested at 700 °C and at a strain rate of 1 pct per minute. The superplastic white cast irons exhibited a high strain rate sensitivity exponent, m, of 0.5 and activation energies for plastic flow were found to be nearly equal to the activation energy for grain boundary self-diffusion in iron. These observations are in agreement with the creep behavior of superplastic materials controlled by grain boundary diffusion.

  9. Salt Bath Oxinitriding of Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Teimouri, M.; Aliofkhazraee, M.; Mousavi Khoee, S. M.

    Salt bath oxinitriding is a duplex surface treatment developed to improve tribological and corrosion properties of ferrous materials. In this research, gray cast iron samples were nitrided at the temperature range of 480°C-580°C, and then oxidized in an oxidative salt bath. The phase composition of surface layer was identified by X-ray diffraction. Using a microhardness tester, hardness of nitrided gray cast iron was measured. Corrosion behavior of treated (nitrided and oxinitrided) samples was evaluated using potentiodynamic polarization technique in 3.5% NaCl solution. XRD analyses indicate that the surface layer in nitrided and oxinitrided samples is composed of ɛ-iron nitride (Fe2-3N) and magnetite (Fe3O4), respectively. Results show that the corrosion resistance of gray cast iron can be improved up to 170%.

  10. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  11. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  12. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  13. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  14. 46 CFR 56.60-10 - Cast iron and malleable iron.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Cast iron and malleable iron. 56.60-10 Section 56.60-10... APPURTENANCES Materials § 56.60-10 Cast iron and malleable iron. (a) The low ductility of cast iron and malleable iron should be recognized and the use of these metals where shock loading may occur should be...

  15. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  16. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  17. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  18. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  19. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  20. On the damping capacity of cast irons

    NASA Astrophysics Data System (ADS)

    Golovin, S. A.

    2012-07-01

    The treatment of experimental data on the amplitude-dependent internal friction (ADIF) in terms of various theoretical models has revealed a staged character and the main mechanisms of the processes of energy dissipation in graphite with increasing amplitude of vibrations upon cyclic loading. It is shown that the level of the damping capacity of lamellar cast iron depends on the relationship between the elastic and strength characteristics of graphite and the matrix phase. In cast irons with a rigid matrix structure (pearlite, martensite), the energy dissipation is determined by the volume fraction and morphology of the initial graphite phase. In cast irons with a softer metallic phase (ferrite), the contact interaction of graphite inclusions with the matrix and the properties of the matrix introduce additional sources of high damping.

  1. Repair welding of cast iron coated electrodes

    NASA Astrophysics Data System (ADS)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  2. 46 CFR 153.239 - Use of cast iron.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Use of cast iron. 153.239 Section 153.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Systems § 153.239 Use of cast iron. (a) Cast iron used in a cargo containment system must meet the...

  3. 46 CFR 153.239 - Use of cast iron.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Use of cast iron. 153.239 Section 153.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Systems § 153.239 Use of cast iron. (a) Cast iron used in a cargo containment system must meet the...

  4. 46 CFR 153.239 - Use of cast iron.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Use of cast iron. 153.239 Section 153.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Systems § 153.239 Use of cast iron. (a) Cast iron used in a cargo containment system must meet the...

  5. 46 CFR 153.239 - Use of cast iron.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Use of cast iron. 153.239 Section 153.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Systems § 153.239 Use of cast iron. (a) Cast iron used in a cargo containment system must meet the...

  6. 46 CFR 153.239 - Use of cast iron.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Use of cast iron. 153.239 Section 153.239 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK... Systems § 153.239 Use of cast iron. (a) Cast iron used in a cargo containment system must meet the...

  7. Compacted graphite iron: Cast iron makes a comeback

    NASA Astrophysics Data System (ADS)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  8. Graphite formation in cast iron, phase 2

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Fiske, M. R.

    1985-01-01

    Several types of cast irons are directionally solidified aboard the KC-135 aircraft. Also, control samples are run on Earth for comparison. Some of these samples are unusable because of various mechanical problems; the analysis and the interpretation of results on the samples that are run successfully is discussed.

  9. Modeling microstructure development in gray cast irons

    NASA Astrophysics Data System (ADS)

    Goettsch, David D.; Dantzig, Jonathan A.

    1994-05-01

    Recent years have seen increasing use of solidification process modeling as a tool to aid in the analysis and elimination of manufacturing defects in castings. Grain size and other microstructural features such as second-phase morphology and distribution are the primary factors in determining the mechanical properties in cast metals. In this work, a representation of nucleation and growth kinetics for gray cast irons, based on a statistical description of the microstructure, has been coupled with a commercial finite-element method code for transient heat-flow calculation to determine microstructure. Features predicted include eutectic cell size, fractions of gray and white iron, graphite morphology, percent pearlite, percent ferrite, and pearlite spacing. The predicted microstructure can then be used to determine the strength and fatigue properties using published correlations. The theoretical development and results of the finite-elementbased model will be discussed and compared with experimental results.

  10. Briquettes with nanostructured materials used to modify of cast iron

    NASA Astrophysics Data System (ADS)

    Znamenskii, L. G.; Ivochkina, O. V.; Varlamov, A. S.; Petrova, N. I.

    2016-05-01

    A method is developed to fabricate briquettes with nanostructured materials aimed at modification of cast iron resulting in the improvement of the physicochemical properties of cast iron and its castings. This improvement is achieved by grain refinement, stable modification, the elimination of pyroelectric effect upon modification, and a decrease in the sensitivity to chilling upon melt solidification.

  11. Thin Wall Cast Iron: Phase II

    SciTech Connect

    Doru M. Stefanescu

    2005-07-21

    The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

  12. Seal welded cast iron nuclear waste container

    DOEpatents

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  13. 49 CFR 192.755 - Protecting cast-iron pipelines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Protecting cast-iron pipelines. 192.755 Section 192.755 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS...-iron pipelines. When an operator has knowledge that the support for a segment of a buried cast-iron...

  14. 49 CFR 192.755 - Protecting cast-iron pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Protecting cast-iron pipelines. 192.755 Section 192.755 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS...-iron pipelines. When an operator has knowledge that the support for a segment of a buried cast-iron...

  15. 49 CFR 192.755 - Protecting cast-iron pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Protecting cast-iron pipelines. 192.755 Section 192.755 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS...-iron pipelines. When an operator has knowledge that the support for a segment of a buried cast-iron...

  16. 49 CFR 192.755 - Protecting cast-iron pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protecting cast-iron pipelines. 192.755 Section 192.755 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS...-iron pipelines. When an operator has knowledge that the support for a segment of a buried cast-iron...

  17. 49 CFR 192.755 - Protecting cast-iron pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Protecting cast-iron pipelines. 192.755 Section 192.755 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS...-iron pipelines. When an operator has knowledge that the support for a segment of a buried cast-iron...

  18. 19. Inside the cast house at Furnace A. Molten iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Inside the cast house at Furnace A. Molten iron flowed into eight ladles. The furnace was cast (or tapped) six times each day. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  19. Structural features of atomized white cast iron powder

    NASA Astrophysics Data System (ADS)

    Gulyaev, A. P.; Astakhov, S. I.

    1991-01-01

    White cast iron powder rapidly quenched from the liquid condition with presence of the same phases and structural components differs markedly in structure from normally cast white iron. With an increase in cooling rate vcool during solidification the amount of eutectic decreases. However, with an increase in carbon content this tendency is weakened and with 3.9% the structure of powder cast iron is almost entirely of eutectic.

  20. 10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF CAST IRON COLUMN BASE ON FIRST FLOOR STOREFRONT, SHOWING MANUFACTURER'S STAMP: IOWA IRON WOKS CO. DUBUQUE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA

  1. DETAIL VIEW OF BASE OF CAST IRON TOWER SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BASE OF CAST IRON TOWER SHOWING THE FABRICATING MARK OF STARBUCK IRON WORKS, TROY, NY - Bidwell Bar Suspension Bridge & Stone Toll House, Near Lake Oroville (moved from fork of Feather River), Oroville, Butte County, CA

  2. AERIAL VIEW OF MC WANE CAST IRON PIPE, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF MC WANE CAST IRON PIPE, LOOKING WEST TO BIRMINGHAM CITY CENTER. I-20-59 RUNNING DIAGONALLY FROM RIGHT MIDDLE GROUND. L&N RAILROAD TRACKS IN FOREGROUND. - McWane Cast Iron Pipe, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  3. Directional solidification of white cast iron

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Verhoeven, J. D.

    1996-08-01

    Several studies of the ledeburite eutectic (Fe-Fe3C), in pure Fe-C alloys have shown that it has a lamellar morphology under plane front growth conditions. The structure of ledeburite in white cast irons, Fe-C-Si, consists of a rod morphology. It is generally not possible to produce plane front growth of Fe-C-Si eutectic alloys in the Fe-Fe3C form, because at the slow growth rates required for plane front growth, the Fe3C phase is replaced by graphite. By using small additions of Te, the growth of graphite was suppressed, and the plane front growth of the ledeburite eutectic in Fe-C-Si alloys was carried out with Si levels up to 1 wt pct. It was found that the growth morphology became a faceted rod morphology at 1 wt pct Si, but in contrast to the usual rod morphology of white cast irons, the rod phase was Fe3C rather than iron. It was shown that the usual rod morphology only forms at the sides of the two-phase cellular or dendritic growth fronts in Fe-C-Si alloys. Possible reasons for the inability of plane front directional solidification to produce the usual rod morphology in Fe-C-Si alloys are discussed. Also, data are presented on the spacing of the lamellar eutectic in pure Fe-C ledeburite, which indicates that this system does not follow the usual λ2 V = constant relation of regular eutectics.

  4. Spall behavior of cast iron with varying microstructures

    SciTech Connect

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-21

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94–1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  5. Spall behavior of cast iron with varying microstructures

    NASA Astrophysics Data System (ADS)

    Plume, Gifford; Rousseau, Carl-Ernst

    2014-07-01

    The spall strength of cast iron with varying microstructures has been investigated using plate impact at moderate speed. Stress history measurements were made with manganin stress gauges embedded between the back face of the specimen and a low impedance polycarbonate backing. Five separate cast irons were tested. Four of these consisted of gray cast iron with graphite in flake form, with three classified as Type VII A2 and the fourth containing a bimodal distribution of Types VII A4 and VII D8. The fifth casting consisted of ductile cast iron with graphite in nodular form, classified as Type I, size class 5. The spall strength for the Type VII A2 gray cast irons varied between 40 and 370 MPa, and that of the additional gray cast iron, between 410 and 490 MPa. The spall strength of the ductile cast iron fell within the range of 0.94-1.2 GPa. It is shown that the spall strength is linked to the damage level at the spall plane, where an increased level of tensile stress is required to generate higher levels of damage. Post mortem analysis was performed on the recovered samples, revealing the graphite phase to be the primary factor governing the spall fracture of cast irons, where crack nucleation is directly correlated to the debonding of graphite from the metal matrix. The average length of graphite found within a casting is linked to the material's strength, where strength increases as a function of decreasing length. The morphology and mean free path of graphite precipitates further govern the subsequent coalescence of initiated cracks to form a complete fracture plane. In cases where graphite spacing is large, increased energy level is required to complete the fracture process. A secondary factor governing the spall fracture of cast irons has also been linked to the microstructure of the metal matrix, with pearlite yielding higher spall strengths than free ferrite.

  6. Acoustic energy transmission in cast iron pipelines

    NASA Astrophysics Data System (ADS)

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  7. Obtaining of High Cr Content Cast Iron Materials

    NASA Astrophysics Data System (ADS)

    Florea, C.; Bejinariu, C.; Carcea, I.; Cimpoesu, N.; Chicet, D. L.; Savin, C.

    2017-06-01

    We have obtained, through the classic casting process, 3 highly chromium-based experimental alloys proposed for replacing the FC 250 classical cast iron in braking applications. Casting was carried out in an induction furnace and cast into moulds made of KALHARTZ 8500 resin casting mixture and HARTER hardener at SC RanCon SRL Iasi. It is known that the microstructure of the cast iron is a combination of martensite with a small amount of residual austenite after the heat treatment of the ingot. In the case of high-alloy chromium alloys, the performance of the material is due to the presence of M7C3 carbides distributed in the iron matrix Resistance to machining and deformation is based on alloy composition and microstructure, while abrasion resistance will depend on properties and wear conditions.

  8. A Hypothesis for Cast Iron Microstructures

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2009-12-01

    The various microstructures of cast irons are reviewed, including carbidic and graphite forms (flake, compacted, spheroidal, and undercooled, etc.), exploring whether the presence of externally introduced defects in the form of oxide double films (bifilms) in suspension in melts seem to provide, for the first time, a uniform explanation for all the structures and their properties. Silica-rich oxide bifilms provide the substrates on which oxysulfide particles form, nucleating graphite. The presence of the film provides the favored substrate over which graphite grows, which leads to the development of flake graphite. The addition of limited Mg to form compacted graphite destroys all but a remnant of the silica-rich bifilms. The oxide film remnant is stabilized by the presence of the graphite nucleus, which causes the graphite to grow unidirectionally in a filamentary form. The addition of excess Mg destroys all traces of the oxide bifilms, leaving only the original nuclei, around which graphite is now free to entirely enclose, initiating the spherical growth mode. Undercooled graphite is the true coupled growth form, nucleated at even lower temperatures in the absence of favorable film substrates in suspension; the graphite adopts a continuous growth mode in a matrix of austenite. Carbides in mottled and white irons form on the oxide bifilms that often lie along grain and interdendritic boundaries, which explains the apparent brittleness of these strong, hard phases. In most cases of nonspheroidal growth modes (flake and misshaped spheroids), it is proposed that the impairment of the mechanical properties of irons is not strongly determined by graphite morphology but by the presence of oxide bifilms. Spheroidal graphite iron has the potential for high properties because of the absence of bifilms.

  9. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... Customer Meters, Service Regulators, and Service Lines § 192.369 Service lines: Connections to cast iron or...

  10. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... Customer Meters, Service Regulators, and Service Lines § 192.369 Service lines: Connections to cast iron or...

  11. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... Customer Meters, Service Regulators, and Service Lines § 192.369 Service lines: Connections to cast iron or...

  12. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... Customer Meters, Service Regulators, and Service Lines § 192.369 Service lines: Connections to cast iron or...

  13. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... Customer Meters, Service Regulators, and Service Lines § 192.369 Service lines: Connections to cast iron or...

  14. Materials processing threshold report: 2. Use of low gravity for cast iron process development

    NASA Technical Reports Server (NTRS)

    Frankhouser, W. L.

    1980-01-01

    Potential applications of a low gravity environment of interest to the commercial producers of cast iron were assessed to determine whether low gravity conditions offer potential opportunities to producers for improving cast iron properties and expanding the use of cast irons. The assessment is limited to the gray and nodular types of iron, however, the findings are applicable to all cast irons. The potential advantages accrued through low gravity experiments with cast irons are described.

  15. High-strength cast irons used for manufacturing parts of vaz passenger cars

    NASA Astrophysics Data System (ADS)

    Kitaigora, N. I.

    1996-10-01

    Methods for solving problems arising in the production of high-strength cast iron with stable properties and structure are considered. Results of introduction of new grades of high-strength cast iron instead of malleable cast iron and camshaft cast iron in the Volzhskii Automobile Plant are described.

  16. 4. DETAIL OF CAST AND WROUGHT IRON RAILING WITH SUPPORTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF CAST AND WROUGHT IRON RAILING WITH SUPPORTING STRUCTURES AND STEEL BEAM, FROM THE NORTH BANK LOOKING SOUTHEAST AT THE WEST (UPSTREAM) SIDE - Railroad Avenue Bridge, Spanning Mispillion River on Church Street, Milford, Sussex County, DE

  17. 25. Detail of cast iron lamp post base with fluted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Detail of cast iron lamp post base with fluted wooded post at top, located at north end of bridge. VIEW NORTHEAST - Chelsea Street Bridge & Draw Tender's House, Spanning Chelsea River, Boston, Suffolk County, MA

  18. 11. DETAIL OF CAST IRON DOOR OF LAST SURVIVING FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL OF CAST IRON DOOR OF LAST SURVIVING FURNACE IN SOUTHWEST CORNER OF BARN ON GROUND FLOOR. - James W. Seavey Hop Driers, 0.6 mile East from junction of Highway 99 & Alexander Avenue, Corvallis, Benton County, OR

  19. 3. FOURTH FLOOR OF OIL HOUSE (NOTICE CAST IRON SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FOURTH FLOOR OF OIL HOUSE (NOTICE CAST IRON SUPPORT POSTS AND OIL PRESS IN THE CENTER) - Wilson's Oil House, Lard Refinery, & Edible Fats Factory, Oil House, 2801 Southwest Fifteenth Street, Oklahoma City, Oklahoma County, OK

  20. Structure and properties of wear-resistant white cast irons

    NASA Astrophysics Data System (ADS)

    Gol'dshtein, Ya. E.; Khismatullina, N. S.; Gol'dshtein, V. A.; Mosina, V. I.

    1986-08-01

    The favorable combined effect of vanadium and chromium on the wear resistance of white cast iron is manifested when their contents are 2...6 and 0...12%, respectively. In this case, the optimal vanadium content in cast iron operating under complex conditions of shock and bending loads can be determined from the equation % V=3+1/3 (% Cr) for a chromium content of not more than 12%.

  1. Surface hardening of two cast irons by friction stir processing

    NASA Astrophysics Data System (ADS)

    Fujii, Hidetoshi; Yamaguchi, Yasufumi; Kikuchi, Toshifumi; Kiguchi, Shoji; Nogi, Kiyoshi

    2009-05-01

    The Friction Stir Processing (FSP) was applied to the surface hardening of cast irons. Flake graphite cast iron (FC300) and nodular graphite cast iron (FCD700) were used to investigate the validity of this method. The matrices of the FC300 and FC700 cast irons are pearlite. The rotary tool is a 25mm diameter cylindrical tool, and the travelling speed was varied between 50 and 150mm/min in order to control the heat input at the constant rotation speed of 900rpm. As a result, it has been clarified that a Vickers hardness of about 700HV is obtained for both cast irons. It is considered that a very fine martensite structure is formed because the FSP generates the heat very locally, and a very high cooling rate is constantly obtained. When a tool without an umbo (probe) is used, the domain in which graphite is crushed and striated is minimized. This leads to obtaining a much harder sample. The hardness change depends on the size of the martensite, which can be controlled by the process conditions, such as the tool traveling speed and the load. Based on these results, it was clarified that the FSP has many advantages for cast irons, such as a higher hardness and lower distortion. As a result, no post surface heat treatment and no post machining are required to obtain the required hardness, while these processes are generally required when using the traditional methods.

  2. Grinding of cast iron with wheels made of superhard materials

    NASA Astrophysics Data System (ADS)

    Korz, N. J.

    Optimum grinding conditions for cast iron with wheels made of superhard materials were determined. Type PP 250 x 10 wheels made of metallized and non metallized diamond and various brands of CBN with 125/100 grains at 100 % concentration on metellic M0 16 and organic B1 type bonds were used. Type KZ 25 CMIK 5 wheels of the same size were investigated for purposes of comparison. The experimental samples, 80 and 230 mm in diameter made from grey cast iron (HB 178), alloy cast iron (HB 200), high strength cast iron (HB 207), chilled cast iron (HB 460) and hardened cast iron (HCR 52-55), were ground on a 3 B 12 cylindrical grinder at cutting speeds of 35 m/sec, a workpiece velocity of 54 m/min and a longitudinal feed of 0,5 - 2,0 m/min. The crossfeed ranges rom 0,005 to 0,4 mm/sec. The cutting fluid was an aqueous solution of calcium carbonate supplied at 3 to 5 l/min.

  3. Thermophysical Properties of Thin Walled Compacted Graphite Iron Castings

    NASA Astrophysics Data System (ADS)

    Górny, Marcin; Lelito, Janusz; Kawalec, Magdalena

    The thermal conductivity, diffusivity and specific heat were investigated in thin walled compacted graphite iron castings. The research was conducted for thin-walled iron castings with a 3-mm wall thickness. This study addresses the effect of cooling rate and of titanium additions on the exhibited microstructure and thermophysical parameters of thin-walled compacted graphite iron (TWCI) castings as determined by changing the molding media (silica sand and insulating sand LDASC), and Ferro Titanium. The tested material represents the occurrence of graphite in the shape of nodules, flakes (C and D types) and compacted graphite with a different shape factor and percent nodularity. Thermophysical parameters have been evaluated by the laser flash technique in a temperature range of 22-600°C. The results show that the cooling rates together with the titanium content largely influence the microstructure, graphite morphology and finally thermophysical properties of thin walled castings.

  4. 1. EXTERIOR VIEW, LOOKING WEST, OF CAST IRON FENCE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW, LOOKING WEST, OF CAST IRON FENCE AND MARBLE MONUMENTS IN THIS GRAVE PLOT IN THE COLUMBIANA CEMETERY WHICH DATE TO 1864. IRON WORK MANUFACTURED AT SHELBY IRONWORKS FOR IRONMASTER'S FIRST WIFE AND DAUGHTER'S GRAVES. - Ware Cemetery Plot, Shelby County Road 25, Columbiana, Shelby County, AL

  5. 75 FR 70900 - Certain Iron Construction Castings From Brazil, Canada, and the People's Republic of China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... International Trade Administration Certain Iron Construction Castings From Brazil, Canada, and the People's... certain iron construction castings (``castings'') from Brazil, Canada, and the People's Republic of China... were the orders to be revoked. See Certain Iron Construction Castings From Brazil, Canada, and the...

  6. Thermal conductivity of cast iron: Models and analysis of experiments

    NASA Astrophysics Data System (ADS)

    Helsing, Johan; Grimvall, Göran

    1991-08-01

    Cast iron can be viewed as a composite material. We use effective medium and other theories for the overall conductivity of a composite, expressed in the conductivities, the volume fractions, and the morphology of the constituent phases, to model the thermal conductivity of grey and white cast iron and some iron alloys. The electronic and the vibrational contributions to the conductivities of the microconstituents (alloyed ferrite, cementite, pearlite, graphite) are discussed, with consideration of the various scattering mechanisms. Our model gives a good account of measured thermal conductivities at 300 K. It is easily extended to describe the thermal conductivity of other materials characterized by having several constituent phases of varying chemical composition.

  7. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... CATEGORY Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron basis...

  8. 75 FR 67395 - Iron Construction Castings From Brazil, Canada, and China; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... COMMISSION [Investigation Nos. 701-TA-249 and 731-TA-262, 263, and 265 (Third Review)] Iron Construction... countervailing duty order on heavy iron construction castings from Brazil, the antidumping duty order on heavy iron construction castings from Canada, and the antidumping duty orders on iron construction castings...

  9. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron basis...

  10. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron basis...

  11. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... CATEGORY Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron basis...

  12. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... iron basis material subcategory. 466.20 Section 466.20 Protection of Environment ENVIRONMENTAL... CATEGORY Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron basis...

  13. Formation of microstructures in the spheroidal graphite cast iron

    NASA Astrophysics Data System (ADS)

    Wang, S.; Daloz, D.; Bruneseaux, F.; Lesoult, G.

    2012-01-01

    Pipeline systems for hydraulic networks are obtained via centrifugal casting of spheroidal graphite cast iron. The very high cooling rate that is achieved in the skin of the product can sometimes lead to carbide instead of graphite in cast iron. An experimental device has been built in the laboratory that allows reproducing the extreme thermal conditions encountered during formation of skin of centrifugally cast pipes. Liquid metal droplets fall on a cold substrate. Rapid directional solidification occurs. The temperature evolution of the lower surface of the droplet is recorded during the very first moment of the solidification (t < 200 ms) thanks to a photodiode, which is located below the substrate. The microstructures that are obtained in laboratory are characterised in both the as-cast state and the heat-treated state. They are compared to the centrifugally cast ones. A model of directional solidification of cast iron under a very large temperature gradient has been built. It allows explaining the transition from stable to metastable micro structure that was observed in the products and reproduced in the laboratory samples.

  14. Iron/Phosphorus Alloys for Continuous Casting

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.

    1986-01-01

    Continuous casting becomes practicable because of reduced eutectic temperature. Experimental ferrous alloy has melting point about 350 degrees C lower than conventional steels, making possible to cast structural members and eliminating need for hot rolling. Product has normal metal structure and good physical properties. Process used to make rails, beams, slabs, channels, and pipes.

  15. Iron/Phosphorus Alloys for Continuous Casting

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.

    1986-01-01

    Continuous casting becomes practicable because of reduced eutectic temperature. Experimental ferrous alloy has melting point about 350 degrees C lower than conventional steels, making possible to cast structural members and eliminating need for hot rolling. Product has normal metal structure and good physical properties. Process used to make rails, beams, slabs, channels, and pipes.

  16. Composite Materials Processing of Cast Iron and Ceramics Using Compo-Casting Technology

    NASA Astrophysics Data System (ADS)

    Tomita, Yoshihiro; Sumimoto, Haruyoshi

    The compo-casting technology of ceramics and cast iron is expected to be one of the major casting technologies that can expand the application fields of cast iron. This technique allows the heat energy of the molten metal to be utilized to produce cast iron products which are added with functions of ceramic materials. The largest problem in compo-casting technology is generation of cracks caused by thermal shock. Although this crack generation can be prevented by reducing the thermal stress by means of preheating ceramics, the necessary preheating temperature is considerably high and its precise controlling is difficult at the practical foundry working sites. In this study, we tried to numerically predict the critical preheating temperature of ceramics using the thermal stress analysis in unsteady heat transfer and the Newman's diagram, and found that the preheating of ceramics to reduce thermal stress could be substituted with placing an appropriate cast iron cover around the ceramics. Excellent results were obtained by using a method whereby a ceramic bar was covered with a flake graphite cast iron cover and fixed in a sand mold and then molten metal was poured. Then, two or three ceramics were examined at the same time under the compocasting condition. As a result, three specimens could be done at the same time by adjusting the cover space to 15mm. Moreover, irregular shape ceramics were examined under the compocasting condition. As a result, the compocasting could be done by devising the cover shape. In each condition, it was confirmed that the cover shape made from the analytical result was effective to the compocasting by doing the thermometry of the specimens.

  17. [Growth characteristics and control of iron bacteria on cast iron in drinking water distribution systems].

    PubMed

    Wang, Yang; Zhang, Xiao-Jian; Chen, Yu-Qiao; Lu, Pin-Pin; Chen, Chao

    2009-11-01

    This study investigated the growth characteristics of iron bacteria on cast iron and relationship between suspended and attached iron bacteria. The steady-state growth of iron bacteria would need 12 d and iron bacteria level in effluents increased 1 lg. Hydraulics influence on iron bacteria level and detachment rate of steady-state attached iron bacteria was not significant. But it could affect the time of attached iron bacteria on cast-iron coupons reaching to steady state. When the chlorine residual was 0.3 mg/L, the iron bacteria growth could be controlled effectively and suspended and attached iron bacteria levels both decreased 1 lg. When the chlorine residual was more than 1.0 mg/L, it could not inactivate the iron bacteria of internal corrosion scale yet. There was little effect on inhibiting the iron bacteria growth that the chlorine residual was 0.05 mg/L in drinking water quality standard of China. The iron bacteria on coupons reached to steady state without disinfectant and then increased the chlorine residual to 1.25 mg/L, the attached iron bacteria level could decrease 2 lg to 3 lg. Under steady-state, the suspended iron bacteria levels were linearly dependent on the attached iron bacteria. The control of iron bacteria in drinking water distribution systems was advanced: maintaining the chlorine residual (0.3 mg/L), flushing the pipeline with high dosage disinfectant, adopting corrosion-resistant pipe materials and renovating the old pipe loop.

  18. Engineered Cooling Process for High Strength Ductile Iron Castings

    NASA Astrophysics Data System (ADS)

    Lekakh, Simon N.; Mikhailov, Anthony; Kramer, Joseph

    Professor Stefanescu contributed fundamentally to the science of solidification and microstructural evolutions in ductile irons. In this article, the possibility of development of high strength ductile iron by applying an engineered cooling process after casting early shake out from the sand mold was explored. The structures in industrial ductile iron were experimentally simulated using a computer controlled heating/cooling device. CFD modeling was used for process simulation and an experimental bench scale system was developed. The process concept was experimentally verified by producing cast plates with 25 mm wall thickness. The tensile strength was increased from 550 MPa to 1000 MPa in as-cast condition without the need for alloying and heat treatment. The possible practical applications were discussed.

  19. Heat treatment in high Cr white cast iron Nb alloy

    NASA Astrophysics Data System (ADS)

    Farah, A. F.; Crnkovic, O. R.; Canale, L. C. F.

    2001-02-01

    Wear resistance of high Cr white cast irons can be improved by means of heat treatment. This type of cast iron alloy may present a microstructure with retained austenite. The amount of retained austenite changes with the applied heat treatment, which will have an influence on wear properties. The purpose of this work was to study the influence of several parameters such as quenching and tempering temperatures and subzero treatment in the wear performance of the high Cr white cast iron Nb alloy. In this way, the performance was evaluated using pin-on-disc abrasion test. The worn surface was examined by scanning electron microscopy, and the main wear mechanisms were identified. The microstructural characterization was also performed with carbide identification. This Fe alloy has proven to be good for applications in mining and alcohol-sugar industries.

  20. Detonation velocity of melt-cast ADN and ADN/nano-diamond cylinders

    NASA Astrophysics Data System (ADS)

    Doherty, R. M.; Forbes, J. W.; Lawrence, G. W.; Deiter, J. S.; Baker, R. N.; Ashwell, K. D.; Sutherland, G. T.

    2000-04-01

    Detonation velocities of confined cylinders of melt-cast ADN/ZnO (99.5/0.5 by weight), ADN/nano-diamond/ZnO (92.4/7.2/0.4), ADN/AN/ZnO (95.5/4.0/0.5) and ADN/AN/ZnO/nano-diamond (88.0/4.5/0.5/7.0) have been measured using a streak camera. Velocities ranging between 3.9 and 4.5 mm/μs were obtained for 1.3 cm diameter samples confined by steel and a 2.5 cm diameter ADN/AN/ZnO cylinder. In one of the samples the detonation was failing as it proceeded through the charge. For the other shots reported, the shock velocities appeared to be steady through the last half of the charge, though the lengths were too short for any definitive statement about the failure diameter to be made.

  1. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS Requirements for Corrosion Control § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion...

  2. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS Requirements for Corrosion Control § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion...

  3. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... STANDARDS Requirements for Corrosion Control § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting...

  4. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... STANDARDS Requirements for Corrosion Control § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting...

  5. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... STANDARDS Requirements for Corrosion Control § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting...

  6. 75 FR 54596 - Final Results of Expedited Sunset Review: Heavy Iron Construction Castings from Brazil

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... International Trade Administration Final Results of Expedited Sunset Review: Heavy Iron Construction Castings... of the countervailing duty order (``CVD'') on heavy iron construction castings from Brazil pursuant... review of the CVD order on iron construction castings from Brazil pursuant to section 751(c) of the Act...

  7. 25. "CAST IRON HOWE TRUSS CARRYING PENNA STATE HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. "CAST IRON HOWE TRUSS - CARRYING PENNA STATE HIGHWAY ROUTE #83 OVER READING CO. TRACKS - SOUTH OF READING, PENNA, Dwg. #6 - Sht. #1", dated November 20, 1956, shows partial side elevation of bridge truss, beginning at end post - Reading-Halls Station Bridge, U.S. Route 220, spanning railroad near Halls Station, Muncy, Lycoming County, PA

  8. 16. DETAIL OF WICKET AND CAST IRON BALL JOINT (off ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF WICKET AND CAST IRON BALL JOINT (off site) - Bald Eagle Cross-Cut Canal Lock, North of Water Street along West Branch of Susquehanna River South bank, 500 feet East of Jay Street Bridge, Lock Haven, Clinton County, PA

  9. Carbide Transformations in Tempering of Complexly Alloyed White Cast Iron

    NASA Astrophysics Data System (ADS)

    Vdovin, K. N.; Gorlenko, D. A.; Zavalishchin, A. N.

    2015-07-01

    Variation of the chemical composition of all phases and structural components (metallic matrix, eutectic and secondary carbides) in complexly alloyed cast iron is studied after crystallization and different variants of tempering. It is shown that several groups of secondary carbides may be distinguished according to their morphology and chemical composition.

  10. 146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP STANDARD. THIS AND OTHER LAMP STANDARDS WERE REMOVED FROM THE LAMP COLUMNS ON THE PARAPET WALLS DURING WORLD WAR II AND STORED INSIDE THE DAM (January 1991) - Coolidge Dam, Gila River, Peridot, Gila County, AZ

  11. 9. INTERIOR, DETAIL OF RETARDING CONVEYOR, SHOWING CAST IRON BUTTONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR, DETAIL OF RETARDING CONVEYOR, SHOWING CAST IRON BUTTONS AND STEEL ROPE IN UPPER TROUGH IN CONVEYOR HOUSE, LOOKING NORTH; NOTE STEEL PLATES LINING WOODEN TROUGH - Nuttallburg Mine Complex, Tipple, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV

  12. Development of volume deposition on cast iron by additive manufacturing

    SciTech Connect

    Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.; Babu, Suresh S.

    2016-11-10

    ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition technique to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.

  13. Quenching of cast iron with a high copper content

    NASA Astrophysics Data System (ADS)

    Stepanova, Natalia; Bataev, Anatoly; Razumakov, Aleksey

    2015-10-01

    The structure, hardness, and microhardness of hypoeutectic white cast iron alloyed with copper after quenching at 1000 and 1120°C is studied. Features of cupric inclusion separation are detected and its size distribution is shown. After quenching the structure consists of martensite, residual austenite, and vermicular graphite. A decrease in the size and volume fraction of globular cupric inclusions is detected, along with the complete dissolution of nanoscale cupric inclusions, which are located in the ferrite of pearlite colonies. The result of these structural changes is a 30% increase in iron hardness. Cast iron quenching at 1120° C is followed by an increase in the austenite volume fraction to 69%. This effect is due to a decrease in the volume fraction of graphite and a corresponding increase in the carbon content in γ-Fe. Cupric inclusions are located mainly along boundaries of austenitic grains.

  14. Effect of carbon content on friction and wear of cast irons

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Friction and wear experiments were conducted with cast irons and wrought steels containing various amounts of carbon in the alloy structure in contact with 52100 steel. Gray cast irons were found to exhibit lower friction and wear characteristics than white cast irons. Further, gray cast iron wear was more sensitive to carbon content than was white. Wear with gray cast iron was linearly related to load, and friction was found to be sensitive to relative humidity and carbon content. The form, in which the carbon is present in the alloy, is more important, as the carbon content and no strong relationship seems to exist between hardness of these ferrous alloys and wear.

  15. End-Quenching Test as a Means for Assessing the Hardenability of Cast Iron

    NASA Astrophysics Data System (ADS)

    Gliner, R. E.; Vybornov, V. V.

    2016-07-01

    A method of assessment of cooling rates in quenching of iron, which involves a standard end-quenching test, is applied to castings of VCh50 iron. The approach is shown to be effective for quenching of cast iron with pearlitic metallic matrix, for solving various technological problems and developing chemical compositions of ductile irons.

  16. Graphitic corrosion -- Don`t forget about buried cast iron pipes

    SciTech Connect

    Freeman, S.R.

    1999-08-01

    Graphitic corrosion is a form of de-alloying or selective leaching that occurs in cast iron material. This corrosion mechanism is unique to gray cast irons and is caused by the graphitic matrix present. The graphite is cathodic to the iron matrix. Exposure to an electrolyte results in leaching of the iron matrix, leaving behind a porous mass of graphite flakes. Graphite corrosion often occurs in buried gray cast iron pipes, although exposure to an aqueous environment is all that is necessary for the de-alloying to occur. The process of de-alloying in cast iron typically is long-term, taking several years to occur. In fact, many cases of graphitic corrosion-caused failure in cast iron piping occur in piping that has been in service for 50 years or more. Mechanical testing to determine the tensile strength of cast iron can provide information regarding the remaining strength of the pipe.

  17. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part II: Mechanical and thermal properties

    DOE PAGES

    Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres; ...

    2017-03-08

    The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systemsmore » (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.« less

  18. Growth of Ferrite Needles in Compacted Graphite Cast Iron

    SciTech Connect

    Duran, G.A.; Mercader, R.C.; Desimoni, J.; Perez, T.; Gregorutti, R.W.

    2005-04-26

    The austempering kinetics transformation of compacted graphite cast irons austempered at 623K is studied. The length (l) and the number per unit volume (N) of ferrite needles were followed by Scanning Electron Microscopy (SEM), while Moessbauer spectroscopy (MS) was used to determine the austenite relative areas. The SEM results are compared with theoretical calculations available in the literature and indicate that the diffusion of C atoms in austenite controls the transformation, confirming the indirect MS determinations.

  19. Method of fabricating a prestressed cast iron vessel

    DOEpatents

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  20. 75 FR 49945 - Iron Construction Castings From Brazil, Canada, and China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... COMMISSION [Investigation Nos. 701-TA-249 and 731-TA-262, 263, and 265 (Third Review)] Iron Construction... iron construction castings from Brazil, Canada, and China. SUMMARY: The Commission hereby gives notice... antidumping duty orders on iron construction castings from Brazil, Canada, and China would likely lead to...

  1. 75 FR 23295 - Iron Construction Castings From Brazil, Canada, and China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... COMMISSION [Investigation Nos. 701-TA-249 and 731-TA-262, 263, and 265 (Third Review)] Iron Construction...: Institution of five-year reviews concerning the countervailing duty order on ``heavy'' iron construction castings from Brazil, the antidumping duty order on ``heavy'' iron construction castings from Canada, and...

  2. High-temperature low cycle fatigue behavior of a gray cast iron

    SciTech Connect

    Fan, K.L. He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  3. Erosion-corrosion behavior of austenitic cast iron in an acidic slurry medium

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Sun, Lan; Liu, Yu-zhen; Fan, Hong-yuan

    2015-06-01

    A series of austenitic cast iron samples with different compositions were cast and a part of nickel in the samples was replaced by manganese for economic reason. Erosion-corrosion tests were conducted under 2wt% sulfuric acid and 15wt% quartz sand. The results show that the matrix of cast irons remains austenite after a portion of nickel is replaced with manganese. (Fe,Cr)3C is a common phase in the cast irons, and nickel is the main alloying element in high-nickel cast iron; whereas, (Fe,Mn)3C is observed with the increased manganese content in low-nickel cast iron. Under erosion-corrosion tests, the weight-loss rates of the cast irons increase with increasing time. Wear plays a more important role than corrosion in determining the weight loss. It is indicated that the processes of weight loss for the cast irons with high and low nickel contents are different. The erosion resistance of the cast iron containing 7.29wt% nickel and 6.94wt% manganese is equivalent to that of the cast iron containing 13.29wt% nickel.

  4. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800 deg C

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Scheuermann, Coulson M.

    1987-01-01

    A promising iron-base cast alloy is being developed as part of the DOE/NASA Stirling Engine Systems Project under contract DEN 3-282 with the United Technologies Research Center. This report presents the results of a study at the Lewis Research Center of the alloy's creep-rupture properties. The alloy was tested under a variety of conditions and was found to exhibit the normal 3-stage creep response. The alloy compared favorably with others being used or under consideration for the automotive Stirling engine cylinder/regenerator housing.

  5. Microstructure evolution in grey cast iron during directional solidification

    NASA Astrophysics Data System (ADS)

    Ding, Xian-fei; Li, Xiao-zheng; Feng, Qiang; Matthias, Warkentin; Huang, Shi-yao

    2017-08-01

    The solidification characteristics and microstructure evolution in grey cast iron were investigated through Jmat-Pro simulations and quenching performed during directional solidification. The phase transition sequence of grey cast iron was determined as L → L + γ → L + γ + G → γ + G → P (α + Fe3C) + α + G. The graphite can be formed in three ways: directly nucleated from liquid through the eutectic reaction (L → γ + G), independently precipitated from the oversaturated γ phase (γ → γ + G), and produced via the eutectoid transformation (γ → G + α). The area fraction and length of graphite as well as the primary dendrite spacing decrease with increasing cooling rate. Type-A graphite is formed at a low cooling rate, whereas a high cooling rate results in the precipitation of type-D graphite. After analyzing the graphite precipitation in the as-cast and transition regions separately solidified with and without inoculation, we concluded that, induced by the inoculant addition, the location of graphite precipitation changes from mainly the γ interdendritic region to the entire γ matrix. It suggests that inoculation mainly acts on graphite precipitation in the γ matrix, not in the liquid or at the solid-liquid front.

  6. Effect of graphite on folded metal occurrence in honed surfaces of grey and compacted cast irons

    NASA Astrophysics Data System (ADS)

    do Vale, João Luiz; da Silva, Carlos Henrique; Pintaúde, Giuseppe

    2017-09-01

    Grey cast iron (GCI) and compacted graphite iron (CGI) are the most employed materials to manufacture cylinder liners. The use of diamond tools to hone the surfaces resulted in an increase of the so-called folded metal occurrence. This irregularity can reduce the performance of engines and investigations to understand it have been made. In this sense, the current study aims to correlate the variation of graphite and the folded metal occurrence. Different samples of GCI and CGI were extracted directly of engine blocks, resulting in four metallurgical conditions. Topographical analysis was conducted in an optical interferometer and a dedicated routine to count the folded metal was developed using 3D images. Folded metal occurrence can be associated to a specific region of topography and to an increase in the graphite area fraction. Experimental evidences were provided revealing cross-sectional images of grooves using a scanning electron microscope. In addition, the present investigation shows that a larger amount of folded metal was related to the microstructure of thicker walls of compact graphite iron.

  7. Detecting defect in cast iron using high- TC SQUID

    NASA Astrophysics Data System (ADS)

    He, D. F.; Yoshizawa, M.; Oyama, Y.; Nakamura, M.

    2004-10-01

    For eddy-current NDE, due to the big permeability of ferromagnetic material, low testing frequency is needed to detect defects in it. SQUID has advantages in low frequency eddy current NDE. But the large magnetic field produced by ferromagnetic material often exceeds the dynamic range of general SQUID system. We developed a mobile high- TC SQUID system, with which, the dc and low-frequency magnetic field could be compensated well. Using our mobile SQUID system, the magnetic field produced by the cast iron could be compensated well and the defect in it could be successfully detected.

  8. Comparative evaluation of cast aluminum alloys for automotive cylinder heads: Part I Microstructure evolution

    DOE PAGES

    Roy, Shibayan; Allard, Jr, Lawrence Frederick; Rodriguez, Andres; ...

    2017-03-06

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to themore » dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ''θ'' in Al-Cu alloy, θ'θ' in Al-Si-Cu alloy, and β'β' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.« less

  9. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-05-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  10. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part I—Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Watkins, Thomas R.; Shyam, Amit

    2017-03-01

    The present study stages a comparative evaluation of microstructure and associated mechanical and thermal response for common cast aluminum alloys that are used for manufacturing automotive cylinder heads. The systems considered are Al-Cu (206-T6), Al-Si-Cu (319-T7), and Al-Si (356-T6, A356-T6, and A356 + 0.5Cu-T6). The focus of the present manuscript is on the evaluation of microstructure at various length scales after aging, while the second manuscript will deal with the mechanical and thermal response of these alloys due to short-term (aging) and long-term (pre-conditioning) heat treatments. At the grain-scale, the Al-Cu alloy possessed an equiaxed microstructure as opposed to the dendritic structure for the Al-Si-Cu or Al-Si alloys which is related to the individual solidification conditions for these alloy systems. The composition and morphology of intermetallic precipitates within the grain and at the grain/dendritic boundary are dictated by the alloy chemistry, solidification, and heat treatment conditions. At the nanoscale, these alloys contain various metastable strengthening precipitates (GPI and θ^'' in Al-Cu alloy, θ^' in Al-Si-Cu alloy, and β^' in Al-Si alloys) with varying size, morphology, coherency, and thermal stability.

  11. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  12. Improving friction performance of cast iron by laser shock peening

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda

    2015-05-01

    According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.

  13. Displaying structural property and inheritance of cast iron surfacing on steel base

    NASA Astrophysics Data System (ADS)

    Shveev, I. A.

    2016-06-01

    Graphite inclusions heredity in deposited layer from remelted special cast iron billets was established. The possibility of controlling the structural state and the quality of the deposited layer due to technological parameters of welding and heat treatment of parts is shown. Ways of improving cast iron wear resistance durability are proposed.

  14. The elastic behavior of ductile and compacted graphite cast irons

    NASA Astrophysics Data System (ADS)

    Metzloff, Kyle Eric

    The elastic modulus of ductile iron and compacted graphite iron is difficult to measure due to a non-linear stress/strain relationship. The elastic region of the stress/strain diagram may not be linear as in Hooke's law, though the specimen exhibits pure elasticity. The curvature in the stress-strain relationship is caused by energy loss in the complex interaction between the graphite nodule and the matrix. The non-linear nature of the stress strain diagram of ductile and compacted graphite iron is explained by the mechanism of solid friction, which has been developed for gray cast iron. A method for accurately determining the zero modulus is proposed, investigated, and correlated to the microstructure. Multi-factor linear regression analysis was used to correlate microstructure, physical, and chemical properties to the elastic modulus; therefore, the elastic modulus can be predicted from microstructural, physical, and chemical data. The significant factors in the regression equation were density, nodularity percentage, and copper content. The effect of copper was found to play a role in determining the elastic modulus and this is contrary to the literature available. The exact mechanism by which the modulus is decreased is not fully understood, but the elastic modulus of the iron was lowered by up to 1 x 106 psi due to the effect of copper. The hysteresis loop of the stress/strain diagram was studied for tension-compression relationships considering the microstructure, stress level, and heat treatment. The surface area in contact with the nodule/matrix interface is proportional to the hysteresis width and this in turn is proportional to the damping capacity of the iron. The data supported the solid friction mechanism for the non-linear stress/strain relationship of ductile and compacted graphite iron. The effects of heat treatment on the density and the nodule/matrix interface were studied in detail. When normalizing ductile or compacted graphite iron the transfer

  15. Chemical Degradation of the Cathodic Electrical Contact Between Carbon and Cast Iron in Aluminum Production Cells

    NASA Astrophysics Data System (ADS)

    Brassard, Martin; Désilets, Martin; Soucy, Gervais; Bilodeau, Jean-François; Forté, Martin

    2017-06-01

    The cathodic carbon to cast iron electrical contact degradation is one of the factors to consider in the cathode voltage drop (CVD) increase over the lifetime of aluminum production cells. Lab-scale experiments were carried out to study the cast iron to carbon interface chemical degradation and the impact of important cell parameters like temperature and bath chemistry. Laboratory degradation results were compared with industrial samples. A thermoelectric Ansys numerical model was then used to predict the effect of cast iron surface degradation over CVD. Results show that the aluminum formation on the cast iron surface and its subsequent diffusion creates an immiscible mixture of Fe-Al metal alloy and electrolytic bath. Disparities were also observed between industrial samples taken from two different technologies, suggesting that the degradation can be slowed down. Thermoelectric calculations finally revealed that the impact of the contact resistance augmentation is by far greater than the cast iron degradation.

  16. Chemical Degradation of the Cathodic Electrical Contact Between Carbon and Cast Iron in Aluminum Production Cells

    NASA Astrophysics Data System (ADS)

    Brassard, Martin; Désilets, Martin; Soucy, Gervais; Bilodeau, Jean-François; Forté, Martin

    2017-02-01

    The cathodic carbon to cast iron electrical contact degradation is one of the factors to consider in the cathode voltage drop (CVD) increase over the lifetime of aluminum production cells. Lab-scale experiments were carried out to study the cast iron to carbon interface chemical degradation and the impact of important cell parameters like temperature and bath chemistry. Laboratory degradation results were compared with industrial samples. A thermoelectric Ansys numerical model was then used to predict the effect of cast iron surface degradation over CVD. Results show that the aluminum formation on the cast iron surface and its subsequent diffusion creates an immiscible mixture of Fe-Al metal alloy and electrolytic bath. Disparities were also observed between industrial samples taken from two different technologies, suggesting that the degradation can be slowed down. Thermoelectric calculations finally revealed that the impact of the contact resistance augmentation is by far greater than the cast iron degradation.

  17. 77 FR 31577 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... International Trade Administration Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China...'') changed circumstances review with intent to revoke, in part, the AD order on non-malleable cast iron pipe... this particular connector. \\1\\ See Non-Malleable Cast Iron Pipe Fittings From the People's Republic of...

  18. 75 FR 75964 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Extension of Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... International Trade Administration Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China... administrative review of the antidumping duty order on non-malleable cast iron pipe fittings from the People's... the administrative review of non-malleable cast iron pipe fittings from the PRC within the time limits...

  19. 75 FR 10216 - Malleable Cast Iron Pipe Fittings from the People's Republic of China: Notice of Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... Cast Iron Pipe Fittings from the People's Republic of China: Notice of Rescission of the 2008-2009... review of the antidumping duty order on malleable cast iron pipe fittings from the People's Republic of... antidumping duty order on malleable cast iron pipe fittings from the PRC. See Initiation of Antidumping and...

  20. 77 FR 22562 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Initiation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... International Trade Administration Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China... review of the antidumping duty (AD) order on non-malleable cast iron pipe fittings from the People's... order on non- malleable cast iron pipe fittings from the PRC.\\1\\ On March 6, 2012, Ford requested...

  1. 76 FR 5333 - Non-Malleable Cast Iron Pipe Fittings from the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... International Trade Administration Non-Malleable Cast Iron Pipe Fittings from the People's Republic of China...-2010 administrative review of the antidumping duty order on non-malleable cast iron pipe fittings... Antidumping Duty Order: Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China, 68 FR 16765...

  2. 78 FR 72639 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... International Trade Administration Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China... sunset review of the antidumping duty order on non-malleable cast iron pipe fittings from the People's... expedited (120-day) sunset review of the antidumping duty order on non-malleable cast iron pipe fittings...

  3. 75 FR 54595 - Certain Iron Construction Castings From Brazil, Canada, and the People's Republic of China: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... International Trade Administration Certain Iron Construction Castings From Brazil, Canada, and the People's... duty orders on certain iron construction castings from Brazil, Canada, and the People's Republic of... initiation of the sunset reviews of the antidumping duty orders\\1\\ on certain iron construction castings from...

  4. Fiber laser cladding of nickel-based alloy on cast iron

    NASA Astrophysics Data System (ADS)

    Arias-González, F.; del Val, J.; Comesaña, R.; Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2016-06-01

    Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni-based coating obtained presents a significantly superior hardness than cast iron.

  5. Influence of temperature and contact pressure between cast iron and cathode carbon on contact resistance

    SciTech Connect

    Hiltmann, F.; Mittag, J.; Stoere, A.; Oeye, H.A.

    1996-10-01

    The contact resistance between the cathode block and cast iron, as collector bar casting agent, is said to give a significant contribution to the cathode voltage drop (CVD) measured in aluminum electrolysis cells. Five typical cathode carbon qualities were examined in this respect from room temperature to 950 C. At cell operating temperature the contact resistance in new cells is found to be usually negligible in comparison to other resistance effects. However, inadequate casting parameters and cell aging processes leading to an improper contact or contact pressure may impede the current flow between cast iron and cathode block considerably and hence result in an increasing CVD with cell age.

  6. Corrosion Mechanisms of Steel and Cast Iron by Molten Aluminum

    NASA Astrophysics Data System (ADS)

    Balloy, David; Tissier, Jean-Charles; Giorgi, Marie-Laurence; Briant, Marc

    2010-09-01

    The corrosion mechanisms by liquid aluminum of three industrial materials have been studied: unalloyed steel (UAS), and ferritic and modified pearlitic cast irons (FCI and PCI, respectively). The behavior of these materials when in contact with liquid aluminum is different. Aluminum diffuses deep into the UAS and forms intermetallic compounds with iron at the surface and in the steel matrix. At the surface, only Fe2Al5 and FeAl3 are found. In the matrix, FeAl2 also is formed in agreement with the equilibrium Fe-Al diagram. From the matrix to FeAl2, the Al content in the ferrite increases progressively until Al saturation is reached. At this step, black elongated precipitates (Al4C3 and/or graphite) appear. Graphite lamellas present in both FCI and PCI constitute an efficient barrier to the Al diffusion. The high silicon content of the FCI leads to the formation of a phase free from Al and saturated in Si. For the PCI, a thin layer rich in Al and Si, which is formed between the matrix and Fe2Al5, limits the diffusion of atoms. The effects of Cr and P added in the PCI also are discussed.

  7. Low-gravity solidification of cast iron and space technology applications

    NASA Technical Reports Server (NTRS)

    Graham, J. A.

    1984-01-01

    Two types of analyses relating to cast iron solidification were conducted. A theoretical analysis using a computer to predict the cooling versus time relationship throughout the test specimen was performed. Tests were also conducted in a ground-based laboratory to generate a cooling time curve for cast iron. In addition, cast iron was cooled through the solidification period on a KC-135 and an F-104 aircraft while these aircraft were going through a period of low gravity. Future subjects for low gravity tests are enumerated.

  8. Comparative aspects about the studying methods of cast irons machinability, based on the tool wear

    NASA Astrophysics Data System (ADS)

    Carausu, C.; Pruteanu, O.

    2016-08-01

    The paper presents some considerations of the authors, regarding the studying methods of the cast irons machinability, based on the tools wear on drilling operations. Are described the conditions in which the experimental researches were conducted, intended to offer an overview on drilling machinability of some cast irons categories. It is presented a comparison between long-term methods and short-term methods, for determining the optimal speed chipping of a grey cast iron with lamellar graphite, with average values of tensile strength. Are described: the research methodology, obtained results and conclusions drawn after the results analysis.

  9. DYNAMIC DEFORMATION AND DAMAGE IN CAST GAMMA-TiAl DURING TYALOR CYLINDER IMPACT: EXPERIMENTS AND MODEL VALIDATION

    SciTech Connect

    G. GRAY; ET AL

    2001-03-01

    The dynamic deformation, damage evolution, and cracking in two cast gamma titanium aluminide alloys has been investigated experimentally and theoretically. The purpose of this study was to create and validate experimentally a finite-element model of the high speed impact of a cylindrical {gamma}-TiAl projectile into a steel block in order to evaluate the accuracy of {gamma} constitutive properties used in FEA simulations. In this paper the damage evolution, cracking, and validation of the constitutive response of Ti-48-2-2 and WMS cast gamma alloys is discussed. The utility of validating the high-rate impact behavior of engineering aerospace materials using Taylor cylinder impact testing is detailed.

  10. Characterization of tribological behaviour of graphitic aluminum matrix composites, grey cast iron, and aluminum silicon alloys

    NASA Astrophysics Data System (ADS)

    Riahi, Ahmad Reza

    In recent years a number of aluminum-silicon alloys and some graphitic aluminum matrix composites have been fabricated for potential tribological applications in the automotive industry, in particular for lightweight high efficiency internal combustion engines to replace conventional uses of cast iron. This study provides a systematic investigation for wear mechanisms in dry sliding of the graphitic aluminum-matrix composites (A356 Al-10%SiC-4%Gr and A356 Al-5%Al2O3-3%Gr) developed for cylinder liner applications. Two eutectic Al-Si alloys (modified with rare earth elements) developed for wear resistant engine blocks were also studied. The tribological behavior of grey cast iron (ASTM A30), which is a traditional material for engine components, was also investigated as reference. For graphitic aluminum matrix composites, a wear mapping approach has been adopted. Three main regimes: ultra mild, mild and severe wear regions were determined in the maps; additionally, a scuffing region was observed. In the ultra mild wear regime the wear resistance was primarily due to the hard particles supporting the load. It was shown that the onset of severe wear in graphitic composites occurred at considerably higher loads compared to A356 aluminum alloy and A356 Al-20% SiC composite. At the onset of severe wear, the surface temperatures and coefficient of friction of the graphitic composites was lower than that of A356 Al-20% SiC. At all testing conditions in the mild wear regime, a protective tribo-layer was formed, which by increasing the speed and load became more continuous, more compact, smoother, and harder. The tribo-layers were removed at the onset of severe wear. An experimental wear map of grey cast iron was constructed; it consisted of three wear regimes: ultra mild, mild and severe wear. In the ultra mild regime a compacted fine iron oxide powder formed on the contact. The onset of severe wear was started with local material transfer to the steel counterface, and

  11. Identification of a cast iron alloy containing nonstrategic elements

    NASA Technical Reports Server (NTRS)

    Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.

    1989-01-01

    A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.

  12. Carbon-carbon cylinder block

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O. (Inventor)

    1998-01-01

    A lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials, such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  13. Carbon-carbon cylinder block

    NASA Technical Reports Server (NTRS)

    Ransone, Philip O. (Inventor)

    1995-01-01

    A lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials, such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  14. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    NASA Astrophysics Data System (ADS)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  15. Industrial Environmental Testing of Coupons and Prototype Cylinders Coated With Iron-Based Amorphous Alloys

    SciTech Connect

    Rebak, R B; Aprigliano, L F; Day, S D; Lian, T; Farmer, J C

    2007-03-06

    Iron-based amorphous alloys are desirable for many industrial applications due to their dual capacity to resist corrosion and wear. These alloys may also contain a significant amount of boron which makes them candidates for criticality control, for example, in high-level nuclear waste disposition applications. The Fe-based amorphous alloys can be produced in powder form and then deposited using a HVOF thermal spray process on any surface that needs to be protected. For the current testing coupons of 316L stainless steels were coated with the amorphous alloy SAM2X5 and then tested for corrosion resistance in the salt-fog chamber and in other industrial environments. Prototype cylinders were also prepared and environmentally tested. One cylinder was 30-inch diameter, 88-inch long, and 3/8-inch thick. The coating thickness was 0.015 to 0.019-inch thick. The cylinder was in good condition after the test. Along the body of the cylinder only two pinpoint spot sized signs of rust were seen. Test results will be compared with the behavior of witness materials under the same tested conditions.

  16. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM DRINKING WATER DISTRIBUTION SYSTEM CAST IRON MAIN

    EPA Science Inventory

    “Colored water” resulting from suspended iron particles is a common drinking water consumer complaint which is largely impacted by water chemistry. A bench scale study, performed on a 90 year-old corroded cast-iron pipe section removed from a drinking water distribution system, w...

  17. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM DRINKING WATER DISTRIBUTION SYSTEM CAST IRON MAIN

    EPA Science Inventory

    “Colored water” resulting from suspended iron particles is a common drinking water consumer complaint which is largely impacted by water chemistry. A bench scale study, performed on a 90 year-old corroded cast-iron pipe section removed from a drinking water distribution system, w...

  18. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.

    PubMed

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-09-04

    The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit (ZT) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  19. A new type of antifriction and wear resistant malleable cast iron

    NASA Astrophysics Data System (ADS)

    Davidov, S. V.; Gorlenko, A. O.

    2016-04-01

    There is developed a technology of malleable cast iron modification on the basis of complex chemical compound of surface-active elements and their solid solutions with other elements. Silicon high content in malleable cast iron helped to develop a power efficient technology of graphitizing annealing which has considerably lower annealing temperature and complete renunciation of the second graphitizing annealing stage at the expense of its change by controlled cooling up to ferrite structure or by air cooling for perlite structure.

  20. Effects of Casting Size on Microstructure and Mechanical Properties of Spheroidal and Compacted Graphite Cast Irons: Experimental Results and Comparison with International Standards

    NASA Astrophysics Data System (ADS)

    Ceschini, L.; Morri, Alessandro; Morri, Andrea

    2017-05-01

    The aim of this research was to investigate the effects of casting size (10-210 mm) on the microstructure and mechanical properties of spheroidal (SGI) and compacted (CGI) graphite cast irons. A comparison of the experimental mechanical data with those specified by ISO standards is presented and discussed. The study highlighted that the microstructure and mechanical properties of SGI (also known as ductile or nodular cast iron) are more sensitive to casting size than CGI (also known as vermicular graphite cast irons). In particular, in both types of cast iron, hardness, yield strength and ultimate tensile strength decreased, with increasing casting size, by 27% in SGI and 17% in CGI. Elongation to failure showed, instead, an opposite trend, decreasing from 5 to 3% in CGI, while increasing from 5 to 11% in SGI. These results were related to different microstructures, the ferritic fraction being more sensitive to the casting size in SGI than CGI. Degeneration of spheroidal graphite was observed at casting size above 120 mm. The microstructural similarities between degenerated SGI and CGI suggested the proposal of a unified empirical constitutional law relating the most important microstructural parameters to the ultimate tensile strength. An outstanding result was also the finding that standard specifications underestimated the mechanical properties of both cast irons (in particular SGI) and, moreover, did not take into account their variation with casting size, at thicknesses over 60 mm.

  1. Stable Eutectoid Transformation in Nodular Cast Iron: Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2017-01-01

    This paper presents a new microstructural model of the stable eutectoid transformation in a spheroidal cast iron. The model takes into account the nucleation and growth of ferrite grains and the growth of graphite spheroids. Different laws are assumed for the growth of both phases during and below the intercritical stable eutectoid. At a microstructural level, the initial conditions for the phase transformations are obtained from the microstructural simulation of solidification of the material, which considers the divorced eutectic and the subsequent growth of graphite spheroids up to the initiation of the stable eutectoid transformation. The temperature field is obtained by solving the energy equation by means of finite elements. The microstructural (phase change) and macrostructural (energy balance) models are coupled by a sequential multiscale procedure. Experimental validation of the model is achieved by comparison with measured values of fractions and radius of 2D view of ferrite grains. Agreement with such experiments indicates that the present model is capable of predicting ferrite phase fraction and grain size with reasonable accuracy.

  2. Ductility Loss in Ductile Cast Iron with Internal Hydrogen

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hisao; Usuda, Teruki; Yanase, Keiji; Endo, Masahiro

    2013-11-01

    Hydrogen-induced ductility loss in ductile cast iron (DCI) was studied by conducting a series of tensile tests with three different crosshead speeds. By utilizing the thermal desorption spectroscopy and the hydrogen microprint technique, it was found that most of the solute hydrogen was diffusive and mainly segregated at the graphite, graphite/matrix interface zone, and the cementite of pearlite in the matrix. The fracture process of the non-charged specimen was dominated by the ductile dimple fracture, whereas that of the hydrogen-charged specimen became less ductile because of the accompanying interconnecting cracks between the adjacent graphite nodules. Inside the hydrogen-charged specimen, the interspaces generated by the interfacial debonding between graphite and matrix are filled with hydrogen gas in the early stage of the fracture process. In the subsequent fracture process, such a local hydrogen gas atmosphere coupled with a stress-induced diffusion attracts hydrogen to the crack tip, which results in a time-dependent ductility loss.

  3. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  4. Respirable dust control in grinding gray iron castings.

    PubMed

    O'Brien, D; Baron, P; Willeke, K

    1987-02-01

    High speed grinding of gray iron castings long has been associated with excessive exposure to crystalline silica. Not all workers engaged in these operations are protected by conventional ventilation techniques. Dust in the air that has been entrained by the spinning grinding wheel and not captured in the grinder hood has been postulated to be a major exposure source. A pilot grinding operation was constructed, and the size distribution and concentration of airborne particles were measured with the aerodynamic particle sizer (APS). Various control measures proved effective in reducing the respirable dust concentration: increased exhaust ventilation, and installation of baffles and/or the use of an air jet to deflect the entrained air stream. The concentration of respirable dust is the breathing zone was reduced approximately 20-fold through the combined use of increased ventilation, interior baffles, and an air jet. The air jet and baffle utilized at the base ventilation rate reduced the respirable dust concentration by a factor of three to four, whereas the baffle alone halved the concentration.

  5. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    SciTech Connect

    Richards, Von L.

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  6. 78 FR 68474 - Non-Malleable Cast Iron Pipe Fittings From China; Scheduling of an Expedited Five-Year Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... COMMISSION Non-Malleable Cast Iron Pipe Fittings From China; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Non-Malleable Cast Iron Pipe Fittings From China AGENCY: United... iron pipe fittings from China would be likely to lead to continuation or recurrence of material injury...

  7. Investigation of Bond Strength in Centrifugal Lining of Babbitt on Cast Iron

    NASA Astrophysics Data System (ADS)

    Diouf, Papa; Jones, Alan

    2010-03-01

    The quality of the bond between Babbitt metal and a cast iron substrate was evaluated for centrifugal casting and static casting using the Chalmers bond strength method and scanning electron microscopy (SEM). The effect of three different centrifugal casting parameters, the speed of revolution, the pouring rate, and the cooling rate, was investigated. The bond strength and the microstructure at the bond interface were predominantly affected by the cooling rate, with a fast cooling rate resulting in better properties. The speed of revolution and the pouring rate only had a small effect on the bond strength, with faster revolution and faster pouring rate resulting in slightly better bonds.

  8. Stages of vermicular cast iron properties modeling in the intelligent design system

    NASA Astrophysics Data System (ADS)

    Klochkova, K. V.; Petrovich, S. V.; Simonova, L. A.; Yusupov, L. R.

    2015-06-01

    This article presents the structure of intelligent system of the cast iron with vermicular graphite iron (CGI) design under the conditions of current production, the technique of the optimal process TP parameters of the production of CGI parts in the preparatory phase of production based on mental models is designed.

  9. Aluminium and iron air pollution near an iron casting and aluminium foundry in Turin district (Italy).

    PubMed

    Polizzi, Salvatore; Ferrara, Mauro; Bugiani, Massimiliano; Barbero, Domenico; Baccolo, Tiziana

    2007-09-01

    This work reports the results of an environmental survey carried out in an industrial area in the Province of Turin: its main aim is to assess the levels of iron and aluminium in the outside air during the period from July to September to assess the influence of industrial activity (a cast-iron and aluminium foundry) which is interrupted during the month of August, on the level of metals present in the air. Conducting the analysis during this period of time made it possible to avoid the confounding effect of pollution due to domestic central heating. The measurements were taken from nine areas at different distances from the foundry in the area and according to the direction of the prevailing winds, as deduced from the historical data. The results of this survey show a statistically significant difference in iron and aluminium levels in the outside air in the geographic areas between the two main periods examined: during August (no foundry activity) v/s July-September (foundry activity). The values recorded are: Aluminium 0.4+/-0.45 microg/m(3) v/s 1.12+/-1.29 microg/m(3) (p<0.0001); Iron 0.95+/-0.56 microg/m(3) v/s 1.6+/-1.0 microg/m(3) (p<0.0001). There were no statistically significant differences between the nine sampling points from the point of view of the sampling sites, climate conditions and wind directions. We found no correlation with car traffic, in terms of the number of vehicles, and metals. The values of iron tended to be higher in the areas farther away from the foundry site in the areas located along the path of the prevailing winds.

  10. Inelastic properties of high-strength cast iron with strained graphite

    NASA Astrophysics Data System (ADS)

    Petrushin, G. D.; Petrushina, A. G.; Golovin, S. A.

    2011-05-01

    The effect of the habit of graphite inclusions of deformed high-strength cast iron on the dissipation of the energy of fluctuations in the amplitude-independent and dependent ranges of internal friction is studied. The values of the factor of shape and of the degree of deformation of graphite inclusions in deformed iron are computed. A mathematical model predicting the effect of plastic deformation of graphite inclusions on the characteristics of the dissipation of energy in grayed iron is suggested.

  11. Microstructures and superplastic behavior of eutectic Fe-C and Ni-Cr white cast irons produced by rapid solidification

    NASA Astrophysics Data System (ADS)

    Kum, D. W.; Frommeyer, G.; Grant, N. J.; Sherby, O. D.

    1987-10-01

    Superplastic behavior of two commercial grade white cast irons, eutectic Fe-C and Ni-Cr white cast irons, was investigated at intermediate temperatures (650 to 750 °C). For this purpose, rapidly solidified powders of the cast irons were fully consolidated by compaction and rolling at about 650 °C. The volume fractions of cementite in the eutectic cast iron and in the Ni-Cr cast iron were 64 pct and 51 pct, respectively, and both cast irons consisted of fine equiaxed grains of cementite (1 to 2 μm) and ferrite (0.5 to 2 μm). The cast iron compacts exhibited high strain-rate sensitivity (strain-rate-sensitivity exponent of 0.35 to 0.46) and high tensile ductility (total elongation of 150 pct to 210 pct) at strain rates of 10-4 to 10-3 s-1 and at 650 °C to 750 °C. Microstructure evaluations were made by TEM, SEM, and optical microscopy methods. The equiaxed grains in the as-compacted samples remained unchanged even after large tensile deformation. It is concluded that grain boundary sliding ( e.g., along cementite grain boundaries in the case of the eutectic cast iron) is the principal mode of plastic deformation in both cast irons during superplastic testing conditions.

  12. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II—Mechanical and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Porter, Wallace D.; Shyam, Amit

    2017-03-01

    The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systems (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.

  13. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II—Mechanical and Thermal Properties

    NASA Astrophysics Data System (ADS)

    Roy, Shibayan; Allard, Lawrence F.; Rodriguez, Andres; Porter, Wallace D.; Shyam, Amit

    2017-05-01

    The first part of this study documented the as-aged microstructure of five cast aluminum alloys namely, 206, 319, 356, A356, and A356+0.5Cu, that are used for manufacturing automotive cylinder heads (Roy et al. in Metall Mater Trans A, 2016). In the present part, we report the mechanical response of these alloys after they have been subjected to various levels of thermal exposure. In addition, the thermophysical properties of these alloys are also reported over a wide temperature range. The hardness variation due to extended thermal exposure is related to the evolution of the nano-scale strengthening precipitates for different alloy systems (Al-Cu, Al-Si-Cu, and Al-Si). The effect of strengthening precipitates (size and number density) on the mechanical response is most obvious in the as-aged condition, which is quantitatively demonstrated by implementing a strength model. Significant coarsening of precipitates from long-term heat treatment removes the strengthening efficiency of the nano-scale precipitates for all these alloys systems. Thermal conductivity of the alloys evolve in an inverse manner with precipitate coarsening compared to the strength, and the implications of the same for the durability of cylinder heads are noted.

  14. Modeling of ferrite formation in nodular cast iron: Influence of silicon content

    SciTech Connect

    Wessen, M.

    1995-12-31

    Silicon is commonly used in nodular cast iron due to its graphitizing and ferritizing effect. A usual silicon content is 2.2 to 2.7%. Nodular cast iron is often alloyed with pearlite-promoting elements, such as Mn, Cu or Sn, to increase the strength. The result is usually a casting with a considerable variation in ferrite/pearlite ratio in different parts due to the variation in thermal history. When increasing the silicon content up to a level of about 3.5 to 4%, the structure will usually be predominantly ferritic. However, due to the solution hardening of ferrite by silicon, a good strength is obtained. This is a promising way to obtain nodular iron castings with desirable and predictable properties. Plate castings (3 to 50 mm) have been cast with five different silicon contents (1.7 to 4.9%). The cooling curves were analyzed by thermal analysis in order to derive the transformation kinetics for the ferrite growth. The results have been the basis for the derivation of a new growth model for the ferrite during an interface controlled stage. It is shown that the action of silicon on the ferrite growth only is related to the transformation temperature, which drastically increases when the silicon content is raised. To verify the models, a redesigned plate casting was cast with a nodular iron containing 4.00 % silicon. The filling sequence, solidification and solid state transformation in this casting have been simulated using a FDM-program with models for nucleation and growth of all relevant phases. It is shown that the presented models can be used to predict the structure development in the complex situation of continuous cooling in a sand mould.

  15. Modeling of microstructure and residual stress in cast iron calendar rolls

    SciTech Connect

    Jacot, A.; Maijer, D.; Cockcroft, S.

    2000-04-01

    A comprehensive mathematical model based on the commercial finite-element (FE) code ABAQUS has been developed to predict the evolution of temperature, microstructure, and residual stresses in cast iron castings. The thermal component of the model, applied in stage one of the analysis, is capable of simulating the formation of microstructure over a broad range of cooling conditions, including the formation of columnar white iron as well as equiaxed gray iron. To test the model, it has been evaluated against thermocouple and microstructural data collected from a reduced-scale calendar roll test casting. The model has been demonstrated to be able to predict the transition from columnar white iron to equiaxed gray iron which occurs approximately 20 mm below the outside surface of the roll test casting. In addition, the model is shown to be able to satisfactorily reproduce the evolution of temperature recorded from thermocouples embedded at various locations in the test casting. An elastic-plastic stress analysis, applied in the second stage of the analysis, was performed using the temperature history and the volume fraction of white and gray iron obtained with the thermal/microstructural model. The results were verified against residual stress measurements made at various locations along the outer-diameter (OD) surface of the roll. The elastic-plastic model accounts for the temperature-dependent plastic behavior of white and gray iron and the thermal dilatational behavior of white and gray iron, including volumetric expansion due to austenite decomposition and dilatational anisotropy in columnar white iron. The results of the mathematical analysis demonstrate that the residual stress distribution in full-scale calendar thermorolls cannot be deduced simply from knowledge of the microstructural distribution and basic dilatometric considerations, as is currently the practice in industry.

  16. [Influencing factors and reaction mechanism of chloroacetic acid reduction by cast iron].

    PubMed

    Tang, Shun; Yang, Hong-Wei; Wang, Xiao-Mao; Xie, Yue-Feng

    2014-03-01

    The chloroacetic acids are ubiquitous present as a class of trace chlorinated organic pollutants in surface and drinking water. Most of chloroacetic acids are known or suspected carcinogens and, when at high concentrations, are of great concern to human health. In order to economically remove chloroacetic acids, the degradation of chloroacetic acids by cast iron was investigated. Moreover, the effect of iron style, pretreatment process, shocking mode and dissolved oxygen on chloroacetic acids reduced by cast iron was discussed. Compared to iron source and acid pretreatment, mass transfer was more important to chloroacetic acid removal. Dichloroacetic acid (DCAA) and monochloroacetic acid (MCAA) were the main products of anoxic and oxic degradation of trichloroacetic acid (TCAA) by cast iron during the researched reaction time, respectively. With longtitudinal shock, the reaction kinetics of chloroaectic acid removal by cast iron conformed well to the pseudo first order reaction. The anoxic reaction constants of TCAA, DCAA and MCAA were 0.46 h(-1), 0.03 h(-1) and 0, and their oxic constants were 1.24 h(-1), 0.79 h(-1) and 0.28 h(-1), respectively. The removal mechanisms of chloroacetic acids were different under various oxygen concentrations, including sequential hydrogenolysis for anoxic reaction and sequential hydrogenolysis and direct transformation possible for oxic reaction, respectively.

  17. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    PubMed

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Mathematical model of the component mixture distribution in the molten cast iron during centrifugation (sedimentation)

    NASA Astrophysics Data System (ADS)

    Bikulov, R. A.; Kotlyar, L. M.

    2014-12-01

    For the development and management of the manufacturing processes of axisymmetric articles with compositional structure by centrifugal casting method [1,2,3,4] is necessary to create a generalized mathematical model of the dynamics of component mixture in the molten cast iron during centrifugation. In article. based on the analysis of the dynamics of two-component mixture at sedimentation, a method of successive approximations to determine the distribution of a multicomponent mixture by centrifugation in a parabolic crucible is developed.

  19. Cracking behavior in a dissimilar weld between high silicon nodular cast iron and ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoon; Lee, Sangchul; Han, Kyutae; Hong, Seunggab; Lee, Changhee

    2010-06-01

    In this work, the microstructural evolution and cracking behavior of a dissimilar weld between high silicon nodular cast iron and ferritic stainless steel was investigated. An austenitic filler metal (Y309) was employed to produce the dissimilar weld. Microstructural analysis revealed that cracking formed at the unmixed zone (UMZ) and propagated into the partially melted zone (PMZ) in the bond line between the cast iron and the Y309, with hard layers formed around the bond line. The cracking behavior was strongly related to the difference in the melting points of cast iron and the Y309 filler metal, the local liquation of the laves phase, and the constitutional liquation between the graphite and austenite phases in the PMZ.

  20. Unnotched Charpy Impact Energy Transition Behavior of Austempered Engineering Grade Ductile Iron Castings

    NASA Astrophysics Data System (ADS)

    Kisakurek, Sukru Ergin; Ozel, Ahmet

    2014-04-01

    Unnotched Charpy impact energy transition behavior of five different engineering grade ductile iron castings, as specified by EN 1563 Standards, were examined in as-cast, as well as in austempered states. ADIs were produced with the maximum impact energy values permissible for the grades. Austempering treatment detrimented the sub-zero impact properties of the ferritic castings, but considerably enhanced those of the pearlitic-ferritic irons. The impact energy transition behavior of the austempered states of all the grades examined were noted to be determined by the progressive transformation of the unavoidable carbon-unsaturated and untransformed regions of the austenite remaining in the matrix of the austempered ductile iron to martensite with decreasing temperature.

  1. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    NASA Astrophysics Data System (ADS)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  2. 78 FR 39321 - Non-Malleable Cast Iron Pipe Fittings From China Institution of a Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... determine whether revocation of the antidumping duty order on non-malleable cast iron pipe fittings from..., the Department of Commerce issued an antidumping duty order on imports of non-malleable cast iron pipe..., effective August 15, 2008, Commerce issued a continuation of the antidumping duty order on imports of non...

  3. 76 FR 31936 - Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... International Trade Administration Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China... China (``PRC'').\\1\\ We gave interested parties an opportunity to comment on the Preliminary Results. We... Review'' section below. \\1\\ See Non-Malleable Cast Iron Pipe Fittings From the People's Republic of China...

  4. In Situ fracture observation and fracture toughness analysis of pearlitic graphite cast irons with different nodularity

    NASA Astrophysics Data System (ADS)

    Han, Seung Youb; Sohn, Seok Su; Shin, Sang Yong; Lee, Sunghak; Suh, Yong Chan

    2013-07-01

    Effects of microstructural modification and microfracture mechanisms on fracture toughness of pearlitic graphite cast irons with different nodularity were investigated by in situ observation of microfracture process. Six pearlitic graphite cast irons were fabricated by adding a small amount of Mg as a nodularizing element for graphite, and their microstructures including pearlite, ferrite, graphite, and eutectic carbide were analyzed. Most of ferrites were observed in a layer shape around graphites because of carbon-depleted zones formed near graphites. As the nodularity and nodule count increased, fracture toughness linearly increased in the cast irons except the iron containing many fine graphites. According to in situ observation of microfracture process, cracks initiated at nodular graphites and carbides even at a small load, and then propagated readily through the adjacent graphites or carbides, thereby resulting in the lowest fracture toughness. The cast iron having widely spaced graphites and ferrite layers thickly formed around graphites showed the highest fracture toughness because of the blocking of crack propagation by ductile ferrite layers and the crack blunting and deflection by graphites, which was also confirmed by the R-curve analysis.

  5. Splat morphology and microstructure of plasma sprayed cast iron with different preheat substrate temperatures

    NASA Astrophysics Data System (ADS)

    Morks, M. F.; Tsunekawa, Y.; Okumiva, M.; Shoeib, M. A.

    2002-06-01

    A cast iron coating is a prime candidate for the surface modification of aluminum alloys for antiwear applications because cast iron is inexpensive and exhibits superior wear resistance arising from the self-lubricating properties of graphite. In the present study, fundamental aspects of a plasma sprayed cast iron coating on an aluminum alloy substrate, including (1) the effects of preheat substrate temperature on the splat morphology, (2) the formation of a reaction layer and pores, and (3) the splat microstructure, were investigated in low-pressure plasma spraying. With an increasing substrate temperature, the splat morphology changes from a splash type to a disk and star shape. Deformed substrate ridges mainly resulting from the slight surface melting, are recognized adjacent to the splat periphery at high substrate temperatures. The flattening ratio of disk splats decreases with substrate temperature because the ridges act as an obstacle for splat expansion. A reaction layer composed of iron, aluminum, and oxygen is ready to form at high substrate temperatures, which, along with the deformed ridges, improves the adhesive strength of splats. However, the pores appear at the splat interface at low substrate temperatures, which hinder the formation of a reaction layer. The amount of graphitized carbon increases in cast iron splats with an increase in substrate temperature.

  6. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  7. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release.

  8. Tribological behaviour of plasma nitrided cast iron D6510 and cast steel S0050A under the inclined-impact sliding condition with extremely high contact pressure

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Zhang, J.; Nie, X.

    2017-05-01

    Plasma nitriding as a surface modification was applied on two substrate materials: cast iron D6510 and cast steel S0050A. After measurement of the friction coefficients of the treated samples using a pin-on-disc tribotester, an inclined impact-sliding wear tester was utilized to investigate their tribological behaviour under tilting contact with extremely high contact pressure. While numerous surface fatigue cracks, severe chipping, and peeling of the compound layer were observed for the treated cast steel sample, the treated cast iron sample had far fewer surface fatigue cracks without chipping or peeling of the compound at the same test condition. The governing mechanisms of the treated cast iron sample’s superior resistance to surface fatigue failure were revealed by studying the cross-sectional hardness and nitrogen concentration profile. Energy-dispersive X-ray spectroscopy (EDS) analysis indicated that the treated cast iron sample had a smaller nitrogen concentration gradient, which led to a smaller hardness gradient as measured. The results suggest that a smaller hardness gradient between the compound layer and the diffusion zone and a thicker hardened case was able to improve the wear resistance and surface fatigue cracking resistance against high contact loads. Moreover, the smaller friction coefficient of the treated cast iron sample could also be beneficial for improving the wear resistance.

  9. Saturated Fractional Design of Experiments: Toughness and Graphite Phase Optimizing in Nihard Cast Irons

    NASA Astrophysics Data System (ADS)

    Asensio-Lozano, J.; Álvarez-Antolín, J. F.

    2008-04-01

    The aim of the present research is to identify the manufacturing factors that exert an active influence on the graphite phase formation in mottled Nihard cast irons constituting the roll shells of duplex work rolls processed by the double pour method during centrifugal casting. The studied rolls, referred to as alloy indefinite chill, were processed at industrial scale and had a core consisting of spheroidal graphite cast iron with a matrix of ferrite and pearlite. An additional aim of this study was to evaluate the effect and extent of these factors on the dynamic toughness response of the roll shell material. The research methodology employed consisted of the application of a saturated design of experiments with seven factors, eight experiments, and resolution III. The measured responses for graphite were: the volume fraction, count number per unit area, and morphology, determined by quantitative metallography. Impact testing was characterized by Charpy tests on U-notched specimens at 350 °C. The manufacturing factors studied were: the final weight percent of silicon, sulfur, and manganese; the liquidus and the casting temperatures; and, finally, inoculation with SiCaMn and A-type FeSi (with Zr). The statistical experimental method conducted allowed us to confirm the significance of factors such as the %Si, the liquidus temperature and inoculation with SiCaMn on the precipitation of graphite in a white cast iron such as the Nihard irons used in the roll shell, in agreement with the precipitation of graphite in gray cast irons widely reported in the literature. It was also shown that the development of lamellar graphite shapes were favored by an increase in the total equivalent carbon and also by the increase in the amount of A-type FeSi added. Furthermore, the impact toughness was shown to improve with the increase in both the %Si and the liquidus temperature.

  10. Graphene Coating via Chemical Vapor Deposition for Improving Friction and Wear of Gray Cast Iron at Interfaces.

    PubMed

    Tripathi, Khagendra; Gyawali, Gobinda; Lee, Soo Wohn

    2017-09-20

    This study reports the influence of CVD-graphene on the tribological performance of gray cast iron (GCI) from the internal combustion engine (ICE) cylinder liners by performing a ball-on-disk friction tests. The graphene-coated specimen exhibited a significant reduction (∼53%) of friction as compared to that of the uncoated specimen, whereas wear resistance increased by 2- and 5-fold regarding the wear of specimen and ball, respectively. Extremely low shear strength and highly lubricating nature of graphene contribute to the formation of a lubricative film between the sliding surfaces and decreases the interaction between surfaces in the dry environment. Under the applied load, a uniform film of iron oxides such as Fe2O3, Fe3O4, and FeOOH is found to be formed between the surfaces. It is proposed that the graphene encapsulation with the metal debris and oxides formed between the specimens increases the lubricity and decreases the shear force. The transformation of graphene/graphite into nanocrystalline graphites across the contact interfaces following the amorphization trajectory further increases the lubricity of the film that ultimately reduces friction and wear of the material.

  11. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  12. Optimization of pulsed Nd:YAG laser melting of gray cast iron at different spot sizes for enhanced surface properties

    NASA Astrophysics Data System (ADS)

    Zulhishamuddin, A. R.; Aqida, S. N.; Rahim, E. A.

    2016-10-01

    This paper presents a laser surface modification process of gray cast iron using different laser spot size with an aims to eliminate graphite phase and achieve minimum surface roughness and maximum depth of molten zone and microhardness properties. The laser processing was conducted using JK300HPS Nd:YAG twin lamp laser source pulse TEM00 mode, 50 W average power, 1064 nm wavelength and different laser spot sizes of 1.0 mm, 1.2 mm, 1.4 mm and 1.7 mm. Three controlled parameter were peak power (Pp), pulse repetition frequency (PRF) and traverse speed (v). Increasing spot size the parameter setting where peak power is increased and pulse repetition frequency and traverse speed is decreased. The modified surface of laser surface melting was characterized for metallographic study, surface roughness and hardness. Metallographic study and surface morphology were conducted using optical microscope while hardness properties were measured using Vickers scale. Surface roughness was measured using a 2D stylus profilometer. From metallographic study, the graphite phase was totally eliminated from the molten zone and formed white zone. This phenomenon affected hardness properties of the modified surface where maximum hardness of 955.8 HV0.1 achieved. Optimization of laser surface modification was conducted for minimum surface roughness and maximum depth of modified layer and hardness properties. From the optimization, the higher desirability is 0.902. The highest depth of molten zone obtain from spot size 1.4 mm at 132 µm and the highest hardness is 989 HV0.1 at laser's spot size 1.0 mm. The surface roughness increased when the spot size increased from 3.10 µm to 7.31 µm. These finding indicate potential application of enhanced gray cast iron in high wear resistance automotive components such as cylinder liner and break disc.

  13. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  14. Field Demonstration of Emerging Pipe Wall Integrity Assessment Technologies for Large Cast Iron Water Mains - Paper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast-iron water main in Louisville, KY from July through Se...

  15. Corrosion Behavior of Cast Iron in Freely Aerated Stagnant Arabian Gulf Seawater

    PubMed Central

    Sherif, El-Sayed M.; Abdo, Hany S.; Almajid, Abdulhakim A.

    2015-01-01

    In this work, the results obtained from studying the corrosion of cast iron in freely aerated stagnant Arabian Gulf seawater (AGS) at room temperature were reported. The study was carried out using weight-loss (WL), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) investigations. WL experiments between two and 10 days’ immersion in the test electrolyte indicated that the weight-loss the cast iron increases with increasing the time of immersion. CPP measurements after 1 h and 24 h exposure period showed that the increase of time decreases the corrosion via decreasing the anodic and cathodic currents, as well as decreasing the corrosion current and corrosion rate and increasing the polarization resistance of the cast iron. EIS data confirmed the ones obtained by WL and CPP that the increase of immersion time decreases the corrosion of cast iron by increasing its polarization resistance.

  16. Technique Incorporating Cooling & Contraction / Expansion Analysis to Illustrate Shrinkage Tendency in Cast Irons

    NASA Astrophysics Data System (ADS)

    Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.

    2017-06-01

    With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.

  17. Changes Found on Run-In and Scuffed Surfaces of Steel Chrome Plate, and Cast Iron

    NASA Technical Reports Server (NTRS)

    Good, J. N.; Godfrey, Douglas

    1947-01-01

    A study was made of run-in and scuffed steel, chrome-plate, and cast-iron surfaces. X-ray and electron diffraction techniques, micro-hardness determinations, and microscopy were used. Surface changes varied and were found to include three classes: chemical reaction, hardening, and crystallite-size alteration. The principal chemical reactions were oxidation and carburization.

  18. Structural features and properties of deformed white cast iron alloyed with vanadium, niobium, and titanium

    NASA Astrophysics Data System (ADS)

    Agapova, L. I.; Vetrova, T. S.; Zhukov, A. A.

    1982-05-01

    Introduction of more than 0.02% titanium into white cast iron alloyed with vanadium or niobium leads to formation of complex carbides (V, Ti)C or (Nb, Ti)C of compact shape, and this provides a 15% increase in hot plasticity and 15-20% greater wear resistance.

  19. Certain laws of geometric thermodynamics of the graphitization of white cast irons

    NASA Astrophysics Data System (ADS)

    Il'inskii, V. A.; Zhukov, A. A.; Kostyleva, L. V.; Shchepetov, S. N.; Pakhnyushchii, I. O.

    1986-06-01

    The graphitization of white cast iron during annealing assumes a very complex character, and is accompanied by a change in mechanisms and factors responsible for growth of the graphite phase: preferential diffusion of carbon toward graphitization centers through eutectic cementite occurs in the first stage, and through austenite in the second.

  20. Monosemousness of Thermal Plastic Strain on Thermal Fatigue Life in Ferrite Ductile Cast Iron

    NASA Astrophysics Data System (ADS)

    Hayashi, Morihito; Mouri, Hayato

    In this study, the monosemous effect of thermal plastic strain on the thermal fatigue life is newly found on ferrite ductile cast iron around the alpha phase field. At first, the monosemousness is defined and its meaning described. Next, the monosemousness of thermal fatigue is demonstrated by its conditional equation and its existence is verified by the thermal fatigue test on ferrite ductile cast iron. By doing so, the feature on the thermal fatigue of ferrite ductile cast iron is clarified. Generally, it is considered that fatigue life in ferrite-matrix temperature range can be expressed at least by two or more different Arrhenius equations, namely there are two or more different activation mechanisms to govern the thermal fatigue life corresponding to various ferrite temperature ranges. In this case, for determining the life in any various ferrite temperature ranges, it must have at least four or more unknown quantities. If there is the presence of a general equation which is able to replace above described plural equations, then the life can be determined by simple one variable. Here, by introducing conditional equations, it is verified that the general equation is a Coffin and Manson's equation of low cycle fatigue and whole thermal fatigue life can be determined by a variable of thermal plastic strain occurred in thermal cycle. As a result, the law can apply to describe thermal fatigue phenomenon and predict thermal fatigue life monosemously from cyclic thermal plastic strain on ductile cast iron with ferrite matrix.

  1. Field Demonstration of Emerging Pipe Wall Integrity Assessment Technologies for Large Cast Iron Water Mains - Paper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,000-ft long, cement-lined, 24-in. cast-iron water main in Louisville, KY from July through Se...

  2. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  3. [Effect of biofilm on the corrosion and fouling of cast iron pipe for water supply].

    PubMed

    Teng, Fei; Guan, Yun-Tao; Li, Sha-Sha; Zhu, Wan-Peng

    2009-02-15

    The crystalline phase and the element composition in the scales on cast iron pipe for drinking water was identified with XRD and XPS respectively to investigate the effect of biofilm existence on the corrosion and fouling of cast iron pipe. The total iron concentration in the water phase was measured simultaneously. The results showed that on 0-7 d the total iron concentration was higher in the water phase of the group with biofilm growth, but on 15-30 d it was higher in the water phase of the control without biofilm growth. The major peak of XRD patterns for the scales with biofilm growth was characterized as Fe oxide, while for the scales in the control it was always characterized as CaCO3. As presented by XPS atomic ratio, the Ca atomic percentage in the scales with biofilm growth was lower than that in the scales in the control, which might be contributed to the Ca2+ absorption by extracellular polymeric substances or Ca2+ consumption by microorganism growth. In comparison with that in the scales in the control, the iron atomic percentage in the scales with biofilm growth was higher on 7 d, while lower after 7 d. It can be concluded that on 0-7 d the existence of biofilm could promote the corrosion of cast iron pipe while inhibit corrosion after 7 d. The variance of major peak of XRD pattern and XPS atomic ratio indicated that biofilm had important effect on the configuration and composition of the scales of cast iron pipe. The corrosion inhibition of biofilm thus provided a new pathway to control the corrosion of metal pipes in drinking water distribution system.

  4. Using the anti-adherence paints to manufacturing of the moulds intended for iron castings

    NASA Astrophysics Data System (ADS)

    Josan, A.; Pinca Bretotean, C.

    2017-01-01

    The paper presents the critical technology for obtaining of the lamellar graphite grey cast iron castings (Supporting roll type). Are presented the stages of achievement of the mould and the elaboration technology of the liquid alloy. A view to improving the qualitative characteristics of the castings and reducing the defects due to achievement of moulds it is necessary to use the antiadherence paints for moulds and cores. From the point of view of the cost the antiadherence paints belong to the expensive material category. But these expenses are done with their acquisition are amortized into account of improving the commercial aspect of the castings and shortening of the cleaning-finishing operations. Due to increase the resistance of the moulds and cores which they apply it is possible to decrease the machining allowance.

  5. Structure and Hardness of Cast Iron after Surface Hardening

    NASA Astrophysics Data System (ADS)

    Safonov, E. N.

    2005-09-01

    Special features of structure formation in the heat-affected zone of roll-foundry iron with flaked or globular graphite due to surface heat treatment by direct electric (plasma) arc are considered. The influence of the parameters of the process on the composition, structure, and properties of the hardened zone is studied. Treatment modes ensuring a structure with enhanced hardness and wear resistance in the surface layer of iron are determined.

  6. Tensile Properties of Al-Cu 206 Cast Alloys with Various Iron Contents

    NASA Astrophysics Data System (ADS)

    Liu, K.; Cao, X.; Chen, X.-G.

    2014-05-01

    The Al-Cu 206 cast alloys with varying alloy compositions ( i.e., different levels of Fe, Mn, and Si) were investigated to evaluate the effect of the iron-rich intermetallics on the tensile properties. It is found that the tensile strength decreases with increasing iron content, but its overall loss is less than 10 pct over the range of 0.15 to 0.5 pct Fe at 0.3 pct Mn and 0.3 pct Si. At similar iron contents, the tensile properties of the alloys with dominant Chinese script iron-rich intermetallics are generally higher than those with the dominant platelet phase. In the solution and artificial overaging condition (T7), the tensile strength of the 206 cast alloys with more than 0.15 pct Fe is satisfactory, but the elongation does not sufficiently meet the minimum requirement of ductility (>7 pct) for critical automotive applications. However, it was found that both the required ductility and tensile strength can be reached at high Fe levels of 0.3 to 0.5 pct for the alloys with well-controlled alloy chemistry and microstructure in the solution and natural aging condition (T4), reinforcing the motivation for developing recyclable high-iron Al-Cu 206 cast alloys.

  7. Machinability of clean thin-wall gray and ductile iron castings. Final report

    SciTech Connect

    Bates, C.E.; Littleton, H.E.; Eleftheriou, E.; Griffin, R.D.; Dwyer, Z.B.; DelSorbo, C.; Sprague, J.

    1997-02-01

    First phase was to develop a laboratory technique for evaluating the machinability of gray and ductile iron; longer term goal is to learn how to modify the foundry process to produce castings meeting all specified mechanical properties while providing improved machining behavior. Microcarbides present in the irons were found to dominate the machinability of iron. Pearlitic irons with acceptable machinability contain 8.9 to 10.5 wt% microcarbides. The weight fraction microcarbides in the iron is influenced by carbide forming element concentrations, presence of elements that retard carbon diffusion, and cooling rate from the eutectic through the eutectoid temperature range. Tool wear rate increased at higher surface machining speeds and fraction microcarbides; all irons containing above 11.5% microcarbides had poor machinability. Graphite size, shape, distribution, etc. had a lesser effect on machinability. Reducing the addition of a foundry grade Ca and Al bearing 75% FeSi inoculant from 0.5 to 0.2% increased the tool life 100%. Inoculation test castings were also poured in a class 40 gray iron; laboratory analysis is currently underway. Exploratory studies were conducted to determine if tool force could be used to predict tool life: torque and feed forces were found to correlate with machinability.

  8. Thermal Microstructural Multiscale Simulation of Solidification and Eutectoid Transformation of Hypereutectic Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Urrutia, Alejandro; Celentano, Diego J.; Gunasegaram, Dayalan R.; Deeva, Natalia

    2014-08-01

    Although the gray cast iron solidification process has been the subject of several modeling studies, almost all available models appear to deal with only the more widely used hypoeutectic compositions. Models related to hypereutectic gray iron compositions with lamellar (or flake) graphite, and in particular for the proeutectic and eutectoid zones, are hard to find in the open literature. Hence, in the present work, a thermal microstructural multiscale model is proposed to describe the solidification and eutectoid transformation of a slightly hypereutectic composition leading to lamellar graphite gray iron morphology. The main predictions were: (a) temperature evolutions; (b) fractions of graphite, ferrite, and pearlite; (c) density; and (d) size of ferrite, pearlite, and gray eutectic grains; (e) average interlamellar graphite spacing; and (f) its thickness. The predicted cooling curves and fractions for castings with two different compositions and two different pouring temperatures were validated using experimental data. The differences between this model and existing models for hypoeutectic compositions are discussed.

  9. Physicochemical studies of glucose, gellan gum, and hydroxypropyl cellulose--inhibition of cast iron corrosion.

    PubMed

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy

    2013-06-05

    Glucose, gellan gum, and hydroxypropyl cellulose were studied against the acid corrosion of cast iron by means of weight loss, potentiodynamic polarization, and AC impedance spectroscopy techniques. The inhibition efficiency was found to increase with increasing concentration of the inhibitors. The effect of immersion time and temperature were also studied. The addition of potassium iodide to the corrosion-inhibition system showed both antagonism and synergism toward inhibition efficiency. Polarization studies revealed the mixed-type inhibiting nature of the carbohydrates. The adsorption of inhibitors on the cast iron surface obeys Langmuir adsorption isotherm model, both in presence and absence of KI. Physical interaction between the inhibitor molecules and the iron surface was suggested by the thermochemical parameters, rather than chemical interaction.

  10. Effects of alloying elements on the microstructure and fatigue properties of cast iron for internal combustion engine exhaust manifolds

    NASA Astrophysics Data System (ADS)

    Eisenmann, David J.

    In the design of exhaust manifolds for internal combustion engines the materials used must exhibit resistance to corrosion at high temperatures while maintaining a stable microstructure. Cast iron has been used for manifolds for many years by auto manufacturers due to a combination of suitable mechanical properties, low cost, and ease of casting. Over time cast iron is susceptible to microstructural changes, corrosion, and oxidation which can result in failure due to fatigue. This thesis seeks to answer the question: "Can observed microstructural changes and measured high temperature fatigue life in cast iron alloys be used to develop a predictive model for fatigue life?" the importance of this question lies in the fact that there is little data for the behavior of cast iron alloys at high temperature. For this study two different types of cast iron, 50HS and HSM will be examined. Of particular concern for the high Si+C cast irons (and Mo in the case of the HSM cast iron) are subsurface microstructural changes that result due to heat treatment including (1) decarburization, (2) ferrite formation, (3) graphitization, (4) internal oxidation of the Si, (5) high temperature fatigue resistance, and (6) creep potential. Initial results obtained include microstructure examination after being exposed to high temperatures, grain size, nodule size, and hardness measurements. The initial examinations concluded that both cast irons performed fairly similarly, although the microstructure of the HSM samples did show slightly better resistance to high temperature as compared to that of the 50HS. Follow on work involved high temperature fatigue testing of these two materials in order to better determine if the newer alloy, HSM is a better choice for exhaust manifolds. Correlations between fatigue performance and microstructure were made and discussed, with the results examined in light of current and proposed models for predicting fatigue performance based on computational methods

  11. Development of a Cast Iron Fatigue Properties Database for use with Modern Design Methods

    SciTech Connect

    DeLa'O, James, D.; Gundlach, Richard, B.; Tartaglia, John, M.

    2003-09-18

    A reliable and comprehensive database of design properties for cast iron is key to full and efficient utilization of this versatile family of high production-volume engineering materials. A database of strain-life fatigue properties and supporting data for a wide range of structural cast irons representing industry standard quality was developed in this program. The database primarily covers ASTM/SAE standard structural grades of ADI, CGI, ductile iron and gray iron as well as an austempered gray iron. Twenty-two carefully chosen materials provided by commercial foundries were tested and fifteen additional datasets were contributed by private industry. The test materials are principally distinguished on the basis of grade designation; most grades were tested in a 25 mm section size and in a single material condition common for the particular grade. Selected grades were tested in multiple sections-sizes and/or material conditions to delineate the properties associated with a range of materials for the given grade. The cyclic properties are presented in terms of the conventional strain-life formalism (e.g., SAE J1099). Additionally, cyclic properties for gray iron and CGI are presented in terms of the Downing Model, which was specifically developed to treat the unique stress-strain response associated with gray iron (and to a lesser extent with CGI). The test materials were fully characterized in terms of alloy composition, microstructure and monotonic properties. The CDROM database presents the data in various levels of detail including property summaries for each material, detailed data analyses for each specimen and raw monotonic and cyclic stress-strain data. The CDROM database has been published by the American Foundry Society (AFS) as an AFS Research Publication entitled ''Development of a Cast Iron Fatigue Properties Database for Use in Modern Design Methods'' (ISDN 0-87433-267-2).

  12. Solidification and solid-state transformation mechanisms in Si alloyed high-chromium white cast irons

    NASA Astrophysics Data System (ADS)

    Laird, George; Powell, Graham L. F.

    1993-04-01

    Chromium white cast irons are widely used in environments where severe abrasion resistance is a dominant requirement. To improve the wear resistance of these commercially important irons, the United States Bureau of Mines and CSIRO Australia are studying their solidification and solid-state transformation kinetics. A ternary Fe-Cr-C iron with 17.8 wt pct (pct) Cr and 3.0 pct C was compared with commercially available irons of similar Cr and C contents with Si contents between 1.6 and 2.2 pct. The irons were solidified and cooled at rates of 0.03 and 0.17 K · s-1 to 873 K. Differential thermal analysis (DTA) showed that Si depresses the eutectic reaction temperature and suggests that is has no effect upon the volume of eutectic carbides formed during solidification. Microprobe analysis revealed that austenite dendrites within the Si alloyed irons cooled at 0.03 and 0.17 K·s-1 had C and Cr contents that were lower than those of dendrites within the ternary alloy cooled at the same cooling rate and a Si alloyed iron that was water quenched from the eutectic temperature. These lower values were shown by image analysis to be the result of both solid-state growth (coarsening) of the eutectic carbides and some secondary carbide formation. Hardness measurements in the as-cast condition and after soaking in liquid nitrogen suggest an increase in the martensite start temperature as the Si content was increased. It is concluded that Si’s effect on increasing the size and volume fraction of eutectic carbides and increasing the matrix hardness should lead to improved wear resistance over regular high-chromium white cast irons.

  13. 3D Quantitative Analysis of Graphite Morphology in Ductile Cast Iron by X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Yin, Yajun; Tu, Zhixin; Zhou, Jianxin; Zhang, Dongqiao; Wang, Min; Guo, Zhao; Liu, Changchang; Chen, Xiang

    2017-08-01

    In this article, X-ray microtomography and color metallographic techniques have been used to perform three-dimensional quantitative characterization of graphite nodule morphology in a step-shaped ductile cast iron casting. Statistical analyses of the graphite nodule count, diameter, sphericity, and spatial distribution have been processed for three samples in detail. The results reveal that graphite nodules in ductile cast iron can be categorized into two categories. The first types are nodules located in eutectic cells (NIECs), and the other one refers to nodules located between the eutectic cells (NBECs). The NIECs possess a larger average diameter but smaller sphericity compared with the NBECs, and the sphericity decreases along with the increasing of diameter. The increasing casting thickness results in an increasing count and percentage of NBECs. In addition, most nodules are NIECs in thin walls instead of NBECs in thick walls. Nonuniform spatial distributions of graphite nodules caused by the existence of NBECs have been found to become more obvious along with the increase of cast thickness.

  14. Fatigue limit prediction of ferritic-pearlitic ductile cast iron considering stress ratio and notch size

    NASA Astrophysics Data System (ADS)

    Deguchi, T.; Kim, H. J.; Ikeda, T.

    2017-05-01

    The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.

  15. Effect of electrode and weld current on the physical and mechanical properties of cast iron welding

    NASA Astrophysics Data System (ADS)

    Chamim, M.; Triyono, Diharjo, Kuncoro

    2017-01-01

    Metal casting industry will repair the products are defective. The repair process is often done using a Shielded Metal Arc Welding (SMAW). Preheat and post-weld heat treatment method can overcome the problem of welding cast iron. However, many of the local foundry industry does not use this method. The main problem of the method relates to the problem of cost and process. The results of testing Scanning Electron Microscopy (SEM), gray cast iron welding seen to have an important problem in the PMZ and HAZ. Hard and brittle phase formations during solidification process and after solidification formation eutectoid is carbide and martensite. The formation of martensite and carbides is caused by the high carbon content of cast iron. Consumable electrode with a nickel base material used for the welding process without preheating and PWHT methods. Nickel as an austenite stabilizer can pick up the carbon, so that the hard phase PMZ area can be reduced. Variations electric current used to get good heat input in the welding area so that nickel can diffuse well.

  16. High-Temperature Low-Cycle Fatigue Property of Heat-Resistant Ductile-Cast Irons

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun; Jang, Ho; Oh, Yong-Jun

    2009-09-01

    This study examined the high-temperature degradation behavior of two types of heat-resistant Si-Mo ductile cast iron (Fe-3.4C-3.7Si-0.4Mo and Fe-3.1C-4.5Si-1.0Mo) with particular attention paid to the mechanical properties and overall oxidation resistance. Tension and low-cycle fatigue properties were examined at 600 °C and 800 °C. The mechanical tests and metallographic and fractographic analyses showed that cast iron containing higher Si and Mo contents had a higher tensile strength and longer fatigue life at both temperatures than cast iron with lower levels due to the phase transformations of pearlite and carbide. The Coffin-Manson type equation was used to assess the fatigue mechanism suggesting that the higher Si-Mo alloy was stronger but less ductile than the lower Si-Mo alloy at 600 °C. However, similar properties for both alloys were observed at 800 °C because of softening and oxidation effects. Analysis of the isothermal oxidation behavior at those temperatures showed that mixed Fe2SiO4 layers were formed and the resulting scaling kinetics was much faster for low Si-Mo containing iron. With increasing temperature, subsurface degradation such as decarburization, voids, and cracks played a significant role in the overall oxidation resistance.

  17. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Martin f. Helmke,

    2014-01-01

    Sampling cast iron produced by the furnace posed two problems. First, verification that the iron was actually cast at Hopewell Furnace was necessary, as some iron objects found at Hopewell may not have originated there. This was accomplished by using artifacts on display at the Hopewell visitor center (fig. 2). All artifacts on display have been positively attributed to the furnace, and stoves produced by the furnace are easily recognized by the name “Hopewell” cast into them. The second problem was the analysis of the trace metal content of the cast iron, because it was not possible to break off part of a historically important artifact and send it to a laboratory for analysis. This problem was solved when the USGS collaborated with West Chester University, which owns a portable X-ray fluorescence (XRF) spectrometer.

  18. Structure and properties of a steel/white-cast-iron bimetal produced by method of carbonizing the steel melt

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, S. Z.

    1985-11-01

    Centrifugal bimetallization by the method of carbonizing the steel melt makes it possible to obtain a steel/white-cast-iron composition with a cladding layer close to the eutectic in terms of composition.

  19. Effects of grain refinement on the microstructure, mechanical properties and reliability of AlSi7Cu3Mg gravity die cast cylinder heads

    NASA Astrophysics Data System (ADS)

    Timelli, Giulio; Camicia, Giordano; Ferraro, Stefano; Molina, Roberto

    2014-07-01

    The effects of grain refinement on the microstructure and mechanical properties of a secondary AlSi7-Cu3Mg gravity die cast cylinder head are reported. Metallographic and image analysis techniques have been used to quantitatively examine the macro- and microstructural changes occurring with the addition of grain-refining agent. The results indicate that the AlTi5B1 addition produces a fine and uniform grain structure throughout the casting; this effect is more pronounced in the slowly solidified regions. The initial contents of Ti and B, which are present as impurity elements in the supplied secondary alloy ingots, are not sufficient to produce effective grain refinement. Under the present casting conditions, the combined addition of AlTi5B1 and Sr does not produce any reciprocal interaction or effect on primary α-Al and eutectic solidification. Grain refinement improves the mechanical properties of the as-cast AlSi7Cu3Mg alloy and produces higher Weibull moduli, thus increasing the reliability of the casting. For automotive structural components, this could be considered an increase in safety.

  20. Effect of Heat Treatment on the Impact Toughness of `High-Chromium Cast Iron - Low Alloy Steel' Bimetal Components

    NASA Astrophysics Data System (ADS)

    Özdemir, Z.

    2017-03-01

    A bimetallic `low-alloy steel - high-chromium cast iron' composite obtained by successive sand casting is studied and shown to have good cohesion on the interface and no casting defects. The hardness and the impact toughness of the bimetal increase simultaneously. The microstructure is more homogeneous after diffusion annealing at 1040°C, rapid cooling, and 3-h tempering at 270°C.

  1. Influence of Multiple Bionic Unit Coupling on Sliding Wear of Laser-Processed Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Zhang, Peng; Sui, Qi; Zhao, Kai; Zhou, Hong; Ren, Luquan

    2017-04-01

    In this study, in effort to improve the sliding wear resistance of gray cast iron under wet lubrication conditions, specimens with different bionic units were manufactured and modified according to bionic theory. Inspired by the structure and appearance of biological wear-resistant skin, two kinds of bionic units were processed by laser on the specimen surfaces. We investigated the wear resistance properties of the samples via indentation method and then observed the wear surface morphology of specimens and the stress distributions. The results indicated that coupling the bionic units enhanced the wear resistance of the cast iron considerably compared to the other samples. We also determined the mechanism of wear resistance improvement according to the results.

  2. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    NASA Astrophysics Data System (ADS)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-12-01

    Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  3. Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser

    PubMed Central

    Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230

  4. Influence of Multiple Bionic Unit Coupling on Sliding Wear of Laser-Processed Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Zhang, Peng; Sui, Qi; Zhao, Kai; Zhou, Hong; Ren, Luquan

    2017-03-01

    In this study, in effort to improve the sliding wear resistance of gray cast iron under wet lubrication conditions, specimens with different bionic units were manufactured and modified according to bionic theory. Inspired by the structure and appearance of biological wear-resistant skin, two kinds of bionic units were processed by laser on the specimen surfaces. We investigated the wear resistance properties of the samples via indentation method and then observed the wear surface morphology of specimens and the stress distributions. The results indicated that coupling the bionic units enhanced the wear resistance of the cast iron considerably compared to the other samples. We also determined the mechanism of wear resistance improvement according to the results.

  5. Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids

    PubMed Central

    Sherif, El-Sayed M.; Abdo, Hany S.; Zein El Abedin, Sherif

    2015-01-01

    In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) and 1-butyl-1-methylpyrrolidinium chloride ([Py1,4]Cl). The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs). Compared with [Py1,4]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py1,4]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier. PMID:28793413

  6. Numerical modeling and experimental validation of microstructure in gray cast iron

    NASA Astrophysics Data System (ADS)

    Jabbari, Masoud; Davami, Parviz; Varahram, Naser

    2012-10-01

    To predict the amount of different phases in gray cast iron by a finite difference model (FDM) on the basis of cooling rate ( R), the volume fractions of total γ phase, graphite, and cementite were calculated. The results of phase composition were evaluated to find a proper correlation with cooling rate. More trials were carried out to find a good correlation between the hardness and phase composition. New proposed formulas show that the hardness of gray cast iron decreases as the amount of graphite phase increases, and increases as the amount of cementite increases. These formulas are developed to correlate the phase volume fraction to hardness. The results are compared with experimental data and show reasonable agreement.

  7. Enhanced densification of white cast iron powders by cyclic phase transformations under stress

    NASA Astrophysics Data System (ADS)

    Ruano, Oscar A.; Wadsworth, Jeffrey; Sherby, Oleg D.

    1982-03-01

    It is shown that densification of white cast iron powders under stress can be enhanced by multiple phase transformations through thermal cycling. This enhancement occurs by accelerated creep flow during phase changes (transformation superplasticity). The approximate stress range where transformation-assisted densification can occur is shown to be between 1.7 MPa (250 psi) and 34.5 MPa (5000 psi). Below 1.7 MPa insufficient strain occurs during phase transformation to cause significant densification even after many transformation cycles. Above 34.5 MPa, densification occurs principally by normal slip creep. Transformation warm pressing of white cast iron powders leads to dense compacts at low pressures and short times. In addition, because the transformation temperature is low, the ultrafine structures existing in the original powders are retained in the densified compacts.

  8. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater.

    PubMed

    Jin, Juntao; Wu, Guangxue; Zhang, Zhenhua; Guan, Yuntao

    2014-08-01

    Microorganisms were cultured in the R2A medium with inoculum from biofilm in a reclaimed wastewater distribution system and then extracellular polymeric substances (EPS) were extracted from the culture. Characterization of EPS and their effects on the corrosion of cast iron were examined. EPS extracted from different culturing stages contained different proportions of protein and polysaccharide but with similar functional groups. All types of EPS could inhibit cast iron corrosion and the EPS from the stationary stage had the highest inhibition efficiency. The inhibition efficiency was increased with addition of a small amount of EPS while decreased with excessive amount of EPS. EPS formed a protective film on the metal surface, which retarded the cathodic reduction of oxygen. Excessive amount of EPS promoted anodic dissolution through EPS-Fe binding. The CO and C(O, N) in EPS could be the anodic electrochemical sites with possible products of C(C, H).

  9. Correlation of microstructure with the wear resistance and fracture toughness of white cast iron alloys

    NASA Astrophysics Data System (ADS)

    Filipovic, M.; Kamberovic, Z.; Korac, M.; Gavrilovski, M.

    2013-05-01

    The objective of this investigation was to set down (on the basis of the results obtained by the examination of white cast iron alloys with different contents of alloying elements) a correlation between chemical composition and microstructure, on one hand, and the properties relevant for this group of materials, i.e., wear resistance and fracture toughness, on the other. Experimental results indicate that the volume fraction of the eutectic carbide phase (M3C or M7C3) have an important influence on the wear resistance of white iron alloys under low-stress abrasion conditions. Besides, the martensitic or martensite-austenitic matrix microstructure more adequately reinforced the eutectic carbides, minimizing cracking and removal during wear, than did the austenitic matrix. The secondary carbides which precipitate in the matrix regions of high chromium iron also influence the abrasion behaviour. The results of fracture toughness tests show that the dynamic fracture toughness in white irons is determined mainly by the properties of the matrix. The high chromium iron containing 1.19 wt% V in the as-cast condition, showed the greater fracture toughness when compared to other experimental alloys. The higher toughness was attributed to strengthening during fracture, since very fine secondary carbide particles were present mainly in an austenitic matrix.

  10. Special Features of the Microstructure of Cast Iron with Spheroidal Graphite

    NASA Astrophysics Data System (ADS)

    Chaus, A. S.

    2015-11-01

    Metallographic and microscopic x-ray spectrum analyses are used to study the special features of the microstructure of perlite-ferrite cast iron with spheroidal graphite. The internal polycrystalline structure of the spheroidal graphite is discussed, and the presence of ferrite precipitates over the boundaries of pyramidal crystals forming spherulites is proved. Data qualifying the nature of nucleus in a spheroidal graphite inclusion are presented.

  11. The effect of rolling on graphitization characteristics of strip cast Fe-C-Si white cast iron

    SciTech Connect

    Song, J.M.; Kuo, B.C.; Lui, T.S.; Chen, L.H.

    2000-01-01

    This study examined the first-stage graphitization of white cast iron strip after rolling. Experimental results confirmed that prerolling promotes and accelerates graphitization. The critical complete graphitization time was significantly shortened even after a small rolling reduction, and the number of temper graphite particles increased with increasing rolling reduction. Some of the evidence confirmed that these effects can be attributed to microstructural defects introduced by prerolling. These defects contribute to a shorter incubation period, a decreased complete graphitization time, and an increased number of temper graphite nucleation sites. In addition, this study adds further evidence to the assumption that graphite nucleation occurs at the interface between eutectic cementite and matrix, particularly in deformation cracking on eutectic cementite.

  12. Health Implications of PAH Release from Coated Cast Iron Drinking Water Distribution Systems in the Netherlands

    PubMed Central

    van de Ven, Bianca M.; de Jongh, Cindy M.

    2013-01-01

    Background: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. Objective: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. Method: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. Results: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. Conclusions: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations. PMID:23425894

  13. Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron

    NASA Astrophysics Data System (ADS)

    Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.

    2017-05-01

    Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.

  14. Three dimensional finite element analysis and optimal design of cast-iron bronze-inlaid gate

    NASA Astrophysics Data System (ADS)

    Tang, Liangbao; Fang, Yuefei

    2005-12-01

    The three-dimensional finite element model of the body of cast-iron bronze-inlaid gate is established to calculate its deformation and stress. By calculation, we obtain the law of deformation and stress under static water pressure. Then we optimize the structure of the body of cast-iron bronze-inlaid gate vie above calculation results. To validate the effect of proposed method, an engineering example of 1000mm×1500mm gate in a certain sewage process plant is introduced. The comparisons are made between the calculation results of the proposed method and those obtained by conventional design. The comparison results show that three dimensional finite element methods can obtain the actual stress and deformation of the gate body under static water pressure. In addition, we further optimize the structure and dimension of the cast-iron bronze-inlaid gate. The final optimization results show that the proposed method can reduce the weight of the gate by 20% compared those results by conventional design.

  15. Effect of Titanium on the Mechanical Properties and Microstructure of Gray Cast Iron for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Gelfi, M.; Gorini, D.; Pola, A.; La Vecchia, G. M.

    2016-09-01

    Lamellar gray cast iron, with a mainly pearlitic microstructure, is widely used in the automotive industry, mostly in the manufacturing of brake disks. This work analyzes in depth the effects of small variations of titanium content on the microstructure and mechanical properties of cast iron brake disks. For this purpose, eight different heats of EN-GJL-250 cast iron were selected, with a similar chemical composition but with different titanium contents, varying from 0.013 to 0.031%. The drops in mechanical strength and hardness values measured on the high-Ti samples were correlated to microstructural variations quantitatively observed by means of optical and scanning electron microscope. It was found that titanium combines to form titanium nitrides, suppressing the beneficial microstructural effects of nitrogen at solidification. Residual nitrogen, if present in sufficient quantity, promotes the nucleation of primary austenite from the liquid and the formation of a fine microstructure, with small eutectic cells and lower graphite content. Such a microstructure provides brake disks with better mechanical properties. The interpretation of results was further supported by thermal analysis and thermodynamic calculations.

  16. Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    PubMed

    Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie

    2013-05-01

    Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.

  17. Auto-analysis system for graphite morphology of grey cast iron

    PubMed Central

    Jiang, Hong; Tan, Yiyong; Lei, Junfeng; Zeng, Libo; Zhang, Zelan

    2003-01-01

    The current method to classify graphite morphology types of grey cast iron is based on traditional subjective observation, and it cannot be used for quantitative analysis. Since microstructures have a great effect on the mechanical properties of grey cast iron and different types have totally different characters, six types of grey cast iron are discussed and an image-processing software subsystem that performs the classification and quantitative analysis automatically based on a kind of composed feature vector and artificial neural network (ANN) is described. There are three kinds of texture features: fractal dimension, roughness and two-dimension autoregression, which are used as an extracted feature input vector of ANN classifier. Compared with using only one, the checkout correct precision increased greatly. On the other hand, to achieve the quantitative analysis and show the different types clearly, the region segmentation idea was applied to the system. The percentages of the regions with different type are reported correctly. Furthermore, this paper tentatively introduces a new empirical method to decide the number of ANN hidden nodes, which are usually considered as a difficulty in ANN structure decision. It was found that the optimum hidden node number of the experimental data was the same as that obtained using the new method. PMID:18924718

  18. Effect of Mould Coating on Skin Formation and Nodule Characteristics of Thin Wall Ductile Iron Casting

    NASA Astrophysics Data System (ADS)

    Dhaneswara, D.; Suharno, B.; Aprilio, A.; Ariobimo, R. D. S.; Sofyan, N.

    2017-05-01

    Thin wall ductile iron (TWDI) has the potential alternative for lightweight aluminium use in automotive parts. The main problem in TWDI, however, is the formation of skin during the casting, which may reduce its mechanical properties. This casting skin is formed by the decomposition of nodular graphite at the mould interface during the casting process. One of the ways to work around this problem is by using mould coating to control the cooling process. In this work, three variables of mould coatings were used, i.e. graphite, MgO, and MgO/graphite double layers. The results showed that the average casting skin thickness in double layer coating was the lowest (30.41 μm), 57% lower than that of in MgO (71.46 μm) and 60% lower than that of graphite (74.44 μm). The reduction of casting skin thickness increased the mechanical properties of TWDI (346 MPa), 69% higher than that of MgO (223 MPa) and 26% higher than that of graphite (297 MPa). The same is true for ductility (2.7%), which was higher than that of MgO (1.43%) and that of graphite (1.43%).

  19. Threading on ADI Cast Iron, Developing Tools and Conditions

    NASA Astrophysics Data System (ADS)

    Elósegui, I.; de Lacalle, L. N. López

    2011-01-01

    The present work is focussed on the improvement of the design and performance of the taps used for making threaded holes in ADI (Austempered Ductile Iron). It is divided in two steps: a) The development of a method valid to compare the taps wear without reaching the end of their life, measuring the required torque to make one threaded hole, after having made previously a significant number of threaded holes. The tap wear causes some teeth geometrical changes, that supposes an increase in the required torque and axial force. b) The taps wear comparison method is open to apply on different PVD coated taps, AlTiN, AlCrSiN, AlTiSiN, , and to different geometries.

  20. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2004-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  1. 104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF THE INCLINED BUTTRESSES FOR POWER HOUSE REINFORCEMENT IN 1916. AN AIR LOCK WAS PLACED ON TOP OF THE CYLINDER: THE LOWER PORTION OF THE VERTICAL ELEMENT RESTED ON THE POWER HOUSE FOUNDATION APRON: THE INCLINED ELEMENT WAS CUT LEVEL WITH THE RIVER BED. THE INCLINED PORTION OF THE CYLINDER CONTAINED THE SHIELD USED TO BEGIN THE ERECTION OF THE SEGMENTED INCLINED CAST IRON BUTTRESSES. (764) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  2. The Role of Silicon in the Solidification of High-Cr Cast Irons

    NASA Astrophysics Data System (ADS)

    Bedolla-Jacuinde, A.; Rainforth, M. W.; Mejía, I.

    2013-02-01

    This work analyzes the effect of different additions of silicon (0 to 5.0 pct) on the structure of a high-Chromium white cast iron, with chromium content of 16.8 pct and carbon 2.56 pct. The alloys were analyzed in both as-cast and heat-treated conditions. Casting was undertaken in metallic molds that yielded solidification rates faster than in commercial processes. Nevertheless, there was some degree of segregation of silicon; this segregation resulted in a refinement in the microstructure of the alloy. Silicon also generated a greater influence on the structure by destabilizing the austenitic matrix, and promoted greater precipitation of eutectic carbides. Above 3 pct silicon, pearlite formation occurred in preference to martensite. After the destabilization heat treatment, the matrix structure of the irons up to 3 pct Si consisted of secondary carbides in a martensitic matrix with some retained austenite; higher Si additions produced a ferritic matrix. The different as-cast and heat-treated microstructures were correlated with selected mechanical properties such as hardness, matrix microhardness, and fracture toughness. Silicon additions increased matrix microhardness in the as-cast conditions, but the opposite phenomenon occurred in the heat-treated conditions. Microhardness decreased as silicon content was increased. Bulk hardness showed the same behavior. Fracture toughness was observed to increase up to 2 pct Si, and then decreased for higher silicon contents. These results are discussed in terms of the effect of eutectic carbides' size and the resulting matrix due to the silicon additions.

  3. Production and Machining of Thin Wall Gray and Ductile Cast Iron

    SciTech Connect

    Fleischman, E.H.; Li, H.; Griffin, R.; Bates, C.E.; Eleftheriou, E.

    2000-11-03

    The University of Alabama at Birmingham, in cooperation with the American Foundry Society, companies across North America, with support from the U.S. Department of Energy, is conducting a project to develop an understanding of the factors that control the machinability of cast gray and ductile iron. Differences of as much as 500% have been found in machinability have been observed at the same strength. The most machinable irons were those with a high cell counts and few carbonitride inclusions. Additions of tin and copper can be added to both gray and ductile iron to stabilize the pearlite, but excessive additions (above those required to produce the desired pearlite content) degrade the machinability.

  4. Statistical analyses of field corrosion data for ductile cast iron pipes buried in sandy marine sediments

    SciTech Connect

    Kajiyama, F.; Koyama, Y.

    1997-02-01

    Field corrosion studies were conducted on bare, ductile cast iron pipes buried 17 y in sandy marine sediment classified as sandy soil and containing iron bacteria, sulfate-reducing bacteria (SRB), and other bacteria. Chemical and biochemical analyses of the sediment were performed in the laboratory. Correlation between the maximum corrosion depth (P{sub max}) and 21 environmental factors was evaluated by applying a correlation analysis. On that basis, the factors controlling corrosion damage were considered by quantification theory analysis. A corrosion mechanism was presented to explain the corrosion phenomena. The corrosion site had a positive correlation with the anaerobic site, characterized by particularly high levels of water content and ferrous sulfide generated by SRB. Corrosion was classified as graphitic and attributed to formation of extensive tubercles resulting from high activity of iron bacteria in the bicarbonate enriched soil.

  5. Effect of Chromium on Microstructure and Properties of High Boron White Cast Iron

    NASA Astrophysics Data System (ADS)

    Liu, Zhongli; Chen, Xiang; Li, Yanxiang; Hu, Kaihua

    2008-03-01

    In this article, the effect of chromium on microstructure and properties of high boron white cast iron was studied. The results indicate that the microstructure of high boron white cast iron with different chromium content comprises a dendritic matrix and interdendritic eutectics, and the eutectic compound has a M2B-type chemical formula that does not change with the difference of chromium content. The increase of chromium not only increases the microhardness of boride, but also improves the morphology of boride, which is changed from continuous network to less continuous distribution. Moreover, with the chromium increase, martensite appears in the matrix under the as-cast condition, the appearance of which depends on the increase of chromium in the matrix and the uneven distribution of carbon in the matrix caused by chromium addition. After quenching in air, the matrixes of alloys all change to martensite. However, some secondary particles are found in the central area of the dendrite grains of alloys with higher chromium, and their existence is due to the difference of boron solubility in the matrix with different chromium content. In addition, the hardenability, hardness, and impact toughness are all improved with the increase in chromium.

  6. Bond Strength of Multicomponent White Cast Iron Coatings Applied by HVOF Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Maranho, Ossimar; Rodrigues, Daniel; Boccalini, Mario; Sinatora, Amilton

    2009-12-01

    Multicomponent white cast iron is a new alloy that belongs to system Fe-C-Cr-W-Mo-V, and because of its excellent wear resistance it is used in the manufacture of hot rolling mills rolls. To date, this alloy has been processed by casting, powder metallurgy, and spray forming. The high-velocity oxyfuel process is now also considered for the manufacture of components with this alloy. The effects of substrate, preheating temperature, and coating thickness on bond strength of coatings have been determined. Substrates of AISI 1020 steel and of cast iron with preheating of 150 °C and at room temperature were used to apply coatings with 200 and 400 μm nominal thickness. The bond strength of coatings was measured with the pull-off test method and the failure mode by scanning electron microscopic analysis. Coatings with thickness of 200 μm and applied on substrates of AISI 1020 steel with preheating presented bond strength of 87 ± 4 MPa.

  7. Cast Iron Inoculation Enhanced by Supplementary Oxy-sulfides Forming Elements

    NASA Astrophysics Data System (ADS)

    Riposan, Iulian; Stan, Stelian; Uta, Valentin; Stefan, Ion

    2017-08-01

    Inoculation is one of the most important metallurgical treatments applied to the molten cast iron immediately prior to casting, to promote solidification without excessive eutectic undercooling, which favors carbides formation usually with undesirable graphite morphologies. The paper focused on the separate addition of an inoculant enhancer alloy [S, O, oxy-sulfides forming elements] with a conventional Ca-FeSi alloy, in the production of gray and ductile cast irons. Carbides formation tendency decreased with improved graphite characteristics as an effect of the [Ca-FeSi + Enhancer] inoculation combination, when compared to other Ca/Ca, Ba/Ca, RE-FeSi alloy treatments. Adding an inoculant enhancer greatly enhances inoculation, lowers inoculant consumption up to 50% or more and avoids the need to use more costly inoculants, such as a rare earth bearing alloy. The Inoculation Specific Factor [ISF] was developed as a means to more realistically measure inoculant treatment efficiency. It compares the ratio between the improved characteristic level and total inoculant consumption for this effect. Addition of any of the commercial inoculants plus the inoculant enhancer offered outstanding inoculation power [increased ISF] even at higher solidification cooling rates, even though the total enhancer addition was at a small fraction of the amount of commercial inoculant used.

  8. Short-duration gas nitriding of parts made of high-strength cast iron in the gaz joint-stock company

    NASA Astrophysics Data System (ADS)

    Starostin, V. N.; Pytyaeva, E. I.; Pershina, V. V.

    1998-10-01

    Castings of high-strength iron are use very widely. The range of automobile parts cast from iron with globular graphite is widening. It includes crankshafts and camshafts, flywheels, crankcases, various engine parts, etc. In order to increase hardness of the surface layer, the wear resistance, and the service life of parts made of high-strength cast iron, they are often subjected to nitriding. The present work is aimed at studying the nitriding process for parts made of VCh70 and VCh85 high-strength cast iron.

  9. [Iron concentration and acceptation of yoghurt prepared in casting iron pots (iron migration and acceptation of yogurt)].

    PubMed

    Quintaes, Késia Diego; Almeyda Haj-Isa, Niurka M; Morgano, Marcelo Antônio

    2005-12-01

    Food fortification is an interesting strategy to treat and prevent iron anemia. This study aims to quantify the iron in yoghurt, with gelatin and sugar and without, prepared in iron and glass containers. Sensorial test was use to evaluate the acceptance and preference of the both products. The yoghurt was prepared in containers of iron and glass with UHT milk, powder milk and natural industrialized yoghurt. After fermentation, half of the product received addition of sugar and strawberry flavor gelatin. The collected samples get the total iron quantified by ICP OES. Sensorial analysis involving 105 consumers was use to determine the acceptance and preference of the products. 0,018 and 0,882mg of iron per 100g added in the natural yoghurt prepared in the glass and in the iron pots, respectively. The yoghurt with gelatin presented 0,037 and 1,302mg of iron per 100g when prepared in the glass and in the iron pots, respectively. The preference was low for the yoghurt prepared in the iron pot (29,5%), but when added strawberry gelatin it was about 51,5%. The yoghurt prepared in iron pots, is easily home made and adds important amount of iron. Add gelatin and sugar can favored its consumption.

  10. Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis

    SciTech Connect

    Vazehrad, S.; Diószegi, A.

    2015-06-15

    An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to be more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.

  11. Phase Transformations and Microstructural Observations During Subcritical Heat Treatments of a High-Chromium Cast Iron

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Lekatou, A.; Kapoglou, A.; Mavros, H.; Dracopoulos, V.

    2012-06-01

    In this study, Cr white iron of 18.23 wt.% was subjected to a series of subcritical heat treatments. At both temperatures of 350 and 450 °C, no precipitation of secondary carbides was observed, and the overall microstructure resembles to that of the as-cast condition. At 550 °C, hardness values increased slightly compared to the as-cast values. No evidence of secondary carbide formation was observed. At 650 and 750 °C, extensive-to-complete transformation to pearlite-ferrite structures has occurred. Some evidence of secondary carbide precipitation especially for prolonged treatment periods was not adequate to obstruct the hardness decrease due to the dominating effect of pearlitic-ferritic formation. At 850 °C, secondary carbide precipitation and martensite formation lead to high hardness values.

  12. [Mineral migration from stainless steel, cast iron and soapstone (steatite) Brazilian pans to food preparations].

    PubMed

    Quintaes, Késia Diego; Farfan, Jaime Amaya; Tomazini, Fernanda Mariana; Morgano, Marcelo Antônio

    2006-09-01

    Culinary utensils may release some inorganic elements during food preparation. Mineral migration can be beneficial for as long as it occurs in amounts adequate to the needs of the consumer or no toxicological implications are involved. In this study, the migrations of Fe, Mg, Mn, Cr, Ni and Ca, along seven cooking cycles were evaluated for two food preparations (polished rice and commercial tomato sauce, the latter as an acid food), performed in unused stainless steel, cast iron and soapstone pans, taking refractory glass as a blank. Minerals were determined by inductively coupled plasma optical emission spectrometry (ICP OES). The utensils studied exhibited different rates, patterns and variability of migration depending on the type of food. Regression analysis of the data revealed that, as a function of the number of cycles, the iron pans released increasing amounts of iron when tomato sauce was cooked (y = 70.76x + 276.75; R2 = 0.77). The soapstone pans released calcium (35 and 26 mg/kg), magnesium (25 and 15 mg/kg) into the tomato sauce and rice preparations, respectively. Additionally, the commercial tomato sauce drew manganese (3.9 and 0.6 mg/kg) and some undesirable nickel (1.0 mg/kg) from the soapstone material, whereas the stainless steel pans released nickel at a lower rate than steatite and in a diminishing fashion with the number o cooking cycles, while still transferring some iron and chromium to the food. We conclude that while cast iron and glass could be best for the consumer's nutritional health, stainless steel and steatite can be used with relatively low risk, provided acid foods are not routinely prepared in those materials.

  13. The Effects of Fracture Origin Size on Fatigue Properties of Ductile Cast Iron with Small Chill Structures

    NASA Astrophysics Data System (ADS)

    Sameshima, Daigo; Nakamura, Takashi; Horikawa, Noritaka; Oguma, Hiroyuki; Endo, Takeshi

    Reducing the weight of a machine structure is an increasingly important consideration both for the conservation of resources during production and for the energy saving during operation. With these objectives in mind, thin-walled ductile cast iron has recently been developed. Because rapid cooling could result in brittle microstructure of cementite (chill) in this cast iron, it is necessary to investigate the effect of cementite on the fatigue properties. Therefore, fatigue tests were carried out on a ductile cast iron of block castings which contained a relatively small amount of cementite. Fracture surface observation indicated that the fracture origins were located at graphite clusters and cast shrinkage porosity, not at cementite. It appears that when the size of the cementite is smaller than that of the graphite, the cementite does not affect the fatigue properties of ductile cast iron. Not surprisingly, the fatigue lives were found to increase with decrease in the size of the fatigue fracture origin. The threshold initial stress intensity factor range ΔKini,th for fatigue failure was found to be about 3-4MPa√m, independent of microstructure.

  14. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    NASA Astrophysics Data System (ADS)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  15. Prevention of Porosity Formation and Other Effects of Gaseous Elements in Iron Castings

    SciTech Connect

    Albany Research Center

    2005-04-01

    Iron foundries have observed porosity primarily as interdendritic porosity in large freezing range alloys such as Ni-Hard I and hypoeutectic high Cr alloys or pinholes and fissure defects in gray and ductile irons. For most iron foundries, porosity problems occur sporadically, but even occasional outbreaks can be costly since even a very small amount of porosity can significantly reduce the mechanical properties of the castings. As a result when porosity is detected, the castings are scrapped and remelted, or when the porosity is undetected, defective parts are shipped to the consumer. Neither case is desirable. This project was designed to examine various factors contributing to the porosity formation in iron castings. Factors such as solubility of gases in liquid and solid iron alloys, surface tension of liquid iron alloys, and permeability of dendritic structures were investigated in terms of their effect on the porosity formation. A method was developed to predict how much nitrogen the molten alloy picks up from air after a given amount of holding time for a given melting practice. It was shown that small batches of iron melts in an induction furnace can end up with very high concentration of nitrogen (near solubility limit). Surface tension of liquid iron alloys was measured as a function of temperature. Effect of minor additions of S, Ti, and Al on the surface tension of liquid iron alloys was investigated. Up to 18% change in surface tension was detected by minor element additions. This translates to the same amount of change in gas pressure required in a bubble of a given size to keep the bubble stable. A new method was developed to measure the permeability of dendritic structures in situ. The innovative aspect of these experiments, with respect to previous interdendritic permeability measurements, was the fact that the dendritic structure was allowed to form in situ and was not cooled and re-heated for permeability tests. A permeability model was developed

  16. High Wear Resistance of White Cast Iron Treated by Novel Process: Principle and Mechanism

    NASA Astrophysics Data System (ADS)

    Jia, Xiaoshuai; Zuo, Xunwei; Liu, Yu; Chen, Nailu; Rong, Yonghua

    2015-12-01

    Based on microstructure desired, a novel process is proposed to treat Fe-2.4C-12.0Cr (mass pct) white cast iron balls, that is, destabilizing heat treatment following multicycle quenching and sub-critical treatment (De-MQ-Sct) process, and such a complex process is simply performed by alternate water quenching and air cooling. For comparison, the white cast iron balls also were treated by conventional normalization (NOR) process and Oil-quenching process, respectively. The partitioning of carbon from martensite to retained austenite during De-MQ-Sct process promotes the interaction between carbide precipitation and martensitic transformation, while this interaction is a unique effect only produced by multicycle quenching linking destabilizing and sub-critical treatments, which leads to more and finer secondary carbides and more carbon-enriched austenite in De-MQ-Sct sample than those in NOR or Oil-quenching sample. The average hardness of 60 HRC and impact toughness of 12.6 J/cm2 are obtained in De-MQ-Sct white cast iron balls, which are much higher than those in NOR and Oil-quenching ones. The wear behaviours measured by pin-on-disk wear tests indicate that the weight loss of De-MQ-Sct sample is only about one third of the NOR sample and one half of the Oil-quenching sample. Microstructural characterization reveals that high wear resistance related to hardness and toughness of the De-MQ-Sct balls are mainly attributed to the considerable fine secondary carbides and stable carbon-enriched retained austenite.

  17. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari, Gerard T. Pittard

    2004-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management and Task 2--were completed in prior quarters while Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4--8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera) continued with additional in-pipe testing required to

  18. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M Kothari; Gerard T. Pittard

    2004-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each. Task 4 (Design, Fabricate and Test Patch Setting Robotic Train) progressed to the design of the control electronics and pneumatic system to inflate the bladder robotic patch setting module. Task 5 (Design & Fabricate Pipe-Wall Cleaning Robot Train with Pan/Zoom/Tilt Camera

  19. Method for Making a Carbon-Carbon Cylinder Block

    NASA Technical Reports Server (NTRS)

    Ransone, Phillip O. (Inventor)

    1997-01-01

    A method for making a lightweight cylinder block composed of carbon-carbon is disclosed. The use of carbon-carbon over conventional materials. such as cast iron or aluminum, reduces the weight of the cylinder block and improves thermal efficiency of the internal combustion reciprocating engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance can be small, especially when the carbon-carbon cylinder block is used in conjunction with a carbon-carbon piston. Use of the carbon-carbon cylinder block has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  20. Susceptibility of iron castings to heat absorption from an electric arc and to hardened-layer shaping

    NASA Astrophysics Data System (ADS)

    Orłowicz, Antoni Władysław; Trytek, Andrzej

    2003-12-01

    Surface fusions were performed by the gas tungsten arc welding (GTAW) surfacing process on plate castings of spheroidal graphite cast iron with a travel speed from 200 to 800 mm/min. Their geometry and hardness were measured. Calorimetric measurements of the net heat input for the GTAW process have been conducted. A stepwise regression method was used to develop the relationship between GTAW process parameters and those of fusion geometry, microhardness, arc efficiency, and melting efficiency for the obtained data set.

  1. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    NASA Astrophysics Data System (ADS)

    Sonne, M. R.; Frandsen, J. O.; Hattel, J. H.

    2015-06-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than for the chill casting, resulting in a very course microstructure. From the simulations the nodule count is found to be 17 nodules per mm2 and 159 nodules per mm2 for the sand and chill casting, respectively, in the critical region of the main bearing seat. This is verified from nodule counts performed on the real cast main shafts. Residual stress evaluations show an overall increase of the maximum principal stress field for the chill casting, which is expected. However, the stresses are found to be in compression on the surface of the chill cast main shaft, which is unforeseen.

  2. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    SciTech Connect

    Burningham, J.S.

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  3. The Effect of Iron Content on Microstructure and Mechanical Properties of A356 Cast Alloy

    NASA Astrophysics Data System (ADS)

    Tunçay, Tansel; Bayoğlu, Samet

    2017-01-01

    In the present study, microstructure and mechanical properties of A356 alloy including various amounts (0.2 to 1.2 wt pct) of iron were investigated. The alloys were produced by conventional gravity sand casting method. In order to determine the effect of iron addition to A356, optical and scanning electron microscopes (SEM/EDS) were used for microstructural examinations, and X-ray diffraction (XRD) analysis was carried out for phase characterization. Tensile tests were also conducted in order to determine effect of the Fe content on mechanical properties. It was found that as the Fe content of A356 was increased, the secondary dendrite arm spacing (SDAS) was decreased and the morphology of Al-Si eutectic became finer. From XRD examinations, different iron-based intermetallic compounds (β-Al5FeSi and α-Al8Fe2Si) formations were observed. It was also observed that as iron content increased, α-Al8Fe2Si intermetallic was transformed into β-Al5FeSi intermetallic. The tensile test results revealed that tensile strength and elongation values were reduced by increasing Fe content. It was also determined that β-Al5FeSi intermetallics were more negatively effective on tensile strength than α-Al8Fe2Si intermetallics.

  4. The Use of Nitriding to Enhance Wear Resistance of Cast Irons and 4140 Steel

    NASA Astrophysics Data System (ADS)

    Yang, Zaidao

    This research is focused on using nitriding to enhance the wear resistance of austempered ductile iron (ADI), ductile iron (DI), and gray iron (GI), and 4140 steel. Three gas nitriding processes, namely "Gas nitriding + nitrogen cooled down to 800°F (Blue)", "Gas nitriding + cooled down to 300°F (Gray)", and "Gas nitriding + oil quenched (Oil)" were used for the cast irons. Three salt bath nitriding processes, namely Isonite, QP (Quench, Polish) and QPQ (Quench, Polish, Quench) were used for the 4140 steel. This study was carried out through optical metallography, roughness measurements, microhardness, and SEM. The ball-on-disc wear tests were conducted under lubricated conditions. It was found that COF for all materials in all nitrided conditions was small (<0.045). The best wear performance was seen for ADI processed using the Gray and Oil gas nitriding processes. For the 4140 steel, The surface microhardness of the ISONITE specimen was around 1400HV. QP and QPQ processes produce a surface microhardness of 2000-2200HV, which suggests that they may show improved wear behaviour compared to ISONITE- treated steels.

  5. Internal features of graphite in cast irons. Confocal microscopy: useful tool for graphite growth imaging.

    PubMed

    Llorca-Isern, N; Tartera, J; Espanol, M; Marsal, M; Bertran, G; Castel, S

    2002-01-01

    Spherulitic crystallisation is a mode of growth of crystals from the melt. Considerable attention has been given to spheroidal graphite formation, providing detailed information about the internal microstructure of the spherulites in spheroidal (SG irons) and compacted graphite irons (CG irons) (Stefanescu, D., 1990. Cast Irons. ASM Handbook, 10th ed., vol. 1). Nevertheless, the mechanisms responsible for this mode of crystallisation are not fully understood. This study deals with the inoculation mechanisms, with particular emphasis on the study of the inclusions for the heterogeneous nucleation of graphite. It is shown that the graphite nuclei are sulfide products of the nodularizing treatment. It has been observed that when rare-earth treatment is applied, the central nucleus consists of a core and an envelope from which the graphite grows. Confocal Scanning Laser Microscopy (CSLM), in reflection mode, was used to study the internal features of the spheroidal graphite growth. Confocal reflection imaging, which has a capacity for optical sectioning of the sample, provides high-resolution images of surface and subsurface regions of interest contained within a semi-transparent sample. Furthermore, three-dimensional reconstruction of these optical sections can provide insight into the mechanism of graphite growth mechanism interpretation. With CSLM the radial growth of graphite was seen. Other techniques, such as TEM, SEM-EDS, WDS, AES and SAM were also used to corroborate the results.

  6. The Effect of Iron Content on Microstructure and Mechanical Properties of A356 Cast Alloy

    NASA Astrophysics Data System (ADS)

    Tunçay, Tansel; Bayoğlu, Samet

    2017-04-01

    In the present study, microstructure and mechanical properties of A356 alloy including various amounts (0.2 to 1.2 wt pct) of iron were investigated. The alloys were produced by conventional gravity sand casting method. In order to determine the effect of iron addition to A356, optical and scanning electron microscopes (SEM/EDS) were used for microstructural examinations, and X-ray diffraction (XRD) analysis was carried out for phase characterization. Tensile tests were also conducted in order to determine effect of the Fe content on mechanical properties. It was found that as the Fe content of A356 was increased, the secondary dendrite arm spacing (SDAS) was decreased and the morphology of Al-Si eutectic became finer. From XRD examinations, different iron-based intermetallic compounds ( β-Al5FeSi and α-Al8Fe2Si) formations were observed. It was also observed that as iron content increased, α-Al8Fe2Si intermetallic was transformed into β-Al5FeSi intermetallic. The tensile test results revealed that tensile strength and elongation values were reduced by increasing Fe content. It was also determined that β-Al5FeSi intermetallics were more negatively effective on tensile strength than α-Al8Fe2Si intermetallics.

  7. Characterization of Microstructure and Mechanical Properties of High Chromium Cast Irons Using SEM and Nanoindentation

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Iyengar, Srinivasan; Zhou, Jinming; Turba, Krystof; Ståhl, Jan-Eric

    2015-01-01

    The effects of composition changes and heat treatment on the microstructure and mechanical properties of high-chromium white cast irons were studied in order to characterize possible improvements in product performance and machinability. Materials characterization was performed using nanoindentation, SEM, and EDS techniques. Present results show that changes in carbon and silicon contents as well as heat treatment strongly affect the mechanical properties and their variation in the material. In the as-cast condition, the sample with relatively lower carbon and silicon contents has an austenite-martensite matrix and is much harder than the sample with relatively higher carbon and silicon contents having more eutectic carbides in a bainite matrix. Annealing leads to softening of the materials relative to the as-cast condition, with the relatively higher carbon-silicon material being marginally harder due to the presence of more eutectic carbides. A similar trend is seen after the hardening treatment, and the presence of primary carbide can restrict the extent of hardening due to the loss of alloying elements from the matrix.

  8. Production of iron aluminides by strip casting followed by cold rolling at room temperature

    SciTech Connect

    Blackford, J.R.; Buckley, R.A.; Jones, H.; Sellars, C.M.

    1996-05-15

    The high resistance of iron aluminides to sulfidizing and oxidizing environments at high temperatures offers potential for structural application as lower cost alternatives to 300 and 400 series stainless steels and some nickel-base alloys. They are, however, subject to ductility limitations at room temperature which compel careful processing in order to achieve optimum properties in the final product. The standard melt-processing route of casting to ingot followed by hot and warm working to bar, plate or sheet is critically dependent on, for example, control of grain size in the initial cast structure, and the low ductility of the ingot structure at room temperature rules out cold working as a possibility at that stage. The purpose of this contribution is to report results of initial trials involving strip casting from the melt followed directly by cold-rolling and heat treatment. A previous communication reported results of an alternative novel route, that of co-rolling of elemental foils followed by heat treatment.

  9. Observation of Nanometric Silicon Oxide Bifilms in a Water-Atomized Hypereutectic Cast Iron Powder

    NASA Astrophysics Data System (ADS)

    Boisvert, Mathieu; Christopherson, Denis; L'Espérance, Gilles

    2016-10-01

    This study investigated the reasons for the irregular structure of primary graphite nodules that were formed in a hypereutectic cast iron powder during water atomization. The graphite nodules contain a significant amount of micron-sized pores and multiple nanometric voids that formed from silicon oxide bifilms. The bifilms theory is often used to explain the mechanisms responsible for the presence of pores in castings. However, even if many results presented in the literature tend to corroborate the existence of bifilms, to this date, only indirect evidences of their existence were presented. The observations presented in this paper are the first to show the double-sided nature of these defects. These observations support the bifilms theory and give an explanation for the presence of porosities in castings. The bifilms were used as substrate for graphite growth during solidification. The irregular structure of the graphite nodules is a consequence of the rather random structure of the bifilms that were introduced in the melt as a result of turbulences on the surface of the melt during pouring. The confirmation of the existence of bifilms can contribute to the understanding of the mechanical properties of various metallic parts.

  10. Flexural Strength and Toughness of Austenitic Stainless Steel Reinforced High-Cr White Cast Iron Composite

    NASA Astrophysics Data System (ADS)

    Sallam, H. E. M.; Abd El-Aziz, Kh.; Abd El-Raouf, H.; Elbanna, E. M.

    2013-12-01

    Flexural behavior of high-Cr white cast iron (WCI) reinforced with different shapes, i.e., I- and T-sections, and volume fractions of austenitic stainless steel (310 SS) were examined under three-point bending test. The dimensions of casted beams used for bending test were (50 × 100 × 500 mm3). Carbon and alloying elements diffusion enhanced the metallurgical bond across the interface of casted beams. Carbon diffusion from high-Cr WCI into 310 SS resulted in the formation of Cr-carbides in 310 SS near the interface and Ni diffusion from 310 SS into high-Cr WCI led to the formation of austenite within a network of M7C3 eutectic carbides in high-Cr WCI near the interface. Inserting 310 SS plates into high-Cr WCI beams resulted in a significant improvement in their toughness. All specimens of this metal matrix composite failed in a ductile mode with higher plastic deformation prior to failure. The high-Cr WCI specimen reinforced with I-section of 310 SS revealed higher toughness compared to that with T-section at the same volume fraction. The presence of the upper flange increased the reinforcement efficiency for delaying the crack growth.

  11. The effect of selected parameters of the honing process on cylinder liner surface topography

    NASA Astrophysics Data System (ADS)

    Pawlus, P.; Dzierwa, A.; Michalski, J.; Reizer, R.; Wieczorowski, M.; Majchrowski, R.

    2014-04-01

    Many truck cylinder liners made from gray cast iron were machined. Ceramic and diamond honing stones were used in the last stages of operation: coarse honing and plateau honing. The effect of honing parameters on the cylinder liner surface topography was studied. Selected surface topography parameters were response variables. It was found that parameters from the Sq group were sensitive to honing parameter change. When plateau honing time varied, the Smq parameter increased, while the other parameters, Spq and Svq, were stable.

  12. Dynamic Coarsening of 3.3C-1.9Si Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Lora, Ruben; Diószegi, Attila

    2012-12-01

    The dynamic coarsening of primary austenite has been investigated by means of interrupted solidification in a hypoeutectic gray cast iron at three different cooling rates. The fundamental characteristic of the coarsening phenomenon, which is the reduction of the total interfacial area ( i.e., the primary austenite surface) over time, has been investigated along the solidification interval for the first time in gray cast iron. The primary austenite surface is confirmed to decrease with increasing solidification time. The relation between primary austenite surface reduction and the secondary dendrite arm spacing is reported as well as the time dependence of the inverse surface area of the primary phase per unit volume. The primary austenite surface has been determined via a stereological approach. The secondary dendrite arm spacing is observed to increase throughout the whole solidification range. A novel stereological relation, the modulus of primary dendrite, has been implemented on the calculation of the primary austenite surface. The size scale of the interdendritic phase has been determined by the hydraulic diameter of the interdendritic phase. The linear relations between secondary arm spacing and eutectic cells size and between secondary arm spacing and solidification time have been found to exist during solidification independently of cooling rate. The cooling rate dependence of the secondary dendrite arm spacing and the eutectic cells size is confirmed.

  13. Nucleation and Growth of Graphite in Eutectic Spheroidal Cast Iron: Modeling and Testing

    NASA Astrophysics Data System (ADS)

    Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2016-06-01

    A new model of graphite growth during the continuous cooling of eutectic spheroidal cast iron is presented in this paper. The model considers the nucleation and growth of graphite from pouring to room temperature. The microstructural model of solidification accounts for the eutectic as divorced and graphite growth rate as a function of carbon gradient at the liquid in contact with the graphite. In the solid state, the microstructural model takes into account three stages for graphite growth, namely (1) from the end of solidification to the upper bound of intercritical stable eutectoid, (2) during the intercritical stable eutectoid, and (3) from the lower bound of intercritical stable eutectoid to room temperature. The micro- and macrostructural models are coupled using a sequential multiscale approach. Numerical results for graphite fraction and size distribution are compared with experimental results obtained from a cylindrical cup, in which the graphite volumetric fraction and size distribution were obtained using the Schwartz-Saltykov approach. The agreements between the experimental and numerical results for the fraction of graphite and the size distribution of spheroids reveal the importance of numerical models in the prediction of the main aspects of graphite in spheroidal cast iron.

  14. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  15. Wear of Spheroidal Graphite Cast Irons for Tractor Drive Train Components

    SciTech Connect

    Beltowski, Mark F; Blau, Peter Julian; Qu, Jun

    2009-01-01

    The study was prompted by a desire to improve the wear resistance of power transmission components in rear axle drives on commercial farm tractors. Reciprocating wear tests were conducted under lubricated and non-lubricated conditions on three spheroidal cast irons which varied in strength and hardness (designated GGG450, GGG600, and GGG700). Hemispherically-tipped steel pins (designed 42CrMoS4/ 41CrS4) were used as the sliders. Except for the test duration, test procedures were similar to those described in ASTM Standard Test Method G133 for linearly-reciprocating sliding. Among the three cast irons tested, the harder and stronger the alloy, the lower was its wear rate. Wear factors were approximately four orders of magnitude lower for experiments lubricated in fresh, fully-formulated lubricating oil. There was a linear relationship between Brinell hardness of the alloys and the negative logarithm of the wear factors that were expressed in (mm3/N-m). Wear of lubricated test pins was not measurable due to the presence of deposits; however under non-lubricated sliding, the ratio of the wear of the flat specimen to that of the pin decreased as the hardness of the flat specimens approached that of the pin specimen.

  16. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2005-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast-iron test pipe segments. Efforts in the current quarter continued to focus on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported last quarter.) These tests identified several design issues which need to be implemented in both the small- and large

  17. Microstructure Aspects of a Newly Developed, Low Cost, Corrosion-Resistant White Cast Iron

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Sharma, C. P.; Bhargava, A. K.

    2013-04-01

    The purpose of this work is to study the influence of heat treatment on the corrosion resistance of a newly developed white cast iron, basically suitable for corrosion- and wear-resistant applications, and to attain a microstructure that is most suitable from the corrosion resistance point of view. The composition was selected with an aim to have austenitic matrix both in as-cast and heat-treated conditions. The difference in electrochemical potential between austenite and carbide is less in comparison to that between austenite and graphite. Additionally, graphitic corrosion which is frequently encountered in gray cast irons is absent in white cast irons. These basic facts encouraged us to undertake this work. Optical metallography, hardness testing, X-ray diffractometry, and SEM-EDX techniques were employed to identify the phases present in the as-cast and heat-treated specimens of the investigated alloy and to correlate microstructure with corrosion resistance and hardness. Corrosion testing was carried out in 5 pct NaCl solution (approximate chloride content of sea water) using the weight loss method. In the investigated alloy, austenite was retained the in as-cast and heat-treated conditions. The same was confirmed by X-ray and EDX analysis. The stability and volume fraction of austenite increased with an increase of heat-treated temperature/time with a simultaneous decrease in the volume fraction of massive carbides. The decrease in volume fraction of massive carbides resulted in the availability of alloying elements. These alloying elements, on increasing the heat treatment temperature or increasing the soaking period at certain temperatures, get dissolved in austenite. As a consequence, austenite gets enriched as well as becomes more stable. On cooling from lower soaking period/temperature, enriched austenite decomposes to lesser enriched austenite and to a dispersed phase due to decreasing solid solubility of alloying elements with decreasing temperature

  18. Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Chang, Fang; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-12-01

    In order to improve the wear resistance of gray cast iron guide rail, the samples with different microhardness difference between bionic coupling units and base metal were manufactured by laser surface remelting. Wear behavior of gray cast iron with bionic coupling units has been studied under dry sliding condition at room temperature using a homemade liner reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that when the microhardness difference is 561 HV0.2, the wear resistance of sample is the best.

  19. Study on quantitative relation between characteristics of striature bionic coupling unit and wear resistance of gray cast iron

    NASA Astrophysics Data System (ADS)

    Pang, Zuobo; Zhou, Hong; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-03-01

    In order to improve the wear resistance of gray cast iron guide rail, striature bionic coupling units of different characteristics were manufactured by laser surface remelting. Wear behavior of gray cast iron with striature bionic coupling units has been studied under dry sliding condition at room temperature using a homemade linear reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that there is a relationship between weight loss and the area of striature bionic coupling units and α: Δm = Δm0 - 0.0212S × cos α - 0.0241S × sin α.

  20. UNDERSTANDING CHLORINE AND CHLORAMINE DECAY KINETICS IN OLD CAST IRON PIPES, 2. CONVERSION FROM CONVENTIONAL TREATMENT TO MICROFILTRATION IN A SMALL WATER SYSTEM

    EPA Science Inventory

    This insitu pipe loop study was designed to determine the disinfectant kinetics associated with very old unlined cast iron pipelines with both chlorine and chloramination residuals. An abandoned 90-year-old unlined cast iron pipeline about 2000 ft long was acclimated to conduct a...

  1. UNDERSTANDING CHLORINE AND CHLORAMINE DECAY KINETICS IN OLD CAST IRON PIPES, 2. CONVERSION FROM CONVENTIONAL TREATMENT TO MICROFILTRATION IN A SMALL WATER SYSTEM

    EPA Science Inventory

    This insitu pipe loop study was designed to determine the disinfectant kinetics associated with very old unlined cast iron pipelines with both chlorine and chloramination residuals. An abandoned 90-year-old unlined cast iron pipeline about 2000 ft long was acclimated to conduct a...

  2. Effect of Shot Peening on the High-Cycle Fatigue Behavior of High-Strength Cast Iron with Nodular Graphite

    NASA Astrophysics Data System (ADS)

    Benam, Amir Sadighzadeh

    2017-01-01

    The effect of shot peening treatment on high-cycle fatigue of high-strength cast iron with globular graphite is studied. The fatigue curves are plotted, the microhardness and the surface roughness are measured. An analysis of fracture surfaces is performed, and the thickness of the hardened layer is determined. The shot peening is shown to affect favorably the fatigue resistance of the iron but to worsen the condition of the surface.

  3. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2005-04-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed previously. Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in test cast-iron pipe segments. Efforts in the current quarter continued to be focused on Tasks 4-8. Highly valuable lessons were learned from field tests of the 4-inch gas pipe repair robot in cast-iron pipe at Public Service Electric & Gas. (These field tests were conducted and reported previously.) Several design issues were identified which need to be implemented in both the small- and large-diameter repair

  4. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2004-11-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1 (Program Management) and Task 2 (Establishment of Detailed Design Specifications) were completed in prior quarters while Task 3 (Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves) has progressed to installing prototype sleeves in cast iron test pipe segments. Efforts in this quarter continued to focus on Tasks 4-8, with significant progress made in each as well as field testing of the 4-inch gas pipe repair robot in cast iron pipe at Public Service Electric & Gas. The field tests were conducted August 23-26, 2004 in Oradell, New Jersey. The field tests identified several design issues which need to be implemented in both the small

  5. Machinability of Austempered Ductile Iron (ADI) Produced by Integrated Green Technology of Continuous Casting-Heat Treatment Processes

    SciTech Connect

    Meena, A.; El Mansori, M.; Ghidossi, P.

    2011-01-17

    This study presents the novel processing technique known as continuous casting-heat treatment processes to produce Austempered Ductile Iron (ADI) which is a new class of ductile iron. ADI is characterized by improved mechanical properties but has low machinability as compared to other cast irons and steel of similar strength. The novel technique is developed by the integration of casting (in die casting) and heat treatment processes in foundry to save cost energy and time. Specimens just after casting were austenitized at 930 deg. C for 90 min and then austempered in fluidized bed at 380 deg. C for 90 and 120 min. Hence, the effect of austempering time on the morphology of retained austenite and mechanical properties of the material were examined and compared with conventionally produced ADI. Drilling tests were then carried out to evaluate the machinability of ADI in terms of cutting forces, chip micro-hardness, chip morphology and surface roughness. The mechanical properties of ADI austempered for 120 min have found to be better as compare to the ADI austempered for 90 min.

  6. Laser surface texturing of cast iron steel: dramatic edge burr reduction and high speed process optimisation for industrial production using DPSS picosecond lasers

    NASA Astrophysics Data System (ADS)

    Bruneel, David; Kearsley, Andrew; Karnakis, Dimitris

    2015-07-01

    In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.

  7. A study of the structure and properties of high-strength bainite-carbide cast iron with globular graphite

    NASA Astrophysics Data System (ADS)

    Dhanapal, P.; Nazirudeen, S. S. Mohamed

    2012-03-01

    The structure and mechanical properties of two high-strength bainitic cast irons with carbon equivalent close to the eutectic one are studied. Additional alloying of one of the metals with chromium is used to obtain a bainite-carbide structure. The effect of the parameters of bainitic hardening on the hardness, impact toughness, and wear resistance of the metals is studied.

  8. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    NASA Astrophysics Data System (ADS)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  9. The influence of the cast iron structure upon the hardness of brake shoes meant for the rolling sock

    NASA Astrophysics Data System (ADS)

    Socalici, A.; Pascu, L.; Popa, E.; Hepuţ, T.

    2015-06-01

    An important characteristic with a high impact upon the exploitation durability of the brake shoes is hardness. The paper introduces the influence of the phosphorous cast iron structure upon the hardness of the brake shoes meant for the tractive and trailing rolling stock. The results presented show the variation of hardness on the surface and the cross section of the braking shoe

  10. 3D quantitative analysis of graphite morphology in high strength cast iron by high-energy x-ray tomography

    SciTech Connect

    Chuang, Chih-Pin; Singh, Dileep; Kenesei, Peter; Almer, Jonathan; Hryn, John N.; Huff, Richard

    2015-09-01

    The size and morphology of the graphite particles play a crucial role in determining various mechanical and thermal properties of cast iron. In the present study, we utilized high-energy synchrotron X-ray tomography to perform quantitative 3D-characterization of the distribution of graphite particles in high-strength compacted graphite iron (CGI). The size, shape, and spatial connectivity of graphite were examined. The analysis reveals that the compacted graphite can grow with a coral-tree-like morphology and span several hundred microns in the iron matrix.

  11. Influences of single laser tracks' space on the rolling fatigue contact of gray cast iron

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-kai; Zhou, Ti; Zhang, Peng; Zhang, Hai-feng; Yang, Wan-shi; Zhou, Hong; Ren, Lu-quan

    2015-09-01

    To improve the fatigue wear resistance of gray cast iron, the surface is modified by Nd:YAG laser to imitate the unique surface of soil creatures (alternative soft and hard phases). After laser treatment, the remelting region is the named unit which is mainly characterized of compact and refinement grains. In the present work, the influence of the unit space on the fatigue wear resistance is experimentally studied. The optimum space is proven to be 2 mm according to the tested results and two kinds of delamination are observed on samples' worn surface. Subsequently, the mechanisms of fatigue wear resistance improvement are suggested: (i) for microscopic behavior, the bionic unit not only delays the initiation of microcracks, but also significantly obstructs the propagation of cracks; (ii) for macroscopic behavior, the hard phase resists the deformation and the soft phase releases the deformation.

  12. Effects of Antimony and Wall Thickness on Graphite Morphology in Ductile Iron Castings

    NASA Astrophysics Data System (ADS)

    Glavas, Zoran; Strkalj, Anita; Maldini, Kresimir

    2016-08-01

    Effects of Sb additions on the graphite morphology of ductile iron castings in different wall thicknesses (3, 12, 25, 38, 50, 75, and 100 mm) were analyzed in this paper. In the wall thicknesses of 3, 12, and 25 mm, low contents of rare earth (RE) elements showed a beneficial effect on nodule count and nodularity. Nodularity >80 pct and a high nodule count were achieved without the addition of Sb. In the wall thicknesses of 38, 50, 75, and 100 mm, nodularity >80 pct was not achieved without the use of the chill or proper content of Sb. Excess of RE elements was neutralized with the addition of proper amount of Sb to the wall thickness. Addition of 0.01 wt pct Sb (ratio of RE/Sb = 0.34, ratio of RE/SE = 0.105) was sufficient to achieve nodularity >80 pct in the wall thicknesses of 38, 50, 75, and 100 mm.

  13. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    NASA Astrophysics Data System (ADS)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  14. Wear Analysis of Cemented Carbide during Turning of Cast Iron Considering Economical Machining Speed

    NASA Astrophysics Data System (ADS)

    Znojkiewicz, Natalia; Korzeniewski, Dariusz; Wiciak, Martyna

    2017-01-01

    The purpose of this paper is to find economical machining speed during turning of grooves for piston rings with various feeds. In the first part of the paper, literature analysis concerning durability of cutting tools is presented. Next, the wear of cemented carbide cutting tools during turning of cast iron is researched. The research has been done for seven cutting tools. During conducted turning trials, angular speed has been altered from n=530rev/min to n=710rev/min and feeds from f=0.007mm/rev to f=0.105mm/rev. On the basis of Taylor's equation, which relates cutting speed to tool life, the economical cutting speed is established with the application of two various methods.

  15. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    NASA Astrophysics Data System (ADS)

    Zhang, Y. B.; Andriollo, T.; Fæster, S.; Liu, W.; Sturlason, A.; Barabash, R.

    2017-07-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed, containing dislocations and dislocation boundaries. Each of the residual strain components in the matrix grains exhibits a complex pattern along the circumferential direction of the nodule. Along the radial direction of the nodule, strain gradients from the interface to the grain interior are seen for some strain components, but only in some matrix grains. The observed residual strain patterns have been analysed by finite element modelling, and a comparison between the simulation and experiments is given. The present study of local residual stress by both experimental characterization and simulation provide much needed information for understanding the mechanical properties of DCI, and represent an important contribution for the microstructural design of new DCI materials.

  16. Correlation of mechanical properties with the acoustic properties in case of an experimental white cast iron

    NASA Astrophysics Data System (ADS)

    Gȋrneţ, A.; Stanciu, S.; Chicet, D.; Axinte, M.; Goanţă, V.

    2016-08-01

    The general and traditional opinion regarding the materials used to build bells, musical instruments or sound transmitters is that those materials must be only from the bronze alloyed with tin category. In order to approach this idea from a scientific point of view, the materials with acoustic properties must be analyzed starting from the physical theory and experimental determination that sound travels only through bodies with elastic properties. It has been developed an experimental white cast iron, medium alloyed with Cr and Ni, in order to obtain a material with special acoustic properties. There were determined on specific samples: the vibration damping capacity, the unit energy, the tensile strength and elasticity modulus. These properties were correlated with the properties of other known acoustic materials.

  17. Effects of advanced oxidation on green sand properties via iron casting into green sand molds.

    PubMed

    Wang, Yujue; Cannon, Fred S; Voigt, Robert C; Komarneni, Sridhar; Furness, J C

    2006-05-01

    The effects of advanced oxidation (AO) processing on the properties of green sand were studied via pouring cast iron into green sand molds. Upon cooling, the green sand molds were autopsied at various distances from the metal-sand interface. Autopsy green sand samples collected from a mold that incorporated AO water were characterized and compared to controlled samples collected from a similar autopsied mold made with conventional tap water (TAP). It was found that the AO processing removed a coating of coal pyrolysis products from the clay surface that typically accumulated on the clay surface. As a result, the AO-conditioned green sand retained 10-15% more active clay as measured bythe standard ultrasonic methylene blue titration than did the TAP-conditioned green sand. The AO processing also nearly doubled the generation of activated carbon from the normalized amount of coal composition of the green sand during the casting process. The AO-enhanced activated carbon generation and the AO-incurred clay surface cleaning provided the AO-conditioned green sand with higher normalized pore volume, and thus higher normalized m-xylene adsorption capacity, i.e., relative to before-metal-pouring conditions. Furthermore, mathematical analysis indicated that the AO-conditioned green sand better retained its important properties after pouring than did the TAP-conditioned green sand. Effectively, this meant after metal pouring, the AO-conditioned sample offered about the same net properties as the TAP-conditioned sample, even though the AO-conditioned sample contained less clay and coal before metal pouring. These results conformed to the full-scale foundry empirical finding that when AO is used, foundries need less makeup clay and coal addition through each casting cycle, and they release less air emissions.

  18. Combination of microscopic model and VoF-multiphase approach for numerical simulation of nodular cast iron solidification

    NASA Astrophysics Data System (ADS)

    Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.

    2015-06-01

    The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.

  19. Misorientations in spheroidal graphite: some new insights about spheroidal graphite growth in cast irons

    NASA Astrophysics Data System (ADS)

    Lacaze, J.; Theuwissen, K.; Laffont, L.; Véron, M.

    2016-03-01

    Local diffraction patterning, orientation mapping and high resolution transmission electron microscopy imaging have been used to characterize misorientations in graphite spheroids of cast irons. Emphasis is put here on bulk graphite, away from the nucleus as well as from the outer surface of the spheroids in order to get information on their growth during solidification. The results show that spheroidal graphite consists in conical sectors made of elementary blocks piled up on each other. These blocks are elongated along the prismatic a direction of graphite with the c axes roughly parallel to the radius of the spheroids. This implies that the orientation of the blocks rotates around the spheroid centre giving low angle tilting misorientations along tangential direction within each sector. Misorientations between neighbouring sectors are of higher values and their interfaces show rippled layers which are characteristic of defects in graphene. Along a radius of the spheroid, clockwise and anticlockwise twisting between blocks is observed. These observations help challenging some of the models proposed to explain spheroidal growth in cast ions.

  20. Effect of Different Molding Materials on the Thin-Walled Compacted Graphite Iron Castings

    NASA Astrophysics Data System (ADS)

    Górny, Marcin; Dańko, Rafał; Lelito, Janusz; Kawalec, Magdalena; Sikora, Gabriela

    2016-10-01

    This article addresses the effects of six mold materials used for obtaining thin-walled compacted graphite iron castings with a wall thickness of 3 mm. During this research, the following materials were analyzed: fine silica sand, coarse silica sand, cerabeads, molohite and also insulated materials in the shape of microspheres, including low-density alumina/silica ceramic sand. Granulometric and SEM observations indicate that the sand matrix used in these studies differs in terms of size, homogeneity and shape. This study shows that molds made with insulating sands (microspheres) possess both: thermal conductivity and material mold ability to absorb heat, on average to be more than five times lower compared to those of silica sand. In addition to that, the resultant peak of heat transfer coefficient at the mold/metal interface for microspheres is more than four times lower in comparison with fine silica sand. This is accompanied by a significant decrease in the cooling rate of metal in the mold cavity which promotes the development of compacted graphite in thin-walled castings as well as ferrite fractions in their microstructure.

  1. Ductile and High Strength White Cast Iron of Ultrafine Interconnected Network Morphology

    NASA Astrophysics Data System (ADS)

    Ho, C. M.; Kui, H. W.

    2011-12-01

    Fe100- x C x melts ( x = 18 to 24) can be cast under B2O3 flux into solids of interconnected network morphology, with a wavelength in the submicron range. There are two major constituent subnetworks, which are a brittle Fe3C subnetwork and a ductile αFe subnetwork. The Fe100- x C x network alloys, therefore, are white cast iron of novel microstructure. Fe100- x C x specimens of x = 18 to 21 are ductile and the yield strength can be as large as ~3200 MPa. Fe100- x C x specimens of x = 22 to 24 are in the regime of a ductile-to-brittle transition. The compressive strength is high, at ~2700 MPa. Microstructural analysis indicates that the ultrafine network morphology and the ductile αFe subnetwork are responsible for the ductility exhibited in Fe100- x C x network alloys of x = 17 to 21. They are also responsible for the high compressive strength in Fe100- x C x network alloys of x = 22 to 24.

  2. Improving tribological performance of gray cast iron by laser peening in dynamic strain aging temperature regime

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Mei, Yufen; Huang, Shu; Sheng, Jie; Zhu, Weili

    2015-09-01

    A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in material composition and shape design optimization. In the dynamic strain aging(DSA) temperature regime of gray cast iron, micro-dimples with different dimple depth over diameter and surface area density are fabricated on the material surface by laser peening(LP) which is an LST method. Friction behavior and wear mechanism are investigated to evaluate the effects of surface texturing on the tribological performance of specimens under dry conditions. Through LP impacts assisted by DSA, the friction coefficients of the LPed specimens increase noticeably both at room temperature and elevated temperature in comparison to untreated specimens. Moreover, the coefficient of specimen with dimple depth over diameter of 0.03 and surface area density of 30% is up to 0.351 at room temperature, which dramatically rises up to 1.33 times that of untextured specimen and the value is still up to 0.3305 at 400°C with an increasing ratio of 35% compared to that of untreated specimen. The surface of textured specimen shows better wear resistance compared to untreated specimen. Wear mechanism includes adhesive wear, abrasive wear and oxidation wear. It is demonstrated that LP assisted by DSA can substantially improve wear resistance, raise the friction coefficient as well as its stability of gray cast iron under elevated temperatures. Heat fade and premature wear can be effectively relieved by this surface modification method.

  3. Erosive Wear Behavior of High-Alloy Cast Iron and Duplex Stainless Steel under Mining Conditions

    NASA Astrophysics Data System (ADS)

    Yoganandh, J.; Natarajan, S.; Kumaresh Babu, S. P.

    2015-09-01

    Centrifugal pumps used in the lignite mines encounter erosive wear problems, leading to a disastrous failure of the pump casings. This paper attempts to evaluate the erosive wear resistance of Ni-Hard 4, high-chromium iron, and Cast CD4MCu duplex stainless steel (DSS), for mining conditions. The prepared test coupons were subjected to an erosion test by varying the impingement velocity and the angle of impingement, under two different pH conditions of 3 and 7, which pertained to the mining conditions. XRD analysis was carried out to confirm the phases present in the alloy. The eroded surface was subjected to SEM analysis to identify the erosion mechanisms. The surface degradation of Ni-Hard 4 and high-chromium iron came from a low-angle abrasion with a grooving and plowing mechanism at a low angle of impingement. At normal impingement, deep indentations resulted in lips and crater formations, leading to degradation of the surface in a brittle manner. A combined extrusion-forging mechanism is observed in the CD4MCu DSS surface at all the impingement angles.

  4. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding

    PubMed Central

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-01-01

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage. PMID:28773934

  5. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.

    PubMed

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-09-30

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  6. INTERIOR VIEW WITH CASTING MACHINE AND CASTING FOREMAN OBSERVING OPERATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH CASTING MACHINE AND CASTING FOREMAN OBSERVING OPERATION TO ENSURE MAXIMUM PRODUCTION AND QUALITY. - McWane Cast Iron Pipe Company, Pipe Casting Area, 1201 Vanderbilt Road, Birmingham, Jefferson County, AL

  7. Effect of Pressure and Temperature Factors on the Solidification of Cast Iron and Its Structure in Liquid Forging

    NASA Astrophysics Data System (ADS)

    Sosenushkin, E. N.; Frantsuzova, L. S.; Kozlova, E. M.

    2015-09-01

    This article examines the properties and microstructure of cast iron after fabrication of grinding balls by different kinds of casting and forging, with crystallization of the metal under pressure. A mathematical model of the process of solidification of a forging in a die is presented. Joint solution of two Fourier equations of heat conduction for the melt and for the solid skin is used to derive a kinetic equation of solidification and hence to determine the rate of solidification of the forging in the die. The effect of the pressure on the structure of the crystallizing metal and the quality of the forged grinding balls that are obtained is determined.

  8. On the effect of natural convection on the thermal-microstructural evolution in gray cast-iron solidification

    NASA Astrophysics Data System (ADS)

    Celentano, Diego J.; Cruchaga, Marcela A.; Schulz, Bernd J.

    2006-04-01

    A coupled analysis involving natural convection, thermal balance, and microstructural evolution that take place in the solidification process of a hypoeutectic gray cast iron is presented in this work. The microstructural formulation used in this study includes classical models of primary-austenite and eutectic (gray and white) transformations. The influence of both natural convection and heat-transfer conditions on the thermal-microstructural response is particularly assessed in a simple cylindrical casting system. The evolutions of temperature and different microstructural variables are compared and validated with available experimental measurements.

  9. Microstructure and Hot Oxidation Resistance of SiMo Ductile Cast Irons Containing Si-Mo-Al

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mervat M.; Nofal, Adel; Mourad, M. M.

    2016-12-01

    SiMo ductile cast irons are used as high-temperature materials in automotive components, because they are microstructurally stable at high operating temperatures. The effect of different amounts of Si and Mo as well as the addition of 3 wt pct Al on the microstructure, high-temperature oxidation, and mechanical properties of SiMo ductile cast iron was studied. Dilatometric measurements of SiMo ductile iron exhibited obvious differences in the transformation temperature A 1 due to presence of Al and the increase of Si. The microstructure of the SiMo alloys without Al addition showed outstanding nodularity and uniform nodule distribution. However, by adding 3 wt pct Al to low Si-SiMo ductile iron, some compacted graphite was observed. The results of oxidation experiments indicated that high Si-SiMo ductile iron containing 4 and 4.9 wt pct Si had superior resistance to lower Si-SiMo and SiMo ductile iron containing 3 wt pct Al. The results showed also that with increasing Si up to 4.9 wt pct or by replacing a part of Si with 3 wt pct Al, tensile strength increased while elongation and impact toughness decreased.

  10. Microstructure and Hot Oxidation Resistance of SiMo Ductile Cast Irons Containing Si-Mo-Al

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mervat M.; Nofal, Adel; Mourad, M. M.

    2017-04-01

    SiMo ductile cast irons are used as high-temperature materials in automotive components, because they are microstructurally stable at high operating temperatures. The effect of different amounts of Si and Mo as well as the addition of 3 wt pct Al on the microstructure, high-temperature oxidation, and mechanical properties of SiMo ductile cast iron was studied. Dilatometric measurements of SiMo ductile iron exhibited obvious differences in the transformation temperature A 1 due to presence of Al and the increase of Si. The microstructure of the SiMo alloys without Al addition showed outstanding nodularity and uniform nodule distribution. However, by adding 3 wt pct Al to low Si-SiMo ductile iron, some compacted graphite was observed. The results of oxidation experiments indicated that high Si-SiMo ductile iron containing 4 and 4.9 wt pct Si had superior resistance to lower Si-SiMo and SiMo ductile iron containing 3 wt pct Al. The results showed also that with increasing Si up to 4.9 wt pct or by replacing a part of Si with 3 wt pct Al, tensile strength increased while elongation and impact toughness decreased.

  11. Heat treatment effect on microstructure, hardness and wear resistance of Cr26 white cast iron

    NASA Astrophysics Data System (ADS)

    Zhou, Shaoping; Shen, Yehui; Zhang, Hao; Chen, Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 °C to 1050 °C, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 °C, followed by a subsequent 2 h tempering at 400 °C. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  12. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2003-06-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1-Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2-Establishment of Detailed Design Specifications and Task 3-Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a wide

  13. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect

    Kiran M. Kothari; Gerard T. Pittard

    2003-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2--Establishment of Detailed Design Specifications and Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a

  14. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    NASA Astrophysics Data System (ADS)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  15. Mechanism for the Role of Silicon on the Transition from Graphite to Cementite Eutectic in Cast Iron

    NASA Astrophysics Data System (ADS)

    Fraś, Edward; Górny, Marcin; Lopez, Hugo F.

    2012-11-01

    In this work, an analytical solution is proposed to explain the influence of silicon on the transition from graphite to cementite eutectic in cast iron. It is found that this transition can be related to (1) the graphite nucleation potential (directly characterized by the cell count N and indirectly by the nucleation coefficients N s and b), (2) the growth rate coefficient of graphite eutectic cells μ, (3) the temperature range Δ T sc = T s - T c (where T s and T c are the equilibrium temperature for graphite eutectic and the formation temperature for cementite eutectic, respectively), and (4) the liquid volume fraction f l after preeutectic austenite solidification. Analytical equations were derived that describe the absolute and the relative chilling tendencies (CT and CTr, respectively) as well as the critical cooling rate Q cr and, hence, the chill w of the cast iron. Theoretical arguments are experimentally verified for castings with various silicon contents. This work also describes the methods used in the determination of N s, b, and μ values. It is found that the main role of silicon on the transition from graphite to cementite eutectic is to raise the density of the graphite nuclei N and temperature range Δ T sc. In addition, it is shown that increasing the silicon content of cast iron leads to an increasing value of Q cr and decreasing values of CT and CTr, and of the chill width w. In particular, this work shows that the chilling tendency indexes and, hence, the chill all can be estimated from a simple thermal analysis using reference castings.

  16. Corrosion inhibition of Eleusine aegyptiaca and Croton rottleri leaf extracts on cast iron surface in 1 M HCl medium

    NASA Astrophysics Data System (ADS)

    Rajeswari, Velayutham; Kesavan, Devarayan; Gopiraman, Mayakrishnan; Viswanathamurthi, Periasamy; Poonkuzhali, Kaliyaperumal; Palvannan, Thayumanavan

    2014-09-01

    The adsorption and corrosion inhibition activities of Eleusine aegyptiaca (E. aegyptiaca) and Croton rottleri (C. rottleri) leaf extracts on cast iron corrosion in 1 M hydrochloric acid solution were studied first time by weight loss and electrochemical techniques viz., Tafel polarization and electrochemical impedance spectroscopy. The results obtained from the weight loss and electrochemical methods showed that the inhibition efficiency increased with inhibitor concentrations. It was found that the extracts acted as mixed-type inhibitors. The addition of halide additives (KCl, KBr, and KI) on the inhibition efficiency has also been investigated. The adsorption of the inhibitors on cast iron surface both in the presence and absence of halides follows the Langmuir adsorption isotherm model. The inhibiting nature of the inhibitors was supported by FT-IR, UV-vis, Wide-angle X-ray diffraction and SEM methods.

  17. Effect of room-temperature compression on microstructure of ductile cast iron subjected to hot plastic deformation

    NASA Astrophysics Data System (ADS)

    Chaus, A. S.

    2014-07-01

    The change in the microstructure of ductile cast iron subjected to hot plastic deformation has been investigated after the fracture of the samples induced by compression (upset forging) at room temperature. It has been shown that compression-induced tangential stresses cause shear deformation, which results in the shear fracture of test samples at an angle of 40°-50° to the longitudinal axis of a sample. It has been established that the fracture is accompanied by the formation of a narrow zone of severe plastic deformation of ductile cast iron, which is located on both sides of the major fracture. In this zone, the initial microstructure undergoes significant changes due to the plastic flow of the matrix and graphite inclusions.

  18. Effect of process variables on the crack in laser cladded Ni-alloy on ductile cast iron

    NASA Astrophysics Data System (ADS)

    Li, Qindong; Liu, Jichang

    2010-11-01

    Laser cladding was performed on the ductile cast iron substrate with Ni-base alloy under different process conditions. The cracks were observed. The temperature field and stress field in laser cladding under different process conditions were simulated with ANSYS finite element software. It was found that cracks were influenced by process variables. In certain ranges of laser power and scanning speed, while the other process parameters remain constant, the numbers of cracks increase with laser power increasing. Similarly the number of cracks increases with scanning velocity increasing while the other process parameters remain constant. In comparison with experimental results, the simulation with ANSYS finite element software could help to predict, to some extent, the crack of laser cladded Ni-alloy on ductile cast iron.

  19. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    NASA Astrophysics Data System (ADS)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  20. Effects of MC-Type Carbide Forming and Graphitizing Elements on Thermal Fatigue Behavior of Indefinite Chilled Cast Iron Rolls

    NASA Astrophysics Data System (ADS)

    Ahiale, Godwin Kwame; Choi, Won-Doo; Suh, Yongchan; Lee, Young-Kook; Oh, Yong-Jun

    2015-11-01

    The thermal fatigue behavior of indefinite chilled cast iron rolls with various V+Nb contents and Si/Cr ratios was evaluated. Increasing the ratio of Si/Cr prolonged the life of the rolls by reducing brittle cementites. Higher V+Nb addition also increased the life through the formation of carbides that refined and toughened the martensite matrix and reduced the thermal expansion mismatch in the microstructure.

  1. On the nature of eutectic carbides in Cr-Ni white cast irons

    NASA Astrophysics Data System (ADS)

    Laird, G.; Nielsen, R. L.; MacMillan, N. H.

    1991-08-01

    The mechanical and tribological properties of white cast irons are strongly dependent on whether they contain M7C3 or M3C carbides (M = Fe, Cr, etc.). In an effort to improve the wear resistance of such materials, the United States Bureau of Mines has studied the effects of adding 0.3 to 2.3 wt pct (throughout) Si to hypoeutectic irons containing approximately 8.5 pct Cr and 6.0 pct Ni. The eutectic carbides formed were identified by electron microprobe analysis, X-ray diffraction, and scanning electron (SEM) and optical microscopies. In addition, differential thermal analysis (DTA) was used to study the process of solidification. At Si contents of 0.3 and 1.2 pct, the eutectic carbides exhibited a duplex structure, consisting of cores of M7C3 surrounded by shells of M3C. Additionally, the microstructure contained ledeburite (M3C + γFe (austenite)). At the higher Si content of 1.6 pct, the eutectic carbides consisted entirely of M7C3, and some ledeburite remained. Last, when the Si content was raised to 2.3 pct, the eutectic carbides again consisted entirely of M7C3, but ledeburite was no longer formed. These observations can be explained in terms of the effects of Si and, to a lesser extent, of Ni on the shape of the liquidus surface of the metastable Fe-Cr-C phase diagram. The addition of Si reduces the roles played by the four-phase class II p reaction L + M7C3 → M3C + γFe and the ledeburitic eutectic reaction L → M3C + γFe in the overall process of solidification.

  2. Effects of heat treatment on wear resistance and fracture toughness of duo-cast materials composed of high-chromium white cast iron and low-chromium steel

    NASA Astrophysics Data System (ADS)

    Kim, Chang Kyu; Lee, Sunghak; Jung, Jae-Young

    2006-03-01

    The objective of this study is to investigate effects of heat treatment on wear resistance and fracture toughness in duo-cast materials composed of a high-chromium white cast iron and a low-chromium steel as a wear-resistant part and a ductile part, respectively. Different size, volume fraction, and distribution of M7C3 carbides were employed in the wear-resistant part by changing the amount of chromium, and the volume fraction of martensite in the austenitic matrix was varied by the heat treatment. In the alloys containing a small amount of chromium, an interdendritic structure of eutectic M7C3 carbides was formed, and led to the improvement of wear resistance and fracture toughness. After the heat treatment, the selective wear of the matrix and the cracking or spalled-off carbides were considerably reduced since the hardness difference between carbides and matrix decreased by the increase in the matrix hardness, thereby leading to the improvement of the wear resistance. However, the fracture toughness of the heat-treated alloys was lower than that of the as-cast alloys because the matrix containing a considerable amount of martensite did not effectively prevent the crack propagation.

  3. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    PubMed

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron).

  4. Statistical analysis using the multiple regression research in areas of the indefinite chilled cast-iron rolls manufacturing

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Alexa, V.; Cioată, V. G.

    2017-05-01

    To analyze the metallurgical processes is used, mainly, the statistical fundamental methods that permit to draw conclusions, from the observed values, about the repartition of the frequencies of various parameters, about their interaction, about verification validity of certain premises, and about the research of the dependencies among different parameters. In this sense, the realization of optimum chemical compositions of the cast-iron can constitute a technical efficient way to assure the exploitation properties, the material from which the rolling mills rolls are manufactured having an important role in this sense. This paper reviews key aspects of roll material properties and presents an analysis of the influences of chemical composition upon the mechanical properties of the indefinite cast iron rolls. Now, using the multivariate research, we present some mathematical correlations and graphical interpretations between the hardness and the chemical composition. Using the double and triple correlations variation boundaries for the chemical composition, in view the obtaining the optimal values of the hardness of indefinite cast iron rolls, are obtained. The partial results and evidence obtained by actual experiments are presented. For the multiple regression equations, correlation coefficients and graphical representations the software MATLAB was used.

  5. Effects of Si on the Microstructures and Mechanical Properties of High-Chromium Cast Iron

    NASA Astrophysics Data System (ADS)

    Lai, J. P.; Pan, Q. L.; Peng, H. J.; Cui, H. R.; Xiao, C. A.

    2016-11-01

    Effect of Si on the microstructures and mechanical properties of high-chromium cast iron was investigated. The eutectic carbides are refined greatly and a transformation of matrix from austenitic matrix to pearlite is observed with increase in Si content from 0.5 to 1.5 wt.%. The refinement of eutectic microstructure is attributed to the decrease in the eutectic temperature, while the transformation from austenite matrix to pearlite is associated with the increase in solubility of carbon in the matrix. In the pearlite matrix, two types of pearlite are observed: one with lamellar pearlite, distributing at the periphery, and the second one with granular pearlite at the center. The density of secondary carbides precipitated from the matrix increases greatly with addition of Si from 0.5 to 1.5 wt.%, which is associated with more carbon and chromium elements confined in the matrix in the alloy containing 1.5 wt.%. More rod-like particles are observed in the alloy containing 0.5 wt.% Si, while the morphology of secondary carbides of alloy containing 1.5 wt.% is granular. The mechanical properties are improved with a 7% increase in tensile strength from 586 to 626 MPa and impact toughness from 5.8 to 7.3 J cm-2.

  6. Solidification and solid state transformations during cooling of chromium-molybdenum white cast irons

    NASA Astrophysics Data System (ADS)

    Demello, J. D. B.; Durand-Charre, M.; Hamar-Thibault, S.

    1983-09-01

    Two series of Cr, Mo white cast irons were investigated by different techniques. Differential thermal analysis was carried out to determine the liquidus and eutectic temperatures. Unidirectional solidification was used to promote coarser structures easier to analyze. Furthermore, the microstructures of the sample, quenched during a slow unidirectional solidification, illustrate the behavior of the alloy during continuous cooling. The precipitates were characterized by scanning and transmission electron microscopy and microprobe analysis. The main findings are reported: (1) a correlation was found between the end of solidification and the chromium to carbon ratio; (2) the determination was made of the crystallization path; (3) in some high Cr/C ratio alloys a peritectic reaction occurs on the border of the grain giving a δ ferritic phase; (4) then this δ ferrite was found to decompose in a complex manner giving austenite and ferrite probably in a lamellar structure, then precipitates of M6C and Mo2C in the austenitic and ferritic phases, respectively; and (5) according to the kinetics of cooling, some alloys undergo martensitic and bainitic transformations.

  7. Wear properties of compact graphite cast iron with bionic units processed by deep laser cladding WC

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Zhang, Peng; Sun, Na; Wang, Cheng-tao; Lin, Peng-yu; Ren, Lu-quan

    2010-08-01

    By simulating the cuticles of some soil animals, the wear resistance of compact graphite cast iron (CGI) processed by laser remelting gets a conspicuous improvement. In order to get a further anti-wear enhancement of CGI, a new method of deep laser cladding was used to process bionic units. By preplacing grooves then filling with WC powders and laser cladding, the bionic units had a larger dimension in depth and higher microhardness. Fe powder with different proportions from 30% (wt.) to 60% (wt.) was added into WC before laser processing for a good incorporation with CGI substrate. The improved laser cladding units turned out to induce higher wear resistance in comparison with laser remelting ones. The depth of the layer reached up to 1 mm. The results of dry sliding wear tests indicated that the specimen processed by laser cladding has a remarkable improvement than the ones processed by laser remelting. It should be noted that the wear mass loss was essentially dependent on the increase in WC proportion.

  8. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  9. Surface hardening of a ductile-cast iron roll using high-energy electron beams

    NASA Astrophysics Data System (ADS)

    Suh, Dongwoo; Lee, Sunghak; Koo, Yangmo; Kwon, Soon-Ju

    1997-07-01

    The effects of high-energy electron beam irradiation on surface hardening and microstructural modification in a ductile cast iron (DCI) roll are investigated in this study. The DCI roll samples were irradiated by using an electron accelerator (1.4 MeV), and then their microstructures and hardnesses were examined. Upon irradiation, the unirradiated microstructure containing graphites and the tempered bainite matrix was changed to martensite, ledeburite, and retained austenite, together with the complete or partial dissolution of graphites. This microstructural modification improved greatly the surface hardness due to transformation of martensite whose amount and type were determined by heat input during irradiation. In order to investigate these complex microstructures, a simulation test including thermal cycles of abrupt heating and quenching was carried out. The simulation results indicated that the irradiated surface was heated up to about 1100 °C to 1200 °C and then quenched to room temperature, which was enough to obtain surface hardening through martensitic transformation. Thermal analysis of the irradiated surface layer was also carried out using a finite difference method to understand the surface hardening of the DCI roll and to compare with the simulation test results.

  10. Growth Kinetics of In Situ Fabricated Dense NbC Coatings on Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Shen, Liuliu; Xu, Yunhua; Zhao, Nana; Zhao, Ziyuan; Zhong, Lisheng; Song, Ke; Cai, Xiaolong; Wang, Juan

    2016-12-01

    In the present study, dense niobium carbide (NbC) coatings are fabricated by in situ techniques on gray cast iron (Fe) substrates at 1150 °C for 5 min, followed by a heat treatment at 990, 1010 and 1030 °C for 5, 10, 15 and 20 min. The microstructure, element composition and metallographic phase of the coating are characterized by scanning electron microscope, energy dispersive spectral and x-ray diffraction, respectively. Results show that the coating consists of NbC and α-Fe phases. NbC coating thickness ranges from 12.51 ± 1.4 to 29.17 ± 2.0 µm depending on the heat treatment temperature and time. In addition, the growth kinetics of dense niobium carbide coatings are estimated. A diffusion model based on Fick's laws is used to explore the carbon diffusion coefficients of the dense NbC coating in the range of heat treatment temperatures in which the experimental results of the kinetics of the niobium carbide coating are in good agreement with those estimated using diffusion model.

  11. Performance of Uncoated Carbide Cutting Tool when Machining Cast Iron in Dry Cutting Condition

    NASA Astrophysics Data System (ADS)

    Jaharah, A. G.; Che Hassan, C. H.; Ghazali, M. J.; Sulong, A. B.; Omar, M. Z.; Nuawi, M. Z.; Ismail, A. R.

    This paper presents the performance of uncoated carbide cutting tool when machining cast iron in dry cutting conditions. Experiments were conducted at various cutting speeds, feed rates, and depths of cut according to Taguchi method design of experiment using a standard orthogonal array L9(34). The effects of cutting speeds (100-146 m/min), feed rates (0.20-0.35 mm/tooth) and depths of cut (1.0-2.0 mm) on the tool life, surface roughness and cutting forces were evaluated using ANOVA. Results showed that the effects of cutting speed, depth of cut and the feed rate were similar affecting the failure of the carbide cutting tools within the range of tested machining parameters. The contribution of cutting speed, feed rate, and depth of cut in controlling the tool life were 32.12%, 38.56% and 29.32% respectively. Whereas, the cutting speed was the main factor influencing the average surface roughness (Ra) value followed by feed rate. These factors contribute 60.53% and 35.59% respectively to the Ra value. On the other hand, cutting forces generated were greatly influenced by the depth of cut (66.52%) and the feed rate (32.6%). Cutting speed was found insignificant in controlling the generated cutting forces.

  12. Green Turning of FCD 700 Ductile Cast Iron Using Coated Carbide Tool

    NASA Astrophysics Data System (ADS)

    Rodzi, Mohd Nor Azmi Mohd; Ghani, Jaharah A.; Eghawail, A. M.; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che

    2010-10-01

    This paper presents the performance of carbide coated cutting insert in turning FCD700 ductile cast iron in various dry machining conditions (without air, using air and chilled air). The turning parameters studied were, cutting speed of 120 m/min., feed rate of 0.15 mm/rev-0.4 mm/rev, and depth of cut of 0.6 mm-1.0 mm. The results show that the tool life was significantly controlled by the type of air coolant used, whereas the cutting force and surface roughness were not influenced by these coolants. Chilled air was found to be significantly improved the tool life by about 30% and 40% respectively when compared with normal air and without air conditions. The wear mechanism was predominantly controlled by the flank and crater wears on the flank and rake faces respectively. Due to the low cutting speed used in the experiment, both flank and crater wears were uniformly formed along the cutting edge and no catastrophic failure was observed under the scanning electron microscope (SEM).

  13. Waste minimization assessment for a manufacturer of iron castings and fabricated sheet metal parts

    SciTech Connect

    Fleischman, M.; Harris, J.J.; Handmaker, A.; Looby, G.P.

    1995-08-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. That document has been superseded by the Facility Pollution Prevention Guide. The WMAC team at the University of Louisville performed an assessment at a plant that manufactures iron castings and fabricated sheet metal parts. Foundry operations include mixing and mold formation, core making, metal pouring, shakeout, finishing, and painting. Cutting, shaping, and welding are the principal metal fabrication operations. The team`s report, detailing findings and recommendations indicated that paint-related wastes are generated in large quantities, and that significant waste reduction and cost savings could be realized by installing a dry powder coating system or by replacing conventional air spray paint guns with high-volume low-pressure spray guns. This research brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  14. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    SciTech Connect

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.

  15. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    DOE PAGES

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; ...

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remainedmore » adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  16. Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection.

    PubMed

    Zhu, Ying; Wang, Haibo; Li, Xiaoxiao; Hu, Chun; Yang, Min; Qu, Jiuhui

    2014-09-01

    The effect of UV/Cl2 disinfection on the biofilm and corrosion of cast iron pipes in drinking water distribution system were studied using annular reactors (ARs). Passivation occurred more rapidly in the AR with UV/Cl2 than in the one with Cl2 alone, decreasing iron release for higher corrosivity of water. Based on functional gene, pyrosequencing assays and principal component analysis, UV disinfection not only reduced the required initial chlorine dose, but also enhanced denitrifying functional bacteria advantage in the biofilm of corrosion scales. The nitrate-reducing bacteria (NRB) Dechloromonas exhibited the greatest corrosion inhibition by inducing the redox cycling of iron to enhance the precipitation of iron oxides and formation of Fe3O4 in the AR with UV/Cl2, while the rhizobia Bradyrhizobium and Rhizobium, and the NRB Sphingomonas, Brucella producing siderophores had weaker corrosion-inhibition effect by capturing iron in the AR with Cl2. These results indicated that the microbial redox cycling of iron was possibly responsible for higher corrosion inhibition and lower effect of water Larson-Skold Index (LI) changes on corrosion. This finding could be applied toward the control of water quality in drinking water distribution systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.

    PubMed

    Wang, Haibo; Hu, Chun; Hu, Xuexiang; Yang, Min; Qu, Jiuhui

    2012-03-15

    The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers.

  18. Statistical Study to Evaluate the Effect of Processing Variables on Shrinkage Incidence During Solidification of Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Gutiérrez, J. M.; Natxiondo, A.; Nieves, J.; Zabala, A.; Sertucha, J.

    2017-01-01

    The study of shrinkage incidence variations in nodular cast irons is an important aspect of manufacturing processes. These variations change the feeding requirements on castings and the optimization of risers' size is consequently affected when avoiding the formation of shrinkage defects. The effect of a number of processing variables on the shrinkage size has been studied using a layout specifically designed for this purpose. The β parameter has been defined as the relative volume reduction from the pouring temperature up to the room temperature. It is observed that shrinkage size and β decrease as effective carbon content increases and when inoculant is added in the pouring stream. A similar effect is found when the parameters selected from cooling curves show high graphite nucleation during solidification of cast irons for a given inoculation level. Pearson statistical analysis has been used to analyze the correlations among all involved variables and a group of Bayesian networks have been subsequently built so as to get the best accurate model for predicting β as a function of the input processing variables. The developed models can be used in foundry plants to study the shrinkage incidence variations in the manufacturing process and to optimize the related costs.

  19. Statistical Study to Evaluate the Effect of Processing Variables on Shrinkage Incidence During Solidification of Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Gutiérrez, J. M.; Natxiondo, A.; Nieves, J.; Zabala, A.; Sertucha, J.

    2017-04-01

    The study of shrinkage incidence variations in nodular cast irons is an important aspect of manufacturing processes. These variations change the feeding requirements on castings and the optimization of risers' size is consequently affected when avoiding the formation of shrinkage defects. The effect of a number of processing variables on the shrinkage size has been studied using a layout specifically designed for this purpose. The β parameter has been defined as the relative volume reduction from the pouring temperature up to the room temperature. It is observed that shrinkage size and β decrease as effective carbon content increases and when inoculant is added in the pouring stream. A similar effect is found when the parameters selected from cooling curves show high graphite nucleation during solidification of cast irons for a given inoculation level. Pearson statistical analysis has been used to analyze the correlations among all involved variables and a group of Bayesian networks have been subsequently built so as to get the best accurate model for predicting β as a function of the input processing variables. The developed models can be used in foundry plants to study the shrinkage incidence variations in the manufacturing process and to optimize the related costs.

  20. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-10-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase ( i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  1. Study on the Microstructure and Liquid Phase Formation in a Semisolid Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Benati, Davi Munhoz; Ito, Kazuhiro; Kohama, Kazuyuki; Yamamoto, Hajime; Zoqui, Eugenio José

    2017-06-01

    The development of high-quality semisolid raw materials requires an understanding of the phase transformations that occur as the material is heated up to the semisolid state, i.e., its melting behavior. The microstructure of the material plays a very important role during semisolid processing as it determines the flow behavior of the material when it is formed, making a thorough understanding of the microstructural evolution essential. In this study, the phase transformations and microstructural evolution in Fe2.5C1.5Si gray cast iron specially designed for thixoforming processes as it was heated to the semisolid state were observed using in situ high-temperature confocal laser scanning microscopy. At room temperature, the alloy has a matrix of pearlite and ferrite with fine interdendritic type D flake graphite. During heating, the main transformations observed were graphite precipitation inside the grains and at the austenite grain boundaries; graphite flakes and graphite precipitates growing and becoming coarser with the increasing temperature; and the beginning of melting at around 1413 K to 1423 K (1140 °C to 1150 °C). Melting begins with the eutectic phase (i.e., the carbon-rich phase) and continues with the primary phase (primary austenite), which is consumed as the temperature increases. Melting of the eutectic phase composed by coarsened interdendritic graphite flakes produced a semi-continuous liquid network homogeneously surrounding and wetting the dendrites of the solid phase, causing grains to detach from each other and producing the intended solid globules immersed in liquid.

  2. The role of manganese and copper in the eutectoid transformation of spheroidal graphite cast iron

    SciTech Connect

    Lacaze, J.; Boudot, A.; Gerval, V.; Oquab, D.; Santos, H.

    1997-10-01

    The decomposition of austenite to ferrite plus graphite or to pearlite in spheroidal graphite (SG) cast iron is known to depend on a number of factors among which are the nodule count, the cooling rate, and the alloying additions (Si, Mn, Cu, etc.). This study was undertaken in order to deepen the understanding of the effect of alloying with Mn and/or Cu on the eutectoid reaction. For this purpose, differential thermal analyses (DTAs) were carried out in which samples were subjected to a short homogenization treatment designed to smooth out the microsegregations originating from the solidification step. The effect of various additions of copper and manganese and of the cooling rate on the temperature of the onset of the stable and metastable eutectoid reactions was investigated. The experimental results can be explained if the appropriate reference temperature is used. The cooling rate affects the temperature of the onset of the ferrite plus graphite growth in the same way as for the eutectic reaction, with a measured undercooling that can be extrapolated to a zero value when the cooling rate is zero. The growth undercooling of pearlite had values that were in agreement with similar data obtained on silicon steels. The detrimental effect of Mn on the growth kinetics of ferrite during the decomposition of austenite in the stable system is explained in terms of the driving force for diffusion of carbon through the ferrite ring around the graphite nodules. Finally, it is found that copper can have a pearlite promoter role only when combined with a low addition of manganese.

  3. Stress-induced martensitic transformation and impact toughness of cast irons and high-carbon Fe-Ni-C steel

    NASA Astrophysics Data System (ADS)

    Zhang, M.-X.; Kelly, P. M.

    2001-11-01

    The relationship between the impact toughness and stress-induced martensitic transformation, which occurs during the impact process, has been studied in white cast irons and an Fe-Ni-C alloy at different temperatures. The experimental results have shown that in the brittle white cast irons, the stress-induced martensitic transformation makes a positive contribution to the impact toughness, and lowering the stability of austenite increases the toughness. In contrast, the transformation makes a negative contribution to the toughness of high-carbon austenitic steels, and lowering the stability of austenite decreases the toughness. The present work supports the early theory[1] that the magnitude of the toughness change depends on the fracture properties of the new phase and the energy being dissipated during the transformation process. Using the crystallographic model for the stress-induced martensitic transformation, which was originally developed in ceramics and was then refined and extended to irons and steels, the effect of the stress-induced martensitic transformation on the impact toughness can be predicted.

  4. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    SciTech Connect

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt.

  5. Preliminary science report on the directional solidification of hypereutectic cast iron during KC-135 low-G maneuvers

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1983-01-01

    An ADSS-P directional solidification furnace was reconfigured for operation on the KC-135 low-g aircraft. The system offers many advantages over quench ingot methods for study of the effects of sedimentation and convection on alloy formation. The directional sodification furnace system was first flown during the September 1982 series of flights. The microstructure of the hypereutectic cast iron sample solidified on one of these flights suggests a low-g effect on graphite morphology. Further experiments are needed to ascertain that this effect is due to low-gravity and to deduce which of the possible mechanisms is responsible for it.

  6. Application of EDS microanalysis in the identification of inhomogeneities in surface protective layers on ductile cast iron parts

    NASA Astrophysics Data System (ADS)

    Boroń, Ł.; Tchórz, A.

    2010-02-01

    In this study, the results of the application of both scanning electron microscopy and EDS microanalysis in investigations of the process of the protective layer formation on the surface of ductile cast iron (the substrate material) turbine blades are presented. The turbine blades, designated for operation in an aggressive environment, were coated with protective chromium carbide layers using plasma spraying methods. The first turbine blade was coated using a standard plasma spraying technique, followed by superficial remelting treatment, while the second one was coated using a modified plasma technology, i.e., HVOF (High Velocity Oxy Fuel) spraying technique.

  7. The Effect of Homogenization Heat Treatment on Thermal Expansion Coefficient and Dimensional Stability of Low Thermal Expansion Cast Irons

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hao; Liu, Zong-Pei; Pan, Yung-Ning

    2016-08-01

    In this paper, the effect of homogenization heat treatment on α value [coefficient of thermal expansion (10-6 K-1)] of low thermal expansion cast irons was studied. In addition, constrained thermal cyclic tests were conducted to evaluate the dimensional stability of the low thermal expansion cast irons with various heat treatment conditions. The results indicate that when the alloys were homogenized at a relatively low temperature, e.g., 1023 K (750 °C), the elimination of Ni segregation was not very effective, but the C concentration in the matrix was moderately reduced. On the other hand, if the alloys were homogenized at a relatively high temperature, e.g., 1473 K (1200 °C), opposite results were obtained. Consequently, not much improvement (reduction) in α value was achieved in both cases. Therefore, a compound homogenization heat treatment procedure was designed, namely 1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ, in which a relatively high homogenization temperature of 1473 K (1200 °C) can effectively eliminate the Ni segregation, and a subsequent holding stage at 1023.15 K (750 °C) can reduce the C content in the matrix. As a result, very low α values of around (1 to 2) × 10-6 K-1 were obtained. Regarding the constrained thermal cyclic testing in 303 K to 473 K (30 °C to 200 °C), the results indicate that regardless of heat treatment condition, low thermal expansion cast irons exhibit exceedingly higher dimensional stability than either the regular ductile cast iron or the 304 stainless steel. Furthermore, positive correlation exists between the α 303.15 K to 473.15 K value and the amount of shape change after the thermal cyclic testing. Among the alloys investigated, Heat I-T3B (1473 K (1200 °C)/4 hours/FC/1023 K (750 °C)/2 hours/WQ) exhibits the lowest α 303 K to 473 K value (1.72 × 10-6 K-1), and hence has the least shape change (7.41 μm) or the best dimensional stability.

  8. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes.

    PubMed

    Yang, Fan; Shi, Baoyou; Bai, Yaohui; Sun, Huifang; Lytle, Darren A; Wang, Dongsheng

    2014-08-01

    The chemical stability of iron corrosion scales and the microbial community of biofilm in drinking water distribution system (DWDS) can have great impact on the iron corrosion and corrosion product release, which may result in "red water" issues, particularly under the situation of source water switch. In this work, experimental pipe loops were set up to investigate the effect of sulfate on the dynamical transformation characteristics of iron corrosion products and bacterial community in old cast iron distribution pipes. All the test pipes were excavated from existing DWDS with different source water supply histories, and the test water sulfate concentration was in the range of 50-350 mg/L. Pyrosequencing of 16S rRNA was used for bacterial community analysis. The results showed that iron release increased markedly and even "red water" occurred for pipes with groundwater supply history when feed water sulfate elevated abruptly. However, the iron release of pipes with only surface water supply history changed slightly without noticeable color even the feed water sulfate increased multiply. The thick-layered corrosion scales (or densely distributed tubercles) on pipes with surface water supply history possessed much higher stability due to the larger proportion of stable constituents (mainly Fe3O4) in their top shell layer; instead, the rather thin and uniform non-layered corrosion scales on pipes with groundwater supply history contained relatively higher proportion of less stable iron oxides (e.g. β-FeOOH, FeCO3 and green rust). The less stable corrosion scales tended to be more stable with sulfate increase, which was evidenced by the gradually decreased iron release and the increased stable iron oxides. Bacterial community analysis indicated that when switching to high sulfate water, iron reducing bacteria (IRB) maintained dominant for pipes with stable corrosion scales, while significant increase of sulfur oxidizing bacteria (SOB), sulfate reducing bacteria (SRB

  9. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such as...

  10. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    "Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such a...

  11. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    "Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such a...

  12. THE EFFECT OF CHLORIDE AND ORTHOPHOSPHATE ON THE RELEASE OF IRON FROM A DRINKING WATER DISTRIBUTION SYSTEM CAST IRON PIPE

    EPA Science Inventory

    Colored water" describes the appearance of drinking water that contains suspended particulate iron although the actual suspension color may be light yellow to red depending on water chemistry and particle properties. The release of iron from distribution system materials such as...

  13. Using a Cast Iron Hand-Pump to Teach Students About Water Resources and Resource Allocation

    NASA Astrophysics Data System (ADS)

    Mailloux, B. J.; Radloff, K. A.

    2010-12-01

    Simply turning on the tap brings safe, clean, fresh-tasting water to most Americans. Students never need to consider basic concepts about water supply, including their daily water consumption and the quality of the water required for drinking. In stark contrast, the issues of water quality and quantity play a central role in people’s daily lives in the developing world. It is difficult to convey this reality to our students through lectures alone and hands-on activities are required. In order to develop an active learning based approach, we transported a traditional cast iron hand-pump and aluminum urns from Bangladesh to the United States. The hand-pump is mounted on a cooler, which acts as a water reservoir, and is now functional and easily transportable. Using this powerful demonstration tool, we have developed an active learning module we call “How far will you walk for water?”. The goal of the module is to teach students about water quantity, water quality, and resource allocation with a focus on Arsenic and Bangladesh, but the system could be applied to other areas of concern. First the students are given a quick lecture on Arsenic, its health impacts, and the extent of contamination in Bangladesh. They are then assigned a specific well, complete with a map of their village and picture of their well and a water sample (pre-spiked with arsenic to be above or below the 10 ug/L WHO limit). Next they pump the wellhead, fill an urn, walk down the hall and back, and measure the distance walked. This is compared to the distance from their village home to their private well, to safe wells belonging to neighbors and to a community well. The students then use the Hach Arsenic test kit to test the arsenic levels in their water samples and learn if their well is safe to drink. Finally, given all this information students must determine if they should continue drinking from their well or switch to a new well, even if that means making multiple, long trips each day

  14. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800/sup 0/C. [NASAUT 4G-Al: Fe-15Mn-15Cr-2Mo-1. 5C-1Nb-1Si

    SciTech Connect

    Titran, R.H.; Scheuermann, C.M.

    1987-08-01

    As part of the DOE/NASA Stirling Engine Systems Project, an iron-base cast alloy was developed, designated NASAUT 4G-Al. Its nominal composition, in percent by weight, is Fe-15Mn-15Cr-2Mo-1.5C-1Nb-1Si. This report presents the results of a study of this alloy, 4G-Al, performed to determine its creep-rupture properties. The alloy was studied in the directionally solidified (DS) form with a 650/sup 0/C/100 h anneal recommended by UTRC to optimize properties and in the investment-cast (IC) form with either a 760/sup 0/C/20 h anneal recommended by UTRC to optimize properties, or a solution anneal of 790/sup 0/C/20 h followed by a simulated brazing cycle of 1065/sup 0/C/15 min + a heat treatment of 760/sup 0/C/16 h + 650/sup 0/C/16 h. Alloy 4G-Al exhibited typical 3-stage creep response under all conditions tested. The most creep resistant condition was the DS material. This condition compares very favorably to the prototype (HS-31) and prime candidate (XF-818) alloys for the automotive Stirling engine cylinder/regenerator housing. 14 refs., 7 figs., 6 tabs.

  15. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  16. Active Mg Estimation Using Thermal Analysis: A Rapid Method to Control Nodularity in Ductile Cast Iron Production

    NASA Astrophysics Data System (ADS)

    Suárez, Ramon; Sertucha, Jon; Larrañaga, Pello; Lacaze, Jacques

    2016-10-01

    Appropriate nodularity in ductile iron castings is strongly associated with the presence of high enough not combined Mg dissolved in the melt to cast. However, the residual Mg which is commonly measured for production control accounts for both dissolved Mg and Mg combined as oxides and sulfides. To account for the uncertainties associated with such a control, it is quite usual to over treat the melt with the risk of porosity appearance. A new methodology based on thermal analysis has been developed in the present work so as to estimate the amount of free Mg dissolved in the melt ready for pouring. A combination of Te mixture and a new "reactive mixture" composed of sulfur plus a commercial inoculant has been prepared for this purpose. This reactive mixture is able to transform the magnesium remaining dissolved in the melt to combined forms of this element. Experiments performed both during start of production (when Mg overtreatment is usual) and during normal mass production indicate that important variations of free Mg occur without relevant changes in residual Mg content as determined by spectrometry. The method developed in the present work has shown to be highly effective to detect those melt batches where active Mg content is not high enough for guaranteeing a correct nodularity of castings. Selection of proper active Mg thresholds and a correct inoculation process are critical to avoid "false"-negative results when using this new method.

  17. Calculation of the Combined Heat Transfer Coefficient of Hot-face on Cast Iron Cooling Stave Based on Thermal Test

    NASA Astrophysics Data System (ADS)

    Li, Feng-guang; Zhang, Jian-liang; Zuo, Hai-bin; Qin, Xuan; Qi, Cheng-lin

    2017-03-01

    Cooling effects of the cast iron cooling stave were tested with a specially designed experimental furnace under the conditions of different temperatures of 800 °C, 900 °C, 1,000 °C and 1,100 °C as well as different cooling water velocities of 0.5 m·s-1, 1.0 m·s-1, 1.5 m·s-1 and 2.0 m·s-1. Furthermore, the combined heat transfer coefficient of hot-face on cast iron cooling stave (αh-i) was calculated by heat transfer theory based on the thermal test. The calculated αh-i was then applied in temperature field simulation of cooling stave and the simulation results were compared with the experimental data. The calculation of αh-i indicates that αh-i increases rapidly as the furnace temperature increases while it increases a little as the water velocity increases. The comparison of the simulation results with the experimental data shows that the simulation results fit well with the experiment data under different furnace temperatures.

  18. Diffusion zone between high-chromium cast iron and high-manganese steel during electric-slag facing

    SciTech Connect

    Ponomarenko, V.P.; Shvartser, A.Y.; Stroganova, G.V.

    1986-05-01

    The authors investigate extending the service lives of components by the method of electric-slag facing of working surfaces. Steel 45 was used in the annealed state. Electric-slag remelting was the method used to determine the bending strength. Metallographic examinations were conducted under an MIM-8m microscope, while x-ray analysis of the built-up and base metals were performed on a DRON-2 diffractometer. BAsic alloying elements, chromium and manganese were studied on a ''Cameca MS-46'' microanalyzer. During the electri-slag facing of a high-chromium cast iron containing 8% of Mn on high-manganese steel 11OG13L diffusion equalization of the manganese content occurs in the fusion zone. Diffusion displacement of carbon, chromium, and manganese from high-chromium cast iron into the high-manganese steel during electric-slag facing gies rise to a smooth change in the structure of the metal in the fusion zone, and to increased strength of the joint between the unlike materials investigated.

  19. Cast iron cutting with nano TiN and multilayer TiN-CrN coated inserts

    NASA Astrophysics Data System (ADS)

    Perucca, M.; Durante, S.; Semmler, U.; Rüger, C.; Fuentes, G. G.; Almandoz, E.

    2012-09-01

    During the past decade great success has been achieved in the development of duplex and multilayer multi-functional surface systems. Among these surface systems outstanding properties have nanoscale multilayer coatings. Within the framework of the M3-2S project funded in the 7th European Framework Programme, several nanoscale multilayer coatings have been developed and investigated for experimental and industrial validation. This paper shows the performance of TiN and TiN/CrN nanoscale multilayer coatings on WC cutting inserts when machining GJL250 cast iron. The thin films have been deposited by cathodic arc evaporation in an industrial PVD system. The multilayer deposition characteristic and its properties are shown. The inserts have been investigated in systematic cutting experiments of cast iron bars on a turning machine specifically equipped for force measurements, accompanied by wear determination. Furthermore, equivalent experiments have been carried out on an industrial turning unit. Industrial validation criteria have been applied to assess the comparative performance of the coatings. The choice of the material and the machined parts is driven by an interest in automotive applications. The industrial tests show the need to further optimise the multi-scale modelling approach in order to reduce the lead time of the coating development as well as to improve simulation reliability.

  20. CASTING APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  1. Advances in aluminum casting technology

    SciTech Connect

    Tiryakioglu, M.; Campbell, J.

    1998-01-01

    This symposium focuses on the improvements of aluminum casting quality and reliability through a better understanding of processes and process variables, and explores the latest innovations in casting-process design that allow increasing use of the castings to replace complex assemblies and heavy steel and cast-iron components in aerospace and automotive applications. Presented are 35 papers by international experts in the various aspects of the subject. The contents include: Semisolid casting; Computer-aided designing of molds and castings; Casting-process modeling; Aluminum-matrix composite castings; HIPing of castings; Progress in the US car project; Die casting and die design; and Solidification and properties.

  2. Investigation of the tribology behaviour of the graphene nanosheets as oil additives on textured alloy cast iron surface

    NASA Astrophysics Data System (ADS)

    Zheng, Dan; Cai, Zhen-bing; Shen, Ming-xue; Li, Zheng-yang; Zhu, Min-hao

    2016-11-01

    Tribological properties of graphene nanosheets (GNS) as lubricating oil additives on textured surfaces were investigated using a UMT-2 tribotester. The lubricating fluids keeping a constant temperature of 100 °C were applied to a GCr15 steel ball and an RTCr2 alloy cast iron plate with various texture designs (original surface, dimple density of 22.1%, 19.6% and 44.2%). The oil with GNS adding showed good tribological properties (wear reduced 50%), especially on the textured surfaces (the reduction in wear was high at over 90%). A combined effect between GNS additives and laser surface texturing (LST) was revealed, which is not a simple superposition of the two factors mentioned. A mechanism is proposed to explain for these results -the graphene layers sheared at the sliding contact interfaces, and form a protective film, which is closely related with the GNS structures and surface texture patterns.

  3. Constitutive model for flake graphite cast iron automotive brake discs: induced anisotropic damage model under complex loadings

    NASA Astrophysics Data System (ADS)

    Augustins, L.; Billardon, R.; Hild, F.

    2016-09-01

    The present paper details an elasto-viscoplastic constitutive model for automotive brake discs made of flake graphite cast iron. In a companion paper (Augustins et al. in Contin Mech Thermodyn, 2015), the authors proposed a one-dimensional setting appropriate for representing the complex behavior of the material (i.e., asymmetry between tensile and compressive loadings) under anisothermal conditions. The generalization of this 1D model to 3D cases on a volume element and the associated challenges are addressed. A direct transposition is not possible, and an alternative solution without unilateral conditions is first proposed. Induced anisotropic damage and associated constitutive laws are then introduced. The transition from the volume element to the real structure and the numerical implementation require a specific basis change. Brake disc simulations with this constitutive model show that unilateral conditions are needed for the friction bands. A damage deactivation procedure is therefore defined.

  4. Machinable, Thin-Walled, Gray and Ductile Iron Casting Production, Phase III

    SciTech Connect

    Charles Bates; Hanjun Li; Robin Griffin

    2003-12-08

    This report presents the results of research conducted to determine the effects of normal and abnormal processing and compositional variations on machinability (tool wear rate) of gray and ductile iron. The procedures developed allow precise tool wear measurements to be made and interpreted in terms of microstructures and compositions. Accurate data allows the most efficient ways for improving machinability to be determined without sacrificing properties of the irons.

  5. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    SciTech Connect

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  6. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds.

    PubMed

    Tiedje, Niels; Crepaz, Rudolf; Eggert, Torben; Bey, Niki

    2010-12-01

    Emissions from mould and core sand binders commonly used in the foundry industry have been investigated. Degradation of three different types of binders was investigated: Furfuryl alcohol (FA), phenolic urethane (PU) and resol-CO2 (RC). In each group of binders, at least two different binder compositions were tested. A test method that provides uniform test conditions is described. The method can be used as a general test method to analyse off gases from binders. Moulds, containing a standard size casting, were produced and the amount and type of organic compounds, resulting from thermal degradation of binders, was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gases in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content. It is shown how off-gases vary with time after pouring and shake out. Also the composition of off-gases is analysed and shown. It is further shown how the composition of off-gasses varies between different types of binders and with varying composition of the binders as well as function of the thermal load on the moulding sand.

  7. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Slimes and sludges, aluminum and iron... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10667 Slimes and sludges, aluminum and... subject to reporting. (1) The chemical substance identified generically as slimes and sludges, aluminum...

  8. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Slimes and sludges, aluminum and iron... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10667 Slimes and sludges, aluminum and... subject to reporting. (1) The chemical substance identified generically as slimes and sludges, aluminum...

  9. Quantification of the separate matrix constituents of spheroidal graphite cast iron implanted with 15N by nuclear reaction analysis using an ion muprobe

    NASA Astrophysics Data System (ADS)

    Matthews, A. P.; Jeynes, C.; Reeson, K. J.; Thornton, J.; Spyrou, N. M.

    1992-02-01

    The retained dose of nitrogen in a spheroidal graphite (SG) cast iron (4% carbon) implanted with 2 × 10 1715{solN}/{cm 2} at 200 keV has been determined separately in the iron matrix and in the graphite inclusions of 30 μm average diameter randomly dispersed in the matrix, using the 15N(p, αγ) 12C resonance at 898 keV and a proton muprobe focussed to less than 20 μm spot diameter. In normalised and tempered SG cast iron the retained doses were 1.09 × 10 17 and 1.74 × 10 17{N}/{cm}2 in the pearlitic matrix and graphite nodules, respectively, and in induction hardened SG cast iron the retained doses were 1.18 × 10 15 and 0.97 × 10 17{N}/{cm 2} in the martensitic matrix and nodules, respectively. The profile shapes are also quite different in both types of samples, and in both matrix and nodule.

  10. Growth of Legionella anisa in a model drinking water system to evaluate different shower outlets and the impact of cast iron rust.

    PubMed

    van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian

    2017-08-18

    Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Quantitative evaluation of hidden defects in cast iron components using ultrasound activated lock-in vibrothermography

    SciTech Connect

    Montanini, R.; Freni, F.; Rossi, G. L.

    2012-09-15

    This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.

  12. Types of greenhouse gas emissions in the production of cast iron and steel

    NASA Astrophysics Data System (ADS)

    Lisienko, V. G.; Chesnokov, Yu N.; Lapteva, A. V.; Noskov, V. Yu

    2016-09-01

    Types of carbon dioxide emissions in iron and steel production are indicated. Production processes have been classified according to mechanisms of carbon dioxide formation. Mathematical models for calculation of carbon dioxide emissions for each type of process are found. Calculations results of carbon dioxide emissions of coke (BF + EAF) and cokeless processes (Corex, Midrex, HyL-3, Romelt) in combination with EAF are provided.

  13. Effects of Ceramic Fibre Insulation Thickness on Skin Formation and Nodule Characteristics of Thin Wall Ductile Iron Casting

    NASA Astrophysics Data System (ADS)

    Dhaneswara, D.; Suharno, B.; Nugraha, N. D.; Ariobimo, R. D. S.; Sofyan, N.

    2017-02-01

    Skin formation has become one of the problems in the thin wall ductile iron casting because it will reduce the mechanical properties of the materials. One of the solutions to reduce this skin formation is by using heat insulator to control the cooling rate. One of the insulators used for this purpose is ceramic fibre. In this research, the thickness of the ceramic fibre heat insulator used in the mould was varied, i.e. 50 mm on one side and 37.5 mm on the other side (A), no heat insulator (B), and 37.5 mm on both sides (C). After the casting process, the results were characterized in terms of metallography by using scanning electron microscope (SEM) and tensile test for mechanical properties. The results showed that the skin thickness formed in A is 34.21 μm, 23.38 μm in B, and 27.78 μm in C. The nodule count in A is 541.98 nodule/mm2 (84.7%) with an average diameter of 15.14 μm, 590 nodule/mm2 (86.7%) with an average diameter of 13.18 μm in B, and 549.73 nodule/mm2 (87.2%) with an average diameter of 13.95 μm in C. The average ultimate tensile strength for A was 399 MPa, B was 314 MPa, and C was 415 MPa. Microstructural examination under SEM showed that the materials have a ductile fracture with matrix full of ferrite.

  14. Characterisation of the fatigue properties of cast irons used in the water industry and the effect on pipe strength and performance

    NASA Astrophysics Data System (ADS)

    Mohebbi, H.; Jesson, D. A.; Mulheron, M. J.; Smith, P. A.

    2009-08-01

    As part of an on going programme to characterise the residual properties and understand the failure mechanisms of in-service grey cast iron water pipes, the fatigue crack propagation behaviour of grey cast iron samples has been studied. Specimens were sourced from three ex-service pipes. For each pipe the microstructure and composition were characterised and the fracture toughness was determined. The fatigue behaviour was investigated in terms of the crack growth rate (da/dN) as a function of the applied stress intensity factor range. Clear differences in the fatigue behaviour of the samples from different pipes were observed. The result from these investigations, which indicate that microstructural differences play a role in mechanical behaviour, will support the development of asset management tools for use in the water industry.

  15. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Microstructure and Corrosion Performance of Carbonitriding Layers on Cast Iron by Plasma Electrolytic Carbonitriding

    NASA Astrophysics Data System (ADS)

    Pang, Hua; Lv, Guo-Hua; Chen, Huan; Wang, Xin-Quan; Zhang, Gu-Ling; Yang, Si-Ze

    2009-08-01

    The surface carbonitriding of cast iron is investigated in an aqueous solution of acetamide and glycerin. Microstructure, chemical and phase composition and corrosion performance of the carbonitriding layers are investigated by scanning electron microscopy, energy dispersive spectroscopy and x-ray diffraction, as well as potentiodynamic polarization testing. X-ray diffraction results show that the carbonitriding coatings are composed of martensite, austenite(γ-Fe), Fe2C, Fe3C, Fe5C2, FeN and in-Fe2-3N. After the plasma electrolytic carbonitriding treatment the corrosion resistance of cast iron is clearly improved compared to the substrate, and the coatings produced at 350 V for 30s give the best corrosion resistance.

  16. Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron

    NASA Astrophysics Data System (ADS)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-08-01

    The aim of the investigations was to compare the microstructure, mechanical, and wear properties of Cr3C2-NiCr+Ni and Cr3C2-NiCr coatings deposited by HVOF technique (the high-velocity oxygen fuel spray process) on ductile cast iron. The effect of nickel particles added to the chromium carbide coating on mechanical and wear behavior in the system of Cr 3 C 2 -NiCr+Ni/ductile cast iron was analyzed in order to improve the lifetime of coated materials. The structure with particular emphasis of characteristic of the interface in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron was studied using the optical, scanning, and transmission electron microscopes, as well as the analysis of chemical and phase composition in microareas. Experimental results show that HVOF-sprayed Cr3C2-NiCr+Ni composite coating exhibits low porosity, high hardness, dense structure with large, partially molten Ni particles and very fine Cr3C2 and Cr7C3 particles embedded in NiCr alloy matrix, coming to the size of nanocrystalline. The results were discussed in reference to examination of bending strength considering cracking and delamination in the system of composite coating (Cr 3 C 2 -NiCr+Ni)/ductile cast iron as well as hardness and wear resistance of the coating. The composite structure of the coating provides the relatively good plasticity of the coating, which in turn has a positive effect on the adhesion of coating to the substrate and cohesion of the composite coating (Cr3C2-NiCr+Ni) in wear conditions.

  17. Mechanochemical reactions and strengthening in epoxy-cast aluminum iron-oxide mixtures

    NASA Astrophysics Data System (ADS)

    Ferranti, Louis, Jr.

    2007-12-01

    Epoxy-cast Al+Fe2O3 thermite composites are an example of a structural energetic material that can simultaneously release chemical energy while providing structural strength. The structural/mechanical response and chemical reaction behavior are closely interlinked through characteristics of deformation and intermixing of reactants. In this work, the structural and energetic response of composites made from stoichiometric mixtures of nano- and micro-scale aluminum and hematite (Fe2O3) powders dispersed in 47 to 78 vol.% epoxy was investigated by characterizing the mechanical behavior under high-strain rate and shock loading conditions. The main focus of the work was to understand the influence of microstructure on mechanical behavior in epoxy-cast Al+Fe2O3 materials when exposed to high stress, large strain, and high rate loading conditions. The material's Hugoniot at pressures up to approximately 20 GPa for an Al+Fe2O3+78 vol.% epoxy composite and up to approximately 8 GPa for Al+Fe2O3+60 vol.% epoxy composite has been determined. The results reveal an inert pressure-relative volume (P-V) and shock-particle velocity (US-UP) response in the range of the shock-conditions explored, with the Al+Fe2O3+60 vol.% epoxy composite showing a greater shock stiffness. The addition of solid particle inclusions alters the Hugoniot response as compared to pure epoxy behavior. This is attributed to possible induced bulk damage that changes the composite's response as impact stress increases. While the 78 vol.% epoxy composition shows a transition from "undamaged" to "damaged" behavior that approaches pure epoxy response, the 60 vol.% epoxy composition exhibits a gradual toughening behavior. Impact experiments have also been conducted for characterizing the high-strain rate deformation and fracture response obtained from instrumented reverse Taylor tests using high-speed camera and velocity interferometry. The results show that these composite materials exhibit viscoelastic

  18. Effects of the Exposure to Corrosive Salts on the Frictional Behavior of Gray Cast Iron and a Titanium-Based Metal Matrix Composite

    SciTech Connect

    Blau, Peter Julian; Truhan, Jr., John J; Kenik, Edward A

    2007-01-01

    The introduction of increasingly aggressive road-deicing chemicals has created significant and costly corrosion problems for the trucking industry. From a tribological perspective, corrosion of the sliding surfaces of brakes after exposure to road salts can create oxide scales on the surfaces that affect friction. This paper describes experiments on the effects of exposure to sodium chloride and magnesium chloride sprays on the transient frictional behavior of cast iron and a titanium-based composite sliding against a commercial brake lining material. Corrosion scales on cast iron initially act as abrasive third-bodies, then they become crushed, spread out, and behave as a solid lubricant. The composition and subsurface microstructures of the corrosion products on the cast iron were analyzed. Owing to its greater corrosion resistance, the titanium composite remained scale-free and its frictional response was markedly different. No corrosion scales were formed on the titanium composite after aggressive exposure to salts; however, a reduction in friction was still observed. Unlike the crystalline sodium chloride deposits that tended to remain dry, hygroscopic magnesium chloride deposits absorbed ambient moisture from the air, liquefied, and retained a persistent lubricating effect on the titanium surfaces.

  19. Directional solidification of flake and nodular cast iron during KC-135 low-g maneuvers

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Stefanescu, D. M.; Hendrix, J. C.

    1984-01-01

    Alloys solidified in a low-gravity environment can, due to the elimination of sedimentation and convection, form unique and often desirable microstructures. One method of studying the effects of low-gravity (low-g) on alloy solidification was the use of the NASA KC-135 aircraft flying repetitive low-g maneuvers. Each maneuver gives from 20 to 30 seconds of low-g which is between about 0.1 and 0.001 gravity. A directional solidification furnace was used to study the behavior of off eutectic composition case irons in a low-g environment. The solidification interface of hypereutectic flake and spheroidal graphite case irons was slowly advanced through a rod sample, 5 mm in diameter. Controlled solidification was continued through a number of aircraft parabolas. The known solidification rate of the sample was then correlated with accelerometer data to determine the gravity level during solidification for any location of the sample. The thermal gradient and solidification rate were controlled independently. Samples run on the KC-135 aircraft exhibited bands of coarser graphite or of larger nodules usually corresponding to the regions solidified under low-g. Samples containing high phosphorous (used in order to determine the eutectic cell) exhibited larger eutectic cells in the low-g zone, followed by a band of coarser graphite.

  20. Influence of Orientations of Bionic Unit Fabricated by Laser Remelting on Fatigue Wear Resistance of Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Kai; Zhou, Ti; Zhang, Hai-feng; Yang, Wan-shi; Zhou, Hong

    2015-06-01

    Fatigue wear resistance improvements were researched by studying experimental samples with gray cast iron fabricated with bionic units in different orientations. Experimental samples were modified by laser surface remelting, including parallel, vertical, and gradient units to the wear direction. The remelting pool was then studied to determine the micro-hardness, microstructure, alteration of phase, and etc. Lab-control fatigue wear test method was applied with the treated and untreated samples tested under the laboratorial conditions. Wear resistance result was considered as the rolling contact fatigue (RCF) resistance and mechanisms of the modified samples were experimentally investigated and discussed. Results suggested that all treated samples demonstrated the beneficial effect on the RCF improvement due to lack of graphite and reinforcement of treated region. Results also indicated the sample with fastigiated units was more effective than that with vertical units or parallel units to the wear direction. Influence of the sample unit's angle which intensely depended on the conditions of actual application, however, was not identified.

  1. Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-kai; Lu, Shu-chao; Song, Xi-bin; Zhang, Haifeng; Yang, Wan-shi; Zhou, Hong

    2015-03-01

    To improve the fatigue wear resistance of gray cast iron (GCI), GCI samples were modified by a laser to imitate the unique structure of some soil animals alternating between soft and hard phases; the hard phase resists the deformation and the soft phase releases the deformation. Using the self-controlled fatigue wear test method, the fatigue wear behaviors of treated and untreated samples were investigated and compared experimentally. The results show that the bionic non-smooth surface obtains a beneficial effect on improving the fatigue wear resistance of a sample, and the fatigue wear resistance of the bionic sample assembled with reticulate units (60°+0°), whose mass loss was reduced by 62%, was superior to the others. Meanwhile, a finite element (FE) was used to simulate the compression and the distributions of strain and stress on the non-smooth surface was inferred. From these results, we understood that the functions of the bionic unit such as reducing strain and stress, and also obstructing the closure and propagation of cracks were the main reasons for improving the fatigue wear property of GCI.

  2. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    NASA Astrophysics Data System (ADS)

    Guo, Qing-chun; Zhou, Hong; Wang, Cheng-tao; Zhang, Wei; Lin, Peng-yu; Sun, Na; Ren, Luquan

    2009-04-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  3. Bio-inspired wearable characteristic surface: Wear behavior of cast iron with biomimetic units processed by laser

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Sun, Na; Shan, Hongyu; Ma, Dianyi; Tong, Xin; Ren, Luquan

    2007-10-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting (BCLR) process. The microstructure and microhardness of biomimetic units were examined. The wear behaviors of biomimetic specimens as functions of laser input energy and biomimetic unit shape were investigated under dry sliding condition, respectively. The results indicated that the biomimetic specimens had better wear resistance than the untreated specimens. The wear resistance of the biomimetic specimens increases with the increase of laser input energy due to the increase of the depth and the width of biomimetic units as well as the increase of the microhardness. The specimen with grid biomimetic units had the best resistance, the stria took the second place and the convex showed the worst. The application of laser remelting provided desirable microstructural changes in biomimetic units, which generated the intensified particles effect for improving the wear resistance. The adhesive wear was the dominative wear mechanism for the biomimetic specimens.

  4. Adenovirus, MS2 and PhiX174 interactions with drinking water biofilms developed on PVC, cement and cast iron.

    PubMed

    Helmi, K; Menard-Szczebara, F; Lénès, D; Jacob, P; Jossent, J; Barbot, C; Delabre, K; Arnal, C

    2010-01-01

    Biofilms colonizing pipe surfaces of drinking water distribution systems could provide habitat and shelter for pathogenic viruses present in the water phase. This study aims (i) to develop a method to detect viral particles present in a drinking water biofilm and (ii) to study viral interactions with drinking water biofilms. A pilot scale system was used to develop drinking water biofilms on 3 materials (7 cm(2) discs): PVC, cast iron and cement. Biofilms were inoculated with viral model including MS2, PhiX174 or adenovirus. Five techniques were tested to recover virus from biofilms. The most efficient uses beef extract and glycine at pH = 9. After sonication and centrifugation, the pH of the supernatant is neutralized prior to viral analysis. The calculated recovery rates varied from 29.3 to 74.6% depending on the virus (MS2 or PhiX174) and the material. Applying this protocol, the interactions of virus models (MS2 and adenovirus) with drinking water biofilms were compared. Our results show that adsorption of viruses to biofilms depends on their isoelectric points, the disc material and the hydrodynamic conditions. Applying hydrodynamic conditions similar to those existing in drinking water networks resulted in a viral adsorption corresponding to less than 1% of the initial viral load.

  5. Damage effect on the fracture toughness of nodular cast iron: Part I. Damage characterization and plastic flow stress modeling

    NASA Astrophysics Data System (ADS)

    Dong, M. J.; Prioul, C.; François, D.

    1997-11-01

    After chemical, morphological, and mechanical characterization of ductile cast iron, the damage mechanisms were studied by tensile tests inside the scanning electron microscope (SEM). The evolutions of Young’s modulus and of Poisson’s ratio were measured in uniaxial tensile tests. Compression tests were used to measure the pressure sensitivity coefficient of the flow stress. The damage is produced by early initiation of cavities at the pole cap of graphite nodules by debonding of the interface, followed by the growth of cavities. The mechanical behavior was modeled in the elastic region by calculating the Hashin-Shtrickman bounds. This provided the elastic constants for the graphite nodules. The plastic behavior was modeled by considering that the graphite nodules were replaced by voids. The critical interfacial stress for debonding was determined by analytical as well as by finite-element calculations. The growth rate of cavities was deduced from the evolution of the Poisson’s ratio and was compared with predictions from Gurson’s potential. The stress-strain behavior could be modeled either by extension of the Mori-Tanaka analysis in the plastic range or by finite-element computations. This allowed a fair prediction of the observed behavior.

  6. The influence of heat treatment on the high-stress abrasion resistance and fracture toughness of alloy white cast irons

    NASA Astrophysics Data System (ADS)

    Sare, I. R.; Arnold, B. K.

    1995-07-01

    The influence of a range of austenitizing and subcritical (tempering) heat treatments on the high-stress abrasion resistance and fracture toughness of four commercially significant grades of alloy white cast iron was investigated. Complementing an earlier study[1] on the influence of a more limited range of heat treatments on the gouging abrasion performance of the same alloys, the results showed that the effect of austenitizing temperature on high-stress abrasion pin test weight loss differed for each alloy. With increasing austenitizing temperature, these results ranged from a substantial improvement in wear performance and retention of hardness through to vir-tually no change in wear performance and substantial falls in hardness. Fracture toughness, however, increased markedly in all alloys with increasing austenitizing temperature. Tempering treatments in the range 400 °C to 600 °C, following hardening at the austenitizing temperature used commonly in industrial practice for each alloy, produced significant changes in both hard-ness and wear performance, but negligible changes in fracture toughness. Most importantly, the data showed that selection of the correct temperature for subcritical heat treatment to reduce the retained austenite content for applications involving repeated impact loading is critical if abrasion resistance is not to suffer.

  7. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Kozarevskaya, T. V.; Kusumoto, K.; Yamamoto, K.

    2014-11-01

    The objective of this investigation is to study the influence of vanadium (5.0wt%-10.0wt%) and chromium (0-9.0wt%) on the microstructure and hardness of Cr-V-Mn-Ni white cast irons with spheroidal vanadium carbides. The alloys' microstructural features are presented and discussed with regard to the distribution of phase elements. The structural constituents of the alloys are spheroidal VC, proeutectoid cementite, ledeburite eutectic, rosette-shaped carbide eutectic (based on M7C3), pearlite, martensite, and austenite. Their combinations and area fraction (AF) ratios are reported to be influenced by the alloys' chemical composition. Spheroidized VC particles are found to be sites for the nucleation of carbide eutectics. Cr and V are shown to substitute each other in the VC and M7C3 carbides, respectively. Chromium alloying leads to the formation of a eutectic (γ-Fe + M7C3), preventing the appearance of proeutectoid cementite in the structure. Vanadium and chromium are revealed to increase the total carbide fraction and the amount of austenite in the matrix. Cr is observed to play a key role in controlling the metallic matrix microstructure.

  8. Erosive Wear Behavior of Nickel-Based High Alloy White Cast Iron Under Mining Conditions Using Orthogonal Array

    NASA Astrophysics Data System (ADS)

    Yoganandh, J.; Natarajan, S.; Babu, S. P. Kumaresh

    2013-09-01

    Nihard Grade-4, a nickel-bearing cast iron widely used in slurry pumps and hydrodynamic components, is evaluated for its erosive wear response under mining conditions using a statistical approach. Experiments were conducted by varying the factors namely velocity, slurry concentration, angle of impingement, and pH in three levels, using L9 orthogonal array. Analysis of variance was used to rank the factors influencing erosive wear. The results indicate that velocity is the most influencing factor followed by the angle of impingement, slurry concentration, and pH. Interaction effects of velocity, slurry concentration, angle of impingement, and pH on erosion rate have been discussed. Wear morphology was also studied using SEM characterization technique. At lower angle (30°) of impingement, the erosion of material is by micro fracture and shallow ploughing with the plastic deformation of the ductile austenitic matrix. At the normal angle (90°) of impingement, the material loss from the surface is found because of deep indentation, forming protruded lips which are removed by means of repeated impact of the erodent.

  9. Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water.

    PubMed

    Jin, Juntao; Wu, Guangxue; Guan, Yuntao

    2015-03-15

    To understand the role bacterial communities play in corrosion scale development, the morphological and physicochemical characteristics of corrosion scales in raw and disinfected reclaimed water were systematically investigated. Corrosion tubercles were found in raw reclaimed water while thin corrosion layers formed in disinfected reclaimed water. The corrosion tubercles, composed mainly of α-FeOOH, γ-FeOOH, and CaCO3, consisted of an top surface; a shell containing more magnetite than other layers; a core in association with stalks produced by bacteria; and a corroded layer. The thin corrosion layers also had layered structures. These had a smooth top, a dense middle, and a corroded layer. They mostly consisted of the same main components as the tubercles in raw reclaimed water, but with different proportions. The profiles of the dissolved oxygen (DO) concentration, redox potential, and pH in the tubercles were different to those in the corrosion layers, which demonstrated that these parameters changed with a shift in the microbial processes in the tubercles. The bacterial communities in the tubercles were found to be dominated by Proteobacteria (56.7%), Bacteroidetes (10.0%), and Nitrospira (6.9%). The abundance of sequences affiliated to iron-reducing bacteria (IRB, mainly Geothrix) and iron-oxidizing bacteria (mainly Aquabacterium) was relatively high. The layered characteristics of the corrosion layers was due to the blocking of DO transfer by the development of the scales themselves. Bacterial communities could at least promote the layering process and formation of corrosion tubercles. Possible mechanisms might include: (1) bacterial communities mediated the pH and redox potential in the tubercles (which helped to form shell-like and core layers), (2) the metabolism of IRB and magnetic bacteria (Magnetospirillum) might contribute to the presence of Fe3O4 in the shell-like layer, while IRB contributed to green rust in the core layer, and (3) the diversity of

  10. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    NASA Astrophysics Data System (ADS)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  11. Urinary casts

    MedlinePlus

    ... Waxy casts; Casts in the urine; Fatty casts; Red blood cell casts; White blood cell casts ... a sign of many types of kidney diseases. Red blood cell casts mean there is a microscopic amount of ...

  12. Retained Austenite Phase in (26.5%Cr, 2.6%C) White Cast Iron Studied by Means of CEMS and Eddy Current

    NASA Astrophysics Data System (ADS)

    Mulaba-Bafubiandi, A. F.; Waanders, F. B.; Jones, C.

    High chrome white irons are specifically employed in the mining industry for their resistance to wear. More cost-effective materials are constantly being sought, due to the high wear rate of the drilling components, which is a high cost area for this industry. Optimum resistance to wear is often not the main criterion of material selection but parameters such as ease of fabrication; availability and low initial cost have also to be accounted for. A correctly heat-treated high chrome white iron of a right chemical composition presents the best hardness and toughness combination [1]. A (26.5 wt.% Cr, 2.6 wt.% C) white iron has been produced by casting and heat-treating. As the retained austenite phase has the ability to harden, the control of its content may result in tuning the applications of this material. Various heat-treatments were given to the above-mentioned material to achieve a spread of austenite values. The retained austenite phase amount was measured by means of X-ray diffraction (XRD), Conversion Electron Mössbauer spectroscopy (CEMS) and Eddy current techniques. A linear correlation between results from Eddy Current and CEMS, Eddy-current and XRD, and between those from CEMS and XRD was observed. As the nominal abundance values were ``technique dependent'', their conversion will be discussed. The present study results in the calibration of the Eddy current apparatus and suggests its application in the casting industry during mass production for the retained austenite content determination in high chrome white iron castings.

  13. Low Pressure Flame Blowoff from the Forward Stagnation Region of a Blunt-Nosed Cast PMMA Cylinder in Axial Mixed Convective Flow

    NASA Technical Reports Server (NTRS)

    Marcum, J. W.; Rachow, P.; Ferkul, P. V.; Olson, S. L.

    2017-01-01

    Low-pressure blowoff experiments were conducted with a stagnation flame stabilized on the forward tip of cast PMMA rods in a vertical wind tunnel. Pressure, forced flow velocity, gravity, and ambient oxygen concentration were varied. Stagnation flame blowoff is determined from a time-stamped video recording of the test. The blowoff pressure is determined from test section pressure transducer data that is synchronized with the time stamp. The forced flow velocity is also determined from the choked flow orifice pressure. Most of the tests were performed in normal gravity, but a handful of microgravity tests were also conducted to determine the influence of buoyant flow velocity on the blowoff limits. The blowoff limits are found to have a linear dependence between the partial pressure of oxygen and the total pressure, regardless of forced flow velocity and gravity level. The flow velocity (forced and/or buoyant) affects the blowoff pressure through the critical Damkohler number residence time, which dictates the partial pressure of oxygen at blowoff. This is because the critical stretch rate increases linearly with increasing pressure at low pressure (sub-atmospheric pressures) since a second-order overall reaction rate with two-body reactions dominates in this pressure range.

  14. Effects of W on microstructure of as-cast 28 wt.%Cr–2.6 wt.%C–(0–10)wt.%W irons

    SciTech Connect

    Imurai, S.; Thanachayanont, C.; Pearce, J.T.H.; Tsuda, K.; Chairuangsri, T.

    2015-01-15

    Microstructures of as-cast 28 wt.%Cr–2.6 wt.%C irons containing (0–10)wt.%W with the Cr/C ratio about 10 were studied and related to their hardness. The experimental irons were cast into dry sand molds. Microstructural investigation was performed by light microscopy, X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. It was found that the irons with 1 to 10 wt.%W addition was hypereutectic containing large primary M{sub 7}C{sub 3}, whereas the reference iron without W addition was hypoeutectic. The matrix in all irons was austenite, partly transformed to martensite during cooling. The volume fractions of primary M{sub 7}C{sub 3} and the total carbides increased, but that of eutectic carbides decreased with increasing the W content of the irons. W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C and M{sub 23}C{sub 6}. At about 4 wt.%W, two eutectic carbides including M{sub 7}C{sub 3} and M{sub 6}C were observed together with primary M{sub 7}C{sub 3}. At 10 wt.%W, multiple carbides including primary M{sub 7}C{sub 3}, fish-bone M{sub 23}C{sub 6}, and M{sub 6}C were observed. M{sub x}C where x = 3 or less has not been found due possibly to the high M/C ratio in the studied irons. W distribution to all carbides has been determined increasing from ca. 0.3 to 0.8 in mass fraction as the W content in the irons was increased. W addition led to an increase in Vickers macro-hardness of the irons up to 671 kgf/(mm){sup 2} (HV30/15) obtained from the iron with 10 wt.%W. The formation of primary M{sub 7}C{sub 3} and aggregates of M{sub 6}C and M{sub 23}C{sub 6} were the main reasons for hardness increase, indicating potentially improved wear performance of the as-cast irons with W addition. - Highlights: • W addition at 1 up to 10 wt.%W to Fe–28Cr–2.6C produced “hypereutectic” structure. • W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C and M

  15. Determination of vanadium in refractory metals, steel, cast iron, alloys and silicates by extraction of an NBPHA complex from a sulphuric-hydrofluoric acid medium.

    PubMed

    Donaldson, E M

    1970-07-01

    A method for determining up to 0.15% of vanadium in high-purity niobium and tantalum metals, cast iron, steel, non-ferrous alloys and silicates is described. The proposed method is based on the extraction of a red vanadium(V)-N-benzoyl-N-phenylhydroxylamine complex into chloroform from a sulphuric-hydrofluoric acid medium containing excess of ammonium persulphate as oxidant. The molar absorptivity of the complex is 428 l.mole(-1).mm(-5) at 475 nm, the wavelength of maximum absorption. Interference from chromium(VI) and cerium(IV) is eliminated by reduction with iron(II). Common ions, including large amounts of titanium, zirconium, molybdenum and tungsten, do not interfere.

  16. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  17. The effects of novel surface treatments on the wear and fatigue properties of steel and chilled cast iron

    NASA Astrophysics Data System (ADS)

    Carroll, Jason William

    Contact fatigue driven wear is a principal design concern for gear and camshaft engineering of power systems. To better understand how to engineer contact fatigue resistant surfaces, the effects of electroless nickel and hydrogenated diamond-like-carbon (DLC) coatings on the fatigue life at 108 cycles of SAE 52100 steel were studied using ultrasonic fatigue methods. The addition of DLC and electroless nickel coatings to SAE 52100 bearing steel had no effect on the fatigue life. Different inclusion types were found to affect the stress intensity value beyond just the inclusion size, as theorized by Murakami. The difference in stress intensity values necessary to propagate a crack for Ti (C,N) and alumina inclusions was due to the higher driving force for crack extension at the Ti (C,N) inclusions and was attributed to differences in the shape of the inclusion: rhombohedral for the Ti (C,N) versus spherical for the oxides. A correction factor was added to the Murakami equation to account for inclusion type. The wear properties of DLC coated SAE 52100 and chilled cast iron were studied using pin-on-disk tribometry and very high cycle ultrasonic tribometry. A wear model that includes sliding thermal effects as well as thermodynamics consistent with the wear mechanism for DLCs was developed based on empirical results from ultrasonic wear testing to 108 cycles. The model fit both ultrasonic and classic tribometer data for wear of DLCs. Finally, the wear properties of laser hardened steels - SAE 8620, 4140, and 52100 - were studied at high contact pressures and low numbers of cycles. A design of experiments was conducted to understand how the laser processing parameters of power, speed, and beam size, as well as carbon content of the steel, affected surface hardness. A hardness maximum was found at approximately 0.7 wt% carbon most likely resulting from increased amounts of retained austenite. The ratcheting contact fatigue model of Kapoor was found to be useful in

  18. Cast iron freezing mechanisms

    NASA Technical Reports Server (NTRS)

    Lillybeck, N. P.; Smith, James E., Jr.

    1987-01-01

    This task focused on liquid phase sintering and infiltration studies of refractory metals and metal composites. Particular emphases was placed on those powered metal compacts which produce liquid alloys in sintering. For this class of materials, heating to a two phase region causes the constituent components to react, forming an alloy liquid which must wet the solid phase. Densification is initially driven by the free energy effects which cause rapid rearrangement. Further densification occurs by evaporation and condensation, surface diffusion, bulk flow, and volume diffusion.

  19. Cast iron promises.

    PubMed

    Hawker, Andrew

    2007-01-01

    During the Victorian era, a fiercely competitive industry emerged to build and operate Britain's railways. Many of the design and construction skills required were still fairly rudimentary, and were typically developed through practical experience. The resulting mix of entrepreneurship and new technology reshaped the landscape, but often in ways which proved hazardous for passengers. Minor accidents were commonplace, and a number of major failures occurred, one such being the collapse of the Tay Bridge, in 1879. Events in the ten years prior to this disaster still have some resonance today. Ambitions to exploit new technology are not always matched by foresight in the planning, financing or management of projects. Contracts may be based on wrong assumptions, and prove difficult to enforce. Once a project has gathered momentum, those working on it may fear that any attempt to draw attention to risks or defects will be seen as disloyal. When work is completed, it cannot be assumed that formal inspections will reveal potential flaws, or that those using the technology will appreciate the need to follow the procedures laid down for them. Some possible parallels with recent experiences in NHS computing are noted.

  20. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  1. Effects of a Destabilization Heat Treatment on the Microstructure and Abrasive Wear Behavior of High-Chromium White Cast Iron Investigated Using Different Characterization Techniques

    NASA Astrophysics Data System (ADS)

    Gasan, Hakan; Erturk, Fatih

    2013-11-01

    The hypoeutectic white cast iron was subjected to various destabilization heat treatment temperatures of 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C) for 2 hours. The as-cast and destabilized specimens were characterized by optical metallography, classical direct comparison, and the Rietveld method. The volume fractions of carbides were measured by optical metallography. Moreover, the volume fractions of retained austenite and martensite were measured by the classical direct comparison method. Despite the limitations of optical metallography and the classical direct comparison method, the Rietveld method was successively and accurately applied to determine the volume fractions of all phases. In addition, the Rietveld analysis yielded certain results, such as the crystallographic properties of the phases that can be used to explain the relationship between the microstructural parameters and the wear behavior. Abrasive wear tests with different sliding speeds were carried out on the as-cast and destabilized alloys to identify the effect of microstructural parameters on the wear behavior. The results indicated that the morphologies of secondary carbides, the crystallographic properties of the phases, and the proper combination of the amount of martensite, retained austenite, and carbides were the principle parameters that affect the hardness and wear behavior of the alloy.

  2. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production.

    PubMed

    Di Benedetto, Francesco; Gazzano, Elena; Tomatis, Maura; Turci, Francesco; Pardi, Luca A; Bronco, Simona; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Muniz Miranda, Maurizio; Zoleo, Alfonso; Capacci, Fabio; Fubini, Bice; Ghigo, Dario; Romanelli, Maurizio

    2016-07-15

    Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder.

  3. The Structure and Bond Strength of Composite Carbide Coatings (WC-Co + Ni) Deposited on Ductile Cast Iron by Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Ksiazek, Marzanna; Boron, Lukasz; Radecka, Marta; Richert, Maria; Tchorz, Adam

    2016-02-01

    An investigation was conducted to determine the role of Ni particles in the WC-Co coating produced with the supersonic method on microstructure, mechanical, and wear properties in a system of type: WC-Co coating/ductile cast iron. The microstructure of the thermal-sprayed WC-Co + Ni coating was characterized by scanning electron and transmission electron microscopes as well as the analysis of chemical and phase composition in microareas (EDS, XRD). The microstructure of the WC-Co + Ni coating consisted of large, partially molten Ni particles and very fine grains of WC embedded in cobalt matrix, coming to the size of nanocrystalline. Moreover, the results were discussed in reference to examination of bending strength considering cracking and delamination in the system of (WC-Co + Ni)/ductile cast iron as well as hardness and wear resistance of the coating. It was found that the addition of Ni particles was significantly increase resistance to cracking and wear behavior in the studied system.

  4. Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system.

    PubMed

    Lin, Wenfang; Yu, Zhisheng; Chen, Xi; Liu, Ruyin; Zhang, Hongxun

    2013-09-01

    Microorganism in drinking water distribution system may colonize in biofilms. Bacterial 16S rRNA gene diversities were analyzed in both water and biofilms grown on taps with three different materials (polyvinyl chloride (PVC), stainless steel, and cast iron) from a local drinking water distribution system. In total, five clone libraries (440 sequences) were obtained. The taxonomic composition of the microbial communities was found to be dominated by members of Proteobacteria (65.9-98.9 %), broadly distributed among the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Other bacterial groups included Firmicutes, Acidobacteria, Bacteroidetes, Cyanobacteria, and Deinococcus-Thermus. Moreover, a small proportion of unclassified bacteria (3.5-10.6 %) were also found. This investigation revealed that the bacterial communities in biofilms appeared much more diversified than expected and more care should be taken to the taps with high bacterial diversity. Also, regular monitor of outflow water would be useful as potentially pathogenic bacteria were detected. In addition, microbial richness and diversity in taps ranked in the order as: PVC < stainless steel < cast iron. All the results interpreted that PVC would be a potentially suitable material for use as tap component in drinking water distribution system.

  5. Effect of Curved Surface Shape and Feed Velocity on Microstructure and Mechanical Performance of Gray Cast Iron After Spot Continual Induction Hardening

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Qin, Xunpeng; Chen, Xuliang; Wang, Zhou; Zhu, Zhenhua; Cheng, Man

    2017-05-01

    Spot continual induction hardening (SCIH) is a surface heat treatment process, which can strengthen more than one small area or relative large area on complicated component surface. In order to investigate the microstructure and mechanical properties of gray cast iron with curved surface after SCIH, the microstructure, microhardness and residual stresses were analyzed under different process conditions. The results showed that the martensite grain in hardened region of concave surface was larger than that of convex surface. The domain sizes of concave and convex surfaces were smaller than that of matrix region due to the high heating rate in SCIH process. The phase transformation depth increased with the increasing of convex surface radius but decreased with the increasing of concave surface radius. The maximum values of residual tensile and compressive stresses increased with the increasing of feed velocity for convex and concave surfaces, respectively. The appearance positions of maximum tensile and compressive stresses were closer to center for convex and concave surfaces, respectively, when feed velocity increased from 1 to 5 mm/s. The achieved results indicated that the SCIH with relatively low feed velocity was more suitable for improving the mechanical properties of gray cast iron. Compared with convex surface, the concave surface of workpiece can obtain better mechanical properties under the same feed velocity of inductor.

  6. New aspects about reduced LCF-life time of spherical ductile cast iron due to dynamic strain aging at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Mouri, Hayato; Wunderlich, Wilfried; Hayashi, Morihito

    2009-06-01

    Spherical ductile cast iron (FCD400) is widely used as container material in nuclear energy processing line due to its superior mechanical properties and low price. Fatigue properties in low cycle fatigue (LCF) can be described well by the Manson-Coffin-Basquin's rule. However, at intermediate temperature range between 453 and 723 K the elongation-temperature-diagram shows a significantly 20-10% reduced elongation and an increase in yield stress in tensile test experiments. These non-linear deviations and the phenomenon of less ductility at intermediate temperatures are known for a long time [1] [K. Chijiiwa, M. Hayashi, Mechanical properties of ductile cast iron at temperature in the region of room temperature to liquid, Imono 51 (7) (2004) 395-400]. But the following explanation is presented for the first time. In the same temperature range as the reduced fatigue life time dynamic strain ageing (DSA) also known as Portevin-le-Chartelier effect with the formation of visible serrations occurs. Both phenomena are explained by interaction effects between carbon diffusion and dislocation velocity which have at this temperature the same order of magnitude. However, this phenomenon shows interesting behavior at intermediate temperature range. During the low cycle fatigue test, DSA phenomenon disappeared, but mechanical properties show clear evidence of DSA phenomenon. Therefore, the purpose of this paper is to study the correlation of DSA occurrence, LCF and mechanical properties.

  7. A model for studying the kinetics of the formation of Fe 2B boride layers at the surface of a gray cast iron

    NASA Astrophysics Data System (ADS)

    Keddam, M.; Chegroune, R.

    2010-06-01

    The present work estimates, using a kinetic model, the growth kinetics of Fe 2B boride layers generated at the surface of a gray cast iron via the powder-pack boriding considering three different temperatures (1173, 1223 and 1273 K) and four treatment times (2, 4, 6 and 8 h). By the use of the mass balance equation at the (Fe 2B/substrate) interface under certain assumptions and considering the effect of the boride incubation time, it was possible to estimate the corresponding parabolic growth constant in terms of two parameters αCupFeB and β( T) depending on the boron content in the Fe 2B phase and on the process temperature, respectively. The mass gain at the material surface and the instantaneous velocity of the (Fe 2B/substrate) interface were also estimated. A fairly good agreement was observed between the experimental parabolic growth constants taken from a reference work (Campos-Silva et al., Characterization of boride layers formed at the surface of gray cast irons, Kovove Mater. 47 (2009) 1-7.) and the simulated values of the parabolic growth constants. Furthermore, the boride layer thicknesses were predicted and experimentally verified for three process temperatures and four treatment times.

  8. An investigation into the suitability of some etching reagents to restoring obliterated stamped numbers on cast iron engine blocks of cars.

    PubMed

    Abdul Wahab, Mohd Farizon; Mohamad Ghani, Nurul Izwani; Kuppuswamy, R

    2012-11-30

    Most of the automotive companies use cast iron for their engine blocks. Restoration of obliterated number on these iron surfaces by chemical etching is known to be quite difficult. Heating of the obliterated surface using oxyacetylene flame is an alternative recovery treatment suggested in literature and used in practice. However chemical etching has been established to be the most sensitive technique for detection of metal deformation present under stamped serial numbers. Hence, the current work investigated the suitability of some common etchants on cast iron surfaces with a view to determining the most suitable one for revealing the obliterated marks. The reagents tested were mostly copper containing Fry's reagent and its modifications. Two cast iron engine blocks (3.29%C and 3.1%C) of two cars--a Proton Saga and a Toyota--were utilized for the experiments. The engine blocks were cut into several small plates and each plate was stamped with some numerical characters at 8 kN load using Instron Table Mounted Universal Testing Machine. The depth of stamping impression varied between 0.2 mm and 0.3 mm. The stamped number was completely ground off manually using a metal file. The grounded surface was then polished smooth using emery papers and etched with a few selected reagents mostly by swabbing. Experimental results showed that a modified Fry's composition consisting of 4 5g CuCl(2), 100 mL HCl, and 180 mL H(2)O restored the number with better contrast at a reasonably shorter time. The above reagent is a slightly modified form of one of the Fry's original compositions--45 g CuCl(2), 180 mL HCl, and 100 mL H(2)O. Quite importantly the proposed reagent restored the original stamped numbers of both Proton and Toyota cars and also a Mitsubishi car that had been obliterated. The most widely used Fry's composition (90 g CuCl(2), 120 mL HCl and 100 mL H(2)O), although recovered the obliterated number, did not cause the desired contrast.

  9. Effects of Mo on microstructure of as-cast 28 wt.% Cr–2.6 wt.% C–(0–10) wt.% Mo irons

    SciTech Connect

    Imurai, S.; Thanachayanont, C.; Pearce, J.T.H.; Tsuda, K.; Chairuangsri, T.

    2014-04-01

    Microstructures of as-cast 28 wt.% Cr–2.6 wt.% C irons containing (0–10) wt.% Mo with the Cr/C ratio of about 10 were studied and related to hardness. The experimental irons were cast into dry sand molds. Microstructural investigation was performed by light microscopy, X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. It was found that the iron with about 10 wt.% Mo was eutectic/peritectic, whereas the others with less Mo content were hypoeutectic. The matrix in all irons was austenite, partly transformed to martensite during cooling. Mo addition promoted the formation of M{sub 23}C{sub 6} and M{sub 6}C. At 1 wt.% Mo, multiple eutectic carbides including M{sub 7}C{sub 3}, M{sub 23}C{sub 6} and M{sub 6}C were observed. M{sub 23}C{sub 6} existed as a transition zone between eutectic M{sub 7}C{sub 3} and M{sub 6}C, indicating a carbide transition as M{sub 7}C{sub 3}(M{sub 2.3}C) → M{sub 23}C{sub 6}(M{sub 3.8}C) → M{sub 6}C. At 6 wt.% Mo, multiple eutectic carbides including M{sub 7}C{sub 3} and M{sub 23}C{sub 6} were observed together with fine cellular/lamellar M{sub 6}C aggregates. In the iron with 10 wt.% Mo, only eutectic/peritectic M{sub 23}C{sub 6} and M{sub 6}C were found without M{sub 7}C{sub 3}. Mo distribution to all carbides has been determined to be increased from ca. 0.4 to 0.7 in mass fraction as the Mo content in the irons was increased. On the other hand, Cr distribution to all carbides is quite constant as ca. 0.6 in mass fraction. Mo addition increased Vickers macro-hardness of the irons from 495 up to 674 HV{sub 30}. High Mo content as solid-solution in the matrix and the formation of M{sub 6}C or M{sub 23}C{sub 6} aggregates were the main reasons for hardness increase, indicating potentially improved wear performance of the irons with Mo addition. - Highlights: • Mo promoted the formation of M{sub 23}C{sub 6} and M{sub 6}C in the irons with Cr/C ratio of about 10

  10. Die Soldering in Aluminium Die Casting

    SciTech Connect

    Han, Q.; Kenik, E.A.; Viswanathan, S.

    2000-03-15

    Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-rich phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.

  11. Arsenic Accumulation and Release Studies Using a Cast Iron Pipe Section from a Drinking Water Distribution System

    EPA Science Inventory

    The tendency of iron solid surfaces to adsorb arsenic and other ions is well known and has become the basis for several drinking water treatment approaches that remove these contaminants. It is reasonable to assume that iron-based solids, such as corrosion deposits present in dri...

  12. Arsenic Accumulation and Release Studies Using a Cast Iron Pipe Section from a Drinking Water Distribution System

    EPA Science Inventory

    The tendency of iron solid surfaces to adsorb arsenic and other ions is well known and has become the basis for several drinking water treatment approaches that remove these contaminants. It is reasonable to assume that iron-based solids, such as corrosion deposits present in dri...

  13. Reline 33 year old kettle for more corrosive process at about 1/3 cost of new unit: lightweight foamed glass block protects corroded cast iron cover

    SciTech Connect

    Not Available

    1982-06-01

    This article presents a solution to a chemical plant's need for a lining material to reline a 33 year old kettle that would be resistant to attack by aqueous bromine and hydrochloric, nitrous, and bromic acid. The solution was to use an elastomeric polyisobutylene sheeting as a primary lining for the kettle. The problem was also solved by using a light weight foamed glass block which protected the corroded cast iron dome cover for the kettle. Installation of the two-step lining for the kettle and cover by Chemsteel Construction Company of New Kensington, PA was completed in 5 weeks. The cost was about 1/3 as much as fabricating, installing, and lining a new steel 5000 gal vessel. The kettle has been in service about 12 months and the acid brick/polyisobutylene membrance liner shows no signs of damage from the highly corrosive chemicals and elevated temperatures required for the process change.

  14. Effects of Iron-Rich Intermetallics and Grain Structure on Semisolid Tensile Properties of Al-Cu 206 Cast Alloys near Solidus Temperature

    NASA Astrophysics Data System (ADS)

    Bolouri, Amir; Liu, Kun; Chen, X.-Grant

    2016-12-01

    The effects of iron-rich intermetallics and grain size on the semisolid tensile properties of Al-Cu 206 cast alloys near the solidus were evaluated in relation to the mush microstructure. Analyses of the stress-displacement curves showed that the damage expanded faster in the mush structure dominated by plate-like β-Fe compared to the mush structure dominated by Chinese script-like α-Fe. While there was no evidence of void formation on the β-Fe intermetallics, they blocked the interdendritic liquid channels and thus hindered liquid flow and feeding during semisolid deformation. In contrast, the interdendritic liquid flows more freely within the mush structure containing α-Fe. The tensile properties of the alloy containing α-Fe are generally higher than those containing β-Fe over the crucial liquid fraction range of 0.6 to 2.8 pct, indicating that the latter alloy may be more susceptible to stress-related casting defects such as hot tearing. A comparison of the semisolid tensile properties of the alloy containing α-Fe with different grain sizes showed that the maximum stress and elongation of the alloy with finer grains were moderately higher for the liquid fractions of 2.2 to 3.6 pct. The application of semisolid tensile properties for the evaluation of the hot tearing susceptibility of experimental alloys is discussed.

  15. A Predictive Framework for Thermomechanical Fatigue Life of High Silicon Molybdenum Ductile Cast Iron Based on Considerations of Strain Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Avery, Katherine R.

    Isothermal low cycle fatigue (LCF) and anisothermal thermomechanical fatigue (TMF) tests were conducted on a high silicon molybdenum (HiSiMo) cast iron for temperatures up to 1073K. LCF and out-of-phase (OP) TMF lives were significantly reduced when the temperature was near 673K due to an embrittlement phenomenon which decreases the ductility of HiSiMo at this temperature. In this case, intergranular fracture was predominant, and magnesium was observed at the fracture surface. When the thermal cycle did not include 673K, the failure mode was predominantly transgranular, and magnesium was not present on the fracture surface. The in-phase (IP) TMF lives were unaffected when the thermal cycle included 673K, and the predominant failure mode was found to be transgranular fracture, regardless of the temperature. No magnesium was present on the IP TMF fracture surfaces. Thus, the embrittlement phenomenon was found to contribute to fatigue damage only when the temperature was near 673K and a tensile stress was present. To account for the temperature- and stress-dependence of the embrittlement phenomenon on the TMF life of HiSiMo cast iron, an original model based on the cyclic inelastic energy dissipation is proposed which accounts for temperature-dependent differences in the rate of fatigue damage accumulation in tension and compression. The proposed model has few empirical parameters. Despite the simplicity of the model, the predicted fatigue life shows good agreement with more than 130 uniaxial low cycle and thermomechanical fatigue tests, cyclic creep tests, and tests conducted at slow strain rates and with hold times. The proposed model was implemented in a multiaxial formulation and applied to the fatigue life prediction of an exhaust manifold subjected to severe thermal cycles. The simulation results show good agreement with the failure locations and number of cycles to failure observed in a component-level experiment.

  16. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

    PubMed

    Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

    2013-09-01

    To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.

  17. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes

    EPA Science Inventory

    The stability of iron corrosion products and the bacterial composition of biofilm in drinking water distribution systems (DWDS) could have great impact on the water safety at the consumer ends. In this work, pipe loops were setup to investigate the transformation characteristics ...

  18. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes

    EPA Science Inventory

    The stability of iron corrosion products and the bacterial composition of biofilm in drinking water distribution systems (DWDS) could have great impact on the water safety at the consumer ends. In this work, pipe loops were setup to investigate the transformation characteristics ...

  19. Conversion of low BMEP 4-cylinder to high BMEP 2-cylinder large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Ladd, John

    There are more than 6,000 integral compressor engines in use on US natural gas pipelines, operating 24 hours a day, 365 days a year. Many of these engines have operated continuously for more than 50 years, with little to no modifications. Due to recent emission regulations at the local, state and federal levels much of the aging infrastructure requires retrofit technology to remain within compliance. The Engines and Energy Conversion Laboratory was founded to test these retrofit technologies on its large bore engine testbed (LBET). The LBET is a low brake mean effective pressure (BMEP) Cooper Bessemer GMVTF-4. Newer GMV models, constructed in 1980's, utilize turbocharging to increase the output power, achieving BMEP's nearly double that of the LBET. To expand the lab's testing capability and to reduce the LBET's running cost: material testing, in-depth modeling, and on engine testing was completed to evaluate the feasibility of uprating the LBET to a high BMEP two cylinder engine. Due to the LBET's age, the crankcase material properties were not known. Material samples were removed from engine to conduct an in-depth material analysis. It was found that the crankcase was cast out of a specific grade of gray iron, class 25 meehanite. A complete three dimensional model of the LBET's crankcase and power cylinders was created. Using historical engine data, the force inputs were created for a finite element analysis model of the LBET, to determine the regions of high stress. The areas of high stress were instrumented with strain gauges to iterate and validate the model's findings. Several test cases were run at the high and intermediate BMEP engine conditions. The model found, at high BMEP conditions the LBET would operate at the fatigue limit of the class 25 meehanite, operating with no factor of safety but the intermediate case were deemed acceptable.

  20. 35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE CASTINGS WITH SHOT TO REMOVE AND SURFACE OXIDES AND REMAINING EXCESS METALS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  1. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    NASA Astrophysics Data System (ADS)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  2. Quick release engine cylinder

    DOEpatents

    Sunnarborg, Duane A.

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  3. Microstructure and high-temperature wear properties of in situ TiC composite coatings by plasma transferred arc surface alloying on gray cast iron

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Li, Jian-jun; Zheng, Zhi-zhen; Wang, Ai-hua; Huang, Qi-wen; Zeng, Da-wen

    2015-12-01

    In this work, an in situ synthesized TiC-reinforced metal matrix composite (MMC) coating of approximately 350-400 µm thickness was fabricated on a gray cast iron (GCI) substrate by plasma transferred arc (PTA) surface alloying of Ti-Fe alloy powder. Microhardness tests showed that the surface hardness increased approximately four-fold after the alloying treatment. The microstructure of the MMC coating was mainly composed of residual austenite, acicular martensite, and eutectic ledeburite. Scanning electron microscopy (SEM) and X-ray diffraction analyzes revealed that the in situ TiC particles, which were formed by direct reaction of Ti with carbon originally contained in the GCI, was uniformly distributed at the boundary of residual austenite in the alloying zone. Pin-on-disc high-temperature wear tests were performed on samples both with and without the MMC coating at room temperature and at elevated temperatures (473 K and 623 K), and the wear behavior and mechanism were investigated. The results showed that, after the PTA alloying treatment, the wear resistance of the samples improved significantly. On the basis of our analysis of the composite coatings by optical microscopy, SEM with energy-dispersive X-ray spectroscopy, and microhardness measurements, we attributed this improvement of wear resistance to the transformation of the microstructure and to the presence of TiC particles.

  4. Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: Part II. effect on the wear behavior

    NASA Astrophysics Data System (ADS)

    Bedolla-Jacuinde, A.; Aguilar, S. L.; Maldonado, C.

    2005-06-01

    In this work, we studied the wear behavior of a low-Cr white cast iron (WCI) modified with ferrotitanium-rare earths-bismuth (Fe-Ti-RE-Bi) up to 2%. These additions modified the eutectic carbide structure of the alloy from continuous ledeburite into a blocky, less interconnected carbide network. The modified structure was wear tested under pure sliding conditions against a hardened M2 steel counter-face using a load of 250 N. It was observed that wear resistance increased as the modifier admixture increased. The modified structure had smaller more isolated carbides than the WCI with no Fe-Ti-RE-Bi additions. It was observed that large carbides fracture during sliding, which destabilizes the structure and causes degradation in the wear behavior. A transition from abrasive to oxidative wear after 20 km sliding occurred for all alloys. In addition, the modified alloys exhibited higher values of hardness and fracture toughness. These results are discussed in terms of the modified eutectic carbide microstructure.

  5. Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: I. Effect on microstructure

    NASA Astrophysics Data System (ADS)

    Bedolla-Jacuinde, A.; Aguilar, S. L.; Hernández, B.

    2005-04-01

    The present work studies the effect of small additions of a mixture of Ti, rare earths (RE), and Bi on the eutectic solidification of a low-Cr white cast iron (WCI) commercially designed as Ni-Hard Class I Type B according to the ASTM A532. For this purpose, systematic additions of a mixture of ferrotitanium-rare earths-bismuth (Fe-Ti-RE-Bi) up to 2% were made to a low-Cr WCI. By means of these additions, a modified carbide structure was obtained. Eutectic carbides changed from a highly interconnected ledeburite structure to more isolated, finer blocky structure. This microstructural change caused variations in the mechanical behavior of the WCI. The decrease in size and reduced connectivity of the eutectic carbides increased fracture toughness as well as wear resistance under dry sliding conditions. The effect of the admixture on the microstructure and mechanical properties is discussed in terms of the segregation and refining effects of the elements that comprise the mixture.

  6. A New Method For Advanced Virtual Design Of Stamping Tools For Automotive Industry: Application To Nodular Cast Iron EN-GJS-600-3

    NASA Astrophysics Data System (ADS)

    Ben-Slima, Khalil; Penazzi, Luc; Mabru, Catherine; Ronde-Oustau, François; Rezaï-Aria, Farhad

    2011-05-01

    This contribution presents an approach combining the stamping numerical processing simulations and structure analysis in order to improve the design for optimizing the tool fatigue life. The method consists in simulating the stamping process via AutoForm® (or any FEM Code) by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis. The result of this analysis is used for life prediction of the tool using S-N fatigue curve. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This optimization method is applied for a cast iron EN-GJS-600-3 as candidate stamping tool materiel. The room temperature fatigue S-N curves of this alloy are established in laboratory under uniaxial push/pull cyclic experiments on cylindrical specimens under a load ratio of R (σmin/σmax) = -2.

  7. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    NASA Astrophysics Data System (ADS)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  8. 9. DETAIL OF UNITEDTOD TWINTANDEM STEAM ENGINE, SHOWING HIGHPRESSURE CYLINDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF UNITED-TOD TWIN-TANDEM STEAM ENGINE, SHOWING HIGH-PRESSURE CYLINDER AND EXTENSION OF HOUSING. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  9. Effect of Destabilization Heat Treatments on the Microstructure of High-Chromium Cast Iron: A Microscopy Examination Approach

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Lekatou, A.; Diavati, E.

    2009-11-01

    A 18.22 wt.% Cr white iron has been subjected to various destabilization heat treatments. Destabilization at 800 °C caused gradual precipitation of M23C6 secondary carbide particles with time leading to a gradual increase in the bulk hardness. At 900, 1000, and 1100 °C, an initial sharp increase in bulk hardness with time occurred, reaching a plateau that was followed by a slightly decreasing trend. The combination of martensite formed, stoichiometry, and morphology of the secondary carbides present (mostly M7C3) are responsible for the obtained values of hardness. At 1100 °C, severe dissolution of the secondary carbides and consequent stabilization of the austenitic phase took place. Maximum hardness values were obtained for destabilization at 1000 °C. The correlation between bulk hardness and microstructural features was elaborated.

  10. Tribological evaluation of piston skirt/cylinder liner contact interfaces under boundary lubrication conditions.

    SciTech Connect

    Demas, N. G.; Erck, R. A.; Fenske, G. R.; Energy Systems

    2010-03-01

    The friction and wear between the piston and cylinder liner significantly affects the performance of internal combustion engines. In this paper, segments from a commercial piston/cylinder system were tribologically tested using reciprocating motion. The tribological contact consisted of aluminium alloy piston segments, either uncoated, coated with a graphite/resin coating, or an amorphous hydrogenated carbon (a-C : H) coating, in contact with gray cast iron liner segments. Tests were conducted in commercial synthetic motor oils and base stocks at temperatures up to 120 C with a 2 cm stroke length at reciprocating speeds up to 0.15 m s{sup -1}. The friction dependence of these piston skirt and cylinder liner materials was studied as a function of load, sliding speed and temperature. Specifically, an increase in the sliding speed led to a decrease in the friction coefficient below approximately 70 C, while above this temperature, an increase in sliding speed led to an increase in the friction coefficient. The presence of a coating played an important role. It was found that the graphite/resin coating wore quickly, preventing the formation of a beneficial tribochemical film, while the a-C : H coating exhibited a low friction coefficient and provided significant improvement over the uncoated samples. The effect of additives in the oils was also studied. The tribological behaviour of the interface was explained based on viscosity effects and subsequent changes in the lubrication regime, formation of chemical and tribochemical films.

  11. Cylinder Test Specification

    SciTech Connect

    Richard Catanach; Larry Hill; Herbert Harry; Ernest Aragon; Don Murk

    1999-10-01

    The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radial wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.

  12. Effects of operational parameters and common ions on the reduction of 2,4-dinitrotoluene by scrap copper-modified cast iron.

    PubMed

    Fan, Jin-Hong; Wang, Hong-Wu

    2015-07-01

    Scrap Cu-modified cast iron (CMCI) is a potent material for the reduction of 2,4-dinitrotoluene (2,4-DNT) by a surface-mediated reaction. However, the effects of operational parameters and common ions on its reduction and final rate are unknown. Results show that the 2,4-DNT reduction was significantly affected by Cu:Fe mass ratio and the optimum m(Cu:Fe) was 0.25%. The slight pH-dependent trend of 2,4-DNT reduction by CMCI was observed at pH 3 to 11, and the maximum end product, 2,4-diaminotoluene (2,4-DAT), was generated at pH 7. Dissolved oxygen (DO) in the water reduced the 2,4-DNT degradation and the formation of 2,4-DAT. CMCI effectively treated high concentrations of 2,4-DNT (60 to 150 mg L(-1)). In addition, varying the concentration of (NH4)2SO4 from 0.001 to 0.1 mol L(-1) improved the efficiency of the reduction process. The green rust-like corrosion products (GR-SO4 (2-)) were also effective for 2,4-DNT reduction, in which Na2CO3 (0.01 to 0.2 mol L(-1)) significantly inhibited this reduction. The repeated-use efficiency of CMCI was also inhibited. Moreover, 2,4-DNT and its products, such as 4A2NT, 2A4NT, and 2,4-DAT, produced mass imbalance (<35%). Hydrolysis of Fe(3+) and CO3 (2-) leading to the generation of Fe(OH)3 and conversion to FeOOH that precipitated on the surface and strongly adsorbed the products of reduction caused the inhibition of CO3 (2-). The 2,4-DNT reduction by CMCI could be described by pseudo-first-order kinetics. The operational conditions and common ions affected the 2,4-DNT reduction and its products by enhancing the corrosion of iron or accumulating a passive oxide film on the reactivity sites.

  13. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    PubMed

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  14. Experiments on fracture toughness of thick-wall cylinder for modes I, II, III

    SciTech Connect

    Saegusa, T.; Urabe, N.; Ito, C.; Shirai, K.; Kosaki, A.

    1999-07-01

    There have been few data on fracture toughness for Mode 2 and 3 as compared with those for Mode 1. Experimental data on fracture toughness of plates made of ductile cast iron (ASTM A874-89) and forged steel (ASME SA350 LF5 C1.1) were obtained at a temperature range from 77K to 293K for Mode 1, 2 and 3. The results showed: J{sub IC} < J{sub IIC} < J{sub IIIC}, and K{sub IC} < K{sub IIC} K{sub IIIC}. Integrity of a thick-wall cylinder with artificial flaw was demonstrated against brittle fracture at 233K for Mode 1, 2 and 3, which is one of the design requirements of containers shipping radioactive materials.

  15. Acoustic resonances in cylinder bundles oscillating in a compressibile fluid

    SciTech Connect

    Lin, W.H.; Raptis, A.C.

    1984-12-01

    This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determined from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.

  16. Collapsing bacterial cylinders

    NASA Astrophysics Data System (ADS)

    Betterton, M. D.; Brenner, Michael P.

    2001-12-01

    Under special conditions bacteria excrete an attractant and aggregate. The high density regions initially collapse into cylindrical structures, which subsequently destabilize and break up into spherical aggregates. This paper presents a theoretical description of the process, from the structure of the collapsing cylinder to the spacing of the final aggregates. We show that cylindrical collapse involves a delicate balance in which bacterial attraction and diffusion nearly cancel, leading to corrections to the collapse laws expected from dimensional analysis. The instability of a collapsing cylinder is composed of two distinct stages: Initially, slow modulations to the cylinder develop, which correspond to a variation of the collapse time along the cylinder axis. Ultimately, one point on the cylinder pinches off. At this final stage of the instability, a front propagates from the pinch into the remainder of the cylinder. The spacing of the resulting spherical aggregates is determined by the front propagation.

  17. Cylinder monitoring program

    SciTech Connect

    Alderson, J.H.

    1991-12-31

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  18. Delamination of Composite Cylinders

    NASA Astrophysics Data System (ADS)

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.

  19. Fillability of Thin-Wall Steel Castings

    SciTech Connect

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  20. POURING IRON FROM ELECTRIC FURNACE INTO BULL LADLE AFTER MAGNESIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POURING IRON FROM ELECTRIC FURNACE INTO BULL LADLE AFTER MAGNESIUM HAD BEEN ADDED TO GENERATE DUCTILE IRON WHEN IT COOLS IN THE MOLD. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  1. A Sequence of Cylinders

    ERIC Educational Resources Information Center

    Johnson, Erica

    2006-01-01

    Hoping to develop in her students an understanding of mathematics as a way of thinking more than a way of doing, the author of this article describes how her students worked on a spatial reasoning problem stemming from an iteratively constructed sequence of cylinders. She presents an activity of making cylinders out of paper models, and for every…

  2. Exothermic properties of plaster-synthetic composite casts.

    PubMed

    Burghardt, Rolf D; Anderson, John G; Reed, Rob A; Herzenberg, John E

    2014-03-01

    Plaster casts can cause burns. Synthetic casts do not. Composite plaster-synthetic casts have not been thoroughly evaluated. This study analyzed the temperature from plaster casts compared with composite casts in a variety of in vitro conditions that would simulate clinical practice. A Pyrex cylinder filled with constant body temperature circulating water simulated a human extremity. Circumferential casts, of either plaster or composite construction (plaster inner layer with outer synthetic layer), were applied to the model. Peak temperatures generated by the exothermic reactions were studied relative to the following variables: dip water temperature (24 °C versus 40 °C), cast thickness (16, 30, and 34 ply), and delayed (5-min) versus immediate application of the synthetic outer layers. Peak temperatures from the all-plaster casts were compared with the composite casts of the same thickness. Finally, the relative cast strength was determined. Potentially dangerous high temperatures were measured only when 40 °C dip water was used or when thick (30- or 34-ply) casts were made. Cast strength increased with increasing cast thickness. However, the presence of synthetics in the composite casts layers did not increase cast strength in every case. When applying composite casts, the outer synthetic layers should be applied several minutes after the plaster to minimize temperature rise. Composite casts do not routinely generate peak temperatures higher than plaster casts of similar thickness. Because the skin of children and the elderly is more temperature-sensitive than average adult skin, extra care should be taken to limit the exothermic reaction when casting children and the elderly: clean, room temperature dip water, minimal required cast thickness, avoidance of insulating pillows/blankets while the cast is drying.

  3. Tandem Cylinder Noise Predictions

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  4. Fiber Tracking Cylinder Nesting

    SciTech Connect

    Stredde, H.; /Fermilab

    1999-03-30

    The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.

  5. Sixty Years of Casting Research

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2015-11-01

    The 60 years of solidification research since the publication of Chalmer's constitutional undercooling in 1953 has been a dramatic advance of understanding which has and continues to be an inspiration. In contrast, 60 years of casting research has seen mixed fortunes. One of its success stories relates to improvements in inoculation of gray irons, and another to the discovery of spheroidal graphite iron, although both of these can be classified as metallurgical rather than casting advances. It is suggested that true casting advances have dated from the author's lab in 1992 when a critical surface turbulence condition was defined for the first time. These last 20 years have seen the surface entrainment issues of castings developed to a sufficient sophistication to revolutionize the performance of light alloy and steel foundries. However, there is still a long way to go, with large sections of the steel and Ni-base casting industries still in denial that casting defects are important or even exist. The result has been that special ingots are still cast poorly, and shaped casting operations have suffered massive losses. For secondary melted and cast materials, electro-slag remelting has the potential to be much superior to expensive vacuum arc remelting, which has cost our aerospace and defense industries dearly over the years. This failure to address and upgrade our processing of liquid metals is a serious concern, since the principle entrainment defect, the bifilm, is seen as the principle initiator of cracks in metals; in general, bifilms are the Griffith cracks that initiate failures by cracking. A new generation of crack resistant metals and engineering structures can now be envisaged.

  6. Dopant Cylinder Lifetime Monitor

    NASA Astrophysics Data System (ADS)

    Bishop, Steve; Wodjenski, Michael; Kaim, Robert; Lurcott, Steve; McManus, Jim; Smith, Gordon

    2006-11-01

    The cost of consumable materials is a significant component in the cost of implanter operation. With the higher cost of sub-atmospheric gas alternatives it is increasingly important to accurately monitor its usage. The ATMI® SDS® GasGauge™ monitoring system accurately monitors gas level in four cylinders simultaneously, throughout their lifetime, in order to optimize usage of gas and related implanter productivity. This paper displays how the GasGauge monitoring system accurately monitors the cylinder contents in SDS®, VAC® and high pressure gas cylinders. Internal and customer test data is also presented to verify these claims.

  7. Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  8. AUTOMATED MALLEABLE ANNEALING OVENS SLOWLY HEAT AND COOL CASTINGS AS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMATED MALLEABLE ANNEALING OVENS SLOWLY HEAT AND COOL CASTINGS AS THEY MOVE IN BINS ALONG TRACKS IN THE OVEN BOTTOM IN THE MALLEABLE ANNEALING BUILDING. THIS PROCESS TRANSFORMS BRITTLE WHITE IRON CASTINGS INTO SOFTER, STRONGER MALLEABLE IRON. - Stockham Pipe & Fittings Company, Malleable Annealing Building, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  9. Gas Cylinder Safety, Course 9518

    SciTech Connect

    Glass, George

    2016-10-27

    This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).

  10. Relativistic Bessel Cylinders

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.; Glass, E. N.

    2014-11-01

    A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.

  11. Relativistic Bessel cylinders

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.; Glass, E. N.

    2014-10-01

    A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.

  12. Reinforcement of Existing Cast-Iron Structural Elements by Means of Fiber Reinforced Composites / Wzmacnianie Istniejących, Żeliwnych Elementów Konstrukcyjnych za Pomocą Włóknokompozytów

    NASA Astrophysics Data System (ADS)

    Marcinowski, Jakub; Różycki, Zbigniew

    2016-03-01

    The paperdeals with tubular, cast-iron columns which should be reinforced due to the planned new structural function of these elements. According to the requirements of the monument conservator the general appearance of columns should not be altered significantly. Reinforcement with an external, thin coating (sleeve or jacket) made of composite (carbon fibre reinforced polymer - CFRP) was proposed. Details of the proposedtechniquewerepresented. The reinforcementeffect was verifiedin destructivetestsperformed on two columns without reinforcement and the two other columns reinforced with the chosentechnique. Due to the expected very high load capacity of the axially loaded column, the test rig was designed in such a manner that the force could be applied on big eccentricity. For this purpose a specialbase was prepared(comp. Fig. 1). Destructivetests have confirmed the high effectiveness of the adopted strengthening technique.

  13. SCALE/MAVRIC calculation of dose rates measured for a gamma radiation source in a thick-walled transport and storage cask of ductile cast iron with lead inserts

    NASA Astrophysics Data System (ADS)

    Baumgarten, Werner; Thiele, Holger; Ruprecht, Benjamin; Phlippen, Peter-W.; Schlömer, Luc

    2017-09-01

    Dose rate calculations are important for judging the shielding performance of transport casks for radioactive material. Therefore it is important to have reliable calculation tools. We report on measured and calculated dose rates near a thick-walled transport and storage cask of ductile cast iron with lead inserts and a Co-60 source inside. In a series of experiments the thickness of the inserts was varied, and measured dose rates near the cask were compared with SCALE/MAVRIC 6.1.3 and SCALE/MAVRIC 6.2 calculation results. Deviations from the measurements were found to be higher for increased lead thicknesses. Furthermore, it is shown how the shielding material density, air scattering and accounting for the floor influence the quality of the calculation.

  14. 46 CFR 56.60-15 - Ductile iron.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping COAST... Materials § 56.60-15 Ductile iron. (a) Ductile cast iron components made of material conforming to ASTM A... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395...

  15. 46 CFR 56.60-15 - Ductile iron.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping COAST... Materials § 56.60-15 Ductile iron. (a) Ductile cast iron components made of material conforming to ASTM A... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395...

  16. 46 CFR 56.60-15 - Ductile iron.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping COAST... Materials § 56.60-15 Ductile iron. (a) Ductile cast iron components made of material conforming to ASTM A... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395...

  17. 46 CFR 56.60-15 - Ductile iron.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping COAST... Materials § 56.60-15 Ductile iron. (a) Ductile cast iron components made of material conforming to ASTM A... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395...

  18. 46 CFR 56.60-15 - Ductile iron.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping COAST... Materials § 56.60-15 Ductile iron. (a) Ductile cast iron components made of material conforming to ASTM A... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395...

  19. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    SciTech Connect

    Piwonka, T.S.

    1996-01-01

    This report details results of a 30-month program to develop methods of making clean ferrous castings, i.e., castings free of inclusions and surface defects. The program was divided into 3 tasks: techniques for producing clean steel castings, electromagnetic removal of inclusions from ferrous melts, and study of causes of metal penetration in sand molds in cast iron.

  20. Engineering design of centrifugal casting machine

    NASA Astrophysics Data System (ADS)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  1. Cylinder To Cylinder Balancing Using Intake Valve Actuation

    SciTech Connect

    Duffy, Kevin P.; Kieser, Andrew J.; Kilkenny, Jonathan P.

    2005-01-18

    A method and apparatus for balancing a combustion phasing between a plurality of cylinders located in an engine. The method and apparatus includes a determining a combustion timing in each cylinder, establishing a baseline parameter for a desired combustion timing, and varying actuation of at least one of a plurality of intake valves, each intake valve being in fluid communication with a corresponding cylinder, such that the combustion timing in each cylinder is substantially equal to the desired combustion timing.

  2. Cool Cast Facts

    MedlinePlus

    ... moving. The outer layer is usually made of plaster or fiberglass. Fiberglass casts are made of fiberglass, ... color! These casts are lighter and stronger than plaster casts. Plaster casts are usually white and made ...

  3. INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS FROM CUPOLA TO IRON TREATMENT AREAS BEFORE BEING TRANSFERRED TO PIPE CASTING MACHINES. - United States Pipe & Foundry Company Plant, Melting & Treatment Areas, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  4. 8. DETAIL OF UNITEDTOD TWINTANDEM STEAM ENGINE, SHOWING CYLINDER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL OF UNITED-TOD TWIN-TANDEM STEAM ENGINE, SHOWING CYLINDER AND CROSS HEAD OF PISTON AT THE HIGH-PRESSURE SIDE OF ENGINE. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  5. 11. DETAIL OF UNITEDTOD TWINTANDEM STEAM ENGINE, SHOWING HIGHPRESSURE CYLINDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL OF UNITED-TOD TWIN-TANDEM STEAM ENGINE, SHOWING HIGH-PRESSURE CYLINDER AND VALVE, AND LUBRICATING EQUIPMENT FOR ENGINE. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  6. 7. DETAIL OF UNITEDTOD TWINTANDEM STEAM ENGINE, SHOWING CYLINDER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF UNITED-TOD TWIN-TANDEM STEAM ENGINE, SHOWING CYLINDER AND CROSS HEAD OF PISTON AT THE LOW PRESSURE SIDE OF ENGINE. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  7. CASTING FURNACES

    DOEpatents

    Ruppel, R.H.; Winters, C.E.

    1961-01-01

    A device is described for casting uranium which comprises a crucible, a rotatable table holding a plurality of molds, and a shell around both the crucible and the table. The bottom of the crucible has an eccentrically arranged pouring hole aligned with one of the molds at a time. The shell can be connected with a vacuum.

  8. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The document outlines procedures for implementing Project CAST (Community and School Together), a community-based career education program for secondary special education students in Charles County, Maryland. Initial sections discuss the role of a learning coordinator, (including relevant travel reimbursement and mileage forms) and an overview of…

  9. Paper Casting.

    ERIC Educational Resources Information Center

    Arrasjid, Dorine A.

    1980-01-01

    Describes an art project, based on the work of artist Chew Teng Beng, in the molding of wet paper on a plaster cast to create embossed paper designs. The values of such a project are outlined, including a note that its tactile approach makes it suitable to visually handicapped students. (SJL)

  10. Paper Casting.

    ERIC Educational Resources Information Center

    Arrasjid, Dorine A.

    1980-01-01

    Describes an art project, based on the work of artist Chew Teng Beng, in the molding of wet paper on a plaster cast to create embossed paper designs. The values of such a project are outlined, including a note that its tactile approach makes it suitable to visually handicapped students. (SJL)

  11. Hybrid framework with cobalt-chromium alloy and gold cylinder for implant superstructure: Bond strength and corrosion resistance.

    PubMed

    Yoshinari, Masao; Uzawa, Shinobu; Komiyama, Yataro

    2016-10-01

    The aim of this in vitro study was to evaluate tensile bond strengths and corrosion resistance of CoCr alloys joined with gold cylinder by a soldering system in comparison with the conventional cast-joining system. CoCr alloys joined with gold cylinder by a soldering system using a high-fusing gold solder (CoCr/Solder/Gold cylinder), gold alloy joined with gold cylinder by a cast joining system (Gold alloy/Gold cylinder) and CoCr castings were fabricated. The tensile bond strength and corrosion resistance in 0.9% NaCl solution (pH 7.4 and pH 2.3) were evaluated. Scanning electron microscopy (SEM) of the fractured surface and electron probe microanalysis (EPMA) of the joined interfaces were also performed. The tensile bond strengths of the CoCr/Solder/Gold cylinder specimens showed similar values as the Gold alloy/Gold cylinder specimens. SEM observation and EPMA analyses suggested firm bonding between the CoCr alloy and gold cylinder. The released elements from the CoCr/Solder/Gold cylinder specimens were similar to ones from CoCr castings. Results showed that superstructures made of CoCr alloys joined with the gold cylinder using a high-fusing gold solder had sufficient bond strength and high corrosion resistance. These hybrid frameworks with cobalt-chromium alloy and gold cylinder are promising prosthesis for implant superstructures with the low cost and favorable mechanical properties instead of conventional high-gold alloys. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Turbine endwall single cylinder program

    NASA Technical Reports Server (NTRS)

    Langston, L. S.; Eckerle, W. A.

    1983-01-01

    Measurements of the flow field in front of a large-scale single cylinder, mounted in a wind tunnel are discussed. Static pressures on the endwall and cylinder surfaces, extensive five-hole probe pressures in front of and around the cylinder, and velocity fluctuations using a hot-wire probe where the flow is steady enough to yield meaningful results are included.

  13. Torsion of Noncircular Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Hyer, Michael W.; Haynie, Waddy T.

    2005-01-01

    The paper presents a brief overview of the predicted deformation and failure characteristics of noncircular composite cylinders subjected to torsion. Using a numerical analysis, elliptical cylinders with a minor-to-major diameter ratio of 0.7 are considered. Counterpart circular cylinders with the same circumference as the elliptical cylinders are included for comparison. The cylinders are constructed of a medium-modulus graphite-epoxy material in a quasi-isotropic lay-up. Imperfections generated from the buckling mode shapes are included in the initial cross-sectional geometry of the cylinders. Deformations until first fiber failure, as predicted using the maximum stress failure criterion and a material degradation scheme, are presented. For increasing levels of torsion, the deformations of the elliptical cylinders, in the form of wrinkling of the cylinder wall, occur primarily in the flatter regions of the cross section. By comparison the wrinkling deformations of the circular cylinders are more uniformly distributed around the circumference. Differences in the initial failure and damage progression and the overall torque vs. twist relationship between the elliptical and circular cylinders are presented. Despite differences in the response as the cylinders are being loaded, at first fiber failure the torque and twist for the elliptical and circular cylinders nearly coincide.

  14. Effect of Rotational Speeds on the Cast Tube During Vertical Centrifugal Casting Process on Appearance, Microstructure, and Hardness Behavior for Al-2Si Alloy

    NASA Astrophysics Data System (ADS)

    Shailesh Rao, A.; Tattimani, Mahantesh S.; Rao, Shrikantha S.

    2015-04-01

    The flow of molten metal plays a crucial role in determining casting quality. During rotation of the mold, melt flow around its inner circumference determines the final configurations and properties of the cast tube. In this paper, Al-2Si alloy is cast in the vertical mold at the various rotational speeds of the mold. The uniform cylinder tube is formed at a rotational speed of 1000 rpm, while before and beyond this speed, irregular-shaped cast tube is formed. Finally, fine structured grain size with high hardness value is found in uniform cast tube compared with others.

  15. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  16. Casting methods

    DOEpatents

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  17. Numerical Simulation and Cold Modeling experiments on Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Keerthiprasad, Kestur Sadashivaiah; Murali, Mysore Seetharam; Mukunda, Pudukottah Gopaliengar; Majumdar, Sekhar

    2011-02-01

    In a centrifugal casting process, the fluid flow eventually determines the quality and characteristics of the final product. It is difficult to study the fluid behavior here because of the opaque nature of melt and mold. In the current investigation, numerical simulations of the flow field and visualization experiments on cold models have been carried out for a centrifugal casting system using horizontal molds and fluids of different viscosities to study the effect of different process variables on the flow pattern. The effects of the thickness of the cylindrical fluid annulus formed inside the mold and the effects of fluid viscosity, diameter, and rotational speed of the mold on the hollow fluid cylinder formation process have been investigated. The numerical simulation results are compared with corresponding data obtained from the cold modeling experiments. The influence of rotational speed in a real-life centrifugal casting system has also been studied using an aluminum-silicon alloy. Cylinders of different thicknesses are cast at different rotational speeds, and the flow patterns observed visually in the actual castings are found to be similar to those recorded in the corresponding cold modeling experiments. Reasonable agreement is observed between the results of numerical simulation and the results of cold modeling experiments with different fluids. The visualization study on the hollow cylinders produced in an actual centrifugal casting process also confirm the conclusions arrived at from the cold modeling experiments and numerical simulation in a qualitative sense.

  18. Fractal analysis of complex microstructure in castings

    SciTech Connect

    Lu, S.Z.; Lipp, D.C.; Hellawell, A.

    1995-12-31

    Complex microstructures in castings are usually characterized descriptively which often raises ambiguity and makes it difficult to relate the microstructure to the growth kinetics or mechanical properties in processing modeling. Combining the principle of fractal geometry and computer image processing techniques, it is feasible to characterize the complex microstructures numerically by the parameters of fractal dimension, D, and shape factor, a, without ambiguity. Procedures of fractal measurement and analysis are described, and a test case of its application to cast irons is provided. The results show that the irregular cast structures may all be characterized numerically by fractal analysis.

  19. Practical experience with passenger car engine blocks produced in high quality compacted graphite iron

    SciTech Connect

    Tholl, M.; Magata, A.; Dawson, S.

    1996-09-01

    Although the superior properties of compacted graphite iron (CGI) are well known, its application to the series production of complex castings such as passenger car engine blocks has been precluded by the absence of a reliable foundry production technique. Despite the narrow chemistry range over which high quality CGI is stable, recent advances in cast iron foundry process control technology now serve as the starting point for a comprehensive CGI engine development program at Adam Opel AG. The Opel CGI program originated with the 2.5 liter V6 DTM racing engine which now delivers 2.7 times more power and weights 20% less than the standard grey iron production. Acoustical evaluations were then performed on identically designed 2.0 liter Family 2 engines to show that the audible noise level of the CGI engine was 1.1 to 1.5 dB(A) less than that of the grey iron engine. Simultaneously the 35% higher elastic modulus of CGI relative to conventional grey iron resulted in a 7% increase of the torsional vibration frequency. Other benefits realized from the CGI studies include a 70% reduction in bore distortion, 44% improvement in honed surface roughness (Ra) and more than 40% improvement in cylinder bore wear resistance. As a result of these positive results Opel has recently undertaken a complete redesign of its 1.4/1.6 liter Family 1 gasoline engine block for series production. The new CGI block is 29.4% lighter than its grey iron predecessor while providing the same power output (105 hp). The purpose of this paper is to present the results of the compacted graphite iron engine development programs at Adam Opel AG.

  20. In vitro evaluation of four methods of attaching transfixation pins into a fiberglass cast for use in horses.

    PubMed

    McClure, S R; Watkins, J P; Hogan, H A

    1996-07-01

    To compare the axial stability provided by 4 methods of attaching transfixation pins into a fiberglass cast. Axial stability of 4 methods of transfixation pin attachment to a fiberglass cast cylinder was determined in vitro. Methods of attachment included simple incorporation of the pins into the cast, placement of a washer and nut on the pin and incorporation into the cast, extension of pins beyond the cast and attachment to a steel halo, and washers within the cast and attachment to a steel halo. A model was designed to simulate a transfixation cast applied to the equine metacarpus. 8 identical constructs were present in each of the 4 groups. 6 fiberglass cylinders were also tested to identify the contribution of the cast cylinder to the overall stability of the transfixation cast. Load-sufficient curves were recorded, and a stiffness modulus was calculated for each treatment group and for a simple fiberglass cylinder without transfixation pins. There was no significant difference among the 4 methods of attachment. The fiberglass cast material appears to be the major determinant of axial stability.

  1. POURING IRON FROM BULL LADLE INTO MOBILE LADLES USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POURING IRON FROM BULL LADLE INTO MOBILE LADLES USED TO FILL MOLDS ON CONVEYOR LINES AFTER FERRO-SILICON IS ADDED TO ENHANCE DUCTILITY AND FLUIDITY. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  2. Casting materials

    DOEpatents

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  3. 56. DETAIL OF BASE OF STEEL WINDMILL TOWER WITH CAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. DETAIL OF BASE OF STEEL WINDMILL TOWER WITH CAST IRON HAND PUMP OVER WELL HEAD ON HIGHWAY L44 IN IOWA JUST EAST OF NEBRASKA CITY, NEBRASKA. - Kregel Windmill Company Factory, 1416 Central Avenue, Nebraska City, Otoe County, NE

  4. 42. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; operator takes temperature of iron in trough during pout. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  5. A PORTABLE DENTAL STERILIZING CYLINDER

    DTIC Science & Technology

    The report describes an aluminum cylinder in which dental instruments could be sterilized under emergency field conditions and at the same time be...protected against corrosion. The procedure involves loading the cylinder with dental instruments, flushing it with ethylene oxide-Freon gas, closing it...and then immersing it in boiling water for l hour. In preliminary experiments with a prototype of the sterilizing cylinder, dental instruments were

  6. 126. EXTERIOR VIEW, LOOKING NORTH, SHOWING CAST SHED NO. 2, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    126. EXTERIOR VIEW, LOOKING NORTH, SHOWING CAST SHED NO. 2, FURNACE NO. 2, STOVES, POWER HOUSE, STACKS, FURNACE NO. 1 CAST SHED. FURNACE NO. 2 IS IN PROCESS OF RESTORATION. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  7. Influence of rotational speed of centrifugal casting process on appearance, microstructure, and sliding wear behaviour of Al-2Si cast alloy

    NASA Astrophysics Data System (ADS)

    Mukunda, P. G.; Shailesh, Rao A.; Rao, Shrikantha S.

    2010-02-01

    Although the manner in which the molten metal flows plays a major role in the formation of the uniform cylinder in centrifugal casting, not much information is available on this topic. The flow in the molten metal differs at various rotational speeds, which in turn affects the final casting. In this paper, the influence of the flow of molten metal of hyper eutectic Al-2Si alloys at various rotational speeds is discussed. At an optimum speed of 800 rpm, a uniform cylinder was formed. For the rotational speeds below and above these speeds, an irregular shaped casting was formed, which is mainly due to the influence of melt. Primary á-Al particles were formed in the tube periphery at low rotational speed, and their sizes and shapes were altered with changes in rotational speeds. The wear test for the inner surface of the casting showed better wear properties for the casting prepared at the optimum speed of rotation.

  8. 15. CYLINDER DETAILS; DETAILS OF STEEL FOR CYLINDERS NO. 50 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CYLINDER DETAILS; DETAILS OF STEEL FOR CYLINDERS NO. 50 (PIER 5) AND NO. 66 (PIER 6), DWG. 83, CH BY AF, ECL, APPROVED BY O.F. LACKEY, MAY 18, 1908 - Baltimore Inner Harbor, Pier 5, South of Pratt Street between Market Place & Concord Street, Baltimore, Independent City, MD

  9. Correlation of Microstructures and Tribological Properties of Ferrous Coatings Deposited by Atmospheric Plasma Spraying on Al-Si Cast Alloy Substrate

    NASA Astrophysics Data System (ADS)

    Vencl, Aleksandar; Mrdak, Mihailo; Banjac, Miloš

    2009-02-01

    The microstructure and tribological properties of ferrous coatings applicable to cylinder bores were investigated in this study. Two kinds of ferrous powders were sprayed on Al-Si cast alloy (EN AlSi10Mg) substrate by atmospheric plasma spraying. Microstructural analysis showed that various Fe oxides were formed in the coatings. The presence of pores, unmelted particles, and Fe precipitates was also noticed. The pin-on-ring tribometer was used to carry out tribological tests under lubricated sliding conditions: sliding speed of 0.5 m/s, sliding distance of 5000 m, and normal load of 450 N. High porosity and the presence of larger and irregularly shaped pores as well as the amount of oxides were the controlling factors for the crack initiations and, consequently, the wear rate. Tribological properties of the coatings were compared with gray cast iron as a standard material for cylinder blocks and showed that, for the investigated conditions, both coatings could be an adequate substitution.

  10. 40 CFR 420.60 - Applicability; description of the continuous casting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... continuous casting subcategory. 420.60 Section 420.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Continuous Casting Subcategory § 420.60 Applicability; description of the continuous casting subcategory....

  11. Individual cylinder knock control by detecting cylinder pressure

    SciTech Connect

    Sawamoto, K.; Kawamura, Y.; Kita, T.; Matsushita, K.

    1987-01-01

    To improve available power, tolerance to variation in fuel octane number and high engine speed knock control, an individual cylinder knock control has been developed. Knock are detected by spark plug washer transducers, which indicate individual cylinder pressures.) Last year the authors read a paper entitled ''Cylinder Pressure Vibration Analysis Indicates Accurate Knock Detection''. They read continuously on the following items. Spark plug washer transducers - These are piezoelectric ceramic rings which fit beneath individual spark plugs. These can detect knock at high engine speed, and are very durable. Knock detection and control algorithm - Knock is indicated by the transducer's cylinder pressure vibration signal. When knock occurs in the cylinder, the ignition timing of the cylinder is controlled. During the transient condition, control response is fast by learning control. Fail safe - At transducer trouble, the ignition timing of the cylinder is controlled by other transducer signals. Electric control unit - It is included in NISSANs Electronic Concentrated Engine Control System (ECCS). Effects of this control - It improved WOT torque by 7-15%, torelance to variation in fuel octane number, and high engine speed control performance.

  12. Mundrabilla: A Microgravity Casting

    NASA Astrophysics Data System (ADS)

    Budka, P. Z.; Viertl, J. R. M.

    1993-07-01

    The name "Mundrabilla" is applied to two nickel-iron meteorite masses (combined mass over 22,700 kg), which apparently were a single mass before atmospheric entry [1]. A medium octahedrite, Mundrabilla exhibits the microstructural features common to other nickel-iron meteorites such as Widmanstatten structure and troilite; however, its macrostructure is anything but common. Described by Buchwald as "anomalous" [1], Mundrabilla's macrostructural morphology is characterized by strikingly prominent, rounded Widmanstatten areas separated by regions of sulfur segregation (Fig. 1). While microstructural development of a metal can reflect both solidification and solid state reactions, macrostructural features are determined during solidification. Thus, a typical metallurgist, unfamiliar with microgravity solidification, might describe Mundrabilla's macrostructure as an "anomalous" casting. Those familiar with microgravity solidification might characterize Mundrabilla's macrostructural features as due to solidification of two immiscible liquids [2]--one rich in nickel-iron, the other rich in sulfur. Combining these observations, Mundrabilla's macrostructural features are consistent with that of a liquid mass solidified under microgravity conditions [3,4]. Since nickel-iron meteorite cooling rates often serve as the foundation for assumptions about the formation of solar system bodies, information on the solidification time for the Mundrabilla mass may give additional insights. How long did it take for Mundrabilla, with a minimum "as received" mass of approximately 22,700 kg to solidify? Because Mundrabilla's mass before atmospheric entry is unknown, we take as an upper boundary a mass of 4.1 x 10^15kg. These masses, assumed spherical, range in diameter between 1.8 meters and 10 kilometers, respectively. Mundrabilla can be idealized as a pure iron liquid mass cooling from the melting point of pure iron (1535C) by radiation into space at absolute zero. The latent heat of

  13. 38. Base of No. 2 Furnace showing iron runner to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Base of No. 2 Furnace showing iron runner to ladle car on floor of casting shed. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  14. 5. Historic American Buildings Survey, April, 1960 WROUGHT IRON RAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey, April, 1960 WROUGHT IRON RAIL, MAIN FLOOR ON BULL STREET CAST IRON RAIL, SECOND FLOOR. - Crawford-Clarkson House, Bull & Blanding Streets, Columbia, Richland County, SC

  15. 40. THIS TUMBLING MILL IN THE GREY IRON FOUNDRY IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. THIS TUMBLING MILL IN THE GREY IRON FOUNDRY IS USED TO TUMBLE CASTINGS OVER EACH OTHER TO BREAK OFF RUNNERS AND SPRUES. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  16. The distance between the cylinder affect the cylinder pressure

    NASA Astrophysics Data System (ADS)

    Imron, Chairul; Apriliani, Erna

    2017-08-01

    Trimaran is a vessel with a hull that is associated with the three bridge structures. Assuming that the elliptical cylinder-shaped hull, trimaran built by three elliptical cylinder with side-by-side configuration. The distance between the ellipse varies will determine the pressure received by the ellipse in the center. This problem is solved using the Navier-Stokes equations and solved by the finite difference. Results from this study is the lowest pressure received by elliptical midddle.

  17. Microdefects in cast multicrystalline silicon

    SciTech Connect

    Wolf, E.; Klinger, D.; Bergmann, S.

    1995-08-01

    The microdefect etching behavior of cast multicrystalline BAYSIX and SILSO samples is mainly the same as that of EFG silicon, in spite of the very different growth parameters applied to these two techniques and the different carbon contents of the investigated materials. Intentional decorating of mc silicon with copper, iron and gold did not influence the results of etching and with help of infrared transmission microscopy no metal precipitates at the assumed microdefects could be established. There are many open questions concerning the origin of the assumed, not yet doubtless proved microdefects.

  18. What is the best material for molding casts in children?

    PubMed

    Daines, Steven B; Aronsson, David D; Beynnon, Bruce D; Sturnick, Daniel R; Lisle, Jennifer W; Naud, Shelly

    2014-01-01

    Casts are used to treat clubfeet, developmental dysplasia of the hip (DDH), forearm fractures, and femur fractures. The ability of a cast to maintain a desired shape is termed moldability. Clinicians use plaster, fiberglass, and soft casts. To our knowledge the biomechanical molding characteristics of these 3 materials have never been reported. We hypothesized that moldability of plaster would be better than fiberglass and fiberglass would be better than soft cast. We compared 12.7 cm wide casts of plaster, fiberglass, and soft cast. Casts were 5 layers thick, prepared in 40°C water, and placed over 2 layers of cotton padding on 5.1 cm and 15.2 cm diameter foam cylinders. A loading device simulated loads applied by clinicians when molding casts for 4 conditions: clubfoot (thumb-shaped 50 N load on 5.1 cm model), DDH (thumb-shaped 100 N load on 15.2 cm model), forearm fracture (palm-shaped 50 N load on 5.1 cm model), and femur fracture (palm-shaped 100 N load on 15.2 cm model). The loading device applied molding for 7 minutes. Five casts of each material were made for each model. Casts were removed, photographed, and the area of maximal deformation was compared with an unmolded cast. A large area of maximal deformation meant that the deformation was spread out over a large area, less precise molding. In the clubfoot model, plaster was more precise than fiberglass (P=0.002) and soft cast (P<0.0001). In the DDH model, plaster was more precise than fiberglass (P<0.0001) and soft cast (P<0.0001) and fiberglass was more precise than soft cast (P<0.0001).In the femur fracture model, plaster was more precise than fiberglass (P=0.001) and soft cast (P=0.001). The moldability of plaster is better than fiberglass and soft cast and fiberglass is better than soft cast. If precise molding is required, plaster has the best moldability. In cases not requiring precise molding, fiberglass and soft cast are lightweight, waterproof, and available in child-friendly colors.

  19. Fiberglass cast application.

    PubMed

    Smith, Gillian D; Hart, Raymond G; Tsai, Tsu-Min

    2005-05-01

    Plaster of Paris has been largely superceded for casting in orthopedic departments by synthetic cast materials. Despite its weight, its relative brittleness, its unpopularity with patients, and its messiness in application, plaster of Paris remains the mainstay of casting in the emergency department. This is due to a combination of economic reasons, the belief that synthetic casts leave less room for swelling and its relative ease of application compared to synthetic materials. We present a technique for synthetic cast application that avoids the problems of the rapidly setting cast and therefore allows the time for less experienced hands to produce a well-fitting cast or splint. We believe that this option, which allows the patient to have a lighter synthetic cast, rather than the traditional plaster of Paris cast, will be welcomed by both the patient and physician.

  20. Development of iron aluminides

    SciTech Connect

    Viswanathan, S.; Sikka, V.K.; Andleigh, V.K.

    1995-06-01

    The primary reason for the poor room-temperature ductility of Fe{sub 3}Al-based alloys is generally accepted to be environmental embrittlement due to hydrogen produced by the reaction of aluminum with water vapor present in the test atmosphere. In the as-cast condition, another possible reason for the low room-temperature ductility is the large grain size (0.5 to 3 mm) of the cast material. While recent studies on iron aluminides in the wrought condition have led to higher room-temperature ductility and increased high-temperature strength, limited studies have been conducted on iron aluminides in the as-cast condition. The purpose of this study was to induce grain refinement of the as-cast alloy through alloying additions to the melt and study the effect on room-temperature ductility as measured by the strain corresponding to the maximum stress obtained in a three-point bend test. A base charge of Fe-28% Al-5% Cr alloy was used; as in previous studies this ternary alloy exhibited the highest tensile ductility of several alloys tested. Iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. Several alloy compositions developed at ORNL have been licensed to commercial vendors for development of scale-up procedures. With the licensees and other vendors, several applications for iron aluminides are being pursued.