Sample records for cast method

  1. A comparison between the dimensions of positive transtibial residual limb molds prepared by air pressure casting and weight-bearing casting methods.

    PubMed

    Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam

    2016-01-01

    Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements.

  2. Development and evaluation of a digital dental modeling method based on grating projection and reverse engineering software.

    PubMed

    Zhou, Qin; Wang, Zhenzhen; Chen, Jun; Song, Jun; Chen, Lu; Lu, Yi

    2016-01-01

    For reasons of convenience and economy, attempts have been made to transform traditional dental gypsum casts into 3-dimensional (3D) digital casts. Different scanning devices have been developed to generate digital casts; however, each has its own limitations and disadvantages. The purpose of this study was to develop an advanced method for the 3D reproduction of dental casts by using a high-speed grating projection system and noncontact reverse engineering (RE) software and to evaluate the accuracy of the method. The methods consisted of 3 main steps: the scanning and acquisition of 3D dental cast data with a high-resolution grating projection system, the reconstruction and measurement of digital casts with RE software, and the evaluation of the accuracy of this method using 20 dental gypsum casts. The common anatomic landmarks were measured directly on the gypsum casts with a Vernier caliper and on the 3D digital casts with the Geomagic software measurement tool. Data were statistically assessed with the t test. The grating projection system had a rapid scanning speed, and smooth 3D dental casts were obtained. The mean differences between the gypsum and 3D measurements were approximately 0.05 mm, and no statistically significant differences were found between the 2 methods (P>.05), except for the measurements of the incisor tooth width and maxillary arch length. A method for the 3D reconstruction of dental casts was developed by using a grating projection system and RE software. The accuracy of the casts generated using the grating projection system was comparable with that of the gypsum casts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Improved Net-Level Filling And Finishing Of Large Castings

    NASA Technical Reports Server (NTRS)

    Johnson, Erik P.; Brown, Richard F.

    1995-01-01

    Improved method of vacuum casting of large, generally cylindrical objects to net sizes and shapes reduces amount of direct manual labor by workers in proximity to cast material. Original application for which method devised is fabrication of solid rocket-motor segments containing solid propellant, wherein need to minimize exposure of workers to propellant material being cast. Improved method adaptable to other applications involving large castings of toxic, flammable, or otherwise hazardous materials.

  4. Riser Feeding Evaluation Method for Metal Castings Using Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Nadiah

    One of the design aspects that continues to create a challenge for casting designers is the optimum design of casting feeders (risers). As liquid metal solidifies, the metal shrinks and forms cavities inside the casting. In order to avoid shrinkage cavities, risers are added to the casting shape to supply additional molten metal when shrinkage occurs during solidification. The shrinkage cavities in the casting are compensated by controlling the cooling rate to promote directional solidification. This control can be achieved by designing the casting such that the cooling begins at the sections that are farthest away from the risers and ends at the risers. Therefore, the risers will solidify last and feed the casting with the molten metal. As a result, the shrinkage cavities formed during solidification are in the risers which are later removed from the casting. Since casting designers have to usually go through iterative processes of validating the casting designs which are very costly due to expensive simulation processes or manual trials and errors on actual casting processes, this study investigates more efficient methods that will help casting designers utilize their casting experiences systematically to develop good initial casting designs. The objective is to reduce the casting design method iterations; therefore, reducing the cost involved in that design processes. The aim of this research aims at finding a method that can help casting designers design effective risers used in sand casting process of aluminum-silicon alloys by utilizing the analysis of solidification simulation. The analysis focuses on studying the significance of pressure distribution of the liquid metal at the early stage of casting solidification, when heat transfer and convective fluid flow are taken into account in the solidification simulation. The mathematical model of casting solidification was solved using the finite volume method (FVM). This study focuses to improve our understanding of the feeding behavior in aluminum-silicon alloys and the effective feeding by considering the pressure gradient distribution of the molten metal at casting dendrite coherency point. For this study, we will identify the relationship between feeding efficiency, shrinkage behavior and how the change in riser size affects the pressure gradient in the casting. This understanding will be used to help in the design of effective risers.

  5. Electronic gap sensor and method

    DOEpatents

    Williams, R.S.; King, E.L.; Campbell, S.L.

    1991-08-06

    Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.

  6. Electronic gap sensor and method

    DOEpatents

    Williams, Robert S.; King, Edward L.; Campbell, Steven L.

    1991-01-01

    An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.

  7. Method of reducing the green density of a slip cast article

    DOEpatents

    Mangels, John A.; Dickie, Ray A.

    1985-01-01

    The method disclosed in this specification is one of reducing the green density of an article cast in a slip casting operation. The article is cast from a casting slip containing silicon metal particles, yttrium containing particles, and a small amount of a fluoride salt which is effective to suppress flocculation of the silicon metal particles by y.sup.+3 ions derived from the yttrium containing particles. The method is characterized by the following step. A small amount of compound which produces a cation which will partly flocculate the particles of silicon metal is added to the casting slip. The small amount of this compound is added so that when the casting slip is slip cast into a casting mold, the partly flocculated particles of silicon will interrupt an otherwise orderly packing of the particles of silicon and particles of yttrium. In this manner, the green density of the slip cast article is reduced and the article may be more easily nitrided.

  8. Comparative study of two commercially pure titanium casting methods

    PubMed Central

    RODRIGUES, Renata Cristina Silveira; FARIA, Adriana Claudia Lapria; ORSI, Iara Augusta; de MATTOS, Maria da Gloria Chiarello; MACEDO, Ana Paula; RIBEIRO, Ricardo Faria

    2010-01-01

    The interest in using titanium to fabricate removable partial denture (RPD) frameworks has increased, but there are few studies evaluating the effects of casting methods on clasp behavior. Objective This study compared the occurrence of porosities and the retentive force of commercially pure titanium (CP Ti) and cobalt-chromium (Co-Cr) removable partial denture circumferential clasps cast by induction/centrifugation and plasma/vacuum-pressure. Material and Methods 72 frameworks were cast from CP Ti (n=36) and Co-Cr alloy (n=36; control group). For each material, 18 frameworks were casted by electromagnetic induction and injected by centrifugation, whereas the other 18 were casted by plasma and injected by vacuum-pressure. For each casting method, three subgroups (n=6) were formed: 0.25 mm, 0.50 mm, and 0.75 mm undercuts. The specimens were radiographed and subjected to an insertion/removal test simulating 5 years of framework use. Data were analyzed by ANOVA and Tukey's to compare materials and cast methods (α=0.05). Results Three of 18 specimens of the induction/centrifugation group and 9 of 18 specimens of plasma/vacuum-pressure cast presented porosities, but only 1 and 7 specimens, respectively, were rejected for simulation test. For Co-Cr alloy, no defects were found. Comparing the casting methods, statistically significant differences (p<0.05) were observed only for the Co-Cr alloy with 0.25 mm and 0.50 mm undercuts. Significant differences were found for the 0.25 mm and 0.75 mm undercuts dependent on the material used. For the 0.50 mm undercut, significant differences were found when the materials were induction casted. Conclusion Although both casting methods produced satisfactory CP Ti RPD frameworks, the occurrence of porosities was greater in the plasma/vacuum-pressure than in the induction/centrifugation method, the latter resulting in higher clasp rigidity, generating higher retention force values. PMID:21085805

  9. Development of a new casting method to fabricate U–Zr alloy containing minor actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jong Hwan Kim; Hoon Song; Hyung Tae Kim

    2014-01-01

    Metal fuel slugs of U–Zr alloys for a sodium-cooled fast reactor (SFR) have conventionally been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents, such as Am, are problematic in a conventional injection casting method. As an alternative fabrication method, low pressure gravity casting has been developed. Casting soundness, microstructural characteristics, alloying composition, density, and fuel losses were evaluated for the following as-cast fuel slugs: U–10 wt% Zr, U–10 wt% Zr–5 wt% RE, and U–10 wt% Zr–5 wt% RE–5 wt% Mn. The U and Zr contents were uniform throughout the matrix, and impurities such as oxyen,more » carbon, and nitrogen satisfied the specification of total impurities less than 2,000 ppm. The appearance of the fuel slugs was generally sound, and the internal integrity was shown to be satisfactory based on gamma-ray radiography. In a volatile surrogate casting test, the U–Zr–RE–Mn fuel slug showed that nearly all of the manganese was retained when casting was done under an inert atmosphere.« less

  10. [Exploring a new method for superimposition of pre-treatment and post-treatment mandibular digital dental casts in adults].

    PubMed

    Dai, F F; Liu, Y; Xu, T M; Chen, G

    2018-04-18

    To explore a cone beam computed tomography (CBCT)-independent method for mandibular digital dental cast superimposition to evaluate three-dimensional (3D) mandibular tooth movement after orthodontic treatment in adults, and to evaluate the accuracy of this method. Fifteen post-extraction orthodontic treatment adults from the Department of Orthodontics, Peking University School and Hospital of Stomatology were included. All the patients had four first premolars extracted, and were treated with straight wire appliance. The pre- and post-treatment plaster dental casts and craniofacial CBCT scans were obtained. The plaster dental casts were transferred to digital dental casts by 3D laser scanning, and lateral cephalograms were created from the craniofacial CBCT scans by orthogonal projection. The lateral cephalogram-based mandibular digital dental cast superimposition was achieved by sequential maxillary dental cast superimposition registered on the palatal stable region, occlusal transfer, and adjustment of mandibular rotation and translation obtained from lateral cephalogram superimposition. The accuracy of the lateral cephalogram-based mandibular digital dental cast superimposition method was evaluated with the CBCT-based mandibular digital dental cast superimposition method as the standard reference. After mandibular digital dental cast superimposition using both methods, 3D coordinate system was established, and 3D displacements of the lower bilateral first molars, canines and central incisors were measured. Differences between the two superimposition methods in tooth displacement measurements were assessed using the paired t-test with the level of statistical significance set at P<0.05. No significant differences were found between the lateral cephalogram-based and CBCT-based mandibular digital dental cast superimposition methods in 3D displacements of the lower first molars, and sagittal and vertical displacements of the canines and central incisors; transverse displacements of the canines and central incisors differed by (0.3±0.5) mm with statistical significance. The lateral cephalogram-based mandibular digital dental cast superimposition method has the similar accuracy as the CBCT-based mandibular digital dental cast superimposition method in 3D evaluation of mandibular orthodontic tooth displacement, except for minor differences for the transverse displacements of anterior teeth. This method is applicable to adult patients with conventional orthodontic treatment records, especially the previous precious orthodontic data in the absence of CBCT scans.

  11. 25 CFR 217.6 - Method of casting votes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Method of casting votes. 217.6 Section 217.6 Indians.... § 217.6 Method of casting votes. Within 30 days after an issue and any analysis provided for in §§ 217.4... superintendent in writing of the number of votes cast for and against the proposed or alternative solutions. If...

  12. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    DOEpatents

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  13. ToxCast HTS Assay Development and Retrofitting: Strategies ...

    EPA Pesticide Factsheets

    A presentation to EC JRC partners on new ToxCast HTS assay methods and strategies to address current limitations to HTS methods Slide presentation to EC JRC partners on new ToxCast HTS assay methods and strategies to address current limitations to HTS methods.

  14. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  15. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  16. Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOEpatents

    Stoddard, Nathan G [Gettysburg, PA

    2011-11-01

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  17. A work study of the CAD/CAM method and conventional manual method in the fabrication of spinal orthoses for patients with adolescent idiopathic scoliosis.

    PubMed

    Wong, M S; Cheng, J C Y; Wong, M W; So, S F

    2005-04-01

    A study was conducted to compare the CAD/CAM method with the conventional manual method in fabrication of spinal orthoses for patients with adolescent idiopathic scoliosis. Ten subjects were recruited for this study. Efficiency analyses of the two methods were performed from cast filling/ digitization process to completion of cast/image rectification. The dimensional changes of the casts/ models rectified by the two cast rectification methods were also investigated. The results demonstrated that the CAD/CAM method was faster than the conventional manual method in the studied processes. The mean rectification time of the CAD/CAM method was shorter than that of the conventional manual method by 108.3 min (63.5%). This indicated that the CAD/CAM method took about 1/3 of the time of the conventional manual to finish cast rectification. In the comparison of cast/image dimensional differences between the conventional manual method and the CAD/CAM method, five major dimensions in each of the five rectified regions namely the axilla, thoracic, lumbar, abdominal and pelvic regions were involved. There were no significant dimensional differences (p < 0.05) in 19 out of the 25 studied dimensions. This study demonstrated that the CAD/CAM system could save the time in the rectification process and offer a relatively high resemblance in cast rectification as compared with the conventional manual method.

  18. Accuracy of ringless casting and accelerated wax-elimination technique: a comparative in vitro study.

    PubMed

    Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V

    2014-02-01

    The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p < 0.05) than those castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.

  19. Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics

    DOEpatents

    Stoddard, Nathan G

    2015-02-10

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.

  20. Comparison of cast materials for the treatment of congenital idiopathic clubfoot using the Ponseti method: a prospective randomized controlled trial

    PubMed Central

    Hui, Catherine; Joughin, Elaine; Nettel-Aguirre, Alberto; Goldstein, Simon; Harder, James; Kiefer, Gerhard; Parsons, David; Brauer, Carmen; Howard, Jason

    2014-01-01

    Background The Ponseti method of congenital idiopathic clubfoot correction has traditionally specified plaster of Paris (POP) as the cast material of choice; however, there are negative aspects to using POP. We sought to determine the influence of cast material (POP v. semirigid fibreglass [SRF]) on clubfoot correction using the Ponseti method. Methods Patients were randomized to POP or SRF before undergoing the Ponseti method. The primary outcome measure was the number of casts required for clubfoot correction. Secondary outcome measures included the number of casts by severity, ease of cast removal, need for Achilles tenotomy, brace compliance, deformity relapse, need for repeat casting and need for ancillary surgical procedures. Results We enrolled 30 patients: 12 randomized to POP and 18 to SRF. There was no difference in the number of casts required for clubfoot correction between the groups (p = 0.13). According to parents, removal of POP was more difficult (p < 0.001), more time consuming (p < 0.001) and required more than 1 method (p < 0.001). At a final follow-up of 30.8 months, the mean times to deformity relapse requiring repeat casting, surgery or both were 18.7 and 16.4 months for the SRF and POP groups, respectively. Conclusion There was no significant difference in the number of casts required for correction of clubfoot between the 2 materials, but SRF resulted in a more favourable parental experience, which cannot be ignored as it may have a positive impact on psychological well-being despite the increased cost associated. PMID:25078929

  1. 'Fast cast' and 'needle Tenotomy' protocols with the Ponseti method to improve clubfoot management in Bangladesh.

    PubMed

    Evans, Angela; Chowdhury, Mamun; Rana, Sohel; Rahman, Shariar; Mahboob, Abu Hena

    2017-01-01

    The management of congenital talipes equino varus ( clubfoot deformity ) has been transformed in the last 20 years as surgical correction has been replaced by the non-surgical Ponseti method. The Ponseti method, consists of corrective serial casting followed by maintenance bracing, and has been repeatedly demonstrated to give best results - regarded as the 'gold standard' treatment for paediatric clubfoot. To develop the study protocol Level 2 evidence was used to modify the corrective casting phase of the Ponseti method in children aged up to 12 months. Using Level 4 evidence, the percutaneous Achilles tenotomy (PAT) was performed using a 19-gauge needle instead of a scalpel blade, a technique found to reduce bleeding and scarring. A total of 123 children participated in this study; 88 male, 35 female. Both feet were affected in 67 cases, left only in 22 cases, right only in 34 cases. Typical clubfeet were found in 112/123 cases, six atypical, five syndromic. The average age at first cast was 51 days (13-240 days).The average number of casts applied was five (2-10 casts). The average number of days between the first cast and brace was 37.8 days (10-122 days), including 21 days in a post-PAT cast. Hence, average time of corrective casts was 17 days.Parents preferred the reduced casting time, and were less concerned about unseen skin wounds.PAT was performed in 103/123 cases, using the needle technique. All post tenotomy casts were in situ for three weeks. Minor complications occurred in seven cases - four cases had skin lesions, three cases disrupted casting phase. At another site, 452 PAT were performed using the needle technique. The 'fast cast' protocol Ponseti casting was successfully used in infants aged less than 8 months. Extended manual manipulation of two minutes was the essential modification. Parents preferred the faster treatment phase, and ability to closer observe the foot and skin. The treating physiotherapists preferred the 'fast cast' protocol, achieving better correction with less complication. The needle technique for PAT is a further improvement for the Ponseti method.

  2. Analysis of four dental alloys following torch/centrifugal and induction/ vacuum-pressure casting procedures.

    PubMed

    Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur

    2013-12-01

    Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (P<.001). In contrast, the technique used for casting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting technique was not significant (P=.119). A high level of castability (98.5% on average) was achieved overall. The frequency of casting failures as a function of alloy type and casting method was determined. Failure was defined as a castability index score of <100%. Three of 28 possible comparisons between alloy and casting combinations were statistically significant. The results suggested that casting technique affects the castability index of alloys. Radiographic analysis detected large porosities in regions near the edge of the castability pattern and infrequently adjacent to noncast segments. All castings acquired traces of elements found in the casting crucibles. The grain size for each dental casting alloy was generally finer for specimens produced by the induction/vacuum-pressure method. The difference was substantial for JO and L. This study demonstrated a relation between casting techniques and some physical properties of metal ceramic casting alloys. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  3. [Comparative adaptation of crowns of selective laser melting and wax-lost-casting method].

    PubMed

    Li, Guo-qiang; Shen, Qing-yi; Gao, Jian-hua; Wu, Xue-ying; Chen, Li; Dai, Wen-an

    2012-07-01

    To investigate the marginal adaptation of crowns fabricated by selective laser melting (SLM) and wax-lost-casting method, so as to provide an experimental basis for clinic. Co-Cr alloy full crown were fabricated by SLM and wax-lost-casting for 24 samples in each group. All crowns were cemented with zinc phosphate cement and cut along longitudinal axis by line cutting machine. The gap between crown tissue surface and die was measured by 6-point measuring method with scanning electron microscope (SEM). The marginal adaptation of crowns fabricated by SLM and wax-lost-casting were compared statistically. The gap between SLM crowns were (36.51 ± 2.94), (49.36 ± 3.31), (56.48 ± 3.35), (42.20 ± 3.60) µm, and wax-lost-casting crowns were (68.86 ± 5.41), (58.86 ± 6.10), (70.62 ± 5.79), (69.90 ± 6.00) µm. There were significant difference between two groups (P < 0.05). Co-Cr alloy full crown fabricated by wax-lost-casting method and SLM method provide acceptable marginal adaptation in clinic, and the marginal adaptation of SLM is better than that of wax-lost-casting method.

  4. Hands-Off and Hands-On Casting Consistency of Amputee below Knee Sockets Using Magnetic Resonance Imaging

    PubMed Central

    Rowe, Philip

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit. PMID:24348164

  5. Hands-off and hands-on casting consistency of amputee below knee sockets using magnetic resonance imaging.

    PubMed

    Safari, Mohammad Reza; Rowe, Philip; McFadyen, Angus; Buis, Arjan

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit.

  6. Salvaged castings and methods of salvaging castings with defective cast cooling bumps

    DOEpatents

    Johnson, Robert Alan; Schaeffer, Jon Conrad; Lee, Ching-Pang; Abuaf, Nesim; Hasz, Wayne Charles

    2002-01-01

    Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are coated with a braze alloy and cooling enhancement material to salvage the part.

  7. New methods and materials for molding and casting ice formations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Richter, G. Paul

    1987-01-01

    This study was designed to find improved materials and techniques for molding and casting natural or simulated ice shapes that could replace the wax and plaster method. By utilizing modern molding and casting materials and techniques, a new methodology was developed that provides excellent reproduction, low-temperature capability, and reasonable turnaround time. The resulting casts are accurate and tough.

  8. Transmutation Fuel Fabrication-Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielding, Randall Sidney; Grover, Blair Kenneth

    ABSTRACT Nearly all of the metallic fuel that has been irradiated and characterized by the Advanced Fuel Campaign, and its earlier predecessors, has been arc cast. Arc casting is a very flexible method of casting lab scale quantities of materials. Although the method offers flexibility, it is an operator dependent process. Small changes in parameter space or alloy composition may affect how the material is cast. This report provides a historical insight in how the casting process has been modified over the history of the advanced fuels campaign as well as the physical parameters of the fuels cast in fiscalmore » year 2016.« less

  9. Rough case-based reasoning system for continues casting

    NASA Astrophysics Data System (ADS)

    Su, Wenbin; Lei, Zhufeng

    2018-04-01

    The continuous casting occupies a pivotal position in the iron and steel industry. The rough set theory and the CBR (case based reasoning, CBR) were combined in the research and implementation for the quality assurance of continuous casting billet to improve the efficiency and accuracy in determining the processing parameters. According to the continuous casting case, the object-oriented method was applied to express the continuous casting cases. The weights of the attributes were calculated by the algorithm which was based on the rough set theory and the retrieval mechanism for the continuous casting cases was designed. Some cases were adopted to test the retrieval mechanism, by analyzing the results, the law of the influence of the retrieval attributes on determining the processing parameters was revealed. A comprehensive evaluation model was established by using the attribute recognition theory. According to the features of the defects, different methods were adopted to describe the quality condition of the continuous casting billet. By using the system, the knowledge was not only inherited but also applied to adjust the processing parameters through the case based reasoning method as to assure the quality of the continuous casting and improve the intelligent level of the continuous casting.

  10. Casting fine grained, fully dense, strong inorganic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  11. Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan

    2013-07-01

    Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order tomore » prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.« less

  12. Physical and Clinical Evaluation of Hip Spica Cast applied with Three-slab Technique using Fibreglass Material

    PubMed Central

    Bitar, KM; Ferdhany, ME; Saw, A

    2016-01-01

    Introduction: Hip spica casting is an important component of treatment for developmental dysplasia of the hip (DDH) and popular treatment method for femur fractures in children. Breakage at the hip region is a relatively common problem of this cast. We have developed a three-slab technique of hip spica application using fibreglass as the cast material. The purpose of this review was to evaluate the physical durability of the spica cast and skin complications with its use. Methodology: A retrospective review of children with various conditions requiring hip spica immobilisation which was applied using our method. Study duration was from 1st of January 2014 until 31st December 2015. Our main outcomes were cast breakage and skin complications. For children with hip instability, the first cast would be changed after one month, and the second cast about two months later. Results: Twenty-one children were included, with an average age of 2.2 years. The most common indication for spica immobilisation was developmental dysplasia of the hip. One child had skin irritation after spica application. No spica breakage was noted. Conclusion: This study showed that the three-slab method of hip spica cast application using fibreglass material was durable and safe with low risk of skin complications. PMID:28553442

  13. Freeze Tape Cast Thick Mo Doped Li 4Ti 5O 12 Electrodes for Lithium-Ion Batteries

    DOE PAGES

    Ghadkolai, Milad Azami; Creager, Stephen; Nanda, Jagjit; ...

    2017-08-30

    Lithium titanate (Li 4Ti 5O 12) powders with and without molybdenum doping (LTO and MoLTO respectively) were synthesized by a solid-state method and used to fabricate electrodes on Cu foil using a normal tape-cast method and a novel freeze-tape-cast method. Modest molybdenum doping produces a significant electronic conductivity increase (e.g. 1 mS cm -1 for MoLTO vs 10 -7 mS cm -1 for LTO) that is thought to reflect a partial Ti 4+ reduction to Ti 3+ with charge compensation by the Mo 6+ dopant, producing a stable mixed-valent Ti 4+/3+ state. Freeze-tape-cast electrodes were fabricated by a variant ofmore » the normal tape-cast method that includes a rapid freezing step in which the solvent in the Cu-foil-supported slurry is rapidly frozen on a cold finger then subsequently sublimed to create unidirectional columnar macropores in the electrode. The resulting electrodes exhibit high porosity and low tortuosity which enhances electrolyte accessibility throughout the full electrode thickness. Freeze-tape-cast electrodes subjected to galvanostatic charge-discharge testing as cathodes in cells vs. a lithium metal anode exhibit higher specific capacity and lower capacity loss at high discharge rates compared with normal-tape-cast electrodes of the same mass loading, despite the fact that the freeze-tape-cast electrodes are nearly twice as thick as the normal tape cast electrodes.« less

  14. Method and mold for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  15. Method for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  16. Estimation of Heat Transfer Coefficient in Squeeze Casting of Magnesium Alloy AM60 by Experimental Polynomial Extrapolation Method

    NASA Astrophysics Data System (ADS)

    Sun, Zhizhong; Niu, Xiaoping; Hu, Henry

    In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghadkolai, Milad Azami; Creager, Stephen; Nanda, Jagjit

    Lithium titanate (Li 4Ti 5O 12) powders with and without molybdenum doping (LTO and MoLTO respectively) were synthesized by a solid-state method and used to fabricate electrodes on Cu foil using a normal tape-cast method and a novel freeze-tape-cast method. Modest molybdenum doping produces a significant electronic conductivity increase (e.g. 1 mS cm -1 for MoLTO vs 10 -7 mS cm -1 for LTO) that is thought to reflect a partial Ti 4+ reduction to Ti 3+ with charge compensation by the Mo 6+ dopant, producing a stable mixed-valent Ti 4+/3+ state. Freeze-tape-cast electrodes were fabricated by a variant ofmore » the normal tape-cast method that includes a rapid freezing step in which the solvent in the Cu-foil-supported slurry is rapidly frozen on a cold finger then subsequently sublimed to create unidirectional columnar macropores in the electrode. The resulting electrodes exhibit high porosity and low tortuosity which enhances electrolyte accessibility throughout the full electrode thickness. Freeze-tape-cast electrodes subjected to galvanostatic charge-discharge testing as cathodes in cells vs. a lithium metal anode exhibit higher specific capacity and lower capacity loss at high discharge rates compared with normal-tape-cast electrodes of the same mass loading, despite the fact that the freeze-tape-cast electrodes are nearly twice as thick as the normal tape cast electrodes.« less

  18. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    PubMed

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  19. Method of casting articles of a bulk-solidifying amorphous alloy

    DOEpatents

    Lin, X.; Johnson, W.L.; Peker, A.

    1998-08-25

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast. 8 figs.

  20. Method of casting articles of a bulk-solidifying amorphous alloy

    DOEpatents

    Lin, Xianghong; Johnson, William L.; Peker, Atakan

    1998-01-01

    A casting charge of a bulk-solidifying amorphous alloy is cast into a mold from a temperature greater than its crystallized melting temperature, and permitted to solidify to form an article. The oxygen content of the casting charge is limited to an operable level, as excessively high oxygen contents produce premature crystallization during the casting operation. During melting, the casting charge is preferably heated to a temperature above a threshold temperature to eliminate heterogeneous crystallization nucleation sites within the casting charge. The casting charge may be cast from above the threshold temperature, or it may be cooled to the casting temperature of more than the crystallized melting point but not more than the threshold temperature, optionally held at this temperature for a period of time, and thereafter cast.

  1. Comparing maximum intercuspal contacts of virtual dental patients and mounted dental casts.

    PubMed

    Delong, Ralph; Ko, Ching-Chang; Anderson, Gary C; Hodges, James S; Douglas, W H

    2002-12-01

    Quantitative measures of occlusal contacts are of paramount importance in the study of chewing dysfunction. A tool is needed to identify and quantify occlusal parameters without occlusal interference caused by the technique of analysis. This laboratory simulation study compared occlusal contacts constructed from 3-dimensional images of dental casts and interocclusal records with contacts found by use of conventional methods. Dental casts of 10 completely dentate adults were mounted in a semi-adjustable Denar articulator. Maximum intercuspal contacts were marked on the casts using red film. Intercuspal records made with an experimental vinyl polysiloxane impression material recorded maximum intercuspation. Three-dimensional virtual models of the casts and interocclusal records were made using custom software and an optical scanner. Contacts were calculated between virtual casts aligned manually (CM), aligned with interocclusal records scanned seated on the mandibular casts (C1) or scanned independently (C2), and directly from virtual interocclusal records (IR). Sensitivity and specificity calculations used the marked contacts as the standard. Contact parameters were compared between method pairs. Statistical comparisons used analysis of variance and the Tukey-Kramer post hoc test (P=<.05). Sensitivities (range 0.76-0.89) did not differ significantly among the 4 methods (P=.14); however, specificities (range 0.89-0.98) were significantly lower for IR (P=.0001). Contact parameters of methods CM, C1, and C2 differed significantly from those of method IR (P<.02). The ranking based on method pair comparisons was C2/C1 > CM/C1 = CM/C2 > C2/IR > CM/IR > C1/IR, where ">" means "closer than." Within the limits of this study, occlusal contacts calculated from aligned virtual casts accurately reproduce articulator contacts.

  2. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  3. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  4. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses

    PubMed Central

    Pei, Zhipu; Ju, Dongying

    2017-01-01

    The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779

  5. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.

    PubMed

    Pei, Zhipu; Ju, Dongying

    2017-04-17

    The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.

  6. Methods for manufacturing geometric multi-crystalline cast materials

    DOEpatents

    Stoddard, Nathan G

    2013-11-26

    Methods are provided for casting one or more of a semi-conductor, an oxide, and an intermetallic material. With such methods, a cast body of a geometrically ordered multi-crystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm.

  7. Methods for manufacturing monocrystalline or near-monocrystalline cast materials

    DOEpatents

    Stoddard, Nathan G

    2014-04-29

    Methods are provided for casting one or more of a semiconductor, an oxide, and an intermetallic material. With such methods, a cast body of a monocrystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm.

  8. Systems and methods for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  9. Three-dimensional microstructure simulation of Ni-based superalloy investment castings

    NASA Astrophysics Data System (ADS)

    Pan, Dong; Xu, Qingyan; Liu, Baicheng

    2011-05-01

    An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.

  10. Cast erosion from the cleaning of debris after the use of a cast trimmer.

    PubMed

    Hansen, Paul A; Beatty, Mark W

    2017-02-01

    Whether using tap water to rinse off debris will make a clinical difference to the surface detail of a gypsum cast is unknown. In addition, how best to remove debris from the cast is unknown. The purpose of this in vitro study was to evaluate the efficiency of different methods of cleaning a gypsum cast after trimming and the effect of short-term exposure to tap water on the surface quality of the cast. A die fitting American National Standards Institute/American Dental Association specification 25 (International Standards Organization specification 6873) for dental gypsum products was embedded in a Dentoform with the machined lines positioned at the same level as the occlusal surface of the posterior teeth. A flat plate was used to ensure that the plane of occlusion for the die was at the same position as the posterior teeth. Forty polyvinyl siloxane impressions of the Dentoform were made and poured with vacuum-mixed improved Type IV dental stone. Each cast was inspected for the accurate reproduction of the lines. The base of the 2-stage pour was trimmed with a cast trimmer with water, and surface debris was removed by rinsing by hand under tap water for 10 seconds, by brushing the cast with a soft toothbrush for 10 seconds, or by resoaking the cast and using a soft camel hair brush in slurry water for 10 seconds. The amount of debris was evaluated on a scale of 1 to 4, and the quality of the 20-μm line was evaluated on a scale of 1 to 4 under ×15 magnification. The nonparametric Kruskal-Wallis ranks test was used to identify significant differences among the different cleaning methods (α=.05). Results of the Kruskal-Wallis and Kruskal-Wallis Z-value tests demonstrated that all cleaning methods produced cleaner casts than were observed for uncleansed controls (P<.001), but no differences in debris removal were found among the different cleaning methods (.065≤P≤.901). The ability to see the quality of a 20-μm line (P=.974) was not statistically different among the groups. Rinsing the cast under flowing tap water and brushing, or hand washing under flowing tap water, or using a soft camel hair brush in slurry water for 10 seconds had no noticeable effects on the quality of a 20-μm line, and all 3 methods resulted in a clean cast. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Timing of Getter Material Addition in Cementitious Wasteforms

    NASA Astrophysics Data System (ADS)

    Lawter, A.; Qafoku, N. P.; Asmussen, M.; Neeway, J.; Smith, G. L.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental immobilization technology for the Hanford sites's low activity waste (LAW), which contains radioactive 99Tc and 129I, as part of the tank waste cleanup mission. Cast Stone is made of a dry blend 47% blast furnace slag, 45% fly ash, and 8% ordinary Portland cement, mixed with a low-activity waste (LAW). To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to provide a stable domain for the radionuclides of concern. Previous testing conducted with a variety of getters has identified Tin(II)-Apatite and Silver Exchanged Zeolite as promising candidates for Tc and I, respectively. Investigation into the sequence in which getters are added to Cast Stone was performed following two methods: 1) adding getters to the Cast Stone dry blend, and then mixing with liquid waste, and 2) adding getters to the liquid waste first, followed by addition of the Cast Stone dry blend. Cast Stone monolith samples were prepared with each method and leach tests, following EPA method 1315, were conducted in either distilled water or simulated vadose zone porewater for a period of up to 63 days. The leachate was analyzed for Tc, I, Na, NO3-, NO2- and Cr with ICP-MS, ICP-OES and ion chromatography and the results indicated that the Cast Stone with getter addition in the dry blend mix (method 1) has lower rates of Tc and I leaching. The mechanisms of radionuclide release from the Cast Stone were also investigated with a variety of solid phase characterization techniques of the monoliths before and after leaching, such as XRD, SEM/EDS, TEM/SAED and other spectroscopic techniques.

  12. The application of multi-baseline digital close-range photogrammetry in three-dimensional imaging and measurement of dental casts.

    PubMed

    Fu, Xiaoming; Peng, Chun; Li, Zan; Liu, Shan; Tan, Minmin; Song, Jinlin

    2017-01-01

    To explore a new technique for reconstructing and measuring three-dimensional (3D) models of orthodontic plaster casts using multi-baseline digital close-range photogrammetry (MBDCRP) with a single-lens reflex camera. Thirty sets of orthodontic plaster casts that do not exhibit severe horizontal overlap (>2 mm) between any two teeth were recorded by a single-lens reflex camera with 72 pictures taken in different directions. The 3D models of these casts were reconstructed and measured using the open source software MeshLab. These parameters, including mesio-distal crown diameter, arch width, and arch perimeter, were recorded six times on both the 3D digital models and on plaster casts by two examiners. Statistical analysis was carried out using the Bland-Altman method to measure agreement between the novel method and the traditional calliper method by calculating the differences between mean values. The average differences between the measurements of the photogrammetric 3D models and the plaster casts were 0.011-0.402mm. The mean differences between measurements obtained by the photogrammetric 3D models and the dental casts were not significant except for the lower arch perimeter (P>0.05), and all the differences were regarded as clinically acceptable (<0.5 mm). Measurements obtained by MBDCRP are compared well with those obtained from plaster casts, indicating that MBDCRP is an alternate way to store and measure dental plaster casts without severe horizontal overlap between any two teeth.

  13. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    PubMed Central

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-01-01

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543

  14. Strip casting apparatus and method

    DOEpatents

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  15. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  16. Determining casting defects in near-net shape casting aluminum parts by computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter

    2018-03-01

    Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

  17. Indigenous lunar construction materials

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne; Sture, Stein

    1991-01-01

    The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.

  18. Method For Removing Volatile Components From A Gel-Cast Ceramic Article

    DOEpatents

    Klug, Frederic Joseph; DeCarr, Sylvia Marie

    2004-09-07

    A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.

  19. The Problems Encountered in a CTEV Clinic: Can Better Casting and Bracing Be Accomplished?

    PubMed

    Agarwal, Anil; Kumar, Anubrat; Shaharyar, Abbas; Mishra, Madhusudan

    2016-09-07

    The aim of the study is to create awareness in the practicing health care workers toward the problems encountered during casting and bracing of clubfoot following Ponseti method, and in turn avoid them. Retrospective audit of 6 years' clubfoot clinic records to analyze problems associated with Ponseti method. Problems were encountered in 26 cast and in 6 braced patients. Just 4 patients out of 71 syndromic (5.6%) experienced problems during casting compared with 3% overall incidence. The common problems encountered in casted patients were moisture lesions, hematoma, dermatitis due to occlusion, pressure sores, and fractures. There was excessive bleeding in 1 patient at time of tenotomy. In braced patients, pressure sores and tenderness at tenotomy site were major problems. None of the syndromic patients experienced difficulties during bracing. Problems were encountered with Ponseti method during casting, tenotomy, or bracing. Syndromic children had lesser complication rate than idiopathic clubfeet. It is important to be aware of these problems so that appropriate intervention can be done early. Level IV: Retrospective. © 2016 The Author(s).

  20. Method of casting aerogels

    DOEpatents

    Poco, John F.

    1993-01-01

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm.sup.3 to 0.6 g/cm.sup.3. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of alcogel which occurs during the drying step of supercritical extraction of solvent.

  1. Tape-cast sensors and method of making

    DOEpatents

    Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando H [Santa Fe, NM

    2009-08-18

    A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.

  2. A new method to acquire 3-D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Li, Zhongke; Yi, Yaxing; Zhu, Zhen; Li, Hua; Qin, Yongyuan

    2006-01-01

    This paper introduced our newly developed method to acquire three-dimensional images of a dental cast. A rotatable table, a laser-knife, a mirror, a CCD camera and a personal computer made up of a three-dimensional data acquiring system. A dental cast is placed on the table; the mirror is installed beside the table; a linear laser is projected to the dental cast; the CCD camera is put up above the dental cast, it can take picture of the dental cast and the shadow in the mirror; while the table rotating, the camera records the shape of the laser streak projected on the dental cast, and transmit the data to the computer. After the table rotated one circuit, the computer processes the data, calculates the three-dimensional coordinates of the dental cast's surface. In data processing procedure, artificial neural networks are enrolled to calibrate the lens distortion, map coordinates form screen coordinate system to world coordinate system. According to the three-dimensional coordinates, the computer reconstructs the stereo image of the dental cast. It is essential for computer-aided diagnosis and treatment planning in orthodontics. In comparison with other systems in service, for example, laser beam three-dimensional scanning system, the characteristic of this three-dimensional data acquiring system: a. celerity, it casts only 1 minute to scan a dental cast; b. compact, the machinery is simple and compact; c. no blind zone, a mirror is introduced ably to reduce blind zone.

  3. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study

    PubMed Central

    Alex, Deepa; Shetty, Y. Bharath; Miranda, Glynis Anita; Prabhu, M. Bharath; Karkera, Reshma

    2015-01-01

    Background: Conventional investing and casting techniques are time-consuming and usually requires 2–4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30–40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. Materials and Methods: A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. Results: The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). Conclusion: The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study. PMID:26929488

  4. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangirala, Mani

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynesmore » 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were validated with solidification simulation analysis and the casting met NDT inspection and acceptance criteria. Heat treated and sectioned to extract trepan samples at different locations comparing with cast on coupons test data. Material properties requisite for design, such as tensile, creep/rupture, LCF, Fracture Toughness, Charpy V-notch chemical analysis testing were carried out. The test results will be presented in the final report. The typical Haynes 282 large size Steam Turbine production casting from Order to Delivery foundry schedule with the activity break up is shown in Figures 107 and 108. • From Purchase Order placement to Casting pouring ~ 26 weeks. 1. Sales and commercial review 3 2. Engineering Drawings/models review 4 3. Pattern and core box manufacturing 6 4. Casting process engineering review 4 5. FEM and solidification simulation analysis 4 6. Gating & Feeder Attachments, Ceramic tiling 2 7. Molding and coremaking production scheduling 6 8. Melting planning and schedule 3 9. Pouring, cooling and shake out 2 • From Pouring to casting Delivery ~ 29 weeks 10. Shot blast and riser cutting, gates removal 3 11. Homogenizing , solutionizing HT furnace prep 4 12. Grinding, Fettling 2 13. Aging HT Cycle, cooling 2 14. VT and LPT NDT inspections 2 15. Radiographic inspection 4 16. Mechanical testing, Chemical analysis test certs 4 17. Casting weld repair upgrades and Aging PWHT 4 18. NDT after weld repairs and casting upgrades 3 19. Casting Final Inspection and test certifications 3 20. Package and delivery 2 Hence the Total Lead time from P.O to Casting delivery is approximately 55 weeks. The Task 4.2 and Task 4.3 activities and reporting completed.« less

  5. The application of multi-baseline digital close-range photogrammetry in three-dimensional imaging and measurement of dental casts

    PubMed Central

    Li, Zan; Liu, Shan; Tan, Minmin; Song, Jinlin

    2017-01-01

    Objective To explore a new technique for reconstructing and measuring three-dimensional (3D) models of orthodontic plaster casts using multi-baseline digital close-range photogrammetry (MBDCRP) with a single-lens reflex camera. Study design Thirty sets of orthodontic plaster casts that do not exhibit severe horizontal overlap (>2 mm) between any two teeth were recorded by a single-lens reflex camera with 72 pictures taken in different directions. The 3D models of these casts were reconstructed and measured using the open source software MeshLab. These parameters, including mesio-distal crown diameter, arch width, and arch perimeter, were recorded six times on both the 3D digital models and on plaster casts by two examiners. Statistical analysis was carried out using the Bland–Altman method to measure agreement between the novel method and the traditional calliper method by calculating the differences between mean values. Results The average differences between the measurements of the photogrammetric 3D models and the plaster casts were 0.011–0.402mm. The mean differences between measurements obtained by the photogrammetric 3D models and the dental casts were not significant except for the lower arch perimeter (P>0.05), and all the differences were regarded as clinically acceptable (<0.5 mm). Conclusions Measurements obtained by MBDCRP are compared well with those obtained from plaster casts, indicating that MBDCRP is an alternate way to store and measure dental plaster casts without severe horizontal overlap between any two teeth. PMID:28640827

  6. A novel method to acquire 3D data from serial 2D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin

    2007-05-01

    This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.

  7. [Evaluation method with radiographic image quality indicator for internal defects of dental casting metallic restoration].

    PubMed

    Li, Y; Zheng, G; Lin, H

    2014-12-18

    To develop a new kind of dental radiographic image quality indicator (IQI) for internal quality of casting metallic restoration to influence on its usage life. Radiographic image quality indicator method was used to evaluate the depth of the defects region and internal quality of 127 casting metallic restoration and the accuracy was compared with that of conventional callipers method. In the 127 cases of casting metallic restoration, 9 were found the thickness less than 0.7 mm and the thinnest thickness only 0.2 mm in 26 casting metallic crowns or bridges' occlusal defects region. The data measured by image quality indicator were consistent with those measured by conventional gauging. Two metal inner crowns were found the thickness less than 0.3 mm in 56 porcelain crowns or bridges. The thickness of casting removable partial denture was more than 1.0 mm, but thinner regions were not found. It was found that in a titanium partial denture, the X-ray image of clasp was not uniform and there were internal porosity defects in the clasp. Special dental image quality indicator can solve the visual error problems caused by different observing backgrounds and estimate the depth of the defects region in the casting.

  8. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    PubMed

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.

  9. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.

    PubMed

    Koike, Mari; Hummel, Susan K; Ball, John D; Okabe, Toru

    2012-06-01

    Although pure titanium is known to have good biocompatibility, a titanium alloy with better strength is needed for fabricating clinically acceptable, partial removable dental prosthesis (RDP) frameworks. The mechanical properties of an experimental Ti-5Al-5Cu alloy cast with a 2-step investment technique were examined for RDP framework applications. Patterns for tests for various properties and denture frameworks for a preliminary trial casting were invested with a 2-step coating method using 2 types of mold materials: a less reactive spinel compound (Al(2)O(3)·MgO) and a less expensive SiO(2)-based material. The yield and tensile strength (n=5), modulus of elasticity (n=5), elongation (n=5), and hardness (n=8) of the cast Ti-5Al-5Cu alloy were determined. The external appearance and internal porosities of the preliminary trial castings of denture frameworks (n=2) were examined with a conventional dental radiographic unit. Cast Ti-6Al-4V alloy and commercially pure titanium (CP Ti) were used as controls. The data for the mechanical properties were statistically analyzed with 1-way ANOVA (α=.05). The yield strength of the cast Ti-5Al-5Cu alloy was 851 MPa and the hardness was 356 HV. These properties were comparable to those of the cast Ti-6Al-4V and were higher than those of CP Ti (P<.05). One of the acrylic resin-retention areas of the Ti-5Al-5Cu frameworks was found to have been incompletely cast. The cast biocompatible experimental Ti-5Al-5Cu alloy exhibited high strength when cast with a 2-step coating method. With a dedicated study to determine the effect of sprue design on the quality of castings, biocompatible Ti-5Al-5Cu RDP frameworks for a clinical trial can be produced. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  10. PROTECTIVELY COVERED ARTICLE AND METHOD OF MANUFACTURE

    DOEpatents

    Plott, R.F.

    1958-10-28

    A method of casting a protective jacket about a ura nium fuel element that will bond completely to the uranium without the use of stringers or supports that would ordinarily produce gaps in the cast metal coating and bond is presented. Preformed endcaps of alumlnum alloyed with 13% silicon are placed on the ends of the uranium fuel element. These caps will support the fuel element when placed in a mold. The mold is kept at a ing alloy but below that of uranium so the cast metal jacket will fuse with the endcaps forming a complete covering and bond to the fuel element, which would otherwise oxidize at the gaps or discontinuities lefi in the coating by previous casting methods.

  11. Method of casting aerogels

    DOEpatents

    Poco, J.F.

    1993-09-07

    The invention describes a method for making monolithic castings of transparent silica aerogel with densities in the range from 0.001 g/cm[sup 3] to 0.6 g/cm[sup 3]. Various shapes of aerogels are cast in flexible polymer molds which facilitate removal and eliminate irregular surfaces. Mold dimensions are preselected to account for shrinkage of aerogel which occurs during the drying step of supercritical extraction of solvent. 2 figures.

  12. A simple technique to prolong molding time during application of a fiberglass cast: An in vitro study

    PubMed Central

    Ayzenberg, Mark; Narvaez, Michael; Raphael, James

    2018-01-01

    Casting is routinely used for acute and post-operative immobilization and remains a cornerstone in the non-operative management of fractures and deformities. The application of a properly fitted and wellmolded cast, especially for a trainee, can be challenging. We present a simple method of prolonging cure time of fiberglass cast — placing ice in the dip water. Eight-ply, fiveinch fiberglass cast was circumferentially applied to an aluminum-wrapped cardboard cylinder. An electronic, 2-channel temperature sensor (TR-71wf Temp Logger, T&D Corporation, Matsumoto, Japan), accurate to 0.1ºC and accurate to ±0.3ºC, was placed between the fourth and fifth layers of fiberglass. Thirty total casts were tested using 9±1ºC (cold), 22±1ºC (ambient), and 36±1ºC (warm) dip water. Room temperature was maintained at 24±1ºC. Cast temperatures were measured during the exothermic reaction generated by the cast curing. Peak temperatures and cure times were recorded. Cure time was defined as the point of downward deflection on the timetemperature curve immediately after peak. Cure and peak temperatures were compared among groups using analysis of variance. Mean cure time was 3.5±0.1 minutes for warm water, 5.0±0.4 minutes for ambient water and 7.0±0.5 minutes for cold water. Peak temperature, measured between layers 4 and 5 of the cast material, was 36.6±0.8ºC for warm water, 31.1±1.4ºC for ambient water and 25.2±0.5ºC for cold water. Cold afforded, on average, an additional 2 minutes (40% increase) in cure time compared to ambient water and an additional 3.5 minutes (100% increase) compared to warm water. Cure time differences were significant (P<0.001) for all groups, as were peak temperature differences (P<0.001). Temperatures concerning for development of burns were never reached. Utilizing iced dip water when casting is a simple and effective method to prolong the time available for cast application. Orthopedic residents and trainees may find this useful in learning to fabricate a high quality cast. For the experienced orthopedic surgeon, this method eliminates the need to bridge longlimb casts and facilitates the application of complex casts. PMID:29770174

  13. Half-heusler alloys with enhanced figure of merit and methods of making

    DOEpatents

    Ren, Zhifeng; Yan, Xiao; Joshi, Giri; Chen, Shuo; Chen, Gang; Poudel, Bed; Caylor, James Christopher

    2015-06-02

    Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.

  14. Possibility of reconstruction of dental plaster cast from 3D digital study models

    PubMed Central

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330

  15. Study of the pore structure of ceramics prepared by the slip casting method

    NASA Technical Reports Server (NTRS)

    Guzman, I. Y.; Dobysh, A. V.

    1984-01-01

    The porosity of the slip cast Si3N4 is similar to that of pressed Si3N4 formed at 2500 kg/sq cm. The porosity of cast Si oxynitride is equivalent to that of samples stressed at 10,000 kg/sq cm. Crucibles formed from these materials by slip casting have high thermal shock and corrosion resistance.

  16. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuyucak, Selcuk; Li, Delin

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steelmore » casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using the lip pouring method. It was observed again that gating designs greatly influenced the melt filling velocity and the number of inclusion defects. The radial choked gating showed improvements in casting cleanliness and yield over the other gatings, even though no mold filters were used in the gating system.« less

  17. Evaluation of the marginal fit of metal copings fabricated on three different marginal designs using conventional and accelerated casting techniques: an in vitro study.

    PubMed

    Vaidya, Sharad; Parkash, Hari; Bhargava, Akshay; Gupta, Sharad

    2014-01-01

    Abundant resources and techniques have been used for complete coverage crown fabrication. Conventional investing and casting procedures for phosphate-bonded investments require a 2- to 4-h procedure before completion. Accelerated casting techniques have been used, but may not result in castings with matching marginal accuracy. The study measured the marginal gap and determined the clinical acceptability of single cast copings invested in a phosphate-bonded investment with the use of conventional and accelerated methods. One hundred and twenty cast coping samples were fabricated using conventional and accelerated methods, with three finish lines: Chamfer, shoulder and shoulder with bevel. Sixty copings were prepared with each technique. Each coping was examined with a stereomicroscope at four predetermined sites and measurements of marginal gaps were documented for each. A master chart was prepared for all the data and was analyzed using Statistical Package for the Social Sciences version. Evidence of marginal gap was then evaluated by t-test. Analysis of variance and Post-hoc analysis were used to compare two groups as well as to make comparisons between three subgroups . Measurements recorded showed no statistically significant difference between conventional and accelerated groups. Among the three marginal designs studied, shoulder with bevel showed the best marginal fit with conventional as well as accelerated casting techniques. Accelerated casting technique could be a vital alternative to the time-consuming conventional casting technique. The marginal fit between the two casting techniques showed no statistical difference.

  18. Morphological characterization of β phase in poly-(vinylidenefluoride) film prepared by spin cast method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehtani, Hitesh Kumar, E-mail: kkraina@gmail.com; Kumar, Rishi, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com

    2014-04-24

    Poly-(Vinylidene fluoride) PVDF film was prepared by spin casting method to control the pore size of the matrix. The morphological spherulitic structure was confirmed Scanning Electron Microscopy (SEM) after gold sputtering and the presence of β phase was ensured in spin cast PVDF film by the FTIR spectroscopy. The β phase is very important in the application because it improve the properties like piezoelectricity by modifying PVDF crystallinity.

  19. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  20. Development of an inverse heat conduction model and its application to determination of heat transfer coefficient during casting solidification

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Reilly, Carl; Li, Luoxing; Cockcroft, Steve; Yao, Lu

    2014-07-01

    The interfacial heat transfer coefficient (IHTC) is required for the accurate simulation of heat transfer in castings especially for near net-shape processes. The large number of factors influencing heat transfer renders quantification by theoretical means a challenge. Likewise experimental methods applied directly to temperature data collected from castings are also a challenge to interpret because of the transient nature of many casting processes. Inverse methods offer a solution and have been applied successfully to predict the IHTC in many cases. However, most inverse approaches thus far focus on use of in-mold temperature data, which may be a challenge to obtain in cases where the molds are water-cooled. Methods based on temperature data from the casting have the potential to be used however; the latent heat released during the solidification of the molten metal complicates the associated IHTC calculations. Furthermore, there are limits on the maximum distance the thermocouples can be placed from the interface under analysis. An inverse conduction based method have been developed, verified and applied successfully to temperature data collected from within an aluminum casting in proximity to the mold. A modified specific heat method was used to account for latent heat evolution in which the rate of change of fraction solid with temperature was held constant. An analysis conducted with the inverse model suggests that the thermocouples must be placed no more than 2 mm from the interface. The IHTC values calculated for an aluminum alloy casting were shown to vary from 1,200 to 6,200 Wm-2 K-1. Additionally, the characteristics of the time-varying IHTC have also been discussed.

  1. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (Developing Predictive Bioactivity Signatures from ToxCasts HTS Data)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  2. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Steven, W.; Lundin, Carl, W.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing proceduresmore » for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought DSS and tested per ASTM A923 method B (Charpy impact test). Method A (sodium hydroxide etch test) was performed on one half of a fractured Charpy V-notch impact sample and Method C (ferric chloride corrosion weight loss test) was performed on another half. Test results for the three cast lots and one wrought lot indicate that ASTM A923 is relevant for detecting intermetallic phases in cast DSS. In the ASTM A923 round robin study, five laboratories conducted ASTM A923 Methods A & C on cast DSS material and the lab-to-lab reproducibility of the data was determined. Two groups of samples were sent to the participants. Group 1 samples were tested per ASTM A923 Method A, group 2 samples were tested by ASTM A923 Method C. Testing procedures for this round robin study were identical to those used in the ASTM A923 applicability study. Results from this round robin indicate that there is excellent lab-to-lab reproducibility of ASTM A923 with respect to cast DSS and that ASTM A923 could be expanded to cover both wrought and cast DSS. In the ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases, Ten heats of ASTM A890-4A (CD3MN) in the foundry solution annealed condition were tested per ASTM A923 Methods A, B, & C. Testing of these materials per ASTM A923 was used to determine if the foundry solution anneal procedures were adequate to completely eliminate any intermetallic phases, which may have precipitated during the casting and subsequent heat treatment processes. All heats showed no sign of intermetallic phase per Method A, passed minimum Charpy impact energy requirements per Method B (> 40 ft-lbs @ -40°C (-40°F)), and showed negligible weight loss per Method C (< 10 mdd). These results indicate that the solution annealing procedure used by foundries is adequate to produce a product free from intermetallic phases.« less

  3. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Steven, W.; Lundin, Carl, D.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing proceduresmore » for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought DSS and tested per ASTM A923 method B (Charpy impact test). Method A (sodium hydroxide etch test) was performed on one half of a fractured Charpy V-notch impact sample and Method C (ferric chloride corrosion weight loss test) was performed on another half. Test results for the three cast lots and one wrought lot indicate that ASTM A923 is relevant for detecting intermetallic phases in cast DSS. In the ASTM A923 round robin study, five laboratories conducted ASTM A923 Methods A & C on cast DSS material and the lab-to-lab reproducibility of the data was determined. Two groups of samples were sent to the participants. Group 1 samples were tested per ASTM A923 Method A, group 2 samples were tested by ASTM A923 Method C. Testing procedures for this round robin study were identical to those used in the ASTM A923 applicability study. Results from this round robin indicate that there is excellent lab-to-lab reproducibility of ASTM A923 with respect to cast DSS and that ASTM A923 could be expanded to cover both wrought and cast DSS. In the ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases, Ten heats of ASTM A890-4A (CD3MN) in the foundry solution annealed condition were tested per ASTM A923 Methods A, B, & C. Testing of these materials per ASTM A923 was used to determine if the foundry solution anneal procedures were adequate to completely eliminate any intermetallic phases, which may have precipitated during the casting and subsequent heat treatment processes. All heats showed no sign of intermetallic phase per Method A, passed minimum Charpy impact energy requirements per Method B (> 40 ft-lbs {at} -40 C (-40 F)), and showed negligible weight loss per Method C (< 10 mdd). These results indicate that the solution annealing procedure used by foundries is adequate to produce a product free from intermetallic phases.« less

  4. Prosthetic misfit of implant-supported prosthesis obtained by an alternative section method

    PubMed Central

    Falcão-Filho, Hilmo Barreto Leite; de Aguiar, Fábio Afrânio; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Gloria Chiarello; Ribeiro, Ricardo Faria

    2012-01-01

    PURPOSE Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS The results on the tightened side were significantly lower in Group C (6.43 ± 3.24 µm) when compared to Groups A (16.50 ± 7.55 µm) and B (16.27 ± 1.71 µm) (P<.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, 58.66±14.30 µm; Group B, 39.48±12.03 µm; Group C, 23.13±8.24 µm) (P<.05). CONCLUSION Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks. PMID:22737313

  5. SLIP CASTING METHOD

    DOEpatents

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  6. Photoresponsive molecularly imprinted hydrogel casting membrane for the determination of trace tetracycline in milk.

    PubMed

    Wang, Qiang; Lv, Zhen; Tang, Qian; Gong, Cheng-Bin; Lam, Michael Hon Wah; Ma, Xue-Bing; Chow, Cheuk-Fai

    2016-03-01

    This study aimed to develop a photoresponsive molecularly imprinted hydrogel (MIH) casting membrane for the determination of trace tetracycline (TC) in milk. This MIH casting membrane combined the specificity of MIHs, the photoresponsive properties of azobenzene, and the portable properties of a membrane. Photoresponsive TC-imprinted MIHs were initially fabricated and then cast on sodium dodecyl sulfonate polyacrylamide gel. After TC removal, a photoresponsive MIH casting membrane was obtained. The photoresponsive properties of the MIH casting membrane were robust, and no obvious photodegradation was observed after 20 cycles. The MIH casting membrane displayed specific affinity to TC upon alternate irradiation at 365 and 440 nm; it could quantitatively uptake and release TC. The TC concentration (0.0-2.0 × 10(-4) mol l(-1)) in aqueous solution displayed a linear relationship with the photoisomerization rate constant of azobenzene within the MIH casting membrane. As such, a quick detection method for trace TC in aqueous foodstuff samples was established. The recovery of this method for TC in milk was investigated with a simple pretreatment of milk, and a high recovery of 100.54-106.35% was obtained. Therefore, the fabricated membrane can be used as a portable molecular sensor that can be easily recycled. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Single underwater image enhancement based on color cast removal and visibility restoration

    NASA Astrophysics Data System (ADS)

    Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian

    2016-05-01

    Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.

  8. [Variables effecting casting accuracy of quick heating casting investments].

    PubMed

    Takahashi, H; Nakamura, H; Iwasaki, N; Morita, N; Habu, N; Nishimura, F

    1994-06-01

    Recently, several new products of investments for "quick heating" have been put on the Japanese market. The total casting procedure time for this quick heating method involves only one hour; 30-minutes waiting after the start of mixing before placing the mold directly into the 700 degrees C furnace and 30-minutes heating in the furnace. The purpose of this study was to evaluate two variables effecting casting accuracy using these new investments. The effect of thickness of the casting liner inside the casting ring and the effect of waiting time before placing the mold into the 700 degrees C furnace were evaluated. A stainless-steel die with a convergence angle of 8 degrees was employed. Marginal discrepancies of the crown between the wax patterns and castings were measured. The size of the cast crown became larger when the thickness of the ring liner was thick and when the waiting time before placing the mold into the furnace was long. These results suggest that these new investments have the advantage of providing sound castings using short-time casting procedures. However, it is necessary to pay careful attention to the casting conditions for obtaining reproducible castings.

  9. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  10. Operational Determination of Physical and Mechanical Properties of Cast Samples of High-Strength Iron by Means of a Magnetic-Mechanical Method

    NASA Astrophysics Data System (ADS)

    Slyusarev, Yu. K.; Braga, A. V.; Slyusarev, I. Yu.

    2017-09-01

    The effect of the chemical composition of high-strength cast iron VCh35 on the content, shape and diameter of graphite inclusions and on the presence of structurally-free cementite and defects is studied. A relationship is determined between the structure and metallurgical defects and characteristics of the mechanical and magnetic rigidity of cast samples. Relationships are established in a group of factors and property characteristics: chemical composition - microstructure - mechanical rigidity - magnetic stiffness. The basis of a method is established making it possible to perform operative non-destructive monitoring of the melt quality preparation for high-strength iron casting.

  11. Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data.

    PubMed

    Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2016-01-01

    ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.

  12. Structural and compositional analysis of a casting mold sherd from ancient China.

    PubMed

    Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong

    2017-01-01

    Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting.

  13. Processing of IN-718 Lattice Block Castings

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2002-01-01

    Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.

  14. Beryllium-aluminum alloys for investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachtrab, W.T.; Levoy, N.

    1997-05-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investmentmore » casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength.« less

  15. Cast abscess: a case report.

    PubMed

    Carmichael, Kelly D; Goucher, Nicholas R

    2006-01-01

    This report describes a case in which a pediatric patient wounded his ankle when he stuck an object inside the cast while trying to scratch himself. The wound became infected and resulted in a limb-threatening abscess. Although most patients treated with casts do not have any significant problems, it is important to emphasize cast care instructions to young patients and their parents. In addition, it may be equally important to advise patients about safe methods to alleviate itching, such as blowing cool air under the cast. In this way, the risk of serious infectious complications can be minimized.

  16. Deducing material quality in cast and hot-forged steels by new bending test

    NASA Astrophysics Data System (ADS)

    Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir

    2017-10-01

    A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.

  17. The reliability and validity of measurements of human dental casts made by an intra-oral 3D scanner, with conventional hand-held digital callipers as the comparison measure.

    PubMed

    Rajshekar, Mithun; Julian, Roberta; Williams, Anne-Marie; Tennant, Marc; Forrest, Alex; Walsh, Laurence J; Wilson, Gary; Blizzard, Leigh

    2017-09-01

    Intra-oral 3D scanning of dentitions has the potential to provide a fast, accurate and non-invasive method of recording dental information. The aim of this study was to assess the reliability of measurements of human dental casts made using a portable intra-oral 3D scanner appropriate for field use. Two examiners each measured 84 tooth and 26 arch features of 50 sets of upper and lower human dental casts using digital hand-held callipers, and secondly using the measuring tool provided with the Zfx IntraScan intraoral 3D scanner applied to the virtual dental casts. The measurements were repeated at least one week later. Reliability and validity were quantified concurrently by calculation of intra-class correlation coefficients (ICC) and standard errors of measurement (SEM). The measurements of the 110 landmark features of human dental casts made using the intra-oral 3D scanner were virtually indistinguishable from measurements of the same features made using conventional hand-held callipers. The difference of means as a percentage of the average of the measurements by each method ranged between 0.030% and 1.134%. The intermethod SEMs ranged between 0.037% and 0.535%, and the inter-method ICCs ranged between 0.904 and 0.999, for both the upper and the lower arches. The inter-rater SEMs were one-half and the intra-method/rater SEMs were one-third of the inter-method values. This study demonstrates that the Zfx IntraScan intra-oral 3D scanner with its virtual on-screen measuring tool is a reliable and valid method for measuring the key features of dental casts. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Culture in Psychiatric Epidemiology: Using Ethnography and Multiple Mediator Models to Assess the Relationship of Caste with Depression and Anxiety in Nepal

    PubMed Central

    Kohrt, Brandon A.; Speckman, Rebecca A.; Kunz, Richard D.; Baldwin, Jennifer L.; Upadhaya, Nawaraj; Acharya, Nanda Raj; Sharma, Vidya Dev; Nepal, Mahendra K.; Worthman, Carol M.

    2013-01-01

    Background The causes of ethnic and caste-based disparities in mental health are poorly understood. Aim To identify mediators underlying caste-based disparities in mental health in Nepal. Subjects and methods A mixed methods ethnographic and epidemiological study of 307 adults (Dalit/Nepali, n=75; high caste Brahman and Chhetri, n=232) assessed with Nepali versions of Beck Depression (BDI) and Anxiety (BAI) Inventories. Results One third (33.7%) of participants were classified as depressed: Dalit/Nepali 50.0%, high caste 28.4%. One quarter (27.7%) of participants were classified as anxious: Dalit/Nepali 50.7%, high caste 20.3%. Ethnographic research identified four potential mediators: stressful life events, owning few livestock, no household income, and lack of social support. The direct effect of caste was 1.08 (95% CI -1.10—3.27) on depression score and 4.76 (95% CI 2.33—7.19) on anxiety score. All four variables had significant indirect (mediation) effects on anxiety, and all but social support had significant indirect effects on depression. Conclusion Caste-based disparities in mental health in rural Nepal are statistically mediated by poverty, lack of social support, and stressful life events. Interventions should target these areas to alleviate the excess mental health burden born by Dalit/Nepali women and men. PMID:19381985

  19. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  20. Results of clubfoot treatment after manipulation and casting using the Ponseti method: experience in Harare, Zimbabwe.

    PubMed

    Smythe, Tracey; Chandramohan, Daniel; Bruce, Jane; Kuper, Hannah; Lavy, Christopher; Foster, Allen

    2016-10-01

    The objective of this study was to evaluate the outcomes of the Ponseti manipulation and casting method for clubfoot in a tertiary hospital in Zimbabwe and explore predictors of these outcomes. A cohort study included children with idiopathic clubfoot managed from 2011 to 2013 at Parirenyatwa Hospital. Demographic data, clinical features and treatment outcomes were extracted from clinic records. The primary outcome measure was the final Pirani score (clubfoot severity measure) after manipulation and casting. Secondary outcomes included change in Pirani score (pre-treatment to end of casting), number of casts for correction, proportion receiving tenotomy and proportion lost to follow up. A total of 218 children (337 feet) were eligible for inclusion. The median age at treatment was 8 months; 173 children (268 feet) completed casting treatment within the study period. The mean length of time for corrective treatment was 10.2 weeks (9.5-10.9 weeks). Of the 45 children who did not complete treatment, 28 were under treatment and 17 were lost to follow up. A Pirani score of 1 or less was achieved in 85% of feet. Mean Pirani score at presentation was 3.80 (SD 1.15) and post-treatment 0.80 (SD 0.56, P-value <0.0001). Severity of deformity and being male were associated with a higher (worse) final Pirani score. Severity and age over two were associated with an increase in the number of casts required to correct deformity. This case series demonstrates that the majority (80%+) of children with clubfoot can achieve a good outcome with the Ponseti manipulation and casting method. © 2016 John Wiley & Sons Ltd.

  1. Application of the ToxMiner Database: Network Analysis Linking the ToxCast Chemicals to Known Disease-Gene Associations

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...

  2. Species-specific predictive models of developmental toxicity using the ToxCast chemical library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...

  3. The effects of weld-repair and hot isostatic pressing on the fracture properties of Ti-5Al-2.5Sn ELI castings

    NASA Technical Reports Server (NTRS)

    Misra, M. S.; Lemeshewsky, S.; Bolstad, D.

    1982-01-01

    The Ti-5Al-2.5Sn extremely low interstitial alloy employed in the large castings which form the critical attachment fittings of the Space Shuttle External Tank was selected because of its high fracture resistance at cryogenic temperatures. Casting was selected over alternative fabrication methods because of its lower cost and adaptability to design changes, although it was found necessary to weld-repair surface and subsurface casting defects in order to reduce the scrap rate and maintain the inherent cost advantage of the castings. Hot Isostatic Pressing was experimentally found to heal the surface and internal defects of the castings, but did not improve tensile or fracture properties and was therefore rejected as a production technique. Production castings are instead weld-repaired, without any mechanical property degradation.

  4. Fabrication of low cost soft tissue prostheses with the desktop 3D printer

    NASA Astrophysics Data System (ADS)

    He, Yong; Xue, Guang-Huai; Fu, Jian-Zhong

    2014-11-01

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods.

  5. Fabrication of low cost soft tissue prostheses with the desktop 3D printer

    PubMed Central

    He, Yong; Xue, Guang-huai; Fu, Jian-zhong

    2014-01-01

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods. PMID:25427880

  6. Fabrication of low cost soft tissue prostheses with the desktop 3D printer.

    PubMed

    He, Yong; Xue, Guang-huai; Fu, Jian-zhong

    2014-11-27

    Soft tissue prostheses such as artificial ear, eye and nose are widely used in the maxillofacial rehabilitation. In this report we demonstrate how to fabricate soft prostheses mold with a low cost desktop 3D printer. The fabrication method used is referred to as Scanning Printing Polishing Casting (SPPC). Firstly the anatomy is scanned with a 3D scanner, then a tissue casting mold is designed on computer and printed with a desktop 3D printer. Subsequently, a chemical polishing method is used to polish the casting mold by removing the staircase effect and acquiring a smooth surface. Finally, the last step is to cast medical grade silicone into the mold. After the silicone is cured, the fine soft prostheses can be removed from the mold. Utilizing the SPPC method, soft prostheses with smooth surface and complicated structure can be fabricated at a low cost. Accordingly, the total cost of fabricating ear prosthesis is about $30, which is much lower than the current soft prostheses fabrication methods.

  7. Management of Intolerance to Casting the Upper Extremities in Claustrophobic Patients

    PubMed Central

    Nagura, Issei; Kanatani, Takako; Sumi, Masatoshi; Inui, Atsuyuki; Mifune, Yutaka; Kokubu, Takeshi; Kurosaka, Masahiro

    2014-01-01

    Introduction. Some patients showed unusual responses to the immobilization without any objective findings with casts in upper extremities. We hypothesized their that intolerance with excessive anxiety to casts is due to claustrophobia triggered by cast immobilization. The aim of this study is to analyze the relevance of cast immobilization to the feeling of claustrophobia and discover how to handle them. Methods. There were nine patients who showed the caustrophobic symptoms with their casts. They were assesed whether they were aware of their claustrophobis themselves. Further we investigated the alternative immobilization to casts. Results. Seven out of nine cases that were aware of their claustrophobic tendencies either were given removable splints initially or had the casts converted to removable splints when they exhibited symptoms. The two patients who were unaware of their latent claustrophobic tendencies were identified when they showed similar claustrophobic symptoms to the previous patients soon after short arm cast application. We replaced the casts with removable splints. This resolved the issue in all cases. Conclusions. We should be aware of the claustrophobia if patients showed unusual responses to the immobilization without any objective findings with casts in upper extremities, where removal splint is practical alternative to cast to continue the treatment successfully. PMID:25379544

  8. AMCC casting development, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    PCC successfully cast and performed nondestructive testing, FPI and x-ray, on seventeen AMCC castings. Destructive testing, lab analysis and chemical milling, was performed on eleven of the castings and the remaining six castings were shipped to NASA or Aerojet. Two of the six castings shipped, lots 015 and 016, were fully processed per blueprint requirements. PCC has fully developed the gating and processing parameters of this part and feels the part could be implemented into production, after four more castings have been completed to ensure the repeatability of the process. The AMCC casting has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or thermal gradient control. This method of setting up thermal gradients in the casting during solidification represents a significant process improvement for PCC and has been successfully implemented on other programs. The alloy, JBK75, is a relatively new alloy in the investment casting arena and required our engineering staff to learn the gating, processing, and dimensional characteristics of the material.

  9. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection.

    PubMed

    Carraro, Mattia; Park, Albert H; Harrison, Robert V

    2016-02-01

    Some forms of sensorineural hearing loss involve damage or degenerative changes to the stria vascularis and/or other vascular structures in the cochlea. In animal models, many methods for anatomical assessment of cochlear vasculature exist, each with advantages and limitations. One methodology, corrosion casting, has proved useful in some species, however in the mouse model this technique is difficult to achieve because digestion of non vascular tissue results in collapse of the delicate cast specimen. We have developed a partial corrosion cast method that allows visualization of vasculature along much of the cochlear length but maintains some structural integrity of the specimen. We provide a detailed step-by-step description of this novel technique. We give some illustrative examples of the use of the method in mouse models of presbycusis and cytomegalovirus (CMV) infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Method and apparatus for planar drag strip casting

    DOEpatents

    Powell, John C.; Campbell, Steven L.

    1991-01-01

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification.

  11. Method and apparatus for planar drag strip casting

    DOEpatents

    Powell, J.C.; Campbell, S.L.

    1991-11-12

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification. 5 figures.

  12. Method and apparatus for casting conductive and semi-conductive materials

    DOEpatents

    Ciszek, T.F.

    1984-08-13

    A method and apparatus is disclosed for casting conductive and semi-conductive materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semi-conductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.

  13. Method and apparatus for casting conductive and semiconductive materials

    DOEpatents

    Ciszek, Theodore F.

    1986-01-01

    A method and apparatus is disclosed for casting conductive and semiconduce materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semiconductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.

  14. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  15. Non-rigid Reconstruction of Casting Process with Temperature Feature

    NASA Astrophysics Data System (ADS)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu

    2017-09-01

    Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.

  16. Search for promising compositions for developing new multiphase casting alloys based on Al-Cu-Mg matrix using thermodynamic calculations and mathematic simulation

    NASA Astrophysics Data System (ADS)

    Zolotorevskii, V. S.; Pozdnyakov, A. V.; Churyumov, A. Yu.

    2012-11-01

    A calculation-experimental study is carried out to improve the concept of searching for new alloying systems in order to develop new casting alloys using mathematical simulation methods in combination with thermodynamic calculations. The results show the high effectiveness of the applied methods. The real possibility of selecting the promising compositions with the required set of casting and mechanical properties is exemplified by alloys with thermally hardened Al-Cu and Al-Cu-Mg matrices, as well as poorly soluble additives that form eutectic components using mainly the calculation study methods and the minimum number of experiments.

  17. Method to prevent/mitigate steam explosions in casting pits

    DOEpatents

    Taleyarkhan, Rusi P.

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  18. Cure shrinkage in casting resins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J. Brock

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  19. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design.

    PubMed

    Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz

    2017-07-01

    Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The manufacture of the substructure shows that the proposed ES allows the improvement of the design process while reducing the manufacturing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Structural and compositional analysis of a casting mold sherd from ancient China

    PubMed Central

    Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong

    2017-01-01

    Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting. PMID:28296963

  1. Electroslag Treatment of Liquid Cast Iron

    NASA Astrophysics Data System (ADS)

    Grachev, V. A.

    2018-01-01

    The processes that occur in the liquid metal-slag system during electroslag treatment of cast iron are studied from an electrochemical standpoint. The role of electrolysis in the electroslag process is shown, and a method for producing high-strength cast iron with globular graphite using electrolysis of a slag containing magnesium oxides and fluorides is proposed and tested.

  2. The CAST Initiative in Guam: A Model of Effective Teachers Teaching Teachers

    ERIC Educational Resources Information Center

    Zuercher, Deborah K.; Kessler, Cristy; Yoshioka, Jon

    2011-01-01

    The CAST (content area specialized training) model of professional development enables sustainable teacher leadership and is responsive to the need for culturally relevant educational practices. The purpose of this paper is to share the background, methods, findings and recommendations of a case study on the CAST initiative in Guam. The case study…

  3. Application of the ToxMiner Database: Network Analysis of Linkage between ToxCast Phase I Chemicals and Thyroid Related Disease Outcomes

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...

  4. Fluxing agent for metal cast joining

    DOEpatents

    Gunkel, Ronald W.; Podey, Larry L.; Meyer, Thomas N.

    2002-11-05

    A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

  5. Conventionally cast and forged copper alloy for high-heat-flux thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Repas, George A.

    1987-01-01

    The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.

  6. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  7. Metal casts showing the three-dimensional structure of the human inner ear were converted into jewelry.

    PubMed

    Heywood, Peter

    2015-06-01

    This article describes a straightforward method for making metal casts of the human inner ear developed in 1937 by M. Wharton Young of Howard University College of Medicine. These casts were used to study anatomy, but there do not appear to be any published photographs of the casts. Inner ear casts converted into jewelry provide the only known images of this work. Later, Young studied the inner ear in living rhesus monkeys by injecting mercury into their membranous labyrinths. Young's investigations indicated a blind-ending perilymphatic sac that was not in continuity with the subarachnoid space.

  8. [Study on the effect of different impression methods on the marginal fit of all-ceramic crowns].

    PubMed

    Zhan, Lilin; Zeng, Liwei; Chen, Ping; Liao, Lan; Li, Shiyue; Liu, Renying

    2015-08-01

    To investigate the effect of three different impression methods on the marginal fit of all-ceramic crowns. The three methods include scanning silicone rubber impression, cast models, and direct optical impression. The polymethyl methacrylate (PMMA) material of a mandibular first molar in standard model was prepared with 16 models duplicated. The all-ceramic crowns were prepared using three different impression methods. Accurate impressions were made using silicone rubber, and the cast models were obtained. The PMMA models, silicone rubber impressions, and cast models were scanned, and digital models of three groups were obtained to produce 48 zirconia all-ceramic crowns with computer aided design/computer aided manufacture. The marginal fit of these groups was measured by silicone rubber gap impression. Statistical analysis was performed with SPSS 17.0 software. The marginal fit of direct optical impression groups, silicone rubber impression groups, cast model groups was (69.18±9.47), (81.04±10.88), (84.42±9.96) µm. A significant difference was observed in the marginal fit of the direct optical impression groups and the other groups (P<0.05). No statistically significant difference was observed in the marginal fit of the silicone rubber impression groups and the cast model groups (P>0.05). All marginal measurement sites are clinically acceptable by the three different impression scanning methods. The silicone rubber impression scanning method can be used for all-ceramic restorations.

  9. A Winning Cast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.

  10. Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM

    NASA Astrophysics Data System (ADS)

    Tripathi, A.; Pandey, M.; Nagamatsu, S.; Pandey, S. S.; Hayase, S.; Takashima, W.

    2017-11-01

    We have developed a new method to obtain Ribbon-shaped floating films via dynamic casting of floating-film and transfer method (dynamic-FTM). Dynamic-FTM is a unique method to prepare oriented thin-film of conjugated polymers (CPs) which is quick and easy. This method has several advantages as compared to the other conventional casting procedure to prepare oriented CP films. In the conventional dynamic FTM appearance of large scale circular orientation poses difficulty not only for practical applications but also hinders the detailed analysis of the orientation mechanism. In this present work, pros and cons of this newly proposed ribbon-shaped floating-film have been discussed in detail from those of the conventional floating-film prepared by dynamic-FTM.

  11. Stress ratio effects in fatigue of lost foam cast aluminum alloy 356

    NASA Astrophysics Data System (ADS)

    Palmer, David E.

    Lost foam casting is a highly versatile metalcasting process that offers significant benefits in terms of design flexibility, energy consumption, and environmental impact. In the present work, the fatigue behavior of lost foam cast aluminum alloy 356, in conditions T6 and T7, was investigated, under both zero and non-zero mean stress conditions, with either as-cast or machined surface finish. Scanning electron microscopy was used to identify and measure the defect from which fatigue fracture initiated. Based on the results, the applicability of nine different fatigue mean stress equations was compared. The widely-used Goodman equation was found to be highly non-conservative, while the Stulen, Topper-Sandor, and Walker equations performed reasonably well. Each of these three equations includes a material-dependent term for stress ratio sensitivity. The stress ratio sensitivity was found to be affected by heat treatment, with the T6 condition having greater sensitivity than the T7 condition. The surface condition (as-cast vs. machined) did not significantly affect the stress ratio sensitivity. The fatigue life of as-cast specimens was found to be approximately 60--70% lower than that of machined specimens at the same equivalent stress. This reduction could not be attributed to pore size alone, and is suspected to be due to the greater concentration of pyrolysis products at the as-cast surface. Directions for future work, including improved testing methods and some possible methods of improving the properties of lost foam castings, are discussed.

  12. Novel technologies for the lost foam casting process

    NASA Astrophysics Data System (ADS)

    Jiang, Wenming; Fan, Zitian

    2018-03-01

    Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

  13. Rapid Prototyping Technology for Manufacturing GTE Turbine Blades

    NASA Astrophysics Data System (ADS)

    Balyakin, A. V.; Dobryshkina, E. M.; Vdovin, R. A.; Alekseev, V. P.

    2018-03-01

    The conventional approach to manufacturing turbine blades by investment casting is expensive and time-consuming, as it takes a lot of time to make geometrically precise and complex wax patterns. Turbine blade manufacturing in pilot production can be sped up by accelerating the casting process while keeping the geometric precision of the final product. This paper compares the rapid prototyping method (casting the wax pattern composition into elastic silicone molds) to the conventional technology. Analysis of the size precision of blade casts shows that silicon-mold casting features sufficient geometric precision. Thus, this method for making wax patterns can be a cost-efficient solution for small-batch or pilot production of turbine blades for gas-turbine units (GTU) and gas-turbine engines (GTE). The paper demonstrates how additive technology and thermographic analysis can speed up the cooling of wax patterns in silicone molds. This is possible at an optimal temperature and solidification time, which make the process more cost-efficient while keeping the geometric quality of the final product.

  14. Homogenizing Advanced Alloys: Thermodynamic and Kinetic Simulations Followed by Experimental Results

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Hawk, Jeffrey A.

    2017-01-01

    Segregation of solute elements occurs in nearly all metal alloys during solidification. The resultant elemental partitioning can severely degrade as-cast material properties and lead to difficulties during post-processing (e.g., hot shorts and incipient melting). Many cast articles are subjected to a homogenization heat treatment in order to minimize segregation and improve their performance. Traditionally, homogenization heat treatments are based upon past practice or time-consuming trial and error experiments. Through the use of thermodynamic and kinetic modeling software, NETL has designed a systematic method to optimize homogenization heat treatments. Use of the method allows engineers and researchers to homogenize casting chemistries to levels appropriate for a given application. The method also allows for the adjustment of heat treatment schedules to fit limitations on in-house equipment (capability, reliability, etc.) while maintaining clear numeric targets for segregation reduction. In this approach, the Scheil module within Thermo-Calc is used to predict the as-cast segregation present within an alloy, and then diffusion controlled transformations is used to model homogenization kinetics as a function of time and temperature. Examples of computationally designed heat treatments and verification of their effects on segregation and properties of real castings are presented.

  15. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods.

    PubMed

    Seikh, Asiful H; Sherif, El-Sayed M; Khan Mohammed, Sohail M A; Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance.

  16. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods

    PubMed Central

    Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance. PMID:29668709

  17. PRODUCTION OF SLIP CAST CALCIA HOLLOWWARE

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1963-12-31

    A method for producing slip cast calcia hollow ware in which a dense calcia grain is suspended in isobutyl acetate or a mixture of tertiary amyl alcohol and o-xylene is presented. A minor amount of triethanolamine and oleic acid is added to the suspension vehicle as viscosity adjusting agents and the suspension is cast in a plaster mold, dried, and fired. (AEC)

  18. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study.

    PubMed

    Alex, Deepa; Shetty, Y Bharath; Miranda, Glynis Anita; Prabhu, M Bharath; Karkera, Reshma

    2015-01-01

    Conventional investing and casting techniques are time-consuming and usually requires 2-4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30-40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.

  19. The Effects of Casting Porosity on the Tensile Behavior of Investment Cast 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Susan, D. F.; Crenshaw, T. B.; Gearhart, J. S.

    2015-08-01

    The effect of casting porosity on the mechanical behavior of investment cast 17-4PH stainless steel was studied as well as the effect of heat treatment on the alloy's sensitivity to casting defects. Interdendritic porosity, formed during solidification and shrinkage of the alloy, reduces the yield strength and ultimate tensile strength roughly in proportion to the reduction in load bearing cross-section. The effects of casting porosity on ductility (% strain, % reduction in area) are more severe, in agreement with research on other alloy systems. In this study, 10% porosity reduced the ductility of 17-4PH stainless steel by almost 80% for the high-strength H925 condition. Tensile testing at -10°C (263 K) further reduces the alloy ductility with and without pores present. In the lower strength H1100 condition, the ductility is higher than the H925 condition, as expected, and somewhat less sensitive to porosity. By measuring the area % porosity on the fracture surface of tensile specimens, the trend in failure strain versus area % porosity was obtained and analyzed using two methods: an empirical approach to determine an index of defect susceptibility with a logarithmic fit and an analytical approach based on the constitutive stress-strain behavior and critical strain concentration in the vicinity of the casting voids. The applicability of the second method depends on the amount of non-uniform strain (necking) and, as such, the softer H1100 material did not correlate well to the model. The behavior of 17-4PH was compared to previous work on cast Al alloys, Mg alloys, and other cast materials.

  20. Casting technology for manufacturing metal rods from simulated metallic spent fuels

    NASA Astrophysics Data System (ADS)

    Leeand, Y. S.; Lee, D. B.; Kim, C. K.; Shin, Y. J.; Lee, J. H.

    2000-09-01

    A uranium metal rod 13.5 mm in diameter and 1,150 mm long was produced from simulated metallic spent fuels with advanced casting equipment using the directional-solidification method. A vacuum casting furnace equipped with a four-zone heater to prevent surface oxidation and the formation of surface shrinkage holes was designed. By controlling the axial temperature gradient of the casting furnace, deformation by the surface shrinkage phenomena was diminished, and a sound rod was manufactured. The cooling behavior of the molten uranium was analyzed using the computer software package MAGMAsoft.

  1. Biomimetic Materials by Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.

    2013-06-01

    Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.

  2. Method to prevent/mitigate steam explosions in casting pits

    DOEpatents

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  3. Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment

    PubMed Central

    Costa, Vania; Tu, Hong Anh; Wells, David; Weir, Mark; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. Results We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00–0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01–0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval −0.11–0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Conclusions Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients. PMID:28989556

  4. Software Analytical Instrument for Assessment of the Process of Casting Slabs

    NASA Astrophysics Data System (ADS)

    Franěk, Zdeněk; Kavička, František; Štětina, Josef; Masarik, Miloš

    2010-06-01

    The paper describes the original proposal of ways of solution and function of the program equipment for assessment of the process of casting slabs. The program system LITIOS was developed and implemented in EVRAZ Vitkovice Steel Ostrava on the equipment of continuous casting of steel (further only ECC). This program system works on the data warehouse of technological parameters of casting and quality parameters of slabs. It enables an ECC technologist to analyze the course of casting melt and with using statistics methods to set the influence of single technological parameters on the duality of final slabs. The system also enables long term monitoring and optimization of the production.

  5. The analysis of composite properties reinforced with particles from palm oil industry waste produced by casting methods

    NASA Astrophysics Data System (ADS)

    Tugiman; Ariani, F.; Taher, F.; Hasibuan, M. S.; Suprianto

    2017-12-01

    Palm oil processing industries are very attractive because they offer plenty products with high economic value. The CPO factory processes not only produces crude palm oil but also generates fly ash (FA) particles waste in its final process. The purpose of this investigation to analyze and increase the benefits of particles as reinforcement materials for fabricating aluminum matrix composites (AMC’s) by different casting route. Stirring, centrifugal and squeeze casting method was conducted in this study. Further, the chemical composition of FA particles, densities and mechanical properties have been analyzed. The characteristics of composite material were investigated using an Optical microscope, scanning electron microscope (SEM), hardness (Brinell), impact strength (Charpy). The pin on disc method was used to measure the wear rate. The results show that SiO2, Fe2O3, and Al2O3 are the main compounds of fly ash particles. These particles enhanced the hardness and reduce wear resistance of aluminum matrix composites. The squeeze method gives better results than stir and centrifugal casting.

  6. A mathematical model of the heat and fluid flows in direct-chill casting of aluminum sheet ingots and billets

    NASA Astrophysics Data System (ADS)

    Mortensen, Dag

    1999-02-01

    A finite-element method model for the time-dependent heat and fluid flows that develop during direct-chill (DC) semicontinuous casting of aluminium ingots is presented. Thermal convection and turbulence are included in the model formulation and, in the mushy zone, the momentum equations are modified with a Darcy-type source term dependent on the liquid fraction. The boundary conditions involve calculations of the air gap along the mold wall as well as the heat transfer to the falling water film with forced convection, nucleate boiling, and film boiling. The mold wall and the starting block are included in the computational domain. In the start-up period of the casting, the ingot domain expands over the starting-block level. The numerical method applies a fractional-step method for the dynamic Navier-Stokes equations and the “streamline upwind Petrov-Galerkin” (SUPG) method for mixed diffusion and convection in the momentum and energy equations. The modeling of the start-up period of the casting is demonstrated and compared to temperature measurements in an AA1050 200×600 mm sheet ingot.

  7. Characterization of HEM silicon for solar cells. [Heat Exchanger Method

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Khattak, C. P.; Schmid, F.

    1981-01-01

    The Heat Exchanger Method (HEM) is a promising low-cost ingot casting process for material used for solar cells. This is the only method that is capable of casting single crystal ingots with a square cross section using a directional solidification technique. This paper describes the chemical, mechanical and electrical properties of the HEM silicon material as a function of position within the ingot.

  8. Distal femoral osteotomy in genovalgum: internal fixation with blade plate versus casting.

    PubMed

    Makhmalbaf, Hadi; Moradi, Ali; Ganji, Saeid

    2014-10-01

    To compare the results of two different ways of distal femoral osteotomy stabilization in patients suffering from genuvalgum: internal fixation with plate, and casting. In a non-randomized prospective study, after distal femoral osteotomy with the zigzag method, patients were divided into two groups: long leg casting, and internal fixation with blade plate. For all patients, questionnaires were filled to obtain data. Information such as range of motion, tibiofemoral anatomical angle and complications were recorded. 38 knees with valgus deformity underwent distal femoral supracondylar osteotomy. (8 with plaster cast and 30 with internal fixation using a blade plate). Preoperative range of motion was 129±6° and six months later it was 120±14°. The preoperative tibiofemoral angle was 32±6°; postoperative tibiofemoral angles were 3±3°, 6±2°, and 7±3° just after operation, six months, and two years later, respectively. Although this angle was greater among the group stabilized with a cast, this difference was not statistically significant. In postoperative complications, over-correction was found in five, recorvatom deformity in one, knee stiffness in three and superficial wound infection was recorded in three knees. There is no prominent difference in final range of motion and alignment whether fixation is done with casting or internal fixation. However, the complication rate seems higher in the casting method.

  9. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-10-07

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  10. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  11. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  12. Microstructure and Corrosion Characterization of Squeeze Cast AM50 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Sachdeva, Deepika; Tiwari, Shashank; Sundarraj, Suresh; Luo, Alan A.

    2010-12-01

    Squeeze casting of magnesium alloys potentially can be used in lightweight chassis components such as control arms and knuckles. This study documents the microstructural analysis and corrosion behavior of AM50 alloys squeeze cast at different pressures between 40 and 120 MPa and compares them with high-pressure die cast (HPDC) AM50 alloy castings and an AM50 squeeze cast prototype control arm. Although the corrosion rates of the squeeze cast samples are slightly higher than those observed for the HPDC AM50 alloy, the former does produce virtually porosity-free castings that are required for structural applications like control arms and wheels. This outcome is extremely encouraging as it provides an opportunity for additional alloy and process development by squeeze casting that has remained relatively unexplored for magnesium alloys compared with aluminum. Among the microstructural parameters analyzed, it seems that the β-phase interfacial area, indicating a greater degree of β network, leads to a lower corrosion rate. Weight loss was the better method for determining corrosion behavior in these alloys that contain a large fraction of second phase, which can cause perturbations to an overall uniform surface corrosion behavior.

  13. Properties of a hybrid plaster-fibreglass cast

    PubMed Central

    Charles, Mark N.; Yen, David

    2000-01-01

    Objective To examine the suitability of a plaster-fibreglass hybrid cast for orthopedic applications, comparing them to plaster of Paris (POP) and fibreglass constructs. Method Groups of 10 standardized hybrid, POP and fibreglass casts were studied. An Instron servo-hydraulic system was used to test the casts in 3-point bending and shear. Outcome measures Strength, stiffness, weight, thickness and cost of the 3 types of cast, and shear strength at the interface between the POP and fibreglass in the hybrid casts. Results The hybrid casts were twice as strong as the POP constructs, were stiffer and weighed 14% less but were thicker and cost 2.5 times more. They were almost as strong as and less than half the cost of the fibreglass constructs but were thicker, not as stiff, and weighed 42% more. The shear strength of the POP–fibreglass interface in the hybrid casts was higher than the 3-point bending strength of this construct by a factor of 3. Conclusions Plaster-fibreglass hybrid casts should be considered for orthopedic use on the basis of their strength, stiffness, weight and cost, combined with their acknowledged advantages of good moulding ability and water resistance. PMID:11045095

  14. Improving the collection of knowledge, attitude and practice data with community surveys: a comparison of two second-stage sampling methods.

    PubMed

    Davis, Rosemary H; Valadez, Joseph J

    2014-12-01

    Second-stage sampling techniques, including spatial segmentation, are widely used in community health surveys when reliable household sampling frames are not available. In India, an unresearched technique for household selection is used in eight states, which samples the house with the last marriage or birth as the starting point. Users question whether this last-birth or last-marriage (LBLM) approach introduces bias affecting survey results. We conducted two simultaneous population-based surveys. One used segmentation sampling; the other used LBLM. LBLM sampling required modification before assessment was possible and a more systematic approach was tested using last birth only. We compared coverage proportions produced by the two independent samples for six malaria indicators and demographic variables (education, wealth and caste). We then measured the level of agreement between the caste of the selected participant and the caste of the health worker making the selection. No significant difference between methods was found for the point estimates of six malaria indicators, education, caste or wealth of the survey participants (range of P: 0.06 to >0.99). A poor level of agreement occurred between the caste of the health worker used in household selection and the caste of the final participant, (Κ = 0.185), revealing little association between the two, and thereby indicating that caste was not a source of bias. Although LBLM was not testable, a systematic last-birth approach was tested. If documented concerns of last-birth sampling are addressed, this new method could offer an acceptable alternative to segmentation in India. However, inter-state caste variation could affect this result. Therefore, additional assessment of last birth is required before wider implementation is recommended. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2013; all rights reserved.

  15. Three-dimensional accuracy of different correction methods for cast implant bars

    PubMed Central

    Kwon, Ji-Yung; Kim, Chang-Whe; Lim, Young-Jun; Kwon, Ho-Beom

    2014-01-01

    PURPOSE The aim of the present study was to evaluate the accuracy of three techniques for correction of cast implant bars. MATERIALS AND METHODS Thirty cast implant bars were fabricated on a metal master model. All cast implant bars were sectioned at 5 mm from the left gold cylinder using a disk of 0.3 mm thickness, and then each group of ten specimens was corrected by gas-air torch soldering, laser welding, and additional casting technique. Three dimensional evaluation including horizontal, vertical, and twisting measurements was based on measurement and comparison of (1) gap distances of the right abutment replica-gold cylinder interface at buccal, distal, lingual side, (2) changes of bar length, and (3) axis angle changes of the right gold cylinders at the step of the post-correction measurements on the three groups with a contact and non-contact coordinate measuring machine. One-way analysis of variance (ANOVA) and paired t-test were performed at the significance level of 5%. RESULTS Gap distances of the cast implant bars after correction procedure showed no statistically significant difference among groups. Changes in bar length between pre-casting and post-correction measurement were statistically significance among groups. Axis angle changes of the right gold cylinders were not statistically significance among groups. CONCLUSION There was no statistical significance among three techniques in horizontal, vertical and axial errors. But, gas-air torch soldering technique showed the most consistent and accurate trend in the correction of implant bar error. However, Laser welding technique, showed a large mean and standard deviation in vertical and twisting measurement and might be technique-sensitive method. PMID:24605205

  16. The use of porcine corrosion casts for teaching human anatomy.

    PubMed

    Eberlova, Lada; Liska, Vaclav; Mirka, Hynek; Tonar, Zbynek; Haviar, Stanislav; Svoboda, Milos; Benes, Jan; Palek, Richard; Emingr, Michal; Rosendorf, Jachym; Mik, Patrik; Leupen, Sarah; Lametschwandtner, Alois

    2017-09-01

    In teaching and learning human anatomy, anatomical autopsy and prosected specimens have always been indispensable. However, alternative methods must often be used to demonstrate particularly delicate structures. Corrosion casting of porcine organs with Biodur E20 ® Plus is valuable for teaching and learning both gross anatomy and, uniquely, the micromorphology of cardiovascular, respiratory, digestive, and urogenital systems. Assessments of casts with a stereomicroscope and/or scanning electron microscope as well as highlighting cast structures using color coding help students to better understand how the structures that they have observed as two-dimensional images actually exist in three dimensions, and students found using the casts to be highly effective in their learning. Reconstructions of cast hollow structures from (micro-)computed tomography scans and videos facilitate detailed analyses of branching patterns and spatial arrangements in cast structures, aid in the understanding of clinically relevant structures and provide innovative visual aids. The casting protocol and teaching manual we offer can be adjusted to different technical capabilities and might also be found useful for veterinary or other biological science classes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Vascular corrosion casting technique steps.

    PubMed

    Verli, Flaviana Dornela; Rossi-Schneider, Tissiana Raquel; Schneider, Felipe Luís; Yurgel, Liliane Soares; de Souza, Maria Antonieta Lopes

    2007-01-01

    The vascular corrosion casting technique produces a replica of vascular beds of normal or pathological tissues. Once associated with scanning electron microscopy (SEM), this technique provides details of the three-dimensional anatomic arrangement of the vascular replica, which is the main advantage of this method. The present study is intended to describe the steps of the vascular corrosion casting technique and the different ways to perform them. them.

  18. Vascular Corrosion Casting: Review of Advantages and Limitations in the Application of Some Simple Quantitative Methods.

    PubMed

    Hossler, Fred E.; Douglas, John E.

    2001-05-01

    Vascular corrosion casting has been used for about 40 years to produce replicas of normal and abnormal vasculature and microvasculature of various tissues and organs that could be viewed at the ultrastructural level. In combination with scanning electron microscopy (SEM), the primary application of corrosion casting has been to describe the morphology and anatomical distribution of blood vessels in these tissues. However, such replicas should also contain quantitative information about that vasculature. This report summarizes some simple quantitative applications of vascular corrosion casting. Casts were prepared by infusing Mercox resin or diluted Mercox resin into the vasculature. Surrounding tissues were removed with KOH, hot water, and formic acid, and the resulting dried casts were observed with routine SEM. The orientation, size, and frequency of vascular endothelial cells were determined from endothelial nuclear imprints on various cast surfaces. Vascular volumes of heart, lung, and avian salt gland were calculated using tissue and resin densities, and weights. Changes in vascular volume and functional capillary density in an experimentally induced emphysema model were estimated from confocal images of casts. Clearly, corrosion casts lend themselves to quantitative analysis. However, because blood vessels differ in their compliances, in their responses to the toxicity of casting resins, and in their response to varying conditions of corrosion casting procedures, it is prudent to use care in interpreting this quantitative data. Some of the applications and limitations of quantitative methodology with corrosion casts are reviewed here.

  19. Comparison of Growing Rod Instrumentation Versus Serial Cast Treatment for Early-Onset Scoliosis.

    PubMed

    Johnston, Charles E; McClung, Anna M; Thompson, George H; Poe-Kochert, Connie; Sanders, James O

    2013-09-01

    A comparison of 2 methods of early-onset scoliosis treatment using radiographic measures and complication rates. To determine whether a delaying tactic (serial casting) has comparable efficacy to a surgical method (insertion of growing rod instrumentation [GRI]) in the initial phase of early-onset deformity management. Serial casts are used in experienced centers to delay operative management of curves of surgical magnitude (greater than 50°) in children up to age 6 years. A total of 27 casted patients from 3 institutions were matched with 27 patients from a multicenter database according to age (within 6 months of each other), curve magnitude (within 10° of each other), and diagnosis. Outcomes were compared according to major curve magnitude, spine length (T1-S1), duration and number of treatment encounters, and complications. There was no difference in age (5.5 years) or initial curve magnitude (65°) between groups, which reflects the accuracy of the matching process. Six pairs of patients had neuromuscular diagnoses, 11 had idiopathic deformities, and 10 had syndromic scoliosis. Growing rod instrumentation patients had smaller curves (45.9° vs. 64.9°; p = .002) at follow-up, but there was no difference in absolute spine length (GRI = 32.0 cm; cast = 30.6 cm; p = .26), even though GRI patients had been under treatment for a longer duration (4.5 vs. 2.4 years; p < .0001) and had undergone a mean of 5.5 lengthenings compared with 4.0 casts. Growing rod instrumentation patients had a 44% complication rate, compared with 1 cast complication. Of 27 casted patients, 15 eventually had operative treatment after a mean delay of 1.7 years after casting. Cast treatment is a valuable delaying tactic for younger children with early-onset scoliosis. Spine deformity is adequately controlled, spine length is not compromised, and surgical complications associated with early GRI treatment are avoided. Copyright © 2013 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  20. Accuracy of Digital vs Conventional Implant Impression Approach: A Three-Dimensional Comparative In Vitro Analysis.

    PubMed

    Basaki, Kinga; Alkumru, Hasan; De Souza, Grace; Finer, Yoav

    To assess the three-dimensional (3D) accuracy and clinical acceptability of implant definitive casts fabricated using a digital impression approach and to compare the results with those of a conventional impression method in a partially edentulous condition. A mandibular reference model was fabricated with implants in the first premolar and molar positions to simulate a patient with bilateral posterior edentulism. Ten implant-level impressions per method were made using either an intraoral scanner with scanning abutments for the digital approach or an open-tray technique and polyvinylsiloxane material for the conventional approach. 3D analysis and comparison of implant location on resultant definitive casts were performed using laser scanner and quality control software. The inter-implant distances and interimplant angulations for each implant pair were measured for the reference model and for each definitive cast (n = 20 per group); these measurements were compared to calculate the magnitude of error in 3D for each definitive cast. The influence of implant angulation on definitive cast accuracy was evaluated for both digital and conventional approaches. Statistical analysis was performed using t test (α = .05) for implant position and angulation. Clinical qualitative assessment of accuracy was done via the assessment of the passivity of a master verification stent for each implant pair, and significance was analyzed using chi-square test (α = .05). A 3D error of implant positioning was observed for the two impression techniques vs the reference model, with mean ± standard deviation (SD) error of 116 ± 94 μm and 56 ± 29 μm for the digital and conventional approaches, respectively (P = .01). In contrast, the inter-implant angulation errors were not significantly different between the two techniques (P = .83). Implant angulation did not have a significant influence on definitive cast accuracy within either technique (P = .64). The verification stent demonstrated acceptable passive fit for 11 out of 20 casts and 18 out of 20 casts for the digital and conventional methods, respectively (P = .01). Definitive casts fabricated using the digital impression approach were less accurate than those fabricated from the conventional impression approach for this simulated clinical scenario. A significant number of definitive casts generated by the digital technique did not meet clinically acceptable accuracy for the fabrication of a multiple implant-supported restoration.

  1. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  2. Effects of Annular Electromagnetic Stirring Coupled with Intercooling on Grain Refinement and Homogeneity During Direct Chill Casting of Large-Sized 7005 Alloy Billet

    NASA Astrophysics Data System (ADS)

    Luo, Yajun; Zhang, Zhifeng; Li, Bao; Gao, Mingwei; Qiu, Yang; He, Min

    2017-12-01

    To obtain a large-sized, high-quality aluminum alloy billet, an advanced uniform direct chill (UDC) casting method was developed by combining annular electromagnetic stirring (A-EMS) with intercooling in the sump. The 7005 alloy was chosen to investigate the effect of UDC on grain refinement and homogeneity during normal direct chill (NDC) casting. It was concluded that the microstructure consisting of both primary α-Al phase and secondary phases becomes finer and more homogeneous for the billets prepared with UDC casting compared to those prepared with NDC casting, and the forced cooling from both the inner and outer melt under A-EMS has a measurable effect on grain refinement and homogeneity.

  3. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  4. Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model.

    PubMed

    Browne, Patience; Judson, Richard S; Casey, Warren M; Kleinstreuer, Nicole C; Thomas, Russell S

    2015-07-21

    The U.S. Environmental Protection Agency (EPA) is considering high-throughput and computational methods to evaluate the endocrine bioactivity of environmental chemicals. Here we describe a multistep, performance-based validation of new methods and demonstrate that these new tools are sufficiently robust to be used in the Endocrine Disruptor Screening Program (EDSP). Results from 18 estrogen receptor (ER) ToxCast high-throughput screening assays were integrated into a computational model that can discriminate bioactivity from assay-specific interference and cytotoxicity. Model scores range from 0 (no activity) to 1 (bioactivity of 17β-estradiol). ToxCast ER model performance was evaluated for reference chemicals, as well as results of EDSP Tier 1 screening assays in current practice. The ToxCast ER model accuracy was 86% to 93% when compared to reference chemicals and predicted results of EDSP Tier 1 guideline and other uterotrophic studies with 84% to 100% accuracy. The performance of high-throughput assays and ToxCast ER model predictions demonstrates that these methods correctly identify active and inactive reference chemicals, provide a measure of relative ER bioactivity, and rapidly identify chemicals with potential endocrine bioactivities for additional screening and testing. EPA is accepting ToxCast ER model data for 1812 chemicals as alternatives for EDSP Tier 1 ER binding, ER transactivation, and uterotrophic assays.

  5. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  6. Feasibility of producing cast-refractory metal-fiber superalloy composites

    NASA Technical Reports Server (NTRS)

    Mcintyre, R. D.

    1973-01-01

    A study was conducted to evaluate the feasibility of direct casting as a practical method for producing cast superalloy tungsten or columbium alloy fiber composites while retaining a high percentage of fiber strength. Fourteen nickel base, four cobalt, and three iron based matrices were surveyed for their degree of reaction with the metal fibers. Some stress-rupture results were obtained at temperatures of 760, 816, 871, and 1093 C for a few composite systems. The feasibility of producing acceptable composites of some cast nickel, cobalt, and iron matrix alloys with tungsten or columbium alloy fibers was demonstrated.

  7. Methods for Casting Subterranean Ant Nests

    PubMed Central

    Tschinkel, Walter R.

    2010-01-01

    The study of subterranean ant nests has been impeded by the difficulty of rendering their structures in visible form. Here, several different casting materials are shown to make perfect casts of the underground nests of ants. Each material (dental plaster, paraffin wax, aluminum, zinc) has advantages and limitations, which are discussed. Some of the materials allow the recovery of the ants entombed in the casts, allowing a census of the ants to be connected with features of their nest architecture. The necessary equipment and procedures are described in the hope that more researchers will study this very important aspect of ant natural history. PMID:20673073

  8. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    PubMed

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  9. Factors contributing to the temperature beneath plaster or fiberglass cast material

    PubMed Central

    Hutchinson, Michael J; Hutchinson, Mark R

    2008-01-01

    Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period). Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of Celsius for over 20 minutes. Conclusion Clinicians should be cautious when applying thick casts with warm dip water. Fast setting plasters have increased risk of thermal injury while brand does not appear to play a significant role. Prefabricated fiberglass splints appear to be safer than circumferential casts. The greatest risk of thermal injury occurs when thick casts are allowed to mature while resting on pillow. PMID:18298851

  10. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method

    NASA Astrophysics Data System (ADS)

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-01

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  11. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    PubMed

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru

    2015-08-24

    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  12. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (S)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  13. Fatigue behavior in rheocast aluminum 357 suspension arms using the SEED process

    NASA Astrophysics Data System (ADS)

    Samuel, Ehab; Zheng, Chang-Qing; Bouaicha, Amine; Bouazara, Mohamed

    Extensive studies have been devoted to the use of aluminum alloys in the automotive industry, by virtue of the favourable mechanical properties that can be attained. Moreover, the aluminum casting method employed has also been the subject of scrutiny, given the multitude of casting options available. The present work serves to illustrate the advancements made in the area of rheocasting, using the SEED method, as carried out at the National Research Council Canada — Aluminum Technology Centre. The SEED (Swirled Enthalpy Equilibration Device) process, which relies on heat extraction of the liquid aluminum alloy via mechanical agitation in a confined cylinder to form the semi-solid billet, has already proven successful in producing sound aluminum castings having an excellent combination of strength and ductility. Moreover, fatigue testing on the cast alloy parts has shown enormous potential for this emerging technology.

  14. Inter-arch digital model vs. manual cast measurements: Accuracy and reliability.

    PubMed

    Kiviahde, Heikki; Bukovac, Lea; Jussila, Päivi; Pesonen, Paula; Sipilä, Kirsi; Raustia, Aune; Pirttiniemi, Pertti

    2017-06-28

    The purpose of this study was to evaluate the accuracy and reliability of inter-arch measurements using digital dental models and conventional dental casts. Thirty sets of dental casts with permanent dentition were examined. Manual measurements were done with a digital caliper directly on the dental casts, and digital measurements were made on 3D models by two independent examiners. Intra-class correlation coefficients (ICC), a paired sample t-test or Wilcoxon signed-rank test, and Bland-Altman plots were used to evaluate intra- and inter-examiner error and to determine the accuracy and reliability of the measurements. The ICC values were generally good for manual and excellent for digital measurements. The Bland-Altman plots of all the measurements showed good agreement between the manual and digital methods and excellent inter-examiner agreement using the digital method. Inter-arch occlusal measurements on digital models are accurate and reliable and are superior to manual measurements.

  15. Control system of water flow and casting speed in continuous steel casting

    NASA Astrophysics Data System (ADS)

    Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Chioncel, C.

    2017-05-01

    This paper presents the results of research based on real data taken from the installation process at Arcelor Mittal Hunedoara. Using Matlab Simulink an intelligent system is made that takes in data from the process and makes real time adjustments in the rate of flow of the cooling water and the speed of casting that eliminates fissures in the poured material from the secondary cooling of steel. Using Matlab Simulink simulation environment allowed for qualitative analysis for various real world situations. Thus, compared to the old method of approach for the problem of cracks forming in the crust of the steel in the continuous casting, this new method, proposed and developed, brings safety and precision in this complex process, thus removing any doubt on the existence or non-existence of cracks and takes the necessary steps to prevent and correct them.

  16. Qualification of a precise and easy-to-handle sweat casting imprint method for the prediction and quantification of anti-perspirant efficacy.

    PubMed

    Keyhani, R; Scheede, S; Thielecke, I; Wenck, H; Schmucker, R; Schreiner, V; Ennen, J; Herpens, A

    2009-06-01

    A time- and cost-effective sweat casting method using the forearm as test site to assess the efficacy of several anti-perspirant formulations with a low number of test subjects has been evaluated and qualified. The imprint sweat casting method is based on a 2-component silcone-imprint technique to measure the efficacy of more than eight products in parallel with the same test subject. In studies using aluminum chlorohydrate (ACH) formulations as test anti-perspirants, a clear-cut correlation could be demonstrated between sweat gland activities measured by the imprint method and gravimetric measurement of sweat gland activities. Concentration-dependent inhibition of sweat gland activity could be observed with the imprint technique up to an ACH concentration of 15%, and all formulations containing 2% ACH or above resulted in statistically significant reduction of sweat gland activity (P < 0.001) when compared with untreated control areas. Furthermore, the SDs of individual studies using the imprint technique were in a range of +/-20% of sweat gland activity, which can be regarded rather low for in vivo measurements of a complex process like sweat secretion. A group-wise comparison between the measurements of anti-perspirant activity as determined by the imprint protocol and the Food and Drug Administration (FDA) Guideline compliant gravimetric hot-room protocol revealed that the test results for anti-perspirant activity obtained with the imprint protocol are similar to those obtained with the hot-room protocol. Moreover, the data generated with the imprint protocol have a high predictive value for the outcome of a later guideline-compliant hot-room test. As the imprint casting method tends to be a little more sensitive for formulations with low anti-perspirant activity, and seems to be associated with less interassay variability than the standard gravimetric hot-room test, the imprint casting method may select products which later fail to pass the standard gravimetric hot-room test. Meanwhile the imprint sweat casting has proven to be a robust method useful to support efficacy-oriented product development. Therefore, in later stages of utilization it might even evolve into an efficient claim substantiation tool.

  17. Does the casting mode influence microstructure, fracture and properties of different metal ceramic alloys?

    PubMed

    Bauer, José Roberto de Oliveira; Grande, Rosa Helena Miranda; Rodrigues-Filho, Leonardo Eloy; Pinto, Marcelo Mendes; Loguercio, Alessandro Dourado

    2012-01-01

    The aim of the present study was to evaluate the tensile strength, elongation, microhardness, microstructure and fracture pattern of various metal ceramic alloys cast under different casting conditions. Two Ni-Cr alloys, Co-Cr and Pd-Ag were used. The casting conditions were as follows: electromagnetic induction under argon atmosphere, vacuum, using blowtorch without atmosphere control. For each condition, 16 specimens, each measuring 25 mm long and 2.5 mm in diameter, were obtained. Ultimate tensile strength (UTS) and elongation (EL) tests were performed using a Kratos machine. Vickers Microhardness (VM), fracture mode and microstructure were analyzed by SEM. UTS, EL and VM data were statistically analyzed using ANOVA. For UTS, alloy composition had a direct influence on casting condition of alloys (Wiron 99 and Remanium CD), with higher values shown when cast with Flame/Air (p < 0.05). The factors 'alloy" and 'casting condition" influenced the EL and VM results, generally presenting opposite results, i.e., alloy with high elongation value had lower hardness (Wiron 99), and casting condition with the lowest EL values had the highest VM values (blowtorch). Both factors had significant influence on the properties evaluated, and prosthetic laboratories should select the appropriate casting method for each alloy composition to obtain the desired property.

  18. [Experimental processing of corrosion casts of large animal organs].

    PubMed

    Pálek, R; Liška, V; Eberlová, L; Mírka, H; Svoboda, M; Haviar, S; Emingr, M; Brzoň, O; Mik, P; Třeška, V

    2018-01-01

    Corrosion casts (CCs) are used for the visualization and assessment of hollow structures. CCs with filled capillaries enable (with the help of imaging methods) to obtain data for mathematical organ perfusion modelling. As the processing is more difficult in case of organs with greater volume of the vasculature, mainly organs from small animals have been cast up to now. The aim of this study was to optimize the protocol of corrosion casting of different organs of pig. Porcine organs are relatively easily accessible and frequently used in experimental medicine. Organs from 10 healthy Prestice Black-Pied pigs (6 females, body weight 35-45 kg), were used in this study (liver, spleen, kidneys and small intestine). The organs were dissected, heparin was administered into the systemic circulation and then the vascular bed of the organs was flushed with heparinized saline either in situ (liver) or after their removal (spleen, kidney, small intestine). All handling was done under the water surface to prevent air embolization. The next step was an intraarterial (in case of the liver also intraportal) administration of Biodur E20® (Heidelberg, Germany) resin. After hardening of the resin the organ tissue was dissolved by 15% KOH and the specimen was rinsed with tap water. Voluminous casts were stored in 70% denatured alcohol, the smaller ones were lyophilized. The casts were assessed with a stereomicroscope, computed and microcomputed tomography (CT and microCT), a scanning electron microscope (SEM) and high-resolution digital microscope (HRDM). High-quality CCs of the porcine liver, kidneys, spleen and small intestine were created owing to the sophisticated organ harvesting, the suitable resin and casting procedure. Macroscopic clarity was improved thanks to the possibility of resin dying. Scanning by CT was performed and showed to be a suitable method for the liver cast examination. MicroCT, SEM and HRDM produced images of the most detailed structures of vascular bed. Despite the fact that SEM seems to be an irreplaceable method for CCs quality control, it seems that this modality could be partly replaced by HRDM. MicroCT enabled to obtain data about three-dimensional layout of the vascular bed and data for mathematical modelling of organ perfusion. With regard to the quality of the CCs, they could also be used to teach human anatomy. The protocol of the corrosion casting of the porcine liver, kidneys, spleen and small intestine CCs was optimized. Thanks to different imaging methods, the CCs can be used as a source of data on three-dimensional architecture of the vascular bed. These data can be used for mathematical modeling of organ perfusion which can be helpful for example for optimization of organ resections.Key words: corrosion casts microvasculature Biodur E20® domestic pig animal model.

  19. 75 FR 22114 - Aluminum Extrusions from the People's Republic of China: Initiation of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... sampling method. Section 771(4)(A) of the Act defines the ``industry'' as the producers as a whole of a... the PRC. At this time, given the unique nature of the alleged subsidy and the complex methodological... process, such as aluminum products produced by a method of casting. Cast aluminum products are properly...

  20. Integration of Digital Dental Casts in Cone-Beam Computed Tomography Scans

    PubMed Central

    Rangel, Frits A.; Maal, Thomas J. J.; Bergé, Stefaan J.; Kuijpers-Jagtman, Anne Marie

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all reported methods have drawbacks. The aim of this feasibility study is to present a new simplified method to integrate digital dental casts into CBCT scans. In a patient scheduled for orthognathic surgery, titanium markers were glued to the gingiva. Next, a CBCT scan and dental impressions were made. During the impression-taking procedure, the titanium markers were transferred to the impression. The impressions were scanned, and all CBCT datasets were exported in DICOM format. The two datasets were matched, and the dentition derived from the scanned impressions was transferred to the CBCT of the patient. After matching the two datasets, the average distance between the corresponding markers was 0.1 mm. This novel method allows for the integration of digital dental casts into CBCT scans, overcoming problems such as unwanted extra radiation exposure, distortion of soft tissues due to the use of bite jigs, and time-consuming digital data handling. PMID:23050159

  1. AMCC casting development. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Advanced Combustion Chamber Casting (AMCC) has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or Thermal Gradient Control. This method, of setting up thermal gradients in the casting during solidification, represents a significant process improvement for PCC and has been successfully implemented on other programs. Metallurgical integrity of the final four castings was very good. Only the areas of the parts that utilized 'TGC Shape & Location System #2' showed any significant areas of microshrinkage when evaluated by non-destructive tests. Alumina oxides detected by FPI on the 'float' surfaces (top sid surfaces of the casting during solidification) of the part were almost entirely less than the acceptance criteria of .032 inches in diameter. Destructive chem mill of the castings was required to determine the effect of the process variables used during the processing of these last four parts (with the exception of the 'Shape & Location of TGC' variable).

  2. Procedure for flaw detection in cast stainless steel

    DOEpatents

    Kupperman, David S.

    1988-01-01

    A method of ultrasonic flaw detection in cast stainless steel components incorporating the steps of determining the nature of the microstructure of the cast stainless steel at the site of the flaw detection measurements by ultrasonic elements independent of the component thickness at the site; choosing from a plurality of flaw detection techniques, one such technique appropriate to the nature of the microstructure as determined and detecting flaws by use of the chosen technique.

  3. Improved Sand-Compaction Method for Lost-Foam Metal Casting

    NASA Technical Reports Server (NTRS)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    2008-01-01

    An improved method of filling a molding flask with sand and compacting the sand around a refractory-coated foam mold pattern has been developed for incorporation into the lost-foam metal-casting process. In comparison with the conventional method of sand filling and compaction, this method affords more nearly complete filling of the space around the refractory-coated foam mold pattern and more thorough compaction of the sand. In so doing, this method enables the sand to better support the refractory coat under metallostatic pressure during filling of the mold with molten metal.

  4. A new method to evaluate the quality of single crystal Cu by an X-ray diffraction butterfly pattern method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Zhenming; Guo Zhenqi; Li Jianguo

    2004-12-15

    A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less

  5. The Effect of Temperature and Rotational Speed on Structure and Mechanical Properties of Cast Cu Base Alloy (Cu-Al-Si-Fe) Welded by Semisolid Stir Joining Method

    NASA Astrophysics Data System (ADS)

    Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak

    2015-12-01

    Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.

  6. APPARATUS AND METHOD FOR INJECTION CASTING

    DOEpatents

    Shuck, A.B.

    1960-09-13

    S>A single-chamber metal casting apparatus is described wherein molten metal in a vertically movable container can be brought directly into contact with molds. By increasing the gas pressure within the chamber the metal is forced upward into the molds.

  7. A new model of skeletal muscle atrophy induced by immobilization using a hook-and-loop fastener in mice

    PubMed Central

    Aihara, Masahiro; Hirose, Noboru; Katsuta, Wakana; Saito, Fumiaki; Maruyama, Hitoshi; Hagiwara, Hiroki

    2017-01-01

    [Purpose] To study muscle atrophy, the muscle atrophy model mice have been used frequently. In particular, cast immobilization is the most common method to induce muscle atrophy. However, it is time consuming and often causes adverse events including skin injury, edema, and necrosis. The present study, we developed a hook-and-loop fastener (Velcro) immobilization method as a new, simple, and less invasive approach to induce muscle atrophy. [Subjects and Methods] Mice were bandaged in the knee joint extension and ankle plantar extension position. Muscle atrophy was induced by either winding a cast or Velcro around the limb. [Results] According to weight and fiber size, Velcro immobilization induced equivalent muscle atrophy to cast immobilization. Velcro immobilization reduced significantly the time for the procedure and the frequency of adverse events. [Conclusion] Velcro immobilization can induce muscle atrophy comparable to cast immobilization, but in a shorter time and with less complications. Velcro immobilization may contribute to the study of disuse muscle atrophy in clinical practice of physical therapy using a mouse model. PMID:29184288

  8. Repair welding of cast iron coated electrodes

    NASA Astrophysics Data System (ADS)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  9. CASTING METHOD AND APPARATUS

    DOEpatents

    Gray, C.F.; Thompson, R.H.

    1958-10-01

    An improved apparatus for the melting and casting of uranium is described. A vacuum chamber is positioned over the casting mold and connected thereto, and a rod to pierce the oxide skin of the molten uranium is fitted into the bottom of the melting chamber. The entire apparatus is surrounded by a jacket, and operations are conducted under a vacuum. The improvement in this apparatus lies in the fact that the top of the melting chamber is fitted with a plunger which allows squeezing of the oxide skin to force out any molten uranium remaining after the skin has been broken and the molten charge has been cast.

  10. Improved Safety and Cost Savings from Reductions in Cast-Saw Burns After Simulation-Based Education for Orthopaedic Surgery Residents.

    PubMed

    Bae, Donald S; Lynch, Hayley; Jamieson, Katherine; Yu-Moe, C Winnie; Roussin, Christopher

    2017-09-06

    The purpose of this investigation was to characterize the clinical efficacy and cost-effectiveness of simulation training aimed at reducing cast-saw injuries. Third-year orthopaedic residents underwent simulation-based instruction on distal radial fracture reduction, casting, and cast removal using an oscillating saw. The analysis compared incidences of cast-saw injuries and associated costs before and after the implementation of the simulation curriculum. Actual and potential costs associated with cast-saw injuries included wound care, extra clinical visits, and potential total payment (indemnity and expense payments). Curriculum costs were calculated through time-derived, activity-based accounting methods. The researchers compared the costs of cast-saw injuries and the simulation curriculum to determine overall savings and return on investment. In the 2.5 years prior to simulation, cast-saw injuries occurred in approximately 4.3 per 100 casts cut by orthopaedic residents. For the 2.5-year period post-simulation, the injury rate decreased significantly to approximately 0.7 per 100 casts cut (p = 0.002). The total cost to implement the casting simulation was $2,465.31 per 6-month resident rotation. On the basis of historical data related to cast-saw burns (n = 6), total payments ranged from $2,995 to $25,000 per claim. The anticipated savings from averted cast-saw injuries and associated medicolegal payments in the 2.5 years post-simulation was $27,131, representing an 11-to-1 return on investment. Simulation-based training for orthopaedic surgical residents was effective in reducing cast-saw injuries and had a high theoretical return on investment. These results support further investment in simulation-based training as cost-effective means of improving patient safety and clinical outcomes. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  11. ToxCast: Using high throughput screening to identify profiles of biological activity

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry and bioactivity profiling to predict potential for toxicity and prioritize limited testing resources (www.epa.gov/toc...

  12. Predictive In Vitro Screening of Environmental Chemicals – The ToxCast Project

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry and bioactivity profiling to predict potential for toxicity and prioritize limited testing resources (www.epa.gov/toc...

  13. Evaluation of cast creep occurring during simulated clubfoot correction

    PubMed Central

    Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald, F

    2016-01-01

    The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster-of-Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster-of-Paris (2.0 degrees), then the semi-rigid fiberglass (1.0 degrees), and then the rigid fiberglass (0.4 degrees). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi—linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care. PMID:23636764

  14. Comparative Evaluation of Conventional and Accelerated Castings on Marginal Fit and Surface Roughness

    PubMed Central

    Jadhav, Vivek Dattatray; Motwani, Bhagwan K.; Shinde, Jitendra; Adhapure, Prasad

    2017-01-01

    Aims: The aim of this study was to evaluate the marginal fit and surface roughness of complete cast crowns made by a conventional and an accelerated casting technique. Settings and Design: This study was divided into three parts. In Part I, the marginal fit of full metal crowns made by both casting techniques in the vertical direction was checked, in Part II, the fit of sectional metal crowns in the horizontal direction made by both casting techniques was checked, and in Part III, the surface roughness of disc-shaped metal plate specimens made by both casting techniques was checked. Materials and Methods: A conventional technique was compared with an accelerated technique. In Part I of the study, the marginal fit of the full metal crowns as well as in Part II, the horizontal fit of sectional metal crowns made by both casting techniques was determined, and in Part III, the surface roughness of castings made with the same techniques was compared. Statistical Analysis Used: The results of the t-test and independent sample test do not indicate statistically significant differences in the marginal discrepancy detected between the two casting techniques. Results: For the marginal discrepancy and surface roughness, crowns fabricated with the accelerated technique were significantly different from those fabricated with the conventional technique. Conclusions: Accelerated casting technique showed quite satisfactory results, but the conventional technique was superior in terms of marginal fit and surface roughness. PMID:29042726

  15. "Split Cast Mounting: Review and New Technique".

    PubMed

    Gundawar, S M; Pande, Neelam A; Jaiswal, Priti; Radke, U M

    2014-12-01

    For the fabrication of a prosthesis, the Prosthodontist meticulously performs all the steps. The laboratory technician then make every effort/strives to perform the remaining lab procedures. However when the processed dentures are remounted on the articulator, some changes are seen. These changes may be divided into two categories: Pre-insertion and post-insertion changes, which deal with the physical properties of the materials involved (Parker, J Prosthet Dent 31:335-342, 1974). Split cast mounting is the method of mounting casts on the articulator. It is essentially a maxillary cast constructed in two parts with a horizontal division. The procedure allows for the verification of the accuracy of the initial mounting and the ease of removal and replacement of the cast. This provides a precise means of correcting the changes in occlusion occurring as a result of the processing technique (Nogueira et al., J Prosthet Dent 91:386-388, 2004). Instability of the split mounting has always been a problem to the Prosthodontist thereby limiting its use. There are various materials mentioned in the literature. The new technique by using Dowel pins and twill thread is very easy, cheaper and simple way to stabilize the split mounting. It is useful and easy in day to day laboratory procedures. The article presents different methods of split cast mounting and the new procedure using easily available materials in prosthetic laboratory.

  16. Experimental study on the measurement of uranium casting enrichment by time-dependent coincidence method

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Xiong; Li, Jian-Sheng; Gong, Jian; Zhu, Jian-Yu; Huang, Po

    2013-10-01

    Based on the time-dependent coincidence method, a preliminary experiment has been performed on uranium metal castings with similar quality (about 8-10 kg) and shape (hemispherical shell) in different enrichments using neutron from Cf fast fission chamber and timing DT accelerator. Groups of related parameters can be obtained by analyzing the features of time-dependent coincidence counts between source-detector and two detectors to characterize the fission signal. These parameters have high sensitivity to the enrichment, the sensitivity coefficient (defined as (ΔR/Δm)/R¯) can reach 19.3% per kg of 235U. We can distinguish uranium castings with different enrichments to hold nuclear weapon verification.

  17. X-ray tomography studies on porosity and particle size distribution in cast in-situ Al-Cu-TiB{sub 2} semi-solid forged composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, James; Mandal, Animesh

    X-ray computed tomography (XCT) was used to characterise the internal microstructure and clustering behaviour of TiB{sub 2} particles in in-situ processed Al-Cu metal matrix composites prepared by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly disperse TiB{sub 2} particles in the composite. Quantification of porosity and clustering of TiB{sub 2} particles was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-cast sample using XCT. Results show that the porosity content was decreased by about 40% due to semi-solid forging as compared to the as-cast condition. Further, XCT resultsmore » show that the 30% forging reduction resulted in greater uniformity in distribution of TiB{sub 2} particles within the composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show that the application of forging in semi-solid state enhances particle distribution and reduces porosity formation in cast in-situ Al-Cu-TiB{sub 2} metal matrix composites. - Highlights: •XCT was used to visualise 3D internal structure of Al-Cu-TiB{sub 2} MMCs. •Al-Cu-TiB{sub 2} MMC was prepared by casting using flux assisted synthesis method. •TiB{sub 2} particles and porosity size distribution were evaluated. •Results show that forging in semi-solid condition decreases the porosity content and improve the particle dispersion in MMCs.« less

  18. Reliability of capturing foot parameters using digital scanning and the neutral suspension casting technique

    PubMed Central

    2011-01-01

    Background A clinical study was conducted to determine the intra and inter-rater reliability of digital scanning and the neutral suspension casting technique to measure six foot parameters. The neutral suspension casting technique is a commonly utilised method for obtaining a negative impression of the foot prior to orthotic fabrication. Digital scanning offers an alternative to the traditional plaster of Paris techniques. Methods Twenty one healthy participants volunteered to take part in the study. Six casts and six digital scans were obtained from each participant by two raters of differing clinical experience. The foot parameters chosen for investigation were cast length (mm), forefoot width (mm), rearfoot width (mm), medial arch height (mm), lateral arch height (mm) and forefoot to rearfoot alignment (degrees). Intraclass correlation coefficients (ICC) with 95% confidence intervals (CI) were calculated to determine the intra and inter-rater reliability. Measurement error was assessed through the calculation of the standard error of the measurement (SEM) and smallest real difference (SRD). Results ICC values for all foot parameters using digital scanning ranged between 0.81-0.99 for both intra and inter-rater reliability. For neutral suspension casting technique inter-rater reliability values ranged from 0.57-0.99 and intra-rater reliability values ranging from 0.36-0.99 for rater 1 and 0.49-0.99 for rater 2. Conclusions The findings of this study indicate that digital scanning is a reliable technique, irrespective of clinical experience, with reduced measurement variability in all foot parameters investigated when compared to neutral suspension casting. PMID:21375757

  19. Method of forming a relatively stable slip of silicon metal particles and yttrium containing particles

    DOEpatents

    Dickie, Ray A.; Mangels, John A.

    1984-01-01

    The method concerns forming a relatively stable slip of silicon metal particles and yttrium containing particles. In one embodiment, a casting slip of silicon metal particles is formed in water. Particles of a yttrium containing sintering aid are added to the casting slip. The yttrium containing sintering aid is a compound which has at least some solubility in water to form Y.sup.+3 ions which have a high potential for totally flocculating the silicon metal particles into a semiporous solid. A small amount of a fluoride salt is added to the casting slip which contains the yttrium containing sintering aid. The fluoride salt is one which will produce fluoride anions when dissolved in water. The small amount of the fluoride anions produced are effective to suppress the flocculation of the silicon metal particles by the Y.sup.+3 ions so that all particles remain in suspension in the casting slip and the casting slip has both an increased shelf life and can be used to cast articles having a relatively thick cross-section. The pH of the casting slip is maintained in a range from 7.5 to 9. Preferably, the fluoride salt used is one which is based on a monovalent cation such as sodium or ammonia. The steps of adding the yttrium containing sintering aid and the fluoride salt may be interchanged if desired, and the salt may be added to a solution containing the sintering aid prior to addition of the silicon metal particles.

  20. Compound cast product and method for producing a compound cast product

    DOEpatents

    Meyer, Thomas N.; Viswanathan, Srinath

    2002-09-17

    A compound cast product is formed in a casting mold (14) having a mold cavity (16) sized and shaped to form the cast product. A plurality of injectors (24) is supported from a bottom side (26) of the casting mold (14). The injectors (24) are in fluid communication with the mold cavity (16) through the bottom side (26) of the casting mold (14). A molten material holder furnace (12) is located beneath the casting mold (14). The holder furnace (12) defines molten material receiving chambers (36) configured to separately contain supplies of two different molten materials (37, 38). The holder furnace (12) is positioned such that the injectors (24) extend downward into the receiving chamber (36). The receiving chamber (36) is separated into at least two different flow circuits (51, 52). A first molten material (37) is received in a first flow circuit (51), and a second molten material (38) is received into a second flow circuit (52). The first and second molten materials (37, 38) are injected into the mold cavity (16) by the injectors (24) acting against the force of gravity. The injectors (24) are positioned such that the first and second molten materials (37, 38) are injected into different areas of the mold cavity (16). The molten materials (37, 38) are allowed to solidify and the resulting compound cast product is removed from the mold cavity (16).

  1. Use of freeze-casting in advanced burner reactor fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R.

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by thatmore » fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)« less

  2. Silicon-based Porous Ceramics via Freeze Casting of Preceramic Polymers

    NASA Astrophysics Data System (ADS)

    Naviroj, Maninpat

    Freeze casting is a technique for processing porous materials that has drawn significant attention for its effectiveness in producing a variety of tailorable pore structures for ceramics, metals, and polymers. With freeze casting, pores are generated based on a solidification process where ice crystals act as a sacrificial template which can eventually be sublimated to create pores. While the majority of freeze-casting studies have been performed using conventional ceramic suspensions, this work explores an alternative processing route by freeze casting with preceramic polymer solutions. Significant differences exist between freeze casting of a particulate suspension and a polymeric solution. These changes affect the processing method, solidification behavior, and pore structure, thereby introducing new challenges and possibilities for the freeze-casting technique. The first part of this study explored the processing requirements involved with freeze casting of preceramic polymers, along with methods to control the resulting pore structure. Solvent choice, freezing front velocity, and polymer concentration were used as processing variables to manipulate the pore structures. A total of seven organic solvents were freeze cast with a polymethylsiloxane preceramic polymer to produce ceramics with isotropic, dendritic, prismatic, and lamellar pore morphologies. Changes in freezing front velocity and polymer concentration were shown to influence pore size, shape, and connectivity. Differences between suspension- and solution-based samples freeze cast under equivalent conditions were also investigated. Certain solidification microstructures were strongly affected by the presence of suspended particles, creating differences between pore structures generated from the same solvents. Additionally, processing of solution-based samples were found to be the more facile technique. Compressive strength and water permeability of dendritic and lamellar structures were analyzed to determine functional differences between the pore structures. Results show that dendritic structures were up to 30 times stronger, while lamellar structures provided higher permeability constants. A change in freezing front velocity was shown to significantly affect permeability but not compressive strength. Finally, improved pore alignment along the freezing direction was achieved by controlling the nucleation and growth of solvent crystals through the use of a grain-selection template. Dendritic samples freeze cast with a template showed substantial increase in pore alignment, as determined by image analysis and permeability tests, with the permeability constant increasing by up to 6-fold when compared to a control sample.

  3. ExpoCast: Exposure Science for Prioritization and Toxicity Testing (S)

    EPA Science Inventory

    The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCast. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize limi...

  4. ExpoCast: Exposure Science for Prioritization and Toxicity Testing

    EPA Science Inventory

    The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCastTM. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize l...

  5. The Fractional Step Method Applied to Simulations of Natural Convective Flows

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The development of the momentum and continuity equations for natural convection in a fluid, a permeable medium, and in a binary alloy undergoing directional solidification will be presented. Finally, results for natural convection in a pure liquid, natural convection in a medium with a constant permeability, and for directional solidification will be presented.

  6. A Method for Immobilizing the Forelimbs of Rabbits.

    PubMed

    Thunder, Richard M.; Chang, James; Broome, Rosemary L.; Most, Daniel

    1998-09-01

    Immobilizing the forelimbs of rabbits after surgical procedures is necessary to allow healing, yet it often can be difficult, because rabbits are often able to pull the repaired limb from its cast soon after surgery and well before adequate tissue repair has taken place. We describe here a method of immobilization that uses 3 layers of cast material combined with flexion of the radiocarpal and radiohumeral joints. This method resulted in successful immobilization in 97% of the rabbits on which it was used.

  7. New sulphiding method for steel and cast iron parts

    NASA Astrophysics Data System (ADS)

    Tarelnyk, V.; Martsynkovskyy, V.; Gaponova, O.; Konoplianchenko, Ie; Dovzyk, M.; Tarelnyk, N.; Gorovoy, S.

    2017-08-01

    A new method for sulphiding steel and cast iron part surfaces by electroerosion alloying (EEA) with the use of a special electrode is proposed, which method is characterized in that while manufacturing the electrode, on its surface, in any known manner (punching, threading, pulling, etc.), there is formed at least a recess to be filled with sulfur as a consistent material, and then there is produced EEA by the obtained electrode without waiting for the consistent material to become dried.

  8. Local ventilation solution for large, warm emission sources.

    PubMed

    Kulmala, Ilpo; Hynynen, Pasi; Welling, Irma; Säämänen, Arto

    2007-01-01

    In a foundry casting line, contaminants are released from a large area. Casting fumes include both volatile and particulate compounds. The volatile fraction contains hydrocarbons, whereas the particulate fraction mostly comprises a mixture of vaporized metal fumes. Casting fumes lower the air quality in foundries. The design of local ventilation for the casting area is a challenging task, because of the large casting area and convection plumes from warm moulds. A local ventilation solution for the mould casting area was designed and dimensioned with the aid of computational fluid dynamic (CFD) calculations. According to the calculations, the most efficient solution was a push-pull ventilation system. The prototype of the push-pull system was built and tested in actual operation at the foundry. The push flow was generated by a free plane jet that blew across the 10 m wide casting area towards an exhaust hood on the opposite side of the casting lines. The capture efficiency of the prototype was determined by the tracer gas method. The measured capture efficiencies with push jet varied between 40 and 80%, depending on the distance between the source and the exhaust. With the aid of the push flow, the average capture efficiency was increased from 40 (without jet) to 60%.

  9. Experimental Studies of Heat-Transfer Behavior at a Casting/Water-Cooled-Mold Interface and Solution of the Heat-Transfer Coefficient

    NASA Astrophysics Data System (ADS)

    Zeng, Y. D.; Wang, F.

    2018-02-01

    In this paper, we propose an experimental model for forming an air gap at the casting/mold interface during the solidification process of the casting, with the size and formation time of the air gap able to be precisely and manually controlled. Based on this model, experiments of gravity casting were performed, and on the basis of the measured temperatures at different locations inside the casting and the mold, the inverse analysis method of heat transfer was applied to solve for the heat-transfer coefficient at the casting/mold interface during the solidification process. Furthermore, the impacts of the width and formation time of the air gap on the interface heat-transfer coefficient (IHTC) were analyzed. The results indicate that the experimental model succeeds in forming an air gap having a certain width at any moment during solidification of the casting, thus allowing us to conveniently and accurately study the impact of the air gap on IHTC using the model. In addition, the casting/mold IHTC is found to first rapidly decrease as the air gap forms and then slowly decrease as the solidification process continues. Moreover, as the width of the air gap and the formation time of the air gap increase, the IHTC decreases.

  10. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation wasmore » observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.« less

  11. Improving the fit of implant prosthetics: an in vitro study.

    PubMed

    Yannikakis, Stavros; Prombonas, Anthony

    2013-01-01

    Accurate and passive fit between a prosthesis and its supporting implants has been considered a prerequisite for successful long-term osseointegration. The objective of this in vitro study was to evaluate the strain development during tightening of a five-unit screw-retained superstructure constructed using five different methods. Five-unit screw-retained fixed partial prostheses (n = 25) were fabricated on three implants embedded in an epoxy resin block using five different methods: (1) cobalt-chromium (Co-Cr), plastic cylinders, one-piece cast; (2) Co-Cr, plastic cylinders, framework sectioned, preceramic laser-welding soldering; (3) gold-platinum (Au-Pt), gold cylinders, one-piece cast; (4) Au-Pt, gold cylinders, framework sectioned, preceramic laser-welding soldering; (5) Co-Cr, one-piece cast, and cementation to "passive abutments" (Southern Implants) after final finishing and polishing. Strain gauges (SG) were attached to the fixed partial prosthesis (FPP) and to the resin block to measure the stress created during screw tightening. The combination of Co-Cr alloy and plastic cylinders in a one-piece cast showed such an inadequate fit among the fabricated methods that this group was excluded from the remainder of the experiment. Specimens of Au-Pt cast on gold cylinders in one piece showed higher strain development than the other groups used in this study, with strains ranging from 223.1 to 2,198.1 Μm/m. Sectioning and soldering significantly improved the overall fit. FPPs of Co-Cr in a one-piece cast cemented to "passive abutments" produced the best level of fit, with the least strain development in the prosthesis and the resin block (59 to 204.6 Μm/m). Absolute fit of superstructures on implants is not possible using conventional laboratory procedures. Cementing FPPs onto prefabricated cylinders directly onto the implants significantly reduces strain development compared to the other fabrication methods.

  12. Method for removing volatile components from a ceramic article, and related processes

    DOEpatents

    Klug, Frederic Joseph; DeCarr, Sylvia Marie

    2002-01-01

    A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.

  13. Effect of dental technician disparities on the 3-dimensional accuracy of definitive casts.

    PubMed

    Emir, Faruk; Piskin, Bulent; Sipahi, Cumhur

    2017-03-01

    Studies that evaluated the effect of dental technician disparities on the accuracy of presectioned and postsectioned definitive casts are lacking. The purpose of this in vitro study was to evaluate the accuracy of presectioned and postsectioned definitive casts fabricated by different dental technicians by using a 3-dimensional computer-aided measurement method. An arch-shaped metal master model consisting of 5 abutments resembling prepared mandibular incisors, canines, and first molars and with a 6-degree total angle of convergence was designed and fabricated by computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Complete arch impressions were made (N=110) from the master model, using polyvinyl siloxane (PVS) and delivered to 11 dental technicians. Each technician fabricated 10 definitive casts with dental stone, and the obtained casts were numbered. All casts were sectioned, and removable dies were obtained. The master model and the presectioned and postsectioned definitive casts were digitized with an extraoral scanner, and the virtual master model and virtual presectioned and postsectioned definitive casts were obtained. All definitive casts were compared with the master model by using computer-aided measurements, and the 3-dimensional accuracy of the definitive casts was determined with best fit alignment and represented in color-coded maps. Differences were analyzed using univariate analyses of variance, and the Tukey honest significant differences post hoc tests were used for multiple comparisons (α=.05). The accuracy of presectioned and postsectioned definitive casts was significantly affected by dental technician disparities (P<.001). The largest dimensional changes were detected in the anterior abutments of both of the definitive casts. The changes mostly occurred in the mesiodistal dimension (P<.001). Within the limitations of this in vitro study, the accuracy of presectioned and postsectioned definitive casts is susceptible to dental technician differences. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Technique to verify the accuracy of a definitive cast before the fabrication of a fixed dental prosthesis.

    PubMed

    Farah, Ra'fat I; Alshabi, Abdullah M

    2016-09-01

    This report describes a straightforward technique for verifying the accuracy of a definitive cast by using a maximal intercuspation record fabricated from polyvinyl siloxane occlusal registration material. This precise verification method detects inaccurate casts before the dental prosthesis is fabricated, thus saving chairside and laboratory time while reducing the number of costly prosthesis remakes. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Solid Propellant Subscale Burning Rate Analysis Methods for US and Selected NATO Facilities

    DTIC Science & Technology

    2002-01-01

    impossibility of the center of a particle lying closer than its radius from a solid boundary, * Due to surface tension and sedimentation (tends to level...34 effect (for bottom cast or bayonet cast grains) may consist of sedimentation of larger particles against the walls during casting flow, with the...February 2000. 91 Ratti A., "Metodi di Riduzione Dati Balistici per i Boosters a Propellente Solido di Ariane-4 e di Ariane-5," M.Sc. Thesis in Aerospace

  16. Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.

    2010-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341

  17. Al-TiH2 Composite Foams Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Prasada Rao, A. K.; Oh, Y. S.; Ain, W. Q.; A, Azhari; Basri, S. N.; Kim, N. J.

    2016-02-01

    The work presented here in describes the synthesis of aluminum based titanium-hydride particulate composite by casting method and its foaming behavior of magnesium alloy. Results obtained indicate that the Al-10TiH2 composite can be synthesized successfully by casting method. Further, results also reveal that closed-cell magnesium alloy foam can be synthesized by using Al-10TiH2 composite as a foaming agent.

  18. Generation and evaluation of 3D digital casts of maxillary defects based on multisource data registration: A pilot clinical study.

    PubMed

    Ye, Hongqiang; Ma, Qijun; Hou, Yuezhong; Li, Man; Zhou, Yongsheng

    2017-12-01

    Digital techniques are not clinically applied for 1-piece maxillary prostheses containing an obturator and removable partial denture retained by the remaining teeth because of the difficulty in obtaining sufficiently accurate 3-dimensional (3D) images. The purpose of this pilot clinical study was to generate 3D digital casts of maxillary defects, including the defective region and the maxillary dentition, based on multisource data registration and to evaluate their effectiveness. Twelve participants with maxillary defects were selected. The maxillofacial region was scanned with spiral computer tomography (CT), and the maxillary arch and palate were scanned using an intraoral optical scanner. The 3D images from the CT and intraoral scanner were registered and merged to form a 3D digital cast of the maxillary defect containing the anatomic structures needed for the maxillary prosthesis. This included the defect cavity, maxillary dentition, and palate. Traditional silicone impressions were also made, and stone casts were poured. The accuracy of the digital cast in comparison with that of the stone cast was evaluated by measuring the distance between 4 anatomic landmarks. Differences and consistencies were assessed using paired Student t tests and the intraclass correlation coefficient (ICC). In 3 participants, physical resin casts were produced by rapid prototyping from digital casts. Based on the resin casts, maxillary prostheses were fabricated by using conventional methods and then evaluated in the participants to assess the clinical applicability of the digital casts. Digital casts of the maxillary defects were generated and contained all the anatomic details needed for the maxillary prosthesis. Comparing the digital and stone casts, a paired Student t test indicated that differences in the linear distances between landmarks were not statistically significant (P>.05). High ICC values (0.977 to 0.998) for the interlandmark distances further indicated the high degree of consistency between the digital and stone casts. The maxillary prostheses showed good clinical effectiveness, indicating that the corresponding digital casts met the requirements for clinical application. Based on multisource data from spiral CT and the intraoral scanner, 3D digital casts of maxillary defects were generated using the registration technique. These casts were consistent with conventional stone casts in terms of accuracy and were suitable for clinical use. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys.

    PubMed

    Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao

    2015-08-01

    There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting. © 2015 Eur J Oral Sci.

  20. Enhancement of Efficiency and Reduction of Grid Thickness Variation on Casting Process with Lean Six Sigma Method

    NASA Astrophysics Data System (ADS)

    Witantyo; Setyawan, David

    2018-03-01

    In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.

  1. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  2. Modeling limb-bud dysmorphogenesis in a predictive virtual embryo model

    EPA Science Inventory

    ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational methods that integrate knowledge of biological systems and in vivo toxicities (www.epa.gov/ncct/toxcast/). Many ToxCast assays assess signaling pathways and c...

  3. Biotransformation and ToxCast™

    EPA Science Inventory

    A major focus in toxicology research is the development of in vitro methods to predict in vivo chemical toxicity. Within the EPA ToxCast program, a broad range of in vitro biochemical and cellular assays have been deployed to profile the biological activity of 320 ToxCast Phase I...

  4. Understanding the Biology and Technology of ToxCast and Tox21 Assays

    EPA Science Inventory

    The ToxCast high-throughput toxicity (HTT) testing methods have been developed to evaluate the hazard potential of diverse environmental, industrial and consumer product chemicals. The main goal is prioritizing the compounds of greatest concern for more detailed toxicological stu...

  5. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions

    DOEpatents

    Mrazek, Franklin C.; Smaga, John A.; Battles, James E.

    1983-01-01

    A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  6. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  7. Hydrophobic edible films made up of tomato cutin and pectin.

    PubMed

    Manrich, Anny; Moreira, Francys K V; Otoni, Caio G; Lorevice, Marcos V; Martins, Maria A; Mattoso, Luiz H C

    2017-05-15

    Cutin is the biopolyester that protects the extracellular layer of terrestrial plants against dehydration and environmental stresses. In this work, cutin was extracted from tomato processing waste and cast into edible films having pectin as a binding agent. The influences of cutin/pectin ratio (50/50 and 25/75), film-forming suspension pH, and casting method on phase dispersion, water resistance and affinity, and thermal and mechanical properties of films were investigated. Dynamic light scattering and scanning electron microscopy revealed that cutin phase aggregation was reduced by simply increasing pH. The 50/50 films obtained by casting neutral-pH suspensions presented uniform cutin dispersion within the pectin matrix. Consequently, these films exhibited lower water uptake and solubility than their acidic counterparts. The cutin/pectin films developed here were shown to mimic tomato peel itself with respect to mechanical strength and thermal stability. Such behavior was found to be virtually independent of pH and casting method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A novel use of QR code stickers after orthopaedic cast application.

    PubMed

    Gough, A T; Fieraru, G; Gaffney, Pav; Butler, M; Kincaid, R J; Middleton, R G

    2017-07-01

    INTRODUCTION We present a novel solution to ensure that information and contact details are always available to patients while in cast. An information sticker containing both telephone numbers and a Quick Response (QR) code is applied to the cast. When scanned with a smartphone, the QR code loads the plaster team's webpage. This contains information and videos about cast care, complications and enhancing recovery. METHODS A sticker was designed and applied to all synthetic casts fitted in our fracture clinic. On cast removal, patients completed a questionnaire about the sticker. A total of 101 patients were surveyed between November 2015 and February 2016. The questionnaire comprised ten binary choice questions. RESULTS The vast majority (97%) of patients had the sticker still on their cast when they returned to clinic for cast removal. Eighty-four per cent of all patients felt reassured by the presence of the QR code sticker. Nine per cent used the contact details on the cast to seek advice. Over half (56%) had a smartphone and a third (33%) of these scanned the QR code. Of those who scanned the code, 95% found the information useful. CONCLUSIONS This study indicates that use of a QR code reassures patients and is an effective tool in the proactive management of potential cast problems. The QR code sticker is now applied to all casts across our trust. In line with NHS England's Five Year Forward View calling for enhanced use of smartphone technology, our trust is continuing to expand its portfolio of patient information accessible via QR codes. Other branches of medicine may benefit from incorporating QR codes as portals to access such information.

  9. Cardiovascular cast model fabrication and casting effectiveness evaluation in fetus with severe congenital heart disease or normal heart.

    PubMed

    Wang, Yu; Cao, Hai-yan; Xie, Ming-xing; He, Lin; Han, Wei; Hong, Liu; Peng, Yuan; Hu, Yun-fei; Song, Ben-cai; Wang, Jing; Wang, Bin; Deng, Cheng

    2016-04-01

    To investigate the application and effectiveness of vascular corrosion technique in preparing fetal cardiovascular cast models, 10 normal fetal heart specimens with other congenital disease (control group) and 18 specimens with severe congenital heart disease (case group) from induced abortions were enrolled in this study from March 2013 to June 2015 in our hospital. Cast models were prepared by injecting casting material into vascular lumen to demonstrate real geometries of fetal cardiovascular system. Casting effectiveness was analyzed in terms of local anatomic structures and different anatomical levels (including overall level, atrioventricular and great vascular system, left-sided and right-sided heart), as well as different trimesters of pregnancy. In our study, all specimens were successfully casted. Casting effectiveness analysis of local anatomic structures showed a mean score from 1.90±1.45 to 3.60±0.52, without significant differences between case and control groups in most local anatomic structures except left ventricle, which had a higher score in control group (P=0.027). Inter-group comparison of casting effectiveness in different anatomical levels showed no significant differences between the two groups. Intra-group comparison also revealed undifferentiated casting effectiveness between atrioventricular and great vascular system, or left-sided and right-sided heart in corresponding group. Third-trimester group had a significantly higher perfusion score in great vascular system than second-trimester group (P=0.046), while the other anatomical levels displayed no such difference. Vascular corrosion technique can be successfully used in fabrication of fetal cardiovascular cast model. It is also a reliable method to demonstrate three-dimensional anatomy of severe congenital heart disease and normal heart in fetus.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkagemore » of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results« less

  11. Effect of molybdenum, vanadium, boron on mechanical properties of high chromium white cast iron in as-cast condition

    NASA Astrophysics Data System (ADS)

    Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.

    2016-02-01

    In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.

  12. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  13. The influence of flushing time on the bonding quality of liquid white cast iron on the solid surface of similar material

    NASA Astrophysics Data System (ADS)

    Bandanadjaja, Beny; Purwadi, Wiwik; Idamayanti, Dewi; Lilansa, Noval; Hanaldi, Kus; Nurzaenal, Friya Kurnia

    2018-05-01

    Hard metal castings are widely used in the coal mill pulverizer as construction material for coal crushers. During its operation crushers and mills experience degradation caused by abrasion load. This research dealed with the surface overlaying of similiar material on the surface of white cast iron by mean of gravity casting. The die blank casting was preheated prior to the casting process of outer layer made of Ni-Hard white cast iron to guarantee bonding processes and avoid any crack. The preheating temperature of die blankin ther range of 500C up to 850C was set up to reach the interface temperature in the range of 887°C -1198°C and the flushing time was varied between 10-20 seconds. Studies carried on the microstructure of sample material revealed a formation of metallurgical bonding at the preheating temperature above 625 °C by pouring temperature ranging from 1438 °C to 1468 °C. Metallographical and chemical composition by mean of EDS examination were performed to observed the resut. This research concludes that the casting of Ni-Hard 1 overlay by applying gravity casting method can be done by preheating the surface of casting to 625 °C, interface temperature of 1150 °C, flushing time of 7 seconds and pouring temperature of 1430 °C. Excellent metallurgical bonding at the contact area between dieblank and overlay material has been achieved in which there is no parting line at the interface area to be observed.

  14. Casting made simple using modified sprue design: an in vitro study.

    PubMed

    Baskaran, B Eswaran; Geetha Prabhu, K R; Prabhu, R; Krishna, G Phani; Eswaran, M A; Gajapathi, B

    2014-01-01

    Success in dental casting restorations for fixed partial dentures (FPDs) depends on the castability. Castability is described as the ability of an alloy to faithfully reproduce sharp detail and fine margins of a wax pattern. The goal of a prosthodontist is to provide the patient with restorations that fit precisely. Regardless of the alloy used for casting, the casting technique should yield a casted alloy, which should possess sufficient mass, surface hardness and minimal porosity after casting. Twenty patterns for casting were made from three-dimensional printed resin pattern simulating a 3 unit FPD and casted using modified sprue technique. Later test samples were cemented sequentially on stainless steel model using pressure indicating paste and evaluated for vertical marginal gap in eight predetermined reference areas. Marginal gap were measured in microns using Video Measuring System (VMS2010F-CIP Corporation, Korea). A portion of the axial wall of the cast abutments depicting premolar and molar were sectioned and embedded in acrylic resin and tested for micro hardness using Reichert Polyvar 2 Met Microhardness tester (Reichert, Austria) and porosity using Quantimet Image Analyzer (Quantimet Corporation London, England). The results obtained for marginal gap, micro hardness, and porosity of all test samples were tabulated, descriptive statistics were calculated and the values were found to be within the clinically acceptable range. The new sprue technique can be an alternative and convenient method for casting which would minimize metal wasting and less time consuming. However, further studies with same technique on various parameters are to be conducted for its broad acceptance.

  15. Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Barker, Erin; Cheng, Guang

    2016-01-06

    In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to themore » experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results. This indicates that the developed 3D extrinsic modeling method may be used to examine the influence of various aspects of pore sizes/distributions as well as intrinsic properties (i.e., matrix properties) on the ductility/fracture of Mg castings.« less

  16. Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores.

    PubMed

    Yook, Se-Won; Jung, Hyun-Do; Park, Chang-Hoon; Shin, Kwan-Ha; Koh, Young-Hag; Estrin, Yuri; Kim, Hyoun-Ee

    2012-07-01

    Highly porous titanium with aligned large pores up to 500 μm in size, which is suitable for scaffold applications, was successfully fabricated using the reverse freeze casting method. In this process we have newly developed, the Ti powders migrated spontaneously along the pre-aligned camphene boundaries at a temperature of 45.5°C and formed a titanium-camphene mixture with an aligned structure; this was followed by freeze drying and sintering. As the casting time increased from 24 to 48 h, the initial columnar structures turned into lamellar structures, with the porosity decreasing from 69 to 51%. This reduction in porosity caused the compressive yield strength to increase from 121 to 302 MPa, with an elastic modulus of the samples being in the range of 2-5 GPa. In addition, it was demonstrated that reverse freeze casting can also be successfully applied to various other raw powders, suggesting that the method developed in this work opens up new avenues for the production of a range of porous metallic and ceramic scaffolds with highly aligned pores. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Relationship between Defect Size and Fatigue Life Distributions in Al-7 Pct Si-Mg Alloy Castings

    NASA Astrophysics Data System (ADS)

    Tiryakioğlu, Murat

    2009-07-01

    A new method for predicting the variability in fatigue life of castings was developed by combining the size distribution for the fatigue-initiating defects and a fatigue life model based on the Paris-Erdoğan law for crack propagation. Two datasets for the fatigue-initiating defects in Al-7 pct Si-Mg alloy castings, reported previously in the literature, were used to demonstrate that (1) the size of fatigue-initiating defects follow the Gumbel distribution; (2) the crack propagation model developed previously provides respectable fits to experimental data; and (3) the method developed in the present study expresses the variability in both datasets, almost as well as the lognormal distribution and better than the Weibull distribution.

  18. Casting methods

    DOEpatents

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  19. Wear Resistance of Aluminum Matrix Composites Reinforced with Al2O3 Particles After Multiple Remelting

    NASA Astrophysics Data System (ADS)

    Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej

    2016-08-01

    Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.

  20. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  1. [Effect of preparation methods on the metal-porcelain bond strength of Co-Cr alloys].

    PubMed

    Liu, Jie; Chi, Shuai; Xu, Jin; Wang, Yanyan; Zhan, Desong

    2014-04-01

    To compare the shear bond strength(SBS) of cast Co-Cr alloys and selective laser melting(SLM) Co-Cr alloys with those of dental porcelain. A dental porcelain (Vita) was applied on cast and SLM Co-Cr alloy specimens (n = 10). SBS test was conducted, and fracture mode analysis was determined. Student's t-test by SPSS 13.0 software was employed to analyze the data. The SLM Co-Cr alloy specimens had lower SBS values than the cast Co-Cr alloy specimens (P > 0.05). The metal-porcelain bond strength value of the cast group was (33.11 +/- 4.98) MPa, and that of the SLM group was (30.94 +/- 5.98) MPa. The specimens in both test groups exhibited mixed failure. The metal-porcelain system processed by SLM exhibit a bond strength that is similar to that of the cast group. This system also display a high precision.

  2. Computation material science of structural-phase transformation in casting aluminium alloys

    NASA Astrophysics Data System (ADS)

    Golod, V. M.; Dobosh, L. Yu

    2017-04-01

    Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.

  3. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Martin f. Helmke,

    2014-01-01

    Sampling cast iron produced by the furnace posed two problems. First, verification that the iron was actually cast at Hopewell Furnace was necessary, as some iron objects found at Hopewell may not have originated there. This was accomplished by using artifacts on display at the Hopewell visitor center (fig. 2). All artifacts on display have been positively attributed to the furnace, and stoves produced by the furnace are easily recognized by the name “Hopewell” cast into them. The second problem was the analysis of the trace metal content of the cast iron, because it was not possible to break off part of a historically important artifact and send it to a laboratory for analysis. This problem was solved when the USGS collaborated with West Chester University, which owns a portable X-ray fluorescence (XRF) spectrometer.

  4. Optimizing the use of the thermal integrity system for evaluating auger-cast piles [summary].

    DOT National Transportation Integrated Search

    2016-07-01

    Auger-cast-in-place (ACIP) piles offer an efficient method of constructing and installing piles, : but because the ACIP process is essentially blind and the configuration of the final pile cannot be : assured, applications for ACIP piles have been li...

  5. Novel method for titanium crown casting using a combination of wax patterns fabricated by a CAD/CAM system and a non-expanded investment.

    PubMed

    Zhang, Zutai; Tamaki, Yukimichi; Hotta, Yasuhiro; Miyazaki, Takashi

    2006-07-01

    For titanium casting, most commercial investments for titanium recommend casting at a low mold temperature to reduce oxidation. However, the thermal expansion values of the molds at low casting temperatures may be insufficient. The purpose of the current study was to investigate the possibility of obtaining accurate titanium crown casts using wax pattern fabricated by a CAD/CAM system with a non-expanded mold. Three types of experimental magnesia-based investments (A, B and C) were made and their properties were evaluated for dental use. Two kinds of wax patterns for full-coverage coping crowns (S-0: cement space of 0 microm; S-20: cement space of 20 microm) were fabricated using a commercial CAD/CAM system. A traditional method (TM) using inlay wax was performed for comparison. The investment for titanium casting was decided from the fundamental data of experimental investments. Titanium crowns were replaced on the stone die and the thickness of the cement layer was evaluated. There were no significant differences for the setting time and setting expansion among the experimental investments, but the aluminous cement content played a role in hardening and contracting the mold. The fit of the titanium crowns differed significantly between the TM and the CAD/CAM system. The ranges of thickness obtained from the TM, S-0 and S-20 were 20.78-357.88 microm, 25.12-107.46 microm and 17.84-58.92 microm, respectively. High quality titanium crown casting was obtained using a combination of wax patterns fabricated by a CAD/CAM system and a non-expanded MgO-based investment.

  6. Removable partial denture alloys processed by laser-sintering technique.

    PubMed

    Alageel, Omar; Abdallah, Mohamed-Nur; Alsheghri, Ammar; Song, Jun; Caron, Eric; Tamimi, Faleh

    2018-04-01

    Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p < 0.05). Co-Cr alloys processed by L-1 and L-2 showed higher (p < 0.05) hardness (14-19%), yield strength (10-13%), and fatigue resistance (71-72%) compared to CC alloys. This was probably due to their smaller grain size and higher microstructural homogeneity. All Co-Cr alloys exhibited low porosity (2.1-3.3%); however, pore distribution was more homogenous in L-1 and L-2 alloys when compared to CC alloys. Both laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018. © 2017 Wiley Periodicals, Inc.

  7. The fuzzy algorithm in the die casting mould for the application of multi-channel temperature control

    NASA Astrophysics Data System (ADS)

    Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan

    2017-01-01

    Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.

  8. Mechanical and Microstructural Effects of Thermal Aging on Cast Duplex Stainless Steels by Experiment and Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarm, Samuel C.; Mburu, Sarah N.; Kolli, Ratna P.

    Cast duplex stainless steel piping in light water nuclear reactors expe- rience thermal aging embrittlement during operational service. Interest in extending the operational life to 80 years requires an increased understanding of the microstructural evolution and corresponding changes in mechanical behavior. We analyze the evolution of the microstructure during thermal aging of cast CF-3 and CF-8 stainless steels using electron microscopy and atom probe tomography. The evolution of the mechanical properties is measured concurrently by mechanical methods such as tensile tests, Charpy V-notch tests, and instrumented nanoinden- tation. A microstructure-based finite element method model is developed and uti- lized inmore » conjunction with the characterization results in order to correlate the local stress-strain effects in the microstructure with the bulk measurements. This work is supported by the DOE Nuclear Energy University Programs (NEUP), contract number DE-NE0000724.« less

  9. Does Strict Adherence to the Ponseti Method Improve Isolated Clubfoot Treatment Outcomes? A Two-institution Review.

    PubMed

    Miller, Nancy H; Carry, Patrick M; Mark, Bryan J; Engelman, Glenn H; Georgopoulos, Gaia; Graham, Sue; Dobbs, Matthew B

    2016-01-01

    Despite being recognized as the gold standard in isolated clubfoot treatment, the Ponseti casting method has yielded variable results. Few studies have directly compared common predictors of treatment failure between institutions with high versus low failure rates. We asked: (1) is the provider's rigid adherence to the Ponseti method associated with a lower likelihood of unplanned clubfoot surgery, and (2) at the institution that did not adhere rigidly to Ponseti's principles, are any demographic or treatment-related factors associated with increased likelihood of unplanned clubfoot surgery? After institutional review board approval, a consecutive series of patients with a diagnosis of isolated clubfoot who underwent treatment between January 2003 and December 2007 were identified. At Institution 1, 91 of 133 patients met the eligibility criteria and were followed for a minimum of 2 years compared with 58 of 58 patients at Institution 2. At Institution 1, 16 providers managed care using a conservative casting approach based on the Ponseti method. However, treatment was adapted by the provider(s). At Institution 2, one orthopaedic surgeon managed care with strict adherence to the Ponseti method. Surgical indications at both institutions included the presence of a persistent equinovarus foot position while standing. A chart review was used to collect data related to proportion of patients undergoing unplanned additional treatment for deformity recurrences after Ponseti casting, demographics, and treatment patterns. The proportion of subjects who underwent unplanned major surgical intervention was greater (odds ratio [OR], 51.1; 95% CI, 6.8-384.0; p < 0.001) at Institution 1 (60 of 131, 47%) compared with Institution 2 (two of 91, 2%). There was no difference (p = 0.200) in the proportion of patients who underwent additional casting, repeat tendo Achilles lengthening, and/or anterior tibialis tendon transfer only (minor recurrence) at Institution 1 (nine of 131, 7%) compared with Institution 2 (11 of 91, 13%). At Institution 1, an increase in the number of revision casts (multiple vs no casts, hazard ratio [HR] = 3.9; 95% CI, 2.0-7.6; p < 0.001) and an increase in the number of cast-related complications (multiple vs no complications, HR = 2.8; 95% CI, 1.2-6.7; p = 0.019) were associated with increased risk of major surgery in the multivariate analysis. Rigid commitment to the Ponseti method in the conservative treatment of patients with isolated clubfoot was associated with a lower risk of subsequent unplanned surgical intervention. In addition, clubfoot treatment programs that use a care model that prioritizes continuity in care and dedication to the Ponseti method may decrease the proportion of patients who undergo unplanned surgical intervention. Level III, therapeutic study.

  10. 20180416 - Understanding the Biology and Technology of ToxCast and Tox21 Assays (SETAC Durham NC)

    EPA Science Inventory

    The ToxCast high-throughput toxicity (HTT) testing methods have been developed to evaluate the hazard potential of diverse environmental, industrial and consumer product chemicals. The main goal is prioritizing the compounds of greatest concern for more detailed toxicological stu...

  11. NCCT ToxCast Program for Nanomaterial Prioritization: High-Throughput Screening, Consideration of Exposure, and Bioactivity Profiling/Modeling

    EPA Science Inventory

    Find relationships between bioactivities and NM characteristics or testing conditions. Recommend a dose metric for NMs in vitro studies. Establish associations to in vivo toxicity or pathways identified from testing of conventional chemicals with ToxCast HTS methods. May be abl...

  12. Effect of severe plastic deformation on microstructure of squeeze-cast magnesium alloy AZ31 plate

    NASA Astrophysics Data System (ADS)

    Fong, Kai Soon; Tan, Ming Jen; Atsushi, Danno; Chua, Beng Wah; Ho, Meng Kwong

    2016-10-01

    High cost and poor room temperature formability of magnesium alloy sheet are the key factors that limit its application as a feedstock material for press forming. Production of Mg plates by squeeze casting with further processing by severe plastic deformation (SPD) is a potential method to reduce cost and improve formability. In this study, AZ31 Mg plate of dimension 96×96×4 mm was successfully produced by squeeze casting, using a novel melt transfer technique, at a forging force and speed of 180 Ton and 200 mm/sec respectively. The effect of severe plastic deformation (SPD) using groove pressing on the mechanical properties of squeeze-casted Mg plate after partial homogenization was subsequently investigated. Observation of the microstructure after two cycles of groove pressing, under decreasing temperature from 543K to 493K, shows a significant grain refinement from 39 to 4.7 µm. The Vickers hardness increased by approximately 25% from 56 to 74.1 which suggests an improvement in mechanical strength as a result of both the grain refinement and work hardening. The result shows that squeeze casting combined with groove pressing is potentially an effective method for preparation of thin magnesium alloy plate with fine-grained structure and improved mechanical properties.

  13. Accuracy of Multiple Pour Cast from Various Elastomer Impression Methods

    PubMed Central

    Saad Toman, Majed; Ali Al-Shahrani, Abdullah; Ali Al-Qarni, Abdullah

    2016-01-01

    The accurate duplicate cast obtained from a single impression reduces the profession clinical time, patient inconvenience, and extra material cost. The stainless steel working cast model assembly consisting of two abutments and one pontic area was fabricated. Two sets of six each custom aluminum trays were fabricated, with five mm spacer and two mm spacer. The impression methods evaluated during the study were additional silicone putty reline (two steps), heavy-light body (one step), monophase (one step), and polyether (one step). Type IV gypsum casts were poured at the interval of one hour, 12 hours, 24 hours, and 48 hours. The resultant cast was measured with traveling microscope for the comparative dimensional accuracy. The data obtained were subjected to Analysis of Variance test at significance level <0.05. The die obtained from two-step putty reline impression techniques had the percentage of variation for the height −0.36 to −0.97%, while diameter was increased by 0.40–0.90%. The values for one-step heavy-light body impression dies, additional silicone monophase impressions, and polyether were −0.73 to −1.21%, −1.34%, and −1.46% for the height and 0.50–0.80%, 1.20%, and −1.30% for the width, respectively. PMID:28096815

  14. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their longmore » freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.« less

  15. Culture in psychiatric epidemiology: using ethnography and multiple mediator models to assess the relationship of caste with depression and anxiety in Nepal.

    PubMed

    Kohrt, Brandon A; Speckman, Rebecca A; Kunz, Richard D; Baldwin, Jennifer L; Upadhaya, Nawaraj; Acharya, Nanda Raj; Sharma, Vidya Dev; Nepal, Mahendra K; Worthman, Carol M

    2009-01-01

    The causes of ethnic and caste-based disparities in mental health are poorly understood. The study aimed to identify mediators underlying caste-based disparities in mental health in Nepal. A mixed methods ethnographic and epidemiological study of 307 adults (Dalit/Nepali, n=75; high caste Brahman and Chhetri, n=232) was assessed with Nepali versions of Beck Depression (BDI) and Anxiety (BAI) Inventories. One-third (33.7%) of participants were classified as depressed: Dalit/Nepali 50.0%, high caste 28.4%. One quarter (27.7%) of participants were classified as anxious: Dalit/Nepali 50.7%, high caste 20.3%. Ethnographic research identified four potential mediators: Stressful life events, owning few livestock, no household income, and lack of social support. The direct effect of caste was 1.08 (95% CI -1.10-3.27) on depression score and 4.76 (95% CI 2.33-7.19) on anxiety score. All four variables had significant indirect (mediation) effects on anxiety, and all but social support had significant indirect effects on depression. Caste-based disparities in mental health in rural Nepal are statistically mediated by poverty, lack of social support, and stressful life events. Interventions should target these areas to alleviate the excess mental health burden born by Dalit/Nepali women and men.

  16. Precision of Fit of Titanium and Cast Implant Frameworks Using a New Matching Formula

    PubMed Central

    Sierraalta, Marianella; Vivas, Jose L.; Razzoog, Michael E.; Wang, Rui-Feng

    2012-01-01

    Statement of the Problem. Fit of prosthodontic frameworks is linked to the lifetime survival of dental implants and maintenance of surrounding bone. Purpose. The purpose of this study was to evaluate and compare the precision of fit of milled one-piece Titanium fixed complete denture frameworks to that of conventional cast frameworks. Material and Methods. Fifteen casts fabricated from a single edentulous CAD/CAM surgical guide were separated in two groups and resin patterns simulating the framework for a fixed complete denture developed. Five casts were sent to dental laboratories to invest, cast in a Palladium-Gold alloy and fit the framework. Ten casts had the resin pattern scanned for fabrication of milled bars in Titanium. Using measuring software, positions of implant replicas in the definitive model were recorded. The three dimensional spatial orientation of each implant replica was matched to the implant replica. Results. Results demonstrated the mean vertical gap of the Cast framework was 0.021 (+0.004) mm and 0.012 (0.002) mm determined by fixed and unfixed best-fit matching coordinate system. For Titanium frameworks they were 0.0037 (+0.0028) mm and 0.0024 (+0.0005) mm, respectively. Conclusions. Milled one-piece Titanium fixed complete denture frameworks provided a more accurate precision of fit then traditional cast frameworks. PMID:22550486

  17. Feasibility of a Braided Composite for Orthopedic Bone Cast

    PubMed Central

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized. PMID:23459455

  18. Low-cost single-crystal turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Heath, B.; Fujii, M.

    1983-01-01

    The exothermic casting process was successfully developed into a low cost nonproprietary method for producing single crystal (SC) castings. Casting yields were lower than expected, on the order of 20 percent, but it is felt that the casting yield could be significantly improved with minor modifications to the process. Single crystal Mar-M 247 and two derivative SC alloys were developed. NASAIR 100 and SC Alloy 3 were fully characterized through mechanical property testing. SC Mar-M 247 shows no significant improvement in strength over directionally solidified (DS) Mar-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. The 1000 hr/238 MPa (20 ksi) stress rupture capability compared to DS Mar-M 247 was improved over 28 C. Firtree testing, holography, and strain gauge rig testing were used to evaluate the effects of the anisotropic characteristics of single crystal materials. In general, the single crystal material behaved similarly to DS Mar-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined.

  19. Effects of Casting Conditions on the Structure and Magnetic Properties of the Co-19 at.%Al-6 at. %W Alloy

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Stepanova, N. N.; Rigmant, M. B.; Davidov, D. I.; Shishkin, D. A.; Romanov, E. P.

    The Co-19 at.%Al-6 at.%W alloy was prepared by two methods of casting. We used arc melting under an argon atmosphere with casting into a copper water-cooled casting mold and induction melting furnace with casting into a ceramic Al2O3 mold. According to the X-ray and SEM analyses, phase compositions depend on the cooling rate of the ingot after melting. After arc melting, the cast alloy has a three-phase structure, consisting of γ cobalt (FCC), intermetallic phases CoAl (B2) type, and Co3W (DO19) type. After the induction melting, the alloy has a three-phase structure, consisting of γ cobalt (FCC), intermetallic phases CoAl (B2) type, and Co7W6 (µ) type. All phases in the investigated ternary alloy at the room temperature are ferromagnetic. Curie temperatures of all obtained phases were defined. It is shown that the magnetic properties of the studied alloy are typical for soft magnetic materials.

  20. Feasibility of a braided composite for orthopedic bone cast.

    PubMed

    Evans, Katherine R; Carey, Jason P

    2013-01-01

    A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized.

  1. Evaluation of a 3D stereophotogrammetric technique to measure the stone casts of patients with unilateral cleft lip and palate.

    PubMed

    Sforza, Chiarella; De Menezes, Marcio; Bresciani, Elena; Cerón-Zapata, Ana M; López-Palacio, Ana M; Rodriguez-Ardila, Myriam J; Berrio-Gutiérrez, Lina M

    2012-07-01

    To assess a three-dimensional stereophotogrammetric method for palatal cast digitization of children with unilateral cleft lip and palate. As part of a collaboration between the University of Milan (Italy) and the University CES of Medellin (Colombia), 96 palatal cast models obtained from neonatal patients with unilateral cleft lip and palate were obtained and digitized using a three-dimensional stereophotogrammetric imaging system. Three-dimensional measurements (cleft width, depth, length) were made separately for the longer and shorter cleft segments on the digital dental cast surface between landmarks, previously marked. Seven linear measurements were computed. Systematic and random errors between operators' tracings, and accuracy on geometric objects of known size were calculated. In addition, mean measurements from three-dimensional stereophotographs were compared statistically with those from direct anthropometry. The three-dimensional method presented good accuracy error (<0.9%) on measuring geometric objects. No systematic errors between operators' measurements were found (p > .05). Statistically significant differences (p < 5%) were noted for different methods (caliper versus stereophotogrammetry) for almost all distances analyzed, with mean absolute difference values ranging between 0.22 and 3.41 mm. Therefore, rates for the technical error of measurement and relative error magnitude were scored as moderate for Ag-Am and poor for Ag-Pg and Am-Pm distances. Generally, caliper values were larger than three-dimensional stereophotogrammetric values. Three-dimensional stereophotogrammetric systems have some advantages over direct anthropometry, and therefore the method could be sufficiently precise and accurate on palatal cast digitization with unilateral cleft lip and palate. This would be useful for clinical analyses in maxillofacial, plastic, and aesthetic surgery.

  2. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  3. Plane-Based Sampling for Ray Casting Algorithm in Sequential Medical Images

    PubMed Central

    Lin, Lili; Chen, Shengyong; Shao, Yan; Gu, Zichun

    2013-01-01

    This paper proposes a plane-based sampling method to improve the traditional Ray Casting Algorithm (RCA) for the fast reconstruction of a three-dimensional biomedical model from sequential images. In the novel method, the optical properties of all sampling points depend on the intersection points when a ray travels through an equidistant parallel plan cluster of the volume dataset. The results show that the method improves the rendering speed at over three times compared with the conventional algorithm and the image quality is well guaranteed. PMID:23424608

  4. Rheology of composite solid propellants during motor casting

    NASA Technical Reports Server (NTRS)

    Klager, K.; Rogers, C. J.; Smith, P. L.

    1978-01-01

    Results of casting studies are reviewed so as to define the viscosity criteria insuring the fabrication of defect-free grains. The rheology of uncured propellants is analyzed showing that a realistic assessment of a propellant's flow properties must include measurement of viscosity as a function of shear stress and time after curing agent. Methods for measuring propellant viscosity are discussed, with particular attention given to the Haake-Rotovisko rotational viscometer. The effects of propellant compositional and processing variables on apparent viscosity are examined, as are results relating rheological behavior to grain defect formation during casting.

  5. An alternative section method for casting and posterior laser welding of metallic frameworks for an implant-supported prosthesis.

    PubMed

    de Aguiar, Fábio Afrânio; Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; Mattos, Maria de Gloria Chiarello; Ribeiro, Ricardo Faria

    2009-04-01

    The aim of this study was to compare the accuracy of fit of three types of implant-supported frameworks cast in Ni-Cr alloy: specifically, a framework cast as one piece compared to frameworks cast separately in sections to the transverse or the diagonal axis, and later laser welded. Three sets of similar implant-supported frameworks were constructed. The first group of six 3-unit implant-supported frameworks were cast as one piece, the second group of six were sectioned in the transverse axis of the pontic region prior to casting, and the last group of six were sectioned in the diagonal axis of the pontic region prior to casting. The sectioned frameworks were positioned in the matrix (10 N.cm torque) and laser welded. To evaluate passive fit, readings were made with an optical microscope with both screws tightened and with only one-screw tightened. Data were submitted to ANOVA and Tukey-Kramer's test (p < 0.05). When both screws were tightened, no differences were found between the three groups (p > 0.05). In the single-screw-tightened test, with readings made opposite to the tightened side, the group cast as one piece (57.02 +/- 33.48 mum) was significantly different (p < 0.05) from the group sectioned diagonally (18.92 +/- 4.75 microm) but no different (p > 0.05) from the group transversally sectioned (31.42 +/- 20.68 microm). On the tightened side, no significant differences were found between the groups (p > 0.05). Results of this study showed that casting diagonally sectioned frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves the levels of passivity to the same frameworks when compared to structures cast as one piece.

  6. Efficient digitalization method for dental restorations using micro-CT data

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Baek, Seung Hoon; Lee, Taewon; Go, Jonggun; Kim, Sun Young; Cho, Seungryong

    2017-03-01

    The objective of this study was to demonstrate the feasibility of using micro-CT scan of dental impressions for fabricating dental restorations and to compare the dimensional accuracy of dental models generated from various methods. The key idea of the proposed protocol is that dental impression of patients can be accurately digitized by micro-CT scan and that one can make digital cast model from micro-CT data directly. As air regions of the micro-CT scan data of dental impression are equivalent to the real teeth and surrounding structures, one can segment the air regions and fabricate digital cast model in the STL format out of them. The proposed method was validated by a phantom study using a typodont with prepared teeth. Actual measurement and deviation map analysis were performed after acquiring digital cast models for each restoration methods. Comparisons of the milled restorations were also performed by placing them on the prepared teeth of typodont. The results demonstrated that an efficient fabrication of precise dental restoration is achievable by use of the proposed method.

  7. High-resistant castable corrosion-resistant nickel alloy for monocrystalline casting by the directional crystallization method

    NASA Astrophysics Data System (ADS)

    Belikov, S. B.; Andrienko, A. G.; Gaiduk, S. V.; Kononov, V. V.; Zamkovoi, V. E.

    2008-01-01

    A high-resistant corrosion-resistant nickel-based alloy has been developed for monocrystalline casting using the directional crystallization method. Its mechanical properties are close to those of aircraft alloys ZhS6K-VI and ZhS6U-VI with an equiaxial structure and ZhS26-VI with an oriented structure. The technology of producing blades for turboprop engines from the new alloy has been developed and tested.

  8. System and method for liquid silicon containment

    DOEpatents

    Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

    2013-05-28

    This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding member adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

  9. System and method for liquid silicon containment

    DOEpatents

    Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

    2014-06-03

    This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding ember adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

  10. Influence of Manufacturing Methods of Implant-Supported Crowns on External and Internal Marginal Fit: A Micro-CT Analysis.

    PubMed

    Moris, Izabela C M; Monteiro, Silas Borges; Martins, Raíssa; Ribeiro, Ricardo Faria; Gomes, Erica A

    2018-01-01

    To evaluate the influence of different manufacturing methods of single implant-supported metallic crowns on the internal and external marginal fit through computed microtomography. Forty external hexagon implants were divided into 4 groups ( n = 8), according to the manufacturing method: GC, conventional casting; GI, induction casting; GP, plasma casting; and GCAD, CAD/CAM machining. The crowns were attached to the implants with insertion torque of 30 N·cm. The external (vertical and horizontal) marginal fit and internal fit were assessed through computed microtomography. Internal and external marginal fit data ( μ m) were submitted to a one-way ANOVA and Tukey's test ( α = .05). Qualitative evaluation of the images was conducted by using micro-CT. The statistical analysis revealed no significant difference between the groups for vertical misfit ( P = 0.721). There was no significant difference ( P > 0.05) for the internal and horizontal marginal misfit in the groups GC, GI, and GP, but it was found for the group GCAD ( P ≤ 0.05). Qualitative analysis revealed that most of the samples of cast groups exhibited crowns underextension while the group GCAD showed overextension. The manufacturing method of the crowns influenced the accuracy of marginal fit between the prosthesis and implant. The best results were found for the crowns fabricated through CAD/CAM machining.

  11. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method.

    PubMed

    Padilla, S; Sánchez-Salcedo, S; Vallet-Regí, M

    2005-10-01

    Hydroxyapatite (HA)/glass mixtures have shown a faster bioactive behaviour than HA itself. On the other hand, the gel-casting method is a simple and reproducible colloidal method to produce ceramic pieces with complex shapes. In this work, pieces of HA/glass mixtures were prepared by the gel-casting method. A study for obtaining concentrated slurries of these mixtures is reported; the bioactivity and biocompatibility of the obtained pieces have been studied also. The influence of pH, dispersant concentration, the content and milling of glass, and the way to prepare the suspensions were investigated. The lowest viscosity and better rheological properties were achieved with the lowest glass content, when the glass was added after the dispersion of the HA powder and when the glass was not milled after calcination. Fluid suspensions with a high solid content (50 vol.%) could be prepared and well-shaped pieces were obtained from these slurries. These pieces showed in vitro bioactive behavior in simulated body fluid; additionally, the proliferation and spreading assays with osteoblastic cells (HOS) showed that the pieces are biocompatible. The results obtained indicate that the gel-casting of HA/glass mixtures produces bioactive and biocompatible pieces with the required shapes. Therefore, these materials could be good candidates for clinical applications and scaffolds for tissue engineering. (c) 2005 Wiley Periodicals, Inc.

  12. Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems

    PubMed Central

    Lee, Wan-Sun; Kim, Woong-Chul

    2015-01-01

    PURPOSE To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. MATERIALS AND METHODS Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. RESULTS The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). CONCLUSION Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced. PMID:25932310

  13. A comparative study between xerographic, computer-assisted overlay generation and animated-superimposition methods in bite mark analyses.

    PubMed

    Tai, Meng Wei; Chong, Zhen Feng; Asif, Muhammad Khan; Rahmat, Rabiah A; Nambiar, Phrabhakaran

    2016-09-01

    This study was to compare the suitability and precision of xerographic and computer-assisted methods for bite mark investigations. Eleven subjects were asked to bite on their forearm and the bite marks were photographically recorded. Alginate impressions of the subjects' dentition were taken and their casts were made using dental stone. The overlays generated by xerographic method were obtained by photocopying the subjects' casts and the incisal edge outlines were then transferred on a transparent sheet. The bite mark images were imported into Adobe Photoshop® software and printed to life-size. The bite mark analyses using xerographically generated overlays were done by comparing an overlay to the corresponding printed bite mark images manually. In computer-assisted method, the subjects' casts were scanned into Adobe Photoshop®. The bite mark analyses using computer-assisted overlay generation were done by matching an overlay and the corresponding bite mark images digitally using Adobe Photoshop®. Another comparison method was superimposing the cast images with corresponding bite mark images employing the Adobe Photoshop® CS6 and GIF-Animator©. A score with a range of 0-3 was given during analysis to each precision-determining criterion and the score was increased with better matching. The Kruskal Wallis H test showed significant difference between the three sets of data (H=18.761, p<0.05). In conclusion, bite mark analysis using the computer-assisted animated-superimposition method was the most accurate, followed by the computer-assisted overlay generation and lastly the xerographic method. The superior precision contributed by digital method is discernible despite the human skin being a poor recording medium of bite marks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Biceps Tendon Lengthening Surgery for Failed Serial Casting Patients With Elbow Flexion Contractures Following Brachial Plexus Birth Injury

    PubMed Central

    Somasundaram, Chandra

    2016-01-01

    Objective: Assessment of surgical outcomes of biceps tendon lengthening (BTL) surgery in obstetric brachial plexus injury (OBPI) patients with elbow flexion contractures, who had unsuccessful serial casting. Background: Serial casting and splinting have been shown to be effective in correcting elbow flexion contractures in OBPI. However, the possibilities of radial head dislocations and other complications have been reported in serial casting and splinting. Literature indicates surgical intervention when such nonoperative techniques and range-of-motion exercises fail. Here, we demonstrated a significant reduction of the contractures of the affected elbow and improvement in arm length to more normal after BTL in these patients, who had unsuccessful serial casting. Methods and Patients: Ten OBPI patients (6 girls and 4 boys) with an average age of 11.2 years (4-17.7 years) had BTL surgery after unsuccessful serial casting. Results: Mean elbow flexion contracture was 40° before and 37° (average) after serial casting. Mean elbow flexion contracture was reduced to 8° (0°-20°) post-BTL surgical procedure with an average follow-up of 11 months. This was 75% improvement and statistically significant (P < .001) when compared to 7% insignificant (P = .08) improvement after serial casting. Conclusion: These OBPI patients in our study had 75% significant reduction in elbow flexion contractures and achieved an improved and more normal length of the affected arm after the BTL surgery when compared to only 7% insignificant reduction and no improvement in arm length after serial casting. PMID:27648115

  15. 40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... open molding and centrifugal casting operations a. an organic HAP emissions limit shown in Tables 3 or... method meet the appropriate organic HAP contents. 2. open molding centrifugal casting, continuous... reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the...

  16. 40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... open molding and centrifugal casting operations a. an organic HAP emissions limit shown in Tables 3 or... method meet the appropriate organic HAP contents. 2. open molding centrifugal casting, continuous... reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the...

  17. 40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... open molding and centrifugal casting operations a. an organic HAP emissions limit shown in Tables 3 or... method meet the appropriate organic HAP contents. 2. open molding centrifugal casting, continuous... reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the...

  18. Effect of particle Alignment on mechanical properties of neat cellulose nanocrystal films

    Treesearch

    Alexander B. Reising; Robert J. Moon; Jeffrey P. Youngblood

    2012-01-01

    Shear-based film casting methods were used to cast neat films from wood-based cellulose nanocrystal (CNC) suspensions. The degree of CNC alignment in dried films was characterized using the Hermans order parameter (S), and the film elastic modulus (E), ultimate tensile strength (σf ), elongation at failure (εf...

  19. Corrosion Studies of Wrought and Cast NASA-23 Alloy

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1997-01-01

    Corrosion studies were carried out for wrought and cast NASA-23 alloy using electrochemical methods. The scanning reference electrode technique (SRET), the polarization resistance technique (PR), and the electrochemical impedance spectroscopy (EIS) were employed. These studies corroborate the findings of stress corrosion studies performed earlier, in that the material is highly resistant to corrosion.

  20. Skulls and Human Evolution: The Use of Casts of Anthropoid Skulls in Teaching Concepts of Human Evolution.

    ERIC Educational Resources Information Center

    Gipps, John

    1991-01-01

    Proposes the use of a series of 11 casts of fossil skulls as a method of teaching about the theory of human evolution. Students explore the questions of which skulls are "human" and which came first in Homo Sapien development, large brain or upright stance. (MDH)

  1. Image analysis of oronasal fistulas in cleft palate patients acquired with an intraoral camera.

    PubMed

    Murphy, Tania C; Willmot, Derrick R

    2005-01-01

    The aim of this study was to examine the clinical technique of using an intraoral camera to monitor the size of residual oronasal fistulas in cleft lip-cleft palate patients, to assess its repeatability on study casts and patients, and to compare its use with other methods. Seventeen plaster study casts of cleft palate patients with oronasal fistulas obtained from a 5-year series of 160 patients were used. For the clinical study, 13 patients presenting in a clinic prospectively over a 1-year period were imaged twice by the camera. The area of each fistula on each study cast was measured in the laboratory first using a previously described graph paper and caliper technique and second with the intraoral camera. Images were imported into a computer and subjected to image enhancement and area measurement. The camera was calibrated by imaging a standard periodontal probe within the fistula area. The measurements were repeated using a double-blind technique on randomly renumbered casts to assess the repeatability of measurement of the methods. The clinical images were randomly and blindly numbered and subjected to image enhancement and processing in the same way as for the study casts. Area measurements were computed. Statistical analysis of repeatability of measurement using a paired sample t test showed no significant difference between measurements, indicating a lack of systematic error. An intraclass correlation coefficient of 0.97 for the graph paper and 0.84 for the camera method showed acceptable random error between the repeated records for each of the two methods. The graph paper method remained slightly more repeatable. The mean fistula area of the study casts between each method was not statistically different when compared with a paired samples t test (p = 0.08). The methods were compared using the limits of agreement technique, which showed clinically acceptable repeatability. The clinical study of repeated measures showed no systematic differences when subjected to a t test (p = 0.109) and little random error with an intraclass correlation coefficient of 0.98. The fistula size seen in the clinical study ranged from 18.54 to 271.55 mm. Direct measurements subsequently taken on 13 patients in the clinic without study models showed a wide variation in the size of residual fistulas presenting in a multidisciplinary clinic. It was concluded that an intraoral camera method could be used in place of the previous graph paper method and could be developed for clinical and scientific purposes. This technique may offer advantages over the graph paper method, as it facilitates easy visualization of oronasal fistulas and objective fistulas size determination and permits easy storage of data in clinical records.

  2. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    DOEpatents

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  3. Combination of microscopic model and VoF-multiphase approach for numerical simulation of nodular cast iron solidification

    NASA Astrophysics Data System (ADS)

    Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.

    2015-06-01

    The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.

  4. Monitoring the progression of erosive tooth wear (ETW) using BEWE index in casts and their 3D images: A retrospective longitudinal study.

    PubMed

    Marro, Francisca; De Lat, Liesa; Martens, Luc; Jacquet, Wolfgang; Bottenberg, Peter

    2018-04-13

    To determine if the Basic erosive tooth wear index (BEWE index) is able to assess and monitor ETW changes in two consecutive cast models, and detect methodological differences when using the corresponding 3D image replicas. A total of 480 pre-treatment and 2-year post-treatment orthodontic models (n = 240 cast models and n = 240 3D image replicas) from 120 adolescents treated between 2002 and 2013 at the Gent Dental Clinic, Belgium, were scored using the BEWE index. For data analysis only posterior sextants were considered, and inter-method differences were evaluated using Wilcoxon Signed Rank test, Kappa values and Mc Nemar tests (p < 0.05). Correlations between methods were determined using Kendall tau correlation test. Significant changes of ETW were detected between two consecutive models when BEWE index was used to score cast models or their 3D image replicas (p < 0.001). A strong significant correlation (τb: 0.74; p < 0.001) was shown between both methods However, 3D image-BEWE index combination showed a higher probability for detecting initial surface changes, and scored significantly higher than casts (p < 0.001). Incidence and progression of ETW using 3D images was 13.3% (n = 16) and 60.9% (n = 56) respectively, with two subjects developing BEWE = 3 in at least one tooth surface. BEWE index is a suitable tool for the scoring of ETW lesions in 3D images and cast. The combination of both digital 3D records and index, can be used for the monitoring of ETW in a longitudinal approach. The higher sensibility of BEWE index when scoring 3D images might improve the early diagnosis of ETW lesions. The BEWE index combined with digital 3D records of oral conditions might improve the practitioner performance with respect to early diagnosis, monitoring and managing ETW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Regenerated cellulose capsules for controlled drug delivery: Part III. Developing a fabrication method and evaluating extemporaneous utility for controlled-release.

    PubMed

    Bhatt, Bhavik; Kumar, Vijay

    2016-08-25

    In this article, we describe a method to utilize cellulose dissolved in dimethyl sulfoxide and paraformaldehyde solvent system to fabricate two-piece regenerated cellulose hard shell capsules for their potential use as an oral controlled drug delivery a priori vehicle. A systematic evaluation of solution rheology as well as resulting capsule mechanical, visual and thermal analysis was performed to develop a suitable method to repeatedly fabricate RC hard shell capsule halves. Because of the viscoelastic nature of the cellulose solution, a combination of dip-coating and casting method, herein referred to as dip-casting method, was developed. The dip-casting method was formalized by utilizing two-stage 2(2) full factorial design approach in order to determine a suitable approach to fabricate capsules with minimal variability. Thermal annealing is responsible for imparting shape rigidity of the capsules. Proof-of-concept analysis for the utility of these capsules in controlled drug delivery was performed by evaluating the release of KCl from them as well as from commercially available USP equivalent formulations. Release of KCl from cellulose capsules was comparable to extended release capsule formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Characterization of New Materials for Photovoltaic Thin Films: Aggregation Phenomena in Self-Assembled Perylene-Based Diimides

    DTIC Science & Technology

    2005-07-21

    or solution-based methods such as spin casting or drop casting,’ 1ś󈧖 self-assembly,1922 Langmuir - Blodgett techniques,23 or electrochemical methods...and Langmuir - exist. Molecules containing a perylene diimide core have Blodgett techniques.’ 8 In many situations, the molecules also been proposed for...remain soluble in the W. J. Langmuir 1996, 12, 2169. absence of other ionic species. These systems represent (35) Antonietti, M.; Conrad, J. Angew

  7. Experimental study of the continuous casting slab solidification microstructure by the dendrite etching method

    NASA Astrophysics Data System (ADS)

    Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.

    2017-12-01

    The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.

  8. Seroprevalence of antibodies to astrovirus in chickens in Grenada, West Indies

    PubMed Central

    Sharma, Ravindra Nath; Dufayet, Romane; Maufras, Thomas; Connell, Kathryn O’; Tiwari, Keshaw

    2017-01-01

    Aim: Chicken astroviruses (CAstV) are known to cause mild gastroenteritis, growth depression, and even mortality in poultry, especially in chickens, turkeys, and ducks. To the best our knowledge, there is no published information on CAstV in Grenada. This study was conducted to determine the prevalence of astrovirus in chickens in Grenada. Materials and Methods: Blood samples from 366 indigenous chickens and 92 commercial chicken layers were collected from all parishes of the island and tested for antibodies against CAstV using commercial enzyme-linked immunosorbent assay. Results: The seroprevalence of antibodies against astrovirus was 57.6% (95%, Confidence interval [CI]: 47.4-67.2) in commercial layers and 61.5% (95%, CI: 56.4-66.3) in indigenous chickens. The results show the presence of infection throughout the island. Conclusion: The results show the infection with CAstV in approximately half of the chicken population in Grenada. This is the first report on the prevalence of CAstV in chickens in Grenada and the Caribbean region. PMID:28717315

  9. Fixture for forming evaporative pattern (EPC) process patterns

    DOEpatents

    Turner, Paul C.; Jordan, Ronald R.; Hansen, Jeffrey S.

    1993-01-01

    A method of casting metal using evaporative pattern casting process patterns in combination with a fixture for creating and maintaining a desired configuration in flexible patterns. A pattern is constructed and gently bent to the curvature of a suitable fixture. String or thin wire, which burns off during casting, is used to tie the pattern to the fixture. The fixture with pattern is dipped in a commercially available refractory wash to prevent metal adherence and sticking to the fixture. When the refractory wash is dry, the fixture and pattern are placed in a flask, and sand is added and compacted by vibration. The pattern remains in position, restrained by the fixture. Metal that is poured directly into the pattern replaces the pattern exactly but does not contact or weld to the fixture due to the protective refractory layer. When solid, the casting is easily separated from the fixture. The fixture can be cleaned for reuse in conventional casting cleaning equipment.

  10. Coupled thermal-fluid-mechanics analysis of twin roll casting of A7075 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Soo; Kim, Hyoung-Wook; Cho, Jae-Hyung; Chun, Se-Hwan

    2017-09-01

    Better understanding of temperature distribution and roll separation force during twin roll casting of aluminum alloys is critical to successfully fabricate good quality of aluminum strips. Therefore, the simulation techniques are widely applied to understand the twin roll casting process in a comprehensive way and to reduce the experimental time and cost of trial and error. However, most of the conventional approaches are considered thermally coupled flow, or thermally coupled mechanical behaviors. In this study, a fully coupled thermal-fluid-mechanical analysis of twin roll casting of A7075 aluminum strips was carried out using the finite element method. Temperature profile, liquid fraction and metal flow of aluminum strips with different thickness were predicted. Roll separation force and roll temperatures were experimentally obtained from a pilot-scale twin roll caster, and those results were compared with model predictions. Coupling the fluid of the liquid melt to the thermal and mechanical modeling reasonably predicted roll temperature distribution and roll separation force during twin roll casting.

  11. Lifting bloody footwear impressions using alginate casts followed by chemical enhancement.

    PubMed

    Wiesner, Sarena; Izraeli, Elad; Shor, Yaron; Domb, Avi

    2013-05-01

    A method for lifting bloody footwear impressions using alginate casts and enhancing the lifted impressions with amido black is presented. On rough or dark substrates, background interferences may conceal significant details of footwear impressions. Illumination with alternative light sources and chemically enhancing the bloody footwear impressions may reveal additional details, but sometimes, lifting footwear impressions prior to enhancing is the only way to expose hidden details (by using blood reagents not adequate on the original). Several cast formulations were tested for lifting the footwear impressions. The best results were achieved using Aroma fine®. Enhancement of the footwear impressions was attempted with several reagents prior to lifting, during the casting process, and on the lifted footwear impressions. Applying amido black to footwear impressions lifted with alginate produced the sharpest and most detailed footwear impressions. Alginate castings followed by chemical enhancement with amido black may produce high-quality footwear impressions for comparison. © 2013 American Academy of Forensic Sciences.

  12. Microstructure and Properties of Cobalt-and Zinc-Containing Magnetic Magnesium Alloys Processed by High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Klose, Christian; Demminger, Christian; Maier, Hans Jürgen

    The inherent magnetic properties of lightweight alloys based on magnesium and cobalt offer a novel way in order to measure mechanical loads throughout the entire structural component using the magnetoelastic effect. Because the solubility of cobalt in the magnesium matrix is negligible, the magnetic properties mainly originate from Co-rich precipitates. Thus, the size and distribution of Co-containing phases within the alloy's microstructure wields a major influence on the amplitude of the load-sensitive properties which can be measured by employing the harmonic analysis of eddy-current signals. In this study, Mg-Co-based alloys are produced by several casting methods which allow the application of different cooling rates, e.g. gravity die casting and high-pressure die casting. The differences between the manufactured alloys' micro- and phase structures are compared depending on the applied cooling rate and the superior magnetic and mechanical properties of the high-pressure die cast material are demonstrated.

  13. Chitosan-Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies.

    PubMed

    Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie

    2018-06-20

    The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.

  14. Cohesive taping and short-leg casting in acute low-type ankle sprains in physically active patients.

    PubMed

    Uslu, Mustafa; Inanmaz, Mustafa E; Ozsahin, Mustafa; Isık, Cengiz; Arıcan, Mehmet; Gecer, Yavuz

    2015-07-01

    Cohesive taping is commonly used for the prevention or treatment of ankle sprain injuries. Short-leg cast immobilization or splinting is another treatment option in such cases. To determine the clinical efficacy and antiedema effects of cohesive taping and short-leg cast immobilization in acute low-type ankle sprains of physically active patients, we performed a preliminary clinical study to assess objective evidence for edema and functional patient American Orthopaedic Foot and Ankle Society (AOFAS) scores with these alternative treatments. Fifty-nine physically active patients were included: 32 in the taping group and 27 in the short-leg cast group within a year. If a sprain was moderate (grade II) or mild (grade I), we used functional taping or short-leg cast immobilization for 10 days. We evaluated the edema and the functional scores of the injured ankle using the AOFAS Clinical Rating System on days 1, 10, and 100. In each group, edema significantly decreased and AOFAS scores increased indicating that both treatment methods were effective. With the numbers available, no statistically significant difference could be detected. Each treatment method was effective in decreasing the edema and increasing the functional scores of the ankle. At the beginning of treatment, not only the level of edema but also the initial functional scores of the ankle and examinations are important in making decisions regarding the optimal treatment option.

  15. The effect of investment type on the fit of cast titanium crowns.

    PubMed

    Mori, T; Jean-Louis, M; Yabugami, M; Togaya, T

    1994-12-01

    In order to determine the best laboratory procedure for titanium crown casting, a set of thermal expansion measurements and casting experiments were carried out using a casting machine (argon arc, pressure difference type) and three different investments, two conventional SiO2 based investments and a new Al2O3/MgO based investment. The thermal expansion measurements involved a cycle of heating and cooling. The relatively low mould temperatures recommended (200 degrees C) or chosen (350 degrees C) for the conventional investments provided zero or negative mould expansion for the compensation of metal shrinkage. Crowns made from these investments exhibited heavy reaction with the mould, and the common cleaning method of sand blasting appeared to be essential. This cleaning process, however, was not adequate for the assessment of casting accuracy as the short sand blasting time (15 s) rapidly altered the fit of the crowns. The metal reacted little with the new investment and the best compensation (0.15 mm discrepancy) for the metal shrinkage, as assessed 'as cast', was achieved when the investment was heated to 950 degrees C and then cooled to the recommended mould temperature (600 degrees C).

  16. Casting of 3-dimensional footwear prints in snow with foam blocks.

    PubMed

    Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel

    2016-06-01

    Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Fabrication of thin bulk ceramics for microwave circulator applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ings, J.B.; Simmins, J.J.; May, J.L.

    1995-09-01

    Planer MMIC circulator applications require the production of thin, flat garnet, spinel, and hexagonal ferrite circulator elements. Fabrication of cira 250 {mu}m circulator elements was done by tape casting and roll compaction. For the garnet, tape cast gave equivalent results to roll compaction. For the spinel and hexaferrite materials, which undergo magnetic flocculation, roll compaction was found to be the preferred fabrication method. Roll compacted lithium ferrite resulted in higher densities and lower {triangle}H and tan{delta} than did the tape case material. Roll compacted barium hexaferrite resulted in higher densities and remanent magnetization than did the tape cast material.

  18. Modeling Biotransformation Using In Vitro Data on Parent-Metabolite Pairs within the ToxCast Phase I Chemical Set

    EPA Science Inventory

    A major focus in toxicology research is the development of new in vitro methods to predict in vivo chemical toxicity. Within the EPA ToxCast program, a broad range of in vitro biochemical and cellular assays have been deployed to profile the biological activity of 320 Phase I che...

  19. Using ToxCast in vitro Assays in the Hierarchical Quantitative Structure-Activity Relationship (QSAR) Modeling for Predicting in vivo Toxicity of Chemicals

    EPA Science Inventory

    The goal of chemical toxicology research is utilizing short term bioassays and/or robust computational methods to predict in vivo toxicity endpoints for chemicals. The ToxCast program established at the US Environmental Protection Agency (EPA) is addressing this goal by using ca....

  20. Method of Estimating the Principal Characteristics of an Infantry Fighting Vehicle from Basic Performance Requirements

    DTIC Science & Technology

    2013-08-01

    Balliett, “Investigation of Cast Austempered Ductile Iron ( CADI ) Trackshoes in T-158 Configuration,” US TACOM Report 13575 (Warren, MI: US Army Tank...Engineers, 11th Ed. New York, NY: McGraw Hill, 2007. Balliett, T. “Investigation of Cast Austempered Ductile Iron ( CADI ) Trackshoes in T-158

  1. The Effect and Complication of Botulinum Toxin Type A Injection with Serial Casting for the Treatment of Spastic Equinus Foot

    PubMed Central

    Lee, Sook Joung; Jang, Dae Hyun; Yi, Jin Hwa; Lee, Jin Ho; Ryu, Ju Seok

    2011-01-01

    Objective To identify the effect of serial casting combined with Botulinum toxin type A (BTX-A) injection on spastic equinus foot. Method Twenty-nine children with cerebral palsy who had equinus foot were recruited from the outpatient clinic of Rehabilitation Medicine. The children were divided into 2 groups, one of which received serial casting after BTX-A injection, and the other which only received BTX-A injection. Serial casting started 3 weeks after the BTX-A injection, and was changed weekly for 3 times. Spasticity of the ankle joint was evaluated using the modified Ashworth scale (MAS), and the modified Tardieu scale (MTS). Gait pattern was measured using the physician's rating scale (PRS). Results The degree of ankle dorsiflexion and the MAS improved significantly until 12 weeks following the BTX-A injection in the serial casting group (p<0.001), while the BTX-A injection-only group improved until 6 weeks following injection (p<0.05). The combined group showed a significantly greater increase in the degree of dorsiflexion compared to the BTX-A injection-only group at post-injection weeks 6 and 12 (p<0.05). Three children (11.5%) suffered from foot ulcers as a complication caused by the serial casting. Conclusion Our study demonstrated that the effect of BTX-A injection with serial casting was superior and lasted longer than the effect of BTX-A injection only in patients with spastic equinus foot. We therefore recommend BTX-A injection with serial casting for the treatment of equinus foot. However, physicians must also consider the possible complications associated with serial casting. PMID:22506143

  2. Systematic review of spica casting for the treatment of paediatric diaphyseal femur fractures

    PubMed Central

    Tisherman, R. T.; Hoellwarth, J. S.; Mendelson, S. A.

    2018-01-01

    Purpose Paediatric femur fractures are commonly encountered and often successfully managed with spica casting. Despite spica casting’s long history there is little formal guidance for optimal outcomes and no consolidation of existing literature. The purpose of this study is to review the available literature regarding the use of spica casting for the management of paediatric diaphyseal femur fractures. Methods The PubMed database was queried for all research articles including the phrase “spica”. A total of 788 abstracts were reviewed for relevance to the current study. Data was extracted from all available research studies which specified tolerance for fracture angulation or shortening in the cast. Additionally, all articles describing alternative materials, methods for spica application, and complications of spica casting were reviewed. Results In all, 106 articles were found relevant to the management of diaphyseal femur fractures in the paediatric population. The aggregated, accepted fracture shortening decreased from 16 mm to 18 mm before age ten years to 12 mm to 14 mm after puberty. Aggregated, accepted angulation decreased from 14° to 16° varus/valgus and 18° to 22° pro/recurvatum before age two years, to 6° to 8° and 10° to 12° by puberty, respectively. The overall reported complication rate was 19.6%, with the most common complication being skin compromise in 8.2% of patients, followed by unacceptable angulation at the fracture site in 4.2% of patients and excessive limb shortening in 1.9% of patients. Conclusion This article reviews the available spica casting literature and compiles the available data. Spica casting offers a safe, effective means for definitive management of paediatric diaphyseal femur fractures. Future research identifying the rate and pattern of remodelling as it relates to angulation and shortening at various patient ages, particularly beyond the aforementioned norms, would be valuable to identify true biological tolerances versus accepted expert opinion. Level of evidence Level II Review of level II evidence PMID:29707052

  3. Understanding How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic Photovoltaic Blends: From Casting Solution to Spun-Cast Thin Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev

    2014-08-26

    Adding a small amount of a processing additive to the casting solution of photoactive organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, the effects of the processing additive diiodooctane (DIO) on the morphology of the established blend of PBDTTT-C-T polymer and the fullerene derivative PC71BM used for OPVs are investigated, starting in the casting solution and tracing the effects in spun-cast thin filmsmore » by using neutron/X-ray scattering, neutron reflectometry, and other characterization techniques. The results reveal that DIO has no observable effect on the structures of PBDTTT-C-T and PC71BM in solution; however, in the spun-cast films, it significantly promotes their molecular ordering and phase segregation, resulting in improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation due to changes in concentration resulting from evaporation of the solvent and additive during film formation. Such information may help improve the rational design of ternary blends to more consistently achieve improved PCE for OPVs.« less

  4. Understanding how processing additives tune nanoscale morphology of high efficiency organic photovoltaic blends: From casting solution to spun-cast thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev

    2014-01-01

    Adding a small amount of a processing additive to the casting solution of organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, we investigate the effects of the processing additive diiodooctane (DIO) on the morphology of OPV blend of PBDTTT-C-T and fullerene derivative, PC71BM in a casting solution and in spun-cast thin films by using neutron/x-ray scattering, neutron reflectometry and other characterization techniques. Themore » results reveal that DIO has no effect on the solution structures of PBDTTT-C-T and PC71BM. In the spun-cast films, however, DIO is found to promote significantly the molecular ordering of PBDTTT-C-T and PC71BM, and phase segregation, resulting in the improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation as a solvent and due to evaporationg during the film formation. Such information may enable improved rational design of ternary blends to more consistently achieve improved PCE for OPVs.« less

  5. Evaluation of Mechanical Properties and Marginal Fit of Crowns Fabricated Using Commercially Pure Titanium and FUS-Invest

    PubMed Central

    Wu, Jinshuang; Wang, Xianli; Xing, Helin; Guo, Tianwen; Dong, Chaofang

    2017-01-01

    This study investigated the mechanical properties and single crown accuracy of the tailor-made Fourth University Stomatology investment (FUS-invest) for casting titanium. Background. Current investment for casting titanium is not optimal for obtaining high-quality castings, and the commercially available titanium investment is costly. Methods. Titanium specimens were cast using the tailor-made FUS-invest. The mechanical properties were tested using a universal testing machine. Fractured castings were characterized by energy-dispersive spectroscopy. 19 titanium crowns were produced using FUS-invest and another 19 by Symbion. The accuracy of crowns was evaluated. Results. The mechanical properties of the titanium cast by FUS-invest were elastic modulus 125.6 ± 8.8 GPa, yield strength 567.5 ± 11.1 MPa, tensile strength 671.2 ± 15.6 MPa, and elongation 4.6 ± 0.2%. For marginal fit, no significant difference (P > 0.05) was found at four marker points of each group. For internal fit, no significant difference (P > 0.05) was found between two groups, whereas significant difference (P < 0.01) was found at different mark point of each group. Conclusions. The mechanical properties of titanium casted using FUS-invest fulfilled the ISO 9693 criteria. The marginal and internal fit of the titanium crowns using either the FUS-invest or Symbion were similar. PMID:28913355

  6. Evaluation of a Three-Dimensional Stereophotogrammetric Method to Identify and Measure the Palatal Surface Area in Children With Unilateral Cleft Lip and Palate.

    PubMed

    De Menezes, Marcio; Cerón-Zapata, Ana Maria; López-Palacio, Ana Maria; Mapelli, Andrea; Pisoni, Luca; Sforza, Chiarella

    2016-01-01

    To assess a three-dimensional (3D) stereophotogrammetric method for area delimitation and evaluation of the dental arches of children with unilateral cleft lip and palate (UCLP). Obtained data were also used to assess the 3D changes occurring in the maxillary arch with the use of orthopedic therapy prior to rhinocheiloplasty and before the first year of life. Within the collaboration between the Università degli Studi di Milano (Italy) and the University CES of Medellin (Colombia), 96 palatal cast models obtained from neonatal patients with UCLP were analyzed using a 3D stereophotogrammetric imaging system. The area of the minor and greater cleft segments on the digital dental cast surface were delineated by the visualization tool of the stereophotogrammetric software and then examined. "Trueness" of the measurements, as well as systematic and random errors between operators' tracings ("precision") were calculated. The method gave area measurements close to true values (errors lower than 2%), without systematic measurement errors for tracings by both interoperators and intraoperators (P > .05). Statistically significant differences (P < .05) were noted for alveolar segment and time. Maxillary segments have the potential for growth during presurgical orthopedic treatment in the early neonatal period. The cleft segment delimitation on digital dental casts and area measurements by the 3D stereophotogrammetric system revealed an accurate (true and precise) method for evaluating the stone casts of newborn patients with UCLP.

  7. Accuracy evaluation of metal copings fabricated by computer-aided milling and direct metal laser sintering systems.

    PubMed

    Park, Jong-Kyoung; Lee, Wan-Sun; Kim, Hae-Young; Kim, Woong-Chul; Kim, Ji-Hwan

    2015-04-01

    To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced.

  8. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods.

    PubMed

    Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin

    2015-11-01

    The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (P<.05). With regard to ions released, a statistically significant difference was found among the material groups (P<.05); however, no difference was found among the methods. Scanning electron microscopic imaging revealed that the specimens produced by conventional casting were affected to a greater extent by etching and electrochemical corrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jekl, J.; Auld, J.; Sweet, C.

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffnessmore » requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.« less

  10. Experimental study on the use of spacer foils in two-step putty and wash impression procedures using silicone impression materials.

    PubMed

    Mann, Karsten; Davids, Andreas; Range, Ursula; Richter, Gert; Boening, Klaus; Reitemeier, Bernd

    2015-04-01

    The 2-step putty and wash impression technique is commonly used in fixed prosthodontics. However, cutting sluiceways to allow the light-body material to drain is time-consuming. A solution might be the use of a spacer foil. The purpose of this study was to evaluate the influence of spacer foil on the margin reproduction and dimensional accuracy of 2-step putty and wash impressions. Two methods of creating space for the wash material in a 2-step putty and wash impression were compared: the traditional cutout technique and a spacer foil. Eleven commercially available combinations of silicone impression materials were included in the study. The impressions and the cast production were carried out under standardized conditions. All casts were measured with a 3-dimensional (3D) coordinate measuring machine. Preparation margin reproduction and the diameters and spacing of the stone cast dies were measured (α=.05). The 2 methods showed significant differences (P<.05) in the reproduction of the preparation margins (complete reproduction cutout, 90% to 98%; foil, 74% to 91%). The use of a foil resulted in greater dimensional accuracy of the cast dies compared to the cutout technique. Cast dies from the cutout technique were significantly smaller than the metallic original cast (cutout median, 4.55 mm to 4.61 mm; foil median, 4.61 to 4.64). Spacing between the dies revealed only a few additional significant differences between the techniques. When spacer foils were used, dies were obtained that better corresponded to the original tooth. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Extended Ponseti method for failed tenotomy in idiopathic clubfeet: a pilot study.

    PubMed

    Agarwal, Anil; Agrawal, Nargesh; Barik, Sitanshu; Gupta, Neeraj

    2018-01-29

    We evaluated the outcome of a new protocol of an extended Ponseti method in the management of idiopathic club foot with residual equinus following failed Achilles tenotomy. We also compared the failed with a successful tenotomy group to analyze the parameters for failure. The Ponseti technique-treated idiopathic club foot patients with failed percutaneous Achilles tenotomy (failure to achieve <15° dorsiflexion) were treated by continued stretching casts, with a weekly change for a further 3 weeks. Final dorsiflexion more than 15° if achieved with the above protocol was recorded as a success. Twenty-six (16%) patients with failed Achilles tenotomy and residual equinus out of a total of 161 patients with primary idiopathic club foot were tested with the protocol. Ten (38.5%) failed patients had bilateral foot involvement and 16 (61.5%) had unilateral foot involvement. A total of seven (26.9%) patients achieved the end point dorsiflexion of more than 15° in one further cast, 10 (38.5%) in two casts, and four (15.4%) in three casts, respectively. Overall success of the extended Ponseti protocol was achieved in 21/26 (80.8%) patients. The patient's age, precasting initial Pirani score, number of Ponseti casts, pretenotomy Pirani score, and pretenotomy ankle joint dorsiflexion were statistically different in the failed compared with the successful tenotomy group. The tested extended Ponseti protocol showed a success rate of 80.8% in salvaging failed tenotomy cases. The failed tenotomy group was relatively older at presentation, had high precasting and pretenotomy Pirani scores, received extra number of Ponseti casts, and less pretenotomy ankle joint dorsiflexion compared with successful feet.

  12. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    NASA Astrophysics Data System (ADS)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  13. Defect detection of castings in radiography images using a robust statistical feature.

    PubMed

    Zhao, Xinyue; He, Zaixing; Zhang, Shuyou

    2014-01-01

    One of the most commonly used optical methods for defect detection is radiographic inspection. Compared with methods that extract defects directly from the radiography image, model-based methods deal with the case of an object with complex structure well. However, detection of small low-contrast defects in nonuniformly illuminated images is still a major challenge for them. In this paper, we present a new method based on the grayscale arranging pairs (GAP) feature to detect casting defects in radiography images automatically. First, a model is built using pixel pairs with a stable intensity relationship based on the GAP feature from previously acquired images. Second, defects can be extracted by comparing the difference of intensity-difference signs between the input image and the model statistically. The robustness of the proposed method to noise and illumination variations has been verified on casting radioscopic images with defects. The experimental results showed that the average computation time of the proposed method in the testing stage is 28 ms per image on a computer with a Pentium Core 2 Duo 3.00 GHz processor. For the comparison, we also evaluated the performance of the proposed method as well as that of the mixture-of-Gaussian-based and crossing line profile methods. The proposed method achieved 2.7% and 2.0% false negative rates in the noise and illumination variation experiments, respectively.

  14. Dynamic long leg casting fixation for treating 12- to 18-month-old infants with developmental dysplasia of the hip.

    PubMed

    Cai, Zhencun; Li, Lianyong; Zhang, Lijun; Ji, Shijun; Zhao, Qun

    2017-02-01

    Objective To evaluate the effect of dynamic long leg casting in paediatric patients with developmental dysplasia of hip (DDH) diagnosed at 12-18 months. Methods The adductor tenotomy, closed reduction, and dynamic long leg casting method was adopted to treat paediatric patients with DDH. The hips were divided into four groups according to the Tonnis radiographic dislocation classification. Groups were also classified according to the baseline acetabular index (AI): 30°-35°, 36°-40°, and > 40°. The outcomes of the reductions were evaluated according to McKay's hip function criteria and Severin's radiological criteria. Results A total of 246 patients (339 hips) had complete follow-up data. After 3 months of orthosis fixation, the results were satisfactory in 264 hips (77.88%). Hip function was rated as 'excellent' or 'good' in 43 of 51 (84.31%) Tonnis type 1 hips, 125 of 155 (80.65%) type 2 hips, 70 of 90 (77.78%) type 3 hips, and 34 of 43 (79.07%) type 4 hips. The higher the baseline AI, the lower the rates of 'excellent' and 'good' hip function. Favourable radiological results (Severin types I and II) were found in 266 of 339 (78.47) hips. Conclusions Dynamic long leg casting is an effective method for treating patients with DDH aged 12-18 months at diagnosis.

  15. Development and characterization of a mucoadhesive sublingual formulation for pain control: extemporaneous oxycodone films in personalized therapy.

    PubMed

    Parodi, Brunella; Russo, Eleonora; Baldassari, Sara; Zuccari, Guendalina; Pastorino, Sara; Yan, Mengying; Neduri, Karthik; Caviglioli, Gabriele

    2017-06-01

    The aim of this work was the development of mucoadhesive sublingual films, prepared using a casting method, for the administration of oxycodone. A solvent casting method was employed to prepare the mucoadhesive films. A calibrated pipette was used to deposit single aliquots of different polymeric solutions on a polystyrene plate lid. Among the various tested polymers, hydroxypropylcellulose at low and medium molecular weight (HPC) and pectin at two different degrees of esterification (PC) were chosen for preparing solutions with good casting properties, capable of producing films suitable for mucosal application. The obtained films showed excellent drug content uniformity and stability and rapid drug release, which, at 8 min, ranged from 60% to 80%. All films presented satisfactory mucoadhesive and mechanical properties, also confirmed by a test on healthy volunteers, who did not experience irritation or mucosa damages. Pectin films based on pectin at lower degrees of esterification have been further evaluated to study the influence of two different amounts of drug on the physicochemical properties of the formulation. A slight reduction in elasticity has been observed in films containing a higher drug dose; nevertheless, the formulation maintained satisfactory flexibility and resistance to elongation. HPC and PC sublingual films, obtained by a simple casting method, could be proposed to realize personalized hospital pharmacy preparations on a small scale.

  16. Method for determining molten metal pool level in twin-belt continuous casting machines

    DOEpatents

    Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.

    1989-03-21

    A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.

  17. Cheminformatics Analysis of EPA ToxCast Chemical Libraries to Identify Domains of Applicability for Predictive Toxicity Models and Prioritize Compounds for Toxicity Testing

    EPA Science Inventory

    An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles o...

  18. Process research into metallic pipe wear of hot chamber die casting machines and methods ofincreasing wear resistance

    NASA Astrophysics Data System (ADS)

    Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.

    2017-09-01

    The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.

  19. Method of fabricating a prestressed cast iron vessel

    DOEpatents

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  20. A Novel Marker Based Method to Teeth Alignment in MRI

    NASA Astrophysics Data System (ADS)

    Luukinen, Jean-Marc; Aalto, Daniel; Malinen, Jarmo; Niikuni, Naoko; Saunavaara, Jani; Jääsaari, Päivi; Ojalammi, Antti; Parkkola, Riitta; Soukka, Tero; Happonen, Risto-Pekka

    2018-04-01

    Magnetic resonance imaging (MRI) can precisely capture the anatomy of the vocal tract. However, the crowns of teeth are not visible in standard MRI scans. In this study, a marker-based teeth alignment method is presented and evaluated. Ten patients undergoing orthognathic surgery were enrolled. Supraglottal airways were imaged preoperatively using structural MRI. MRI visible markers were developed, and they were attached to maxillary teeth and corresponding locations on the dental casts. Repeated measurements of intermarker distances in MRI and in a replica model was compared using linear regression analysis. Dental cast MRI and corresponding caliper measurements did not differ significantly. In contrast, the marker locations in vivo differed somewhat from the dental cast measurements likely due to marker placement inaccuracies. The markers were clearly visible in MRI and allowed for dental models to be aligned to head and neck MRI scans.

  1. Thermomechanical and bithermal fatigue behavior of cast B1900 + Hf and wrought Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Verrilli, M. J.; Kalluri, S.; Ritzert, F. J.; Duckert, R. E.; Holland, F. A.

    1992-01-01

    A thermomechanical fatigue (TMF) high-temperature life prediction method has been evaluated using the experimental data. Bithermal fatigue (BTF), bithermal creep-fatigue (BTC-F), and TMF experiments were performed using two aerospace structural alloys, cast B1900 + Hf and wrought Haynes 188. The method which is based on the total strain version of strain range partitioning and unified cyclic constitutive modeling requires, as an input, information on the flow and failure behavior of the material of interest. Bithermal temperatures of 483 and 871 C were used for the cast B1900 + Hf nickel-base alloy and 316 and 760 C for the wrought Haynes 188 cobalt-base alloy. Maximum and minimum temperatures were also used in both TMF and BTF tests. Comparisons were made between the results of these tests and isothermal tensile and fatigue test data obtained previously. Qualitative correlations were observed between tensile and isothermal fatigue tests.

  2. Method of fabrication of supported liquid membranes

    DOEpatents

    Luebke, David R.; Hong, Lei; Myers, Christina R.

    2015-11-17

    Method for the fabrication of a supported liquid membrane having a dense layer in contact with a porous layer, and a membrane liquid layer within the interconnected pores of the porous layer. The dense layer is comprised of a solidified material having an average pore size less than or equal to about 0.1 nanometer, while the porous layer is comprised of a plurality of interconnected pores and has an average pore size greater than 10 nanometers. The supported liquid membrane is fabricated through the preparation of a casting solution of a membrane liquid and a volatile solvent. A pressure difference is established across the dense layer and porous layer, the casting solution is applied to the porous layer, and the low viscosity casting solution is drawn toward the dense layer. The volatile solvent is evaporated and the membrane liquid precipitates, generating a membrane liquid layer in close proximity to the dense layer.

  3. Validation of tool mark analysis of cut costal cartilage.

    PubMed

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2012-03-01

    This study was designed to establish the potential error rate associated with the generally accepted method of tool mark analysis of cut marks in costal cartilage. Three knives with different blade types were used to make experimental cut marks in costal cartilage of pigs. Each cut surface was cast, and each cast was examined by three analysts working independently. The presence of striations, regularity of striations, and presence of a primary and secondary striation pattern were recorded for each cast. The distance between each striation was measured. The results showed that striations were not consistently impressed on the cut surface by the blade's cutting edge. Also, blade type classification by the presence or absence of striations led to a 65% misclassification rate. Use of the classification tree and cross-validation methods and inclusion of the mean interstriation distance decreased the error rate to c. 50%. © 2011 American Academy of Forensic Sciences.

  4. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  5. Evaluation of left ventricular assist device pump bladders cast from ion-sputtered polytetrafluorethylene mandrels

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.

  6. Social class related inequalities in household health expenditure and economic burden: evidence from Kerala, south India

    PubMed Central

    2011-01-01

    Background In the Indian context, a household's caste characteristics are most relevant for identifying its poverty and vulnerability status. Inadequate provision of public health care, the near-absence of health insurance and increasing dependence on the private health sector have impoverished the poor and the marginalised, especially the scheduled tribe population. This study examines caste-based inequalities in households' out-of-pocket health expenditure in the south Indian state of Kerala and provides evidence on the consequent financial burden inflicted upon households in different caste groups. Methods Using data from a 2003-2004 panel survey in Kottathara Panchayat that collected detailed information on health care consumption from 543 households, we analysed inequality in per capita out-of-pocket health expenditure across castes by considering households' health care needs and types of care utilised. We used multivariate regression to measure the caste-based inequality in health expenditure. To assess health expenditure burden, we analysed households incurring high health expenses and their sources of finance for meeting health expenses. Results The per capita health expenditures reported by four caste groups accord with their status in the caste hierarchy. This was confirmed by multivariate analysis after controlling for health care needs and influential confounders. Households with high health care needs are more disadvantaged in terms of spending on health care. Households with high health care needs are generally at higher risk of spending heavily on health care. Hospitalisation expenditure was found to have the most impoverishing impacts, especially on backward caste households. Conclusion Caste-based inequality in household health expenditure reflects unequal access to quality health care by different caste groups. Households with high health care needs and chronic health care needs are most affected by this inequality. Households in the most marginalised castes and with high health care need require protection against impoverishing health expenditures. Special emphasis must be given to funding hospitalisation, as this expenditure puts households most at risk in terms of mobilising monetary resources. However, designing protection instruments requires deeper understanding of how the uncovered financial burden of out-patient and hospitalisation expenditure creates negative consequences and of the relative magnitude of this burden on households. PMID:21214941

  7. Effects of alloying elements on the microstructure and fatigue properties of cast iron for internal combustion engine exhaust manifolds

    NASA Astrophysics Data System (ADS)

    Eisenmann, David J.

    In the design of exhaust manifolds for internal combustion engines the materials used must exhibit resistance to corrosion at high temperatures while maintaining a stable microstructure. Cast iron has been used for manifolds for many years by auto manufacturers due to a combination of suitable mechanical properties, low cost, and ease of casting. Over time cast iron is susceptible to microstructural changes, corrosion, and oxidation which can result in failure due to fatigue. This thesis seeks to answer the question: "Can observed microstructural changes and measured high temperature fatigue life in cast iron alloys be used to develop a predictive model for fatigue life?" the importance of this question lies in the fact that there is little data for the behavior of cast iron alloys at high temperature. For this study two different types of cast iron, 50HS and HSM will be examined. Of particular concern for the high Si+C cast irons (and Mo in the case of the HSM cast iron) are subsurface microstructural changes that result due to heat treatment including (1) decarburization, (2) ferrite formation, (3) graphitization, (4) internal oxidation of the Si, (5) high temperature fatigue resistance, and (6) creep potential. Initial results obtained include microstructure examination after being exposed to high temperatures, grain size, nodule size, and hardness measurements. The initial examinations concluded that both cast irons performed fairly similarly, although the microstructure of the HSM samples did show slightly better resistance to high temperature as compared to that of the 50HS. Follow on work involved high temperature fatigue testing of these two materials in order to better determine if the newer alloy, HSM is a better choice for exhaust manifolds. Correlations between fatigue performance and microstructure were made and discussed, with the results examined in light of current and proposed models for predicting fatigue performance based on computational methods, to see if any suitable models exist that might be used to assist in designing with these cast alloys.

  8. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    NASA Astrophysics Data System (ADS)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  9. Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae)

    PubMed Central

    Miura, Toru; Kamikouchi, Azusa; Sawata, Miyuki; Takeuchi, Hideaki; Natori, Syunji; Kubo, Takeo; Matsumoto, Tadao

    1999-01-01

    Although “polymorphic castes” in social insects are well known as one of the most important phenomena of polyphenism, few studies of caste-specific gene expressions have been performed in social insects. To identify genes specifically expressed in the soldier caste of the Japanese damp-wood termite Hodotermopsis japonica, we employed the differential-display method using oligo(dT) and arbitrary primers, compared mRNA from the heads of mature soldiers and pseudergates (worker caste), and identified a clone (PCR product) 329 bp in length termed SOL1. Northern blot analysis showed that the SOL1 mRNA is about 1.0 kb in length and is expressed specifically in mature soldiers, but not in pseudergates, even in the presoldier induction by juvenile hormone analogue, suggesting that the product is specific for terminally differentiated soldiers. By using the method of 5′- and 3′-rapid amplification of cDNA ends, we isolated the full length of SOL1 cDNA, which contained an ORF with a putative signal peptide at the N terminus. The sequence showed no significant homology with any other known protein sequences. In situ hybridization analysis showed that SOL1 is expressed specifically in the mandibular glands. These results strongly suggest that the SOL1 gene encodes a secretory protein specifically synthesized in the mandibular glands of the soldiers. Histological observations revealed that the gland actually develops during the differentiation into the soldier caste. PMID:10570166

  10. Fabrication process analysis and experimental verification for aluminum bipolar plates in fuel cells by vacuum die-casting

    NASA Astrophysics Data System (ADS)

    Jin, Chul Kyu; Kang, Chung Gil

    2011-10-01

    There are various methods for the fabrication of bipolar plates, but these are still limited to machining and stamping processes. High-pressure die casting (HPDC) is an ideal process for the manufacture of bipolar plates This study aims to investigate the formability of bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs) fabricated by vacuum HPDC of an Al-Mg alloy (ALDC6). The cavity of the mold consisted of a thin-walled plate (200 mm × 200 mm × 0.8 mm) with a layer of serpentine channel (50 mm × 50 mm). The location and direction of the channel in the final mold design was determined by computational simulation (MAGMA soft). In addition, simulation results for different conditions of plunger stroke control were compared to those from actual die-casting experiments. Under a vacuum pressure of 35 kPa and for injection speeds of 0.3 and 2.5 m s-1 in the low and high speed regions, respectively, the samples had few casting defects. In addition, the hardness was higher and porosity in microstructure was less than those of the samples made under other injection speed conditions. In case of thin-walled plates, vacuum die casting is beneficial in terms of formability compared to conventional die casting.

  11. Initial Microstructure Evaluation of a U3Si2 + W Fuel Pin Fabricated Via Arc Melt Gravity Drop Casting

    NASA Astrophysics Data System (ADS)

    Hoggan, Rita E.; Harp, Jason M.

    2018-02-01

    Injection casting has historically been used to fabricate metallic nuclear fuel on a large scale. Casting of intermetallic fuel forms, such as U3Si2, may be an alternative pathway for fabrication of fuel pins to powder metallurgy. To investigate casting on a small scale, arc melt gravity drop casting was employed to cast a one-off pin of U3Si2 for evaluation as a fabrication method for U3Si2 as a light water reactor fuel. The pin was sectioned and examined via optical microscopy and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy (EDS). Image analysis was used to estimate the volume fraction of phase impurities as well as porosity. The primary phase determined by EDS was U3Si2 with U-O and U-Si-W phase impurities. Unusually high levels of tungsten were observed because of accidental tungsten introduction during arc melting. No significant changes in microstructure were observed after annealing a section of the pin at 800°C for 72 h. The average density of the sectioned specimens was 12.4 g/cm3 measured via Archimedes principle immersion density and He gas displacement.

  12. Radiographic inspection of porosity in pure titanium dumbbell castings.

    PubMed

    Nuñez, Juliana Maria Costa; Takahashi, Jessica Mie Ferreira Koyama; Henriques, Guilherme Elias Pessanha; Nóbilo, Mauro Antônio de Arruda; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz

    2011-09-01

      Titanium frameworks are frequently indicated for implant supported prostheses; however, voids are usually encountered inside cast titanium.   This study aimed to confirm the efficacy of a radiographic technique for inspection of porosity in commercially pure titanium castings with different diameter.   Sixty dumbbell rods (n=20) with a central 1.5, 2.0 and 3.5mm diameter were prepared by lost-wax casting. Cast specimens were finished and polished and submitted to radiographic examination (90kV, 15mA, 0.6s and 10-13mm of distance) using periapical film. The radiographs were visually analysed for the presence of porosity in the extension of the dumbbell or in the central portion of the rods. Data were submitted to Pearson Chi-square test (5%).   The tested radiographic method proved to be suitable for the evaluation of cast frameworks. Internal porosities were observed in most of the specimens (91.7%) (p=0.0005); however, only 20% occurred on the central portion of the rods (p=0.612).   Internal porosities can be visualised through radiographs and occur mostly in small diameter structures. The radiographic evaluation of metal structures can improve the quality of frameworks and thereby potentially increase the longevity of the rehabilitation. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  13. Use of High Throughput Screening Data in IARC Monograph ...

    EPA Pesticide Factsheets

    Purpose: Evaluation of carcinogenic mechanisms serves a critical role in IARC monograph evaluations, and can lead to “upgrade” or “downgrade” of the carcinogenicity conclusions based on human and animal evidence alone. Three recent IARC monograph Working Groups (110, 112, and 113) pioneered analysis of high throughput in vitro screening data from the U.S. Environmental Protection Agency’s ToxCast program in evaluations of carcinogenic mechanisms. Methods: For monograph 110, ToxCast assay data across multiple nuclear receptors were used to test the hypothesis that PFOA acts exclusively through the PPAR family of receptors, with activity profiles compared to several prototypical nuclear receptor-activating compounds. For monographs 112 and 113, ToxCast assays were systematically evaluated and used as an additional data stream in the overall evaluation of the mechanistic evidence. Specifically, ToxCast assays were mapped to 10 “key characteristics of carcinogens” recently identified by an IARC expert group, and chemicals’ bioactivity profiles were evaluated both in absolute terms (number of relevant assays positive for bioactivity) and relative terms (ranking with respect to other compounds evaluated by IARC, using the ToxPi methodology). Results: PFOA activates multiple nuclear receptors in addition to the PPAR family in the ToxCast assays. ToxCast assays offered substantial coverage for 5 of the 10 “key characteristics,” with the greates

  14. Comparison of the fit of cast gold crowns fabricated from the digital and the conventional impression techniques

    PubMed Central

    Jeon, Young-Chan; Jeong, Chang-Mo

    2017-01-01

    PURPOSE The purpose of this study was to compare the fit of cast gold crowns fabricated from the conventional and the digital impression technique. MATERIALS AND METHODS Artificial tooth in a master model and abutment teeth in ten patients were restored with cast gold crowns fabricated from the digital and the conventional impression technique. The forty silicone replicas were cut in three sections; each section was evaluated in nine points. The measurement was carried out by using a measuring microscope and I-Soultion. Data from the silicone replica were analyzed and all tests were performed with α-level of 0.05. RESULTS 1. The average gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. 2. In marginal and internal axial gap of cast gold crowns, no statistical differences were found between the two impression techniques. 3. The internal occlusal gaps of cast gold crowns fabricated from the digital impression technique were larger than those of the conventional impression technique significantly. CONCLUSION Both prostheses presented clinically acceptable results with comparing the fit. The prostheses fabricated from the digital impression technique showed more gaps, in respect of occlusal surface. PMID:28243386

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder,more » plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.« less

  16. Treatment outcomes in 4 modes of orthodontic practice.

    PubMed

    Poulton, Donald; Vlaskalic, Vicki; Baumrind, Sheldon

    2005-03-01

    This study is a continuation of a previously published report on the outcome of orthodontic treatment provided in offices representing different modes of practice. The sample consisted of duplicate pretreatment (T1) and posttreatment (T2) dental casts of 348 patients from traditional private orthodontic practices (5 offices, 134 patients), company-owned practices (5 offices, 107 patients), offices associated with practice-management organizations (2 offices, 60 patients), and general dental practices (2 offices, 47 patients). Methods were used to obtain random, representative samples from each office, starting with lists of patients who were treated consecutively with full fixed orthodontic appliances. The dental casts were measured by 2 independent judges who used the unweighted PAR score. Good interjudge agreement was shown on the initial casts, but the agreement was not as strong on the final casts. The measurements showed that treatment outcomes were generally satisfactory, although some significant differences between offices and management modes were shown.

  17. Accuracy of six elastic impression materials used for complete-arch fixed partial dentures.

    PubMed

    Stauffer, J P; Meyer, J M; Nally, J N

    1976-04-01

    1. The accuracy of four types of impression materials used to make a complete-arch fixed partial denture was evaluated by visual comparison and indirect measurement methods. 2. None of the tested materials allows safe finishing of a complete-arch fixed partial denture on a cast poured from one single master impression. 3. All of the tested materials can be used for impressions for a complete-arch fixed partial denture provided it is not finished on one single cast. Errors can be avoided by making a new impression with the fitted castings in place. Assembly and soldering should be done on the second cast. 4. In making the master fixed partial denture for this study, inaccurate soldering was a problem that was overcome with the use of epoxy glue. Hence, soldering seems to be a major source of inaccuracy for every fixed partial denture.

  18. Fabrication of hydroxyapatite ceramics with controlled pore characteristics by slip casting.

    PubMed

    Yao, Xiumin; Tan, Shouhong; Jiang, Dongliang

    2005-02-01

    Porous hydroxyapatite (HAp) ceramics with controlled pore characteristics were fabricated using slip casting method by mixing PMMA with HAp powder. The optimum conditions of HAp slip for slip casting was achieved by employing various experimental techniques, zeta potential and sedimentation, as a function of pH of the slips in the pH range of 4-12. HAp suspensions displayed an absolute maximum in zeta potential values and a minimum in sedimentation height at pH 11.5. The optimal amount of dispersant for the HAp suspensions was found at 1.0 wt% according to the viscosity of 25 vol% HAp slurry. The rheological behaviour of HAp slurry displays a shear-thinning behavior without thixotropy, which is needed in slip casting processing. The pore characteristics of sintered porous hydroxyapatite bioceramics can be controlled by added PMMA particle size and volume. The obtained ceramics exhibit higher strength than those obtained by dry pressing.

  19. Accuracy of five implant impression technique: effect of splinting materials and methods

    PubMed Central

    Cho, Sung-Bum

    2011-01-01

    PURPOSE The aim of this study was to evaluate the effect of dimensional stability of splinting material on the accuracy of master casts. MATERIALS AND METHODS A stainless steel metal model with 6 implants embedded was used as a master model. Implant level impressions were made after square impression copings were splinted using 5 different techniques as follows. (1) Splinted with autopolymerizing resin and sectioned, reconnected to compensate polymerization shrinkage before the impression procedure. (2) Splinted with autopolymerizing resin just before impression procedure. (3) Primary impression made with impression plaster and secondary impression were made over with polyether impression material. (4) Splinted with impression plaster. (5) Splinted with VPS bite registration material. From master model, 5 impressions and 5 experimental casts, total 25 casts were made for each of 5 splinting methods. The distortion values of each splinting methods were measured using coordinate measuring machine, capable of recordings in the x-, y-, z-axes. A one-way analysis of variance (ANOVA) at a confidence level of 95% was used to evaluate the data and Tukey's studentized range test was used to determine significant differences between the groups. RESULTS Group 1 showed best accuracy followed by Group 3 & 4. Group 2 and 5 showed relatively larger distortion value than other groups. No significant difference was found between group 3, 4, 5 in x-axis, group 2, 3, 4 in y-axis and group 1, 3, 4, 5 in z-axis (P<.0001). CONCLUSION Both Splinting impression copings with autopolymerizing resin following compensation of polymerization shrinkage and splinting method with impression plaster can enhance the accuracy of master cast and impression plaster can be used simple and effective splinting material for implant impression procedure. PMID:22259700

  20. Separation of overlapping dental arch objects using digital records of illuminated plaster casts.

    PubMed

    Yadollahi, Mohammadreza; Procházka, Aleš; Kašparová, Magdaléna; Vyšata, Oldřich; Mařík, Vladimír

    2015-07-11

    Plaster casts of individual patients are important for orthodontic specialists during the treatment process and their analysis is still a standard diagnostical tool. But the growing capabilities of information technology enable their replacement by digital models obtained by complex scanning systems. This paper presents the possibility of using a digital camera as a simple instrument to obtain the set of digital images for analysis and evaluation of the treatment using appropriate mathematical tools of image processing. The methods studied in this paper include the segmentation of overlapping dental bodies and the use of different illumination sources to increase the reliability of the separation process. The circular Hough transform, region growing with multiple seed points, and the convex hull detection method are applied to the segmentation of orthodontic plaster cast images to identify dental arch objects and their sizes. The proposed algorithm presents the methodology of improving the accuracy of segmentation of dental arch components using combined illumination sources. Dental arch parameters and distances between the canines and premolars for different segmentation methods were used as a measure to compare the results obtained. A new method of segmentation of overlapping dental arch components using digital records of illuminated plaster casts provides information with the precision required for orthodontic treatment. The distance between corresponding teeth was evaluated with a mean error of 1.38% and the Dice similarity coefficient of the evaluated dental bodies boundaries reached 0.9436 with a false positive rate [Formula: see text] and false negative rate [Formula: see text].

  1. Comparison of the spatial landmark scatter of various 3D digitalization methods.

    PubMed

    Boldt, Florian; Weinzierl, Christian; Hertrich, Klaus; Hirschfelder, Ursula

    2009-05-01

    The aim of this study was to compare four different three-dimensional digitalization methods on the basis of the complex anatomical surface of a cleft lip and palate plaster cast, and to ascertain their accuracy when positioning 3D landmarks. A cleft lip and palate plaster cast was digitalized with the SCAN3D photo-optical scanner, the OPTIX 400S laser-optical scanner, the Somatom Sensation 64 computed tomography system and the MicroScribe MLX 3-axis articulated-arm digitizer. First, four examiners appraised by individual visual inspection the surface detail reproduction of the three non-tactile digitalization methods in comparison to the reference plaster cast. The four examiners then localized the landmarks five times at intervals of 2 weeks. This involved simply copying, or spatially tracing, the landmarks from a reference plaster cast to each model digitally reproduced by each digitalization method. Statistical analysis of the landmark distribution specific to each method was performed based on the 3D coordinates of the positioned landmarks. Visual evaluation of surface detail conformity assigned the photo-optical digitalization method an average score of 1.5, the highest subjectively-determined conformity (surpassing computer tomographic and laser-optical methods). The tactile scanning method revealed the lowest degree of 3D landmark scatter, 0.12 mm, and at 1.01 mm the lowest maximum 3D landmark scatter; this was followed by the computer tomographic, photo-optical and laser-optical methods (in that order). This study demonstrates that the landmarks' precision and reproducibility are determined by the complexity of the reference-model surface as well as the digital surface quality and individual ability of each evaluator to capture 3D spatial relationships. The differences in the 3D-landmark scatter values and lowest maximum 3D-landmark scatter between the best and the worst methods showed minor differences. The measurement results in this study reveal that it is not the method's precision but rather the complexity of the object analysis being planned that should determine which method is ultimately employed.

  2. Apparatus and method for controlling the temperature of the core of a super-conducting transformer

    DOEpatents

    Golner, Thomas; Pleva, Edward; Mehta, Shirish

    2006-10-10

    An apparatus for controlling the temperature of a core of a transformer is provided that includes a core, a shield surrounding the core, a cast formed between the core and the shield, and tubing positioned on the shield. The cast directs heat from the core to the shield and cooling fluid is directed through the tubing to cool the shield.

  3. Next-generation casting technologies and their adaptation and development in Russia: I. at the beginning of a new technological paradigm

    NASA Astrophysics Data System (ADS)

    Semenov, A. B.; Gavrilenko, A. E.; Semenov, B. I.

    2016-12-01

    The up-to-date methods of powder metallurgy and casting technology are considered. They can be used to apply the design and technological solutions that are intended to form parts with the optimum space configuration, to deLcrease the number of assembly elements, and to decrease the number of mechanical and welded joints in units.

  4. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey

    2015-11-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII)more » species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 ( 99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively short-term (63 day) leach tests conducted on both LAW and secondary waste Cast Stone monoliths indicated that 99Tc diffusivities were at or near diffusivities where the groundwater at the 100-m down-gradient well would exceed the allowable maximum permissible 99Tc concentrations. There is, therefore, a need and an opportunity to improve the retention of Tc in the Cast Stone waste form. One method to improve the performance of the Cast Stone waste form is through the addition of “getters” that selectively sequester Tc inside Cast Stone.« less

  5. Comparison of intra-oral and study cast measurements in the assessment of malocclusion.

    PubMed

    Ovsenik, Maja; Farcnik, Franc M; Verdenik, Ivan

    2004-06-01

    Malocclusion assessment methods are based on registrations and measurements made on study casts, which requires that impressions be taken. In addition to being costly and time-consuming, this process can be unpleasant for very young children. Therefore, the aim of this study was to evaluate the reliability of intra-oral measurements that compute a malocclusion index score to determine malocclusion severity in the mixed dentition. The research was part of a longitudinal study in Slovenia on a sample of 530 3-year-old children. At 8 years of age (mean 8.5 years, standard deviation 0.2), a cohort of 101 children (44 boys, 57 girls) was randomly selected in a cross-sectional study. Quantitative registrations of space and occlusal anomalies were performed intra-orally as well as on study casts. Kappa (kappa) statistics were used to evaluate the agreement between clinical and study cast malocclusion assessments. Systematic bias of measurements was tested using Wilcoxon's signed rank test. The results showed complete agreement between the two measurements for anterior crossbite, anterior open bite and overjet scores (kappa = 1); excellent reliability for the buccal segment relationship (kappa = 0.93), transverse occlusion of posterior teeth (kappa = 0.87); and substantial agreement for overbite (kappa = 0.79) and midline deviation (kappa = 0.71). For the remainder of the traits the agreement was moderate: rotation of incisors (kappa = 0.58), crowding of upper incisors (kappa = 0.51), axial inclination of teeth (kappa = 0.44) and lower incisor crowding (kappa = 0.41). Intra-orally small, but statistically significant scoring of lower incisor rotation and crowding was identified. On the study casts the most favourable axial inclination was found for buccal segment occlusion. Overall classification into severity grades, based on the total malocclusion score, showed excellent agreement between the two methods (kappa = 0.89), without statistically significant bias. Malocclusion assessment, recorded and measured intra-orally, is as reliable as assessment on study casts. The proposed method can be used in screening, in epidemiological studies and in clinical orthodontic assessment.

  6. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, A., E-mail: a2lombar@ryerson.ca; D'Elia, F.; Ravindran, C.

    2014-01-15

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy castingmore » retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.« less

  7. Effectiveness of Removable Walker Cast Versus Nonremovable Fiberglass Off-Bearing Cast in the Healing of Diabetic Plantar Foot Ulcer

    PubMed Central

    Faglia, Ezio; Caravaggi, Carlo; Clerici, Giacomo; Sganzaroli, Adriana; Curci, Vincenzo; Vailati, Wanda; Simonetti, Daniele; Sommalvico, Francesco

    2010-01-01

    OBJECTIVE To evaluate the efficacy of a removable cast walker compared with that of a nonremovable fiberglass off-bearing cast in the treatment of diabetic plantar foot ulcer. RESEARCH DESIGN AND METHODS Forty-five adult diabetic patients with nonischemic, noninfected neuropathic plantar ulcer were randomly assigned for treatment with a nonremovable fiberglass off-bearing cast (total contact cast [TCC] group) or walker cast (Stabil-D group). Treatment duration was 90 days. Percent reduction in ulcer surface area and total healing rates were evaluated after treatment. RESULTS A total of 48 patients were screened; however, 2 patients in the TCC group and 1 patient in the Stabil-D group did not complete the study and were considered dropouts. There were no significant differences in demographic and clinic characteristics of the 45 patients completing the study. Ulcer surface decreased from 1.41 to 0.21 cm2 (P < 0.001) in the TCC group and from 2.18 to 0.45 cm2 (P < 0.001) in the Stabil-D group, with no significant differences between groups (P = 0.722). Seventeen patients (73.9%) in the TCC group and 16 patients (72.7%) in the Stabil-D group achieved healing (P = 0.794). Average healing time was 35.3 ± 3.1 and 39.7 ± 4.2 days in the TCC and Stabil-D group, respectively (P = 0.708). CONCLUSIONS The Stabil-D cast walker, although removable, was equivalent in efficacy to the TCC in terms of ulcer size reduction and total healing rate. The easier use of Stabil-D may help increase the use of off-loading devices in the management of plantar neuropathic diabetic foot ulcers. PMID:20357377

  8. Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting

    NASA Astrophysics Data System (ADS)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu

    2017-09-01

    In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.

  9. A Soft Casting Technique for Managing Pediatric Hand and Foot Burns.

    PubMed

    Choi, Young Mee; Nederveld, Cindy; Campbell, Kristen; Moulton, Steven

    2018-04-04

    Hand and foot burns in children are difficult to dress. The authors have developed a soft casting technique to manage burns to these areas. The aim of this study is to report the outcomes using weekly dressing changes with a soft casting technique to manage pediatric hand and foot burns in the outpatient setting. A retrospective chart review was performed on children with burns to the hands or feet, who underwent dressing changes with a soft casting technique at the Children's Hospital Colorado Burn Center. Soft casting was performed by placing antibiotic ointment-impregnated nonadherent gauze over the burn wound(s), wrapping the extremity using rolled gauze, applying soft cast pad, plaster, soft cast tape, and an elastic bandage. This was changed weekly. Two hundred ninety-eight children with hand burns had a mean age of 16.8 ± 2 months. Two hundred forty-eight children had partial thickness burn injuries (83%), 50 had full thickness burn injuries (17%), and the mean total body surface area (TBSA) was 1 ± 2.4%. The mean time to heal was 10.1 ± 1.7 days for all subjects. Sixty-six children with foot burns were identified with a mean age of 24 ± 2.6 months. Forty-six children had partial thickness injuries (70%), 20 had full thickness burn injuries (30%), and the mean TBSA was 2.3 ± 2.9%. The mean time to heal was 14.1 ± 2.2 days for all subjects. Weekly dressing changes using a soft casting technique are effective for the outpatient management of pediatric hand and foot burns. This method avoids costly inpatient hospital care, reduces the number of painful dressing changes, and allows children to heal in their own environment.

  10. 3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning.

    PubMed

    Buck, Ursula; Albertini, Nicola; Naether, Silvio; Thali, Michael J

    2007-09-13

    The three-dimensional documentation of footwear and tyre impressions in snow offers an opportunity to capture additional fine detail for the identification as present photographs. For this approach, up to now, different casting methods have been used. Casting of footwear impressions in snow has always been a difficult assignment. This work demonstrates that for the three-dimensional documentation of impressions in snow the non-destructive method of 3D optical surface scanning is suitable. The new method delivers more detailed results of higher accuracy than the conventional casting techniques. The results of this easy to use and mobile 3D optical surface scanner were very satisfactory in different meteorological and snow conditions. The method is also suitable for impressions in soil, sand or other materials. In addition to the side by side comparison, the automatic comparison of the 3D models and the computation of deviations and accuracy of the data simplify the examination and delivers objective and secure results. The results can be visualized efficiently. Data exchange between investigating authorities at a national or an international level can be achieved easily with electronic data carriers.

  11. Hierarchical modeling of professional skills in the field of castings manufacture engineering

    NASA Astrophysics Data System (ADS)

    Samuilă, V.; Soporan, V. F.; Conțiu, G.; Pădurețu, S.; Lehene, T. R.; Vescan, M. M.

    2017-06-01

    The paper presents a method of hierarchizing professional skills in the manufacturing of molded parts (castings) by using and adapting the FAHP algorithm (Fuzzy Analitical Hierarchy Process). Assessments are made regarding the peculiarities of the professional training process, specifying the activities to be carried out and the competences necessary for their development. The contribution of the design of the method extends to the design of the hierarchy system architecture, the linguistic determination of the importance of each characteristic, the construction of the fuzzy ordering matrices for each stage of the process, the determination of the share of the characteristics for each hierarchy step and establishing the hierarchy of the characteristics taking into account the influences of the others, grouped at the level of the steps and within the global matrix. The research carried out represents the support for generating an instrument of hierarchy of professional competencies that can be used in various professional and institutional contexts. Case study on the hierarchy of professional skills in the manufacturing of molded parts engineering. Keywords: Materials engineering, castings manufacture professional skills, hierarchy, AHP method, standard occupational curriculum.

  12. Material characterization of field-cast connection grouts.

    DOT National Transportation Integrated Search

    2013-01-01

    Accelerated bridge construction methods can help increase safety and minimize the inconveniences to the traveling public. Many new construction methods have been investigated and implemented using prefabricated subassemblies on bridges. These methods...

  13. Design of experiments to optimize an in vitro cast to predict human nasal drug deposition.

    PubMed

    Shah, Samir A; Dickens, Colin J; Ward, David J; Banaszek, Anna A; George, Chris; Horodnik, Walter

    2014-02-01

    Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature. The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments. We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results. We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition studies using radiolabeled formulations, this cast could show that radiolabel deposition represents drug deposition. Our methods could also be used to optimize settings for other casts.

  14. Scalable Dry Printing Manufacturing to Enable Long-Life and High Energy Lithium-Ion Batteries

    DOE PAGES

    Liu, Jin; Ludwig, Brandon; Liu, Yangtao; ...

    2017-08-22

    Slurry casting method dominates the electrode manufacture of lithium-ion batteries. The entire procedure is similar to the newspaper printing that includes premixing of cast materials into solvents homogeneously, and continuously transferring and drying the slurry mixture onto the current collector. As a market approaching US $80 billion by 2024, the optimization of manufacture process is crucial and attractive. However, the organic solvent remains irreplaceable in the wet method for making slurries, even though it is capital-intensive and toxic. In this paper, an advanced powder printing technique is demonstrated that is completely solvent-free and dry. Through removing the solvent and relatedmore » procedures, this method is anticipated to statistically save 20% of the cost at a remarkably shortened production cycle (from hours to minutes). The dry printed electrodes outperform commercial slurry cast ones in 650 cycles (80% capacity retention in 500 cycles), and thick electrodes are successfully fabricated to increase the energy density. Furthermore, microscopy techniques are utilized to characterize the difference of electrode microstructure between dry and wet methods, and distinguish dry printing's advantages on controlling the microstructure. Finally, this study proves a practical fabrication method for lithium-ion electrodes with lowered cost and favorable performance, and allows more advanced electrode designs potentially.« less

  15. Scalable Dry Printing Manufacturing to Enable Long-Life and High Energy Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin; Ludwig, Brandon; Liu, Yangtao

    Slurry casting method dominates the electrode manufacture of lithium-ion batteries. The entire procedure is similar to the newspaper printing that includes premixing of cast materials into solvents homogeneously, and continuously transferring and drying the slurry mixture onto the current collector. As a market approaching US $80 billion by 2024, the optimization of manufacture process is crucial and attractive. However, the organic solvent remains irreplaceable in the wet method for making slurries, even though it is capital-intensive and toxic. In this paper, an advanced powder printing technique is demonstrated that is completely solvent-free and dry. Through removing the solvent and relatedmore » procedures, this method is anticipated to statistically save 20% of the cost at a remarkably shortened production cycle (from hours to minutes). The dry printed electrodes outperform commercial slurry cast ones in 650 cycles (80% capacity retention in 500 cycles), and thick electrodes are successfully fabricated to increase the energy density. Furthermore, microscopy techniques are utilized to characterize the difference of electrode microstructure between dry and wet methods, and distinguish dry printing's advantages on controlling the microstructure. Finally, this study proves a practical fabrication method for lithium-ion electrodes with lowered cost and favorable performance, and allows more advanced electrode designs potentially.« less

  16. Study on the Preparation Process and Influential Factors of Large Area Environment-friendly Molten Carbonate Fuel Cell Matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiyun; Xu, Shisen; Cheng, Jian; Wang, Hongjian; Ren, Yongqiang

    2017-07-01

    Low-cost and high-performance matrix materials used in mass production of molten carbonate fuel cell (MCFC) were prepared by automatic casting machine with α-LiAlO2 powder material synthesized by gel-solid method, and distilled water as solvent. The single cell was assembled for generating test, and the good performance of the matrix was verified. The paper analyzed the factors affecting aqueous tape casting matrix preparation, such as solvent content, dispersant content, milling time, blade height and casting machine running speed, providing a solid basis for the mass production of large area environment-friendly matrix used in molten carbonate fuel cell.

  17. A Theoretical Analysis of the Interaction Between Pores and Inclusions During the Continuous Casting of Steel

    NASA Astrophysics Data System (ADS)

    Nick, Arash Safavi; Vynnycky, Michael; Fredriksson, Hasse

    2016-06-01

    A mathematical model is derived to predict the trajectories of pores and inclusions that are nucleated in the interdendritic region during the continuous casting of steel. Using basic fluid mechanics and heat transfer, scaling analysis, and asymptotic methods, the model accounts for the possible lateral drift of the pores as a result of the dependence of the surface tension on temperature and sulfur concentration. Moreover, the soluto-thermocapillary drift of such pores prior to final solidification, coupled to the fact that any inclusions present can only have a vertical trajectory, can help interpret recent experimental observations of pore-inclusion clusters in solidified steel castings.

  18. Silicon Ingot Casting: Heat Exchanger Method. Multi-wire Slicing: Fixed Abrasine Slicing Technique, Phase 3

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    Ingot casting was scaled up to 16 cm by 16 cm square cross section size and ingots weighing up to 8.1 kg were cast. The high degree of crystallinity was maintained in the large ingot. For large sizes, the nonuniformity of heat treatment causes chipping of the surface of the ingot. Progress was made in the development of a uniform graded structure in the silica crucibles. The high speed slicer blade-head weight was reduced to 37 pounds, allowing surface speeds of up to 500 feet per minute. Slicing of 10 cm diameter workpieces at these speeds increased the through-put of the machine to 0.145 mm/min.

  19. Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method

    NASA Astrophysics Data System (ADS)

    Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.

    2018-06-01

    Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.

  20. Behavioral and Genetic Dissection of a Mouse Model for Advanced Sleep Phase Syndrome

    PubMed Central

    Jiang, Peng; Striz, Martin; Wisor, Jonathan P.; O'Hara, Bruce F.

    2011-01-01

    Study Objective: The adaptive value of the endogenous circadian clock arises from its ability to synchronize (i.e., entrain) to external light-dark (LD) cycles at an appropriate phase. Studies have suggested that advanced circadian phase alignment might result from shortening of the period length of the clock. Here we explore mechanisms that contribute to an early activity phase in CAST/EiJ (CAST) mice. Methods: We investigated circadian rhythms of wheel-running activity in C57BL/6J (B6), CAST and 2 strains of B6.CAST congenic mice, which carry CAST segments introgressed in a B6 genome. Results: When entrained, all CAST mice initiate daily activity several hours earlier than normal mice. This difference could not be explained by alterations in the endogenous period, as activity onset did not correlate with period length. However, the photic phase-shifting responses in these mice were phase-lagged by 3 hours relative to their activity. Attenuated light masking responses were also found in CAST mice, which allow for activity normally inhibited by light. A previously identified quantitative trait locus (QTL), Era1, which contributes to the early activity trait, was confirmed and refined here using two B6.CAST congenic strains. Surprisingly, these B6.CAST mice exhibited longer rather than shorter endogenous periods, further demonstrating that the advanced phase in these mice is not due to alterations in period. Conclusions: CAST mice have an advanced activity phase similar to human advanced sleep phase syndrome. This advanced phase is not due to its shorter period length or smaller light-induced phase shifts, but appears to be related to both light masking and altered coupling of the circadian pacemaker with various outputs. Lastly, a QTL influencing this trait was confirmed and narrowed using congenic mice as a first step toward gene identification. Citation: Jiang P; Striz M; Wisor JP; O'Hara BF. Behavioral and genetic dissection of a mouse model for advanced sleep phase syndrome. SLEEP 2011;34(1):39-48. PMID:21203370

  1. Metallographic examination of the structure of the metal of cold arms of the nineteenth-early twentieth centuries made at the Zlatoust arms factory

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Rodionov, D. P.; Gerasimov, V. Yu.; Khlebnikova, Yu. V.

    2010-11-01

    Data are given concerning the structure and the chemical composition of carbon steel used for making cold arms, which was produced at the Zlatoust arms factory in the nineteenth and early twentieth centuries. The results of the analysis of the structure of metal demonstrates the general trend of the development of metallurgy both at the Ural plants and in the world: from the creation of the crucible methods of production of cast steel to the mass production of cast steel by the Bessemer and Martin methods.

  2. Casting copper to tungsten for high power arc lamp cathodes

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1973-01-01

    A method for making 400-kW arc lamp cathodes is described. The cathodes are made by casting a 1.75-in. diameter copper body onto a thoriated tungsten insert. The addition of 0.5-percent nickel to the copper prevents voids from forming at the copper-tungsten interface. Cathodes made by this process have withstood more than 110 hours of operation in a 400-kW arc lamp.

  3. IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD

    DOEpatents

    Stoddard, S.D.; Nuckolls, D.E.

    1963-12-31

    A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)

  4. Surface chemical structure for soft contact lenses as a function of polymer processing.

    PubMed

    Grobe, G L; Valint, P L; Ammon, D M

    1996-09-01

    The surface chemistry and topography of cast-molded Etafilcon-A and doubled-sided lathed Etafilcon-A soft contact lenses were determined to be significantly different. The variations in surface chemical and morphologic structure between the two lenses were the result of contact lens manufacturing methods. The surface of the cast-molded Etafilcon-A had a consistently less rough surface compared to the doubled sided lathed Etafilcon-A as determined by atomic force microscopy. The surface of the doubled sided lathed Etafilcon-A contained primarily silicone and wax contamination in addition to minute amounts of HEMA. The cast-molded Etafilcon-A had an elemental and chemical content which was consistent with the polymer stoichiometry. Contact angle wettability profiles revealed inherent wettability differences between the two lenses types. The cast-molded Etafilcon-A had an inherently greater water wettability, polarity, and critical surface tension. This means that these two lenses cannot be compared as similar or identical lens materials in terms of surface composition. The manufacturing method used to produce a soft contact lens directly determines the surface elemental and chemical structure as well as the morphology of the finished lens material. These results suggest possible differences in the clinical comfort, spoilage, and lubricity felt during patient wear.

  5. Interactive high-resolution isosurface ray casting on multicore processors.

    PubMed

    Wang, Qin; JaJa, Joseph

    2008-01-01

    We present a new method for the interactive rendering of isosurfaces using ray casting on multi-core processors. This method consists of a combination of an object-order traversal that coarsely identifies possible candidate 3D data blocks for each small set of contiguous pixels, and an isosurface ray casting strategy tailored for the resulting limited-size lists of candidate 3D data blocks. While static screen partitioning is widely used in the literature, our scheme performs dynamic allocation of groups of ray casting tasks to ensure almost equal loads among the different threads running on multi-cores while maintaining spatial locality. We also make careful use of memory management environment commonly present in multi-core processors. We test our system on a two-processor Clovertown platform, each consisting of a Quad-Core 1.86-GHz Intel Xeon Processor, for a number of widely different benchmarks. The detailed experimental results show that our system is efficient and scalable, and achieves high cache performance and excellent load balancing, resulting in an overall performance that is superior to any of the previous algorithms. In fact, we achieve an interactive isosurface rendering on a 1024(2) screen for all the datasets tested up to the maximum size of the main memory of our platform.

  6. Reproduction accuracy of articulator mounting with an arbitrary face-bow vs. average values-a controlled, randomized, blinded patient simulator study.

    PubMed

    Ahlers, M Oliver; Edelhoff, Daniel; Jakstat, Holger A

    2018-06-21

    The benefit from positioning the maxillary casts with the aid of face-bows has been questioned in the past. Therefore, the aim of this study was to investigate the reliability and validity of arbitrary face-bow transfers compared to a process solely based on the orientation by means of average values. For optimized validity, the study was conducted using a controlled, randomized, anonymized, and blinded patient simulator study design. Thirty-eight undergraduate dental students were randomly divided into two groups; both groups were applied to both methods, in opposite sequences. Investigated methods were the transfer of casts using an arbitrary face-bow in comparison to the transfer using average values based on Bonwill's triangle and the Balkwill angle. The "patient" used in this study was a patient simulator. All casts were transferred to the same individual articulator, and all the transferred casts were made using type IV special hard stone plaster; for the attachment into the articulator, type II plaster was used. A blinded evaluation was performed based on three-dimensional measurements of three reference points. The results are presented three-dimensionally in scatterplots. Statistical analysis indicated a significantly smaller variance (Student's t test, p < 0.05) for the transfer using a face-bow, applicable for all three reference points. The use of an arbitrary face-bow significantly improves the transfer reliability and hence the validity. To simulate the patient situation in an individual articulator correctly, casts should be transferred at least by means of an arbitrary face-bow.

  7. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOEpatents

    Meyer, Thomas N.

    2004-06-01

    The casting apparatus (50) includes a holding vessel (10) for containing a supply of molten metal (12) and a casting mold (52) located above the holding vessel (10) and having a casting cavity (54). A molten metal injector (14) extends into the holding vessel (10) and is at least partially immersed in the molten metal (12) in the holding vessel (10). The molten metal injector (14) is in fluid communication with the casting cavity (54). The molten metal injector (14) has an injector body (16) defining an inlet opening (24) for receiving molten metal into the injector body (16). A gas pressurization source (38) is in fluid communication with the injector body (16) for cyclically pressurizing the injector body (16) and inducing molten metal to flow from the injector body (16) to the casting cavity (54). An inlet valve (42) is located in the inlet opening (24) in the injector body (16) for filling molten metal into the injector body (16). The inlet valve (42) is configured to prevent outflow of molten metal from the injector body (16) during pressurization and permit inflow of molten metal into the injector body (16) after pressurization. The inlet valve (42) has an inlet valve actuator (44) located above the surface of the supply of molten metal (12) and is operatively connected to the inlet valve (42) for operating the inlet valve (42) between open and closed positions.

  8. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Toolmore » steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.« less

  9. Influence of standardization on the precision (reproducibility) of dental cast analysis with virtual 3-dimensional models.

    PubMed

    Hayashi, Kazuo; Chung, Onejune; Park, Seojung; Lee, Seung-Pyo; Sachdeva, Rohit C L; Mizoguchi, Itaru

    2015-03-01

    Virtual 3-dimensional (3D) models obtained by scanning of physical casts have become an alternative to conventional dental cast analysis in orthodontic treatment. If the precision (reproducibility) of virtual 3D model analysis can be further improved, digital orthodontics could be even more widely accepted. The purpose of this study was to clarify the influence of "standardization" of the target points for dental cast analysis using virtual 3D models. Physical plaster models were also measured to obtain additional information. Five sets of dental casts were used. The dental casts were scanned with R700 (3Shape, Copenhagen, Denmark) and REXCAN DS2 3D (Solutionix, Seoul, Korea) scanners. In this study, 3 system and software packages were used: SureSmile (OraMetrix, Richardson, Tex), Rapidform (Inus, Seoul, Korea), and I-DEAS (SDRC, Milford, Conn). Without standardization, the maximum differences were observed between the SureSmile software and the Rapidform software (0.39 mm ± 0.07). With standardization, the maximum differences were observed between the SureSmile software and measurements with a digital caliper (0.099 mm ± 0.01), and this difference was significantly greater (P <0.05) than the 2 other mean difference values. Furthermore, the results of this study showed that the mean differences "WITH" standardization were significantly lower than those "WITHOUT" standardization for all systems, software packages, or methods. The results showed that elimination of the influence of usability or habituation is important for improving the reproducibility of dental cast analysis. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  10. A randomized controlled trial of cast versus splint for distal radial buckle fracture: an evaluation of satisfaction, convenience, and preference.

    PubMed

    Williams, Kristine G; Smith, Gillian; Luhmann, Scott J; Mao, Jingnan; Gunn, Joseph D; Luhmann, Janet D

    2013-05-01

    Buckle fractures are inherently stable and at low risk for displacement. These advantages allow for treatment options that may create confusion for the practitioner. Accepted immobilization methods include circumferential cast, plaster or prefabricated splint, and soft bandaging. Despite mounting evidence for splinting, the questions of pain, preference, satisfaction, and convenience offer a challenge to changing practice. The purposes of this study were (1) to compare cast versus splint for distal radial buckle fractures in terms of parental and patient satisfaction, convenience, and preference and (2) to compare pain reported for cast versus splint. We conducted a prospective randomized trial of a convenience sample of patients 2 through 17 years with a radiologically confirmed distal radial buckle fracture. Subjects were randomly assigned to short-arm cast or prefabricated wrist splint. We assessed satisfaction, convenience, preference, and pain in the emergency department and at days 1, 3, 7, and 21 after immobilization. Ninety-four patients were enrolled. Compared with the cast group, those in the splint group reported higher levels of satisfaction, preference, and convenience on 10-point visual analog scale. Although pain scores were higher for those in the splint group, the difference was not statistically significant. With the exception of pain reported in the emergency department being higher for the splinted group, all other measures, including convenience, satisfaction, and preference, showed a clear trend favoring splints at almost every time period in the study. This study provides additional evidence that splinting is preferable to casting for the treatment of distal radial buckle fractures.

  11. 3D-printed coded apertures for x-ray backscatter radiography

    NASA Astrophysics Data System (ADS)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.

  12. A new portable vibrator for plaster pouring: effect on the marginal fit at cylinder-abutment

    PubMed Central

    de ANDRADE, Pâmela Cândida Aires Ribas; LUTHI, Leonardo Flores; STANLEY, Kyle; CARDOSO, Antônio Carlos

    2012-01-01

    Objective The aim of this study was to test a new portable vibrator for plaster pouring (developed for this purpose), comparing the effect of its use on the accuracy of working cast of implant-supported restorations to the conventional vibrator. Material and methods From a master cast with 2 implants, 30 transfer moldings were made randomly and divided into three groups: Group I (GI): pouring performed in an outsourced dental laboratory with conventional plaster vibrator (10 casts), Group II (GII): pouring performed in the laboratory of the Federal University of Santa Catarina (UFSC) with conventional plaster vibrator (10 casts) and Group III (GIII): pouring performed with the portable vibrator fabricated for this study (10 casts). The position of the analogue and marginal adaptation of the infrastructure were verified by testing the single screw on the master model and on the working model. The measurement of misfit was blindly performed with a precision microscope and analyzing unit, Quadra-Check 200. The data were statistically analyzed by analysis of variance (ANOVA) and the Holm-Sidak test (α=0.05). Results Means±standard deviations were as follows: GI: 19.19±4.73 µm; GII: 21.72±5.41 µm; GIII: 13.5±2.39 µm (P<0.05), with GIII significantly lower as compared to the other groups. Conclusion Within the limitations of this study, it was concluded that a greater accuracy of working cast was achieved when a portable vibrator was used for casting molds. PMID:23138736

  13. Isocyanate exposure assessment combining industrial hygiene methods with biomonitoring for end users of orthopedic casting products.

    PubMed

    Pearson, Ronald L; Logan, Perry W; Kore, Anita M; Strom, Constance M; Brosseau, Lisa M; Kingston, Richard L

    2013-07-01

    Previous studies have suggested a potential risk to healthcare workers applying isocyanate-containing casts, but the authors reached their conclusions based on immunological or clinical pulmonology test results alone. We designed a study to assess potential exposure to methylene diphenyl diisocyanate (MDI) among medical personnel applying orthopedic casts using two different application methods. Air, dermal, surface, and glove permeation sampling methods were combined with urinary biomonitoring to assess the overall risk of occupational asthma to workers handling these materials. No MDI was detected in any of the personal and area air samples obtained. No glove permeation of MDI was detected. A small proportion of surface (3/45) and dermal wipe (1/60) samples were positive for MDI, but were all from inexperienced technicians. Urinary metabolites of MDI [methylenedianiline (MDA)] were detected in three of six study participants prior to both a 'dry' and 'wet' application method, five of six after the dry method, and three of six after the wet method. All MDA results were below levels noted in worker or general populations. Our conclusion is that the risk of MDI exposure is small, but unquantifiable. Because there is some potential risk of dermal exposure, medical personnel are instructed to wear a minimum of 5-mil-thick (5 mil = 0.005 inches) nitrile gloves and avoid contact to unprotected skin. This could include gauntlets, long sleeves, and/or a laboratory coat.

  14. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  15. Characterization of dust from blast furnace cast house de-dusting.

    PubMed

    Lanzerstorfer, Christof

    2017-10-01

    During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.

  16. Phosphorylation of Heat Shock Protein 27 is Increased by Cast Immobilization and by Serum-free Starvation in Skeletal Muscles

    PubMed Central

    Kim, Mee-Young; Lee, Jeong-Uk; Kim, Ju-Hyun; Lee, Lim-Kyu; Park, Byoung-Sun; Yang, Seung-Min; Jeon, Hye-Joo; Lee, Won-Deok; Noh, Ji-Woong; Kwak, Taek-Yong; Jang, Sung-Ho; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Bokyung; Kim, Junghwan

    2014-01-01

    [Purpose] Cast immobilization- and cell starvation-induced loss of muscle mass are closely associated with a dramatic reduction in the structural muscle proteins. Heat shock proteins are molecular chaperones that are constitutively expressed in several eukaryotic cells and have been shown to protect against various stressors. However, the changes in the phosphorylation of atrophy-related heat shock protein 27 (HSP27) are still poorly understood in skeletal muscles. In this study, we examine whether or not phosphorylation of HSP27 is changed in the skeletal muscles after cast immobilization and serum-free starvation with low glucose in a time-dependent manner. [Methods] We undertook a HSP27 expression and high-resolution differential proteomic analysis in skeletal muscles. Furthermore, we used western blotting to examine protein expression and phosphorylation of HSP27 in atrophied gastrocnemius muscle strips and L6 myoblasts. [Results] Cast immobilization and starvation significantly upregulated the phosphorylation of HSP27 in a time-dependent manner, respectively. [Conclusion] Our results suggest that cast immobilization- and serum-free starvation-induced atrophy may be in part related to changes in the phosphorylation of HSP27 in rat skeletal muscles. PMID:25540511

  17. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  18. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding

    PubMed Central

    Tsao, Chia-Wen; Lee, Yueh-Pu

    2016-01-01

    Abstract In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa. PMID:27877852

  19. Effect of Casting Material on the Cast Pressure After Sequential Cast Splitting.

    PubMed

    Roberts, Aaron; Shaw, K Aaron; Boomsma, Shawn E; Cameron, Craig D

    2017-01-01

    Circumferential casting is a vital component of nonoperative fracture management. These casts are commonly valved to release pressure and decrease the risk of complications from swelling. However, little information exists regarding the effect of different casting supplies on the pressure within the cast. Seventy-five long-arm casts were performed on human volunteers, divided between 5 experimental groups with 15 casts in each groups. Testing groups consisted of 2 groups with a plaster short-arm cast overwrapped with fiberglass to a long arm with either cotton or synthetic cast padding. The 3 remaining groups included fiberglass long-arm casts with cotton, synthetic, or waterproof cast padding. A pediatric blood pressure cuff bladder was placed within the cast and inflated to 100 mm Hg. After inflation, the cast was sequentially released with pressure reading preformed after each stage. Order of release consisted of cast bivalve, cast padding release, and cotton stockinet release. After release, the cast was overwrapped with a loose elastic bandage. Difference in pressure readings were compared based upon the cast material. Pressures within the cast were found to decrease with sequential release of cast. The cast type had no effect of change in pressure. Post hoc testing demonstrated that the type of cast padding significantly affected the cast pressures with waterproof padding demonstrating the highest pressure readings at all time-points in the study, followed by synthetic padding. Cotton padding had the lowest pressure readings at all time-points. Type of cast padding significantly influences the amount of pressure within a long-arm cast, even after bivalving the cast and cutting the cast padding. Cotton cast padding allows for the greatest change in pressure. Cotton padding demonstrates the greatest change in pressure within a long-arm cast after undergoing bivalve. Synthetic and waterproof cast padding should not be used in the setting of an acute fracture to accommodate swelling.

  20. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    PubMed

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  1. Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique.

    PubMed

    Ye, Ye; Jiao, Ting; Zhu, Jiarui; Sun, Jian

    2018-01-24

    The purpose of the study was to evaluate the adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by the selective laser melting (SLM) technique. Twenty pairs of edentulous casts were randomly and evenly divided into two groups, and manufacturing of the Co-Cr alloy maxillary complete denture base was conducted either by the SLM technique or by the conventional method. The base-cast sets were transversally sectioned into three sections at the distal canines, mesial of the first molars and the posterior palatal zone. The gap between the metal base and cast was measured in these three sections with a stereoscopic microscope, and the data were analysed using t tests. A total of five specimens of 5 mm diameter were fabricated with the Co-Cr alloy by SLM and the traditional casting technology. A scanning electron microscope (SEM) was used to evaluate the differences in microstructure between these specimens. There was no statistical difference between the three sections in all four groups (P > 0.05). At the region of the canines, the clearance value for the SLM Co-Cr alloy group was larger than that of the conventional method group (P < 0.05). At the mesial of the first molar region and the posterior palatal zone, there was no statistical difference between the gaps observed in the two groups (P > 0.05). The SLM Co-Cr alloy has a denser microstructure behaviour and less casting defect than the cast Co-Cr alloy. The SLM technique showed initial feasibility for the manufacture of dental bases of complete dentures, but large sample studies are needed to prove its reliability in clinical applications. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures are appropriate for clinical use.

  2. [Comparison of bite marks and teeth features using 2D and 3D methods].

    PubMed

    Lorkiewicz-Muszyńska, Dorota; Glapiński, Mariusz; Zaba, Czesław; Łabecka, Marzena

    2011-01-01

    The nature of bite marks is complex. They are found at the scene of crime on different materials and surfaces - not only on human body and corpse, but also on food products and material objects. Human bites on skin are sometimes difficult to interpret and to analyze because of the specific character of skin--elastic and distortable--and because different areas of human body have different surfaces and curvatures. A bite mark left at the scene of crime can be a highly helpful way to lead investigators to criminals. The study was performed to establish: 1) whether bite marks exhibit variations in the accuracy of impressions on different materials, 2) whether it is possible to use the 3D method in the process of identifying an individual based on the comparison of bite marks revealed at the scene, and 3D scans of dental casts, 3) whether application of the 3D method allows for elimination of secondary photographic distortion of bite marks. The authors carried out experiments on simulated cases. Five volunteers bit various materials with different surfaces. Experimental bite marks were collected with emphasis on differentiations of materials. Subsequently, dental impressions were taken from five volunteers in order to prepare five sets of dental casts (the maxilla and mandible. The biting edges of teeth were impressed in wax to create an imprint. The samples of dental casts, corresponding wax bite impressions and bite marks from different materials were scanned with 2D and 3D scanners and photographs were taken. All of these were examined in detail and then compared using different methods (2D and 3D). 1) Bite marks exhibit variations in accuracy of impression on different materials. The most legible reproduction of bite marks was seen on cheese. 2) In comparison of bite marks, the 3D method and 3D scans of dental casts are highly accurate. 3) The 3D method helps to eliminate secondary photographic distortion of bite marks.

  3. Antibacterial efficacy and effect of Morinda citrifolia L. mixed with irreversible hydrocolloid for dental impressions: A randomized controlled trial

    PubMed Central

    Ahmed, A. Shafath; Charles, P. David; Cholan, R.; Russia, M.; Surya, R.; Jailance, L.

    2015-01-01

    Aim: This study aimed to evaluate whether the extract of Morinda citrifolia L. mixed with irreversible hydrocolloid powder decreases microbial contamination during impression making without affecting the resulting casts. Materials and Methods: Twenty volunteers were randomly divided into two groups (n = 10). Group A 30 ml extract of M. citrifolia L diluted in 30 ml of water was mixed to make the impression with irreversible hydrocolloid material. Group B 30 ml deionized water was mixed with irreversible hydrocolloid material to make the impressions following which the surface roughness and dimensional stability of casts were evaluated. Results: Extract of M. citrifolia L. mixed with irreversible hydrocolloid decreased the percentage of microorganisms when compared with water (P < 0.001) but did not affect the surface quality or dimensional stability of the casts. Conclusion: Mixing the extract of M. citrifolia L. with irreversible hydrocolloid powder is an alternative method to prevent contamination without sacrificing impression quality. PMID:26538926

  4. A novel approach for planning orthognathic surgery: the integration of dental casts into three-dimensional printed mandibular models.

    PubMed

    Ayoub, A F; Rehab, M; O'Neil, M; Khambay, B; Ju, X; Barbenel, J; Naudi, K

    2014-04-01

    A method of producing a composite model consisting of a three-dimensional printed mandible bearing plaster teeth is presented. Printed models were obtained from cone beam computed tomograms (CBCT) of dry human mandibles. The plaster casts of the teeth were obtained from impressions of the teeth of the dry mandibles. The distorted teeth of the printed models were removed and replaced by the plaster casts of the teeth using a simple transfer jig. The accuracy of the composite models obtained from six mandibles was assessed from laser scans. The scans of the dry mandibles and the composite models were superimposed and the magnitude of the discrepancies at six points on the dentition and six on the mandible were obtained. It was concluded that the errors of the method were small enough to be clinically significant. The use of the composite models is illustrated in two clinical cases. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Heat Transfer Measurements on Surfaces with Natural Ice Castings and Modeled Roughness

    NASA Technical Reports Server (NTRS)

    Breuer, Kenneth S.; Torres, Benjamin E.; Orr, D. J.; Hansman, R. John

    1997-01-01

    An experimental method is described to measure and compare the convective heat transfer coefficient of natural and simulated ice accretion roughness and to provide a rational means for determining accretion-related enhanced heat transfer coefficients. The natural ice accretion roughness was a sample casting made from accretions at the NASA Lewis Icing Research Tunnel (IRT). One of these castings was modeled using a Spectral Estimation Technique (SET) to produce three roughness elements patterns that simulate the actual accretion. All four samples were tested in a flat-plate boundary layer at angle of attack in a "dry" wind tunnel test. The convective heat transfer coefficient was measured using infrared thermography. It is shown that, dispite some problems in the current data set, the method does show considerable promise in determining roughness-induced heat transfer coefficients, and that, in addition to the roughness height and spacing in the flow direction, the concentration and spacing of elements in the spanwise direction are important parameters.

  6. Processing of sintered alpha SiC

    NASA Technical Reports Server (NTRS)

    Storm, R. S.

    1984-01-01

    Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.

  7. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting

    PubMed Central

    Koike, Mari; Greer, Preston; Owen, Kelly; Lilly, Guo; Murr, Lawrence E.; Gaytan, Sara M.; Martinez, Edwin; Okabe, Toru

    2011-01-01

    This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam AB®) in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast) were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought) was used as a control. The mechanical properties, corrosion properties and grindability (wear properties) were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05). The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods. PMID:28824107

  8. Multiscale topo-morphologic opening of arteries and veins: a validation study on phantoms and CT imaging of pulmonary vessel casting of pigs

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyun; Holtze, Colin; Sonka, Milan; Hoffman, Eric; Saha, Punam K.

    2010-03-01

    Distinguishing pulmonary arterial and venous (A/V) trees via in vivo imaging is a critical first step in the quantification of vascular geometry for purposes of determining, for instance, pulmonary hypertension, detection of pulmonary emboli and more. A multi-scale topo-morphologic opening algorithm has recently been introduced by us separating A/V trees in pulmonary multiple-detector X-ray computed tomography (MDCT) images without contrast. The method starts with two sets of seeds - one for each of A/V trees and combines fuzzy distance transform, fuzzy connectivity, and morphologic reconstruction leading to multi-scale opening of two mutually fused structures while preserving their continuity. The method locally determines the optimum morphological scale separating the two structures. Here, a validation study is reported examining accuracy of the method using mathematically generated phantoms with different levels of fuzziness, overlap, scale, resolution, noise, and geometric coupling and MDCT images of pulmonary vessel casting of pigs. After exsanguinating the animal, a vessel cast was generated using rapid-hardening methyl methacrylate compound with additional contrast by 10cc of Ethiodol in the arterial side which was scanned in a MDCT scanner at 0.5mm slice thickness and 0.47mm in plane resolution. True segmentations of A/V trees were computed from these images by thresholding. Subsequently, effects of distinguishing A/V contrasts were eliminated and resulting images were used for A/V separation by our method. Experimental results show that 92% - 98% accuracy is achieved using only one seed for each object in phantoms while 94.4% accuracy is achieved in MDCT cast images using ten seeds for each of A/V trees.

  9. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser Beam Melting.

    PubMed

    Koike, Mari; Greer, Preston; Owen, Kelly; Lilly, Guo; Murr, Lawrence E; Gaytan, Sara M; Martinez, Edwin; Okabe, Toru

    2011-10-10

    This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23) specimens fabricated by a laser beam melting (LBM) and an electron beam melting (EBM) system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam AB Ò ) in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast) were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought) was used as a control. The mechanical properties, corrosion properties and grindability (wear properties) were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05). The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.

  10. Comparison of Dimensional Accuracy between Open-Tray and Closed-Tray Implant Impression Technique in 15° Angled Implants

    PubMed Central

    Balouch, F; Jalalian, E; Nikkheslat, M; Ghavamian, R; Toopchi, Sh; Jallalian, F; Jalalian, S

    2013-01-01

    Statement of Problem: Various impression techniques have different effects on the accuracy of final cast dimensions. Meanwhile; there are some controversies about the best technique. Purpose: This study was performed to compare two kinds of implant impression methods (open tray and closed tray) on 15 degree angled implants. Materials and Method: In this experimental study, a steel model with 8 cm in diameter and 3 cm in height were produced with 3 holes devised inside to stabilize 3 implants. The central implant was straight and the other two implants were 15° angled. The two angled implants had 5 cm distance from each other and 3.5 cm from the central implant. Dental stone, high strength (type IV) was used for the main casts. Impression trays were filled with poly ether, and then the two impression techniques (open tray and closed tray) were compared. To evaluate positions of the implants, each cast was analyzed by CMM device in 3 dimensions (x,y,z). Differences in the measurements obtained from final casts and laboratory model were analyzed using t-Test. Results: The obtained results indicated that closed tray impression technique was significantly different in dimensional accuracy when compared with open tray method. Dimensional changes were 129 ± 37μ and 143.5 ± 43.67μ in closed tray and open tray, while coefficient of variation in closed- tray and open tray were reported to be 27.2% and 30.4%, respectively. Conclusion: Closed impression technique had less dimensional changes in comparison with open tray method, so this study suggests that closed tray impression technique is more accurate. PMID:24724130

  11. Fatigue crack identification method based on strain amplitude changing

    NASA Astrophysics Data System (ADS)

    Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang

    2017-09-01

    Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.

  12. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  13. Tape casting and partial melting of Bi-2212 thick films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buhl, D.; Lang, T.; Heeb, B.

    1994-12-31

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density ofmore » 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).« less

  14. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Leung, D. C.

    1981-01-01

    Solar cells were fabricated from EFG ribbons dendritic webs, cast ingots by heat exchanger method, and cast ingots by ubiquitous crystallization process. Baseline and other process variations were applied to fabricate solar cells. EFG ribbons grown in a carbon-containing gas atmosphere showed significant improvement in silicon quality. Baseline solar cells from dendritic webs of various runs indicated that the quality of the webs under investigation was not as good as the conventional CZ silicon, showing an average minority carrier diffusion length of about 60 um versus 120 um of CZ wafers. Detail evaluation of large cast ingots by HEM showed ingot reproducibility problems from run to run and uniformity problems of sheet quality within an ingot. Initial evaluation of the wafers prepared from the cast polycrystalline ingots by UCP suggested that the quality of the wafers from this process is considerably lower than the conventional CZ wafers. Overall performance was relatively uniform, except for a few cells which showed shunting problems caused by inclusions.

  15. Virtual aluminum castings: An industrial application of ICME

    NASA Astrophysics Data System (ADS)

    Allison, John; Li, Mei; Wolverton, C.; Su, Xuming

    2006-11-01

    The automotive product design and manufacturing community is continually besieged by Hercule an engineering, timing, and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing engine performance requirements coupled with stringent weight and packaging constraints are pushing aluminum alloys to the limits of their capabilities. To provide high-quality blocks and heads at the lowest possible cost, manufacturing process engineers are required to find increasingly innovative ways to cast and heat treat components. Additionally, to remain competitive, products and manufacturing methods must be developed and implemented in record time. To bridge the gaps between program needs and engineering reality, the use of robust computational models in up-front analysis will take on an increasingly important role. This article describes just such a computational approach, the Virtual Aluminum Castings methodology, which was developed and implemented at Ford Motor Company and demonstrates the feasibility and benefits of integrated computational materials engineering.

  16. Seal welded cast iron nuclear waste container

    DOEpatents

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  17. Tape casting and partial melting of Bi-2212 thick films

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Lang, TH.; Heeb, B.; Gauckler, L. J.

    1995-01-01

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 microns. The orientation of the (a,b)-plane of the grains was parallel to the substrate with a misalignment of less than 6 deg. At 77 K/0T a critical current density of 15, 000 A/sq cm was reached in films of the dimension 1 cm x 2 cm x 20 microns (1 micron V/cm criterion, resistively measured). At 4 K/0T the highest value was 350,000 A/sq cm (1 nV/cm criterion, magnetically measured).

  18. Surface Hardening of Composite Material by the Centrifugal-Casting Method

    NASA Astrophysics Data System (ADS)

    Eidelman, E. D.; Durnev, M. A.

    2018-04-01

    The effect of rotation flow emerging under centrifugal casting on the first-order phase transition, i.e., crystallization, has been studied using the example of producing a gradient composite material of AK12 aluminum alloy in a mixture with basalt fibers. It has been shown that a material with a hardened surface can be created. Distribution of admixtures in the main material when there is macroscopic motion has been found.

  19. Cast Aluminum Structures Technology (CAST) Phase VI. Technology Transfer.

    DTIC Science & Technology

    1980-04-01

    and other aspects of the program was provided as follows: o Phase I--Preliminary Design Richard C. Jones o Phase il--Manufacturing Methods Richard G...Christner o Phase Ill--Detailed Design Richard C. Jones o Phase IV--Fabrication of Demonstration Richard G. Christner Articles and Production... Richard C. Jones, assisted by Carlos J. Romero, Christian K. Gunther, Cecil E. Parsons, and Donald D. Goehler; and by Walter Hyler of Battelle Columbus

  20. Induction hardening treatment and simulation for a grey cast iron used in engine cylinder liners

    NASA Astrophysics Data System (ADS)

    Castellanos-Leal, E. L.; Miranda, D. A.; Coy, A. E.; Barrero, J. G.; González, J. A.; Vesga Rueda, O. P.

    2017-01-01

    In this research, a technical study of induction hardening in a grey cast iron used in engine cylinder liners manufactured by LAVCO Ltda., a Colombian foundry company, was carried out. Metallurgical parameters such as austenitization temperature, cooling rate, and quenching severity were determined. These factors are exclusively dependent on chemical composition and initial microstructure of grey cast iron. Simulations of induction heating through finite elements method were performed and, the most appropriate experimental conditions to achieve the critical transformation temperature was evaluated to reach a proper surface hardening on the piece. Preliminary results revealed an excellent approximation between simulation and heating test performed with a full bridge inverter voltage adapted with local technology.

  1. NDE of PWA 1480 single crystal turbine blade material

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Orange, Thomas W.; Dreshfield, Robert L.

    1993-01-01

    Cantilever bending fatigue specimens were examined by fluorescent liquid penetrant and radioactive gas penetrant (Krypton) non-destructive evaluation (NDE) methods and tested. Specimens with cast, ground, or polished surface were evaluated to study the effect of surface condition on NDE and fatigue crack initiation. Fractographic and metallurgical analyses were performed to determine the nature of crack precursors. Preliminary results show that fatigue strength was lower for specimens with cast surfaces than for specimens with machined surfaces. The liquid penetrant and gas penetrant techniques both provided indications of a large population of defects on the cast surfaces. On ground or polished specimen surfaces, the gas penetrant appeared to estimate the actual number of voids more accurately than the liquid penetrant.

  2. Crystallography and Morphology of MC Carbides in Niobium-Titanium Modified As-Cast HP Alloys

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl G.; Kral, Milo V.; Bishop, Catherine M.

    2014-07-01

    The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.

  3. Management of enterocutaneous fistulas and problem stomas with silicone casting of the abdominal wall defect.

    PubMed

    Streza, G A; Laing, B J; Gilsdorf, R B

    1977-12-01

    Silicone casting of abdominal wall defects around enteric fistulas in six patients and problem stomas in three patients proved to be an effective means of controlling the output of the fistulas, reducing wound care time, and reducing or eliminating parenteral nutrition needs. Outpatient management was possible in seven of the nine patients. It is observed that the wounds healed rapidly with this method of fistula control. Epithelialization occurred more rapidly than expected. This method of management may tend to make the fistulas remain open longer than by other means of care, but the significant increase in patient comfort, the financial savings, and the relative safety warrant continued utilization and observation of this method of management.

  4. Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment.

    PubMed

    2017-01-01

    Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00-0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01-0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval -0.11-0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients.

  5. Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete.

    PubMed

    Bos, Freek P; Ahmed, Zeeshan Y; Jutinov, Evgeniy R; Salet, Theo A M

    2017-11-16

    The Material Deposition Method (MDM) is enjoying increasing attention as an additive method to create concrete mortar structures characterised by a high degree of form-freedom, a lack of geometrical repetition, and automated construction. Several small-scale structures have been realised around the world, or are under preparation. However, the nature of this construction method is unsuitable for conventional reinforcement methods to achieve ductile failure behaviour. Sometimes, this is solved by combining printing with conventional casting and reinforcing techniques. This study, however, explores an alternative strategy, namely to directly entrain a metal cable in the concrete filament during printing to serve as reinforcement. A device is introduced to apply the reinforcement. Several options for online reinforcement media are compared for printability. Considerations specific to the manufacturing process are discussed. Subsequently, pull-out tests on cast and printed specimens provide an initial characterisation of bond behaviour. Bending tests furthermore show the potential of this reinforcement method. The bond stress of cables in printed concrete was comparable to values reported for smooth rebar but lower than that of the same cables in cast concrete. The scatter in experimental results was high. When sufficient bond length is available, ductile failure behaviour for tension parallel to the filament direction can be achieved, even though cable slip occurs. Further improvements to the process should pave the way to achieve better post-crack resistance, as the concept in itself is feasible.

  6. Silicon material development for terrestrial solar cells. Phase of exploration

    NASA Astrophysics Data System (ADS)

    Sirtl, E.

    1983-03-01

    A material project based on a multicrystalline silicon is reported. It consists of refining the metallurgical grade silicon via hydro and pyrometallurgical processes, preparation of square shaped ingots by (inert) gas protected or open hearth casting methods, and high speed slicing, using a multiple blade slurry saw. Second generation pilot equipment was constructed. Aluminothermic reduction of quartz sand into silicon and the foil casting process were tested. It is concluded that the production of silicon thru the gaseous phase depends upon the marketing of very cheap basic material (SG-Si 10 dollar/Kg) and that the purification of metallurgical grade silicon by refining is the most promising method.

  7. Influence wt.% of SiC and borax on the mechanical properties of AlSi-Mg-TiB-SiC composite by the method of semi solid stir casting

    NASA Astrophysics Data System (ADS)

    Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2017-04-01

    SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.

  8. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Longtao, E-mail: longtaojiang@163.com; Wang, Pingping; Xiu, Ziyang

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. Themore » interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.« less

  9. Method of Analysis of the Topic of Doctoral Thesis in the Field of Castings Production. Case Study on the Situation in Romania

    NASA Astrophysics Data System (ADS)

    Soporan, V. F.; Samoilă, V.; Lehene, T. R.; Pădureţu, S.; Crişan, M. D.; Vescan, M. M.

    2018-06-01

    The paper presents a method of analysis of doctoral theses in castings production, elaborated in Romania, the analysis period ranging from 1918 to 2016. The procedure, based on the evolution of the analyzed problem, consists of the following steps: establishment of a coding system for the domains and subdomains established in the thematic characterization of doctoral theses; the establishment of the doctoral organizing institutions, the doctoral specialties, the doctoral supervisors and the time frame for the analysis; selecting the doctoral thesis that will be included in the analysis; establishing the key words for characterization of doctoral theses, based on their title; the assignment of theses to the domains and subdomains according to the meaning of the keywords, to the existing groups of the coding system; statistical processing of results and determination of shares for each domain and subdomain; conclusions on the results obtained and their interpretation in the context of economic and social developments. The proposed method being considered as general, the case study is carried out at the level of the specific field of castings production, the territory of the analysis refers to the institutions organizing doctoral studies.

  10. Soft cast versus rigid cast for treatment of distal radius buckle fractures in children.

    PubMed

    Witney-Lagen, Caroline; Smith, Christine; Walsh, Graham

    2013-04-01

    Buckle fractures are extremely common and their optimum management is still under debate. This study aimed to ascertain whether buckle fractures of the distal radius can be safely and effectively treated in soft cast with only a single orthopaedic outpatient clinic appointment. A total of 232 children with buckle fractures of the distal radius were included in the study. 111 children with 112 distal radius fractures were treated in full rigid cast and 121 children with 123 fractures were treated with soft cast. The rigid cast children attended outpatient clinic for removal of cast at 3 weeks. Soft casts were removed by parents unwinding the cast at home after 3 weeks. Follow-up was conducted prospectively by telephone questionnaire at an average of 6 weeks post-injury. Outcome data were available for 117 children treated in soft cast and for 102 children treated in rigid cast. The most common mechanism of injury was a fall sustained from standing or running, followed by falls from bikes and then trampoline accidents. Overall, both groups recovered well. Overall satisfaction with the outcome of treatment was 97.4% in soft cast and 95.2% in rigid cast. Casts were reported as comfortable by 95.7% in soft cast and 93.3% in rigid cast. Cast changes were required for 6.8% of soft casts and 11.5% of rigid casts. The most frequent cause for changing rigid casts was getting the cast wet. None of the improved scores seen in the soft cast group were statistically significant. No re-fractures were seen in either group. Nearly all (94.9%) children in soft cast did bathe, shower or swim in their cast. Parents of both groups preferred treatment with soft cast (p < 0.001). Reasons given for preferring the soft cast included the ability to get the cast wet, avoidance of the plaster saw and not having to take time off work to attend a follow-up visit for cast removal. Buckle fractures of the distal radius can be safely and effectively treated in soft cast with only a single orthopaedic outpatient clinic appointment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Grain Refinement of Magnesium Alloys: A Review of Recent Research, Theoretical Developments, and Their Application

    NASA Astrophysics Data System (ADS)

    StJohn, D. H.; Easton, M. A.; Qian, M.; Taylor, J. A.

    2013-07-01

    This paper builds on the "Grain Refinement of Mg Alloys" published in 2005 and reviews the grain refinement research on Mg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy's as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment.

  12. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys

    PubMed Central

    Miyata, K; Abe, Y; Ishii, T; Ishigami, T; Ohtani, K; Nagai, E; Ohyama, T; Umekawa, Y; Nakabayashi, S

    2015-01-01

    Objectives: To assess the safety of different magnetic dental attachments during 3-T MRI according to the American Society for Testing and Materials F2182-09 and F2052-06e1 standard testing methods and to develop a method to determine MRI compatibility by measuring magnetically induced torque. Methods: The temperature elevations, magnetically induced forces and torques of a ferromagnetic stainless steel keeper, a coping comprising a keeper and a cast magnetic alloy coping were measured on MRI systems. Results: The coping comprising a keeper demonstrated the maximum temperature increase (1.42 °C) for the whole-body-averaged specific absorption rate and was calculated as 2.1 W kg−1 with the saline phantom. All deflection angles exceeded 45°. The cast magnetic alloy coping had the greatest deflection force (0.33 N) during 3-T MRI and torque (1.015 mN m) during 0.3-T MRI. Conclusions: The tested devices showed minimal radiofrequency (RF)-induced heating in a 3-T MR environment, but the cast magnetic alloy coping showed a magnetically induced deflection force and torque approximately eight times that of the keepers. For safety, magnetic dental attachments should be inspected before and after MRI and large prostheses containing cast magnetic alloy should be removed. Although magnetic dental attachments may pose no great risk of RF-induced heating or magnetically induced torque during 3-T MRI, their magnetically induced deflection forces tended to exceed acceptable limits. Therefore, the inspection of such devices before and after MRI is important for patient safety. PMID:25785821

  13. Effect of Thermal and Chemical Treatment on the Microstructural, Mechanical and Machining Performance of W319 Al-Si-Cu Cast Alloy Engine Blocks and Directionally Solidified Machinability Test Blocks

    NASA Astrophysics Data System (ADS)

    Szablewski, Daniel

    The research presented in this work is focused on making a link between casting microstructural, mechanical and machining properties for 319 Al-Si sand cast components. In order to achieve this, a unique Machinability Test Block (MTB) is designed to simulate the Nemak V6 Al-Si engine block solidification behavior. This MTB is then utilized to cast structures with in-situ nano-alumina particle master alloy additions that are Mg based, as well as independent in-situ Mg additions, and Sr additions to the MTB. The Universal Metallurgical Simulator and Analyzer (UMSA) Technology Platform is utilized for characterization of each cast structure at different Secondary Dendrite Arm Spacing (SDAS) levels. The rapid quench method and Jominy testing is used to assess the capability of the nano-alumina master alloy to modify the microstructure at different SDAS levels. Mechanical property assessment of the MTB is done at different SDAS levels on cast structures with master alloy additions described above. Weibull and Quality Index statistical analysis tools are then utilized to assess the mechanical properties. The MTB is also used to study single pass high speed face milling and bi-metallic cutting operations where the Al-Si hypoeutectic structure is combined with hypereutectoid Al-Si liners and cast iron cylinder liners. These studies are utilized to aid the implementation of Al-Si liners into the Nemak V6 engine block and bi-metallic cutting of the head decks. Machining behavior is also quantified for the investigated microstructures, and the Silicon Modification Level (SiML) is utilized for microstructural analysis as it relates to the machining behavior.

  14. A cost/utility analysis of open reduction and internal fixation versus cast immobilization for acute nondisplaced mid-waist scaphoid fractures.

    PubMed

    Davis, Erika N; Chung, Kevin C; Kotsis, Sandra V; Lau, Frank H; Vijan, Sandeep

    2006-04-01

    Open reduction and internal fixation and cast immobilization are both acceptable treatment options for nondisplaced waist fractures of the scaphoid. The authors conducted a cost/utility analysis to weigh open reduction and internal fixation against cast immobilization in the treatment of acute nondisplaced mid-waist scaphoid fractures. The authors used a decision-analytic model to calculate the outcomes and costs of open reduction and internal fixation and cast immobilization, assuming the societal perspective. Utilities were assessed from 50 randomly selected medical students using the time trade-off method. Outcome probabilities taken from the literature were factored into the calculation of quality-adjusted life-years associated with each treatment. The authors estimated medical costs using Medicare reimbursement rates, and costs of lost productivity were estimated by average wages obtained from the U.S. Bureau of Labor Statistics. Open reduction and internal fixation offers greater quality-adjusted life-years compared with casting, with an increase ranging from 0.21 quality-adjusted life-years for the 25- to 34-year age group to 0.04 quality-adjusted life-years for the > or =65-year age group. Open reduction and internal fixation is less costly than casting ($7940 versus $13,851 per patient) because of a longer period of lost productivity with casting. Open reduction and internal fixation is therefore the dominant strategy. When considering only direct costs, the incremental cost/utility ratio for open reduction and internal fixation ranges from $5438 per quality-adjusted life-year for the 25- to 34-year age group to $11,420 for the 55- to 64-year age group, and $29,850 for the > or =65-year age group. Compared with casting, open reduction and internal fixation is cost saving from the societal perspective ($5911 less per patient). When considering only direct costs, open reduction and internal fixation is cost-effective relative to other widely accepted interventions.

  15. Systematic review of spica casting for the treatment of paediatric diaphyseal femur fractures.

    PubMed

    Tisherman, R T; Hoellwarth, J S; Mendelson, S A

    2018-04-01

    Paediatric femur fractures are commonly encountered and often successfully managed with spica casting. Despite spica casting's long history there is little formal guidance for optimal outcomes and no consolidation of existing literature. The purpose of this study is to review the available literature regarding the use of spica casting for the management of paediatric diaphyseal femur fractures. The PubMed database was queried for all research articles including the phrase "spica". A total of 788 abstracts were reviewed for relevance to the current study. Data was extracted from all available research studies which specified tolerance for fracture angulation or shortening in the cast. Additionally, all articles describing alternative materials, methods for spica application, and complications of spica casting were reviewed. In all, 106 articles were found relevant to the management of diaphyseal femur fractures in the paediatric population. The aggregated, accepted fracture shortening decreased from 16 mm to 18 mm before age ten years to 12 mm to 14 mm after puberty. Aggregated, accepted angulation decreased from 14° to 16° varus/valgus and 18° to 22° pro/recurvatum before age two years, to 6° to 8° and 10° to 12° by puberty, respectively. The overall reported complication rate was 19.6%, with the most common complication being skin compromise in 8.2% of patients, followed by unacceptable angulation at the fracture site in 4.2% of patients and excessive limb shortening in 1.9% of patients. This article reviews the available spica casting literature and compiles the available data. Spica casting offers a safe, effective means for definitive management of paediatric diaphyseal femur fractures. Future research identifying the rate and pattern of remodelling as it relates to angulation and shortening at various patient ages, particularly beyond the aforementioned norms, would be valuable to identify true biological tolerances versus accepted expert opinion. Review of level II evidence.

  16. In vitro investigation of marginal accuracy of implant-supported screw-retained partial dentures.

    PubMed

    Koke, U; Wolf, A; Lenz, P; Gilde, H

    2004-05-01

    Mismatch occurring during the fabrication of implant-supported dentures may induce stress to the peri-implant bone. The purpose of this study was to investigate the influence of two different alloys and the fabrication method on the marginal accuracy of cast partial dentures. Two laboratory implants were bonded into an aluminium block so that the distance between their longitudinal axes was 21 mm. Frameworks designed for screw-retained partial dentures were cast either with pure titanium (rematitan) or with a CoCr-alloy (remanium CD). Two groups of 10 frameworks were cast in a single piece. The first group was made of pure titanium, and the second group of a CoCr-alloy (remanium CD). A third group of 10 was cast in two pieces and then laser-welded onto a soldering model. This latter group was also made of the CoCr-alloy. All the frameworks were screwed to the original model with defined torque. Using light microscopy, marginal accuracy was determined by measuring vertical gaps at eight defined points around each implant. Titanium frameworks cast in a single piece demonstrated mean vertical gaps of 40 microm (s.d. = 11 microm) compared with 72 microm (s.d. = 40 microm) for CoCr-frameworks. These differences were not significant (U-test, P = 0.124) because of a considerable variation of the values for CoCr-frameworks (minimum: 8 microm and maximum: 216 microm). However, frameworks cast in two pieces and mated with a laser showed significantly better accuracy in comparison with the other experimental groups (mean: 17 microm +/- 6; P < 0.01). (i) The fit of implant-supported partial dentures cast with pure titanium in a single piece is preferable to that of those made with the CoCr-alloy and (ii) the highest accuracy can be achieved by using a two-piece casting technique combined with laser welding. Manufacturing the framework pieces separately and then welding them together provides the best marginal fit.

  17. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns.

    PubMed

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús

    2013-09-01

    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Incidence and etiology of unplanned cast changes for fractures in the pediatric population.

    PubMed

    DiPaola, Matthew J; Abzug, Joshua M; Pizzutillo, Peter D; Herman, Martin J

    2014-09-01

    The majority of pediatric fractures are treated in casts due to the child's ability to heal rapidly and remodel. Unplanned cast changes are a time and economic burden with potentially adverse effects on fracture management. The purpose of this study is to document the incidence, etiology, and complications related to unplanned cast changes. A prospective study was conducted over a 6-month period to determine the incidence of unplanned cast changes. All casts applied were nonwaterproof. Data collected include the reason for cast placement, type of cast placed, duration of wear before the unplanned change, reason for the unplanned change, experience level of the original cast applicator, and cast-related complications. A total of 1135 casts were placed with 58% placed by a resident, 38% by a cast technician, 2% by a physician's assistant, and 2% by an attending physician. Sixty casts (5.3%) required an unplanned change including 19 short-arm casts, 18 short-leg casts, 17 long-arm casts, 4 thumb spica casts, and 2 long-leg casts. The average duration from cast application until the unplanned change was 13 days. Twenty-eight (47%) were changed for wetness, 20 (33%) for wear/breakage, 2 (3%) for skin irritation, and 10 (17%) for other reasons including objects in the cast and patient self-removal. Two patients had superficial skin infections requiring oral antibiotics. No fracture reductions were lost secondary to an unplanned cast change. The need for an unplanned cast change did not correlate with the level of experience of the applicator. Most unplanned cast changes were the result of patient nonadherence to instructions and not related to cast application technique. Improved patient and family education regarding cast care may reduce the frequency of unplanned cast changes, thus reducing an economic and time burden on the health care system. Level II--prognostic study.

  19. Type of Primary Nb₅Si₃ and Precipitation of Nbss in αNb₅Si₃ in a Nb-8.3Ti-21.1Si-5.4Mo-4W-0.7Hf (at.%) Near Eutectic Nb-Silicide-Based Alloy.

    PubMed

    McCaughey, Conor; Tsakiropoulos, Panos

    2018-06-07

    The Nb-silicide-based alloy of near eutectic composition (at.%) Nb-21.1Si-8.3Ti-5.4Mo-4W-0.7Hf (alloy CM1) was studied in the cast and heat-treated (1500 °C/100 h) conditions. The alloy was produced in the form of buttons and bars using three different methods, namely arc-melting, arc-melting and suction casting, and optical floating zone (OFZ) melting. In the former two cases the alloy solidified in water-cooled copper crucibles. Buttons and suction-cast bars of different size, respectively of 10 g and 600 g weight and 6 mm and 8 mm diameter, were produced. The OFZ bars were grown at three different growth rates of 12, 60 and 150 mm/h. It was confirmed that the type of Nb₅Si₃ formed in the cast microstructures depended on the solidification conditions. The primary phase in the alloy CM1 was the βNb₅Si₃. The transformation of βNb₅Si₃ to αNb₅Si₃ had occurred in the as cast large size button and the OFZ bars grown at the three different growth rates, and after the heat treatment of the small size button and the suction-cast bars of the alloy. This transformation was accompanied by subgrain formation in Nb₅Si₃ and the precipitation of Nb ss in the large size as cast button and only by the precipitation of Nb ss in the cast OFZ bars. Subgrains and precipitation of Nb ss in αNb₅Si₃ was observed in the small size button and suction-cast bars after the heat treatment. Subgrains formed in αNb₅Si₃ after the heat treatment of the OFZ bars. The partitioning of solutes and in particular of Mo and Ti was key to this phase transformation. Subgrain formation was not necessary for precipitation of Nb ss in αNb₅Si₃, but the partitioning of solutes was essential for this precipitation.

  20. Laboratory evaluation of compressor blades considered for use in CIP/CUP compressors. [GAT2, 214X, X224, and D-15Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, K.L.

    1976-04-30

    Four die-casting alloys, the external-pressure-pin and conventional casting methods, an accelerated aging heat treatment, and an airfoil fillet modification were evaluated for 33F-S1 compressor blades considered for use in axial flow compressors installed during the Cascade Improvement and Uprating Programs at the three gaseous diffusion plants. Based on castability, resonant frequency, resistance to fatigue cracking, and shank breaking load, the ranking of the four alloys from highest to lowest is GAT2, 214X, X224, and D-15. The GAT2 alloy ranked highest in all categories except impact value; the impact values of both X224 and 214X alloys exceeded that of the GAT2more » alloy, thus indicating the latter is relatively more brittle. However, in view of its other excellent properties, including fatigue cracking resistance, GAT2 alloy is worthy of consideration for use in blades for CIP/CUP or Add-on Plant compressors, particularly if castability becomes a problem with the presently used 214X alloy. Use of the external-pressure-pin casting method is not recommended because the resulting casting difficulties cannot be justified by the small increases in shank breaking loads. The airfoil fillet modification, which is a change from the conventional circular fillet to an elliptical fillet, resulted in increases (1.5 to 4.0 percent) in the average resonant frequency and in resistance to fatigue cracking (15 to 100 percent). The results of giving the blades an accelerated aging heat treatment, designed to simulate in excess of 10,000 hours of cascade exposure, showed that overaging had no significant effect on average resonant frequency but that overaging improved blade quality by reducing residual casting stress. (auth)« less

  1. Bond strength of poly(methyl methacrylate) denture base material to cast titanium and cobalt-chromium alloy.

    PubMed

    Matsuda, Yasuhiro; Yanagida, Hiroaki; Ide, Takako; Matsumura, Hideo; Tanoue, Naomi

    2010-06-01

    The shear bond strength of an auto-polymerizing poly(methyl methacrylate) denture base resin material to cast titanium and cobalt-chromium alloy treated with six conditioning methods was investigated. Disk specimens (10 mm in diameter and 2.5 mm in thickness) were cast from pure titanium and cobalt-chromium alloy. The specimens were wet ground to a final surface finish of 600 grit, air dried, and treated with the following bonding systems: 1) air abraded with 50-70-microm-grain alumina (SAN); 2) air abraded with 50-70-microm-grain alumina + conditioned with Alloy Primer (ALP); 3) air abraded with 50-70-microm-grain alumina + conditioned with AZ Primer (AZP); 4) air abraded with 50-70-microm-grain alumina + conditioned with Estenia Opaque Primer (EOP); 5) air abraded with 50-70-microm-grain alumina + conditioned with Metal Link Primer (MLP), and 6) treated with ROCATEC system (ROC). A denture base material (Palapress Vario) was then applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. The strengths decreased after thermocycling in all combinations. Among the treatment methods assessed, groups 2 and 4 showed significantly (p < 0.05) enhanced shear bond strengths for both metals. In group 4, the strength in MPa (n = 7) after thermocycling for cobalt-chromium alloy was 38.3, which was statistically (p < 0.05) higher than that for cast titanium (34.7). Air abrasion followed by the application of two primers containing a hydrophobic phosphate monomer (MDP) effectively improved the strength of the bond of denture base material to cast titanium and cobalt-chromium alloy.

  2. Modified section method for laser-welding of ill-fitting cp Ti and Ni-Cr alloy one-piece cast implant-supported frameworks.

    PubMed

    Tiossi, R; Falcão-Filho, H; Aguiar Júnior, F A; Rodrigues, R C; Mattos, M da G; Ribeiro, R F

    2010-05-01

    This study aimed to verify the effect of modified section method and laser-welding on the accuracy of fit of ill-fitting commercially pure titanium (cp Ti) and Ni-Cr alloy one-piece cast frameworks. Two sets of similar implant-supported frameworks were constructed. Both groups of six 3-unit implant-supported fixed partial dentures were cast as one-piece [I: Ni-Cr (control) and II: cp Ti] and evaluated for passive fitting in an optical microscope with both screws tightened and with only one screw tightened. All frameworks were then sectioned in the diagonal axis at the pontic region (III: Ni-Cr and IV: cp Ti). Sectioned frameworks were positioned in the matrix (10-Ncm torque) and laser-welded. Passive fitting was evaluated for the second time. Data were submitted to anova and Tukey-Kramer honestly significant difference tests (P < 0.05). With both screws tightened, one-piece cp Ti group II showed significantly higher misfit values (27.57 +/- 5.06 microm) than other groups (I: 11.19 +/- 2.54 microm, III: 12.88 +/- 2.93 microm, IV: 13.77 +/- 1.51 microm) (P < 0.05). In the single-screw-tightened test, with readings on the opposite side to the tightened side, Ni-Cr cast as one-piece (I: 58.66 +/- 14.30 microm) was significantly different from cp Ti group after diagonal section (IV: 27.51 +/- 8.28 microm) (P < 0.05). On the tightened side, no significant differences were found between groups (P > 0.05). Results showed that diagonally sectioning ill-fitting cp Ti frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves passivity levels of the same frameworks when compared to one-piece cast structures.

  3. Processing and Characterization of Functionally Graded Aluminum (A319)—SiCp Metallic Composites by Centrifugal Casting Technique

    NASA Astrophysics Data System (ADS)

    Jayakumar, E.; Jacob, Jibin C.; Rajan, T. P. D.; Joseph, M. A.; Pai, B. C.

    2016-08-01

    Functionally graded materials (FGM) are successfully adopted for the design and fabrication of engineering components with location-specific properties. The present study describes the processing and characterization of A319 Aluminum functionally graded metal matrix composites (FGMMC) with 10 and 15 wt pct SiCp reinforcements. The liquid stir casting method is used for composite melt preparation followed by FGMMC formation by vertical centrifugal casting method. The process parameters used are the mold preheating temperature of 523 K (250 °C), melt pouring temperature of 1013 K (740 °C), and mold rotation speed of 1300 rpm. The study analyzes the distribution and concentration of reinforcement particles in the radial direction of the FGMMC disk along with the effects of gradation on density, hardness, mechanical strength, the variation in coefficient of thermal expansion and the wear resistance properties at different zones. Microstructures of FGMMC reveal an outward radial gradient distribution of reinforcements forming different zones. Namely, matrix-rich inner, transition, particles-rich outer, and chill zone of a few millimeters thick at the outer most periphery of the casting are formed. From 10-FGM, a radial shift in the position of SiCp maxima is observed in 15-FGM casting. The mechanical characterization depicts enhanced properties for the particle-rich zone. The hardness shows a graded nature in correlation with particle concentration and a maximum of 94.4 HRB has been obtained at the particle-rich region of 15-FGM. In the particle-rich zone, the lowest CTE value of 20.1 µm/mK is also observed with a compressive strength of 650 MPa and an ultimate tensile strength of 279 MPa. The wear resistance is higher at the particle-rich zone of the FGMMC.

  4. Wrinkling Phenomena to Explain Vertical Fold Defects in DC-Cast Al-Mg4.5

    NASA Astrophysics Data System (ADS)

    Davis, J. Lee; Mendez, Patricio F.

    Some aluminum ingots cast by the direct chill method are subject to surface defects on the molten ingot head during casting while others are not. These defects -commonly called "vertical folds" -are frozen into the casting and must be removed prior to rolling. Vertical folds are found on top of the molten ingot surface where areas of thin oxide are (a) bounded by physical constraints and (b) stretched. Physical constraints include (1) substantially thicker oxide or (2) a refractory skim ring adjacent to the thin oxide. The mechanism of wrinkling is suggested for the formation of vertical folds. Wrinkling behavior is described by physical expressions for an elastic sheet in tension whose behavior depends upon thickness h, length L, Young's modulus E, and Poisson's ratio v. The depth and frequency of folds in the thin, elastic sheet parallel to the tensile axis between the two "constraints" can be calculated from these parameters. The observed frequency (and amplitude) of vertical folds in DC-cast aluminum has been found to obey similar wrinkling laws. The frequency-dependence (λ) is examined and found to be related to classic wrinkling parameters but with significant scaling deviations. These deviations may be related to the pseudo-plasticity (self-healing behavior) of the oxide film on the molten surface. A wrinkling model coupled with pseudo-plasticity predicts subtle behaviors in DC casting of Al-Mg4.5 that are not explained by other theories.

  5. Airway Obstruction Due to Bronchial Vascular Injury after Sulfur Mustard Analog Inhalation

    PubMed Central

    Veress, Livia A.; O'Neill, Heidi C.; Hendry-Hofer, Tara B.; Loader, Joan E.; Rancourt, Raymond C.; White, Carl W.

    2010-01-01

    Rationale: Sulfur mustard (SM) is a frequently used chemical warfare agent, even in modern history. SM inhalation causes significant respiratory tract injury, with early complications due to airway obstructive bronchial casts, akin to those seen after smoke inhalation and in single-ventricle physiology. This process with SM is poorly understood because animal models are unavailable. Objectives: To develop a rat inhalation model for airway obstruction with the SM analog 2-chloroethyl ethyl sulfide (CEES), and to investigate the pathogenesis of bronchial cast formation. Methods: Adult rats were exposed to 0, 5, or 7.5% CEES in ethanol via nose-only aerosol inhalation (15 min). Airway microdissection and confocal microscopy were used to assess cast formation (4 and 18 h after exposure). Bronchoalveolar lavage fluid (BALF) retrieval and intravascular dye injection were done to evaluate vascular permeability. Measurements and Main Results: Bronchial casts, composed of abundant fibrin and lacking mucus, occluded dependent lobar bronchi within 18 hours of CEES exposure. BALF contained elevated concentrations of IgM, protein, and fibrin. Accumulation of fibrin-rich fluid in peribronchovascular regions (4 h) preceded cast formation. Monastral blue dye leakage identified bronchial vessels as the site of leakage. Conclusions: After CEES inhalation, increased permeability from damaged bronchial vessels underlying damaged airway epithelium leads to the appearance of plasma proteins in both peribronchovascular regions and BALF. The subsequent formation of fibrin-rich casts within the airways then leads to airways obstruction, causing significant morbidity and mortality acutely after exposure. PMID:20639443

  6. Comparative assessment of marginal accuracy of grade II titanium and Ni–Cr alloy before and after ceramic firing: An in vitro study

    PubMed Central

    Patil, Abhijit; Singh, Kishan; Sahoo, Sukant; Suvarna, Suraj; Kumar, Prince; Singh, Anupam

    2013-01-01

    Objective: The aims of the study are to assess the marginal accuracy of base metal and titanium alloy casting and to evaluate the effect of repeated ceramic firing on the marginal accuracy of base metal and titanium alloy castings. Materials and Methods: Twenty metal copings were fabricated with each casting material. Specimens were divided into 4 groups of 10 each representing base metal alloys castings without (Group A) and with metal shoulder margin (Group B), titanium castings without (Group C) and with metal shoulder margin (Group D). The measurement of fit of the metal copings was carried out before the ceramic firing at four different points and the same was followed after porcelain build-up. Results: Significant difference was found when Ni–Cr alloy samples were compared with Grade II titanium samples both before and after ceramic firings. The titanium castings with metal shoulder margin showed highest microgap among all the materials tested. Conclusions: Based on the results that were found and within the limitations of the study design, it can be concluded that there is marginal discrepancy in the copings made from Ni–Cr and Grade II titanium. This marginal discrepancy increased after ceramic firing cycles for both Ni–Cr and Grade II titanium. The comparative statistical analysis for copings with metal-collar showed maximum discrepancy for Group D. The comparative statistical analysis for copings without metal-collar showed maximum discrepancy for Group C. PMID:24926205

  7. Development and utilization of USGS ShakeCast for rapid post-earthquake assessment of critical facilities and infrastructure

    USGS Publications Warehouse

    Wald, David J.; Lin, Kuo-wan; Kircher, C.A.; Jaiswal, Kishor; Luco, Nicolas; Turner, L.; Slosky, Daniel

    2017-01-01

    The ShakeCast system is an openly available, near real-time post-earthquake information management system. ShakeCast is widely used by public and private emergency planners and responders, lifeline utility operators and transportation engineers to automatically receive and process ShakeMap products for situational awareness, inspection priority, or damage assessment of their own infrastructure or building portfolios. The success of ShakeCast to date and its broad, critical-user base mandates improved software usability and functionality, including improved engineering-based damage and loss functions. In order to make the software more accessible to novice users—while still utilizing advanced users’ technical and engineering background—we have developed a “ShakeCast Workbook”, a well documented, Excel spreadsheet-based user interface that allows users to input notification and inventory data and export XML files requisite for operating the ShakeCast system. Users will be able to select structure based on a minimum set of user-specified facility (building location, size, height, use, construction age, etc.). “Expert” users will be able to import user-modified structural response properties into facility inventory associated with the HAZUS Advanced Engineering Building Modules (AEBM). The goal of the ShakeCast system is to provide simplified real-time potential impact and inspection metrics (i.e., green, yellow, orange and red priority ratings) to allow users to institute customized earthquake response protocols. Previously, fragilities were approximated using individual ShakeMap intensity measures (IMs, specifically PGA and 0.3 and 1s spectral accelerations) for each facility but we are now performing capacity-spectrum damage state calculations using a more robust characterization of spectral deamnd.We are also developing methods for the direct import of ShakeMap’s multi-period spectra in lieu of the assumed three-domain design spectrum (at 0.3s for constant acceleration; 1s or 3s for constant velocity and constant displacement at very long response periods). As part of ongoing ShakeCast research and development, we will also explore the use of ShakeMap IM uncertainty estimates and evaluate the assumption of employing multiple response spectral damping values rather than the single 5%-damped value currently employed. Developing and incorporating advanced fragility assignments into the ShakeCast Workbook requires related software modifications and database improvements; these enhancements are part of an extensive rewrite of the ShakeCast application.

  8. Photogrammetric method to measure the discrepancy between clinical and software-designed positions of implants.

    PubMed

    Rivara, Federico; Lumetti, Simone; Calciolari, Elena; Toffoli, Andrea; Forlani, Gianfranco; Manfredi, Edoardo

    2016-06-01

    The position of dental implants placed with software-guided systems should be highly accurate in order to ensure safety and a passive fit of the immediate prosthesis. The purpose of this study was to measure the discrepancy between the clinical and software-planned position of dental implants by applying a photogrammetric method. Two casts were obtained, 1 from the surgical template and 1 from the actual position of the implants on the alveolar ridge of a patient. Photogrammetry was then applied to precisely locate the position of each implant on the casts. Because this mathematical technique required the identification of image points and of the relative spatial coordinates, 4 marks were drilled on the implant screw. The position of the implants was then identified as the geometric center of the 4 marks, while the orientation of the implant axis was represented by a vector normal to the plane fitting the points. A series of 16 convergent images all around the object was made using a high-resolution digital camera. A mathematical method called "rototranslation" was used to superimpose the cast images for the comparison. The tests performed on the casts resulted in an average precision level of 4 μm for the locations and less than 1 degree for the axis of the implants. A series of empirical and numerical tests were performed to assess the performance of the procedure and of the measurement protocol. The photogrammetric method is reproducible and can be used to measure the discrepancy between the software-planned and the real position of dental implants. Considering that the average precision level required for an implant-based prosthesis is approximately 50 μm, the error associated with this method can be considered as negligible. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology.

    PubMed

    McLaughlin, J Bryan; Ramos, Van; Dickinson, Douglas P

    2017-11-14

    To compare the shrinkage of denture bases fabricated by three methods: CAD/CAM, compression molding, and injection molding. The effect of arch form and palate depth was also tested. Nine titanium casts, representing combinations of tapered, ovoid, and square arch forms and shallow, medium, and deep palate depths, were fabricated using electron beam melting (EBM) technology. For each base fabrication method, three poly(vinyl siloxane) impressions were made from each cast, 27 dentures for each method. Compression-molded dentures were fabricated using Lucitone 199 poly methyl methacrylate (PMMA), and injection molded dentures with Ivobase's Hybrid Pink PMMA. For CAD/CAM, denture bases were designed and milled by Avadent using their Light PMMA. To quantify the space between the denture and the master cast, silicone duplicating material was placed in the intaglio of the dentures, the titanium master cast was seated under pressure, and the silicone was then trimmed and recovered. Three silicone measurements per denture were recorded, for a total of 243 measurements. Each silicone measurement was weighed and adjusted to the surface area of the respective arch, giving an average and standard deviation for each denture. Comparison of manufacturing methods showed a statistically significant difference (p = 0.0001). Using a ratio of the means, compression molding had on average 41% to 47% more space than injection molding and CAD/CAM. Comparison of arch/palate forms showed a statistically significant difference (p = 0.023), with shallow palate forms having more space with compression molding. The ovoid shallow form showed CAD/CAM and compression molding had more space than injection molding. Overall, injection molding and CAD/CAM fabrication methods produced equally well-fitting dentures, with both having a better fit than compression molding. Shallow palates appear to be more affected by shrinkage than medium or deep palates. Shallow ovoid arch forms appear to benefit from the use of injection molding compared to CAD/CAM and compression molding. © 2017 by the American College of Prosthodontists.

  10. Thin sheet casting with electromagnetic pressurization

    DOEpatents

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  11. Reducing the Incidence of Cast-related Skin Complications in Children Treated With Cast Immobilization.

    PubMed

    Difazio, Rachel L; Harris, Marie; Feldman, Lanna; Mahan, Susan T

    2017-12-01

    Cast immobilization remains the mainstay of pediatric orthopaedic care, yet little is known about the incidence of cast-related skin complications in children treated with cast immobilization. The purposes of this quality improvement project were to: (1) establish a baseline rate of cast-related skin complications in children treated with cast immobilization, (2) identify trends in children who experienced cast-related skin complications, (3) design an intervention aimed at decreasing the rate of cast-related skin complications, and (4) determine the effectiveness of the intervention. A prospective interrupted time-series design was used to determine the incidence of cast-related skin complications overtime and compare the rates of skin complications before and after an intervention designed to decrease the incidence of cast-related heel complications. All consecutive patients who were treated with cast immobilization from September 2012 to September 2014 were included. A cast-related skin complications data collection tool was used to capture all cast-related skin complications. A high rate of heel events was noted in our preliminary analysis and an intervention was designed to decrease the rate of cast-related skin complications, including the addition of padding during casting and respective provider education. The estimated cast-related skin events rate for all patients was 8.9 per 1000 casts applied. The rate for the total preintervention sample was 13.6 per 1000 casts which decreased to 6.6 in the postintervention sample. When examining the heel-only group, the rate was 17.1 per 1000 lower extremity casts applied in the preintervention group and 6.8 in the postintervention group. Incorporating padding to the heel of lower extremity cast was an effective intervention in decreasing the incidence of cast-related skin complications in patients treated with cast immobilization. Level II.

  12. Foot pressures during gait: a comparison of techniques for reducing pressure points.

    PubMed

    Lawless, M W; Reveal, G T; Laughlin, R T

    2001-07-01

    Various methods have been used to redistribute plantar surface foot pressure in patients with foot ulcers. This study was conducted to determine the effectiveness of four modalities (fracture walker, fracture walker with insert, and open and closed toe total contact casts) in reducing plantar foot pressure. Ten healthy, normal volunteer subjects had an F-scan sensor (ultra thin shoe insert pressure monitor) placed under the right foot. They then ambulated on a flat surface, maintaining their normal gait. Dynamic plantar pressures were averaged over 10 steps at four different sites (plantar surface of great toe, first metatarsal head, base of fifth metatarsal, and plantar heel). All subjects repeated this sequence under five different testing conditions (barefoot, with a fracture walker, fracture walker with arch support insert, open and closed toe total contact cast). Each subject's barefoot pressures were then compared with the pressures during the different modalities. All four treatment modalities significantly reduced (p < 0.05) plantar pressure at the first metatarsal head (no method was superior). The fracture walker, fracture walker with insert, and open toe total contact cast significantly reduced pressure at the heel. Pressures at the base of the fifth metatarsal and great toe were not significantly reduced with any treatment form. The fracture walker, with and without arch support, and total contact cast can effectively reduce plantar pressure at the heel and first metatarsal head.

  13. Generation of strip-format fibrin-based engineered heart tissue (EHT).

    PubMed

    Schaaf, Sebastian; Eder, Alexandra; Vollert, Ingra; Stöhr, Andrea; Hansen, Arne; Eschenhagen, Thomas

    2014-01-01

    This protocol describes a method for casting fibrin-based engineered heart tissue (EHT) in standard 24-well culture dishes. In principle, a hydrogel tissue engineering method requires cardiomyocytes, a liquid matrix that forms a gel, a casting mold, and a device that keeps the developing tissue in place. This protocol refers to neonatal rat heart cells as the cell source; the matrix of choice is fibrin, and the tissues are generated in rectangular agarose-casting molds (12 × 3 × 3 mm) prepared in standard 24-well cell culture dishes, in which a pair of flexible silicone posts is suspended from above. A master mix of freshly isolated cells, medium, fibrinogen, and thrombin is pipetted into the casting mold and, over a period of 2 h, polymerizes and forms a fibrin cell block around two silicone posts. Silicone racks holding four pairs of silicone posts each are used to transfer the fresh fibrin cell blocks into new 24-well dishes with culture medium. Without further handling, the cells start to remodel the fibrin gel, form contacts with each other, elongate, and condense the gel to approximately ¼ of the initial volume. Spontaneous and rhythmic contractions start after 1 week. EHTs are viable and relatively stable for several weeks in this format and can be subjected to repeated measurements of contractile function and final morphological and molecular analyses.

  14. Isocyanate Exposure Assessment Combining Industrial Hygiene Methods with Biomonitoring for End Users of Orthopedic Casting Products

    PubMed Central

    Pearson, Ronald L.; Logan, Perry W.; Kore, Anita M.; Strom, Constance M.; Brosseau, Lisa M.; Kingston, Richard L.

    2013-01-01

    Previous studies have suggested a potential risk to healthcare workers applying isocyanate-containing casts, but the authors reached their conclusions based on immunological or clinical pulmonology test results alone. We designed a study to assess potential exposure to methylene diphenyl diisocyanate (MDI) among medical personnel applying orthopedic casts using two different application methods. Air, dermal, surface, and glove permeation sampling methods were combined with urinary biomonitoring to assess the overall risk of occupational asthma to workers handling these materials. No MDI was detected in any of the personal and area air samples obtained. No glove permeation of MDI was detected. A small proportion of surface (3/45) and dermal wipe (1/60) samples were positive for MDI, but were all from inexperienced technicians. Urinary metabolites of MDI [methylenedianiline (MDA)] were detected in three of six study participants prior to both a ‘dry’ and ‘wet’ application method, five of six after the dry method, and three of six after the wet method. All MDA results were below levels noted in worker or general populations. Our conclusion is that the risk of MDI exposure is small, but unquantifiable. Because there is some potential risk of dermal exposure, medical personnel are instructed to wear a minimum of 5-mil-thick (5 mil = 0.005 inches) nitrile gloves and avoid contact to unprotected skin. This could include gauntlets, long sleeves, and/or a laboratory coat. PMID:23680587

  15. The Mortality Divide in India: The Differential Contributions of Gender, Caste, and Standard of Living Across the Life Course

    PubMed Central

    Subramanian, S.V.; Nandy, Shailen; Irving, Michelle; Gordon, Dave; Lambert, Helen; Davey Smith, George

    2006-01-01

    Objectives. We investigated the contributions of gender, caste, and standard of living to inequalities in mortality across the life course in India. Methods. We conducted a multilevel cross-sectional analysis of individual mortality, using the 1998–1999 Indian National Family Health Survey data for 529321 individuals from 26 states. Results. Substantial mortality differentials were observed between the lowest and highest standard-of-living quintiles across all age groups, ranging from an odds ratio (OR) of 4.61 (95% confidence interval [CI]=2.98, 7.13) in the age group 2 to 5 years to an OR of 1.97 (95% CI=1.68, 2.32) in the age group 45 to 64 years. Excess mortality for girls was evident only for the age group 2 to 5 years (OR=1.33, 95% CI=1.13, 1.58). Substantial caste differentials were observed at the beginning and end stages of life. Area variation in mortality is partially a result of the compositional effects of household standard of living and caste. Conclusions. The mortality burden, across the life course in India, falls disproportionately on economically disadvantaged and lower-caste groups. Residual state-level variation in mortality suggests an underlying ecology to the mortality divide in India. PMID:16571702

  16. Fatigue limit prediction of ferritic-pearlitic ductile cast iron considering stress ratio and notch size

    NASA Astrophysics Data System (ADS)

    Deguchi, T.; Kim, H. J.; Ikeda, T.

    2017-05-01

    The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.

  17. Segmentation of images for gingival growth measurement

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Il; Wilson, Joseph N.

    1992-12-01

    The ability to measure gingival volume growth from dental casts would provide a valuable resource for periodontists. This problem is attractive from a computer vision standpoint due to the complexities of data acquisition, segmentation of gingival and tooth surfaces and boundaries, and extraction of features (such as tooth axes) to help solve the correspondence problem for multiple casts. In this paper, a structured light 3-D range finder is used to collect raw data. The most complicated subtask is that of detecting discontinuities such as the gingival margin. Discontinuity detection is hindered both by cast anomalies (such as bubbles and holes generated during the process of dental impression) and by the subtle nature of the discontinuities themselves. First, we discuss an approach to segmenting a dental cast into tooth and gingival units using depth and orientation discontinuities. The visible cast surface is reconstructed by obtaining the minimum of a parameterized functional. The first derivative of the energy functional (which corresponds to the Euler-Lagrange equation) is solved using the multigrid methods. both orientation and depth discontinuities are detected by adding a discrete discontinuity functional to the energy functional. The principal axes and boundaries of the teeth provide the information necessary to determine the region to be measured in estimating gingival growth. Finally, voxels corresponding to growth regions are counted to measure the target volume.

  18. Effects of recasting on the biocompatibility of a Ni-Cr alloy.

    PubMed

    Zhang, Chang Yuan; Cheng, Hui; Lin, Dong Hong; Zheng, Ming; Ozcan, Mutlu; Zhao, Wei; Yu, Hao

    2012-01-01

    To evaluate the effects of recasting on the biocompatibility of a commercially available Ni-Cr alloy. The alloy tested was cast and subsequently recast four more times. For each cast condition, 24 disk shaped specimens were fabricated (5 mm in diameter, 0.5 mm in thickness). All the recasting was performed without adding new alloy. After the first cast and following each recast, the surface composition and microstructure of the alloy were determined using an X-ray fluorescence spectrometer and optical microscope, respectively. The in vitro cytotoxicity and in vivo mucous irritation potential of the cast and recast Ni-Cr alloy were investigated. The results were statistically analysed at the significance level of 0.05. Recasting neither yielded to cytotoxicity or to changes in the surface composition of the Ni-Cr alloy tested. However, an increase in impurities and porosity of the surface structure was observed with recasting. Also, the segregation of the impurities to grain boundaries was evident after multiple castings. After the fourth recast, the alloys showed significantly greater mucosal irritation than the control. After fourth recast, the alloy of this type may contribute to mucosal inflammation. Furthermore, there is a need for diverse methods addressing different biological endpoints for the evaluation of dental alloys.

  19. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang; Misra, R. D. K.; Wang, Guo-Dong

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size 100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size 20-50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size 10-40 mm were formed and the final magnetic induction, B8, was as high as 1.9 T.

  20. Solid State Characterizations of Long-Term Leached Cast Stone Monoliths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, Robert M.; Pearce, Carolyn I.; Parker, Kent E.

    This report describes the results from the solid phase characterization of six Cast Stone monoliths from the extended leach tests recently reported on (Serne et al. 2016),that were selected for characterization using multiple state-of-the-art approaches. The Cast Stone samples investigated were leached for > 590 d in the EPA Method 1315 test then archived for > 390 d in their final leachate. After reporting the long term leach behavior of the monoliths (containing radioactive 99Tc and stable 127I spikes and for original Westsik et al. 2013 fabricated monoliths, 238U), it was suggested that physical changes to the waste forms andmore » a depleting inventory of contaminants of potential concern may mean that effective diffusivity calculations past 63 d should not be used to accurately represent long-term waste form behavior. These novel investigations, in both length of leaching time and application of solid state techniques, provide an initial arsenal of techniques which can be utilized to perform such Cast Stone solid phase characterization work, which in turn can support upcoming performance assessment maintenance. The work was performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to characterize several properties of the long- term leached Cast Stone monolith samples.« less

  1. Simulation of the as-cast structure of Al-4.0wt.%Cu ingots with a 5-phase mixed columnar-equiaxed solidification model

    NASA Astrophysics Data System (ADS)

    Wu, M.; Ahmadein, M.; Kharicha, A.; Ludwig, A.; Li, J. H.; Schumacher, P.

    2012-07-01

    Empirical knowledge about the formation of the as-cast structure, mostly obtained before 1980s, has revealed two critical issues: one is the origin of the equiaxed crystals; one is the competing growth of the columnar and equiaxed structures, and the columnar-to-equiaxed transition (CET). Unfortunately, the application of empirical knowledge to predict and control the as-cast structure was very limited, as the flow and crystal transport were not considered. Therefore, a 5-phase mixed columnar-equiaxed solidification model was recently proposed by the current authors based on modeling the multiphase transport phenomena. The motivation of the recent work is to determine and evaluate the necessary modeling parameters, and to validate the mixed columnar-equiaxed solidification model by comparison with laboratory castings. In this regard an experimental method was recommended for in-situ determination of the nucleation parameters. Additionally, some classical experiments of the Al-Cu ingots were conducted and the as-cast structural information including distinct columnar and equiaxed zones, macrosegregation, and grain size distribution were analysed. The final simulation results exhibited good agreement with experiments in the case of high pouring temperature, whereas disagreement in the case of low pouring temperature. The reasons for the disagreement are discussed.

  2. Indigenous lunar construction materials

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne P.; Sture, Stein

    1991-01-01

    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary design of the lunar shelter showed us that joining is a critical technology needed for building a structure from large segments. The problem of joining is important to the design of any structure that is not completely prefabricated. It is especially important when the structure is subjected to tensile loading by an internal pressure. For a lunar shelter constructed from large segments the joints between these large segments must be strong, and they must permit automated construction. With a cast basalt building material which is brittle, there is the additional problem of connecting the joint with the material and avoiding stress concentration that would cause failure. Thus, a well-defined project which we intend to pursue during this coming year is the design of joints for cast basalt structural elements.

  3. Rapid Model Fabrication and Testing for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    2000-01-01

    Advanced methods for rapid fabrication and instrumentation of hypersonic wind tunnel models are being developed and evaluated at NASA Langley Research Center. Rapid aeroheating model fabrication and measurement techniques using investment casting of ceramic test models and thermographic phosphors are reviewed. More accurate model casting techniques for fabrication of benchmark metal and ceramic test models are being developed using a combination of rapid prototype patterns and investment casting. White light optical scanning is used for coordinate measurements to evaluate the fabrication process and verify model accuracy to +/- 0.002 inches. Higher-temperature (<210C) luminescent coatings are also being developed for simultaneous pressure and temperature mapping, providing global pressure as well as global aeroheating measurements. Together these techniques will provide a more rapid and complete experimental aerodynamic and aerothermodynamic database for future aerospace vehicles.

  4. Standard methods for chemical analysis of steel, cast iron, open-hearth iron, and wrought iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-01-01

    Methods are described for determining manganese, phosphorus, sulfur, selenium, copper, nickel, chromium, vanadium, tungsten, titanium, lead, boron, molybdenum ( alpha -benzoin oxime method), zirconium (cupferron --phosphate method), niobium and tantalum (hydrolysis with perchloric and sulfurous acids (gravimetric, titrimetric, and photometric methods)), and beryllium (oxide method). (DHM)

  5. Cold isopressing method

    DOEpatents

    Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  6. Seal Integrity of Selected Fuzes as Measured by Three Leak Test Methods

    DTIC Science & Technology

    1976-09-01

    the worst fuze from the seal standpoint. The M503A-2 fuze body is made from a cast aluminum alloy . The casting process leaves voids which, after...leak resistance of the joint. WDU4A/A The design of this fuze depends upon ultrasonic welding to seal lid to case. The specified leak test merely...test is probably one of the better leakage tests from an effectiveness standpoint. However, from lot quantities of 690 and 480, reject rates of 20% were

  7. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.

    PubMed

    Bae, Seo-Yoon; Jeon, In-Yup; Yang, Jieun; Park, Noejung; Shin, Hyeon Suk; Park, Sungjin; Ruoff, Rodney S; Dai, Liming; Baek, Jong-Beom

    2011-06-28

    We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions in dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 kΩ/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.

  8. Characterization of Newly Developed Semisolid Stir Joining Method for Cast Cu Base Alloy (Cu-Al-Si-Fe) and Effect of Stirrer Type on Uniformity of Microstructure

    NASA Astrophysics Data System (ADS)

    Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Nikzad, Siamak; Shafizadeh, Mahdi

    2015-02-01

    In this research, the semisolid stir joining method was used to overcome the problem of hot cracking in welding aluminum and silicon bronzes. Moreover, the effects of grooved and cylindrical tools on the microstructure and mechanical properties of samples were examined. After welding specimens, mechanical tests were carried out to find differences between the cast and welded samples. Optical microscopy and scanning electron microscopy were used to study microstructure. X-ray diffraction was used to investigate compounds formed during casting and welding. The solidus and liquidus temperatures of the alloy were measured by differential scanning calorimetry. In this study, the temperature of the work pieces was raised to 1203 K (930 °C) that is in the semisolid region, and the weld seams were stirred by two different types of tools at the speed of 1600 rpm. Macro and micro-structural analyses show uniformity in the phase distribution for specimens welded by cylindrical tool. Desirable and uniform mechanical properties obtained when the cylindrical tool was used.

  9. Evaluation on the Corrosion of the Three Ni-Cr Alloys with Different Composition

    PubMed Central

    Rao, Srinivasa B.; Chowdhary, Ramesh

    2011-01-01

    Dental casting alloys are widely used in contact with oral tissue for many years now. With the development of new dental alloys over the past 15 years, many questions remain unanswered about their biologic safety. Concepts and current issues concerning the response to the biologic effects of dental casting alloys are presented. In this paper, samples of three commercially available nickel-chrome (Ni-cr) casting alloys (Dentaurum, Bego, Sankin) were taken to assess their corrosion behavior, using potentiodynamic polarization method (electrochemical method) with fusayama artificial saliva as an electrolyte medium to check for their biocompatibility. The parameters for corrosion rate and corrosion resistance were obtained from computer-controlled corrosion schematic instrument, namely, potentiostat through corrosion software (power CV). The results obtained were analyzed by classic Tafel analysis. Statistical analysis was done by Student's t-test and ANOVA test. It was concluded that Dentarum and Bego showed satisfactory corrosive behavior, with exception of Sankin which depicted higher corrosion rate and least resistance to corrosion. Thus, the selection of an alloy should be made on the basis of corrosion resistance and biologic data from dental manufactures. PMID:21461232

  10. Synthesis of As-Cast Ti-Al-V Alloy from Titanium-Rich Material by Thermite Reduction

    NASA Astrophysics Data System (ADS)

    Cheng, Chu; Dou, Zhi He; Zhang, Ting An; Zhang, Hui Jie; Yi, Xin; Su, Jian Ming

    2017-10-01

    We present a novel methodology for preparing as-cast Ti-Al-V alloy directly from titanium-rich material through a thermite reduction. The new method is shown to be feasible through a thermodynamics and dynamics analysis. The as-cast Ti-Al-V alloys synthesized from titanium dioxide, rutile, and high-titanium slag were analyzed by an x-ray diffractometer, a scanning electron microscope, an inductively coupled plasma emission spectrometer, and an oxygen/nitrogen/hydrogen analyzer. The results indicate that the alloy is composed of a Ti-Al-V matrix and Al2O3 inclusions. The Al and V contents in the matrix are close to the mass ratio of Ti-6Al-4V (Al: 5.5-6.8 wt.%, V: 3.5-4.5 wt.%). The Si and Fe in the alloys synthesized from rutile and high-titanium slag can be used as alloying elements in low-cost titanium alloys. The present method is expected to be useful for preparing Ti-Al-V alloys at a low production cost.

  11. Urinary casts

    MedlinePlus

    ... tubular epithelial casts; Waxy casts; Casts in the urine; Fatty casts; Red blood cell casts; White blood ... The urine sample you provide may need to be from your first morning urine. The sample needs to be ...

  12. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  13. Method of forming components for a high-temperature secondary electrochemical cell

    DOEpatents

    Mrazek, Franklin C.; Battles, James E.

    1983-01-01

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  14. Evaluation of new aquatic toxicity test methods for oil dispersants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, C.B.; Clark, J.R.; Bragin, G.E.

    1994-12-31

    Current aquatic toxicity test methods used for dispersant registration do not address real world exposure scenarios. Current test methods require 48 or 96 hour constant exposure conditions. In contrast, environmentally realistic exposures can be described as a pulse in which the initial concentration declines over time. Recent research using a specially designed testing apparatus (the California system) has demonstrated that exposure to Corexit 9527{reg_sign} under pulsed exposure conditions may be 3 to 22 times less toxic compared to continuous exposure scenarios. The objectives of this study were to compare results of toxicity tests using the California test system to resultsmore » from standardized tests, evaluate sensitivity of regional (Holmesimysis cast and Atherinops affinis) vs. standard test species (Mysidopsis bahia and Menidia beryllina) and determine if tests using the California test system and method are reproducible. All tests were conducted using Corexit 9527{reg_sign} as the test material. Standard toxicity tests conducted with M. bahia and H. cast resulted in LC50s similar to those from tests using the California apparatus. LC50s from tests conducted in the authors` laboratory with the California system and standard test species were within a factor of 2 to 6 of data previously reported for west coast species. Results of tests conducted with H. cast in the laboratory compared favorably to data reported by Singer et al. 1991.« less

  15. Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.

    PubMed

    Li, Yubo; Dai, Shaobin; Zhang, Yichao; Huang, Jun; Su, Ying; Ma, Baoguo

    2018-01-01

    The mass accumulation of phosphogypsum has caused serious environmental pollution, which has become a worldwide problem. Gypsum is a kind of green building material, which is lighter, has better heat and sound insulation performance, and is easier to recycle compared to cement. The application of cast-in-situ phosphogypsum wall could consume a large amount of pollutant, and improve the efficiency of building construction. The preparation and thermal insulation performance of cast-in-situ phosphogypsum wall were investigated. The property of phosphogypsum-fly ash-lime (PFL) triad cementing materials, the adaptability of retarders and superplasticizers, and the influences of vitrified microsphere as aggregates were explored. Thus, the optimum mix was proposed. Thermal insulation performance tests and ANSYS simulation of this material was carried out. Optimal structures based on heat channels and the method of calculation determining related parameters were proposed, which achieved a 12.3% reduction in the heat transfer coefficient of the wall. With good performance, phosphogypsum could be used in cast-in-situ walls. This paper provides the theoretical basis for the preparation and energy-saving application of phosphogypsum in the walls of buildings.

  16. X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A.

    2015-12-15

    X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearingmore » helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.« less

  17. Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites.

    PubMed

    Shojaeiarani, Jamileh; Bajwa, Dilpreet S; Stark, Nicole M

    2018-06-15

    This study systematically evaluated the influence of masterbatch preparation techniques, solvent casting and spin-coating methods, on composite properties. Composites were manufactured by combining CNCs masterbatches and PLA resin using twin screw extruder followed by injection molding. Different microscopy techniques were used to investigate the dispersion of CNCs in masterbatches and composites. Thermal, thermomechanical, and mechanical properties of composites were evaluated. Scanning electron microscopy (SEM) images showed superior dispersion of CNCs in spin-coated masterbatches compared to solvent cast masterbatches. At lower CNCs concentrations, both SEM and optical microscope images confirmed more uniform CNCs dispersion in spin-coated composites than solvent cast samples. Degree of crystallinity of PLA exhibited a major enhancement by 147% and 380% in solvent cast and spin-coated composites, respectively. Spin-coated composites with lower CNCs concentration exhibited a noticeable improvement in mechanical properties. However, lower thermal characteristics in spin-coated composites were observed, which could be attributed to the residual solvents in masterbatches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. An investigation of the properties of Mg-Zn-Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Couture, A.; Luo, A.

    1998-06-05

    During the past ten years, the use of magnesium castings in the automotive and electronics industries has been expanding at an impressive rate. Die casting is one of the most effective fabrication methods and has been extensively used to produce magnesium components, especially in the automotive industry. However, the number of available Mg-based alloys for die casting is very limited. Therefore, it is pressing to develop some new Mg die casting alloys with good creep resistance, acceptable castability and low cost. Mg-Zn-Al (ZA) is a promising alloy system which is able to meet the requirements. But up to now, onlymore » a small amount of research has been carried out on this system. The aim of the present work is to examine and evaluate the microstructural features, tensile properties and creep resistance in order to get a better overall understanding of alloys of this system and to identify the most promising compositions. The influence of small additions of Ca and Sr on the tensile and creep properties of ZA alloys was also investigated.« less

  19. Effect of Cold Forging on Microstructure and MechanicalProperties of Al/SiC Composites

    NASA Astrophysics Data System (ADS)

    Hanamantraygouda, M. B.; Shivakumar, B. P., Dr; Siddappa, P. N.; Sampathkumar, L.; Prashanth, L.

    2018-02-01

    The objective of this work was to investigate the effect of cold forging on mechanical properties and microstructural study of Al MMCs, at different wt% of SiC and forging cycle. The Al-SiC composite material was fabricated by stir casting method at different weight percentage of SiC such as 2.5, 5, 7.5 and 10%. Further, the deformation characteristics during open-die forging of Al-SiC composite at cold conditions was investigated. Cast and forged composite material was subjected to hardness test, tensile test and impact test. The grain size, microstructure behaviour was investigated using optical microscope. The results show that hardness and strength of Al-SiC composite increases and ductility decreases as compared to Al alloy in both as-cast and forged conditions. Optical microscope images showed that the distribution of SiC in Al matrix was more homogeneous in a forged composite as compared to cast one and reduction of porosity was found. Further, it showed that due to forging cycle the grain size was reduced by 30% to 35% from initial size.

  20. Study of twin-roll cast Aluminium alloys subjected to severe plastic deformation by equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Poková, M.; Cieslar, M.

    2014-08-01

    Aluminium alloys prepared by twin-roll casting method become widely used in industry applications. Their high solid solution supersaturation and finer grains ensure better mechanical properties when compared with the direct-chill cast ones. One of the possibilities how to enhance their thermal stability is the addition of zirconium. After heat treatment Al3Zr precipitates form and these pin moving grain boundaries when the material is exposed to higher temperatures. In the present work twin-roll cast aluminium alloys based on AA3003 with and without Zr addition were annealed for 8 hours at 450 °C to enable precipitation of Al3Zr phase. Afterwards they were subjected to severe plastic deformation by equal channel angular pressing, which led to the reduction of average grain size under 1 μm. During subsequent isochronal annealing recovery and recrystallization took place. These processes were monitored by microhardness measurements, light optical microscopy and in-situ transmission electron microscopy. The addition of Zr stabilizes the grain size and increases the recrystallization temperature by 100 °C.

  1. Pediatric laryngeal simulator using 3D printed models: A novel technique.

    PubMed

    Kavanagh, Katherine R; Cote, Valerie; Tsui, Yvonne; Kudernatsch, Simon; Peterson, Donald R; Valdez, Tulio A

    2017-04-01

    Simulation to acquire and test technical skills is an essential component of medical education and residency training in both surgical and nonsurgical specialties. High-quality simulation education relies on the availability, accessibility, and reliability of models. The objective of this work was to describe a practical pediatric laryngeal model for use in otolaryngology residency training. Ideally, this model would be low-cost, have tactile properties resembling human tissue, and be reliably reproducible. Pediatric laryngeal models were developed using two manufacturing methods: direct three-dimensional (3D) printing of anatomical models and casted anatomical models using 3D-printed molds. Polylactic acid, acrylonitrile butadiene styrene, and high-impact polystyrene (HIPS) were used for the directly printed models, whereas a silicone elastomer (SE) was used for the casted models. The models were evaluated for anatomic quality, ease of manipulation, hardness, and cost of production. A tissue likeness scale was created to validate the simulation model. Fleiss' Kappa rating was performed to evaluate interrater agreement, and analysis of variance was performed to evaluate differences among the materials. The SE provided the most anatomically accurate models, with the tactile properties allowing for surgical manipulation of the larynx. Direct 3D printing was more cost-effective than the SE casting method but did not possess the material properties and tissue likeness necessary for surgical simulation. The SE models of the pediatric larynx created from a casting method demonstrated high quality anatomy, tactile properties comparable to human tissue, and easy manipulation with standard surgical instruments. Their use in a reliable, low-cost, accessible, modular simulation system provides a valuable training resource for otolaryngology residents. N/A. Laryngoscope, 127:E132-E137, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Microstructural analysis of aluminum high pressure die castings

    NASA Astrophysics Data System (ADS)

    David, Maria Diana

    Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.

  3. A Study on the Physical Properties and Interfacial Reactions with Cu Substrate of Rapidly Solidified Sn-3.5Ag Lead-Free Solder

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Tao; Wang, Jie; Qu, Lin; Zhao, Ning; Kunwar, A.

    2013-08-01

    A rapidly solidified Sn-3.5Ag eutectic alloy produced by the melt-spinning technique was used as a sample in this research to investigate the microstructure, thermal properties, solder wettability, and inhibitory effect of Ag3Sn on Cu6Sn5 intermetallic compound (IMC). In addition, an as-cast Sn-3.5Ag solder was prepared as a reference. Rapidly solidified and as-cast Sn-3.5Ag alloys of the same size were soldered at 250°C for 1 s to observe their instant melting characteristics and for 3 s with different cooling methods to study the inhibitory effect of Ag3Sn on Cu6Sn5 IMC. Experimental techniques such as scanning electron microscopy, differential scanning calorimetry, and energy-dispersive spectrometry were used to observe and analyze the results of the study. It was found that rapidly solidified Sn-3.5Ag solder has more uniform microstructure, better wettability, and higher melting rate as compared with the as-cast material; Ag3Sn nanoparticles that formed in the rapidly solidified Sn-3.5Ag solder inhibited the growth of Cu6Sn5 IMC during aging significantly much strongly than in the as-cast material because their number in the rapidly solidified Sn-3.5Ag solder was greater than in the as-cast material with the same soldering process before aging. Among the various alternative lead-free solders, this study focused on comparison between rapidly solidified and as-cast solder alloys, with the former being observed to have better properties.

  4. A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments

    PubMed Central

    Park, Ji-Man; Lee, Jai-Bong; Heo, Seong-Joo

    2014-01-01

    PURPOSE The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ±0.1 µm at 50 points. RESULTS Initial detorque values of milled abutment were significantly higher than those of cast abutment (P<.05). Detorque values after one million dynamic cyclic loadings were not significantly different (P>.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (P<.05). There was no significant difference of gap dimension between the milled abutment group and the cast abutment group after cyclic loading. CONCLUSION In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment. PMID:24605206

  5. Morphometric Analysis of Aqueous Humor Outflow Structures with Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Francis, Andrew W.; Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Folz, Steven; Overby, Darryl R.; Sigal, Ian A.; Wang, Bo; Schuman, Joel S.

    2012-01-01

    Purpose. To describe morphometric details of the human aqueous humor (AH) outflow microvasculature visualized with 360-degree virtual castings during active AH outflow in cadaver eyes and to compare these structures with corrosion casting studies. Methods. The conventional AH outflow pathways of donor eyes (n = 7) and eyes in vivo (n = 3) were imaged with spectral-domain optical coherence tomography (SD-OCT) and wide-bandwidth superluminescent diode array during active AH outflow. Digital image contrast was adjusted to isolate AH microvasculature, and images were viewed in a 3D viewer. Additional eyes (n = 3) were perfused with mock AH containing fluorescent tracer microspheres to compare microvasculature patterns. Results. Observations revealed components of the conventional outflow pathway from Schlemm's canal (SC) to the superficial intrascleral venous plexus (ISVP). The superficial ISVP in both our study and corrosion casts were composed of interconnected venules (10–50 μm) forming a hexagonal meshwork. Larger radial arcades (50–100 μm) drained the region nearest SC and converged with larger tortuous vessels (>100 μm). A 360-degree virtual casting closely approximated corrosion casting studies. Tracer studies corroborated our findings. Tracer decorated several larger vessels (50–100 μm) extending posteriorly from the limbus in both raw and contrast-enhanced fluorescence images. Smaller tracer-labeled vessels (30–40 μm) were seen branching between larger vessels and exhibited a similar hexagonal network pattern. Conclusions. SD-OCT is capable of detailed morphometric analysis of the conventional outflow pathway in vivo or ex vivo with details comparable to corrosion casting techniques. PMID:22499987

  6. Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete

    PubMed Central

    Ahmed, Zeeshan Y.; Jutinov, Evgeniy R.; Salet, Theo A. M.

    2017-01-01

    The Material Deposition Method (MDM) is enjoying increasing attention as an additive method to create concrete mortar structures characterised by a high degree of form-freedom, a lack of geometrical repetition, and automated construction. Several small-scale structures have been realised around the world, or are under preparation. However, the nature of this construction method is unsuitable for conventional reinforcement methods to achieve ductile failure behaviour. Sometimes, this is solved by combining printing with conventional casting and reinforcing techniques. This study, however, explores an alternative strategy, namely to directly entrain a metal cable in the concrete filament during printing to serve as reinforcement. A device is introduced to apply the reinforcement. Several options for online reinforcement media are compared for printability. Considerations specific to the manufacturing process are discussed. Subsequently, pull-out tests on cast and printed specimens provide an initial characterisation of bond behaviour. Bending tests furthermore show the potential of this reinforcement method. The bond stress of cables in printed concrete was comparable to values reported for smooth rebar but lower than that of the same cables in cast concrete. The scatter in experimental results was high. When sufficient bond length is available, ductile failure behaviour for tension parallel to the filament direction can be achieved, even though cable slip occurs. Further improvements to the process should pave the way to achieve better post-crack resistance, as the concept in itself is feasible. PMID:29144426

  7. Engineering of the institutionalization of the circular economy at the level of casting production

    NASA Astrophysics Data System (ADS)

    Vescan, M. M.; Soporan, V. F.; Crișan, D. M.; Lehene, T. R.; Pădurețu, S.; Samuila, V.

    2017-06-01

    This paper is motivated by the necessity of introducing the principles of circular economy at the level of different social - economic activities, and from this point of view one of the fields with a special potential is that of the manufacture of castings. Objective: to connect to the organizing and application of the methodology of the circular economy principles. The proposed method is an innovating one, being connected to the use of institutionalization engineering. Formulating the subject: The subject formulated to be solved aims at the introduction of new approaches, defined through institutionalization engineering, which proposes to set the correlation of actions between the specifics of the circular economy and the specific elements of the manufacture of castings. Research method: An institutional structuring operation was imposed for the optimization of the research method, in which different versions interact at the following levels: the level of public policies, the level of the regulatory framework, the level of technical solutions and the level of financing solutions and financial instruments. The determination of the optimal solution established in a dynamic context, favorable for the requirements of the different actors present within the process, appeals to the elements of critical thinking, specific for the engineer’s actions. Achievement of the research activity: The research activity structures a methodology of quantifying the contributions of each stage of the manufacturing process for castings at the fulfilling of the specific conditions of the circular economy, indicating the critical areas of action for more efficient actions of the circular economy, according to the market economy requirements, where there is a potential of implementing the technical solutions by quantizing the financial solutions and the opportunity of using the financial instruments. The major contribution of the research: The proposed methodology, with examples at the level of castings manufacture, sets the bases of a new field of action of the engineering thinking, namely, that of circular economy institutionalization functioning. Conclusions of the research activity: The proposed methodology represents the bases of establishing a new instrument of action at the level of institutionalized functioning of the circular economy.

  8. Synthesis, characterization and application of functional carbon nano materials

    NASA Astrophysics Data System (ADS)

    Chu, Jin

    The synthesis, characterizations and applications of carbon nanomaterials, including carbon nanorods, carbon nanosheets, carbon nanohoneycombs and carbon nanotubes were demonstrated. Different growth techniques such as pulsed laser deposition, DC/RF sputtering, hot filament physical vapour deposition, evaporative casting and vacuum filtration methods were introduced or applied for synthesizing carbon nanomaterials. The morphology, chemical compositions, bond structures, electronic, mechanical and sensing properties of the obtained samples were investigated. Tilted well-aligned carbon micro- and nano- hybrid rods were fabricated on Si at different substrate temperatures and incident angles of carbon source beam using the hot filament physical vapour deposition technique. The morphologic surfaces and bond structures of the oblique carbon rod-like structures were investigated by scanning electron microscopy, field emission scanning electron microscopy, transmission electron diffraction and Raman scattering spectroscopy. The field emission behaviour of the fabricated samples was also tested. Carbon nanosheets and nanohoneycombs were also synthesized on Si substrates using a hot filament physical vapor deposition technique under methane ambient and vacuum, respectively. The four-point Au electrodes are then sputtered on the surface of the nanostructured carbon films to form prototypical humidity sensors. The sensing properties of prototypical sensors at different temperature, humidity, direct current, and alternative current voltage were characterized. Linear sensing response of sensors to relative humidity ranging from 11% to 95% is observed at room temperature. Experimental data indicate that the carbon nanosheets based sensors exhibit an excellent reversible behavior and long-term stability. It also has higher response than that of the humidity sensor with carbon nanohoneycombs materials. Conducting composite films containing carbon nanotubes (CNTs) were prepared in two different ways of evaporative casting and vacuum filtration methods using the biopolymer kappa-carrageenan (KC) as a dispersant. Evaporative casting and vacuum filtration film-formation processes were compared by testing electrical properties. Results showed that films produced using vacuum filtration had higher electrical properties than those prepared using the evaporative casting method. The evaporative casted multi walled carbon nanotubes composite films also performed as the best humidity sensor over all other films measured.

  9. Quantification of dental prostheses on cone‐beam CT images by the Taguchi method

    PubMed Central

    Kuo, Rong‐Fu; Fang, Kwang‐Ming; TY, Wong

    2016-01-01

    The gray values accuracy of dental cone‐beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone‐beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis‐free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis‐free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1–9 were below 12% and gray value differences for ROIs 13–18 away from prostheses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant‐supported titanium prosthesis, and between 46% and 59% for regions between double implant‐supported, nickel‐chromium alloys (Ni‐Cr) prostheses. Quantification of the effect of prostheses and scanning parameters on dental CBCT gray values was assessed. PACS numbers: 87.59.bd, 87.57Q PMID:26894354

  10. Energy Saving Melting and Revert Reduction Technology: Innovative Semi-Solid Metal (SSM) Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diran Apelian

    2012-08-15

    Semi-solid metal (SSM) processing has emerged as an attractive method for near-net-shape manufacturing due to the distinct advantages it holds over conventional near-net-shape forming technologies. These advantages include lower cycle time, increased die life, reduced porosity, reduced solidification shrinkage, improved mechanical properties, etc. SSM processing techniques can not only produce the complex dimensional details (e.g. thin-walled sections) associated with conventional high-pressure die castings, but also can produce high integrity castings currently attainable only with squeeze and low-pressure permanent mold casting processes. There are two primary semi-solid processing routes, (a) thixocasting and (b) rheocasting. In the thixocasting route, one starts frommore » a non-dendritic solid precursor material that is specially prepared by a primary aluminum manufacturer, using continuous casting methods. Upon reheating this material into the mushy (a.k.a. "two-phase") zone, a thixotropic slurry is formed, which becomes the feed for the casting operation. In the rheocasting route (a.k.a. "slurry-on-demand" or "SoD"), one starts from the liquid state, and the thixotropic slurry is formed directly from the melt via careful thermal management of the system; the slurry is subsequently fed into the die cavity. Of these two routes, rheocasting is favored in that there is no premium added to the billet cost, and the scrap recycling issues are alleviated. The CRP (Trade Marked) is a process where the molten metal flows through a reactor prior to casting. The role of the reactor is to ensure that copious nucleation takes place and that the nuclei are well distributed throughout the system prior to entering the casting cavity. The CRP (Trade Marked) has been successfully applied in hyper-eutectic Al-Si alloys (i.e., 390 alloy) where two liquids of equal or different compositions and temperatures are mixed in the reactor and creating a SSM slurry. The process has been mostly used for hypo-eutectic Al-Si alloys (i.e., 356, 357, etc.) where a single melt passes through the reactor. In addition, the CRP (Trade Marked) was designed to be flexible for thixocasting or rheocasting applications as well as batch or continuous casting. Variable heat extraction rates can be obtained by controlling either the superheat of the melt, the temperature of the channel system, or the temperature of the reactor. This program had four main objectives all of which were focused on a mechanistic understanding of the process in order to be able to scale it up, to develop it into a robust process,and for SSM processing to be commercially used.« less

  11. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  12. Accuracy of fit of implant-supported bars fabricated on definitive casts made by different dental stones

    PubMed Central

    Kioleoglou, Ioannis; Pissiotis, Argirios

    2018-01-01

    Background The purpose of this study was to evaluate the accuracy of fitting of an implant supported screw-retained bar made on definitive casts produced by 4 different dental stone products. Material and Methods The dental stones tested were QuickRock (Protechno), FujiRock (GC), Jade Stone (Whip Mix) and Moldasynt (Heraeus). Three external hexagon implants were placed in a polyoxymethylene block. Definitive impressions were made using monophase high viscosity polyvinylsiloxane in combination with custom trays. Then, definitive models from the different types of dental stones were fabricated. Three castable cylinders with a machined non-enganging base were cast and connected with a very small quantity of PMMA to a cast bar, which was used to verify the marginal discrepancies between the abutments and the prosthetic platforms of the implants. For that purpose special software and a camera mounted on an optical microscope were used. The gap was measured by taking 10 measurements on each abutment, after the Sheffield test was applied. Twelve definitive casts were fabricated for each gypsum product and 40 measurements were performed for each cast. Mean, minimum, and maximum values were calculated. The Shapiro-Wilk test of normality was performed. Mann-Whitney test (P<.06) was used for the statistical analysis of the measurements. Results The non-parametric Kruskal-Wallis test revealed a statistically significant effect of the stone factor on the marginal discrepancy for all Sheffield test combinations: 1. Abutment 2 when screw was fastened on abutment 1 (χ2=3, df=35.33, P<0.01), 2. Abutment 3 when the screw was fastened on abutment 1 (χ2=3, df=37.74, P<0.01), 3. Abutment 1 when the screw was fastened on abutment 3 (χ2=3, df=39.79, P<0.01), 4. Abutment 2 when the screw was fastened on abutment 3 (χ2=3, df=37.26, P<0.01). Conclusions A significant correlation exists between marginal discrepancy and different dental gypsum products used for the fabrication of definitive casts for implant supported bars. The smallest marginal discrepancy was noted on implant supported bars fabricated on definitive casts made by Type III mounting stone. The biggest marginal discrepancy was noted on implant supported bars fabricated on definitive casts made by Type V dental stone. The marginal discrepancies presented on implant supported bars fabricated on definitive casts made by two types of Type IV dental stone were not significantly different. Key words:Dental implant, passive fit, dental stones, marginal discrepancy. PMID:29721227

  13. [Evaluating the accuracy of three-dimensional reconstruction of the intercuspal position for dentition casts aided by a mechanical appliance].

    PubMed

    Hu, Z W; Li, W W; Zhang, X Y; Fan, B L; Wang, Y; Sun, Y C

    2016-08-01

    To develop a aided mechanical appliance for rapid reconstruction of three-dimensional(3D)relationship of dentition model after scanning and evaluation of its accuracy. The appliance was designed by forward engineering software and fabricated by a high precision computer numerical control(CNC)system. It contained upper and lower body, magnetic pedestal and three pillars. Nine 3 mm diameter hemispheres were distributed equally on the axial surface of each pedestal. Faro Edge 1.8m was used to directly obtain center of each hemisphere(contact method), defined as known center. A pair of die-stone standard dentition model were fixed in intercuspal position and then fixed on the magnetic pedestals with low expansion ratio plaster. Activity 880 dental scanner was used to scan casts after the plaster was completely set. In Geomagic 2012, the centers of each hemisphere were fitted and defined as scanning centers. Scanning centers were aligned to known centers by reference point system to finish the 3D reconstruction of the intercuspal occlusion for the dentition casts. An observation coordinate system was interactively established. The straight-line distances in the X(coronal), Y(saggital), and Z(vertical)between the remaining 6 pairs of center points derived from contact method and fitting method were measured respectively and analyzed using a paired t-test. The differences of the straight-line distances of the remaining 6 pairs of center points between the two methods were X:(-0.05±0.10)mm, Y:(0.02±0.06)mm, and Z:(0.01 ± 0.05)mm. The results of paired t-test showed no significant differences(P>0.05). The mechanical appliance can help to reconstruct 3D jaw relation by scanning single upper and lower dentition model with usual commercial available dental cast scanning system.

  14. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  15. High-temperature electrically conductive ceramic composite and method for making same

    DOEpatents

    Beck, David E.; Gooch, Jack G.; Holcombe, Jr., Cressie E.; Masters, David R.

    1983-01-01

    The present invention relates to a metal-oxide ceramic composition useful in induction heating applications for treating uranium and uranium alloys. The ceramic composition is electrically conductive at room temperature and is nonreactive with molten uranium. The composition is prepared from a particulate admixture of 20 to 50 vol. % niobium and zirconium oxide which may be stabilized with an addition of a further oxide such as magnesium oxide, calcium oxide, or yttria. The composition is prepared by blending the powders, pressing or casting the blend into the desired product configuration, and then sintering the casting or compact in an inert atmosphere. In the casting operation, calcium aluminate is preferably added to the admixture in place of a like quantity of zirconia for providing a cement to help maintain the integrity of the sintered product.

  16. Dental image replacement on cone beam computed tomography with three-dimensional optical scanning of a dental cast, occlusal bite, or bite tray impression.

    PubMed

    Kang, S-H; Lee, J-W; Lim, S-H; Kim, Y-H; Kim, M-K

    2014-10-01

    The goal of the present study was to compare the accuracy of dental image replacement on a cone beam computed tomography (CBCT) image using digital image data from three-dimensional (3D) optical scanning of a dental cast, occlusal bite, and bite tray impression. A Bracket Typodont dental model was used. CBCT of the dental model was performed and the data were converted to stereolithography (STL) format. Three experimental materials, a dental cast, occlusal bite, and bite tray impression, were optically scanned in 3D. STL files converted from the CBCT of the Typodont model and the 3D optical-scanned STL files of the study materials were image-registered. The error range of each methodology was measured and compared with a 3D optical scan of the Typodont. For the three materials, the smallest error observed was 0.099±0.114mm (mean error±standard deviation) for registering the 3D optical scan image of the dental cast onto the CBCT dental image. Although producing a dental cast can be laborious, the study results indicate that it is the preferred method. In addition, an occlusal bite is recommended when bite impression materials are used. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering

    PubMed Central

    Bae, Eun-Jeong; Kim, Woong-Chul; Kim, Hae-Young

    2014-01-01

    PURPOSE The purpose of this study was to compare the fracture strength of the metal and the bond strength in metal-ceramic restorations produced by selective laser sintering (SLS) and by conventional casting (CAST). MATERIALS AND METHODS Non-precious alloy (StarLoy C, DeguDent, Hanau, Germany) was used in CAST group and metal powder (SP2, EOS GmbH, Munich, Germany) in SLS group. Metal specimens in the form of sheets (25.0 × 3.0 × 0.5 mm) were produced in accordance with ISO 9693:1999 standards (n=30). To measure the bond strength, ceramic was fired on a metal specimen and then three-point bending test was performed. In addition, the metal fracture strength was measured by continuing the application of the load. The values were statistically analyzed by performing independent t-tests (α=.05). RESULTS The mean bond strength of the SLS group (50.60 MPa) was higher than that of the CAST group (46.29 MPa), but there was no statistically significant difference. The metal fracture strength of the SLS group (1087.2 MPa) was lower than that of the CAST group (2399.1 MPa), and this difference was statistically significant. CONCLUSION In conclusion the balling phenomenon and the gap formation of the SLS process may increase the metal-ceramic bond strength. PMID:25177469

  18. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Dou, Ruifeng; Phillion, A. B.

    2016-08-01

    Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

  19. Improving agreement between static method and dynamic formula for driven cast-in-place piles.

    DOT National Transportation Integrated Search

    2013-06-01

    This study focuses on comparing the capacities and lengths of piling necessary as determined with a static method and with a dynamic formula. Pile capacities and their required lengths are determined two ways: 1) using a design and computed method, s...

  20. Determining Directions of Ultrasound in Solids

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1987-01-01

    Ultrasound shadows cast by grooves. Improved method for determining direction of ultrasound in materials is shadow method using Scanning laser acoustic microscopy (SLAM). Direction of ultrasound calculated from dimensions of groove and portion of surface groove shields from ultrasound. Method has variety of applications in nontraditional quality-control applications.

  1. Testing Standard Reliability Criteria

    ERIC Educational Resources Information Center

    Sherry, David

    2017-01-01

    Maul's paper, "Rethinking Traditional Methods of Survey Validation" (Andrew Maul), contains two stages. First he presents empirical results that cast doubt on traditional methods for validating psychological measurement instruments. These results motivate the second stage, a critique of current conceptions of psychological measurement…

  2. How to Avoid Cast Saw Complications.

    PubMed

    Halanski, Matthew A

    2016-06-01

    As casts are routinely used in pediatric orthopaedics, casts saws are commonly used to remove such casts. Despite being a viewed as the "conservative" and therefore often assumed safest treatment modality, complications associated with the use of casts and cast saws occur. In this manuscript, we review the risk factors associated with cast saw injuries. Cast saw injuries are thermal or abrasive (or both) in nature. Thermal risk factors include: cast saw specifications (including a lack of attached vacuum), use of a dull blade, cutting in a concavity, too thin padding, and overly thick casting materials. Risk factors associated with abrasive injuries include: sharp blades, thin padding, and cutting over boney prominences. Because nearly all clinicians contact the skin with the blade during cast removal, appropriate "in-out technique" is critical. Such technique prevents a hot blade from remaining in contact with the skin for any significant time, diminishing the risk of burn. Similarly, using such technique prevents "dragging the blade" that may pull the skin taught, cutting it. It may be useful to teach proper technique as perforating a cast rather than cutting a cast.

  3. Strainrange partitioning behavior of the nickel-base superalloys, Rene' 80 and in 100

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Nachtigall, A. J.

    1978-01-01

    A study was made to assess the ability of the method of Strainrange Partitioning (SRP) to both correlate and predict high-temperature, low cycle fatigue lives of nickel base superalloys for gas turbine applications. The partitioned strainrange versus life relationships for uncoated Rene' 80 and cast IN 100 were also determined from the ductility normalized-Strainrange Partitioning equations. These were used to predict the cyclic lives of the baseline tests. The life predictability of the method was verified for cast IN 100 by applying the baseline results to the cyclic life prediction of a series of complex strain cycling tests with multiple hold periods at constant strain. It was concluded that the method of SRP can correlate and predict the cyclic lives of laboratory specimens of the nickel base superalloys evaluated in this program.

  4. [Manufacture and clinical application of 215 IPS-Empress casting ceramic restorations].

    PubMed

    Zhao, Na; Zhou, Jian

    2008-08-01

    To explore the manufacture and clinical application of IPS-Empress casting ceramic restorations. The problems in manufacture and clinical operation of 215 casting ceramic restorations were analyzed. In 215 casting ceramic restorations, 12 (5.58%) casting ceramic restorations were affected by clinical design or application, 15 (6.98%) casting ceramic restorations were affected by some manufacture problems, and 14 (6.51%) casting ceramic restorations were affected by clinical try-in. Through 2-3 years' follow-up, the achievement ratio of 215 IPS-Empress casting ceramic restorations was 94.88%, and 11 casting ceramic restorations were affected by some problems. Beauty and simultaneous enamel wear are the characteristics of casting ceramic restorations. But because of its brittle, the indications should be strictly selected.

  5. Technetium Getters to Improve Cast Stone Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Lawter, Amanda R.; Serne, R. Jeffrey

    2015-10-15

    The cementitious material known as Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. Two radionuclides of particular concern in these waste streams are technetium-99 (99Tc) and iodine-129 (129I). These radioactive tank waste components contribute the most tomore » the environmental impacts associated with the cleanup of the Hanford site. A recent environmental assessment of Cast Stone performance, which assumes a diffusion controlled release of contaminants from the waste form, calculates groundwater in excess of the allowable maximum permissible concentrations for both contaminants. There is, therefore, a need and an opportunity to improve the retention of both 99Tc and 129I in Cast Stone. One method to improve the performance of Cast Stone is through the addition of “getters” that selectively sequester Tc and I, therefore reducing their diffusion out of Cast Stone. In this paper, we present results of Tc and I removal from solution with various getters with batch sorption experiments conducted in deionized water (DIW) and a highly caustic 7.8 M Na Ave LAW simulant. In general, the data show that the selected getters are effective in DIW but their performance is comprised when experiments are performed with the 7.8 M Na Ave LAW simulant. Reasons for the mitigated performance in the LAW simulant may be due to competition with Cr present in the 7.8 M Na Ave LAW simulant and to a pH effect.« less

  6. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods.

    PubMed

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-09-29

    The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.

  7. Bier block regional anesthesia and casting for forearm fractures: safety in the pediatric emergency department setting.

    PubMed

    Aarons, Chad E; Fernandez, Meagan D; Willsey, Matt; Peterson, Bret; Key, Charles; Fabregas, Jorge

    2014-01-01

    Bier block regional anesthesia was first described in 1908; however, it is uncommonly used for fears of cardiac and neurological complications. Although recent studies have documented safe usage in an adult population, no study to date has investigated its use in a pediatric setting. In addition, most emergency departments feel that splint placement is safer than casting after acute forearm fracture reduction in the pediatric population. However, to our knowledge there is no such study that documents the complication rates associated with immediate casting. The goal of this study was to assess the safety and efficacy of Bier block regional anesthesia and immediate cast application after closed reduction of pediatric forearm fractures. A retrospective review was conducted of patients treated for forearm fractures in a 2-year period at a major metropolitan pediatric hospital. Rates of complications and length and costs of the 2 procedures were analyzed. A total of 600 patients were treated with Bier block regional anesthesia and 645 were treated with conscious sedation for displaced fractures of the forearm in the 2-year study period. No complications requiring admission were seen in either group. No patient experienced compartment syndrome or a need for readmission secondary to cast application. 2.2% and 4.3% (P=0.0382) of patients in the Bier block and sedation groups, respectively, needed their cast bivalved secondary to swelling. The average time from initiation of procedural sedation to discharge was 1 hour and 42 minutes, whereas the time to discharge from initiation of Bier block regional anesthesia was 47 minutes (P<0.0001). The average cost for a patient treated with procedural sedation was $6313, whereas the average cost for the Bier block regional anesthesia group was $4956. Bier block regional anesthesia is a safe, efficient, and cost-effective method of reducing pediatric forearm fractures. Immediate cast application can be used without fear of major complications. Level III--retrospective review.

  8. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods

    PubMed Central

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-01-01

    The keeper and cast dowel–coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt–chromium, CoCr; silver–palladium–gold, PdAu; gold–platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr–keeper complex but not to the AuPt–keeper complex. Only the keeper area of cast CoCr–keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt–keeper complexes had the highest free corrosion potential, followed by the PdAu–keeper complex. We concluded that although the corrosion resistance of the CoCr–keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr– and PdAu–keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt–keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area. PMID:27388806

  9. Dimensional control of die castings

    NASA Astrophysics Data System (ADS)

    Karve, Aniruddha Ajit

    The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of this study will contribute to enhancement of dimensional quality and lead time compression in the die casting industry, thus making it competitive with other net shape manufacturing processes.

  10. Lower limb intracast pressures generated by different types of immobilisation casts.

    PubMed

    Chaudhury, Salma; Hazlerigg, Alexandra; Vusirikala, Anuhya; Nguyen, Joseph; Matthews, Stuart

    2017-02-18

    To determine if complete, split casts and backslabs [plaster of Paris (POP) and fiberglass] generate different intracast pressures and pain. Increased swelling within casts was modeled by a closed water system attached to an expandable bag placed directly under different types of casts applied to a healthy lower limb. Complete fiberglass and POP casts, split casts and backslabs were applied. Twenty-five milliliter aliquots of saline were injected into the system and the generated intracast pressures were measured using a sphygmomanometer. The subject was blinded to the pressure scores to avoid bias. All casts were applied to the same right limb on the same subject to avoid the effects of variations in anatomy or physiology on intracast pressures. Pain levels were evaluated using the Visual Analogue Score after each sequential saline injection. Each type of cast was reapplied four times and the measurements were repeated on four separate occasions. Sample sizes were determined by a pre-study 90% power calculation to detect a 20% difference in intracast pressures between cast groups. A significant difference between the various types of casts was noted when the saline volume was greater than 100 mL ( P = 0.009). The greatest intracast pressure was generated by complete fiberglass casts, which were significantly higher than complete POP casts or backslabs ( P = 0.018 and P = 0.008 respectively) at intracast saline volumes of 100 mL and higher. Backslabs produced a significantly lower intracast pressure compared to complete POP only once the saline volume within casts exceeded 225 mL ( P = 0.009). Intracast pressures were significantly lower in split casts ( P = 0.003). Split POP and fiberglass casts produced the lowest intracast pressures, even compared to backslabs ( P = 0.009). Complete fiberglass casts generated the highest pain levels at manometer pressures of 75 mmHg and greater ( P = 0.001). Split fiberglass casts had significantly reduced pain levels ( P = 0.001). In contrast, a split complete POP cast did not produce significantly reduced pain levels at pressures between 25-150 mmHg. There was no difference in pain generated by complete POP and backslabs at manometer pressures of 200 mmHg and lower. Fibreglass casts generate significantly higher intracast pressures and pain than POP casts. Split casts cause lower intracast pressures regardless of material, than complete casts and backslabs.

  11. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  12. Investigation of transport properties of coronene.TCNQ cocrystal microrods with coronene microrods and TCNQ microsheets

    NASA Astrophysics Data System (ADS)

    Wu, Hao-Di; Wang, Feng-Xia; Zhang, Meng; Pan, Ge-Bo

    2015-07-01

    Coronene.TCNQ cocrystal microrods, coronene microrods, and TCNQ microsheets were constructed by a drop-casting method. Prototype devices were fabricated and their field-effect-transistor (FET) performances were investigated. It is found that coronene.TCNQ microrods had exhibited an n-type characteristic and showed better FET performances than TCNQ microsheets.Coronene.TCNQ cocrystal microrods, coronene microrods, and TCNQ microsheets were constructed by a drop-casting method. Prototype devices were fabricated and their field-effect-transistor (FET) performances were investigated. It is found that coronene.TCNQ microrods had exhibited an n-type characteristic and showed better FET performances than TCNQ microsheets. Electronic supplementary information (ESI) available: Device fabrication and measurements. See DOI: 10.1039/c5nr02778k

  13. Nondestructive method for chemically machining crucibles or molds from their enclosed ingots and castings

    DOEpatents

    Stout, Norman D.; Newkirk, Herbert W.

    1991-01-01

    An inventive method is described for chemically machining rhenium, rhenium and tungsten alloy, and group 5b and 6b crucibles or molds from included ingots and castings comprised of oxide crystals including YAG and YAG based crystals, garnets, corundum crystals, and ceramic oxides. A mixture of potassium hydroxide and 15 to 90 weight percent of potassium nitrate is prepared and maintained at a temperature above melting and below the lower of 500 degrees centigrade or the temperature of decomposition of the mixture. The enveloping metal container together with its included oxide crystal object is rotated within the heated KOH-KNO.sub.3 mixture, until the container is safely chemically machined away from the included oxide crystal object.

  14. Method of forming components for a high-temperature secondary electrochemical cell

    DOEpatents

    Mrazek, F.C.; Battles, J.E.

    1981-05-22

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes is described. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutectic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  15. The Role of Indian Caste Identity and Caste Inconsistent Norms on Status Representation

    PubMed Central

    Sankaran, Sindhuja; Sekerdej, Maciek; von Hecker, Ulrich

    2017-01-01

    The Indian caste system is a complex social structure wherein social roles like one’s profession became ‘hereditary,’ resulting in restricted social mobility and fixed status hierarchies. Furthermore, we argue that the inherent property of caste heightens group identification with one’s caste. Highly identified group members would protect the identity of the group in situations when group norms are violated. In this paper, we were interested in examining the consequence of caste norm violation and how an individual’s status is mentally represented. High caste norms are associated with moral values while the lower caste norms are associated with immorality. We predicted a ‘black sheep effect,’ that is, when high caste individuals’ group identity (caste norm violation condition) is threatened their salient high caste identity would increase, thereby resulting in devaluing the status of their fellow in-group member if the latter is perceived as perpetrator. We presented participants with a social conflict situation of a victim and a perpetrator that is ‘Caste norm consistent’ (Lower caste individual as a perpetrator and higher caste individual as a victim) and vice versa ‘Caste norm inconsistent’ condition (higher caste individual as perpetrator and lower caste individual as a victim). Then, participants had to choose from nine pictorial depictions representing the protagonists in the story on a vertical line, with varying degrees of status distance. Results showed evidence for the black sheep effect and, furthermore, revealed that no other identity (religious, national, and regional) resulted in devaluing the status of fellow in-group member. These results help us understand the ‘black sheep’ effect in the context of moral norms and status representation and are discussed in the framework of the Indian society. PMID:28408896

  16. The Role of Indian Caste Identity and Caste Inconsistent Norms on Status Representation.

    PubMed

    Sankaran, Sindhuja; Sekerdej, Maciek; von Hecker, Ulrich

    2017-01-01

    The Indian caste system is a complex social structure wherein social roles like one's profession became 'hereditary,' resulting in restricted social mobility and fixed status hierarchies. Furthermore, we argue that the inherent property of caste heightens group identification with one's caste. Highly identified group members would protect the identity of the group in situations when group norms are violated. In this paper, we were interested in examining the consequence of caste norm violation and how an individual's status is mentally represented. High caste norms are associated with moral values while the lower caste norms are associated with immorality. We predicted a 'black sheep effect,' that is, when high caste individuals' group identity (caste norm violation condition) is threatened their salient high caste identity would increase, thereby resulting in devaluing the status of their fellow in-group member if the latter is perceived as perpetrator. We presented participants with a social conflict situation of a victim and a perpetrator that is ' Caste norm consistent' (Lower caste individual as a perpetrator and higher caste individual as a victim) and vice versa 'Caste norm inconsistent' condition (higher caste individual as perpetrator and lower caste individual as a victim). Then, participants had to choose from nine pictorial depictions representing the protagonists in the story on a vertical line, with varying degrees of status distance. Results showed evidence for the black sheep effect and, furthermore, revealed that no other identity (religious, national, and regional) resulted in devaluing the status of fellow in-group member. These results help us understand the 'black sheep' effect in the context of moral norms and status representation and are discussed in the framework of the Indian society.

  17. Electron beam weld development on a Filter Pack Assembly

    NASA Astrophysics Data System (ADS)

    Dereskiewicz, J. P.

    1994-06-01

    A continuous electron beam welding procedure was developed to replace the manual gas tungsten arc welding procedure on the Filter Pack Assembly. A statistical study was used to evaluate the feasibility of electron beam welding 6061-T6 aluminum covers to A356 cast weldments throughout the joint tolerance range specified on product drawings. Peak temperature exposures were not high enough to degrade the heat sensitive electrical components inside the cast weldment. Actual weldments with alodine coating on the weld joint area were successfully cleaned using a nonmetallic fiberglass brush cleaning method.

  18. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Method and apparatus for strip casting

    DOEpatents

    Follstaedt, Donald W.; Powell, John C.; Sussman, Richard C.; Williams, Robert S.

    1991-01-01

    Casting nozzles will provide improved flow conditions with the parameters controlled according to the present invention. The gap relationships between the nozzle slot and exit orifice must be controlled in combination with converging exit passageway to provide a smooth flow without shearing and turbulence in the stream. The nozzle lips are also rounded to improve flow and increase refractory life of the lips of the nozzle. The tundish walls are tapered to provide improve flow for supplying the melt to the nozzle. The nozzle is located about 45.degree. below top dead center for optimum conditions.

  20. Different methods of treatment related to the bilateral occurrence of Perthes' disease.

    PubMed

    Futami, T; Suzuki, S

    1997-11-01

    We treated 98 consecutive patients with Perthes' disease by a unilateral brace in external rotation, flexion and abduction and a further consecutive 110 by a bilateral cast with the hips in internal rotation and abduction. During treatment in the unilateral brace, six (6.1%) hips on the opposite side developed evidence of Perthes' disease and one developed this after the brace had been removed. In children managed in bilateral casts, no contralateral Perthes' disease was seen. Adequate containment of the femoral head may prevent subsequent changes in the opposite hip.

Top